
Service Oriented Architecture for Monitoring

Cargo in Motion Along Trusted Corridors

c©2009

Martin Kuehnhausen

Submitted to the
Department of Electrical Engineering & Computer Science

and the Graduate Faculty of the University of Kansas
in partial fulfillment of the requirements for the degree of

Master of Science.

Thesis Committee:

Dr. Victor Frost, Chairperson

Dr. Joseph Evans

Dr. Gary Minden

Date Defended



The Thesis Committee for Martin Kuehnhausen certifies
that this is the approved version of the following thesis:

Service Oriented Architecture for Monitoring Cargo in Motion Along
Trusted Corridors

Committee:

Chairperson

Date Approved

i



Acknowledgments

I would like to thank the people who have made my Master Thesis possible, my

advisor Dr. Frost and the committee members Dr. Evans and Dr. Minden.

I wish to thank the members of the SensorNet project and in particular Leon Searl

and Ed Komp for their support and encouragement through the good, the bad and the

fun times.

I am thankful to the professors at the University of Kansas who have shown me that

there is so much to be learned and discovered in the field of Computer Science.

I am very fortunate for all the love and support that my family and friends provide

me with. Thank you so very much, Mom, Dad, Fabian, Juliane and Micha.

Most importantly I wish to thank my wonderful Erika for making everything possible.

ii



Abstract

This thesis describes a system called the Transportation Security SensorNet that

can be used to perform extensive cargo monitoring. It is built as a Service Oriented

Architecture (SOA) using open web service specifications and Open Geospatial Consor-

tium (OGC) standards. This allows for compatibility, interoperability and integration

with other web services and Geographical Information Systems (GIS).

The two main capabilities that the Transportation Security SensorNet provides are

remote sensor management and alarm notification. The architecture and the design of

its components are described throughout this thesis. Furthermore, the specifications

used and the fundamental ideas behind a Service Oriented Architecture are explained

in detail.

The system was evaluated in real world scenarios and performed as specified. The

alarm notification performance throughout the system, from the initial detection at the

Sensor Node service to the Alarm Reporting service, is on average 2.1 seconds. Location

inquiries took 4.4 seconds on average. Note that the majority of the time, around 85%

for most of the messages sent, is spent on the transmission of the message while the rest

is used on processing inside the web services.

Finally the lessons learned are discussed as well as directions for future enhancements

to the Transportation Security SensorNet, in particular to security, complex manage-

ment and asynchronous communication.

iii



Table of Contents

Acknowledgments ii

Abstract iii

Table of Contents iv

List of Figures viii

List of Listings x

List of Tables xi

1 Introduction 1

2 Statement of Problem 3
2.1 Proprietary Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Variety of Open Standards . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Service Oriented Architecture . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Background 13
3.1 Extensible Markup Language . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.1.2 Descriptive power . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.1.3 Ease of transformation . . . . . . . . . . . . . . . . . . . . . . . . 19
3.1.4 Information storage and retrieval . . . . . . . . . . . . . . . . . . 21
3.1.5 Flexible transmission . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2 Open Geospatial Consortium . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2.1 Sensor Web Enablement (SWE) . . . . . . . . . . . . . . . . . . 24
3.2.2 Geography Markup Language (GML) . . . . . . . . . . . . . . . 26

iv



3.2.3 Catalogue Service for Web (CSW) . . . . . . . . . . . . . . . . . 28
3.2.4 Observations & Measurements (O&M) . . . . . . . . . . . . . . . 29
3.2.5 Sensor Observation Service (SOS) . . . . . . . . . . . . . . . . . 31
3.2.6 Sensor Alert Service (SAS) . . . . . . . . . . . . . . . . . . . . . 33

4 Service Oriented Architecture 36
4.1 Representational State Transfer (REST) . . . . . . . . . . . . . . . . . . 39

4.1.1 Traditional Definition . . . . . . . . . . . . . . . . . . . . . . . . 40
4.1.2 Current Use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.1.3 Further Development . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.2 SOAP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.2.1 Message format . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2.2 Faults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.2.3 Further development . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.3 Web Service Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.3.1 WS-Addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.3.2 WS-Eventing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.3.3 WS-Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.4 Service Directory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.5 Web Services Description Language (WSDL) . . . . . . . . . . . . . . . 53

4.5.1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.5.2 Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.5.3 Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.5.4 Binding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.5.5 Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.6 Message Exchange Patterns . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.6.1 In-Only . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.6.2 Robust In-Only . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.6.3 In-Out . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.6.4 In-Optional-Out . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.6.5 Out-Only . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.6.6 Robust Out-Only . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.6.7 Out-In . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.6.8 Out-Optional-In . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5 Related Work 64
5.1 Microsoft - An Introduction to Web Service Architecture . . . . . . . . . 64
5.2 Adobe - Service Oriented Architecture . . . . . . . . . . . . . . . . . . . 66

v



5.2.1 Request-Response via Service Registry (or Directory) . . . . . . 67
5.2.2 Subscribe-Push . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.2.3 Probe and Match . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.3 Open Sensor Web Architecture . . . . . . . . . . . . . . . . . . . . . . . 69
5.4 Globus - Open Grid Services Architecture . . . . . . . . . . . . . . . . . 71
5.5 Service Architectures for Distributed Geoprocessing . . . . . . . . . . . 74
5.6 Web Services Orchestration . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6 Design & Architecture 80
6.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.1.1 Service Oriented Architecture . . . . . . . . . . . . . . . . . . . . 80
6.1.2 Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
6.1.3 Clients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.1.4 Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
6.1.5 Subscriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
6.1.6 Synchronous and asynchronous communication . . . . . . . . . . 92

6.2 TSSN Common Namespace . . . . . . . . . . . . . . . . . . . . . . . . . 94
6.3 Mobile Rail Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.3.1 Sensor Node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
6.3.2 Alarm Processor . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.4 Virtual Network Operation Center . . . . . . . . . . . . . . . . . . . . . 104
6.4.1 Sensor Management . . . . . . . . . . . . . . . . . . . . . . . . . 105
6.4.2 Alarm Processor . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
6.4.3 Alarm Reporting . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.5 Trade Data Exchange . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
6.5.1 Trade Data Exchange Service . . . . . . . . . . . . . . . . . . . . 119

6.6 Open Geospatial Consortium Specifications . . . . . . . . . . . . . . . . 122

7 Implementation Results 123
7.1 Logging Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
7.2 Log Parser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

7.2.1 Abstraction Layer Model . . . . . . . . . . . . . . . . . . . . . . 124
7.2.2 Message Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

7.3 Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
7.4 Performance and Statistics . . . . . . . . . . . . . . . . . . . . . . . . . 128

7.4.1 Road Tests with Trucks . . . . . . . . . . . . . . . . . . . . . . . 128
7.4.2 Short Haul Rail Trial . . . . . . . . . . . . . . . . . . . . . . . . 130

vi



8 Conclusion 134
8.1 Current Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
8.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
8.3 Acknowledgment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

References 138

vii



List of Figures

3.1 OGC standardization framework as described in [74] . . . . . . . . . . . 23
3.2 Sensor Web Concept from [10] . . . . . . . . . . . . . . . . . . . . . . . 25
3.3 Catalogue Service reference model architecture from [63] . . . . . . . . . 28
3.4 Observation process as described in [20] . . . . . . . . . . . . . . . . . . 29
3.5 SOS data publishing process as described in [60] . . . . . . . . . . . . . 32
3.6 SOS data consumption process as described in [60] . . . . . . . . . . . . 32
3.7 SAS advertising process described in [78] . . . . . . . . . . . . . . . . . . 33
3.8 SAS notification process described in [78] . . . . . . . . . . . . . . . . . 34

4.1 Service overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.2 Traditional web applications and AJAX from Garrett [35] . . . . . . . . 41
4.3 SOAP message format . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.4 WSDL 2.0 overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.5 In-Only message exchange pattern . . . . . . . . . . . . . . . . . . . . . 59
4.6 Robust In-Only message exchange pattern . . . . . . . . . . . . . . . . . 60
4.7 In-Out message exchange pattern . . . . . . . . . . . . . . . . . . . . . . 60
4.8 In-Optional-Out message exchange pattern . . . . . . . . . . . . . . . . 61
4.9 Out-Only message exchange pattern . . . . . . . . . . . . . . . . . . . . 61
4.10 Robust Out-only message exchange pattern . . . . . . . . . . . . . . . . 62
4.11 Out-In message exchange pattern . . . . . . . . . . . . . . . . . . . . . . 62
4.12 Out-Optional-In message exchange pattern . . . . . . . . . . . . . . . . 63

5.1 Request-Response via Service Registry (or Directory) message exchange
pattern from [65] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.2 Subscribe-Push message exchange pattern from [65] . . . . . . . . . . . 68
5.3 Probe and Match message exchange pattern from [65] . . . . . . . . . . 68
5.4 NOSA layer overview from [19] . . . . . . . . . . . . . . . . . . . . . . . 69
5.5 Globus Toolkit overview from http://www.globus.org/toolkit/about.

html . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

viii

http://www.globus.org/toolkit/about.html
http://www.globus.org/toolkit/about.html


5.6 Forest fire application from [34] . . . . . . . . . . . . . . . . . . . . . . . 75
5.7 Forest fire web services architecture from [34] . . . . . . . . . . . . . . . 75
5.8 Web orchestration framework from [47] . . . . . . . . . . . . . . . . . . . 78

6.1 Service message overview . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.2 Service cloud . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
6.3 Axis2 extensibility from [16] . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.4 Axis2 modules from [16] . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
6.5 Service composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.6 Mobile Rail Network message overview . . . . . . . . . . . . . . . . . . . 97
6.7 Mobile Rail Network Sensor Node . . . . . . . . . . . . . . . . . . . . . 98
6.8 Mobile Rail Network Alarm Processor . . . . . . . . . . . . . . . . . . . 102
6.9 Virtual Network Operation Center message overview . . . . . . . . . . . 105
6.10 Virtual Network Operation Center Sensor Management . . . . . . . . . 106
6.11 Virtual Network Operation Center Alarm Processor . . . . . . . . . . . 109
6.12 Esper architecture from [27] . . . . . . . . . . . . . . . . . . . . . . . . . 109
6.13 Virtual Network Operation Center Alarm Reporting . . . . . . . . . . . 111
6.14 Trade Data Exchange message overview . . . . . . . . . . . . . . . . . . 119
6.15 Trade Data Exchange Service . . . . . . . . . . . . . . . . . . . . . . . . 120

7.1 SOAP message (left) to Log parser classes (right) comparison . . . . . . 124
7.2 Two transmit-receive pairs (red and green) . . . . . . . . . . . . . . . . 126
7.3 A message couple (red) . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
7.4 Log file and service interaction visualization . . . . . . . . . . . . . . . . 127
7.5 Request performance from [31] . . . . . . . . . . . . . . . . . . . . . . . 131
7.6 Network transmission and processing performance from [31] . . . . . . . 131
7.7 System alarm notification performance from [31] . . . . . . . . . . . . . 132

ix



List of Code Listings

3.1 Simple XML book description . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2 Library of books . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3 Library of books using attributes . . . . . . . . . . . . . . . . . . . . . . 15
3.4 Extended library of books . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.5 Element book format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.6 Element book format with type (elementBook.xsd) . . . . . . . . . . . . 17
3.7 Attribute book format with type (attributeBook.xsd) . . . . . . . . . . . 18
3.8 Library schema (library.xsd) . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.9 Library stylesheet (library.xsl) . . . . . . . . . . . . . . . . . . . . . . . . 20
3.10 Library of books in HTML (library.html) . . . . . . . . . . . . . . . . . 20
4.1 SOAP message format example . . . . . . . . . . . . . . . . . . . . . . . 44
4.2 SOAP Fault message example . . . . . . . . . . . . . . . . . . . . . . . . 44
4.3 WSDL Description example . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.4 WSDL Types example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.5 WSDL Interface example . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.6 WSDL Binding example . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.7 WSDL Service example . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

x



List of Tables

3.1 Example XPath expressions . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2 Collection types from [20] . . . . . . . . . . . . . . . . . . . . . . . . . . 30

6.1 Sensor Node StartMonitorSensors operation . . . . . . . . . . . . . . . . 99
6.2 Sensor Node StopMonitorSensors operation . . . . . . . . . . . . . . . . 99
6.3 Sensor Node setSensors operation . . . . . . . . . . . . . . . . . . . . . . 99
6.4 Sensor Node AddSeals operation . . . . . . . . . . . . . . . . . . . . . . 100
6.5 Sensor Node getLocation operation . . . . . . . . . . . . . . . . . . . . . 100
6.6 Sensor Node GetCapabilities operation . . . . . . . . . . . . . . . . . . . 101
6.7 Sensor Node GetObservation operation . . . . . . . . . . . . . . . . . . . 101
6.8 Alarm Processor Alert operation . . . . . . . . . . . . . . . . . . . . . . 103
6.9 Alarm Processor SensorNodeEvent operation . . . . . . . . . . . . . . . 103
6.10 Alarm Processor SetMonitoringState operation . . . . . . . . . . . . . . 104
6.11 Sensor Management startMonitoring operation . . . . . . . . . . . . . . 106
6.12 Sensor Management stopMonitoring operation . . . . . . . . . . . . . . . 107
6.13 Sensor Management getLocation operation . . . . . . . . . . . . . . . . . 107
6.14 Sensor Management setAlarmSecure operation . . . . . . . . . . . . . . 108
6.15 Sensor Management setAlarmProcessorMonitoringState operation . . . 108
6.16 Alarm Processor MRN Alarm operation . . . . . . . . . . . . . . . . . . 110
6.17 Alarm Reporting addSmsProvider operation . . . . . . . . . . . . . . . . 112
6.18 Alarm Reporting updateSmsProvider operation . . . . . . . . . . . . . . 113
6.19 Alarm Reporting removeSmsProvider operation . . . . . . . . . . . . . . 113
6.20 Alarm Reporting removeSmsProviderById operation . . . . . . . . . . . 113
6.21 Alarm Reporting getAllSmsProviders operation . . . . . . . . . . . . . . 114
6.22 Alarm Reporting addContact operation . . . . . . . . . . . . . . . . . . 114
6.23 Alarm Reporting updateContact operation . . . . . . . . . . . . . . . . 115
6.24 Alarm Reporting removeContact operation . . . . . . . . . . . . . . . . 115
6.25 Alarm Reporting removeContactById operation . . . . . . . . . . . . . . 115
6.26 Alarm Reporting getAllContacts operation . . . . . . . . . . . . . . . . 116

xi



6.27 Alarm Reporting addAlarmContactMapping operation . . . . . . . . . . 116
6.28 Alarm Reporting updateAlarmContactMapping operation . . . . . . . . 117
6.29 Alarm Reporting removeAlarmContactMapping operation . . . . . . . . 117
6.30 Alarm Reporting removeAlarmContactMappingById operation . . . . . 117
6.31 Alarm Reporting getAllAlarmContactMappings operation . . . . . . . . 118
6.32 Alarm Reporting NOC Alarm operation . . . . . . . . . . . . . . . . . . 118
6.33 Alarm Reporting getAllAlarms operation . . . . . . . . . . . . . . . . . 118
6.34 TradeDataExchange ShipmentQuery operation . . . . . . . . . . . . . . 121
6.35 TradeDataExchange ValidatedAlarm operation . . . . . . . . . . . . . . 121

7.1 XPath expressions for WS-Addressing . . . . . . . . . . . . . . . . . . . 125

xii



Chapter 1

Introduction

Cargo theft and tampering are common problems in the transportation industry.

According to Wolfe [85] the “FBI estimates cargo theft in the U.S. to be $18 billion”

and the Department of Transportation “estimated that the annual cargo loss in the U.S.

might be $20 billion to $60 billion”. Wolfe [85] also gives good reason to believe that

the actual number may be even higher than $100 billion because of two reasons. First

it is assumed that about 60 percent of all thefts go unreported and second the indirect

costs associated with a loss are said to be three to five times the direct costs.

With the advances in technology, this problem has evolved into a cat-and-mouse

game where thieves constantly try to outsmart the newest cutting edge security systems.

In terms of securing cargo, there are usually two aspects: first ensuring the physical

safety of the cargo and second monitoring and tracking it. The latter especially has

become of more interest as of late because many shipments cross national borders and

cargo may be handled by a multitude of carriers. All of this leads to a huge demand for

tracking and monitoring systems by the cargo owners, carriers, insurance companies,

customs and many others.

In this thesis, a framework is introduced which builds on open standards and software

components to allow “monitoring cargo in motion along trusted corridors”. The focus

lies on the use of a Service Oriented Architecture and Geographical Information System

1



specifications in order to allow an industry wide adoption of this open framework.

A formal description of the problem to be analyzed can be found in chapter 2. In

particular, it discusses the problems of proprietary systems, the advantages of open stan-

dards and the approach of using a Service Oriented Architecture in the transportation

industry.

Chapter 3 gives an in-depth introduction to the Extensible Markup Language that is

used as the foundation of the framework. Furthermore the specifications provided by the

Open Geospatial Consortium that define the elements and interfaces for Geographical

Information Systems are described.

The formal representation of the framework is a Service Oriented Architecture which

is described in chapter 4 along with the components that it uses.

Chapter 5 refers to related work and focuses on the topics that either deal with the

Service Oriented Architecture or the Open Geospatial Consortium specifications.

The main part of this thesis that details the design and architecture of the framework

can be found in chapter 6. It explains the individual components as well as the software

parts and specifications that are used in the implementation.

Chapter 7 gives test and performance results and describes the tools that have been

developed for that particular purpose.

The thesis concludes with chapter 8 that also provides an outlook for future work.

2



Chapter 2

Statement of Problem

In order to address the problem of cargo theft, the Transportation Security Sen-

sorNet project has been created. Its goal is to promote the use of open standards and

specifications in combination with web services to provide cargo monitoring capabilities.

The main question is the following:

“How can a Service Oriented Architecture, open standards and specifications

be used to overcome the problems of proprietary systems that are currently

in place and provide a reusable framework that can be implemented across

the entire transportation industry?”

The three main aspects of this question are discussed next.

2.1 Proprietary Solutions

Current commercial systems in the transportation industry are often proprietary.

This is because a lot of effort is spent on research and development in order to create

what is called intellectual property. The assumption is then that as long as the com-

petitors do not have access to the system and its protocols that intellectual property is

safe and provides a competitive advantage. Another common “benefit” of keeping the

3



systems closed is the perceived additional security since in order to successfully attack

the system its implementation and protocols have to be reverse engineered.

The problem with this is that these advantages are often one-sided and favor ven-

dors. Once a proprietary system has been implemented it has to be maintained. What

happens if a customer that uses the system invested a lot of money into a its infras-

tructure and the training of its employees and the company that provides the system

releases a new version of it which of course costs money again. The customer has several

choices:

Upgrade Throughout the literature this is often considered the most expensive option

because of the cost for the upgrade to the new version and the additional training to

the employees that has to be provided. The benefits of upgrading are the use of new

technology, potential gains in efficiency through new features and the latest bug fixes.

Do Not Upgrade By many regarded as the most cost efficient solution, choosing

not to upgrade compromises new features and updates for the ability to save costs. An

approach that is taken by some companies is the so-called skip a version technique.

This allows companies to plan better as internal processes and systems often have to

interoperate and need to remain compatible to each other.

Change Vendor In this situation, the new version of the system that is provided

by company A does not provide the necessary features or is simply too expensive.

Furthermore, a different company B offers a similar product with more features or

for less money. The move to the new system is now dependent on the following things:

How big are the estimated savings and what are the direct and indirect costs of the

transition? It often happens that after careful consideration the costs outweigh the

estimated gains and the customer goes back to considering whether or not to simply

upgrade. If a transition is made, the process could be time consuming and turn out to

be more complicated than expected.

4



Picture this extreme case as well. What happens if the vendor goes out of business?

All of the sudden, the short-term goal is to maintain support for the system and to

keep it running while in the long-term to look for a suitable replacement and be forced

to transition. Even if this case does not happen the dependency on the vendor can be

crucial. If the system has errors or a particular enhancement is desperately needed, the

vendor decides what to do about it. For big companies that are major customers this

may not be such a big problem because they often get preferential treatment. But for

small and medium businesses the wait might be too long and lose them customers and

revenue.

The main point here is that many customers are locked into proprietary solutions

that are incompatible with similar solutions offered by competitors. In a 2003 survey

by the Delphi Group [36] it was found that 52% of developers and 42% of consumers

see standards enabling the “approval of projects otherwise threatened by concerns over

proprietary system lock-in”. Furthermore, an overwhelming 71% of developers and 65%

of consumers feel that the use of open standards “increases the value of existing and

future investments in information systems”.

The problem of non-interoperability with regard to geospatial processing is the topic

of a paper by Reichardt [75]. Because Geographical Information Systems are often

immensely complex, companies that invest heavily into this area often only support their

product. As described in the sample scenario, this leads to a lack of coordination among

entities such as the Federal Emergency Management Agency (FEMA), the National

Transportation Safety Board (NTSB) and the Environmental Protection Agency (EPA)

because of the inability to share vital information which is the key to fast decision

making and data analysis

5



2.2 Variety of Open Standards

The idea of open standards and specifications is to define so-called interfaces and

protocols that can be used as references for the implementation of a system. There are

many standards committees and industry groups that aim to define them, most often

focused on a particular area. Some of the most well-known ones include the World

Wide Web consortium (W3C), the Organization for the Advancement of Structured

Information Standards (OASIS), the International Telecommunication Union (ITU) and

the International Organization for Standardization (ISO).

The main principles that govern the development of standards are usually the same

across all organizations. The following is an overview according to ISO:

Consensus All parties that are affected by the proposed standard get the chance

to voice their opinions. This includes initial ideas and continues with feedback and

comments during the standardization process.

Industrywide The idea is to develop global standards that can be used worldwide

by entire industries.

Voluntary The standardization process is driven by the people that are interested

in it and that see its future benefits across a particular industry. It is often based on

so-called best practices that are already commonly in use.

The importance of open standards is emphasized in a paper by McKee [56]. It pro-

vides the evolution and success of the Internet as the “perfect example” for the use of

open standards. In particular it explains that since the Internet is based upon com-

munication and communication means “transmitting or exchanging through a common

system of symbols, signs or behavior”, the process of standardization can basically be

seen as “agreeing on a common system”. The other parts of the paper are focused on

6



how so-called openness can help Geographical Information Systems (GIS) but many of

the points mentioned apply to open standards in general.

In particular the following aspects are associated with open standards:

Compatibility This includes the ability to share data across vendors and systems

in a uniform and non-proprietary form. It allows processes to use essentially the same

data in order to perform their specific task without the need of costly conversions or

interpretation errors. Most common formats are also backward compatible which means

that no particular version of the system is needed to interpret the data. Only a certain

subset of functionality might be provided when using in older versions though. Another

advantage of open formats is the fact that even if a particular version of a format is

completely outdated and only used in legacy systems, its specification is still accessible

to everyone. Hence systems can still be designed to use the format.

Freedom of Choice A major problem of proprietary solutions that was described

earlier was the so-called vendor lock. Once a customer implements a proprietary system

and builds its infrastructure around it, choices in the future are limited. Open standards

by definition are vendor independent. Furthermore many of them support a broad

variety of implementation scenarios. These implementations often are not even limited

to a particular platform, operation system or programming language. This is especially

true for most of the web standards.

Interoperability Through the use of clearly defined interfaces, standards dramati-

cally enhance interoperability. The standards that define interface specifications do not

provide a specific implementation but provide references to best practices and imple-

mentation patterns instead. Companies choose what kind of system implementation

they prefer. This allows them to make use of existing infrastructure and capabilities

that might otherwise have to be changed when using a proprietary system. The uniform

access to functionality and data enables companies to connect a multitude of systems

7



and make more use of them. Also, in case one part of the system has to be replaced,

another one that simply provides the same interface can take its place. This allows great

flexibility in terms of the overall system design.

Leverage For companies the standardization of concepts, frameworks and common

approaches provides a number of benefits. Since research and development can be

extremely cost intensive, companies want to make sure there is a guaranteed return on

investment for them. Open standards do not necessarily lead to increased revenue but

they do provide insurance to the companies that they are on the “right” track and what

they implement is actually used industrywide. This is very important because customers

are aware that when they purchase a system from company A that uses a proprietary

or non-standard implementation they might become a victim of vendor lock. Acquiring

a system that is build on open standards allows them to choose the best and most cost

effective solution from a variety of independent implementations. Another advantage is

that once different implementations by the main vendors have been established, there is

room for custom solutions by smaller vendors, often in the form of extensions or plugins.

Open Source The biggest benefit of using open standards is that fact it leads to

innovation. This is because everybody can contribute, suggest enhancements, outline

best practices and address mistakes. In terms of software this approach is often referred

to as open source.

However, there are several problems that can be associated with non-proprietary

systems. Implementations are based upon the interpretation of the standards which

may differ significantly. Furthermore, some implementations only support a subset of the

original specification, are slower than the reference implementation or use incompatible

sub systems.

8



2.3 Service Oriented Architecture

The concept of information processing and sharing across various applications using

so-called web services is the main focus of this thesis. The basic idea is to define

components of a system as services and users as clients that can retrieve data from them.

Note that interaction between services is done using so-called embedded clients. The

services take care of things such as information processing, data analysis and storage.

With all business logic embedded into services and interaction between them clearly

defined using open standards an infrastructure is built that is called the Service Oriented

Architecture (SOA).

The Internet allows the following two things that are relevant to geospatial pro-

cessing: a common means of communication and the ability for efficient information

sharing. There exist many standards on how to transmit, receive, encode and decode

data. SOA builds on top of them to provide new specifications that enable the design,

implementation and use of web services. Through these web services companies, govern-

ment agencies and others have the ability to share and process information in a uniform

manner which cuts costs, time and resources and improves efficiency. More information

on the Service Oriented Architecture can be found in chapter 4.

Now why is the SOA such an “enabler”? What is possible now that was not possible

before? According to Irmen [44] automation and efficient communication with partners

are the two most important things in supply chain management which represents the

core of the transportation industry. Let us take a look at how the Service Oriented

Architecture addresses both of them in regard to the individual topics outlined in the

paper.

Automation A vital part in transportation is the so-called screening process. Com-

panies that transport goods must ensure safety and therefore check all parties involved

in the trade. An important aspect of this is the use of a so-called denied trade list

9



which lists items and companies that are not allowed to import or export into specific

countries. With the reduction in manual labor and transition to a web services based

system that automatically performs these checks, efficiency could be greatly increased.

A closely related topic is accountability. Who is responsible if something goes wrong

during the trade process? Since goods are often handled by many different parties,

it must be possible to monitor the location of cargo and handovers tightly. This is

especially important in cases of tampering or even theft of the cargo.

Furthermore, agencies and customs more and more require electronic trade informa-

tion instead of paper documents in order to track trade. Because of different formats

and legacy applications that are often unable to provide this information in its entirety,

additional resources have to be allocated in order to remain compliant with current

practices. Web services and open standards can overcome this problem with uniform

interfaces and common data formats.

Having the ability to monitor the location not just for perishable goods but also

for high value goods is of great importance in the transport chain. Current processes

should be able to automatically route cargo based on its needs and cost effectiveness.

Irmen [44] also points out that“the lack of integration between products causes users

to deal with multiple systems having disparate data and non-uniform input and output”

and calls for the use of a single platform. Using the Service Oriented Architecture this

“call” becomes less necessary because it is platform independent and at the same time

able to provide integration of multiple systems and standardized data formats.

Efficient Communication Building a virtual network among the parties involved in

the trade process establishes efficient means of communication. It allows the coordina-

tion between otherwise disparate entities that is essential to provide cost effective and

reliable shipping of cargo. The Internet provides the communication layer but it is the

standards of web services that enable the integration of different systems.

10



Irmen [44] mentions the so-called Software-as-a-Service (SaaS) approach which al-

lows software to run on a per-use basis without the costs of complex hardware infras-

tructure. This works very well with SOA as the interfaces defined by those services are

often web services interfaces that are essentially part of SOA.

Security within the transportation industry plays a big role because trade data is

to be kept confidential at all times and only distributed on a need-to-known basis.

This puts an additional burden on the parties that are involved, as the parties must

exchange data confidentially at each point of interaction. If open standards are used for

this, security is implemented based on interfaces and policies that are easy to manage.

In order to manage the transportation chain in its entirety, a global view is often

needed. This is problematic since individual parties often only deal with their respective

neighbors. Using open standards and the Service Oriented Architecture approach each

party could provide an uniform information interface that is accessible to other parties

in the chain. This allows consistent reporting, monitoring and analysis at each step

during the shipping process.

The reporting part especially has gained more attention over the past years as the

focus has shifted towards more ethical and socially responsible business practices. Ac-

countability coincides with this social visibility and therefore improvements in moni-

toring cargo not only lead to increased revenue on the business side but better public

relations as well.

Overall the paper by Irmen [44] gives excellent reasons for open systems in terms

of accountability, coordination, scalability and cost. It outlines important aspects that

need to be taken into consideration when designing an architecture such as the Trans-

portation Security SensorNet.

11



2.4 Summary

The following chapters describe how open specifications for Geographical Informa-

tion Systems in combination with web services can be used to address the problems

of proprietary systems that were outlined in section 2.1. In the Transportation Secu-

rity SensorNet (TSSN) this is achieved by using a variety of open standards primarily

because of the aforementioned interoperability and freedom of choice (see section 2.2).

The use of a Service Oriented Architecture for the TSSN allows the creation of the ap-

plications needed for efficient and cost effective transportation chains (see section 2.3).

12



Chapter 3

Background

3.1 Extensible Markup Language

The Extensible Markup Language (XML) is a specification by the World Wide Web

Consortium (W3C) that is used to describe data in a highly flexible but also concise

way. It serves as the basis for most of the specifications that are referenced in this thesis.

As described by Sperberg-McQueen et al. [81] one of the main goals of the specifica-

tion is interoperability and support for a multitude of applications. This is emphasized

by the fact that XML should be human-readable and easy to process by computers.

XML can be used to describe, filter and format data while providing storage function-

ality as well.

In the Transportation Security SensorNet it is utilized in a variety of ways. The

web services and the Open Geospatial Consortium standards define their interfaces and

data elements using XML. SOAP, as described in section 4.2, is a XML message format

that is used as the basis for the transmission of data in the framework. Furthermore,

many configuration files for the web services and clients in the Transportation Security

SensorNet are in XML. The use of the Extensible Markup Language is one of the main

reasons for the flexibility and reusability of the framework

13



3.1.1 Overview

In the following sections some basic principles of XML are introduced. Let us start

by describing a simple book using XML.

1 <?xml version="1.0" encoding="UTF-8" ?>
2 <book>
3 < !−− e n g l i s h t i t l e −−>
4 < t i t l e>Hamlet</ t i t l e>

5 < !−− author name −−>
6 <author>William Shakespeare</ author>
7 </book>

Listing 3.1 Simple XML book description

The first line is the XML declaration. It specifies that the described document uses

version 1.0 of the XML specification and UTF-8 encoding. Line two starts with the

definition of a book that contains a title (line four) and an author (line six). Note that

line three and five are comments that are not part of the actual data but can be used

to further describe it to humans. This example shows that XML can be as descriptive

to humans as it is to computers.

Looking at the XML we can see multiple things. The element book has a so-called

start-tag (line two) and an end-tag (line seven). Information about the specific book

is kept in between these tags. As for the title and author information the actual data

is also contained within their start-tag and end-tags. This demonstrates one basic type

that is used most frequently in XML, an element. An element consists of a start-tag

and an end-tag with either content or other elements in between. Note that there are

also so-called empty-element-tags that look like <empty-element/>. They contain no

further content or elements.

One of the requirements of using XML in applications is that one needs to define

one specific root element. Therefore if we wanted to define more books let us put them

into a library root element.

14



1 <?xml version="1.0" encoding="UTF-8" ?>
2 < l i b r a r y>

3 <book>
4 < t i t l e>Hamlet</ t i t l e>

5 <author>William Shakespeare</ author>
6 </book>
7 <book>
8 < t i t l e>Great Expectat ions</ t i t l e>

9 <author>Char les Dickens</ author>
10 </book>
11 . . .
12 </ l i b r a r y>

Listing 3.2 Library of books

XML is flexible enough to use different descriptions of essentially the same data.

The following example represents the same library using attributes for title and author

information instead of elements. Attributes are basically name-value pairs that contain

information about the element that they are a part of.

1 <?xml version="1.0" encoding="UTF-8" ?>
2 < l i b r a r y>

3 <book t i t l e="Hamlet" author="William Shakespeare" />
4 <book t i t l e="Great Expectations" author="Charles Dickens"

/>
5 . . .
6 </ l i b r a r y>

Listing 3.3 Library of books using attributes

The “problem” with this is that if one application uses elements and the other ap-

plication uses attributes to describe books in their libraries they seem incompatible.

In order to solve this we need to make sure that each description is uniquely identi-

fiable. This can be done declaring so-called namespaces as described by Bray et al.

[13]. The idea is to attach a specific Uniform Resource Identifier (URI) (see Berners-

Lee et al. [6]) to the document or element definitions. For example, this would re-

sult in <a:book xmlns:a="http://www.sample.com/elementBook"> for listing 3.2 and

<b:book xmlns:b="http://www.sample.com/attributeBook"> for listing 3.3. Using

15



these namespaces we have the ability to mix different descriptions in a single document.

1 <?xml version="1.0" encoding="UTF-8" ?>
2 < l i b r a r y xmlns="http://www.sample.com/library">

3 <a:book xmlns:a="http://www.sample.com/elementBook">

4 <a : t i t l e>Hamlet</ a : t i t l e>

5 <a :author>William Shakespeare</ a :author>
6 </ a:book>

7 <b:book xmlns:b="http://www.sample.com/attributeBook"

t i t l e="Great Expectations" author="Charles Dickens" />
8 . . .
9 </ l i b r a r y>

Listing 3.4 Extended library of books

We can also use namespaces to uniquely identify document descriptions. The default

description in listing 3.4 is <library xmlns="http://www.sample.com/library"> and

more specific descriptions are in place for each book.

So what do these descriptions actually look like? They are written in XML as well

and called XML Schema Definitions (XSD). An overview is provided by Fallside and

Walmsley [28] and the exact structure by Mendelsohn et al. [57]. While there are other

standards in place for describing XML documents, XML schemas are the most common.

Let us describe the first book format.

1 <?xml version="1.0" encoding="UTF-8" ?>
2 <xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

3 targetNamespace="http://www.sample.com/elementBook"

4 xmlns="http://www.sample.com/elementBook">

5 <xsd :e l ement name="book">

6 <xsd:complexType>
7 <xsd : s equence>
8 <xs : e l ement name="title" type="xsd:string"/>
9 <xs : e l ement name="author" type="xsd:string"/>

10 </ xsd : s equence>
11 </ xsd:complexType>
12 </ xsd :e l ement>
13 </ xsd:schema>

Listing 3.5 Element book format

16



We defined an element called book that contains two elements called title and author.

Both of them are of type string which is a predefined data type. For ease of use and

compatibility reasons the specification defines a set of standard data types. The type

of book is so-called complex since it is the parent of other elements. Because this type

is defined implicitly it is called anonymous typing. If one wanted to reuse the book type

in some other element definition it makes more sense create a complex book type and

define an element that is of this type. The XML schema would then take the following

form:

1 <?xml version="1.0" encoding="UTF-8" ?>
2 <xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

3 targetNamespace="http://www.sample.com/elementBook"

4 xmlns="http://www.sample.com/elementBook">

5 <xsd :e l ement name="book" type="BookType"/>
6 <xsd:complexType name="BookType">

7 <xsd : s equence>
8 <xs : e l ement name="title" type="xsd:string"/>
9 <xs : e l ement name="author" type="xsd:string"/>

10 </ xsd : s equence>
11 </ xsd:complexType>
12 </ xsd:schema>

Listing 3.6 Element book format with type (elementBook.xsd)

Line three defines the so-called target namespace of the schema. When the schema

is used in a document, elements from it will automatically have this namespace. Line

four specifies the default namespace for the schema so that elements and types in the

schema are able to reference each other. The sequence tag at line seven specifies that the

elements are to be in order, first title and then author. Other common options include

all for random order and choice for the exclusive selection of elements.

The second book format could be defined by the following schema:

17



1 <?xml version="1.0" encoding="UTF-8" ?>
2 <xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

3 targetNamespace="http://www.sample.com/attributeBook"

4 xmlns="http://www.sample.com/attributeBook">

5 <xsd :e l ement name="book" type="BookType"/>
6 <xsd:complexType name="BookType">

7 <x s d : a t t r i b u t e name="title" type="xsd:string"/>
8 <x s d : a t t r i b u t e name="author" type="xsd:string"/>
9 </ xsd:complexType>

10 </ xsd:schema>

Listing 3.7 Attribute book format with type (attributeBook.xsd)

The only major difference in listing 3.7 is using an attribute instead of an element

for the book information. Since our library should be able to use both descriptions let

us define a schema that will allow this.

1 <?xml version="1.0" encoding="UTF-8" ?>
2 <xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

3 xmlns:a="http://www.sample.com/elementBook"

4 xmlns:b="http://www.sample.com/attributeBook"

5 targetNamespace="http://www.sample.com/library"

6 xmlns="http://www.sample.com/library">

7 <xsd : import namespace="http://www.sample.com/elementBook"

schemaLocation="elementBook.xsd"/>
8 <xsd : import namespace="http://www.sample.com/

attributeBook" schemaLocation="attributeBook.xsd"/>
9 <xsd :e l ement name="library">

10 <xsd:complexType>
11 <x s d : c h o i c e minOccurs="0" maxOccurs="unbounded">

12 <xs : e l ement r e f="a:book"/>
13 <xs : e l ement r e f="b:book"/>
14 </ x s d : c h o i c e>
15 </ xsd:complexType>
16 </ xsd :e l ement>
17 </ xsd:schema>

Listing 3.8 Library schema (library.xsd)

The two previously defined schemas are imported in lines seven and eight. Line

twelve and thirteen use so-called references to these defined elements. In this case we

define the number of occurrences of each element explicitly. This is because by default

18



all elements have a minOccurs=1 and a maxOccurs=1, meaning that they are required

but may appear only exactly once. Hence, the library consists of books either in element

or attribute format and the possible number of books ranges from none to infinite.

The examples that were covered illustrate how XML can be used to describe and

store data. But what are the advantages of using XML over other technologies that can

essentially do the same? One of the main reasons why the use of XML has grown in

recent years is because of the impact of the Internet. Applications and data that were

previously stored internally, often in proprietary formats, are now made accessible to

remote locations and users. The need to deal with data in a more open and flexible way

became apparent especially for web applications and services. The following sections

describe the different ways of how web applications and applications in general can

utilize and benefit from XML.

3.1.2 Descriptive power

The description of data using XML enables applications to be very flexible and

modular. New fields or attributes of data can be added using schema extensions and

applications can choose either to use the extension or the original XML schema defi-

nition. Data can even be entirely rearranged using new or modified element and type

definitions. This allows different views of the same data which decreases conversion

costs and increases reusability and interoperability. In essence the data stays the same,

the only thing that changes is its interpretation.

This aspect is essential in a Service Oriented Architecture like the Transportation

Security SensorNet because clients and web services are highly dynamic. Using XML

allows the entire framework to be implemented in a flexible, modular and reusable way.

3.1.3 Ease of transformation

Data often needs to be transformed or converted from one format into the other.

Since XML only describes the data we can transform it easily into whatever is needed.

19



For this reason Extensible Stylesheet Language Transformations (XSLT) as described by

Kay [46] have been introduced. They enable automatic conversion of XML documents

using so-called stylesheets that are defined in XML. Let us take the initial library in

listing 3.2 and transform it into a simple HTML web page.

1 <?xml version="1.0" encoding="UTF-8"?>
2 <xsl :stylesheet xmlns :x s l="http://www.w3.org/1999/XSL/

Transform" version="2.0" >

3 <xsl:template match="/">

4 <html>
5 <body>
6 <h1>Library books</h1>
7 <xsl:for−each s e l e c t="library/book">

8 <div><xsl:value−of s e l e c t="title"/> by <xsl:value−of
s e l e c t="author"/></ div>

9 </xsl:for−each>

10 </body>
11 </html>
12 </xsl:template>
13 </ xsl :stylesheet>

Listing 3.9 Library stylesheet (library.xsl)

In listing 3.9 a header is specified that displays “Library books”. For each book in

the library the title and author are then extracted and put into a relationship sentence.

Hence, the resulting output would look like the following:

1 <html>
2 <body>
3 <h1>Library books</h1>
4 <div>Hamlet by William Shakespeare</div>

5 <div>Great Expectat ions by Char les Dickens</div>

6 . . .
7 </body>
8 </html>

Listing 3.10 Library of books in HTML (library.html)

Note that this is just one of the many possibilities of converting an existing XML

document into a different format. Within the Transportation Security SensorNet these

Extensible Stylesheet Language Transformations are used by Apache Axis2 to create

20



Java classes from XML Schema Definitions and Web Services Description Language

files so that they can be used by clients and web services (see 6.1.1.2 and section 6.1.1.4).

3.1.4 Information storage and retrieval

Storing data in an XML format makes the data and relations between data more

flexible. Databases often face the problem of sparsity where when a new column is

added to a table all entries must have this new column. XML works in a different way.

Additional information fields can be added just to the elements that need them while for

all other elements the XML schema would simply define the field as optional. This can

potentially save a lot of space when compared to storing the same data in traditional

databases. In the Transportation Security SensorNet this “cost saving” approach is

utilized by SOAP during the message transmission (see section 4.2).

In order to retrieve information efficiently from XML several specifications have

been designed. Boag et al. [8] describes XPath which is a query language specifically

designed for XML. It works on the basis of a document tree, the so-called data model,

that it creates from the original XML. Elements are nodes in the tree and attributes

so-called attribute nodes. Information can then be retrieved using path expressions.

Table 3.1 shows some examples of the information that we are able to retrieve and the

path expressions that were used for the library in listing 3.2. XPath is used by the Log

Parser extract information from log files (see section 7.2).

XPath expression Result
library all books of the library
library/book[1] first book
//author all authors
//author/text() all author names
//book[title=”Hamlet”]/author/text() author name of Hamlet

Table 3.1. Example XPath expressions

Another specification that is used for XML data information retrieval is called

XQuery which was defined by Siméon et al. [77]. It is more complex and builds on

21



top of XPath 2.0. Immediate result computations and transformations are possible

using a so-called FLOWR expressions. Where Xpath simply extracted information,

XQuery enables applications and users to directly modify or change the appearance of

the information.

3.1.5 Flexible transmission

Since there is a significant overhead associated with conversion, standards have been

defined that allow various forms of XML to be transmitted with little or no modification.

The simplest form is just to send an XML document from sender to receiver using HTTP

which is known as Representational State Transfer (REST) (see section 4.1). In that

case both parties have the schema information. This is not a lot different than using a

binary format since the communication is useless for anybody that does not understand

the format. The advantage though would be that there is no conversion from XML

into another format necessary. For more advanced scenarios it becomes more feasible

to wrap the document that is being transmitted into a standardized transport package

or message. The most common way to achieve this for XML is by using SOAP which

is the case in the Transportation Security SensorNet and described in section 4.2.

3.2 Open Geospatial Consortium

The Open Geospatial Consortium (OGC) is the de facto authority on open standards

for Geographical Information Systems (GIS). Its members develop interface specifica-

tions for geographical applications. One of the primary goals is interoperability: research

and development costs are later diminished by the fact that if one application imple-

ments an OGC standard other applications can use it through the predefined interfaces

that the standard provides. Furthermore, there is a higher interest in the actual im-

plementation of standards since a majority of the industry agreed upon them. This

mitigates one of the main risks that proprietary applications otherwise face, the lack of

22



user and industry acceptance.

Some of the industry needs cover a wide area of topics whereas others are very

specific. For example, there needs to be a standard for dealing with times, locations

and their formats which is something that almost all geographical applications face at

some point. On the other hand, the format for requesting live feeds from a sensor is

of interest only to a smaller group. The OGC tries to cover everything from simple to

complex that could enhance the development of spatial information applications and

services.

The way it is able to achieve this is by not actually implementing the standards but

only providing the framework, the specification and schemas. The usual development

framework looks as follows.

Compliance
Testing

Abstract
Specification

Implementation
Specification

White
Papers

Discussion
Papers

Best
Practices

Paper

Implementation A

Implementation B

Implementation C

Figure 3.1. OGC standardization framework as described in [74]

First, abstract specifications are written that describe the goal and primary concepts

of a proposed standard. This is explained in detail by Reed [74]. Second, the abstract

version of a standard leads to an implementation specification which eventually be-

comes a standard after it has been accepted by the OGC members. Third, the industry

23



in terms of application and service developers implements the specification and provides

feedback to the consortium. Furthermore the OGC releases white papers that provide

high-level overviews of the concepts of a standard and a best practices paper that de-

scribes implementation specific development patterns. So-called discussion papers are

usually written by developers talking about the technologies and approaches used in

their implementations. Finally, the OGC encourages implementations to be tested and

marked as compliant using their test suites.

An overview of the procedures and the approaches taken are described in the OGC

Reference Model (ORM) by Percivall et al. [71]. It explains the concepts behind storing

geospatial information, referencing locations and times, and creating maps or so-called

geometries from the available data. The reference model refers to several abstract spec-

ifications in order to establish a connection between them and reiterate the goal of

developing open interoperable standards. Apart from talking about the approaches be-

hind geospatial information processing, the concepts of geospatial services and reusable

patterns are introduced.

The Transportation Security SensorNet aims to be open and interoperable. It uses

the interfaces and elements defined in the specifications of the Open Geospatial Con-

sortium and provides concrete implementations, for example the Sensor Observation

Service and the Sensor Alert Service. In terms of web services within a Service Ori-

ented Architecture the following standards are of importance.

3.2.1 Sensor Web Enablement (SWE)

One of the main focuses of the OGC in recent years has been the development of

concept called Sensor Web. In the Sensor Web Enablement (SWE) architecture and

overview document by Botts et al. [10] it is described as follows:

“A Sensor Web refers to web accessible sensor networks and archived sen-

sor data that can be discovered and accessed using standard protocols and

24



application program interfaces (APIs).”

This is best visualized by the concept figure 3.2 from the document.

Figure 3.2. Sensor Web Concept from [10]

The idea is to combine various information modeling specifications with the appro-

priate services that provide the data processing for them. According to Botts et al. [10]

the following specifications make up the Sensor Web:

• Observations & Measurements (O&M) specifies the representation of sensor mea-
surements.

• Sensor Model Language (SensorML) describes sensors, models and their processes.
For instance the discovery of sensors and data preprocessing.

• Transducer Markup Language (TML) specifies the encoding and transport of
streaming sensor data in real-time scenarios.

• Sensor Observation Service (SOS) provides interfaces for describing what capabil-
ities a sensor can perform and for retrieving actual observations or measurements.

• Sensor Planning Service (SPS) allows users to query the sensor web for a spe-
cific need. For example: “monitor the following 5 intersections every minute for
excessive traffic for the next week”.

25



• Sensor Alert Service (SAS) provides users with the ability to subscribe to certain
sensor events. Like “notify me when the temperature exceeds 100◦F”.

• Web Notification Service (WNS) describes message exchange capabilities between
clients and services.

This thesis uses the same approach in order to define the Service Oriented Archi-

tecture for Monitoring Cargo in Motion Along Trusted Corridors called Transportation

Security SensorNet. However, it has to be noted that there are some differences in the

implementation and use of specifications. For instance only a subset of the Sensor Web

specifications are actually used.

The Geography Markup Language (GML), that is only briefly mentioned by Botts

et al. [10] in the SWE document, essentially describes some of the main components and

elements that are used by most of the specifications in the implementation. Addition-

ally, the Catalogue Service for Web (CSW) can provide a so-called service directory of

available services. The Sensor Web Enablement is an initiative from the OGC that aims

at the combined growth of theses specifications that will essentially make up the Sensor

Web. While some of the specifications are agreed standards others like the Sensor Alert

Service (SAS) are still in draft stage as of summer 2009.

Specifications that are relevant to the Transportation Security SensorNet are ex-

plained in more detail in the following sections.

3.2.2 Geography Markup Language (GML)

The need for a standard to encode geospatial features in an abstract way that can

eventually be mapped onto real world things is elementary. The Geography Markup

Language (GML) as described by Portele [72, 73] aims at defining most, if not all, fea-

tures with a geographical background that can be defined. Among the things covered in

the specification are observation models, spatial and temporal reference systems, geome-

tries and units of measure. It considers a variety of base components that are common

between applications and allows for other domain or application specific profiles to be

26



defined, therefore extending them. Application schemas describe a certain subset of

definitions within the standard but might introduce new or extended types that are

specific to the application.

The specification is highly hierarchical in the sense that several abstraction layers

have been introduced in order to hide complexity. The two base objects that are defined

from which all others are derived are abstract object and abstract gml. Basic types like

features that model things like roads or rivers add more properties onto the base objects.

This extension might be as simple as adding a location name and reference to it.

Things that can be modeled mathematically are part of a so-called geometry. This

includes points which are primitives, lines and curves which are aggregates and can lead

to more complex elements like polygons and surfaces.

Another big part of the specification is describing temporal constructs like time in-

stants, periods, intervals, durations and calendars. Coordinate reference systems may

be used differently throughout the world therefore definitions for them are included as

well. They are used to specify time and location formats for instance. Units of measure

are standardized definitions of measures and values of objects. There is also a section in

the GML specification called observation which covers mostly simple types of observa-

tions. A more in-depth specification covering this is the Observation & Measurements

(OM) specification (see 3.2.4).

An article by Bardet and Zand [2] gives an excellent example of how data is converted

from format called AGS into GML. The main problem that is described is the lack of

systematic archiving and exchange of drilling data. Since obtaining this data can be

very cost intensive it has become a big issue. Hence, transforming the data into GML

allows companies and researchers to take advantage of OGC applications for storage,

exchange and visualization of this information. This reduces cost and makes the drilling

data more useful. The article represents a case study in the sense that it describes in

detail all the steps that were taken to implement the data conversion.

GML is used by many other specifications as the basis for describing geographical

27



information. In the Transportation Security SensorNet it is used by the Sensor Observa-

tion Service and the Sensor Alert Service implementations provided by, among others,

the Sensor Node at the Mobile Rail Network (see section 6.3.1).

3.2.3 Catalogue Service for Web (CSW)

The Catalogue Service for Web (CSW) as specified by Nebert et al. [63] describes the

“discovery, access, maintenance and organization of catalogues of geospatial information

and related resources”. It manages resource information for services in the form of

metadata.

Figure 3.3. Catalogue Service reference model architecture from [63]

Whenever a client requires geospatial information or processing capabilities it queries

the Catalogue Service. A metadata repository is kept in order to store information such

as location, capabilities and schema definitions of services. Information that matches

the query is then returned to the client. The client also has the ability to ask for a

description of specific metadata elements and use that to get more specific results. The

CSW therefore acts as broker between the clients and the services. Once the client has

found a suitable service, it looks into the metadata that describes a particular service

and uses that information to perform its request.

One of the advantages of this architecture is the ease of use for the client. A lot of

services could provide essentially the same functionality. After they have all registered

28



with the Catalogue Service it is up to the client to choose which one to use. If a service

is not available the client can simply try a different one. Furthermore it is not necessary

for the client to actually know where the services are all the time since the Catalogue

Service stores this information. This allows for a flexible environment and makes it

scalable.

In the Transportation Security SensorNet this service directory functionality is pro-

vided by an implementation of Universal Description, Discovery and Integration (UDDI)

specification (see section 4.4). Clients and web services in the framework have the option

to contact it and retrieve similar information to the one offered by a Catalogue Service.

For additional scalability the specification also describes an approach called dis-

tributed search. Multiple Catalogue Services can set up a query topology where each

service is responsible for its own metadata but the query is answered collectively. For

the schema definitions of the Catalogue Service for Web see Nebert et al. [62].

3.2.4 Observations & Measurements (O&M)

Since there exists a variety of different sensors for almost every application, defining

a standard that is true to all of them can be quite hard. The goal of the O&M standard

as specified by Cox [20, 23] is to build an abstraction layer model that allows users and

other services to use whatever granularity they need.

Procedure

Feature of Interest

Observed
Property A

Observation
Pattern

ResultObserved
Property B

Figure 3.4. Observation process as described in [20]

Whenever an action is performed we basically “observe” a feature of interest. What

we are interested in is the value of an observed property of that feature and in order

29



to determine this property value we exercise a particular procedure. Additionally an

observation pattern can be useful for estimation and error correction of the observation

result. In cases where the result is numeric the term measurement is used instead of

observation. There are other specialized result types ranging from simple to complex.

An observation may also be associated with a location. This is quite common.

Depending on the properties of its members, collections of observations can be one

of the following types:

Type Feature Sampling time Observed properties
complex same same different

time series same different same
discrete coverage same same elements of a larger feature

Table 3.2. Collection types from [20]

The specification deals with collection types where the feature of interest does not

change but stays the same. We speak of a complex observation when different properties

are observed at the same time whenever a sample is taken. In case a particular property

is monitored over a certain time period and the property does not change throughout the

observation, the collection is called a time series. Sometimes the observed property we

are interested in is made up of many smaller observed properties. This scenario describes

a discrete coverage. An example given by Cox [20] is the observation of temperature

values in a particular region where there are multiple sensors in the region but one is

only interested in the temperature for the entire region.

Another thing described in the specification is the fact that in many cases the single

observed property is not actually what is wanted but rather just something indirect.

The sampling of features concept that deals with this is described by Cox [21, 22]. On

the one hand, the observed property value could be in need of adjustment or only usable

after the application of an algorithm as is often the case with light and temperature

values. On the other hand, one value might not be of any importance at all but is just

a part of a bigger sample design. Sometimes both cases can apply at the same time.

30



When an observation falls into this category the sample features form a particular

relation that connects them and a so-called survey procedure is defined. This process

achieves the desired abstraction where at a higher level the result of this relation looks

like just another value since the sampling of features works transparently underneath

it.

The Observations & Measurements (O&M) specification is used by the Sensor Ob-

servation Service in the Sensor Node at the Mobile Rail Network (see section 6.3.1). It

is used in combination with GML because O&M allows for more complex observations

while GML provides a broader field of geographical elements.

3.2.5 Sensor Observation Service (SOS)

The Sensor Observation Service (SOS) is described by Na and Priest [60, 61]. It

aims to provide the user with observation data in a generic way that allows the use of

a variety of different sensors. The two major types mentioned in the specification are

in-situ and remote sensors. The primary goal is to provide access to observations (see

3.2.4). An implementation of this service within the Transportation Security SensorNet

is provided by the Sensor Node (see section 6.3.1).

The service provides so-called observation offerings to users and applications. It does

this by maintaining a sensor registry that contains information such as type, location

and other metadata about the sensors that it knows about. This allows clients to

perform detailed inquiries about possible observation times, available properties and

geographical information of sensors and features.

GML is used to deal with measures and units in the offerings and when referencing

observations. Apart from allowing filtering by sensor id the Sensor Observation Service

is able to filter by spatial, scalar and temporal expressions. The two concepts it uses

are called data publishing and data consumption.

31



3.2.5.1 Data Publishing

Sensor Observation
Service

Sensor
Registry

Sensor

Data A Data B
Sensor
Data

Catalogue Service

Service
Registry

1. GetRecords

2. RegisterSensor       

3. InsertObservation

Figure 3.5. SOS data publishing process as described in [60]

The data publisher, usually a sensor, is querying the Catalogue Service for Web

(CSW) for available Sensor Observation Services. After it found a suitable one it regis-

ters itself and is then able to publish data. In addition, the new sensor is automatically

integrated in new observation offerings.

3.2.5.2 Data Consumption

Catalogue Service

Service
Registry

1. GetRecords

Client

Sensor Observation
Service

Sensor
Registry

Sensor
Data

2. GetCapabilities

3. DescribeSensor

4. GetObservation

Figure 3.6. SOS data consumption process as described in [60]

32



The user has identified a need for a particular observation. The Catalogue Service

for Web then provides Sensor Observation Services. Depending on the availability of

metadata in the catalogue the user has either already selected a particular sensor or

retrieves that information about a sensor from the observation offerings. More specific

information about a particular sensor can be requested as well. Finally the necessary

observations can be retrieved.

3.2.6 Sensor Alert Service (SAS)

In order to allow for an asynchronous alert reporting mechanism to notify users, the

Sensor Alert Service (SAS) which is a candidate specification by Simonis and Echter-

hoff [78] has been designed. It proposes an event subscription and notification system

that publishes sensor data based on specified criteria. An implementation of this ser-

vice within the Transportation Security SensorNet is provided by the Sensor Node (see

section 6.3.1).

3.2.6.1 Advertising Process

Sensor Alert
Service

Sensor
Registry

Sensor

Data A Data B
Advertise

Subscription
Registry

Notification process

Figure 3.7. SAS advertising process described in [78]

The idea is that sensors advertise their data to the SAS. They then enter into an

advertisement agreement to publish this data whenever it becomes available.

33



3.2.6.2 Notification Process

Sensor Alert
Service

1. GetCapabilities
Client

   3. DescribeAlert

    2. DescribeSensor

Sensor
Registry

Subscription
Registry

Notification process

4. Subscribe

Alert

Figure 3.8. SAS notification process described in [78]

For the client, the service provides so-called subscription offerings. By choosing a

particular offering the client subscribes to the sensor data that is defined by the offering.

The SAS may modify or apply algorithms to the original sensor data which is in a way

similar to applying an observation pattern as described in the O&M specification (see

3.2.4). The offerings are linked to subscription criteria that are used internally to

match the sensor data that is published by the sensors to the individual clients that

subscribed to them. The Sensor Alert Service additionally provides the client with

means to retrieve all necessary information about the sensor itself and the alert data,

especially the format.

The main difference between the Sensor Observation Service and the Sensor Alert

Service is the way query results are provided. If the client is in need of particular

sensor data on an ad hoc basis, it asks the Catalogue Service for Web for a matching

SOS and queries the SOS in order to fulfill this need. The key aspect for the Trans-

portation Security SensorNet is that the SOS only deals with providing the sensor data

synchronously.

In case an alert system is needed to monitor whenever some sensor data reaches a

34



critical value the client does not directly act as the one querying for sensor data but

rather the SAS. The client simply tells the SAS the necessary criteria for an alert through

the means of a subscription. The SAS then monitors incoming sensor data and sends

out notifications accordingly. This is done asynchronously without the client having to

constantly query for data itself.

35



Chapter 4

Service Oriented Architecture

The main idea behind Service Oriented Architecture is that applications are defined

as so-called web services which communicate with each other using a set of predefined

protocols and standards. In terms of technologies, programming languages and plat-

forms used, these web services can be completely independent systems. The key here is

that their interfaces are specified using web service standards.

Service

Data A

Data B

Docs

Process A

Client

Client

Client

Client

Interface C

Interface B

Interface A

Process B

Interface D

Figure 4.1. Service overview

The book“Service-Oriented Architecture: Concepts, Technology, and Design”by Erl

36



[26] describes these fundamentals in more detail. In particular the main components

that make up a Service Oriented Architecture are outlined here.

A message represents the data that is required for a so-called unit of work. An

operation covers the logic that processes these messages. The grouping of logic that

handles related units of work is defined as a service. Additionally, the book defines a

process as the business logic that combines several operations in order to complete a

larger piece of work. Erl not only covers the basic concepts of SOA but also explains

how they can be applied in the real world.

The principles of service orientation according to Erl [26] consist of the following:

• Reusability of logic, operations and services

• Contracts that define the service and information exchange

• Loose coupling of relationships with the goal of minimizing dependencies

• Abstraction that hides implementation logic of services

• Composability of services to form a more complex process

• Autonomy of logic within a service

• Stateless use of information in a service

• Discoverability of services

The SOA approach allows for what is called loose coupling between services. It de-

fines each individual service in two ways. First, a service provides a specific functionality

that could be for instance data processing or information storage. It is autonomous in

doing so which means that it only dependents on itself for providing this functionality.

Second, each service can be replaced by a different service that has the same interface.

This flexibility allows the user to choose between services based on cost, performance

or availability.

Because the functionality of an entire business process or system often depends on

things like cost, availability and quality of a service, so-called service contracts can be

37



defined that allow for the combination of several services into a more complex system

that adheres to specific constraints. This is often necessary given the highly dynamic

environments of distributed, mobile, grid and peer-to-peer systems.

The Service Oriented Architecture is especially useful when dealing with legacy ap-

plications. Since the entire application or system can be “hidden” behind interfaces, the

integration or encapsulation of it into current business models requires far less effort.

Instead of converting or rewriting a complete application, web service interfaces for it

can be defined so that it becomes usable as a web service.

As mentioned before, two of the most important concepts in a Service Oriented

Architecture are autonomy and flexibility. In addition, SOA is very cost effective because

web services by default are built in a reusable way and because of the idea that the most

optimized service which provides the desired capabilities is chosen. Furthermore SOA is

highly scalable since it allows for the easy integration of broker, proxy and load balancing

scenarios.

The statelessness principle can be seen as a rather soft requirement since there are

instances of when a service needs to maintain at least some sense of state. An example

would be an “online time series data processor” that looks at a specific time window in

order to find patterns. It needs to keep track of the data parts that make up the window

and therefore information across multiple messages.

Most of the Service Oriented Architecture deployments make use of at least some sort

service registry that contains metadata about services and allows them to be discovered.

The most standardized approach is the use of Universal Description, Discovery and

Integration (UDDI) (see section 4.4) although a recent investigation by Al-Masri and

Mahmoud [1] found that of all the web services that were discovered 72% can be found

using web search engines and only 38% are registered in UDDI Business Registries.

Since SOA itself is a concept, several so-called Web Services (WS) specifications

have been developed that deal with the different aspects of it. One of the most notable

standards is WS-Addressing (see 4.3.1) which describes how routing information can be

38



directly attached to messages. Another one is WS-Security (see 4.3.3) that provides

end-to-end message integrity and confidentiality.

The benefits of SOA according to Newcomer and Lomow [64] and their relationship

to the Transportation Security SensorNet can be summarized as follows:

• Efficient development through modularity because services can be implemented
independently and solely on the basis of contracts and service descriptions. This
allows for tasks and implementations of clients and web services in the TSSN to
be split up among team members.

• More reuse since it is based on open standards, loose coupling and platform inde-
pendence. The implementation is being made available to everyone and represents
an reference example as to how web services can be utilized in sensor networks.

• Simplified maintenance in the sense that modifications to the implementation do
not necessarily change the service because of abstraction and the fact that clients
utilize the service only through interfaces. With the core of the web services in the
TSSN being implemented, further development can be focused on specific aspects
such as security and enhancements without breaking the current system.

• Incremental adoption since legacy applications can be“wrapped”into a service and
single applications can be transitioned into the Service Oriented Architecture step-
by-step. This is of importance to the Trade Data Exchange as it needs to acquire
cargo and route information from already existing systems (see section 6.5).

• Graceful evolution because service interaction is only interface based and services
can easily be replaced by faster, cheaper or more complex implementations. With
new technology and hardware becoming available parts of the current implemen-
tation of the Transportation Security SensorNet may be upgraded easier.

4.1 Representational State Transfer (REST)

REST is one of the major steps away from Remote Procedure Calls (RPC) and to-

wards scalable and distributed web service architectures. Even though Service Oriented

Architectures most often make use of the more flexible SOAP and its surrounding web

39



services specifications, as is the case with the Transportation Security SensorNet, REST

still plays an important role and is widely supported.

4.1.1 Traditional Definition

The Representational State Transfer (REST) concept was first introduced by Field-

ing [30]. It originally describes the following elements:

Data Elements A resource represents the main data element. It can be anything like

information, data or image. A resource identifier is used to uniquely map to a particular

resource. In order to know what the resource actually is, so-called representations are

defined.

Connectors According to REST, all interactions between a client and server are

stateless. This makes it highly scalable since the server does not need to keep state

information. Additionally, multiple requests at the server can be handled at the same

time. Furthermore, requests can be cached, transferred by intermediaries and reused.

The original definition of request (in) and response (out) parameters is the following.

In parameters are control data, resource identifier and an optional representation. Out

parameters consist of response control data, optional resource metadata and optional

representation.

Components The user agent defines the source of the request and the origin server

is used for so-called namespace resolution of the request.

4.1.2 Current Use

The architectural style of REST has been adapted for web services and is called

RESTful. It is closely tied to HTTP. The idea here is that resources are made available

through Uniform Resource Identifiers (URI). The representation in most cases is XML

but can also be specified using so-called Multipurpose Internet Mail Extensions (MIME)

40



types. HTTP methods such as POST, GET, PUT and DELETE are used as operations

for modifying the resources.

REST can be seen as an “old” standard for web services that is still in use mainly

because it is easy to use and highly flexible. It has traditionally been used in environ-

ments where the communication parties need to transmit small and “relatively” simple

messages. An advantage is that the requirements on bandwidth are usually smaller

when using REST compared to other approaches. With the advent of Asynchronous

JavaScript and XML (AJAX) it has seen an abundance of new application fields. This

is mainly due to the fact that AJAX uses the RESTful web service approach to provide

asynchronous interaction with a web server.

Figure 4.2. Traditional web applications and AJAX from Garrett [35]

Notable examples that use this approach are Google web applications such as GMail,

Maps and Docs. Since AJAX is in use by entire industries, a standardization process

as described by van Kesteren [83] has been started.

41



4.1.3 Further Development

Especially with recent developments in HTML5 as defined by Hyatt and Hickson

[43] the flexibility of REST allows it to be used in more and more applications. The

differences to HTML4 in terms of web application integration are significant. The en-

hancements described by van Kesteren [82] include Application Programming Interfaces

(API) for playing video and audio, editing, drag and drop and more. An important

addition is the ability for offline storage which allows web applications to replace desk-

top applications. The specification for this is defined by van Kesteren and Hickson [84].

This was currently only possible through extensions such as Google Gears.

All of this development and use of AJAX makes RESTful web services very appealing

as they can easily be used from web applications. Apache Axis2 which is the foundation

of the Transportation Security SensorNet supports REST for accessing web services.

This allows the use of TSSN web services in web applications without the need for

additional development effort.

4.2 SOAP

The Transportation Security SensorNet makes use of SOAP as the default message

exchange protocol. In the following SOAP is explained and a comparison with REST

is made, which includes the reasons behind choosing SOAP over REST for the TSSN

implementation.

According to Cabrera et al. [14] SOAP, which was formerly called Simple Object

Access Protocol, provides“a simple and lightweight mechanism for exchanging structured

and typed information between peers in a decentralized, distributed environment using

XML”. It is a message standard for web services that aims to provide more flexibility

and better interoperability than REST. In a comparison of SOAP to REST by Pautasso

et al. [70] it was concluded “to use RESTful services for tactical, ad hoc integration

over the Web (à la Mashup) and to prefer [SOAP in combination with] WS-* Web

42



services in professional enterprise application integration scenarios [, which is the case

with the Transportation Security SensorNet,] with a longer lifespan and advanced QoS

requirements”. The reasoning for this, including a detailed description of SOAP, follows.

One of the main differences between SOAP and REST is complexity. SOAP and the

so-called web services (WS) specifications built around it allow for the most complex

scenarios while maintaining a relatively simple basic format. REST on the other hand

is usually used in point-to-point communications and the exchange of simple XML.

Furthermore, one of the major drawbacks of REST is that it is tied very closely to

HTTP transport whereas SOAP is not.

SOAP is independent from platforms and programming languages and allows dif-

ferent transport protocols to be used as so-called bindings. According to Nielsen et al.

[67] a binding represents a “formal set of rules for carrying a SOAP message within or

on top of another protocol (underlying protocol) for the purpose of exchange”. This

includes describing how the protocol provides the necessary services to transport SOAP

messages, how errors are handled and most importantly what features are provided by

the underlying protocol. Although HTTP remains the most common binding, the ex-

tension of binding possibilities was one of the main enhancements to the original SOAP

1.1 specification by Box et al. [11], the other being the more clearly defined use of XML

schemas.

SOAP enables extensive end-to-end message routing which is important in dealing

with firewalls. The WS-Addressing specification (see 4.3.1) describes this in more detail.

Another important aspect is security, which is available as WS-Security (see 4.3.3) for

instance. Overall SOAP is simple in its default form yet very extensible.

4.2.1 Message format

The basic format according to the SOAP 1.2 specification by Nielsen et al. [66]

defines an Envelope that includes a mandatory Body and an optional Header as seen

in figure 4.3. The Header contains control information in the form of so-called header

43



Envelope

Header

Body

Fault

Figure 4.3. SOAP message format

blocks. These blocks can be used for routing or to pass processing directives to services.

The Body is the mandatory payload of the message and contains the data that is being

transmitted. Listing 4.1 shows the basic format that is used by all SOAP messages:

1 <?xml version="1.0" encoding="UTF-8"?>
2 <soapenv:Envelope
3 xmlns:soapenv="http://www.w3.org/2003/05/soap-envelope">

4 <soapenv:Header>
5 . . .
6 </soapenv:Header>
7 <soapenv:Body>

8 . . .
9 </soapenv:Body>

10 </soapenv:Envelope>

Listing 4.1 SOAP message format example

4.2.2 Faults

Apart from the basic message format, the specification also describes the Fault for-

mat that is common for all messages containing error information.

1 <?xml version="1.0" encoding="UTF-8"?>
2 <soapenv:Envelope
3 xmlns:soapenv="http://www.w3.org/2003/05/soap-envelope">

4 <soapenv:Header>
5 . . .

44



6 </ soapenv:Header>
7 <soapenv:Body>

8 <soapenv:Fault>
9 <soapenv:Code>

10 <soapenv:Value>soapenv :Rece iver</soapenv:Value>
11 </soapenv:Code>
12 <soapenv:Reason>

13 <soapenv:Text xml:lang="en-US">Transport e r r o r : 404
Error</soapenv:Text>

14 </soapenv:Reason>

15 <soapenv:Detail/>
16 </soapenv:Fault>
17 </ soapenv:Body>

18 </ soapenv:Envelope>

Listing 4.2 SOAP Fault message example

The Fault consists of three parts. The Code part classifies the error into a predefined

set dealing with version mismatches, so-called mustUnderstand header blocks, data

encoding, and sender and receiver issues. The Reason allows the Fault to be described

in terms of an error message and supports multiple languages. The Details part may

contain application specific information.

4.2.3 Further development

The SOAP 1.2 Primer by Lafon and Mitra [48] includes references to several en-

hancements of the standard. The main reason for this is the potential for performance

problems and the need for binary data transport in SOAP.

The XML-binary Optimized Packaging (XOP) specification by Mendelsohn et al.

[58] defines the use of MIME Multipart/Related messages provided by Levinson [51]

to avoid encoding overhead that occurs when binary data is used directly within the

SOAP message. XOP extracts the binary content and uses URIs to reference it in the

so-called extended part of the message. An abstract specification that uses this idea

is the Message Transmission Optimization Mechanism (MTOM) by Nottingham et al.

[68].

45



Another extension of this is Resource Representation SOAP Header Block (RRSHB)

as described by Gudgin et al. [37] that allows for caching of data elements using so-called

Representation header blocks. They contain resources that are referenced in the SOAP

Body which might be hard to retrieve or simply referenced multiple times. Instead of

having to reacquire them over and over again, a service may choose to use the cached

objects which speeds up the overall processing time.

4.3 Web Service Specifications

The web services in the Transportation Security SensorNet make use of web service

specifications in order to address topics such as addressing, event notification and se-

curity in a uniform and standardized way. The specifications that are relevant to the

TSSN are described in the following sections while their implementations are addressed

in chapter 6.

4.3.1 WS-Addressing

The WS-Addressing core specification by Gudgin et al. [39] and its SOAP binding

by Gudgin et al. [38] defines how message propagation can be achieved using the SOAP

message format. Usually the transport of messages is handled by the underlying trans-

port protocol but there are several advantages of storing this transport information as

part of the header in the actual SOAP message. For example, it allows the routing of

messages across different protocols and management of individual flows and processes

within web services.

WS-Addressing uses so-called EndPointReferences which are a collection of a specific

address, reference parameters and associated metadata that further describe its policies

and capabilities.

Addressing Header The header fields defined by the specification are the following:

• To which represents the destination of the message

46



• From contains the source, a so-called EndPointReference

• ReplyTo specifies that in case of a response, a message is supposed to be sent to
this EndPointReference, which might be different from the From field

• FaultTo defines the EndPointReference for the fault message in the case of an
error

• Action identifies the purpose of the message, in particular the web service opera-
tion, and is the only required field

• MessageID uniquely identifies every message

• RelatesTo references the MessageID of the request message in request-response
message exchanges; the relationship can also be specified explicitly by defining a
so-called RelationShipType

4.3.2 WS-Eventing

In order to allow for subscriptions to web services, the WS-Eventing specification has

been defined by Box et al. [12]. It describes the process of establishing subscriptions as

well as how the subsequent publications are delivered to the subscribers. The specifica-

tion relies on WS-Addressing for the routing of messages. The two main components of

a subscription in this specification are the Subscribe and the SubscribeResponse message.

After subscriptions have been created, publications will be sent out accordingly.

Subscribe The client that wants to subscribe to a particular web service needs to

define the following:

• The Action field of the WS-Addressing header is set to
http://schemas.xmlsoap.org/ws/2004/08/eventing/Subscribe

• ReplyTo is the EndPointReference that receives the response to this subscription
request

• A MessageID that uniquely distinguishes multiple requests from the same source

• EndTo defines an EndPointReference that is used when the subscription ends
unexpectedly

47

http://schemas.xmlsoap.org/ws/2004/08/eventing/Subscribe


• Delivery contains the EndPointReferences that are to receive the publications

• An Expires field that defines the expiration time of the subscription

• Filter that by default defines an XPath expression as the Dialect, but could be
any form of expression that is applied to potential publications in order to filter
them

SubscribeResponse The response to a subscription request is generated by the so-

called subscription manager. It sends back a message with these fields:

• The Action field of the WS-Addressing header is set to
http://schemas.xmlsoap.org/ws/2004/08/eventing/SubscribeResponse

• RelatesTo specifies the subscription request that this is a response to

• SubscriptionManager that contains its own Address and the unique Identifier for
the subscription

• An Expires field that defines the expiration time of the subscription

The WS-Eventing specification also offers message constructs for the renewal, status

retrieval and unsubscribing of subscriptions. Additionally a so-called subscription end

message is automatically generated by the service that publishes information in order

to notify subscribers of errors or other reasons for it being unable to continue the

subscription.

It has to be noted that without additional specifications like WS-ReliableMessaging

the delivery of publications is based purely on best effort and is not guaranteed.

4.3.3 WS-Security

The WS-Security specification as described by Lawrence et al. [49] deals with the

many features needed to achieve so-called end-to-end message security. This provides

security throughout message routing and overcomes the limitations of so-called point-

to-point transport layer security such as HTTPS. Furthermore, the specification aims to

48

http://schemas.xmlsoap.org/ws/2004/08/eventing/SubscribeResponse


provide support for a variety security token formats, trust domains, signature formats

and encryption technologies.

The two main aspects of security are the following:

Confidentiality This means that the information contained in a message is only avail-

able or visible to entities that are authorized. Encryption provides this confidentiality

for messages.

Integrity The integrity of a message is maintained if it has not been modified on the

way from one entity to another. Applying a signature enables the receiver to check if

the message has been altered during the transmission.

These aspects among others are defined as part of the SOAP message. Most of the

security provided by WS-Security is specified in header blocks of the SOAP header. The

following represent its important parts:

Tokens The specification supports various types of security tokens directly:

• User Name Tokens for username and password pairs

• Binary Security Tokens which essentially are X.509 certificates or Kerberos tickets

• XML Tokens described by the Security Assertion Markup Language (SAML) or
Extensible Rights Markup Language (XrML)

• Encrypted Data Tokens in which case the token itself is encrypted as well

A different way of specifying these tokens is to reference them. This is useful because

at times the security tokens are specified in a different part or even completely outside of

the SOAP message. The WS-Security specification defines the following most commonly

used:

• Security Token References which can be used to wrap around non-standard im-
plementations

49



• Direct References for using a URI as a reference point

• Key Identifiers that uniquely identify security tokens

• Embedded References which directly include tokens instead of pointing to them

Signatures In order to ensure the integrity of messages so-called signatures can be

applied by the sender. The receiver is then able to check the validity of the message

using this signature. Important properties that can be conveyed in the SOAP header

using WS-Security are:

• Signed Info that defines the algorithms to be used for so-called namespace trans-
formations and proper ordering of signature and encryption elements (for example,
sign an encrypted message or encrypt a signed message)

• Signature Value containing the actual digital signature

• Key Info that defines the type of the signature used

The specification also allows for various forms of so-called Signature Confirmations

to be sent out as responses to the initial messages. They can provide additional security

in certain scenarios.

Encryption WS-Security provides great flexibility when it comes to the actual en-

cryption of the message. It supports header, body as well as individual block encryption.

The reason it is able to do this lies in the fact that it makes use of the following two

constructs:

• Reference List that points to the Encrypted Data elements which, since they are
completely independent of each other, enables different encryption techniques and
keys to be used

• Encrypted Key which allows symmetric keys to be embedded in the message and
is used for encrypting the SOAP header

50



Security Timestamps Most of the time, security policies need to make sure that

it is possible to change previously distributed keys and force the ones that are not to

be used anymore to expire. For this purpose WS-Security supports so-called Security

Timestamps that can be attached to the message. Two fields are defined:

• Created describes the time when the message was serialized for transmission

• Expires defines the point in time when the security applied to this message is no
longer considered valid

It has to be noted that WS-Security does not provide any methods for time synchro-

nization which may potentially limit the effectiveness of Security Timestamps in certain

scenarios.

A white paper by Chanliau [15] extends the definition of security to areas such as

secure message delivery, metadata and trust management. It references the web service

specifications that have been introduced to deal with these aspects of security in more

detail.

4.4 Service Directory

Because web services by default are loosely coupled there has to be a way of for them

to establish connectivity with each other. In general there are two different approaches

for doing this. First, let a service A directly know about the presence and address of

a service B that it seeks to contact. This can cause a variety of problems as all the

addresses have to be managed manually which leads to scalability issues. Second, define

a so-called service registry that keeps track of available services and acts as a mediator

between clients and services.

The latter approach has been realized using the Universal Description, Discovery

and Integration (UDDI) specification as described by Bellwood et al. [5] and is being

used in the Transportation Security SensorNet. UDDI provides a XML based service

registry and directory that provides the following:

51



• Information on web services and their categorizations, so-called metadata

• Discovery of web services based on specific criteria

• Connection information such as required security aspects, provided transports and
operation parameters that describes in detail how to connect to a service

• Alternatives in case of a failure of one service

A paper by Bellwood [4] describes the main focus areas of version 3 of the UDDI

specification:

Multi-registry Environments In order to allow for the logical separation of service

registries, UDDI supports so-called root registries that act as parents to affiliates. Fur-

thermore the replication of registries is supported. Whenever a web service publishes

information to a registry it is able to either provide a key as a “suggestion” or have the

registry automatically assign a new unique key to the information.

The UDDI also provides means for transferring the custody and ownership from

one so-called business entity to another. This is an important aspect when it comes to

handling cargo in the transportation industry. The Transportation Security SensorNet

is able to provide this functionality by using an implementation of the UDDI.

Subscriptions Apart from the basic search interface that the UDDI provides, the

specification describes two different subscription models:

• Active subscriptions check whether or not specified criteria of the previously
defined subscriptions match current entries in the registry. This is done syn-
chronously, meaning only when a request has been issued.

• Passive subscriptions allow for the registry to store so-called asynchronous call-
backs for subscriptions. The registry checks against its entries on its own and
independently of the initial subscriber. Whenever it finds a match it sends out a
notification.

52



The Transportation Security SensorNet provides support for active subscriptions

transparently to clients and web services . Web services automatically register with the

UDDI when they are started. Clients are then able to use them by just specifying the

type of service that they need. An according web service is then automatically handed

to them using an underlying active subscription to the UDDI.

Policies The UDDI supports a complex policy abstraction model which main compo-

nents are:

• Rules that define actions for when a set of particular conditions is met

• Decisions which comprise of a set of rules

• Information access and control that defines what kind of functionality can be
provided with regard to inquiries, publications, subscriptions and others.

Policies are also used to enforce security although the specification acknowledges

that only the integrity part of it is defined. This is partly due to the fact that the UDDI

is supposed to be a public registry and lookup directory. For this particular purpose,

the focus is more on the reliability of entries which can be ensured using signatures.

Advanced policy management that is able to restrict access to web services and even

single operations as well as encrypted message exchanges are especially important when

it comes to the scalability and production deployment of the Transportation Security

SensorNet. Within the TSSN policy information as of summer 2009 is not yet in the

UDDI but kept directly in the clients and web services.

4.5 Web Services Description Language (WSDL)

In order to allow services to interact and collaborate they need to share information

about interfaces, operations, parameters, data elements and means of contact with each

other. This has been addressed by the Web Services Description Language (WSDL).

The most widely used and supported version is WSDL 1.1 as described by Christensen

53



et al. [17] but the newer version 2.0 provides a cleaner and more extensible specification.

According to Liu [54] the main improvements include the following:

• Renaming of some elements to express their intentions in more detail (definitions
to description, port type to interface, ports to endpoints)

• Reorganizing the messages constructs that were previously disparate (definition is
now part of types)

• Operations contain messages in a particular Message Exchange Patterns

• Introduction of more Message Exchange Patterns, see section 4.6

• Allows for interface inheritance

Overall WSDL 2.0 is a clear evolution and in many ways a lot cleaner but also far

less supported than WSDL 1.1. The Transportation Security SensorNet uses WSDL

2.0 as it aims to provide an open framework that is extensible in the future. Figure 4.4

provides an overview of the core components of WSDL 2.0.

Service

Endpoint A

Binding A

Endpoint B

Operation B

Interface A

Operation A

Operation B

Operation A

Message

Types

Element A

Binding B

Operation A

Operation B

Element B

Element C

Element D

Message

Message

Message

Figure 4.4. WSDL 2.0 overview

54



Elements that are being used by the service are defined in the types section. They

essentially make up the messages of an operation. A group of operations then defines a

so-called interface. A binding specifies the transport format for these interfaces. Finally

the network addresses for the bindings are exposed as endpoints. Hence, a service can

be seen as a group of endpoints that allow clients to use the functionality provided by

the service through clearly defined interfaces and specified transport formats.

Interfaces from other services may be included using <include schemaLocation="..."

/> in which a location pointing to a valid WSDL file must be specified. The import

namespace must be the the same as the one for the WSDL that it is included into. In

order to be able to use different namespaces while still maintaining modularity, WSDL

files can also be imported using <import namespace="..." schemaLocation="..."

/> and specifying a target namespace. Both of these directives are modeled after XML

Schema includes and imports by Bray et al. [13].

The following is a more detailed description of the Core Language part of the WSDL

2.0 specification by Moreau et al. [59]. Another introduction to the main components

is provided in the Primer by Booth and Liu [9]

4.5.1 Description

1 <?xml version="1.0" encoding="UTF-8"?>
2 <description
3 xmlns="http://www.w3.org/ns/wsdl"

4 xmlns:a="http://www.sample.com/elementBook"

5 xmlns : tns="http://www.sample.com/library"

6 xmlns:wsoap="http://www.w3.org/ns/wsdl/soap"

7 targetNamespace="http://www.sample.com/library">

8 . . .
9 </description>

Listing 4.3 WSDL Description example

The description acts as the root for a WSDL 2.0 document that contains all other

elements. It takes care of defining the target namespace and aliases for namespaces. In

55



the example the default namespace is set to WSDL which specifies that the document is a

WSDL document. The xmlns:wsoap="http://www.w3.org/ns/wsdl/soap" references

the SOAP binding for WSDL. The other namespaces that are mentioned refer to the

library example which was introduced in section 3.1.1.

4.5.2 Types

1 <types>
2 <xsd : import
3 namespace="http://www.sample.com/elementBook"

4 schemaLocation="elementBook.xsd"/>
5 <xsd:schema
6 targetNamespace="http://www.sample.com/library">

7 <xsd :e l ement name="bookList">

8 <xsd:complexType>
9 <xs : e l ement r e f="a:book" minOccurs="0" maxOccurs="

unbounded"/>
10 </ xsd:complexType>
11 </ xsd :e l ement>
12 <xsd :e l ement name="user" type="xsd:string">

13 <xsd :e l ement name="error" type="xsd:string">

14 </ xsd:schema>
15 </types>

Listing 4.4 WSDL Types example

XML schema elements for the service are defined in the types part of the WSDL.

Additionally schema includes and imports are supported. The elements can then be

referenced by messages later on. The code in listing 4.4 imports the book element from

the library example which is used in the bookList describing a list of books. Additionally

elements called user and error are defined in the same library namespace. Since user,

error, book and bookList are fully described by the WSDL, they can now be used by

both the service and the client. The service might have known about them already but

by using WSDL it makes them available to clients and other services in a standardized

way.

56



4.5.3 Interface

1 <interface name="LoanInterface">

2 < f a u l t name="UserIsUnknown" element="tns:error"/>
3 <opera t i on name="getBooks" pattern="http://www.w3.org/ns/

wsdl/in-out">

4 <input messageLabel="Request" element="tns:user"/>
5 <output messageLabel="Response" element="tns:library"/>
6 <o u t f a u l t r e f="tns:UserIsUnknown">

7 </ opera t i on>

8 </ interface>

Listing 4.5 WSDL Interface example

Since version 2.0, WSDL allows for multiple interfaces to be defined and supports

inheritance between them. An interface includes a group of operations that consist

of messages. The operations must be associated with a Message Exchange Pattern

(MEP). For more information see section 4.6. According to the MEP that is used, input

and output messages are specified. They reference elements from the types part of the

WSDL. Note that since the MEP is In-Out in which a fault would replace the response

in case of an error, an outfault is specified. In the example an operation is defined that

allows a user to retrieve a list of the books that were loaned.

4.5.4 Binding

1 <binding name="LibrarySOAPBinding"

2 interface="tns:LoanInterface"

3 type="http://www.w3.org/ns/wsdl/soap"

4 wsoap :ver s ion="1.2"

5 wsoap :protoco l="http://www.w3.org/2003/05/soap/bindings/

HTTP/">

6 < f a u l t r e f="tns:UserIsUnknown" />
7 <opera t i on r e f="tns:getBooks"

8 wsoap :act ion="tns:getBooks" />
9 </binding>

Listing 4.6 WSDL Binding example

57



Each binding is able to reference the interfaces that were previously described in

the WSDL. It associates them with a specific format and protocol that is then used

to transmit messages. A binding can also be defined on a operation or even message

level. This however is not as commonly used. The binding that is specified in listing 4.6

associates the LoanInterface with SOAP 1.2. According to the SOAP binding part of

the WSDL specification by Orchard et al. [69] the type attribute is used to define SOAP

whereas the version and the protocol (SOAP 1.2 over HTTP) are specified using the

SOAP namespace. Note that for the operation in the example a so-called SOAP action

is set which allows SOAP messages received by the service to be pointed to the according

web service operation.

4.5.5 Service

1 <service name="LibraryService"

2 interface="tns:LoanInterface">

3 <wsdl2 : endpo int name="LibrarySOAPEndpoint"

4 binding="tns:LibrarySOAPBinding"

5 address="http://www.sample.com/library/soap" />
6 </ service>

Listing 4.7 WSDL Service example

The last part in a WSDL document is providing an endpoint that specifies a network

address at which the service can be reached. The same interface could potentially have

several different bindings. For each of them an endpoint has to be defined in order to be

able to use them. Hence, a service essentially exposes the defined interfaces and their

bindings.

4.6 Message Exchange Patterns

In order to manage the most complex communication scenarios so-called Message

Exchange Patterns (MEP) have been defined. They are specified for each operation in

the WSDL document (see section 4.5.3). The basic patterns are explained in detail in

58



the following sections.

The Message Exchange Patterns are in large part based on so-called fault propagation

rules which specify what happens in case of an error. SOAP uses them to clearly define

how error messages are sent from clients to services and in between services. This

allows both parties to be aware of their error handling responsibilities. The following

fault propagation rules are defined:

Fault Replaces Message Whenever an error occurs, the message that was supposed

to be sent is replaced by a fault.

Message Triggers Fault In case of an error a fault is sent back to the sender of the

message. The message itself is not replaced though.

No Faults No fault is created at any time. If something goes wrong only the party

that encounters the error knows about it, nobody else.

A combination of these fault propagation rules and the messages that are exchanged

between client and service make up the Message Exchange Patterns. Note that whenever

two services exchange messages, one is always acting as the client. Hence the MEPs

depict only client-service interactions.

In the Web Services Description Language (WSDL) Version 2.0 Part 2: Adjuncts

by Orchard et al. [69] the following Message Exchange Patterns are defined:

4.6.1 In-Only

Client Service
Request

Figure 4.5. In-Only message exchange pattern

59



Messages in this pattern are one way only. It is defined by http://www.w3.org/ns/

wsdl/in-only. No Faults are sent. This can be seen as a fire-and-forget approach.

4.6.2 Robust In-Only

Client Service
Request

Error triggers Fault message

Figure 4.6. Robust In-Only message exchange pattern

This message pattern is identified by http://www.w3.org/ns/wsdl/robust-in-only

and extends In-Only in the sense that it creates Faults when errors occur.

4.6.3 In-Out

Client Service

Request

Error replaces message with Fault

Response

Figure 4.7. In-Out message exchange pattern

The most common Message Exchange Pattern is defined by http://www.w3.org/

ns/wsdl/in-out. It specifies a request-response model where in the case of an error a

Fault replaces the response message. Services often act as data or application providers

where clients issue their requests and the service responds with either the requested

data or the result of the processing that it provided.

60

http://www.w3.org/ns/wsdl/in-only
http://www.w3.org/ns/wsdl/in-only
http://www.w3.org/ns/wsdl/robust-in-only
http://www.w3.org/ns/wsdl/in-out
http://www.w3.org/ns/wsdl/in-out


Additional MEPs have been defined by Lewis [53]:

4.6.4 In-Optional-Out

Client Service

Request

Error triggers Fault message

Optional response

Figure 4.8. In-Optional-Out message exchange pattern

The pattern identified by http://www.w3.org/ns/wsdl/in-opt-out makes the re-

sponse of an In-Out message exchange optional. It can be used for control messages

where responses are often status messages and the assumption is that only errors are of

importance in which case a Fault is generated.

4.6.5 Out-Only

Client Service
Notification

Figure 4.9. Out-Only message exchange pattern

http://www.w3.org/ns/wsdl/out-only defines a Message Exchange Pattern that

is mostly used in asynchronous communication environments and subscriptions. It is

assumed that the client registered or subscribed with the service and that the service

sends notifications back to the client at a later time. This version does not send out

Faults.

61

http://www.w3.org/ns/wsdl/in-opt-out
http://www.w3.org/ns/wsdl/out-only


4.6.6 Robust Out-Only

Client Service
Notification

Error triggers Fault message

Figure 4.10. Robust Out-only message exchange pattern

In a similar fashion to Out-Only this pattern which is defined by http://www.w3.

org/ns/wsdl/robust-out-only sends out messages to a client. The difference is that

in case of an error it creates a Fault.

4.6.7 Out-In

Client Service

Notification

Error replaces message with Fault

Notification response

Figure 4.11. Out-In message exchange pattern

Being the reverse of the In-Out pattern http://www.w3.org/ns/wsdl/out-in de-

scribes a request-response communication that is initiated by the service. In subscription

scenarios for instance the response can be seen as an acknowledgment that the notifica-

tion has been received by the client. A Fault replaces the notification response in case

of an error.

4.6.8 Out-Optional-In

An extension of the basic Out-In message exchange the http://www.w3.org/ns/

wsdl/out-opt-in pattern provides in a sense a selective acknowledgment of the notifi-

62

http://www.w3.org/ns/wsdl/robust-out-only
http://www.w3.org/ns/wsdl/robust-out-only
http://www.w3.org/ns/wsdl/out-in
http://www.w3.org/ns/wsdl/out-opt-in
http://www.w3.org/ns/wsdl/out-opt-in


Client Service

Notification

Error triggers Fault message

Optional
notification
response

Figure 4.12. Out-Optional-In message exchange pattern

cation that was sent out. It allows for robustness by being able to send Faults.

63



Chapter 5

Related Work

In the following sections related work that is relevant to various aspects of the Trans-

portation Security SensorNet such as Service Oriented Architecture, web services, com-

munication models, the Open Geospatial Consortium specifications and sensor networks

is analyzed.

5.1 Microsoft - An Introduction to Web Service Architecture

The paper by Cabrera et al. [14] about web service architectures gives an excellent

introduction to what eventually evolved into the Service Oriented Architecture. The key

ideas described are the following:

Message only approach The only thing that is exchanged between services are

messages. This principle avoids potential problems that could occur when functionality

embedded in different components becomes too intertwined. It also ensures flexibility

and interoperability between services. The services and messages are defined in Web

Service Description Language (WSDL) and then transported using SOAP. How the

messages are sent from one service to the other is specified is so-called Message Exchange

Patterns (MEP). Additional properties like security or reliability are standardized in the

Web Service (WS) specifications.

64



Flexible protocol stack In order to provide support for a variety of systems, SOA

needs a protocol layering model that ranges from general purpose to highly specific. The

modular architecture of SOAP describes a protocol that consists of “building blocks”.

This ensures two things. First, you only pay for what you actually use and second, it

can be complemented or extended at any time.

Autonomy of services As described before, services aim to embed their function-

ality and be independent from each other. The extensibility of SOAP allows for the

so-called evolution of a web service, also known as versioning. The mustUnderstand

annotation can be provided to signal that the recipient of a message needs to know

how to handle the SOAP header specifics. In order to maintain this autonomy and

at the same time allow complex business models to be used, services must form trust

relationships with the services that they use. The reason for this is that essentially

there is no apparent difference between two services that provide the same interface.

Businesses must know that they can trust their data to be handled confidentially by

the service that they choose. Without this trust paradigm there are many potential

security concerns. Another point mentioned is the move from a centralized system to a

more federated approach using SOA which is able to deal better with the entire message

exchange model.

Managed transparency In order to be flexible enough to support different program-

ming languages and platforms, Service Oriented Architectures use a service abstraction

layer model. The implementation and internal processes of a service are completely

hidden from its client. The only thing visible are the so-called interfaces that are pro-

vided. Every service in SOA is described using the Web Service Description Language

(WSDL). The WSDL file of a service defines its capabilities and provides a standard for

the interoperability of clients and services.

65



Protocol-based integration The interaction between services should be restricted

to the communication using a predefined protocol only. This allows for applications to

be self-contained and independent of their implementation language and system. As

described before it provides this by using abstraction layering through interfaces and

the use of metadata. The Service Oriented Architecture follows the “nothing is shared”

approach. This autonomy is the reason why it can provide the aforementioned flexibility.

Cabrera et al. [14] outline concepts that led to the implementation of Service Ori-

ented Architectures and development of the web services specifications that surround

them and are used by the TSSN. A lot of the main approaches have been standardized

in various committees and organizations by now but were only in the early stages when

this paper first came out.

5.2 Adobe - Service Oriented Architecture

An Adobe technical paper by Nickul et al. [65] outlines general architecture ap-

proaches that can be taken when transitioning business processes to the Service Ori-

ented Architecture. It mentions a widely used technology called the Enterprise Service

Bus (ESB) that provides a standardized means of communication for all services that

connect to it. For the Transportation Security SensorNet this is of importance when it

comes to asynchronous communication as the Java Message Service (JMS) uses queues

that are on the ESB for message exchanges (see section 6.1.6 and 8.2).

In the example that is provided, three business processes all have some sort of login,

authentication, name and address management. The problem that occurs most often

in scenarios like this is how to synchronize states across all three processes. Using SOA

this common task is bundled into a service that all three processes connected to the

ESB can use which improves efficiency and greatly decreases required maintenance.

In addition to the basic Request-Response, several other message exchange patterns

that go beyond the standardized ones (see section 4.6) are described:

66



5.2.1 Request-Response via Service Registry (or Directory)

Figure 5.1. Request-Response via Service Registry (or Directory) message
exchange pattern from [65]

A so-called registry keeps track of service metadata. The service provider is respon-

sible for updating it whenever a change occurs and the service consumer subscribes to

the registry for any of these changes. The metadata that is provided is then used to

configure a service client. Hence, the client can issue requests and receive responses.

The Transportation Security SensorNet essentially uses a very similar approach with

the UDDI. Web services automatically register with the UDDI when they are started

and clients are able to use specific services by looking them up in the UDDI.

5.2.2 Subscribe-Push

The service consumer uses the client to subscribe to specific events as shown in

figure 5.2. Whenever the service encounters one of these events it pushes notifications

back to the client or other endpoints that were defined in the subscription. This approach

is conceptually similar to what is described by the WS-Eventing specification (see 4.3.2).

67



Figure 5.2. Subscribe-Push message exchange pattern from [65]

5.2.3 Probe and Match

When there is no service registry available, a client has to discover usable services

on its own. By using multicast or broadcast messages it probes until suitable services

respond with a match. A hybrid approach could use the registry for a candidate set of

services to probe. This pattern does not scale very well because it is highly dependent

on the available bandwidth.

Figure 5.3. Probe and Match message exchange pattern from [65]

68



5.3 Open Sensor Web Architecture

An approach to implement the proposed standards of the Sensor Web Enablement

that are described in section 3.2.1 is outlined by Chu et al. [19]. A more detailed

definition of the system and its core services is provided in the thesis by Chu [18]. The

system is called NICTA Open Sensor Web Architecture (NOSA) and is focusing on

the combination of sensor networks and distributed computing technologies. For this

purpose the following four layer model is defined:

Figure 5.4. NOSA layer overview from [19]

Physical layer The sensors can be contacted using standardized means such as ZigBee

and other IEEE 802.15 protocols. They can also interact with each other.

69



Sensor layer This layer provides the main sensor applications that are built on top of

the Sensor Operating System. This operating system is called TinyOS (see Levis et al.

[52]) and is widely used in low power sensor environments. It deals with the control,

monitoring and retrieving of data from the sensors in the physical layer. The sensor

layer acts as the basis for services that make use of this data.

Service layer Web services that are compliant to the ones defined in the Sensor Web

Enablement are part of this layer. They provide a uniform and standardized way of

dealing with sensors and the data that they gather.

Application layer Applications that want to interact with the underlying service

infrastructure are provided with development and third party tools that to make use of

the open standards web service interfaces.

The Transportation Security SensorNet uses a similar approach but has some sig-

nificant differences. The goal of both implementations is to integrate a sensor network

into a web services architecture using open standards. NOSA uses a sensor application

that is tightly integrated into the Sensor Operating System and then provides sensor

data and control to web services in a non-standard format. TSSN on the other hand

implements sensor management and monitoring functionality inside a single service, the

Sensor Node (see section 6.3.1) and allows different sensors to be “plugged in”. This

allows other services to use standard web service interfaces and SOAP messages in order

to access sensors.

Furthermore, the web services used by NOSA are implemented manually according

to the Open Geospatial Consortium specifications which causes them to be limited as not

everything that is specified is also implemented. In contrast, the TSSN uses automatic

code generation (see section 6.1.1.4) that enables it to use all OGC specifications. Since

their elements and interfaces are generated the only thing that has to be implemented

is functionality. This approach significantly reduces development efforts.

70



5.4 Globus - Open Grid Services Architecture

Globus is an architecture that is based on grid computing. It focuses on providing

capabilities as services in a grid environment using standard interfaces and protocols.

An initial paper by Foster et al. [32] gives an overview of the architecture and design

decisions. In particular, Globus supports “local and remote transparency with respect

to service location and invocation” and “protocol negotiation for network flows across

organizational boundaries”. Its service approach is similar to the Service Oriented Ar-

chitecture that is used by the Transportation Security SensorNet. Additionally, security

concepts that work inside a grid are applicable to SOA and vice versa.

Services Functionality in the Globus defined architecture can be achieved using so-

called grid services which utilize standard interfaces in order to provide the following:

• Discovery of capabilities and the services using standardized naming conventions

• Lifetime management which includes dynamic service instance creation and con-
currency control of data and processes

• Notification of clients and subscribers in case of events

• Manageability of service relationships and maintenance

• Upgradability in terms of versioning to ensure compatibility between services

• Authorization to enforce access control

Protocols The two important aspects regarding protocols that Globus deals with are:

• Reliable service invocation ensures that the exchange of messages which is the
core of service interaction is reliable. This allows for the means of communication
necessary in a grid computing environment.

• Authentication addresses the need to verify the identity of clients and services in
the grid

71



The current architecture of Globus as shown in figure 5.5 is still based on the same

principles that were initially described by Foster et al. [32]. The combination of custom

components and web services components provides an architecture for security, data

management, execution management, information services and a common runtime in a

grid environment. In the following, the approaches taken are described in detail.

Figure 5.5. Globus Toolkit overview from http://www.globus.org/
toolkit/about.html

Service model All entities are represented as services that provide standard interfaces

over which their capabilities are accessible. Invocation of a particular functionality

and the interaction between services is performed using message exchanges. These

72

http://www.globus.org/toolkit/about.html
http://www.globus.org/toolkit/about.html


grid services utilize web services specifications for their interfaces and implementations.

Since a service in Globus is both, dynamic and stateful, it is assigned a so-called grid

service handle (GSH) to uniquely identify it. In order to support the upgradability

concept, a particular version of the service is identified by a grid service reference (GSR).

Factories Services in the grid that are able to create new service instances are called

factories. Whenever a new service is created, it is automatically assigned a new grid

service handle.

Service lifetime management Globus allows task specific services to be instanti-

ated. These so-called transient services perform a predefined task and terminate upon

its completion. It is also possible to associate a particular lifetime with a service. Note

that services that need more time in order to complete their task may request a lifetime

extension. An important aspect regarding the lifetime management is time synchroniza-

tion across all services. In order to achieve this, Globus uses the Network Time Protocol

(NTP).

Handles and references A so-called HandleMap is used to map grid service handles

to specific grid service references. This is necessary since grid service references have a

defined lifetime and may expire. The HandleMap ensures that it only returns valid grid

service references and not ones that are already terminated. This among other things

also allows detailed access control all the way down to the operation level. For this to

work, every service needs to register with a so-called home HandleMap. The grid service

handle is constructed in a way that it automatically references this home HandleMap

to ensure scalability.

Service data and service discovery Every grid service is associated with so-called

service data which in Globus is a collection of XML documents that describe the capa-

bilities of the service. By default each service provides this data using the mandatory

73



FindServiceData interface. The overall system contains a registry that contains refer-

ences to each individual service. It provides a Registry interface that is used to register

grid service handles. Since the availability of services can change, the registry has to

adapt. In order to deal with these dynamics in the grid environment, registrations must

be refreshed otherwise they expire after a specified time.

Notification Globus provides an asynchronous notification system that is based on

subscriptions. A client acts as a so-called NotificationSink that issues a request for

particular events to the so-called NotificationSource. In the case of events, notifications

are then pushed from the source to the sink.

Change management Web services interfaces in the grid environment are uniquely

named in order to provide manageability. Whenever a significant portion of the interface

or implementation is changed, a new unique name must be provided.

In contrast to the Transportation Security SensorNet, Globus makes use of web ser-

vice specifications in some of its components but also provides custom implementations

and interfaces as for service discovery and notifications. The TSSN uses web services

specifications and Open Geospatial Consortium standards almost exclusively which en-

sures standards compliance and compatibility. For service discovery the UDDI (see

section 4.4) is used and for notifications WS-Eventing (see section 4.3.2).

5.5 Service Architectures for Distributed Geoprocessing

A research article by Friis-Christensen et al. [34] deals with the integration of Open

Geospatial Consortium specifications. It outlines the implementation of an application

that analyzes the impact of forest fires using web services. The purpose of the application

is to assess the damage inflicted by fires based on land cover data for a particular area.

The previous solution looked like figure 5.6.

74



Figure 5.6. Forest fire application from [34]

Friis-Christensen et al. [34] discuss advantages and disadvantages of their improved,

web services based implementation and outline potential solutions for problems that

they discovered.

Figure 5.7. Forest fire web services architecture from [34]

Architecture The main focus is the transition from a client application to a flexible

web services architecture using Open Geospatial Consortium specifications. As shown

75



in figure 5.7 the components include multiple data sources that are made available

through data access services like the Web Map Service and the Web Feature Service.

A geoprocessing service performs the analysis of the data and provides it to a client.

Furthermore a discovery service serves as the registry for all services and their metadata.

The general process is described as follows:

1. Retrieve a map

2. Select a time and area of interest

3. Search for data source masks that deal with burnt areas

4. Search for target data masks that serve as the basis for the assessment of fire
damage

5. Execute the process which retrieves the masked features, performs calculations
and returns the desired statistics

6. Display statistics

Statistics Service This is the implementation of a Web Processing Service (WPS)

according to the OGC specifications. Apart from the general getCapabilities interface, a

describeProcess interface is defined which is used to explain how data is handled within

a particular process and what functionality the process provides. The execute operation

is used to start the specified process with previously defined filters, so-called masks, as

the parameters. During the processing, the statistics service uses these masks to collect

features from the data sources.

Mapping and Feature Services These services provide the relevant data such as

satellite imagery and statistics either in its entirety or through the application of spec-

ified masks.

Catalogue The catalogue serves as a service registry and allows searching for services

and features based on title, bounding box and time of interest.

76



Client In the implementation that is described in the paper, the client application is

browser based. It uses a combination of client (AJAX) and server (JSP) based technol-

ogy to display maps and the calculated fire damage statistics

The prototype implemented uses synchronous communication in between services.

The problem in this case is that the actual processing can take quite a long time. In the

future the authors want to transition to an asynchronous communication model that is

similar to the OGC Web Notification Service.

In addition, it is pointed out that even though standardized interfaces allow for a

combination of services which provides flexibility, the transport of high volumes of data

is often not feasible in geoprocessing scenarios which can lead to highly specialized but

not very reusable services.

The implementation described by Friis-Christensen et al. [34] is interesting in the

sense that it exclusively uses specifications from the Open Geospatial Consortium which

makes it compatible to other Geographical Information Systems. The Transportation

Security SensorNet aims to be OGC compliant as well but includes specifications that

deal with sensor networks such as the Sensor Observation Service and the Sensor Alert

Service, something that this forest fire web service architecture does not even address.

5.6 Web Services Orchestration

A paper that specifically deals with the problem of reusability of services and so-

called “next generation challenges” was written by Kiehle et al. [47]. The idea here is to

increase transparency and reusability by splitting processes into smaller more reusable

processes and utilizing a work flow management system called Web Services Orches-

tration. This is especially important for the integration of the Transportation Security

SensorNet into systems used in the transportation industry. Its modular design and

architecture allow single components to be reused and and information flows to be cre-

ated.

77



Figure 5.8. Web orchestration framework from [47]

The Web Processing Service specification describes how services can be arranged

and combined into so-called service chains that form a process. Two alternatives are

commonly used in order to achieve this. A Web Processing Service can be setup to com-

bine and “encapsulate” other individual web services and therefore provide the desired

abstraction. However, the best way to define work flows is using the so-called Business

Process Execution Language (BPEL). BPEL enables complex service chains as shown

in figure 5.8 to be defined without the need for custom and potentially not reusable Web

Processing Services that just “encapsulate” services.

5.7 Summary

The related work addresses the following key technologies that play an important

part in the Transportation Security SensorNet :

78



Service Oriented Architecture The development of the Service Oriented Architec-

ture and its web services specifications has come a long way but is still far from over.

Even though specifications exist, organizations and businesses often implement compo-

nents that are similar to the specification but not compliant. As discussed before, this is

the case for service discovery and notifications in Globus. Two common reasons behind

this are the following. First, the specification may be available but there are hardly

any reference implementations that can be used. Second, extensions to the specification

that are necessary for a particular implementation or in a specific environment such as

the grid are not covered by the standard.

Open Geospatial Consortium The specifications by the Open Geospatial Consor-

tium are often complex and there is significant development effort necessary to imple-

ment the elements, interfaces and functionality they define. Automatic code generation

as described section 6.1.1.4 and used by the Transportation Security SensorNet can

facilitate their implementations but is not used very often.

Sensor Networks The implications on communication models that sensor networks

have, in particular asynchronous message exchanges, are often ignored in web service

architectures. As seen in NOSA, the focus is on the implementation of a subset of OGC

standards for a particular sensor network, but the link to an overall Service Oriented

Architecture seems to be missing.

It is evident that current systems seem to lack the combination of SOA, OGC specifi-

cations and sensor networks. The Transportation Security SensorNet combines all these

technologies and bridges the gap between implementations that just deal with SOA and

OGC specifications and systems that use OGC standards in sensor networks.

79



Chapter 6

Design & Architecture

6.1 Overview

This chapter describes the architecture of the Transportation Security SensorNet

(TSSN). It provides an in-depth discussion of design aspects and the implementation.

6.1.1 Service Oriented Architecture

“Service Oriented Architecture (SOA) is a paradigm for organizing and uti-

lizing distributed capabilities that may be under the control of different

ownership domains.” MacKenzie et al. [55]

Building a “Service Oriented Architecture for Monitoring Cargo in Motion Along

Trusted Corridors” makes sense. According to a study by the Delphi Group [36], com-

panies that collaborate usually request compliance for the following standards: XML

74%, J2EE (Java) 44% and SOAP 35%. The architecture used for the implementation

of the Transportation Security SensorNet utilizes all three technologies by separating

functionality into web services. This allows for high flexibility and is very cost effective

(see chapter 4).

Haas et al. [40] early on proposed various models for web service architectures. The

Message Oriented Model focuses on message relations and how they are processed. An

80



approach that centers around resources and ownership is the so-called Resource Ori-

ented Model. The Policy Oriented Model defines constraints and focuses on security

and quality of service. Ideas from all these models have been combined with the Ser-

vice Oriented Model into what has become the Service Oriented Architecture. Of the

proposed models it has been the most widely implemented.

A book that provides an excellent overview of Java and web services is written by

Kalin [45]. Note that the Service Oriented Architecture by definition is programming

language and platform independent. It is built on the basis of requests and responses

and the independence of so-called web services. The choice to use Java for the imple-

mentation was made because the Transportation Security SensorNet is built on top of

previous research on the Ambient Computing Environment for SOA by Searl [76] which

is written in Java.

TDE
MRN

TradeDataExchange

SensorNodeAlarmProcessor

VNOC

AlarmProcessor

AlarmReporting

StartMonitorSensors
StopMonitorSensors
getLocation

SetMonitoringState

Alert
SensorNodeEvent

MRN_Alarm

SensorManagement

Client

SensorNodeStatus
Location

getAllContacts
getAllAlarmContactMappings
getAllSmsProviders
getAllAlarms

Contacts
AlarmContactMappings
SmsProviders
Alarms

NOC_Alarm

startMonitoring
stopMonitoring
getLocation
setAlarmSecure

Status
Location
startMonitoring
      ServiceException

ValidatedAlarmResponse
ShipmentQueryResponse

ValidatedAlarm
ShipmentQuery

Subscription

Figure 6.1. Service message overview

81



The main components of the Transportation Security SensorNet are sensor man-

agement and alarm notifications. An overview of the services and relevant message

exchanges is shown in figure 6.1.

The so-called Trade Data Exchange (TDE) (see section 6.5) provides shipment,

route, logistics and relevant cargo information. It is managed externally and used by

the system only through its specified interface. The Virtual Network Operation Center

(VNOC) (see section 6.4) is responsible for the processing of sensor data and alarms.

One of the major capabilities that it provides is alarm notification. The Mobile Rail

Network (MRN) (see section 6.3) deals with the actual management of sensors. Web

services at the Mobile Rail Network capture sensor data from the sensors and “prepro-

cess” that data. A detailed description of each individual service is provided later in

this chapter.

The architecture consists of web services that are separated into so-called service

clouds. These service clouds represent the different geographically distributed locations

(e.g. Overland Park, KS; Lawrence, KS and on a moving train) where services are

deployed and are shown in figure 6.2.

VNOC

AlarmReporting

AlarmProcessor

SensorManagement

TDE

TradeDataExchange

MRN

AlarmProcessor

SensorNode

Figure 6.2. Service cloud

The web services are developed according to the web service specifications and the

standards provided by the Open Geospatial Consortium. This means that they aim

to be standards compliant. Since the OGC specifications are at times very complex,

the Geography Markup Language for example defines over 1000 elements, the basis for

82



the framework was implemented using custom interface definitions first and adding the

OGC ones later. This enabled fast prototyping and testing of the system.

An analysis of geospatial problems and their potential solutions is done by de Smith

et al. [24]. Among other things it is pointed out that using standards, in particular the

specifications provided by the Open Geospatial Consortium, greatly increases interop-

erability and allows for the development of distributed systems that are more flexible

than commonly used Geographic Information Systems.

The following sections explain in-depth the approaches and technologies used in the

implementation of the Transportation Security SensorNet that represents a “Service

Oriented Architecture for Monitoring Cargo in Motion Along Trusted Corridors”.

6.1.1.1 Ambient Computing Environment for SOA

The infrastructure described by Searl [76] called Ambient Computing Environment

for SOA forms the basis of the implementation of the Transportation Security SensorNet.

It provides a complete SOAP stack using Apache Axis2 and a variety of other useful

programs that assist in the development of a Service Oriented Architecture.

The Ambient Computing Environment for SOA [76] deals with multiple ownerships

and federations that provide web services. In particular it covers the following aspects:

• Service Discovery across different federations

• Authentication of clients and services

• Authorization of clients and services

• Subscriptions

The implementation of the capabilities provided is based on Apache Axis2 and the

web service specifications. It is explained in detail in the following sections.

83



6.1.1.2 Apache Axis2

Apache Axis2 is a software stack that allows the development and running of web

services and clients. Its architecture as described by Chinthaka [16] consists of the

following main components:

AXIs Object Model (AXIOM) AXIOM is an XML object model that aims for

high performance while requiring low amounts of memory. The idea behind it is the

application of a so-called pull parser. This allows objects to be built from XML only up

to the information that is needed by the user while the rest of it is deferred.

The advantage of this is that the memory that an object requires is significantly

reduced. Furthermore, since the entire object model does not have to be constructed

before information can be retrieved, which is the case in the DOM parser, this approach

also increases performance.

Extensible Messaging Engine As can be seen in figure 6.3, Axis2 provides a very

modular architecture that allows for a variety of different implementations of web ser-

vices as long as they adhere to certain specifications.

Figure 6.3. Axis2 extensibility from [16]

A variety of transports such as HTTP, SMTP, JMS and TCP can be used for mes-

sage exchanges. Inside the engine each message goes through so-called phases that are

part of the piping model which is used to implement Message Exchange Patterns (see

section 4.6). Inside these phases messages can be modified, filtered or processed. The

advantage of doing this inside a phase is that it applies to all messages. This allows for

service independent processing implementations. The message receiver will then be re-

84



sponsible for handing over the actual message to the service implementation accordingly.

They also take care of synchronous and asynchronous message communication.

Context Model Axis2 provides a hierarchical context model that distinguishes be-

tween the following levels:

• Configuration of Axis2

• Service Group which is a collection of services

• Service which contains several operations

• Operation that consists of messages

• Message that is sent or received

These contexts are important in the implementation of web service specifications

such as WS-Security and WS-Policy. It means that these specifications can be applied

on a level basis which provides great flexibility.

Pluggable Modules In order to provide even more flexibility and to make the imple-

mentation of web service specifications easier to use, Axis2 provides so-called modules:

Figure 6.4. Axis2 modules from [16]

85



These allow an implementation of message processing that is common and useful

for many web services to be shared. Modules can also be engaged or disengaged on the

following levels:

• System which means that every service makes use of the module such as WS-
Addressing

• Service which useful for WS-Eventing

• Operation that for example allows fine grained security using WS-Security

More information about the modules that are used in the Transportation Security

SensorNet see section 6.1.4.

Data Binding Since a majority of data processing, element definitions and interface

specifications are in XML, Axis2 provides a variety of so-called data binding frameworks

such as XMLBeans [33], Java Architecture for XML Binding (JAXB) [29] and JiBX

[80]. In addition, the Axis2 Data Binding (ADB) can be used, which due to its tight

integration with Axis2 is highly performant. For instance, every object contains a so-

called factory that is able to transform XML into the specific object and vice versa.

As part of this thesis further development was done by the author on this data

binding to support a full range of Open Geospatial Consortium specifications such as

the Sensor Observation Service, Sensor Alert Service and most notably the Geography

Markup Language.

Several changes to the initial version of Axis2 were made in order to either fix bugs

or support more functionality. In particular the build structure was adapted to work

better with the Transportation Security SensorNet development. It makes extensive

use of Apache Ant for the automatic generation of elements from their respective XML

schema definitions, the compilation of Java classes and the deployment of web services

and clients

86



6.1.1.3 SOAP

Service Oriented Architectures make use of SOAP as a flexible message format. The

Transportation Security SensorNet does the same since web service specifications can

easily be integrated and applied to SOAP messages.

An in-depth discussion of SOAP can be found in section 4.2.

6.1.1.4 WSDL

All services in the Transportation Security SensorNet are defined using the Web Ser-

vices Description Language (WSDL) version 2.0. An in-depth introduction is provided

in section 4.5. This section explains how the combination of WSDL files and XML

schemas make up the foundation of a web service.

  

Service Java Classes

WSDL

Service
Skeleton

External Service
Stub B

WSDL2Java

External Service
Stub A

Schema
Elements

Service 
XML Schema

External
XML Schemas

External library A

External library B

Data A

Data B

Service

Service Implementation

Figure 6.5. Service composition

Utilizing the automatic code generator of Axis2 called WSDL2Java, all elements

defined in the XML schemas are available as Java classes. Furthermore a skeleton is

created that contains the operations of the web service as methods. Interaction with

87



other services is achieved using their respective stubs which provide methods for each

of its defined operations. They allow clients to perform requests directly using Java.

This is because Axis2 provides the entire SOAP stack from the message format to the

parsing into elements all the way up to the invocation of a method that represents a

service operation.

The composition of the generated parts, data and external libraries then forms the

actual service implementation.

6.1.2 Services

The services that are implemented in the Transportation Security SensorNet make

use of a variety of components. For long term information storage, a MySQL database

is used. A so-called object-relational mapping tool called Hibernate [41] enables objects

to be stored and retrieved transparently without the need of complicated database

interactions.

Esper [27] provides complex event and alarm processing and is used at the Virtual

Network Operation Center. The Alarm Processor at the Mobile Rail Network currently

uses a less complex approach.

The Sensor Node is responsible for the actual communication with the sensors. It

makes use of the so-called Hi-G-Tek (HGT) [42] protocol and a serial connection library

for Java called RXTX.

Each component and its particular use is explained in the later sections when each

individual service is described. At a high level, one of the main aspects when dealing

with web services is the definition of whether they are stateless or stateful :

6.1.2.1 Stateless

By default web services are meant to be stateless. This is because most message

exchanges are completely independent of each other. Web services usually offer calcu-

lations, information or capabilities that only require the service to perform a specific

88



action and give a response. This is part of the autonomy approach of web services (see

chapter 4).

Even in the case where a web services provides data, the service is still considered

stateless since the retrieval of the data at any given time is not dependent on the internal

state of the service but only on the underlying data. If the data changes there is no

state change in the web service and it still provides the same functionality.

6.1.2.2 Stateful

The need for stateful web services has been identified for the Transportation Security

SensorNet because there are certain limitations in just using stateless web services.

Given a so-called online data processor that analyzes sensor data; using a stateless web

service, it is impossible to react to trends and complex events because the service is

limited to single data objects that it receives.

Let us say that a web service is monitoring whether seals that lock cargo containers

are broken and is supposed send out warning messages whenever they are. The service

has limited capacity in terms of storing historic data but should still be able to intelli-

gently determine if a sensor reading that shows that a seal is broken is just a misreading

or a real threat. This is only possible if the service keeps track of previous states. In

contrast, a stateless service would only be able to react to the current reading and is

forced to make decisions based on this single piece of data.

Another example is the Alarm Processor service (see section 6.3.2) at the Mobile

Rail Network that is used in the Transportation Security SensorNet implementation.

It classifies sensor data from containers either as information or security depending on

whether one is currently allowed to open the container or not.

6.1.3 Clients

Clients are able to make use of the operations provided by the web services. They

usually utilize the same modules as the service. This means that in theory all web

89



services could have clients. Since a lot of the services in the Transportation Security

SensorNet interact independently from users, the number of clients that are available

to users is actually smaller.

One of the aspects of clients in the Transportation Security SensorNet is the man-

agement of the sensors. The Sensor Management service (see section 6.4.1) provides

this among other things like retrieving the location of a particular Sensor Node.

Another aspect is the management of alarm notifications. For this purpose the Alarm

Reporting service (see figure 6.13) defines various management operations for clients.

In order to facilitate the use of those clients, a so-called Command Center Graphical

User Interface was implemented that works just like a desktop application. This is

in addition to the command line interface that every client provides using the Apache

Commons Command Line Interface (CLI) library.

6.1.4 Modules

Axis2 provides the possibility to “plug in” so-called modules that add functionality

or change the way a service behaves. This allows a specific capability to be shared

among different services without having to implement it in each of them. In general,

the web service specifications that are used in Axis2 are implemented as modules. For

more information see section 6.1.1.2.

6.1.4.1 Ping

In order to check the status of a particular service Axis2 provides a module that

adds an operation called pingService to a service. This can be used to check the status

of either a specific operation or all operations that the service defines. The client part

that actually uses this operation was not part of Axis2 and had to be implemented by

the author.

90



6.1.4.2 Logging

Especially for debugging purposes and performance evaluations, it is of great benefit

to be able to see the raw SOAP messages that are sent and received. The so-called

logging module that was implemented provides this functionality. In particular the

following information is captured:

• Time when the message was sent or received

• Service which is used

• Operation that is being executed

• Direction of the message, which can be either incoming or outgoing. Note that
there are special directions that deal with incoming and outgoing faults.

• From address of the message

• Reply to address that may differ from the From address

• To address of the message

• Schema element that is being “transported” as part of the operation containing
the request parameters or the response elements

• Size of the message in bytes

• Message which represents the entire SOAP message in a readable form

In terms of analyzing the Transportation Security SensorNet and its performance

the logging module was engaged in all services. More information on the findings can

be found in chapter 7.

6.1.4.3 Addressing

An implementation of the WS-Addressing specification as described in section 4.3.1

comes as part of the addressing module in the Axis2 core. It fully supports all compo-

nents of the standard and its ReplyTo and RelatesTo fields are used among other things

to allow for asynchronous communication (see section 6.1.6) in the TSSN.

91



6.1.4.4 Savan

The Savan module enables web services and clients in Axis2 to make use of various

forms of subscription mechanisms as defined by the WS-Eventing specification (see

section 4.3.2).

6.1.4.5 Rampart

In order to provide security according to the WS-Security specification (see sec-

tion 4.3.3) for the TSSN the Rampart module was developed by Axis2. It makes exten-

sive use of the WS-SecurityPolicy standard described by Lawrence et al. [50].

6.1.5 Subscriptions

Subscriptions are a fundamental part of the overall architecture of the Transportation

Security SensorNet. They are used by the Alarm Processor at the Virtual Network

Operation Center as well as in the Mobile Rail Network. These web services, that act

as information publishers, utilize the Savan module to provide the operations defined

in WS-Eventing.

6.1.6 Synchronous and asynchronous communication

By default Axis2 uses request-response in a synchronous manner. This means that

the client has to wait and is therefore blocking until it receives the response from the

service. In certain scenarios, for instance when the service needs a large amount of

processing time, the client can experience timeouts. Furthermore, in the Transportation

Security SensorNet where the Mobile Rail Network is only intermittently connected to

the Virtual Network Operation Center, synchronous communication shows its limita-

tions.

A better option is to make the communication between services asynchronous. This

resolves timeout issues and deals with connections that are only temporary. The follow-

92



ing aspects need to be taken into consideration when using asynchronous communica-

tion:

6.1.6.1 Client

The client needs to make changes in regard to the how the request is sent out. Axis2

provides a low-level non-blocking client API and additional methods in the service stubs

that allow callbacks to be registered. These so-called AxisCallbacks need to implement

two methods, one that is being invoked whenever the response arrives and the other to

define what happens in case of an error.

6.1.6.2 Transport Level

Depending on the transport protocol that is being used, Axis2 supports the following

approaches.

• One-way uses one channel for the request and another one for the response such
as the Simple Mail Transfer Protocol (SMTP)

• Two-way allows the same channel to be used for the request and the response, for
example HTTP

For asynchronous communication to work the two-way approach was modified through

the Axis2 client API which provides the option of using a separate listener. This tells

the service that it is supposed to use a new channel for the response. In order to corre-

late request and response messages Axis2 makes use of the WS-Addressing specification,

in particular the RelatesTo field.

6.1.6.3 Service

The final piece of asynchronous communication is to make the service processing

asynchronous as well. This is done by specifying so-called asynchronous message re-

ceivers in the services configuration in addition to the synchronous ones.

93



Axis2 then uses the ReplyTo field of the WS-Addressing header in the client as a sign

to send an immediate acknowledge of the request back to it. Furthermore it processes

the request in a new thread and sends the response out when it is done, allowing the

communication to be performed in asynchronous manner completely.

There exist various forms of transport protocols that are suitable for asynchronous

communication. Axis2 by default supports HTTP, SMTP, JMS and TCP as transports

but other transports can easily be defined and plugged in. The Java Message Service

(JMS), for instance, makes use of so-called queues which allow clients and services to

store on them and retrieve messages in a flexible manner. This is essential for satellite

communication which is part of the next stage of the implementation of the Transporta-

tion Security SensorNet.

6.2 TSSN Common Namespace

Elements are often shared among a variety of services. Since defining the same

element over and over again is neither a scalable nor maintainable approach, it makes

sense to specify a common namespace for them and let the web services that want to use

them, include them. In the Transportation Security SensorNet these shared elements

are part of the so-called TSSN Common namespace.

In particular the following elements and types are defined:

Simple Types

A TrainID t represents a unique assembly unit of engines and rail cars.

The SensorNodeID t uniquely identifies a Sensor Node.

A HGT SealID t is a combination of four characters and eight numbers that is used

to identify a Hi-G-Tek tag or sensor.

94



Location

The LocationBean is used to store GPS location information. It consist of:

• longitude

• latitude

• quality of the so-called GPS fix

The so-called quality can be one of the following predefined ones:

• none, no position information available

• old, more than 1 minute without a valid position

• poor, last position information less than 60 seconds old and GPS fix is bad

• fair, last position information less than 40 seconds old and GPS fix is okay

• good, last position information less than 20 seconds old and GPS fix is okay

• great, last position information less than 10 seconds old and GPS fix is good

Messages

A Status is used widely as a return message and indicates the success or failure of

an operation. It has the following fields:

• status that is defined as a boolean and signals success or failure

• message which contains information on the success or failure

A Failure that represents the occurrence of an exception is made up of a simple

message.

95



Alarms

The AlarmSeverity which can be either one of the following:

• Information that someone might be interested in

• Maintainence related

• Security breach of a seal

• Hazard that needs to be investigated

The AlarmType can be one of these:

• Message that contains no other inherent meaning

• SensorLimitReached that is propagated when an observed property value exceeds
certain limitations

• SensorLost which means that the specified sensor cannot be reached

• SensorFound which informs of an established connection to a particular sensor

• Exception that has occurred in a service

The one element that is most commonly used for the alarm notifications is the

MRN AlarmBean because it contains all the valuable information of an alarm.

• SourceNode that identifies the Sensor Node

• TrainId that identifies the associated train

• TimeStamp when the alarm occurred

• Type of the alarm, an AlarmType

• Severity of the alarm, an AlarmSeverity

• Message that contains the alarm data or information

• Location of the alarm, a LocationBean

Other commonly used or shared elements such as the ExceptionReport are part of

the web service specifications and are described separately when explaining each service

individually in the following sections.

96



6.3 Mobile Rail Network

MRN

SensorNodeAlarmProcessor

VNOC

StartMonitorSensors
StopMonitorSensors
getLocation

SetMonitoringState

Alert
SensorNodeEvent

MRN_Alarm

SensorNodeStatus
Location

Subscription

Figure 6.6. Mobile Rail Network message overview

The Mobile Rail Network is a collection of services that is located on a train or

in a rail yard. Its services provide the abilities to manage sensors, monitor them and

propagate sensor alerts to the Virtual Network Operation Center. This section describes

them in detail.

6.3.1 Sensor Node

The Sensor Node contains the actual sensor monitoring and management application

and its components are shown in figure 6.7. It provides several abstraction layers that

allow various forms of sensors to be used. The current implementation makes use of

so-called Hi-G-Tek (HGT) sensors. Interaction with these sensors is performed using a

so-called Automatic Vehicle Location (AVL) reader. The Sensor Node implements the

functionality that allows higher level management of the sensors and the data that they

provide through the use of a sensor registry, the sensor data storage and sensor data

processing

Attaching a GPS sensor to the Sensor Node allows sensor events to be tagged with

97



Sensor Node

Sensor Data
Processing

HGT Sensor

SAS Interface

Location Interface

Sensor Management
Interface

AVL Reader

GPS Sensor Subscription
Registry

Notification Process

Sensor
Registry

Sensor
Data

HGT Sensor

HGT Sensor

HGT Sensor

SOS Interface

Figure 6.7. Mobile Rail Network Sensor Node

the specific location that they appeared at. The core functionality of the Sensor Ob-

servation Service that allows the service to offer its capabilities and observations is

implemented. Furthermore, a subscription registry is available for alert notifications.

The next sections explain the implementation details of these capabilities.

6.3.1.1 Sensor control

The following operations provide the ability to manage the underlying sensor infras-

tructure that is part of the Sensor Node.

StartMonitorSensors

The StartMonitorSensors operation described in table 6.1 starts the monitoring

application. The Sensor Node then watches the status of the specified sensors identified

by the sensorIds using the AVL reader via the HGT protocol. Note that even though

98



Message Exchange Pattern In-Out
Parameters trainId

sensorIds
Response SensorNodeStatus
Fault ows:ExceptionReport

Table 6.1. Sensor Node StartMonitorSensors operation

the Sensor Node may be aware of additional sensors, it only captures events generated

by the monitored sensors. The trainId specifies the train that the sensor node and the

sensors are associated with.

StopMonitorSensors

Message Exchange Pattern In-Out
Parameters none
Response SensorNodeStatus
Fault ows:ExceptionReport

Table 6.2. Sensor Node StopMonitorSensors operation

The sensor monitoring application is stopped and the sensors are released by the

StopMonitorSensors operation (table 6.2).

setSensors

Message Exchange Pattern In-Out
Parameters none
Response SensorNodeStatus
Fault ows:ExceptionReport

Table 6.3. Sensor Node setSensors operation

The HGT sensors that are used allow for a so-called sleep mode. Since they need to

be“awake”in order to receive commands from the monitoring application, the setSensors

operation described in table 6.3 sends so-called set signals to the sensors.

99



AddSeals

Message Exchange Pattern In-Out
Parameters sensorIds
Response SensorNodeStatus
Fault ows:ExceptionReport

Table 6.4. Sensor Node AddSeals operation

It is possible to tell the monitoring application to monitor additional sensors, which

in case of HGT sensors are called seals, that are specified by the sensorIds using the

AddSeals operation (table 6.4).

6.3.1.2 Location retrieval

Clients can also inquire about the current location of the Sensor Node when a GPS

sensor has been attached.

getLocation

Message Exchange Pattern In-Out
Parameters none
Response Location
Fault ows:ExceptionReport

Table 6.5. Sensor Node getLocation operation

The getLocation operation described in table 6.5 provides a location query interface

to the user. It retrieves the current location of the sensor node. Since a GPS sensor is

usually attached to the sensor node directly, its location information is retrieved and

not the one of a particular sensor.

6.3.1.3 OGC specifications

In order to provide standardized support for utilizing the functionality, the Sensor

Node uses WS-Eventing to allow subscriptions to alerts that is similar to the Sensor

100



Alert Service (see section 3.2.6) and provides the following operations of the Sensor

Observation Service (see section 3.2.5):

GetCapabilities

Message Exchange Pattern In-Out
Parameters sos:GetCapabilities
Response sos:Capabilities
Fault ows:ExceptionReport

Table 6.6. Sensor Node GetCapabilities operation

In accordance with the Sensor Observation Service specification, the GetCapabilities

operation described in table 6.6 enables users to retrieve information about the sensors

and the data they provide, the so-called offerings. The Capabilities element returned

by this implementation also contains a list of sensor ids that are currently monitored.

GetObservation

Message Exchange Pattern In-Out
Parameters sos:GetObservation
Response om:Observation

Table 6.7. Sensor Node GetObservation operation

The GetObservation operation (table 6.7) is a simplified version of the Sensor Obser-

vation Service equivalent and is used to retrieve current or historical sensor data from

a sensor which identified by a sensor id that is part of the GetObservation parameter.

The provided Observation is a reduced version of the Observation in the Observations

& Measurements specification and provides the time, format and the measurement of

the sensor data observed.

The Sensor Node provides its functionality through the operations that were de-

scribed. They allow sensor management, provide location information and OGC com-

pliant interfaces.

101



6.3.2 Alarm Processor

Alarm Processor

Alert
Processing

SAS Interface

Alert Interface

Monitoring State
Interface

Subscription
Registry

Notification Process

Monitoring
State

Sensor Event
Interface

Figure 6.8. Mobile Rail Network Alarm Processor

The Alarm Processor on the Mobile Rail Network performs an initial filtering of

sensor events generated by the Sensor Node. It subscribes to of all events of the Sensor

Node, providing interfaces for generic sensor events as well as sensor alerts. Alerts

reported to the Alarm Processor include potential alarms that the Sensor Node reports,

GPS acquisitions and losses, and status messages of the monitoring application such as

when it is started and stopped. In case the data is not as complex as an alert, the event

element provides a simple structure with a timestamp and a data field.

The Alarm Processor classifies alerts into either information or security alarms de-

pending on its current monitoring state. It is also responsible for deciding whether or

not to forward the alarm to the Virtual Network Operation Center for further process-

ing and possible transmission to the decision maker. Its implementation details are

discussed next.

102



6.3.2.1 Notifications

The following operations are defined in reference to the Sensor Alert Service (see

section 3.2.6) for receiving notifications from the Sensor Node.

Alert

Message Exchange Pattern In-Only
Parameters sas:Alert

Table 6.8. Alarm Processor Alert operation

The Alert operation described in table 6.8 represents a simplified version of its Sensor

Alert Service equivalent. It contains fields for storing all the necessary information about

a sensor node alert. In particular:

• SensorID of the particular sensor causing the alert

• TimeStamp of the alert

• NodeId of the Mobile Rail Network

• TrainId that identifies the current train association

• AlertData which contains the raw alert information

• Latitude of the alert location

• Longitude of the alert location

• PosQuality that specifies the quality of the GPS signal when the location was
retrieved

SensorNodeEvent

Message Exchange Pattern In-Only
Parameters SensorNodeEvent

Table 6.9. Alarm Processor SensorNodeEvent operation

Simple events can occur as well and are reported using the SensorNodeEvent oper-

ation (table 6.9). They contain these two fields:

103



• TimeStamp of the event

• EventData which contains the raw alert information

6.3.2.2 Monitoring State

The Alarm Processor can be configured using the following operation:

SetMonitoringState

Message Exchange Pattern Robust-In-Only
Parameters monitoringState
Fault Failure

Table 6.10. Alarm Processor SetMonitoringState operation

The SetMonitoringState operation described in table 6.10 specifies the current mon-

itoring state of the Alarm Processor. It can be used to enable or disable security. When

it is enabled, seal breaks are reported using a security notification instead of basic

information message.

The Alarm Processor uses the described operations for handling alerts and events

that it receives from the Sensor Node. In addition, it provides functionality to specify

its monitoring state, in particular to switch between information and security mode.

6.4 Virtual Network Operation Center

The Virtual Network Operation Center as shown in figure 6.9 represents the man-

agement facility of the TSSN and consists of services that receive and process alerts

received from Mobile Rail Networks. It works with the Trade Data Exchange to asso-

ciate shipment and trade information with a particular alert. Furthermore, the Alarm

Reporting service provides clients with the ability to be notified upon specific events.

The processes that are involved in performing these tasks are the topic of this section.

104



  

MRN

VNOC

AlarmProcessor

AlarmReporting

StartMonitorSensors
StopMonitorSensors
getLocation

SetMonitoringState

MRN_Alarm

SensorManagement

Client

SensorNodeStatus
Location

getAllContacts
getAllAlarmContactMappings
getAllSmsProviders
getAllAlarms

Contacts
AlarmContactMappings
SmsProviders
Alarms

NOC_Alarm

startMonitoring
stopMonitoring
getLocation
setAlarmSecure

Status
Location
startMonitoring
      ServiceException

Subscription

TDE

ValidatedAlarmResponse
ShipmentQueryResponse

ValidatedAlarm
ShipmentQuery

Figure 6.9. Virtual Network Operation Center message overview

6.4.1 Sensor Management

The Sensor Management service (figure 6.10) is responsible for controlling sensors

and alarm reporting. It provides methods for starting and stopping sensor monitoring.

Additionally the monitoring state which defines how alerts are interpreted and processed

can be specified. The Sensor Management service essentially relays these “control”

messages to the according Mobile Rail Network. Another functionality that is provided

is the ability to query for a specific MRN’s location. The implementation details of the

interfaces that it provides to clients are described in the following.

105



Sensor Management

Message Relay
Process

Location Interface

Monitoring State
Interface

Sensor Management
Interface

Figure 6.10. Virtual Network Operation Center Sensor Management

6.4.1.1 Sensor control

The following operations enable remote sensor management of the Mobile Rail Net-

works.

startMonitoring

Message Exchange Pattern In-Out
Parameters collectorId

trainId
tagId
sensorId

Response tssn:Status
Fault ows:ExceptionReport

Table 6.11. Sensor Management startMonitoring operation

The startMonitoring operation described in table 6.11 tells the MRN that is specified

by the collectorId to start monitoring sensors. The collectorId is the identifier of an

individual sensor node. Furthermore the trainId provides the Sensor Node with the

information of which train it is coupled to. This can be used later on to refine alarm

processing and more importantly container handovers between trains. The tagId and

sensorId are used in a parent-child sensor relationship. In this case a tag as the parent

106



would monitor the associated sensor as a child while the the sensor node only interacts

with the tags. In case of sensor events the reporting chain would be sensor → tag →

sensor node.

stopMonitoring

Message Exchange Pattern In-Out
Parameters collectorId
Response tssn:Status
Fault ows:ExceptionReport

Table 6.12. Sensor Management stopMonitoring operation

The stopMonitoring operation (table 6.12) is the opposite of the startMonitoring

operation. It tells the specified sensor node to stop monitoring all sensors.

6.4.1.2 Location retrieval

Clients can inquire about the location of a particular Sensor Node.

getLocation

Message Exchange Pattern In-Out
Parameters collectorId
Response tssn:LocationBean
Fault ows:ExceptionReport

Table 6.13. Sensor Management getLocation operation

The getLocation operation described in (table 6.13) provides a location query inter-

face to the user. It retrieves the current location of the specified Sensor Node.

6.4.1.3 Monitoring state

Alarm Processors at the Mobile Rail Networks can be configured using the following

operations:

107



setAlarmSecure

Message Exchange Pattern In-Out
Parameters collectorId

secure
Response tssn:Status
Fault ows:ExceptionReport

Table 6.14. Sensor Management setAlarmSecure operation

The specified MRN Alarm Processor can be contacted using the setAlarmSecure

operation (table 6.14) in order to enable or disable security in its monitoring state.

When the security state is enabled, seal breaks are reported using a security notification

instead of basic information message.

setAlarmProcessorMonitoringState

Message Exchange Pattern In-Out
Parameters collectorId

monitoringState
Response tssn:Status
Fault ows:ExceptionReport

Table 6.15. Sensor Management setAlarmProcessorMonitoringState oper-
ation

The setAlarmProcessorMonitoringState operation described in table 6.15 provides

a more flexible configuration interface to the Alarm Processor on the MRN. Settings

are specified in a descriptive and extensible monitoring state bean which could hold

additional state information such as time frames for monitoring sensors or GPS location

zones in which to automatically switch into security state. This state bean is used for

instance by the setAlarmSecure operation.

The operations described allow the Sensor Management service to control Sensor

Nodes and their monitoring state. Additionally, it is able to retrieve the location of

Sensor Nodes.

108



6.4.2 Alarm Processor

Alarm Processor

SAS Interface

Alarm Interface

Subscription
Registry

Notification Process

Esper
Event

ProcesingEsper
Rules

Figure 6.11. Virtual Network Operation Center Alarm Processor

In contrast to the “basic” processing that is performed by the Alarm Processor at

the Mobile Rail Network, the Alarm Processor as shown in figure 6.11 at the VNOC has

more resources such as the associated shipment and trade information available which

is provided by the Trade Data Exchange and can therefore process alarms in a more

complex way. This advanced filtering and processing is done using a complex event

processing system called Esper developed by Bernhardt and Vasseur [7].

Figure 6.12. Esper architecture from [27]

109



Esper works on the basis of sliding windows in which events that are close together

on the time axis are analyzed and correlated. It also supports using historical data from

a variety of sources. An efficient query and filtering language called Event Processing

Language allows for the most complex scenarios to be implemented. In the TSSN it

is used for instance to filter out alarms for which shipment information could not be

retrieved from the TDE and mark them as security notifications.

6.4.2.1 Notifications

The Alarm Processor receives alarm notifications from the Mobile Rail Network

using the following operation:

MRN Alarm

Message Exchange Pattern In-Only
Parameters mrnpub:MRN Alarm

Table 6.16. Alarm Processor MRN Alarm operation

The MRN Alarm operation described in table 6.16 is used as a notification interface

for alarms from the Alarm Processor on the MRN. The Alarm Processor service sub-

scribes to alarms from its counterpart on the Mobile Rail Network. The alarms are of

type tssn:MRN AlarmBean (see section 6.2).

Upon receiving an alarm, shipment data is retrieved from the Trade Data Exchange

and attached to the original alarm. Esper then processes the alarm and passes it on to

the Alarm Reporting service.

The Alarm Processor at the VNOC primarily provides functionality for the Mobile

Rail Network to deliver alert notifications. It uses Esper to perform complex event

processing, taking into consideration alert data and information from the TDE, and to

forward alarms to the Alarm Reporting service.

110



6.4.3 Alarm Reporting

Alarm Reporting

Reporting Management
Interface

Alarm History
Interface

Notification Process

Alarm
Database

Alarm Interface

Reporting Management
Process

Reporting
Database

Hibernate
Reporting
Mappings

Hibernate
Alarm

Mapping

Figure 6.13. Virtual Network Operation Center Alarm Reporting

The Alarm Reporting service deals with the following two aspects. First, it stores

alarms long term to allow for in-depth reporting and analysis. Second, clients that

want to be notified of particular alarms can register with the Alarm Reporting service.

Whenever alarms occur notifications are sent out to the registered clients via email

and/or SMS accordingly.

For long term data storage and to maintain a registry of the client notifications the

Alarm Reporting service makes use of the MySQL database. In order to remain flex-

ible and provide an abstraction layer to the core database functionality a tool called

Hibernate [41] was utilized. An excellent introduction to the so-called object-relational

mapping is provided by Bauer and King [3]. The main advantage is that objects refer-

enced in code can easily be persisted into a relational database and vice versa. The only

thing that needs to be defined is the so-called mapping. Once that has been defined

111



Hibernate takes care of the rest.

Since the objects that are being stored in the database are defined using XML

schemas and then automatically compiled into Java objects during the build process, it

makes sense to specify the mappings in XML as well. This is done in the Transportation

Security SensorNet. Another approach that is supported by Hibernate is using so-called

annotations within the Java objects themselves. This is not possible because of the

aforementioned build process as the objects would have to be reannotated at every

build.

The registry that is used for notifications contains so-called alarm contact mappings

that specify what kind of alarms a specific contact wants to be notified of. In case the

contact wants to receive SMS notifications, a SMS provider has to be specified as well.

The implementation details of the interfaces provided are described in the following.

6.4.3.1 SMS Providers

SMS providers have the following fields:

• id that uniquely identifies a provider

• name of the provider

• emailSuffix which is used for the email-based delivery of sms messages

The emailSuffix is used to construct an email address that is used to send out the

SMS. For example “123456789@sampleProvider.com” where “123456789” is the phone

number of the contact and“@sampleProvider.com”the email suffix of the phone provider.

addSmsProvider

Message Exchange Pattern In-Out
Parameters SmsProvider
Response tssn:Status

Table 6.17. Alarm Reporting addSmsProvider operation

112



The addSmsProvider operation described in table 6.17 adds a new sms provider to

the service. Note that the sms provider id is left blank (null) intentionally in this case

and only the name and the email suffix have to be provided. The Alarm Reporting

service automatically assigns an id to the new sms provider and stores it.

updateSmsProvider

Message Exchange Pattern In-Out
Parameters SmsProvider
Response tssn:Status

Table 6.18. Alarm Reporting updateSmsProvider operation

Within the updateSmsProvider operation (table 6.18) the sms provider is identified

by its id. The service looks for changes made to the sms provider and saves them.

removeSmsProvider

Message Exchange Pattern In-Out
Parameters SmsProvider
Response tssn:Status

Table 6.19. Alarm Reporting removeSmsProvider operation

The Alarm Reporting service identifies sms providers that match the provided name

and email suffix with elements in the database and removes them. The removeSm-

sProvider operation described in table 6.19 allows for pattern-based removal of sms

providers. It also checks if there are still contacts associated with it.

removeSmsProviderById

Message Exchange Pattern In-Out
Parameters Id
Response tssn:Status

Table 6.20. Alarm Reporting removeSmsProviderById operation

113



Since the id uniquely identifies an sms provider it can be removed explicitly using the

removeSmsProviderById operation (table 6.20). The same check as in the removeSm-

sProvider operation is in place.

getAllSmsProviders

Message Exchange Pattern In-Out
Parameters none
Response SmsProviders

Table 6.21. Alarm Reporting getAllSmsProviders operation

The getAllSmsProviders operation described in table 6.21 provides an interface to

retrieve all available sms providers in a list form.

6.4.3.2 Contacts

Contacts have the following fields that contain general information about them:

• id that uniquely identifies a contact

• affiliation that represents an organization or company

• name which usually is first and last name of a person

• email address of the contact

• smsProviderId reference to the phone provider’s email-to-SMS service

• cellPhoneNumber for SMS notifications

An email address or cellPhoneNumber must be provided, not necessarily both.

addContact

Message Exchange Pattern In-Out
Parameters Contact
Response tssn:Status

Table 6.22. Alarm Reporting addContact operation

114



The addContact operation (table 6.22) is similar to the addSmsProvider operation

in the sense that no id has to be provided for the new contact. The contact is stored in

the database with an automatically assigned id.

updateContact

Message Exchange Pattern In-Out
Parameters Contact
Response tssn:Status

Table 6.23. Alarm Reporting updateContact operation

Within the updateContact operation described in table 6.23 the service retrieves the

specified contact by its id and saves the changes that were made to it.

removeContact

Message Exchange Pattern In-Out
Parameters Contact
Response tssn:Status

Table 6.24. Alarm Reporting removeContact operation

The removeContact operation (table 6.24) removes the specified contact. It also

allows for pattern based removal. A check is in place that prevents removal of contacts

for which there still exist alarm contact mappings.

removeContactById

Message Exchange Pattern In-Out
Parameters Id
Response tssn:Status

Table 6.25. Alarm Reporting removeContactById operation

The contact that is identified by the id is removed using the removeContactById

operation described in table 6.25. The same check as in removeContact is in place.

115



getAllContacts

Message Exchange Pattern In-Out
Parameters none
Response Contacts

Table 6.26. Alarm Reporting getAllContacts operation

A list of all the defined contacts can be retrieved with the getAllContacts operation

(table 6.26).

6.4.3.3 Alarm Contact Mappings

Alarm contact mappings have the following fields:

• id that uniquely identifies a mapping

• severity of the alarm

• type of alarm

• contactId which references a particular contact

• method of notification (email or SMS)

These mappings are used by the Alarm Reporting service to determine what kind of

notifications each contact receives and which methods to use for delivering them.

addAlarmContactMapping

Message Exchange Pattern In-Out
Parameters AlarmContactMapping
Response tssn:Status

Table 6.27. Alarm Reporting addAlarmContactMapping operation

A new “alarm to contact” mapping is created using the defined entities with the

addAlarmContactMapping operation (table 6.27).

116



updateAlarmContactMapping

Message Exchange Pattern In-Out
Parameters AlarmContactMapping
Response tssn:Status

Table 6.28. Alarm Reporting updateAlarmContactMapping operation

Within the updateAlarmContactMapping operation described in table 6.28 the ser-

vice retrieves the specified alarm contact mapping by its id and saves the changes that

were made to it.

removeAlarmContactMapping

Message Exchange Pattern In-Out
Parameters AlarmContactMapping
Response tssn:Status

Table 6.29. Alarm Reporting removeAlarmContactMapping operation

The removeAlarmContactMapping operation (table 6.29) removes the specified alarm

contact mapping.

removeAlarmContactMappingById

Message Exchange Pattern In-Out
Parameters Id
Response tssn:Status

Table 6.30. Alarm Reporting removeAlarmContactMappingById opera-
tion

The alarm contact mapping that is defined by the id is removed using the re-

moveAlarmContactMappingById operation described in table 6.30.

getAllAlarmContactMappings

The service provides a list of all the alarm contact mappings that are in place with

the getAllAlarmContactMappings operation (table 6.31).

117



Message Exchange Pattern In-Out
Parameters none
Response AlarmContactMappings

Table 6.31. Alarm Reporting getAllAlarmContactMappings operation

6.4.3.4 Notifications

The Alarm Reporting service receives alarm notifications from the Alarm Processor

at the Virtual Network Operation Center using the following operation:

NOC Alarm

Message Exchange Pattern In-Only
Parameters nocpub:NOC Alarm

Table 6.32. Alarm Reporting NOC Alarm operation

This operation is used to provide a notification interface primarily for the subscrip-

tion of alarms from the Alarm Processor. The Alarm Reporting service subscribes to

alarms and provides this operation for its notifications. An alarm here is a combination

of the tssn:MRN AlarmBean and shipment and trade information received from the

Trade Data Exchange.

6.4.3.5 Alarm history

getAllAlarms

Message Exchange Pattern In-Out
Parameters none
Response Alarms

Table 6.33. Alarm Reporting getAllAlarms operation

A list of all the alarms that the service has received are retrieved using the getAl-

lAlarms operation described in table 6.33. The alarms are of type tssn:MRN AlarmBean.

Note that the associated shipment data is not stored in the Alarm Reporting service as

118



it is permanently available in the Trade Data Exchange.

6.5 Trade Data Exchange

TDE

TradeDataExchange

VNOC

ValidatedAlarmResponse
ShipmentQueryResponse

ValidatedAlarm
ShipmentQuery

Figure 6.14. Trade Data Exchange message overview

The Trade Data Exchange [79], as shown in figure 6.14, in a sense represents a

shipment and other trade data information provider. It aims to be a collection of

heterogeneous systems that stores and manages the business aspects of a transport of

goods. This is due to the fact that there is a variety of different systems implemented

by the parties that participate in the transport chain (see section 2.1 and section 2.3).

Some provide route information while others manage contracts and shipment data. For

the current implementation of the Transportation Security SensorNet this “collection”

of information and management services is combined into a single service, the Trade

Data Exchange service.

6.5.1 Trade Data Exchange Service

The Trade Data Exchange service (figure 6.15) interacts with the Alarm Processor

at the Virtual Network Operation Center. Upon request it provides shipment and trade

information for a specified alarm. It also provides functionality that can be used for

long term alarm storage, although in its current implementation fairly limited. Since

119



Trade Data Exchange

Shipment Information
Interface

Alarm Interface

Shipment
Information

Alarm
Database

Figure 6.15. Trade Data Exchange Service

the service was designed externally, the elements used are not compatible to the TSSN

common elements or any of the other services.

The alarm data element used has the following fields:

• timeOccured which represents the time when the alarm occurred

• train id that uniquely identifies a train

• tag id that uniquely identifies a tag (in this case a seal)

• sensor id that uniquely identifies a sensor

• alarm type which is either Door open, Door closed, Sensor missing or Sensor
returned

This element has some shortcomings such as no location information, no alarm data

field and limited alarm types but is currently used by the TSSN for the lack of a better

interface to the shipment information.

6.5.1.1 Information inquiry

The following operation is provided to retrieve shipment and trade information from

the Trade Data Exchange.

120



ShipmentQuery

Message Exchange Pattern In-Out
Parameters alarm data
Response shipment data

Table 6.34. TradeDataExchange ShipmentQuery operation

The ShipmentQuery operation as described in table 6.34 provides shipment data for

the specified alarm data. The shipment data contains the following information:

• train id that uniquely identifies a train

• equipment id that uniquely identifies a rail car; it consists of an initial and a
number

• car position of the container that the sensor is attached to

• bic code that uniquely identifies a so-called intermodal unit

• stcc which is the Standard Transportation Commodity Code of the goods shipped

It has to be noted that no route information is made available through this inquiry.

6.5.1.2 Alarm storage

For long term storage of alarms the next operation is provided:

ValidatedAlarm

Message Exchange Pattern In-Out
Parameters alarm data
Response status

Table 6.35. TradeDataExchange ValidatedAlarm operation

Using the ValidatedAlarm operation (table 6.35) the Trade Data Exchange service

receives alarm data and stores it in a database.

121



6.6 Open Geospatial Consortium Specifications

As described before, the amount of work that is required to fully implement spec-

ifications of the Open Geospatial Consortium such as the Sensor Observation Service

and the Sensor Alert Service is immense. The focus of the first stage of the imple-

mentation of the Transportation Security SensorNet is on the sensor management and

alarm notification capabilities. However, at the Mobile Rail Network the Sensor Node

provides an implementation for the Sensor Observation Service as defined by the OGC.

Furthermore, services in the TSSN that utilize subscriptions, in particular the Alarm

Processor, are able to receive subscribe requests and publish alerts in a manner that is

similar to the Sensor Alert Service. The difference to the proposed SAS specification

is that the services that subscribe are already aware of the capabilities, sensor types

and alert types. Therefore the operations that allow the retrieval of this information,

as described in section 3.2.6, need to be implemented in order to be fully compliant.

122



Chapter 7

Implementation Results

In this chapter tools that were developed and used to monitor the Transportation

Security SensorNet are described. The logging module (section 7.1) plays the most

important part as it captures message flows throughout the TSSN. These can then

be analyzed using the log parser (section 7.2) and visualized by the Visual SensorNet

tool (section 7.3). Performance measurements that were made throughout a series of

trials are the used to evaluate the communication speed, processing times and alarm

notifications (see section 7.4) within the TSSN.

7.1 Logging Module

The logging module as described in section 6.1.4.2 provides extensive logging capa-

bilities to the web services in the Transportation Security SensorNet. It was engaged

during development and testing of the entire system since it logs all messages that are

sent and received. In addition, it also writes the raw contents of the SOAP messages

into log files.

123



7.2 Log Parser

The log parser enables parsing and most importantly the merging of log files. It

transforms the raw SOAP messages back into Java elements that can then be filtered

and analyzed.

7.2.1 Abstraction Layer Model

Since SOAP is essentially XML, information from the so-called log messages can

retrieved using XPath [8] path expressions. For this purpose the log parser provides

an object abstraction layer model that corresponds to the specific parts in the SOAP

message.

An example mapping is shown in figure 7.1. It displays the structure of the orig-

inal SOAP message (for more information on SOAP see section 4.2) on the left and

the equivalent log parser objects on the right. Note that the corresponding objects

highlighted in yellow are actual classes while the Header and Body are not abstracted

separately.

Envelope

Body

WS-Eventing

Header

WS-Addressing

Axis2SoapMessage

Body

Subscribe

Header

Addressing

Figure 7.1. SOAP message (left) to Log parser classes (right) comparison

The log parser objects would then provide access to their properties using XPath

expressions. In this case they correspond to their respective web service specifications

but they could also be defined according to the XML schema definitions of any other

124



element. For example, for the WS-Addressing (see section 4.3.1) equivalent object the

path expressions in table 7.1 are used:

XPath expression Method equivalent
//To/text() getTo()
//ReplyTo/Address/text() getReplyTo()
//From/Address/text() getFrom()
//MessageID/text() getMessageId()
//RelatesTo/text() getRelatesTo()
//Action/text() getAction()

Table 7.1. XPath expressions for WS-Addressing

This mapping process is easily defined and allows for an in-depth analysis of the

messages that are sent and received in the Transportation Security SensorNet.

7.2.2 Message Types

Since the logging module is enabled on both ends of a message exchange, the log

parser is able to correlate messages. In order to do this it makes use of the so-called

message id that is provided by the WS-Addressing specification. The following two

types of message associations are present in the log files:

Transmit-Receive Pair Whenever a message is sent out by a particular client or

service it is captured by the logging module. The receiving service logs the message as

well but as an incoming message. The content of the message is essentially the same

which can also be seen by the fact that they have the same message id. The outgoing

and the incoming message are combined and form what is called a transmit-receive pair.

This allows us to compute the message transfer or so-called transmit time which

describes how long it takes to transmit the message from one entity to another using

the following equations:

transmitT ime1 = time2.Incoming − time1.Outgoing (7.1)

transmitT ime2 = time4.Incoming − time3.Outgoing (7.2)

125



Service A Service B

1. Outgoing 2. Incoming

3. Outgoing4. Incoming

Figure 7.2. Two transmit-receive pairs (red and green)

As shown in figure 7.2 the log parser automatically detects the transmit-receive pairs

and stores them in a particular list for further analysis.

Message Couple The most common message exchange pattern as described in sec-

tion 4.6 is the In-Out pattern. It defines request-response based message transfers which

the log parser calls message couples. A single message couple consists of two messages,

the outgoing request and the outgoing response on the receiving entity, which is shown

in figure 7.3. They can be correlated using the WS-Addressing specification. The re-

quest will carry a message id and the response a so-called relatesTo id in addition to

its own unique message id.

Service A Service B

1. Outgoing 2. Incoming

3. Outgoing4. Incoming

Figure 7.3. A message couple (red)

Note that a message couple can also be seen as a combination of two transmit-receive

pairs. This relationship is extremely useful in computing measures such as round trip

126



and processing times:

roundTripT ime = time4.Incoming − time1.Outgoing (7.3)

processingT ime = time3.Outgoing − time2.Incoming (7.4)

The log parser provides functionality to associate messages and analyze complete

end-to-end message flows. More details on the performance measurements and test

results can be found in section 7.4.

7.3 Visualization

Figure 7.4. Log file and service interaction visualization

In order to be able to understand the message flows better without needing too

127



much of a technical background, a visualization tool called the Visual SensorNet was

developed. It makes use of the log parser to display services, clients and messages that

are present in log files.

The user is able to load and merge log files to create a visualization of services and

clients as shown in figure 7.4. The layout of these services is defined according to their

membership in a particular service cloud. Furthermore, any point in time that is part

of the log files can be “jumped to” using the time line. It displays significant events in

the log files:

• Alarms, alerts and sensor node events with a warning sign

• Requests such as location retrieval with a light bulb sign

• Control messages such as start monitoring with a message sign

The scenario that was captured by the log files can also be played back in portions

or in its entirety. Using the Visual SensorNet tool, it is therefore possible to analyze

service interactions and message flows conveniently.

7.4 Performance and Statistics

An in-depth analysis of the real world scenarios that were performed to test the

Transportation Security SensorNet is given by Fokum et al. [31]. For the tests the

Trade Data Exchange was deployed in Overland Park, the Virtual Network Operation

Center at the University of Kansas in Lawrence and the Mobile Rail Network either on

a truck or on a train. Note that in both cases the communication between the Mobile

Rail Network and the Virtual Operation Center was established using a GSM modem.

The main findings are as follows:

7.4.1 Road Tests with Trucks

During the tests the overall system had to deal with several issues. The location

was not always available due to loss of so-called GPS fixes. This caused some alarms to

128



be reported with an inaccurate or old location. Furthermore, at some point the GSM

connection broke down but could be reestablished. Note that no messages were lost in

the process though.

In order to test the range of the AVL Reader, one of the goals was to find out at what

point the reader loses contact to the sensors that it monitors. During the testing this

distance was found to be about 400 meters. This was mainly due to significant hardware

tuning and enhancements that were made by members of the SensorNet project. One

of the reasons why range is so important is the fact that in the second stage the Trans-

portation Security SensorNet was deployed in the engine of a train and it had to monitor

sensors that were positioned on different railcars. In contrast to many other sensor net-

works where sensors surround a so-called base station in a circular manner with the aims

of minimizing distance, the rail scenario represents an almost linear sensing approach

where the distance to the base station increases for each sensor.

Another problem was the significant clock drift on the Mobile Rail Network during

relatively short tests (about 2 1/2 hours). Unfortunately this makes some time mea-

surements unreliable, in particular those in between the MRN and the VNOC. Note

that this is not such a big problem within the Mobile Rail Network and Virtual Network

Operation Center service clouds though, since there is a greater interest in relative times

such as the processing time of an operation. This problem could partially be solved by

letting the log parser that was used for the analysis apply a time adjustment parameter.

A better and more natural solution to this problem is discussed in section 8.2.

Note that these observations are mostly hardware related. The implementation of

the Transportation Security SensorNet as described in this thesis worked and was able

to provide the sensor management as well as complete end-to-end alarm notification

capabilities.

129



7.4.2 Short Haul Rail Trial

This more advanced scenario was performed by deploying the Mobile Rail Network

on a locomotive of a train along with sensors attached to containers for it to monitor.

The train traveled approximately 35 kilometers during the trip, from a rail intermodal

facility to a rail yard.

The system faced some of the same issues as during the truck trials such as loss of

GPS, GSM and sensor communication. The data that was collected however shows that

again the Transportation Security SensorNet was able to deal with them and send out

alarm notifications reliably. The log files were analyzed using the log parser and led to

the following:

Message Counts An overview of the message flow is shown in figure 6.1. During the

short haul rail trial the Sensor Node reported 546 alerts to the Alarm Processor. After

filtering, the details of which are explained in section 6.3.2, 131 alarms were sent to the

Alarm Processor at the Virtual Network Operation Center. For 63 of them, shipment

information was queried from the Trade Data Exchange and 33 were stored as so-called

validated alarms. All of the 131 alarms that the Alarm Processor received were sent out

to Alarm Reporting service which notified the according contacts via SMS and email.

There were also 30 inquiries for the location of the Mobile Rail Network.

Message Sizes Looking at the communication between the Virtual Network Opera-

tion Center and the Mobile Rail Network one can notice the following pattern. So-called

control messages such as startMonitoring or getLocation are always initiated at the Vir-

tual Network Operation Center. Since these messages usually transmit only a small

functional request, the average message size is around 690 bytes. On the other hand,

Alarms are always sent from the Mobile Rail Network and contain of a lot of valuable

information. Hence the average message size is about 1420 bytes.

130



Request Performance As shown in figure 7.5, the time it took for messages from

the Virtual Network Operation Center (Sensor Management) to send requests to the

Mobile Rail Network (either Sensor Node or Alarm Processor) and receive a response

was about 4.4 seconds on average. The fastest request was answered in 0.9 seconds

while the slowest took about 11 seconds.

0 2.5 5 7.5 10 12.5
0

5

10

15

Request/response Time (s)

C
ou

nt

Figure 7.5. Request performance from [31]

Overall these numbers meet the expectations of the transportation industry. Per-

forming a location inquiry given an average train speed of 30 km/h and 60 seconds to

retrieve the location, the actual position and the reported one may differ by as much

as 500 meters. However, the Transportation Security SensorNet provides location in-

formation in less than 5 seconds resulting in a maximum difference of just 41.7 meters.

0 1 2 3 4 5 6 7
0

2

4

6

8

10

Network Time (s)

C
ou

nt

0 1 2 3 4 5 6
0

5

10

15

20

25

30

35

Processing Time (s)

C
ou

nt

Figure 7.6. Network transmission and processing performance from [31]

131



The bottleneck here is the message transmit time as defined in equation 7.1. As

shown in figure 7.6, processing on the Sensor Node took only 0.6 seconds on average

whereas about 85% of the time is spent on message transmission. This percentage is

likely to increase when switching to satellite communication instead of communicating

with the GSM modem which was used in the trials.

Alarm Notification Performance Because of the problems with the clock drift, the

measured times for messages coming from the Mobile Rail Network going to the Virtual

Network Operation Center are unreliable. However, taking our previous findings about

the request performance the time for this particular transmission can be estimated using

the average round trip and the processing times:

transmitT ime =

1
n

n∑
i=1

(roundTripT imei − processingT imei)

2
(7.5)

=
4.4 seconds− 0.6 seconds

2
(7.6)

= 1.9 seconds (7.7)

Given this estimate, we can compute the total time it takes from for an alarm to go

through the entire TSSN as shown in figure 7.7.

2 3 4 5 6
0

20

40

60

80

100

Elapsed Time (s)

C
ou

nt

Figure 7.7. System alarm notification performance from [31]

132



This includes the times from the Sensor Node to the Alarm Processor at the Mo-

bile Rail Network, the approximated transmit time of 1.9 seconds, and the time from

the Alarm Processor to the Alarm Reporting service at the Virtual Network Operation

Center. On average this yields about 2.1 seconds with the fastest time being just over

1.9 seconds and the slowest around 4.9 seconds.

Both, the road test with trucks and the short haul rail trial can be called suc-

cessful because they displayed the capabilities of the TSSN, its good performance and

that the functionality implemented in the web services worked. In particular, two of

its main capabilities, location inquiry and alarm notification were extensively demon-

strated. Furthermore, the time it took from registering alerts, propagating them through

the Transportation Security SensorNet and sending out notifications accordingly is un-

der 5 seconds and significantly smaller than expected for such a complex system.

133



Chapter 8

Conclusion

8.1 Current Implementation

The implementation of the Transportation Security SensorNet using a Service Ori-

ented Architecture works. Testing has been completed in a lab environment as well as

in the real world and TSSN was evaluated in chapter 7.

The complete system provides a web services based sensor management and alarm

notification infrastructure that is built using open standards and specifications. Partic-

ular functionality within the system has been implemented in web services that provide

interfaces according to their respective web service specifications.

Using standards from the Open Geospatial Consortium allows the integration of the

system into Geographic Information Systems. Although not all the interfaces are fully

implemented as of summer 2009, the basic Sensor Observation Service and Sensor Alert

Service are. Other Open Geospatial Consortium specifications can be integrated a lot

easier now because enhancements to the Axis2 schema compiler have been made by the

author (see 6.1.1.2).

WS-Eventing plays an important role in the Transportation Security SensorNet as

it is essential for the alarm notification chain. The specification that is used by all the

clients and services is WS-Addressing. Note that HTTP, which represents the underlying

134



transport layer of most the web services, already provides an addressing scheme. This

however, is not as useful as it seems because web services may change their transport

layer and messages sometimes require complex routing. The reasoning behind this and

other things have been explained in detail in section 4.3.1.

Overall the Transportation Security SensorNet provides a Service Oriented Architec-

ture for Monitoring Cargo in Motion Along Trusted Corridors based on the extensible

infrastructure of the Ambient Computing Environment for SOA. This web services based

implementation allows for platform and programming language independence and offers

compatibility and interoperability.

The integration of Service Oriented Architecture, Open Geospatial Consortium spec-

ifications and sensor networks is complex and difficult. As described in section 5.7, most

systems and research focuses either on the combination of SOA and OGC specifications

or on OGC standards and sensor networks. However, the Transportation Security Sen-

sorNet shows that all three areas can be combined and that this combination provides

capabilities to the transportation and other industries that have not existed before. In

particular, web services in a mobile sensor network environment have always been seen

as slow and producing a lot of overhead. The TSSN, as shown by the results in chapter 7,

demonstrates that this is not necessarily true.

Furthermore, the Transportation Security SensorNet and its Service Oriented Ar-

chitecture allow sensor networks to be utilized in a standardized and open way through

web services. Sensor networks and their particular communication models led to the

implementation of asynchronous message transports in SOA and are supported by the

TSSN.

8.2 Future work

After evaluating the current implementation, several points of improvement were

identified.

135



Clock Synchronization In order to deal with the clock drift issue mentioned in

section 7.4, enhancements are currently developed that will allow the time on the Mobile

Rail Network to be adjusted using a local Network Time Protocol server. It is provided

the so-called pulse per second from a GPS sensor attached to the Sensor Node. As a

result of this there should hardly be any time synchronization problems left.

Service Discovery Due to several problems in the specific implementation of the

UDDI that was used, for the trials most of the services were made aware of the other

services through the means of configuration instead of service discovery. Since using a

UDDI provides far better scalability, it is an essential piece of future versions of the

Transportation Security SensorNet

Multiple service clouds During the trials all services were unique which in an oper-

ational system this is not the case. There are issues that need to be explored in dealing

with multiple versions not only of single web services but multiple Virtual Network Op-

eration Centers and Mobile Rail Networks. This is especially important when it comes

to managing policies and subscriptions properly.

Security The current system only provides entry points for the WS-Security in terms

of the Rampart module. There are several issues in the current implementation of the

module, especially with regard to attaching policies to web services and clients. Further

development is underway to implement WS-Security.

In between the Virtual Network Operation Center and the Mobile Rail Network

communication is secured by establishing a Virtual Private Network (VPN). However,

this is not practical using a satellite link because of performance reasons.

Sensors management is done at the Sensor Node but as of now there is no support

for the secure handover to other Sensor Nodes. The remote management systems need

to be improved in this area.

136



Asynchronous Communication The implementation of the Transportation Secu-

rity SensorNet that was used during the trials made use of a “relatively” stable GSM

modem connection that provided good performance and coverage. Furthermore, mes-

sages were sent in a synchronous manner.

In the next stage of development, the communication between the Virtual Network

Operation Center and the Mobile Rail Network is done over a satellite link that is pro-

vided by a communication service. This means that several topics have to be addressed.

First, the current message sizes should be reduced in order to accommodate for the

loss of speed. Possible optimizations have been discussed in section 4.2.3 but compres-

sion or conversion into binary formats are options as well.

Second, an enhancement that is currently being pursued and that deals better with

message queuing on both ends of the communication is the switch to the Java Message

Service as the transport. This is discussed by Easton et al. [25]. The Java Message

Service uses so-called Enterprise Service Bus queues in order to send and receive mes-

sages. This allows the current implementation to work almost unmodified as the only

thing that changes is the choice of transport for a few web services to fully support

asynchronous communication.

8.3 Acknowledgment

The work for this thesis is supported by the Office of Naval Research through Award

Number N00014-07-1-1042, Oak Ridge National Laboratory (ORNL) via Award Number

4000043403, and the KU Transportation Research Institute (KUTRI).

137



References

[1] Eyhab Al-Masri and Qusay H. Mahmoud. Investigating web services on the world
wide web. In WWW ’08: Proceeding of the 17th international conference on World
Wide Web, pages 795–804, New York, NY, USA, 2008. ACM. ISBN 978-1-60558-
085-2. URL http://doi.acm.org/10.1145/1367497.1367605.

[2] Jean-Pierre Bardet and Amir Zand. Spatial modeling of geotechnical infor-
mation using gml. Transactions in GIS, 13(1):p125 – 165, 20090101. ISSN
13611682. URL http://search.ebscohost.com.www2.lib.ku.edu:2048/login.
aspx?direct=true&db=aph&AN=36983054&site=ehost-live.

[3] Christian Bauer and Gavin King. Hibernate in Action. Manning, 2005.

[4] Tom Bellwood. Rocket ahead with UDDI V3. IBM article, IBM, November 2002.
http://www.ibm.com/developerworks/webservices/library/ws-uddiv3/.

[5] Tom Bellwood, Luc Clement, David Ehnebuske, Andrew Hately, Maryann Hondo,
Yin Leng Husband, Karsten Januszewski, Sam Lee, Barbara McKee, Joel Munter,
and Claus von Riegen. UDDI Version 3.0. OASIS specification, OASIS, July 2002.
http://uddi.org/pubs/uddi-v3.00-published-20020719.htm.

[6] T. Berners-Lee, R. Fielding, and L. Masinter. Uniform Resource Identifier (URI):
Generic Syntax. RFC 3986 (Standard), January 2005. URL http://www.ietf.
org/rfc/rfc3986.txt.

[7] Thomas Bernhardt and Alexandre Vasseur. Event-driven application servers, 2007.
URL http://dist.codehaus.org/esper/JavaOne_TS-1911_May_11_2007.pdf.

[8] Scott Boag, Anders Berglund, Don Chamberlin, Jérôme Siméon, Michael Kay,
Jonathan Robie, and Mary F. Fernández. XML path language (XPath) 2.0.
W3C recommendation, W3C, January 2007. http://www.w3.org/TR/2007/
REC-xpath20-20070123/.

[9] David Booth and Canyang Kevin Liu. Web services description language (WSDL)
version 2.0 part 0: Primer. W3C recommendation, W3C, June 2007. "http:
//www.w3.org/TR/2007/REC-wsdl20-primer-20070626.

[10] Mike Botts, George Percivall, Carl Reed, and John Davidson. OGC Sensor
Web Enablement: Overview And High Level Architecture. OGC white paper,

138

http://doi.acm.org/10.1145/1367497.1367605
http://search.ebscohost.com.www2.lib.ku.edu:2048/login.aspx?direct=true&db=aph&AN=36983054&site=ehost-live
http://search.ebscohost.com.www2.lib.ku.edu:2048/login.aspx?direct=true&db=aph&AN=36983054&site=ehost-live
http://www.ibm.com/developerworks/webservices/library/ws-uddiv3/
http://uddi.org/pubs/uddi-v3.00-published-20020719.htm
http://www.ietf.org/rfc/rfc3986.txt
http://www.ietf.org/rfc/rfc3986.txt
http://dist.codehaus.org/esper/JavaOne_TS-1911_May_11_2007.pdf
http://www.w3.org/TR/2007/REC-xpath20-20070123/
http://www.w3.org/TR/2007/REC-xpath20-20070123/
"http://www.w3.org/TR/2007/REC-wsdl20-primer-20070626
"http://www.w3.org/TR/2007/REC-wsdl20-primer-20070626


OGC, December 2007. http://portal.opengeospatial.org/files/?artifact_
id=25562.

[11] Don Box, David Ehnebuske, Gopal Kakivaya, Andrew Layman, Noah Mendelsohn,
Henrik Nielsen, Satish Thatte, and Dave Winer. Simple Object Access Proto-
col (SOAP) 1.1. W3C note, W3C, July 2003. http://www.w3.org/TR/2000/
NOTE-SOAP-20000508/.

[12] Don Box, Luis Felipe Cabrera, Craig Critchley, Francisco Curbera, Donald Fer-
guson, Steve Graham, David Hull, Gopal Kakivaya, Amelia Lewis, Brad Lover-
ing, Peter Niblett, David Orchard, Shivajee Samdarshi, Jeffrey Schlimmer, Igor
Sedukhin, John Shewchuk, Sanjiva Weerawarana, and David Wortendyke. Web
services eventing (ws-eventing). W3C member submission, W3C, March 2006.
http://www.w3.org/Submission/2006/SUBM-WS-Eventing-20060315/.

[13] Tim Bray, Richard Tobin, Dave Hollander, and Andrew Layman. Namespaces in
XML 1.0 (second edition). W3C recommendation, W3C, August 2006. http:
//www.w3.org/TR/2006/REC-xml-names-20060816.

[14] Luis Felipe Cabrera, Christopher Kurt, and Don Box. An Introduction to the Web
Services Architecture and Its Specifications. Microsoft technical article, Microsoft,
October 2004. http://msdn.microsoft.com/en-us/library/ms996441.aspx.

[15] Marc Chanliau. Web Services Security: What’s Required To Secure A Service-
Oriented Architecture. Oracle white paper, Oracle, October 2006.

[16] Eran Chinthaka. Web services and Axis2 architecture. IBM article,
IBM, November 2006. https://www.ibm.com/developerworks/webservices/
library/ws-apacheaxis2/.

[17] Erik Christensen, Francisco Curbera, Greg Meredith, and Sanjiva Weerawarana.
Web services description language (WSDL) 1.1. W3C note, W3C, March 2001.
http://www.w3.org/TR/2001/NOTE-wsdl-20010315.

[18] Xingchen Chu. Open sensor web architecture: Core services. Master’s thesis,
University of Melbourne, Australia, 2005. http://www.gridbus.org/reports/
OSWA-core%20services.pdf.

[19] Xingchen Chu, Tom Kobialka, and Rajkumar Buyya. Open sensor web archi-
tecture: Core services. In In Proceedings of the 4th International Conference
on Intelligent Sensing and Information Processing, pages 1–4244. Press, 2006.
http://www.gridbus.org/papers/ICISIP2006-SensorWeb.pdf.

[20] Simon Cox. Observations and Measurements - Part 1 - Observation schema.
OGC implementation specification, OGC, December 2007. http://portal.
opengeospatial.org/files/?artifact_id=22466.

139

http://portal.opengeospatial.org/files/?artifact_id=25562
http://portal.opengeospatial.org/files/?artifact_id=25562
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/
http://www.w3.org/Submission/2006/SUBM-WS-Eventing-20060315/
http://www.w3.org/TR/2006/REC-xml-names-20060816
http://www.w3.org/TR/2006/REC-xml-names-20060816
http://msdn.microsoft.com/en-us/library/ms996441.aspx
https://www.ibm.com/developerworks/webservices/library/ws-apacheaxis2/
https://www.ibm.com/developerworks/webservices/library/ws-apacheaxis2/
http://www.w3.org/TR/2001/NOTE-wsdl-20010315
http://www.gridbus.org/reports/OSWA-core%20services.pdf
http://www.gridbus.org/reports/OSWA-core%20services.pdf
http://www.gridbus.org/papers/ICISIP2006-SensorWeb.pdf
http://portal.opengeospatial.org/files/?artifact_id=22466
http://portal.opengeospatial.org/files/?artifact_id=22466


[21] Simon Cox. Observations and Measurements - Part 2 - Sampling Features.
OGC implementation specification, OGC, December 2007. http://portal.
opengeospatial.org/files/?artifact_id=22467.

[22] Simon Cox. Observations and Measurements - Part 2 - Sampling Features. OGC
schema, OGC, . http://schemas.opengis.net/sampling/.

[23] Simon Cox. Observations and Measurements - Part 1 - Observation schema. OGC
schema, OGC, . http://schemas.opengis.net/om/.

[24] Michael J de Smith, Michael F Goodchild, and Paul A Longley. Geospatial Analysis
- A Comprehensive Guide to Principles, Techniques and Software Tools. Matador,
2008. http://www.spatialanalysisonline.com.

[25] Peter Easton, Bhakti Mehta, and Roland Merrick. SOAP over java message ser-
vice 1.0. W3C working draft, W3C, July 2008. http://www.w3.org/TR/2008/
WD-soapjms-20080723.

[26] Thomas Erl. Service-Oriented Architecture - Concepts, Technology, and Design.
Prentice Hall, 2005.

[27] EsperTech. Esper - Event Stream and Complex Event Processing for Java. URL
http://www.espertech.com/.

[28] David C. Fallside and Priscilla Walmsley. XML schema part 0: Primer second
edition. W3C recommendation, W3C, October 2004. http://www.w3.org/TR/
2004/REC-xmlschema-0-20041028/.

[29] Joe Fialli and Sekhar Vajjhala. Java architecture for xml binding (jaxb) 2.0. Java
Specification Request (JSR) 222, October 2005.

[30] Roy Thomas Fielding. Architectural Styles and the Design of Network-based Soft-
ware Architectures. PhD thesis, University of California, Irvine, 2000.

[31] Daniel T. Fokum, Victor S. Frost, Daniel DePardo, Martin Kuehnhausen, Angela N.
Oguna, Leon S. Searl, Edward Komp, Matthew Zeets, Joseph B. Evans, and Gary J.
Minden. Experiences from a Transportation Security Sensor Network Field Trial.
ITTC Tech. Rep. ITTC-FY2009-TR-41420-11, University of Kansas, Lawrence,
KS, June 2009.

[32] Ian Foster, Carl Kesselman, Jeffrey M. Nick, and Steven Tuecke. The physiology
of the grid: An open grid services architecture for distributed systems integration.
In Open Grid Service Infrastructure WG, Global Grid Forum, June 2002. http:
//www.globus.org/alliance/publications/papers/ogsa.pdf.

[33] Apache Software Foundation. XMLBeans, July 2008. URL http://xmlbeans.
apache.org/.

140

http://portal.opengeospatial.org/files/?artifact_id=22467
http://portal.opengeospatial.org/files/?artifact_id=22467
http://schemas.opengis.net/sampling/
http://schemas.opengis.net/om/
http://www.spatialanalysisonline.com
http://www.w3.org/TR/2008/WD-soapjms-20080723
http://www.w3.org/TR/2008/WD-soapjms-20080723
http://www.espertech.com/
http://www.w3.org/TR/2004/REC-xmlschema-0-20041028/
http://www.w3.org/TR/2004/REC-xmlschema-0-20041028/
http://www.globus.org/alliance/publications/papers/ogsa.pdf
http://www.globus.org/alliance/publications/papers/ogsa.pdf
http://xmlbeans.apache.org/
http://xmlbeans.apache.org/


[34] Anders Friis-Christensen, Nicole Ostländer, Michael Lutz, and Lars Bernard.
Designing service architectures for distributed geoprocessing: Challenges and
future directions. Transactions in GIS, 11(6):p799 – 818, 20071201. ISSN
13611682. URL http://search.ebscohost.com.www2.lib.ku.edu:2048/login.
aspx?direct=true&db=aph&AN=28048261&site=ehost-live.

[35] Jesse James Garrett. Ajax: A new approach to web applications, February 2005.
URL http://adaptivepath.com/ideas/essays/archives/000385.php.

[36] Delphi Group. The value of standards. Survey, Delphi Group, Ten Post
Office Square, Boston, MA 02109, June 2003. www.ec-gis.org/sdi//ws/
costbenefit2006/reference/20030728-standards.pdf.

[37] Martin Gudgin, Yves Lafon, and Anish Karmarkar. Resource representation SOAP
header block. W3C recommendation, W3C, January 2005. http://www.w3.org/
TR/2005/REC-soap12-rep-20050125/.

[38] Martin Gudgin, Martin Gudgin, Marc Hadley, Tony Rogers, Tony Rogers, and
Marc Hadley. Web services addressing 1.0 - SOAP binding. W3C recommendation,
W3C, May 2006. http://www.w3.org/TR/2006/REC-ws-addr-soap-20060509.

[39] Martin Gudgin, Marc Hadley, and Tony Rogers. Web services addressing 1.0 -
core. W3C recommendation, W3C, May 2006. http://www.w3.org/TR/2006/
REC-ws-addr-core-20060509.

[40] Hugo Haas, David Booth, Eric Newcomer, Mike Champion, David Orchard,
Christopher Ferris, and Francis McCabe. Web services architecture. W3C note,
W3C, February 2004. http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/.

[41] Red Hat. Hibernate Reference Documentation 3.3.1. Technical report, Septem-
ber 2008. http://www.hibernate.org/hib_docs/v3/reference/en-US/pdf/
hibernate_reference.pdf.

[42] Hi-G-Tek. URL http://www.higtek.com/.

[43] David Hyatt and Ian Hickson. HTML 5. W3C working draft, W3C, February 2009.
http://www.w3.org/TR/2009/WD-html5-20090212/.

[44] Melissa Irmen. 10 ways to reduce the cost and risk of global trade management.
Journal of Commerce, March 2009. http://www.joc.com/node/410216.

[45] Martin Kalin. Java Web Services: Up and Running. O’Reilly, February 2009.

[46] Michael Kay. XSL transformations (XSLT) version 2.0. W3C recommendation,
W3C, January 2007. http://www.w3.org/TR/2007/REC-xslt20-20070123/.

[47] Christian Kiehle, Klaus Greve, and Christian Heier. Requirements for next gener-
ation spatial data infrastructures-standardized web based geoprocessing and web
service orchestration. Transactions in GIS, 11(6):p819 – 834, 20071201. ISSN

141

http://search.ebscohost.com.www2.lib.ku.edu:2048/login.aspx?direct=true&db=aph&AN=28048261&site=ehost-live
http://search.ebscohost.com.www2.lib.ku.edu:2048/login.aspx?direct=true&db=aph&AN=28048261&site=ehost-live
http://adaptivepath.com/ideas/essays/archives/000385.php
www.ec-gis.org/sdi//ws/costbenefit2006/reference/20030728-standards.pdf
www.ec-gis.org/sdi//ws/costbenefit2006/reference/20030728-standards.pdf
http://www.w3.org/TR/2005/REC-soap12-rep-20050125/
http://www.w3.org/TR/2005/REC-soap12-rep-20050125/
http://www.w3.org/TR/2006/REC-ws-addr-soap-20060509
http://www.w3.org/TR/2006/REC-ws-addr-core-20060509
http://www.w3.org/TR/2006/REC-ws-addr-core-20060509
http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/
http://www.hibernate.org/hib_docs/v3/reference/en-US/pdf/hibernate_reference.pdf
http://www.hibernate.org/hib_docs/v3/reference/en-US/pdf/hibernate_reference.pdf
http://www.higtek.com/
http://www.w3.org/TR/2009/WD-html5-20090212/
http://www.joc.com/node/410216
http://www.w3.org/TR/2007/REC-xslt20-20070123/


13611682. URL http://search.ebscohost.com.www2.lib.ku.edu:2048/login.
aspx?direct=true&db=aph&AN=28048260&site=ehost-live.

[48] Yves Lafon and Nilo Mitra. SOAP version 1.2 part 0: Primer (second edi-
tion). W3C recommendation, W3C, April 2007. http://www.w3.org/TR/2007/
REC-soap12-part0-20070427/.

[49] Kelvin Lawrence, Chris Kaler, Anthony Nadalin, Ronald Monzillo, and Phillip
Hallam-Baker. Web Services Security: SOAP Message Security 1.1 (WS-Security
2004). OASIS standard, OASIS, February 2006. http://docs.oasis-open.org/
wss/v1.1/wss-v1.1-spec-os-SOAPMessageSecurity.pdf.

[50] Kelvin Lawrence, Chris Kaler, Anthony Nadalin, Marc Goodner, Martin Gudgin,
Abbie Barbir, and Hans Granqvist. WS-SecurityPolicy 1.2. OASIS standard, OA-
SIS, July 2007. http://docs.oasis-open.org/ws-sx/ws-securitypolicy/v1.
2/ws-securitypolicy.pdf.

[51] E. Levinson. The MIME Multipart/Related Content-type. RFC 2387 (Proposed
Standard), August 1998. URL http://www.ietf.org/rfc/rfc2387.txt.

[52] P. Levis, S. Madden, J. Polastre, R. Szewczyk, K. Whitehouse, A. Woo, D. Gay,
J. Hill, M. Welsh, E. Brewer, and D. Culler. Tinyos: An operating system for
sensor networks. In in Ambient Intelligence. Springer Verlag, 2004. http://www.
cs.berkeley.edu/~culler/AIIT/papers/TinyOS/levis06tinyos.pdf.

[53] Amelia A. Lewis. Web services description language (WSDL) version 2.0: Ad-
ditional MEPs. W3C note, W3C, June 2007. http://www.w3.org/TR/2007/
NOTE-wsdl20-additional-meps-20070626.

[54] Canyang Kevin Liu. First Look at WSDL 2.0. SAP article, SAP, January
2005. https://www.sdn.sap.com/irj/scn/go/portal/prtroot/docs/library/
uuid/74bae690-0201-0010-71a5-9da49f4a53e2.

[55] C. Matthew MacKenzie, Ken Laskey, Francis McCabe, Peter F Brown, Rebekah
Metz, and Booz Allen Hamilton. Reference Model for Service Oriented Architec-
ture 1.0. OASIS standard, OASIS, October 2006. http://docs.oasis-open.org/
soa-rm/v1.0/.

[56] Lance McKee. The Importance of Going “Open”. OGC white paper, OGC, July
2005. http://portal.opengeospatial.org/files/?artifact_id=6211.

[57] Noah Mendelsohn, Murray Maloney, Henry S. Thompson, and David Beech. XML
schema part 1: Structures second edition. W3C recommendation, W3C, October
2004. http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/.

[58] Noah Mendelsohn, Hervé Ruellan, Martin Gudgin, and Mark Nottingham. XML-
binary optimized packaging. W3C recommendation, W3C, January 2005. http:
//www.w3.org/TR/2005/REC-xop10-20050125/.

142

http://search.ebscohost.com.www2.lib.ku.edu:2048/login.aspx?direct=true&db=aph&AN=28048260&site=ehost-live
http://search.ebscohost.com.www2.lib.ku.edu:2048/login.aspx?direct=true&db=aph&AN=28048260&site=ehost-live
http://www.w3.org/TR/2007/REC-soap12-part0-20070427/
http://www.w3.org/TR/2007/REC-soap12-part0-20070427/
http://docs.oasis-open.org/wss/v1.1/wss-v1.1-spec-os-SOAPMessageSecurity.pdf
http://docs.oasis-open.org/wss/v1.1/wss-v1.1-spec-os-SOAPMessageSecurity.pdf
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/v1.2/ws-securitypolicy.pdf
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/v1.2/ws-securitypolicy.pdf
http://www.ietf.org/rfc/rfc2387.txt
http://www.cs.berkeley.edu/~culler/AIIT/papers/TinyOS/levis06tinyos.pdf
http://www.cs.berkeley.edu/~culler/AIIT/papers/TinyOS/levis06tinyos.pdf
http://www.w3.org/TR/2007/NOTE-wsdl20-additional-meps-20070626
http://www.w3.org/TR/2007/NOTE-wsdl20-additional-meps-20070626
https://www.sdn.sap.com/irj/scn/go/portal/prtroot/docs/library/uuid/74bae690-0201-0010-71a5-9da49f4a53e2
https://www.sdn.sap.com/irj/scn/go/portal/prtroot/docs/library/uuid/74bae690-0201-0010-71a5-9da49f4a53e2
http://docs.oasis-open.org/soa-rm/v1.0/
http://docs.oasis-open.org/soa-rm/v1.0/
http://portal.opengeospatial.org/files/?artifact_id=6211
http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/
http://www.w3.org/TR/2005/REC-xop10-20050125/
http://www.w3.org/TR/2005/REC-xop10-20050125/


[59] Jean-Jacques Moreau, Sanjiva Weerawarana, Roberto Chinnici, and Arthur Ry-
man. Web services description language (WSDL) version 2.0 part 1: Core lan-
guage. W3C recommendation, W3C, June 2007. http://www.w3.org/TR/2007/
REC-wsdl20-20070626.

[60] Arthur Na and Mark Priest. Sensor Observation Service. OGC implementation
specification, OGC, October 2007. http://portal.opengeospatial.org/files/
?artifact_id=26667.

[61] Arthur Na and Mark Priest. Sensor Observation Service. OGC schema, OGC.
http://schemas.opengis.net/sos/.

[62] Douglas Nebert, Arliss Whiteside, and Panagiotis (Peter) Vretanos. OpenGIS Cat-
alogue Services Schemas. OGC schema, OGC. http://schemas.opengis.net/
csw/.

[63] Douglas Nebert, Arliss Whiteside, and Panagiotis (Peter) Vretanos. OpenGIS Cat-
alogue Services Specification. OGC implementation specification, OGC, February
2007. http://portal.opengeospatial.org/files/?artifact_id=20555.

[64] Eric Newcomer and Greg Lomow. Understanding SOA with Web Services (Inde-
pendent Technology Guides). Addison-Wesley Professional, December 2004. ISBN
0-321-18086-0. http://portal.acm.org/citation.cfm?id=1044935.

[65] Duane Nickul, Laurel Reitman, James Ward, and Jack Wilber. Service Ori-
ented Architecture (SOA) and Specialized Messaging Patterns. Adobe article,
Adobe, December 2007. www.adobe.com/enterprise/pdfs/Services_Oriented_
Architecture_from_Adobe.pdf.

[66] Henrik Frystyk Nielsen, Marc Hadley, Anish Karmarkar, Noah Mendelsohn, Yves
Lafon, Martin Gudgin, and Jean-Jacques Moreau. SOAP version 1.2 part 1: Mes-
saging framework (second edition). W3C recommendation, W3C, April 2007.
http://www.w3.org/TR/2007/REC-soap12-part1-20070427/.

[67] Henrik Frystyk Nielsen, Anish Karmarkar, Noah Mendelsohn, Martin Gud-
gin, Yves Lafon, Marc Hadley, and Jean-Jacques Moreau. SOAP version 1.2
part 2: Adjuncts (second edition). W3C recommendation, W3C, April 2007.
http://www.w3.org/TR/2007/REC-soap12-part2-20070427/.

[68] Mark Nottingham, Hervé Ruellan, Noah Mendelsohn, and Martin Gudgin. SOAP
message transmission optimization mechanism. W3C recommendation, W3C, Jan-
uary 2005. http://www.w3.org/TR/2005/REC-soap12-mtom-20050125/.

[69] David Orchard, Hugo Haas, Sanjiva Weerawarana, Amelia A. Lewis, Roberto
Chinnici, and Jean-Jacques Moreau. Web services description language (WSDL)
version 2.0 part 2: Adjuncts. W3C recommendation, W3C, June 2007. http:
//www.w3.org/TR/2007/REC-wsdl20-adjuncts-20070626.

143

http://www.w3.org/TR/2007/REC-wsdl20-20070626
http://www.w3.org/TR/2007/REC-wsdl20-20070626
http://portal.opengeospatial.org/files/?artifact_id=26667
http://portal.opengeospatial.org/files/?artifact_id=26667
http://schemas.opengis.net/sos/
http://schemas.opengis.net/csw/
http://schemas.opengis.net/csw/
http://portal.opengeospatial.org/files/?artifact_id=20555
http://portal.acm.org/citation.cfm?id=1044935
www.adobe.com/enterprise/pdfs/Services_Oriented_Architecture_from_Adobe.pdf
www.adobe.com/enterprise/pdfs/Services_Oriented_Architecture_from_Adobe.pdf
http://www.w3.org/TR/2007/REC-soap12-part1-20070427/
http://www.w3.org/TR/2005/REC-soap12-mtom-20050125/
http://www.w3.org/TR/2007/REC-wsdl20-adjuncts-20070626
http://www.w3.org/TR/2007/REC-wsdl20-adjuncts-20070626


[70] Cesare Pautasso, Olaf Zimmermann, and Frank Leymann. Restful web services
vs. ”big”’ web services: making the right architectural decision. In WWW ’08:
Proceeding of the 17th international conference on World Wide Web, pages 805–
814, New York, NY, USA, 2008. ACM. ISBN 978-1-60558-085-2. URL http:
//doi.acm.org/10.1145/1367497.1367606.

[71] George Percivall, Carl Reed, Lew Leinenweber, Chris Tucker, and Tina Cary.
OGC Reference Model. Technical report, OGC, November 2008. http://portal.
opengeospatial.org/files/?artifact_id=31112.

[72] Clemens Portele. OpenGIS Geography Markup Language (GML) Encoding Stan-
dard. OGC implementation specification, OGC, August 2007. http://portal.
opengeospatial.org/files/?artifact_id=20509.

[73] Clemens Portele. OpenGIS Geography Markup Language (GML) Encoding Stan-
dard. OGC schema, OGC. http://schemas.opengis.net/gml/.

[74] Carl Reed. Topic 0: Abstract Specification Overview. OGC abstract specification,
OGC, June 2005. http://portal.opengeospatial.org/files/?artifact_id=
7560.

[75] Mark Reichardt. The Havoc of Non-Interoperability. OGC white paper, OGC, De-
cember 2004. http://portal.opengeospatial.org/files/?artifact_id=5097.

[76] Leon S. Searl. Service Oriented Architecture for Sensor Networks Based on the
Ambient Computing Environment. ITTC technical report, ITTC, February 2008.
www.ittc.ku.edu/sensornet/trusted_cooridors/papers/41420-07.pdf.

[77] Jérôme Siméon, Don Chamberlin, Daniela Florescu, Scott Boag, Mary F.
Fernández, and Jonathan Robie. XQuery 1.0: An XML query language.
W3C recommendation, W3C, January 2007. http://www.w3.org/TR/2007/
REC-xquery-20070123/.

[78] Ingo Simonis and Johannes Echterhoff. Sensor Alert Service. OGC candidate
implementation specification, OGC, June 2007. http://portal.opengeospatial.
org/files/?artifact_id=24780.

[79] KC SmartPort. Trade Data Exchange - Nothing short of a logistics revolution.
Journal of Commerce, November 2008. URL http://www.joc-digital.com/joc/
20081110/?pg=29.

[80] Dennis Sosnoski. JiXB, March 2009. URL http://jibx.sourceforge.net/.

[81] C. M. Sperberg-McQueen, François Yergeau, Eve Maler, Jean Paoli, and Tim
Bray. Extensible markup language (XML) 1.0 (fifth edition). W3C proposed
edited recommendation, W3C, February 2008. http://www.w3.org/TR/2008/
PER-xml-20080205.

144

http://doi.acm.org/10.1145/1367497.1367606
http://doi.acm.org/10.1145/1367497.1367606
http://portal.opengeospatial.org/files/?artifact_id=31112
http://portal.opengeospatial.org/files/?artifact_id=31112
http://portal.opengeospatial.org/files/?artifact_id=20509
http://portal.opengeospatial.org/files/?artifact_id=20509
http://schemas.opengis.net/gml/
http://portal.opengeospatial.org/files/?artifact_id=7560
http://portal.opengeospatial.org/files/?artifact_id=7560
http://portal.opengeospatial.org/files/?artifact_id=5097
www.ittc.ku.edu/sensornet/trusted_cooridors/papers/41420-07.pdf
http://www.w3.org/TR/2007/REC-xquery-20070123/
http://www.w3.org/TR/2007/REC-xquery-20070123/
http://portal.opengeospatial.org/files/?artifact_id=24780
http://portal.opengeospatial.org/files/?artifact_id=24780
http://www.joc-digital.com/joc/20081110/?pg=29
http://www.joc-digital.com/joc/20081110/?pg=29
http://jibx.sourceforge.net/
http://www.w3.org/TR/2008/PER-xml-20080205
http://www.w3.org/TR/2008/PER-xml-20080205


[82] Anne van Kesteren. HTML 5 differences from HTML 4. W3C working draft, W3C,
June 2008. http://www.w3.org/TR/2008/WD-html5-diff-20080610/.

[83] Anne van Kesteren. The XMLHttpRequest object. a WD in last call, W3C, April
2008. http://www.w3.org/TR/2008/WD-XMLHttpRequest-20080415/.

[84] Anne van Kesteren and Ian Hickson. Offline web applications. W3C note, W3C,
May 2008. http://www.w3.org/TR/2008/NOTE-offline-webapps-20080530/.

[85] Michael Wolfe. In this case, bad news is good news. Journal of Commerce, July
2004. www.ismasecurity.com/ewcommon/tools/download.aspx?docId=175.

145

http://www.w3.org/TR/2008/WD-html5-diff-20080610/
http://www.w3.org/TR/2008/WD-XMLHttpRequest-20080415/
http://www.w3.org/TR/2008/NOTE-offline-webapps-20080530/
www.ismasecurity.com/ewcommon/tools/download.aspx?docId=175

	Acknowledgments
	Abstract
	Table of Contents
	List of Figures
	List of Listings
	List of Tables
	Introduction
	Statement of Problem
	Proprietary Solutions
	Variety of Open Standards
	Service Oriented Architecture
	Summary

	Background
	Extensible Markup Language
	Overview
	Descriptive power
	Ease of transformation
	Information storage and retrieval
	Flexible transmission

	Open Geospatial Consortium
	Sensor Web Enablement (SWE)
	Geography Markup Language (GML)
	Catalogue Service for Web (CSW)
	Observations & Measurements (O&M)
	Sensor Observation Service (SOS)
	Sensor Alert Service (SAS)


	Service Oriented Architecture
	Representational State Transfer (REST)
	Traditional Definition
	Current Use
	Further Development

	SOAP
	Message format
	Faults
	Further development

	Web Service Specifications
	WS-Addressing
	WS-Eventing
	WS-Security

	Service Directory
	Web Services Description Language (WSDL)
	Description
	Types
	Interface
	Binding
	Service

	Message Exchange Patterns
	In-Only
	Robust In-Only
	In-Out
	In-Optional-Out
	Out-Only
	Robust Out-Only
	Out-In
	Out-Optional-In


	Related Work
	Microsoft - An Introduction to Web Service Architecture
	Adobe - Service Oriented Architecture
	Request-Response via Service Registry (or Directory)
	Subscribe-Push
	Probe and Match

	Open Sensor Web Architecture
	Globus - Open Grid Services Architecture
	Service Architectures for Distributed Geoprocessing
	Web Services Orchestration
	Summary

	Design & Architecture
	Overview
	Service Oriented Architecture
	Services
	Clients
	Modules
	Subscriptions
	Synchronous and asynchronous communication

	TSSN Common Namespace
	Mobile Rail Network
	Sensor Node
	Alarm Processor

	Virtual Network Operation Center
	Sensor Management
	Alarm Processor
	Alarm Reporting

	Trade Data Exchange
	Trade Data Exchange Service

	Open Geospatial Consortium Specifications

	Implementation Results
	Logging Module
	Log Parser
	Abstraction Layer Model
	Message Types

	Visualization
	Performance and Statistics
	Road Tests with Trucks
	Short Haul Rail Trial


	Conclusion
	Current Implementation
	Future work
	Acknowledgment

	References

