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Abstract 
 

In mixed models, empirical best linear unbiased estimators of fixed effects 
generally have mean square errors (MSEs) that cannot be written in closed form. 
Standard methods of inference depend upon approximation of the estimator MSE, as 
well as upon approximation of the test statistic distribution by some known 
distribution, and may not perform well under small samples. The parametric bootstrap 
interval is presented as an alternative to standard methods of inference. Several 
parametric bootstrap intervals (Efron percentile, bias-corrected [BC], Hall percentile, 
and bootstrap-t) were compared using simulated data, along with analytic intervals 
based on the naïve MSE approximation and the Kenward-Roger method. Among the 
bootstrap methods, the bootstrap-t seems especially promising.  
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Chapter 1. Introduction 

1.1.Purpose   

Standard methods of statistical inference generally involve a statistic, chosen 

as an estimator of the parameter or effect of interest, and an estimate (often referred to 

as a standard error) of the statistic’s standard deviation (SD). The SD is the square 

root of the statistic’s sampling variance—a measure of how dispersed one would 

expect the values taken by the statistic to be in repeated sampling. The statistic and its 

standard error are used to form a test statistic (such as a t or F), and statistical 

inference is carried out based on the known or approximate distribution of the test 

statistic and its observed value for the given sample. The accuracy of such methods of 

inference depends in part upon the accuracy with which the statistic’s sampling 

variance can be estimated and, if the distribution of the test statistic is unknown, upon 

the adequacy of the chosen distributional approximation.  

In most mixed models, a straightforward estimate of the variance of the fixed 

effect estimator is unavailable, and accurate approximation of this variance can be 

difficult, especially when sample size is small. Moreover, because of this problem, 

the distribution of the test statistic used for inference must be approximated by some 

known probability distribution.     

These hurdles can be sidestepped entirely by constructing parametric 

bootstrap confidence limits for the effect of interest; under this approach, accurate 

inference can be conducted without approximating the estimator variance and without 

using a known distribution to approximate the distribution of the test statistic. Despite 
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these advantages and its relative ease of implementation, published applications of 

this method to the problem of fixed effect estimation are scarce. The primary purpose 

of this dissertation is to present the parametric bootstrap interval as a viable method 

of conducting inference for fixed effects in mixed models.   

1.2. Overview 

The problem of small sample inference in mixed modeling is treated in detail 

in Chapter 2. The general linear mixed model is presented in Section 2.1, and 

estimation of both fixed and random effects in the mixed model is discussed in 

Section 2.2. Analytic methods of MSE approximation are described in Section 2.3, 

analytic confidence interval construction is covered in Section 2.4, and results from 

studies of the performance of various analytic approximations are given in Section 

2.5. 

In Chapter 3, the proposed bootstrap-based solution to the problem of small 

sample inference is laid out. An introduction to bootstrapping is provided in Section 

3.1, and applications of the bootstrap to mixed models are discussed in Section 3.2. 

An account of bootstrap approaches to the problem of MSE approximation is given in 

Section 3.3. A general treatment of bootstrap interval construction is presented in 

Section 3.4, followed by a discussion of parametric bootstrap intervals for mixed 

models in Section 3.5. 

The methods of three simulation studies are detailed in Chapter 4. In the first 

(Section 4.1), data were generated from a one-way random effects ANOVA model for 

each of four (2 small sample sizes × 2 small ICC values) conditions, and five intervals 
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(two analytic, three parametric bootstrap) were compared based on observed rates of 

coverage. In the second study (Section 4.2), data were generated under a random 

coefficient model using estimates from a longitudinal study of personality. As in the 

first study, five intervals were constructed and compared based on rates of coverage. 

Data for two sample sizes were generated from a different random coefficient model 

in the third study (Section 4.3), and three analytic and four bootstrap intervals were 

compared. 

The results of these studies are presented and discussed in Chapter 5. 

References are listed in Chapter 6, and Chapter 7 is a technical appendix for the 

reader interested in delving more deeply into the mathematics underlying certain 

concepts.         



 

 

 

4

Chapter 2. The Problem: Inference under Small Samples 

2.1. The Problem in Brief 

In linear regression, ordinary least squares (OLS) estimators of the regression 

coefficients are unbiased—i.e., an OLS estimator takes the value of its target 

parameter on average in repeated sampling, neither systematically overestimating or 

underestimating the target. Among linear unbiased estimators, OLS estimators have 

minimum variance, meaning that no other linear unbiased estimator has a sampling 

distribution less dispersed about the target. (One might say that a minimum variance 

estimator “bounces around” its target less from sample to sample, tending more often 

to take values close to its target than estimators with greater variance.) An unbiased 

linear estimator with minimum variance is known as a best linear unbiased estimator, 

or BLUE.  

OLS coefficient estimators have known sampling variance formulas, allowing 

for straightforward variance estimation and computation of the observed value of the 

test statistic. Moreover, the test statistic for any regression coefficient has a Student’s 

t distribution with a known number of degrees of freedom.  

In mixed models, the situation is more complex. Best linear unbiased 

estimators of fixed effects depend upon the variances of the random terms in the 

model. These variances are usually unknown and must be approximated. Fixed effect 

estimators constructed using variance estimates generally have sampling variance that 

cannot be written in closed form, and a test statistic constructed using a fixed effect 

estimator and an approximation of its sampling variance has an unknown distribution 
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for finite sample size. Thus, there are two potential sources of error in any inference 

based on this standard method.    

This problem is laid out in more concrete terms in the following example. 

After this, the general linear mixed model is presented more formally, and the 

problem is revisited in theoretical detail.   

2.2. An Example 

Consider a longitudinal study in which a personality measure is administered 

to subjects at several time points over a number of years in order to estimate the rate 

at which personality changes in adulthood (e.g., see Terracciano, McCrae, Brant, & 

Costa, 2005). The researcher could ignore the clustering of scores within subjects and 

regress the personality trait score of interest on subject age in a simple linear 

regression. This would yield an unbiased OLS estimate of the rate of change (slope), 

but the within-subject errors would be correlated, violating the OLS model 

assumptions and making the SD estimate for the slope estimator, and thus any 

inference based upon the SD estimate, unreliable.   

A mixed model is more appropriate. Consider the following growth curve 

model: 

Y ij = β0 + AGEijβ1 + u0i + AGEiju1i + eij, 

where Yij is the personality trait score for the ith subject at the jth time point; β0 is the 

fixed overall intercept; β1 is the fixed slope (i.e., the average slope across subjects); 

AGEij is the age of the ith subject at the jth time point, centered about the grand 

mean; u0i is the random deviation of the ith subject’s intercept from the mean 
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intercept, β0; u1i is the random deviation of ith subject’s slope from the mean slope, 

β1; and eij is the random error term associated with the jth score for the ith subject. 

The eijs are assumed independent with distribution N(0, σe
2), and u0i and u1i are 

assumed independent from the eijs with joint distribution N(0, G), where G is a 2×2 

diagonal variance-covariance matrix.  

 In this mixed model, the best linear unbiased estimator of the fixed slope 

depends upon the unknown variances of the random terms in the model. When 

estimates of these variances are substituted for their targets in the formula for the 

BLUE, the sampling variance of the resulting estimator cannot be expressed in closed 

form and must be approximated. Confidence intervals for the slope, and the test of the 

null hypothesis β1 = 0 (i.e., personality score does not change with age), depend upon 

the accuracy of the estimator variance approximation and upon adequately 

approximating the distribution of the appropriate test statistic. In the sections that 

follow, these concepts are developed in theoretical detail, beginning with a general 

treatment of the mixed linear model in the next section.    

2.3. The General Linear Mixed Model 

2.3.1. Fixed vs. Random Effects  

In a simple linear regression model, say Y = β0 + β1x + e, the intercept and 

regression coefficient are fixed effects—constant, unobservable, “population-

averaged” (Demidenko, 2004) quantities. These parameters characterize the entire 

population; the intercept is the mean of Y at x = 0, and the slope is the mean change 

in Y per unit increase in x. Other examples of fixed effects are gender effects and 
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treatment effects (assuming the treatments are selected purposefully rather than 

randomly).  

Unlike a fixed effect, a random effect does not characterize the population as a 

whole, but rather one or more units present in a random sample from the population. 

The effect is random because its realized value depends upon the particular units 

sampled from the population. For example, in a repeated measures study, the 

responses are likely to be determined in part by individual differences among the 

subjects in the study. This idiosyncratic subject effect can be modeled as a random 

effect, as the realized values it takes in a given study will depend upon the sample of 

subjects selected for the study. Similarly, if a sample of classrooms is chosen in a 

study of student achievement scores, the effect of belonging to a particular classroom 

can be modeled as a random effect. The error term in linear regression is a random 

effect.   

2.3.2. Mixed Model Notation  

Simply stated, a mixed linear model is a linear regression model having one or 

more random terms in addition to the error term. The general linear mixed model can 

be expressed as 

Y = Xβ + Zu + e,  

where Y is an n × 1 vector of responses, β is a p × 1 vector of unknown fixed effect 

parameters, u is an r × 1 vector of random effects, and e is an n × 1 vector of random 

errors. X is a known n × p design matrix for the fixed effects, comprising a column 

for each fixed term in the model. Similarly, Z is a known n × r design matrix for 
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random the effects vector u. The random terms, u and e, are assumed to be 

independent with u ~ N(0, G) and e ~ N(0, R), where G and R are variance-

covariance matrices known up to a vector θ of unknown variance parameters. 

According to the model, Y (given X, β, G, and R) is normally distributed with mean 

Xβ and variance-covariance matrix V = ZGZ' + R.  

 A hierarchical model is a special case of the mixed model involving nested 

data. In a two-level hierarchical model, sampling units (the lowest level) are nested 

within clusters (the second level), and the vector Y is constructed by stacking 

responses by cluster. Let i index the m clusters (i = 1, 2, …, m); let j index the 

observations within a given cluster (j = 1, 2, …, ni); and let Yij denote the jth 

observation in the ith cluster. Then the ij th component of Y is Yij, where ij  = 11, 12, 

…, 1n1, 21, 22, …, 2n2, …, m1, m2, …, mnm. The rows of design matrices X and Z 

are constructed in the same manner, the ij th row of each corresponding to the ij th 

response in vector Y. Accommodation of more than two levels of clustering is 

straightforward.  

The two-level hierarchical model can also be written in terms of a 

representative cluster as  

Y i = Xiβ + Ziui + ei,  

where Yi is the observation vector for the ith cluster, ui is the vector of random effects 

for the ith cluster, and so forth. Let Gi = Cov(ui) and Ri = Cov(ei). In theory the values 

of the parameters in the Gis can differ across clusters, but it is generally assumed that 

they do not (Bryk & Raudenbush, 1992; Wolfinger, 1996). (For an example of a 
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study in which the use of two different Gi matrices might be appropriate, see Lee and 

Bryk, 1989).  

The variance-covariance matrix of the error terms in the ith cluster, Ri, is 

generally assumed to be the same for clusters of the same size. An homogeneous or 

homoscedastic model (or covariance structure) is one in which the errors within each 

cluster are assumed to have equal variance. This corresponds to each entry on the 

diagonal of Ri having the same value.  

The mixed model can accommodate repeated measures models and other 

designs in which there is spatial or temporal dependence among the errors within a 

given cluster. In terms of the model written as Yi = Xiβ + Ziui + ei, the off-diagonal 

entries of Ri (the variance-covariance matrix of ei) are not assumed to be zero when 

intra-cluster errors may be correlated. See Wolfinger (1996) for a discussion of both 

homogeneous and heterogeneous covariance structures for repeated measures. 

2.3.3. Multivariate Approach vs. Mixed Model Approach 

Muller, Edwards, Simpson, and Taylor (2007) noted that in studies in which 

the data are balanced (i.e., cluster sizes are equal), none of the data is missing or 

mistimed, and there is no need to model a particular variance-covariance structure, a 

multivariate approach to statistical tests is preferable to the univariate mixed model 

approach. Multivariate tests successfully control error rates, even for small samples; 

and power methods for the multivariate tests are well established and more 

convenient. However, the conditions under which the multivariate model is applicable 
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are seldom encountered in social science research, and the flexibility of the univariate 

mixed model makes it the obvious choice for many researchers.  

2.4. Common Mixed Models 

2.4.1. One-way Random Effects ANOVA Model  

The one-way random effects ANOVA (RANOVA) model (also known as the 

one-way random classification model) does not technically satisfy the definition of a 

mixed model given above, as it has no fixed predictors, but it is an ideal model with 

which to begin a discussion of mixed models. According to Scheffé (1956), this 

model appeared as early as 1861 in the work of an astronomer, Airy, who used it to 

model repeated telescopic observations of a phenomenon over several nights.  

Let Yij represent the jth observation in the ith cluster, ui represent the ith 

(random) cluster effect (or cluster intercept), and eij represent the random error 

associated with Yij. The model is given by  

Y ij = β0 + ui + eij,  

where the uis are iid (independent and identically distributed) N(0, σu
2), the eijs are iid 

N(0, σe
2), and the uis and eijs are independent. The fixed effect parameter, β0, is an 

overall mean. By assumption, σe
2 > 0 and σu

2 > 0. Note that Var(Yij) = σu
2 + σe

2.   

 Intra-class correlation coefficient. The intra-class correlation coefficient 

(ICC), ρ, is defined for the one-way RANOVA model as ρ = σu
2/ (σu

2 + σe
2). The ICC 

is the proportion of total variance attributable to the clustering of the observations, or, 

equivalently, the correlation between any pair of observations from the same cluster 

(Fisher, 1925). The ICC can be expressed in terms of the variance ratio, γ = σu
2/σe

2, 
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as ρ = γ/(γ + 1). Note that the ICC and variance ratio are both equal to zero when the 

between-cluster variance is zero.   

2.4.2. Fay-Herriot Model  

The Fay-Herriot model (Fay & Herriot, 1979) is used in survey sampling for 

small area estimation—predicting and drawing inferences about the mean of some 

variable for geographical areas or subpopulations that are small in the sense that they 

contain few (or no) sampling units (Hulting & Harville, 1991). The model can be 

expressed as 

Y i = Xiβ + ui + ei, 

where the uis and eis are mutually independent random variables with ui ~ N(0, σu
2) 

and ei ~ N(0, σi
2). The ith small area mean to be predicted is Xiβ + ui, Yi is the 

observed survey estimator of this mean (i.e., the sample mean for the ith small area), 

ui is the random effect associated with the ith area, and ei is the error in sampling the 

ith area (Datta, Rao, & Smith, 2005). The regression predictors in Xi provide area-

level (i.e., cluster-level) information, and responses within each small area are used 

only in computing the small area means, so a two-level model is unnecessary (Prasad 

& Rao, 1990). 

Following Fay and Herriot (1979), survey researchers commonly assume the 

σi
2s to be known for this model (Ghosh & Rao, 1994), as estimates are usually 

available from a survey organization (Pfefferman & Glickman, 2004). Methods of 

small area estimation are discussed in Ghosh and Rao (1994) and Rao (2003, 2005). 
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2.4.3. Nested Error Regression Model  

The Fay-Herriot model and one-way RANOVA model are special cases of the 

nested error regression model, given by  

Y ij = Xijβ + ui + eij,  

where the ujs and eijs are mutually independent random variables with uj ~ N(0, σu
2) 

and eij ~ N(0, σe
2). This model can be used to incorporate unit-level (i.e., lower-level) 

predictors in small area models (in contrast to the Fay-Herriot model, which allows 

for only area-level predictors). An unconditional ICC can be estimated for this model 

by fitting it with all of the fixed effects other than the intercept omitted and 

substituting the variance component estimates into the ICC formula. If the model is fit 

with all of the fixed effects included, the resulting ICC estimate is a conditional or 

residual ICC.    

2.4.4. Random Coefficient Model  

The random coefficient model is common in education research (e.g., 

Goldstein, 1995) and longitudinal studies (e.g., Laird & Ware, 1982). It allows not 

only for random cluster intercepts, but also for slopes (corresponding to known 

regression predictors) that vary randomly among clusters. The simplest such model is 

given by 

Y ij = β0 + xijβ1 + u0i + xiju1i + eij, 

where xij is the observed regression predictor value for the jth unit in the ith cluster, 

u0i is the ith (random) cluster intercept, u1i is the (random) regression slope for the ith 

cluster, and β0 and β1 are the traditional, fixed regression intercept and slope, 
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respectively. The growth curve model described in Section 2.2 is an example of this 

model. Let ui be the row vector comprising u0i and u1i, and define (as above) Gi = 

Cov(ui). If Gi is unstructured, it includes three parameters: The intercept variance and 

slope variance, both on the diagonal; and the covariance between the intercept and 

slope off the diagonal.  

 The random coefficient model can include multiple predictors, each with a 

fixed and/or random regression coefficient, and it need not include an intercept. For 

example, Dempster, Rubin, and Tsutakawa (1981) used a random coefficient model 

with no intercept and two centered predictors, undergraduate GPA and LSAT score, 

each with random slope coefficient, to predict the first-year GPA of law school 

students. 

 After specifying an appropriate model for a data set, the variance parameters, 

fixed effects, and random effects can be estimated. Methods of estimation are 

described in the next section, beginning with estimation of variance parameters.  

2.5. Estimation and Prediction under the Mixed Model 

2.5.1. Variance Parameter Estimation 

 The variance parameters in θ are usually unknown in practice and must be 

estimated in order to carry out inferences regarding the fixed or random effects. There 

are several methods of variance parameter estimation, including ANOVA methods, 

maximum likelihood (ML), and restricted (or residual) maximum likelihood (REML). 

Searle, Casella, and McCullouch (1992) provided a detailed exposition in their book, 

much of which is devoted to the topic.  
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ANOVA estimation. Searle et al. (1992) credit the idea of ANOVA estimation 

of variance parameters to Fisher (1925), who had introduced the terms variance and 

analysis of variance in 1918 (Scheffé, 1956). For balanced data, one can compute 

ANOVA estimates by setting observed values of ANOVA sums of squares equal to 

their expected value (mean) and solving the resulting equations for the variance 

parameters. For example, in the one-way classification model with m clusters and n 

observations per cluster, the mean of the within-cluster ANOVA sum of squares is 

E(SSW) = m(n – 1)σe
2, and the mean of the between-cluster sum of squares is E(SSB) 

= (m – 1)σe
2 + n(m – 1)σu

2. The notation E(⋅) indicates the expected value, or mean, of 

the quantity within the parentheses. The ANOVA estimates are the solutions to the 

following set of equations:  

SSW = m(n – 1)σe
2 

SSB = (m – 1)σe
2 + n(m – 1)σu

2.  

Note that the estimate for σu
2 may be negative. In the case of unbalanced data, 

ANOVA estimation is less straightforward. Henderson (1953) proposed three 

methods that bear his name; see Searle et al. for details.   

Likelihood-based methods of estimation. Likelihood-based methods are a 

popular alternative to ANOVA estimation. Under the distributional assumptions made 

about the random terms in the mixed model, the distribution of Y, conditional on β 

and θ, is known. The likelihood function is obtained by expressing this distribution as 

a function of β and θ, given Y. The maximum likelihood estimates of β and θ are those 

values that maximize the likelihood function (or, equivalently, its natural logarithm, 
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known as the log-likelihood) over all possible values of β and θ. In non-technical 

terms, ML estimates are those parameter values that make the observed value of Y 

most likely to have been observed in sampling. 

In REML estimation (Patterson & Thompson, 1971), the fixed effects are 

removed from the likelihood function before ML variance parameter estimation is 

carried out. One can obtain REML estimates by computing the residuals from OLS 

regression of Y on X and then fitting the mixed model with the OLS residual vector 

in place of Y (i.e., treating the OLS residuals as the dependent observations). The 

resulting ML variance parameter estimates are the REML estimates for the original 

model. 

Both ML and REML estimators are consistent, or asymptotically unbiased, 

meaning that the expected value of the estimator, say θ̂ , converges to the target 

parameter value as the total sample size goes to infinity. REML estimators have the 

additional advantage of being essentially corrected for the degrees of freedom lost in 

estimating fixed effect parameters, whereas ML estimators are not, and for balanced 

data, REML estimators are unbiased regardless of sample size (Searle et al., 1992). 

Lacking this correction, ML estimators tend to be biased downward. Moreover, Datta 

and Lahiri (2000) showed that bias in REML estimators converges to zero more 

quickly than the bias of ML estimators (see Section 7.1 in the Technical Appendix for 

discussion of rate of estimator convergence).  

As noted, ANOVA methods may yield a negative solution for a variance 

parameter. Similarly, under ML or REML estimation, it is possible for the likelihood 
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function to achieve its maximum at a negative value for some variance parameter. In 

practice, would-be negative variance estimates are set to some non-negative value, 

and this truncation introduces bias into any estimator that would otherwise be 

unbiased. 

2.5.2. Point Prediction for Mixed Effects  

Given variance parameter estimates, one can proceed with estimation of the 

fixed and/or random effects in the mixed model. A mixed effect is an estimable linear 

combination of fixed and random effects, say T = k'β + m'u for some constant vectors 

k and m. For example, the ith small area mean in the Fay-Herriot model, T = Xiβ + ui, 

is a mixed effect, and the goal in small area studies is to predict the realized value of 

T for each small area using the observed data.       

Searle et al. (1992) pointed out that prediction of a mixed effect, say T = k'β + 

m'u, involves both prediction (of the realized value of the random component, m'u) 

and estimation (of the fixed component, k'β), and opted for the term prediction in 

dealing with a mixed effect. Following Searle et al., estimation is reserved in this 

dissertation for fixed effects, and prediction is used for mixed effects.  

Best linear unbiased prediction. Goldberger (1962) and Henderson (1963) 

showed that the best linear unbiased predictor (BLUP) of the mixed effect T is t(θ) = 

k'βGLS + m'GZ'V-1(Y – XβGLS), where βGLS is a solution for β in the generalized least 

squares (GLS) equations (Aitken, 1935), 

X'V -1Y = X'V -1Xβ, 
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say βGLS = (X'V-1X)-1X'V -1Y, with generalized inverses taken as needed. In addition 

to being the best linear unbiased estimator of β, βGLS is the maximum likelihood 

estimator of β for any given V (Birkes & Wulff, 2003). Note that t(θ) depends on the 

vector of variance parameters, θ, through G and V. 

The BLUP is unbiased in the sense that its expected value (mean) is equal to 

the expected value of its target. The BLUP is best in the sense that its mean squared 

error (MSE), defined as the mean squared difference between the BLUP and its mean, 

MSE[t(θ)]  = E[t(θ) – T]2, is minimum among all other linear unbiased predictors 

(Searle et al., 1992). A predictor’s MSE can be expressed as the sum of its variance 

and the square of its bias; thus, for an unbiased predictor like the BLUP, MSE equals 

variance.  

Empirical best linear unbiased prediction. Because the variance parameters in 

θ are usually unknown in practice, estimation of β and prediction of T involve a two-

step approach. First, variance parameter estimates, say θ̂ , are computed and used to 

form estimates of the variance-covariance matrices G and V, sayGˆ and V̂. Second, 

the variance parameter estimates are substituted for their respective targets in the 

formulas for βGLS and t.  

Using V̂in place of V in the formula for βGLS yields the estimated generalized 

least squares (EGLS) estimator of β, βEGLS = (X' -1V̂ X)-1X' -1V̂ Y. When Ĝ, V̂ , and 

βEGLS are substituted for their targets in the formula for t(θ), the result is the empirical 

best linear unbiased predictor (EBLUP) of T,  

t( θ̂ ) = k'βEGLS + m' ĜZ' -1V̂ (Y – XβEGLS).  
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Fortunately, substituting an ANOVA, ML, or REML estimate for its target 

value in the formula for t(θ) does not change the expected value (Das, Jiang, & Rao, 

2004; Kackar & Harville, 1981). Thus, the EBLUP, like the BLUP, is unbiased.  

2.2.3. Point Estimation for Fixed Effects  

In many applications of the mixed model, the researcher is primarily 

interested in inference concerning the fixed effects. Estimation of a linear 

combination of fixed effects is a special case of the mixed effect prediction problem 

described above; setting m equal to the zero vector in the mixed effect T = k'β + m'u 

yields the fixed effect T = k'β. Thus, the theoretical results presented for mixed effect 

case can simply be restated in adjusted form for the fixed effect case. Note that in the 

absence of random effects, the problem becomes one of estimation, not prediction.    

The best linear unbiased estimator (BLUE) of the fixed effect T = k'β is t(θ) = 

k'βGLS, where as above, βGLS is the generalized least squares estimator of β. As a 

special case of the BLUP, the BLUE is also unbiased and has minimum variance 

among all other linear unbiased estimators.  

As with the BLUP, βGLS cannot be computed when the variance parameters 

are unknown, and Vˆ is used in place of V in the formula for βGLS to obtain the 

estimated generalized least squares estimator of β, βEGLS. Substituting βEGLS for βGLS 

in the formula for t(θ) yields the empirical best linear unbiased estimator (EBLUE) 

of T, t(θ̂ ) = k'βEGLS. 
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The problem with the EBLUP (and EBLUE) is that for most mixed models, its 

MSE cannot be written in closed form (Hulting & Harville, 1991). Approximations of 

this MSE are described in the next section.  

2.6. Analytic MSE Approximations 

2.6.1. Naïve MSE Approximation 

Kackar and Harville (1984) showed that for the most common variance 

parameter estimators (including ML and REML estimators), the variance of the 

EBLUP, MSE[t(θ̂ )], can be expressed as 

MSE[t(θ̂ )] = MSE[t(θ)] + E[t( θ̂ ) – t(θ)]2. 

The term on the far right is the MSE of t(θ̂ ) as an estimator of t(θ). For known 

variance parameters, MSE[t(θ)], the variance of the BLUP, is known, and a common 

naïve approximation of MSE[t(θ̂ )] is obtained simply by substituting Vˆ for V in the 

formula for MSE[t(θ)]. Let MSE[t(θ)|θ̂ ] denote this approximation.  

The naïve approximation involves two potential sources of error. First, Vˆ is 

used in place of V to estimate MSE[t(θ)]. Second, Vˆ is used in place of V to obtain 

t( θ̂ ), resulting in a discrepancy between t(θ̂ ) and t(θ), and the mean square of this 

discrepancy, E[t(θ̂ ) – t(θ)]2, is ignored completely in the approximation. In other 

words, the variance in the EBLUP is inflated by sampling variability in the variance 

parameter estimates used to compute it, and the naïve approximation fails to account 

for this “variance propagation,” as Littell (2002, p. 486) called it.  
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Because ML and REML methods yield consistent estimators, under these 

methods Vˆ tends to improve as an estimator of V as sample size increases, and the 

expected error of the naïve approximation tends to zero (Littell, 2002). However, for 

a small or moderate number of clusters, MSE[t(θ̂ )] can be seriously underestimated, 

so it is not surprising that for small samples, hypothesis tests based on the naïve 

approximation can yield inflated rates of Type I error (Catellier & Muller, 2000; 

Schaalje, McBride, & Fellingham, 2002; Kenward & Roger, 1997). It is also 

noteworthy that the error in the naïve approximation goes to zero only as the number 

of clusters goes to infinity, not as the number of observations per cluster goes to 

infinity for a fixed number of clusters (Demidenko, 2004).  

2.6.2. Analytic Alternatives to the Naïve Approximation.  

Aware of the deficiency of the naïve approximation, a number of researchers 

(Das, Jiang, & Rao, 2004; Datta et al., 2005; Datta & Lahiri, 2000; Fuller & Harter, 

1987; Harville & Jeske, 1992; Kackar & Harville, 1984; Lahiri & Rao, 1995; Prasad 

& Rao, 1990; Wang & Fuller, 2003) have studied improved analytic approximations 

of the MSE of the EBLUP based on Taylor series expansions for various mixed 

models and for various methods of variance parameter estimation. See Das et al. for a 

review.  

In their seminal paper, Kackar and Harville (1984) proposed an MSE 

approximation based on a first-order Taylor series expansion. Harville and Jeske 

(1992) modified the Kackar-Harville approximation, using a second-order Taylor 

series to adjust for bias in MSE[t(θ)|θ̂ ] as an estimator of MSE[t(θ)]. They referred to 
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this MSE approximation as the Prasad-Rao estimator because it is a generalization of 

a similar estimator developed by Prasad and Rao (1990) for three specific mixed 

models. In this dissertation, the term Prasad-Rao approximation is used to refer to the 

Prasad-Rao estimator as described by Harville and Jeske. (The term estimator is also 

appropriate, as analytic MSE approximations are based on unknown parameter values 

and must be estimated using data in practice.) Details of both the Kackar-Harville and 

Prasad-Rao approximations are given in Section 7.2 of the Technical Appendix.   

Given an MSE approximation, standard methods of inference can be carried 

out based on an approximation of the distribution of the appropriate test statistic. 

Confidence interval construction (which subsumes hypothesis testing) is discussed in 

the next section.   

2.7. Analytic Intervals for Fixed Effects 

In the fixed effect case, each estimator in βEGLS is a linear combination of the 

normally distributed components of Y, so the EBLUE, t( θ̂ ) = k'βEGLS is also normally 

distributed. The EBLUE is unbiased, so its variance, say σt
2, is equal to its MSE. If 

σt
2 were known, the test statistic [t(θ̂ ) – T]/σt would have a standard normal 

distribution, and a 1–α confidence interval for T could be obtained from the equation 

P(–z1-α/2 < [t( θ̂ ) – T]/σt < z1-α/2) = 1–α, where P(⋅) denotes the probability of the 

statement in the parentheses, and z1-α/2 is a standard normal cutoff. Solving the middle 

of the inequality for T yields the interval [t(θ̂ ) – z1-α/2σt, t(θ̂ ) + z1-α/2σt]. 
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In the case of known σT
2, the test statistic [t(θ̂ ) – T]/σt is a pivot—a function 

of the data and parameter(s) whose distribution does not depend upon the value(s) of 

the parameter(s). Such functions are said to be pivotal. In practice, pivotal quantities 

generally depend on unknown parameters, which must be estimated. The term quasi-

pivot is used in this dissertation to describe functions that are approximately, but not 

exactly, pivotal.  

When σt
2 is unknown, the pivot can be approximated by [t(θ̂ )  – T]/st, where 

st
2 is an approximation of σt

2. The distribution of this quasi-pivot is often 

approximated by a Student’s t distribution. Given degrees of freedom for the t statistic 

(discussed below), an approximate 1–α confidence interval can be constructed using 

the formula 

(1) [t( θ̂ ) – t1-α/2st, t(θ̂ ) + t1-α/2st], 

where t1-α/2 is a t distribution cutoff (Hulting & Harville, 1991).  

One option for computing confidence limits under this approach is to take st
2 

as the naïve approximation and use n – p degrees of freedom (where p is number of 

fixed terms in the model) for the approximating t distribution (Demidenko, 2004). 

However, the distribution of the quasi-pivot may have heavier tails than this t 

distribution due to the naïve approximation’s downward bias and/or due to the 

degrees of freedom being incorrect (Harville & Carriquiry, 1992). This can lead to 

interval coverage rates that fall short of the nominal level, as demonstrated in a 

simulation study by McLean and Sanders (1988).  
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Instead of using n – p degrees of freedom, Giesbrecht and Burns (1985) 

adapted Satterthwaite’s (1941, 1946) method of approximating degrees of freedom, 

details of which are given in Section 7.3 of the Technical Appendix. Fai and 

Cornelius (1996) and Kenward and Roger (1997) developed extensions of this 

approach.  

 For testing a set of linear combinations of fixed effects, Kenward and Roger 

(1997) proposed an F statistic based on the Prasad-Rao MSE approximation, as well 

as an approximation for its denominator degrees of freedom. In the case of a single 

linear combination of fixed effects, the degree of freedom approximation is the same 

as the adapted Satterthwaite (1941, 1946) approximation used by Giesbrecht and 

Burns (1985). For the linear combination T = k'β, the square root of the Kenward-

Roger F statistic is the quasi-pivot [t(θ̂ ) – T]/st, where st
2 is the Prasad-Rao 

approximation. This quasi-pivot has an approximate t distribution and can be used to 

construct confidence limits for T using formula (1) above. The Kenward-Roger 

statistic, its degrees of freedom, and the Prasad-Rao MSE approximation are 

calculated when the DDFM=KR option is specified in SAS PROC MIXED.  

 It is important to note that the accuracy of the methods described in this 

section for the case of unknown σt
2 depends both upon the adequacy of the chosen 

MSE approximation, and upon the similarity between the unknown distribution of the 

quasi-pivot and the Student’s t distribution used to approximate it. The performance 

in simulation studies of the naïve, Kackar-Harville, and Prasad-Rao MSE 
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approximations, as well as that of the Kenward-Roger method, is discussed in the 

next section.  

2.8. Performance of Analytic Approximations 

The naïve, Kackar-Harville, and Prasad-Rao approximations were compared 

in simulation studies by Harville and Jeske (1992), Hulting and Harville (1991), and 

Singh, Stukel, and Pfeffermann (1998). The naïve and Kackar-Harville 

approximations tended to be biased downward, the latter less than the former. The 

Prasad-Rao approximation generally exhibited the least bias of the three methods 

except for small values of the variance ratio (γ = σu
2/σe

2).  

Hulting and Harville (1991) noted that the rightmost term in the equation 

given by Kackar and Harville (1984), 

MSE[t(θ̂ )] = MSE[t(θ)] + E[t( θ̂ ) – t(θ)]2, 

might be inadequately approximated in both the Kackar-Harville and Prasad-Rao 

approximations for values of the variance ratio close to or equal to zero (see Section 

7.2). This is evidently much more of a problem in prediction than in estimation.  

For example, when the effect of interest in the simulation studies cited above 

was mixed, the relative bias of the Prasad-Rao approximation under small numbers of 

clusters (m < 21) was higher than 12% for γ < 0.2 and exceeded 100% in some cases 

for γ < 0.1. By contrast, when the effect of interest was fixed (a case considered as 

part of the study conducted by Hulting and Harville, 1991), the bias of the Prasad-Rao 

approximation for m = 12 was only 5.1% for γ = 0 and 2.3% for γ = 0.2. Evidently the 
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presence of a random term in the effect being estimated greatly exacerbates the 

problem of bias under small values of the variance ratio.   

In their study of MSE approximation for the EBLUE, Hulting and Harville 

(1991) found that the Prasad-Rao approximation tended to become less biased as γ 

increased, and was less biased than the other two approximations in every condition 

save γ = 0 (the Kackar-Harville having smaller bias of –4.4% in this case). Moreover, 

for all values of γ in the study, the t-based confidence intervals constructed using the 

Prasad-Rao approximation had coverage rates closer to the nominal level than did 

intervals constructed using the other approximations. 

Except, perhaps, for small values of γ, the Prasad-Rao approximation is a 

better choice for use in standard methods of inference for fixed effects than the other 

two analytic approximations considered here. The Kenward-Roger method is based 

on Prasad-Rao approximation, and on a sophisticated degree of freedom 

approximation, so it can be expected to outperform other standard methods of 

inference under most conditions.  

Kenward and Roger (1997) conducted a simulation study to evaluate the small 

sample performance of their method under four mixed models. They found that the 

Prasad-Rao approximation adequately corrected the consistent, and sometimes severe, 

downward bias of the naïve approximation, and that hypothesis tests based on their 

method had reasonably accurate rates of Type I error. The Kenward-Roger method 

also performed well in repeated measures simulations conducted by Schaalje et al. 

(2002) and by Gomez, Schaalje, and Fellingham (2005), although it led to inflated 
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Type I error rates for some complex covariance structures when sample size was 

small.    

Because the Kenward-Roger method is based on the Prasad-Rao 

approximation, very small variance ratios may hinder its performance. Savin, 

Wimmer, and Witkoský (2003) simulated data under a one-way RANOVA model for 

small numbers of clusters (m = 2, 5, 11, and 21), several cluster size conditions, and 

values of γ ranging from zero to four. They then used the Kenward-Roger method to 

construct 95% confidence intervals for the fixed intercept in the RANOVA model and 

compared rates of interval coverage under the various conditions.  

Under nearly every sample size condition, coverage rates were least accurate 

for γ = 0, in most cases due to severe over-coverage. For larger sample sizes (11 or 21 

clusters, each with 10 or 30 observations), coverage rates were mostly excellent for 

all non-zero values of γ (i.e., for γ > 0.25). However, in several small sample 

conditions, coverage rates were poor for γ = 0.25; in some of these cases, rate of 

coverage improved as γ increased, achieving or nearly achieving the nominal level for 

γ = 4.  

Conclusion. An alternative to standard methods of inference, including the 

Kenward-Roger method, is worth considering. While the case of γ = 0 is somewhat 

trivial, as a mixed model is usually unnecessary if there are no differences between 

cluster means, small ICCs (corresponding to small variance ratios) are not uncommon 

in applied research. For example, Hedges and Hedberg (2007) obtained a national 

sample of academic achievement scores for grades K-12 and found an overall average 
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ICC (for students nested within schools) of 0.22 (equivalent to a variance ratio of 

about 0.28), and an average ICC of only 0.09 (equivalent to a variance ratio of about 

0.10) for low-achievement schools. Moreover, even in cases for which the Kenward-

Roger method is adequate, greater accuracy may be achieved by an alternative, 

bootstrap-based approach.   

Preview. In the next chapter, a general introduction to parametric and 

nonparametric bootstrapping is provided, the application of bootstrapping to mixed 

models is discussed, and an account is given of bootstrap-based methods of MSE 

approximation. Bootstrap intervals are then described, followed by a discussion of the 

parametric bootstrap interval approach to estimation in mixed models.  
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Chapter 3. Proposed Solution: Parametric Bootstrap Intervals 

3.1. The Bootstrap—Basic Concepts 

 Efron introduced bootstrapping to the scientific community in 1979 with his 

seminal paper in The Annals of Statistics. In it, he showed that the jackknife 

(Quenouille, 1949; Tukey, 1958) can be understood as a Taylor series approximation 

of the bootstrap and demonstrated its effectiveness on a number of estimation 

problems. (Jackknifing is described briefly in Section 3.1.2 below.) Chernick (2008) 

provided a recent overview of bootstrapping techniques and applications, including 

extensive historical notes and a massive bibliography. 

The following descriptions of the parametric and nonparametric bootstraps for 

a single univariate sample are based on Efron (1979). Let X = (X1, X2, …, Xn) be a 

random sample from probability distribution F. Let t(X, F) be a statistic chosen to 

estimate some parameter T, where the notation indicates that t may depend both on 

the sample, X, and on the distribution from which X is drawn, F. Standard methods of 

inference concerning T are based upon the sampling distribution of t, which may be 

unknown.  

3.1.1. Parametric Bootstrap  

If the distribution F is known up to a number of unknown parameters, it can 

be estimated using ML estimates of these parameters computed from the observed 

data. The estimated distribution of F based on these estimates is known as the 

empirical distribution. For example, if F is known (or assumed) to be normal with 

unknown mean and variance, the empirical distribution is the normal distribution 
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centered at the sample mean with variance equal to the ML sample variance estimate. 

In parametric bootstrapping, bootstrap samples are random draws from the empirical 

distribution, usually approximated by computer-simulated draws. Let X* denote one 

bootstrap sample.    

For each bootstrap sample, a bootstrap estimate of t, say t*, is computed using 

the observed bootstrap data. A sampling distribution for the statistic t* is constructed 

by drawing a large number of bootstrap samples and taking the probability of t* 

falling in a given range to be the proportion of bootstrap samples for which the 

observed value of t* falls in that range. This bootstrap distribution of t* is used as an 

estimate of the sampling distribution of t.   

3.1.2. Nonparametric Bootstrap  

If data are drawn from an unknown distribution, and one is unwilling to make 

assumptions about its form, it can be approximated using a nonparametric bootstrap 

by assigning equal probability to each observation in the sample and resampling—

i.e., drawing random (or pseudo-random) samples of size n with replacement from the 

original data. Note that in any one of these bootstrap samples, a given observation 

may appear more than once, or not at all. (By contrast, jackknifing is carried out by 

assembling, without replacement, every possible sample of size n – 1 from the data; 

no randomness is involved.) As in the parametric case, the sampling distribution of 

the statistic t is estimated by the bootstrap distribution of t* across a large number of 

bootstrap samples.  
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 Residual bootstrap for regression. Efron (1979) showed how the 

nonparametric bootstrap could be applied to a (possibly nonlinear) regression model 

to estimate the sampling distribution of a regression coefficient estimate—an 

instructive case for the problem addressed in this dissertation. (See Ch. 6 in Davison 

& Hinkley, 1997, for further discussion of bootstrap methods for linear regression.)  

Applied to a linear regression model with ordinary least squares (OLS) 

regression, this procedure (known as the residual bootstrap) is carried out as follows. 

Express the linear regression model in matrix terms as Y = Xβ + e. Y is regressed on 

X to obtain the OLS estimate of β, say βOLS, and the corresponding vector of 

residuals, say r. Bootstrap samples are drawn from the empirical distribution of the 

OLS residuals to approximate the (unknown) distribution of the errors. For each 

bootstrap residual sample, say r*, a bootstrap response vector, Y*, is constructed by 

adding the bootstrap residual vector to the estimated mean structure, Y* = XβOLS + r*.  

Then Y* is regressed on X to obtain the bootstrap estimate of β, βOLS*, for each 

sample.  

The sampling distribution of βOLS (as well as its mean and variance) can be 

estimated by the bootstrap distribution of βOLS*. The mean of βOLS can be estimated 

by taking the average value of βOLS* across bootstrap samples. Similarly, an estimate 

of the variance of βOLS is given by 

( )∑
=

−
B

bB 1

2
OLSOLS β*β

1
, 

where bootstrap samples are numbered b = 1, 2, …, B (Chernick, 2008).  
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 Cases bootstrap. The residual bootstrap corresponds to the common, though 

often dubious, assumption of fixed covariates. Efron and Tibshirani (1993) proposed 

an alternative for the case of random covariates—i.e., regression predictors assumed 

to take observed values as a result of a random sampling process.  

Let Yi denote the ith response and xi denote the corresponding row vector of 

random covariates. A bootstrap data set, (X*, Y*), is formed by drawing a sample of 

size n from the set of pairs (x1, Y1), (x2, Y2), …, (xn, Yn), stacking the bootstrapped 

covariates to form X*, and stacking the bootstrapped responses to form Y*. For each 

bootstrap sample, Y* is regressed on X* to obtain βOLS*, and the sampling 

distribution of βOLS is estimated by the bootstrap distribution of βOLS*.  

This method of bootstrapping pairs is an example of what is known as a cases 

bootstrap. Whereas the residual bootstrap is based on the common assumption that 

the error terms are independent of the covariates, the only assumption underlying the 

cases bootstrap is that the original sample of xis and Yis was drawn randomly from 

some bivariate distribution (Efron & Tibshirani, 1993).  

 The parametric and nonparametric bootstrap methods above can be adapted 

for models giving rise to nested data. Bootstrap methods for mixed models are 

described in the next section.   

3.2. Bootstrap Methods for Mixed Models 

3.2.1. Parametric Bootstrap  

The most straightforward mixed model bootstrap is the parametric bootstrap, 

which is designed to imitate the sampling of data from the underlying population. As 
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described below, the parametric bootstrap is based on the assumption of a fixed 

design matrix, X, as well as on the standard distributional assumptions concerning u 

and e (van der Leeden et al., 2008).  

  The method is implemented as follows. The distributions of u and e, which are 

assumed known up to the variance parameters, are estimated using variance 

parameter estimates from the original data. A bootstrap random effects vector u* is 

obtained by simulating m random draws (corresponding to the m clusters in the 

original data) from the distribution of u. For each cluster ui, ni random errors are 

simulated by simulating draws from the distribution of e (where ni is the size of the 

ith cluster in the original data). These bootstrapped errors are stacked by cluster to 

form a bootstrap error vector e*. The bootstrap observation vector Y* is given by 

Y* = βEGLSX + Zu* + e*, 

where βEGLS is estimated from the original data. This sampling process is repeated to 

form a large number of bootstrap data sets, and parameter estimates are obtained for 

each bootstrap data set using the same estimation methods employed for the original 

data. The sampling distribution of the statistic of interest can then be estimated by its 

bootstrap distribution.    

3.2.2. Nonparametric Bootstrap  

When the distributional assumptions of the mixed model are violated, 

nonparametric bootstrap methods can be considered. Their application to mixed 

models, especially involving clustered data, is not as straightforward as for regression 
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models. See Field and Welsh (2007) for an overview of bootstrap methods for 

clustered data.    

 Residual bootstrap. The mixed model residual bootstrap is nonparametric in 

the sense that it is not based on the usual distributional assumptions associated with 

the mixed model. In this context, the term residual applies to any estimated random 

term (in u or in e), and the residual bootstrap involves pseudo-random sampling of 

these residuals. The following description is based on van der Leeden et al. (2008).  

 There are various methods of obtaining an estimate of u, say û , which is 

equivalent to estimating factor scores in factor analysis (see ten Berge, Krijnen, 

Wansbeek, & Shapiro, 1999). An OLS estimate of u can be obtained by estimating β 

(by EGLS, say), expressing the mixed model as Y – XβEGLS = Zu + e, and regressing 

(Y – XβEGLS) on Z. Denote the resulting estimate by û . By assumption, E(u) = 0, so 

û  must be mean-centered to remove any bias. After centering û , e is simply 

estimated by centering ê = Y – (XβGLS + Zû ).   

The random effects in u can also be estimated using empirical best linear 

unbiased prediction. The EBLUP estimator of u is sometimes referred to as a 

shrinkage estimator because compared to estimators obtained when u is treated as 

fixed (such as the OLS estimator described above), the EBLUP is shrunken toward its 

mean (Robinson, 1991). After centering this estimate of u, an estimate of e is 

obtained by subtraction as described above for the OLS case.   

Given estimates of u and e, the bootstrap vector u* is formed by taking one 

pseudo-random draw per cluster from the estimated uis and stacking by cluster. The 
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bootstrap error vector e* is obtained by simulating n random draws from e. Note that 

independent sampling from u and e yields bootstrap estimates u* and e* that are 

independent, consistent with the standard assumption that u and e are independent 

(Carpenter, Goldstein, & Rasbash, 2000). The bootstrap observation vector Y* is 

given by Y* = βGLSX + Zu* + e*. 

Carpenter et al. (2000) pointed out that without correction, the bootstrap 

variance parameter estimates obtained using the residual bootstrap under EBLUP 

(shrinkage) estimation are biased downward because the estimates of u and e (from 

which bootstrap samples are drawn) tend to be underdispersed—i.e., the variance-

covariance matrices of the estimates of u and e, respectively, will tend to be smaller 

(in a matrix sense) than the estimates of G and R obtained from the original data. 

They proposed a method for “reflating” the estimates of u and e to correct this 

problem. (See also Wang, Carpenter, & Kepler, 2006).    

 Cases bootstrap. There are various versions of the cases bootstrap for 

clustered data involving sampling of clusters and/or units within clusters (Davison & 

Hinkley, 1993; van der Leeden et al., 2008). Note that for clustered data, the ij th case 

comprises the observation Yij and the ij th row of the X and Z matrices.  

If sampling with replacement is to be carried out at both levels, the procedure 

is as follows. One begins by drawing (with replacement) a pseudo-random sample of 

clusters. For each cluster selected, random draws of cases from within the cluster are 

simulated. Data for the selected cases are stacked by cluster to form bootstrap vectors 
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Y*, X*, and Z*. The bootstrap model is Y* = βGLSX* + Z*u + e, and parameter 

estimates are obtained as usual for each bootstrap sample.  

The cases bootstrap is usually less efficient than the residual bootstrap but is 

more appropriate in cases in which X contains random (rather than fixed) explanatory 

variables (van der Leeden et al., 2008). Note that for unbalanced data, the total 

bootstrap sample size may vary depending on which clusters are selected in a given 

bootstrap sample.  

Regardless of the bootstrap method employed, after bootstrap data sets are 

generated the procedure for obtaining bootstrap estimates is the same. The value of 

the statistic of interest is computed for each bootstrap sample, and the resulting 

bootstrap distribution is used to approximate the sampling distribution of the statistic 

of interest for purposes of inference and/or interval construction. 

3.3. Bootstrap Approaches to MSE Approximation in Mixed Models 

 Given the promise of bootstrap methods and the problem of MSE estimation 

in mixed modeling, it is not surprising that bootstrap-based approaches to MSE 

estimation have been proposed. These include jackknife estimation (Jiang, Lahiri, & 

Wan, 2002), bootstrap-based improvements of analytic approximations (Butar & 

Lahiri, 2003; González-Manteiga, Lombardía, Molina, Morales, & Santamaría, 2008; 

Pfefferman & Glickman, 2004), and parametric bootstrap MSE estimation (Hall & 

Maiti, 2006).  

Bootstrap-based MSE estimates computed using these methods can be used in 

standard methods of inference—for example, to compute confidence limits for a fixed 
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effect using formula (1). However, standard methods of inference depend not only 

upon accurate MSE estimation, but also upon the goodness of the approximation to 

the test statistic distribution; if bootstrapping is to be carried out, there is no reason to 

limit its use to MSE estimation when it can also be used to estimate the test statistic 

distribution, thereby eliminating the need to approximate it by some known 

distribution.  

In fact, bootstrap estimation of the test statistic distribution makes MSE 

estimation unnecessary as well. Under the bootstrap interval approach, discussed in 

the following sections, confidence limits are based on cutoffs of a bootstrap 

distribution rather than on t or z distribution cutoffs, and an MSE estimate is not 

required. A general presentation of bootstrap intervals is provided in Section 3.4, 

followed by a discussion of parametric bootstrap intervals for fixed effects in mixed 

models in Section 3.5. 

3.4. Bootstrap Interval Construction 

 Let statistic t be an estimator of T, where T is a model parameter or some 

function of model parameters. Let st
2 be an estimator for the variance of t. In this 

dissertation, the statistic of interest is the EBLUE of the fixed effect T, t = t(θ̂ ), but 

bootstrap intervals are presented below in more general terms. First, however, the 

standard analytic approach to interval construction is reviewed.  

Standard analytic intervals. If the sampling distribution of t is normal, or 

becomes so asymptotically, then standard analytic confidence limits for T are based 

on the quasi-pivot (t – T)/st, which is assumed to have an approximate standard 
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normal distribution (or, for samples that are not large, a t distribution). An 

approximate 1–α normal-based confidence interval is given by (t – z1-α/2st, t – zα/2st), 

which simplifies to the more familiar formula  

(2) (t – z1-α/2st, t + z1-α/2st)  

by symmetry of the normal distribution.   

 Bootstrap normal interval. The bootstrap normal interval is constructed 

simply by substituting a bootstrap estimate of SD(t), say st*, for st in the normal-

based interval formula (2). Given B bootstrap samples and values of t*, a reasonable 

substitute for st is  

( )
2/1

1

2t*t
1

* 







−= ∑

=

B

b
t B

s . 

In the mixed model context, where t is the EBLUE, one of the bootstrap-based 

methods mentioned in Section 3.3 could be used to estimate SD(t).  

Because the quasi-pivot distribution is approximated under this method by the 

normal distribution, not by a bootstrap distribution, the bootstrap normal is not a 

bootstrap interval in the strictest sense. Note that in constructing the interval, the 

bootstrap distribution of t* is used only to compute the sampling variance of t*; the 

other information contained in the bootstrap distribution—i.e., information about its 

shape—is ignored. This is not the case with the true bootstrap intervals described 

below. 

Efron’s percentile interval. Efron’s percentile interval (see Efron & 

Tibshirani, 1993) is based on the premise that the bootstrap distribution of t* 
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resembles the sampling distribution of t. Under this premise, it seems reasonable that 

an interval containing 100(1–α)% of the ordered realized values of t* would also 

contain T in roughly the same percentage of repeated samples from the population 

(Chernick, 2008). Let tα* denote an α cutoff for the bootstrap distribution of t*—i.e., 

a value that cuts off approximately 100(α)% of the observed values of t* to its left. 

Based on the approximations 

(3) 1–α ≈ P(tα/2* < t* < t1-α/2*) ≈ P(tα/2* < t < t1-α/2*) ≈ P(tα/2* < T < t1-α/2*) 

an approximate 1–α confidence interval for T is given by (tα/2*, t1-α/2*).  

For theoretical reasons beyond the scope of this dissertation (see Chernick, 

2008), tα* should ideally be defined as the α(B + 1)th ordered value of t* in the 

bootstrap sample, where B is chosen such that α(B + 1) is an integer. If α(B + 1) is 

not an integer, interpolation can be used to find an approximate value for tα* (see 

Davison & Hinkley, 1993). References to α cutoffs of bootstrap distributions in the 

remainder of this dissertation are given with this definition in mind. 

Efron’s percentile interval does not work well for small samples, especially 

when drawn from asymmetric distributions (Chernick, 2008). Its performance can be 

improved by modifications discussed below. Note that the interval may not be 

symmetric about t, unlike standard analytic intervals. 

   Bias-corrected (BC) interval. If t is a biased estimator of T, the two 

probabilities on the far right in (3) above will tend to be unequal. Assuming t is a 

plug-in estimator of T—i.e., t is calculated using the formula for T by substituting an 
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estimate for each unknown parameter—Efron’s percentile interval can be bias-

corrected by the following method, described by Efron and Tibshirani (1993).  

Let pt*<t denote the proportion of observed values of t* less than the observed 

value of t. The bias correction z0 is the point on the standard normal distribution that 

cuts off pt*<t of the area under the curve to the left—i.e., z0 = Φ-1(pt*<t), where Φ is the 

standard normal cumulative distribution function. For example, if pt*<t = 0.512, 

indicating a tendency of t* to underestimate t, z0 = 0.03 (which cuts off 51.2% of the 

area under the normal distribution to its left).  

In constructing the 1–α bias-corrected (BC) interval, the usual cutoff 

proportions, α/2 and 1–α/2, are replaced by the following bias-adjusted proportions: 

 αlo = Φ(2z0 + zα/2) and αup = Φ(2z0 + z1-α/2), 

where zα/2 and z1-α/2 denote standard normal cutoffs. As indicated by the notation, αlo 

is the area under the normal curve to the left of 2z0 + zα/2, and αup is the area under 

the normal curve to the left of 2z0 + z1-α/2. The lower endpoint of the BC interval is 

the value that cuts off αlo of the observed values of t* to its left, say t*(αlo), and the 

upper endpoint the value that cuts off αlo of the values of t* to its left, say t*(αup). 

 Note that if the sample median of the bootstrap distribution of t* is equal to t, 

pt*<t = 0.5, z0 = 0, and no bias adjustment takes place. On the other hand, if pt*<t is less 

than 0.5, the observed median bias of t* is positive, and the bias-correction z0 will be 

negative, resulting in both the lower and upper confidence limits being adjusted 

downward. Similarly, a negative median bias will result in adjusting the confidence 

interval upward.  
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 Bias-corrected accelerated (BCa) interval. In some cases the standard 

deviation of t, SD(t), may depend on the true value of T, and the performance of the 

BC interval can be improved by adjusting for this dependence. The acceleration is the 

rate at which SD(t) changes with respect to T. This value is approximated on a 

normalized scale by the constant a. Given a, the following cutoff proportions are 

computed: 
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The BCa interval has lower endpoint t*(α1) and upper endpoint t*(α2), where each 

cuts off the indicated proportion of the observed values of t* to its left. This interval 

performs well in a wide range of cases (Chernick, 2008). 

Efron (1987) proposed various methods of estimating the acceleration, as well 

as a method for reducing a multi-parameter problem to a single-parameter problem 

using multivariate calculus so that an acceleration estimate can be obtained. This 

multi-parameter technique can be used with the parametric bootstrap for mixed 

models but is rather complicated (van der Leeden et al., 2008).    

Hall’s percentile interval. Hall (1992) proposed a percentile interval based on 

the bootstrap estimate of the sampling distribution of (t – T). Let qα* denote the α 

cutoff for the bootstrap distribution of q* = (t* – t). Assuming P[qα/2*  < (t – T) < q1-

α/2*] ≈ 1–α, an approximate 1–α confidence interval for T is given by (t – q1-α/2*, t – 

qα/2*). In terms of t* as defined above for Efron’s percentile interval, q* equals t* – t, 
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and Hall’s interval is given by (2t – t1-α/2*, 2t – tα/2*). Thus, Hall’s interval seems 

backwards compared to Efron’s, and vice versa.   

Bootstrap-t interval. The bootstrap-t (or percentile-t) interval (Efron & 

Tibshirani, 1993) is based on the bootstrap estimate of the sampling distribution of 

the quasi-pivot (t – T)/st. Let q* = (t* – t)/st* denote the bootstrap pivot 

approximation, where st* is an estimate of SD(t*). Let qα* denote the α cutoff for the 

bootstrap distribution of q*. Assuming  

1–α ≈ P[qα/2* < (t* – t)/st* < q1-α/2*] ≈ P[qα/2* < (t – T)/st < q1-α/2*], 

an approximate 1–α confidence interval for T is given by  

(4) (t – q1-α/2*st*, t – qα/2*st*).  

The bootstrap-t interval generally performs better than Hall’s interval because 

(t* – t)/st* behaves more like a pivot (i.e., is less dependent on the parameter 

estimates) than (t* – t), the quantity on which Hall’s interval is based (van der 

Leeden, Meijer, & Busing, 2008). Although it converges at a faster rate (see Section 

7.1, Technical Appendix) than standard analytic intervals and bootstrap percentile 

intervals, the bootstrap-t is susceptible to influence from outliers and can yield erratic 

results (Efron & Tibshirani, 1993). The performance of the interval depends upon 

having a reasonably accurate estimate of SD(t*), and in the absence of such an 

estimate, the results can be “disastrous” (Hall, 1992, p. 141). If a good analytic 

estimate is unavailable, a bootstrap estimate of SD(t*) can be computed using a 

second layer of bootstrapping, but this adds cost in terms of computing time and the 

complexity of the calculations required to compute the confidence limits.  
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Comparison of bootstrap intervals. Among the available bootstrap intervals, 

the bootstrap-t seems to provide the best balance between performance and cost, 

provided SD(t*) can be conveniently and accurately estimated. Like the bootstrap-t, 

the BCa interval converges at a faster rate than standard analytic intervals and 

bootstrap percentile intervals (Efron & Tibshirani, 1993), but the difficulty of 

estimating the acceleration for the BCa interval seems prohibitive for most 

researchers.  

In those cases in which the problem of estimating SD(t*) makes the bootstrap-

t a poor choice, Hall’s interval seems the better of the two basic percentile intervals. 

Hall (1992) argued that Efron’s interval is inadequate without adjustment. Efron and 

Tibshirani (1993) acknowledged that Efron’s interval could benefit from adjustment 

but pointed out that neither percentile interval performs well generally and gave two 

cases for which Efron’s interval is more appropriate. In cases for which SD(t*) is 

relatively constant with respect to t*, the quantity upon which Hall’s interval is based, 

t* – t, closely approximates a pivotal quantity, and Hall’s interval should outperform 

Efron’s.  

3.5. Parametric Bootstrap Intervals for Mixed Models 

Using a parametric bootstrap to construct basic percentile and bootstrap-t 

intervals for a mixed effect T in the mixed model context is relatively straightforward. 

With the parametric version of the bootstrap there is no need to choose a resampling 

scheme, total sample size remains constant across bootstrap samples even with 

unbalanced data, and no programming is necessary to reflate underdispersed 
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residuals. Its limitation, of course, is that like standard analytic methods (including 

likelihood-based methods), it is based upon the usual distributional assumptions 

regarding the random terms in the mixed model.  

Applications of the parametric bootstrap to interval construction in mixed 

modeling have been relatively few. Carpenter et al. (2003) used both a parametric 

bootstrap and a nonparametric residual bootstrap (modified to correct for 

underdispersion) to construct Efron percentile intervals for fixed effects using data 

simulated under a random coefficient model with non-normal random effects and 

non-normal errors. The nonparametric intervals had coverage levels closer to the 

nominal rate than the parametric intervals for all parameters for each of the three 

sample sizes studied, with coverage accuracy for the nonparametric intervals 

generally improving with increased sample size. This result is not surprising, as the 

parametric bootstrap is based on the assumption of normally distributed random 

terms, whereas the nonparametric bootstrap is not.  

Harville and Carriquiry (1992) proposed what is essentially a bootstrap-t 

prediction interval based on a parametric bootstrap. Taking this idea further, 

Chatterjee, Lahiri, and Li (2008) developed a parametric bootstrap method for 

constructing intervals for mixed effects of the form T = c'(Xβ + Zu), where c is a 

constant vector. Define (as above) a parametric bootstrap data set by Y* = XβEGLS + 

Zu* + e*. Because u* is known (after simulation) for a given bootstrap sample, a 

parametric bootstrap (PB) estimate of T is given by tPB* = c'(XβEGLS + Zu*). 

Alternatively, T can be estimated by the bootstrap EBLUP, say tEBLUP*, which is 
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computed by treating the bootstrap data set like a real data set (i.e., with unobservable 

random effects and errors that must be estimated) and using the usual EBLUP 

formula. 

Let σ2
T|Y denote the conditional variance of T given Y, and let sT|Y denote the 

plug-in estimator of σT|Y (obtained by substituting variance component estimates for 

their targets in the formula for σT|Y). As an alternative to the standard interval based 

on the normal pivot (T – µT)/σT|Y, Chatterjee et al. (2008) simulated parametric 

bootstrap samples and computed the quasi-pivot q* = (tEBLUP* – tPB*)/sT|Y* for each 

bootstrap sample, where sT|Y* denotes the bootstrap value of sT|Y. Their prediction 

interval is given by (tEBLUP + q1*sT|Y, tEBLUP + q2*sT|Y), where q1* and q2* are 

appropriate quantiles of the bootstrap distribution of the quasi-pivot q*.  

Chatterjee et al. (2008) showed that this interval has a high rate of 

convergence that is dependent upon total sample size, meaning accuracy can be 

improved by increasing the number of clusters or by increasing cluster size. By 

contrast, coverage rates of intervals based on analytic MSE approximations can be 

increased only by adding clusters. Chatterjee et al. simulated data under the Fay-

Herriot model and found that the coverage rates of their intervals were consistently 

closer to the nominal rate than those of standard intervals based on the Prasad-Rao 

approximation.  

The theoretical and simulation results presented by Chatterjee et al. (2008) are 

promising, but their method cannot be applied to fixed effect estimation without 

modification. The denominator of their quasi-pivot, sT|Y*, is an estimator of σT|Y, the 
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conditional variance of T given Y; but when T is fixed (e.g., T = k'β), its variance 

(conditional or otherwise) is zero, like that of any constant. 

A fixed effect version of the quasi-pivot used by Chatterjee et al. is  

q* = (tEBLUE* – tEBLUE)/st*,  

where tEBLUE is estimated from the original data and st* approximates the SD of 

tEBLUE* (i.e., the square root of its MSE as an estimator of tEBLUE). This is identical to 

the quantity one would use in applying the bootstrap-t approach to interval estimation 

of T, and given a suitable choice for st*, intervals can be constructed using the 

bootstrap-t formula (4), with t* = tEBLUE* and t = tEBLUE.  

As noted above, the performance of the bootstrap-t approach depends upon 

the quality of the estimator of SD(t*) used in the denominator of the quasi-pivot. Use 

of a bootstrap-based estimator requires a second bootstrap iteration; given the 

additional programming and computing time associated with an added layer of 

bootstrapping, an analytic approximation seems preferable. This is the approach taken 

by Chatterjee et al. (2008), who used a simple analytic plug-in estimator in their 

study. In fixed effect estimation, the Kenward-Roger method would seem to be the 

best choice for approximating SD(t*) under most conditions. 

Simple alternatives to the bootstrap-t approach are Hall’s (1992) percentile 

interval, based on the bootstrap distribution of (tEBLUP* – tEBLUP), and Efron’s interval. 

Unless the SD of the numerator is roughly constant across bootstrap samples, Hall’s 

interval may not perform as well as the bootstrap-t (van der Leeden et al., 2008), but 

its advantage is that it can be computed without an estimate of this SD.   
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Chapter 4. Methods 

 Three simulation studies were carried out to compare the performance of 

several analytic and parametric bootstrap intervals. All parameter estimates were 

obtained using SAS PROC MIXED with the REML option.   

4.1. Simulation Study 1 

In the first simulation study, interval methods were compared using data 

simulated from the one-way RANOVA model Yij = β0 + ui + eij, with β0 = 0. Two 

ICC conditions were considered, with the values of σu
2 and σe

2 chosen such that 

Var(Yij) = σu
2 + σe

2 = 10 and ICC = 0.05 or 0.10. Data were generated for two sample 

size conditions, m = 10 and m = 15. Each group of five clusters comprised four 3-unit 

clusters and one 6-unit cluster.  

 Scores for a fixed predictor, xij, were simulated with random draws from a 

N(0, 100) distribution, each rounded to the nearest 0.01, and the following nested 

error regression model was fit for each simulated data set: Yij = β0 + β1xij + u1i + eij. 

Note that the data were generated independently of the xijs—i.e., the value of β1 in the 

generating model was zero.  

For each data set, formula (1) was used to construct two analytic intervals for 

β1 at 90%, 95%, and 99% confidence levels. Naïve intervals were computed using t 

distribution cutoffs with n – p degrees of freedom, and Kenward-Roger intervals were 

computed using the Kenward-Roger (KR) option in SAS PROC MIXED.   

Using the random coefficient model, 999 parametric bootstrap samples were 

generated for each simulated data set and used to construct Hall, Efron, and 
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bootstrap-t intervals for β1 at the three nominal confidence levels: 90%, 95%, and 

99%. The Prasad-Rao MSE approximation, obtained using the KR option in SAS 

PROC MIXED, was used in calculating the bootstrap-t intervals. The observed 

coverage rate of the five intervals was calculated as the proportion of data sets for 

which the interval contained zero.  

A two-sided, α-level test of the hypothesis H0: β1 = 0 can be conducted by 

constructing a 1–α confidence interval for β1 and rejecting H0 if the interval does not 

contain zero. Because the data in this study were simulated with β1 = 0, the Type I 

error rate of the interval-based hypothesis test (i.e., the probability of rejecting a true 

null hypothesis) can be estimated by the proportion of simulated data sets for which 

the interval does not contain zero, or equivalently, by one minus the observed 

coverage rate of the confidence interval.  

Note that an interval may have poor coverage because it is too wide or too 

narrow, because it is biased upward or downward, or because of some combination of 

these problems. In order to assess bias in the five intervals, each case in which an 

interval failed to contain zero was classified as an overestimate (when the lower 

endpoint exceeded zero) or an underestimate, and the proportion of misses due to 

overestimation was computed for each interval under each nominal level.    

4.2. Simulation Study 2 

In the second simulation study, repeated measures data were simulated using a 

fitted model obtained by Terracciano et al. (2005) in a study of personality change in 

adulthood. During this 15-year study, researchers administered the Revised NEO 
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Personality Inventory (NEO-PI-R; Costa & McCrae, 1992) at least once, and as many 

as 11 times, to each of 1,944 (967 female, 977 male) participants in the Baltimore 

Longitudinal Study of Aging. The average number of administrations per participant 

was 2.6; the average time between administrations was 2.8 years. Data were gathered 

from participants as young as 20 and as old as 96 during the study, but the bulk of the 

data came from participants over 60. The average age at first administration was 56.7, 

and average age across all administrations was 64.5. 

 For each scale in the NEO-PI-R, Terracciano et al. (2005) fit a random 

coefficient model with age (in decades, centered about its grand mean) as a linear 

predictor, as well as a random coefficient model with age as a quadratic predictor. 

After choosing the better of the two models based on model fit using a likelihood 

ratio test, they tested for effects of gender and cohort. They arrived at the following 

fitted model for Impulsiveness (a facet of the Neuroticism factor): 

Y ij = 48.3 + u0i – 0.975(AGEij – 6.45) + u1i(AGEij – 6.45) + eij, 

where Yij is the Impulsiveness score for the ith subject at the jth administration, AGEij 

is the age in decades of the ith subject at the jth administration, u0i is the ith subject’s 

random deviation from the mean intercept, u1i is the ith subject’s random deviation 

from the mean slope, and eij is the random error term associated with the jth score for 

the ith subject. The variances of u0i, u1i, and eij were estimated to be 52.91, 2.27, and 

25.76, respectively. (Terracciano et al. did not model the covariance between u0i and 

u1i.) 
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 The rationale of the simulation study is as follows. Suppose the fitted model 

and variance parameter estimates obtained by Terracciano et al. (2005) provide a 

reasonably accurate estimate of the population model and that the standard mixed 

model assumptions are valid. If the variance parameter estimates are treated as 

population parameters, the distributions of the random terms are known: u0i ~ N(0, 

52.91), u1i ~ N(0, 2.27), and eij ~ N(0, 25.76). Given values for the AGE variable, 

random sampling of subjects and their scores can be simulated by drawing random 

terms from these distributions for each subject and using these values to compute 

simulated Impulsiveness scores. After simulating a large number of such data sets, the 

performance of confidence intervals can be assessed by comparing each interval’s 

nominal coverage rate to the proportion of simulated data sets for which it contains 

the value of the target parameter—in this study, the fixed slope associated with AGE, 

which was equal to –0.975.    

Data were simulated for 5,000 samples of 15 subjects. For simplicity, three 

scores were simulated for each subject, with each score corresponding to one of three 

equally spaced time points. (This is comparable to a real-life study in which each 

administration occurs on the same day for all subjects.) Time points were 2.8 years 

apart. Subject ages at the median time point were spaced at equal intervals from 59.5 

to 69.5 years (and thereby centered at 64.5 years). (Because subject age is considered 

fixed in the model, simulating a random sample of ages is unnecessary. The random 

coefficient model allows a unique regression intercept and slope for each subject, and 

in theory the ages at which data are gathered for a subject have no effect on the line; 
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they simply determine the points on the line that are observed.) Ages were converted 

to decades, mean-centered, and used (along with the simulated random terms) to 

compute Impulsiveness scores.  

 For each simulated data set, SAS was used to estimate the fixed intercept and 

slope, and the variances of the three random terms. Bootstrap Impulsiveness scores 

were generated using these fixed intercept and slope estimates from PROC MIXED, 

the subject ages in the simulated data set, and random terms (intercepts, slopes, and 

errors) obtained by pseudo-random draws from their respective estimated 

distributions. In other words, bootstrap samples were generated in the same way as 

the simulated data sets but based on different parameter estimates: Bootstrap data 

were based on parameter estimates obtained from a simulated data set, and the 

simulated data were based on estimates from Terracciano et al. (2005).  

For each simulated data set, naïve, Kenward-Roger, Hall, Efron, and 

bootstrap-t intervals for the fixed slope were constructed at the three nominal 

confidence levels. The bootstrap intervals were based on 1,999 parametric bootstrap 

samples per data set. The Prasad-Rao approximation was used to compute the 

bootstrap-t intervals. As in the first simulation study, proportions of misses due to 

overestimation were computed along with interval coverage rates. 

4.3. Simulation Study 3 

In the third simulation study, 3,250 data sets were simulated using the random 

coefficient model Yij = β0 + u0i + β1u1i + eij, with β0 = 0, β1 = 2, Var(u0i) = 1, Var(u1i) 

= 1, and σe
2 = 4. The random components of the intercept and slope were generated 
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independently—i.e., Cov(u0i, u1i) = 0. Scores for a fixed predictor, xij, were simulated 

with random draws from a N(0, 1) distribution, each rounded to the nearest 0.01. 

Each of the data sets comprised either ten or twenty 10-unit clusters. 

For each data set, PROC MIXED was used to obtain estimates of the model 

parameters, including the covariance between the random intercept and slope. The 

FA0(2) option was used to ensure that each estimated G matrix was a plausible 

covariance matrix (i.e., convertible to a correlation matrix), and a lower bound of 0.01 

was set for both the random intercept variance and random slope variance.  

Analytic and parametric bootstrap intervals for β1 were constructed at 90%, 

95%, and 99% confidence levels. In addition to the naïve and Kenward-Roger 

intervals considered in the first two simulation studies, a third analytic interval was 

constructed using the naïve MSE approximation and the Satterthwaite degree of 

freedom approximation developed by Giesbrecht and Burns (1985) and adopted by 

Kenward and Roger (1997) for use in their method. The Satterthwaite degrees of 

freedom were obtained using the KR option in PROC MIXED.  

Using 2,500 bootstrap samples for each simulated data set, Hall, Efron, BC, 

and bootstrap-t intervals were constructed. Bootstrap samples for which PROC 

MIXED did not converge were omitted, but this had a negligible effect on the number 

of bootstrap samples per data set, the minimum being 2,486. In pilot studies, intervals 

computed using the naïve approximation and Satterthwaite degrees of freedom had 

more accurate rates of coverage than Kenward-Roger intervals, so the naïve MSE 

approximation was used to compute the bootstrap-t intervals. 
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Chapter 5. Results and Discussion 

5.1. Results of Simulation Study 1 

Interval coverage rates and percentages of overestimation, respectively, are 

presented in Tables 1 and 2 in Chapter 8. Overall, all five intervals performed well in 

terms of coverage, regardless of sample size or ICC value. Not surprisingly, coverage 

rates and levels of bias were generally better under the larger sample size. In most 

cases, either the Kenward-Roger or bootstrap-t interval had rate of coverage closest to 

the nominal level. There was no discernable effect of ICC value on Kenward-Roger 

coverage rates; in fact, for both sample sizes, coverage rates were better in some cases 

for the smaller ICC value.  

5.2. Results of Simulation Study 2 

Tables 3 and 4 (see Chapter 8) contain coverage rates and percentages of 

overestimation for the second simulation study. The naïve intervals had the best 

coverage rates for all three nominal levels, with the Hall percentile intervals coming 

in a close second. The Efron interval coverage rates fell noticeably short of the 

nominal levels, while the Kenward-Roger coverage rates exceeded them.     

5.3. Results of Simulation Study 3 

Satterthwaite degrees of freedom could not be computed with PROC MIXED 

for 121 of the 3,250 simulated data sets with m = 10 and for 8 data sets with m = 20. 

Intervals based on the Satterthwaite degrees of freedom were not computed for these 

data sets, and their reported coverage rates are based on the data sets for which they 
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could be computed. Coverage rates for the other intervals were based on all 3,250 

data sets. 

As shown in Table 5, the naïve intervals computed with Satterthwaite degrees 

of freedom had the best coverage rates, followed by the bootstrap-t intervals. 

Coverage rates for the other intervals fell short of the nominal rate by over one 

percent in nearly every case. Better coverage was achieved for the larger sample size 

by all the intervals save the naïve/Satterthwaite intervals, which performed at the 

same level for both sample sizes.  

The performance of the three percentile intervals (Hall, Efron, and BC) was 

nearly identical. The bias correction used in calculating the BC intervals did little to 

correct the bias in the Efron intervals and, in fact, increased it in some cases (see 

Table 6).     

5.4. Discussion 

As demonstrated in the simulation studies, the parametric bootstrap interval 

approach represents a viable alternative to standard methods of inference for fixed 

effects in the mixed model, even with small sample sizes. The bootstrap-t method 

seems especially promising, in spite of its dependence upon an accurate MSE 

estimate. The question of which bootstrap intervals are best suited for which models 

and conditions might be addressed in future studies.  

The primary limitation of the parametric bootstrap is its dependence upon the 

mixed model assumption of normally distributed random terms. If this assumption is 

not met, or cannot be verified, the nonparametric bootstrap is more appropriate than 
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either standard methods of inference or parametric bootstrap methods. To the author’s 

knowledge, the question is open as to whether there is any advantage, other than 

convenience, to choosing the parametric bootstrap over a nonparametric bootstrap 

when the mixed model assumptions are met.   

The issue of statistical power is not addressed in this dissertation but merits 

consideration. A comparison of the power of various bootstrap and standard methods, 

coupled with further research regarding interval coverage rates, might help to identify 

a best method for various sample sizes.     
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Chapter 7. Technical Appendix 
 

7.1. Rate of Estimator Convergence 

In comparing estimators, it is useful to consider the rate at which the estimator 

converges to its target (or, equivalently, the rate at which the estimator’s bias goes to 

zero) as sample size goes to infinity. Rates of convergence can be expressed 

succinctly using the Landau symbol O(⋅), which can be defined as follows: An 

estimator tn of target T has rate of convergence O(n-q) if there exists some constant k 

such that |tn – T| < kn-q for constant q and sufficiently large n. Informally, one might 

say that tn converges at least as quickly as kn-q. This notation facilitates comparison of 

an estimator’s rate of convergence with that of a familiar function of n, and with rates 

of convergence of other estimators.   

For example, consider the ML variance estimator. Let X be a random variable, 

and let x1, x2, …, xn be a random sample drawn from the distribution of X. The ML 

estimator of σ2 = Var(X) is given by ( )∑ −=
i

iML xx
n

22 1
σ . This estimator has 

expected value σ2(1 – 1/n), so its bias is given by σ2(1 – 1/n) – σ2 = σ2/n. As n goes to 

infinity, this bias goes to zero at same rate as kn-1, where k = σ2, so the ML estimator 

has rate of convergence O(n-1). 

7.2. Kackar-Harville and Prasad-Rao Approximations 

Kackar and Harville (1984) showed MSE[t(θ̂ )] = MSE[t(θ)] + E[t( θ̂ ) – t(θ)]2.  

The term on the far right (which is neglected by the naïve approximation) can be 

approximated as follows. The first-order Taylor expansion of t(θ̂ ) about θ is given by 
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t( θ̂ ) ≈ t(θ) + t'(θ)( θ̂  – θ), where t'(θ ) is the row vector of partial derivatives of t(θ) 

with respect to the components of θ . Subtracting t(θ) from both sides, squaring, and 

taking the expected value yields E[t(θ̂ ) – t(θ)]2 ≈ E[t'(θ)( θ̂  – θ)]2. 

Kackar and Harville (1984) proposed approximating the term on the right (and 

thus the term on the left) by tr[A(θ)B(θ)], where A(θ) is the variance-covariance 

matrix of t'(θ), and B(θ) is an estimate of E(θ̂  – θ)2. Computational formulas for A(θ) 

are given in Kackar and Harville and, for the fixed effect case, in Kenward and Roger 

(1997). If ML or REML estimation is used, the asymptotic variance-covariance 

matrix of θ̂  can be used for B(θ). The Kackar-Harville MSE approximation is 

obtained by adding their approximation of E[t(θ̂ ) – t(θ)]2 to the naïve approximation: 

MSE[t(θ̂ )] ≈ MSE[t(θ)|θ̂ ] + tr[A(θ)B(θ)].   

Harville and Jeske (1992) modified the Kackar-Harville approximation to 

adjust for bias in MSE[t(θ)|θ̂ ] as an estimator of MSE[t(θ)]. Let MSE'[t(θ)] = 

(∂/∂θ)MSE[t(θ)], the column vector of first partial derivatives of MSE[t(θ)] with 

respect to the components of θ . The second-order Taylor expansion of MSE[t(θ)|θ̂ ] 

about θ is given by 

(5) MSE[t(θ)|θ̂ ] ≈ MSE[t(θ)] + ( θ̂  – θ)'MSE'[t(θ )] + ½(θ̂  – θ)'C(θ)( θ̂  – θ), 

where C(θ) is the matrix of second partial derivatives of MSE[t(θ )] with respect to 

θ—i.e., C(θ) has ij th element cij = 
( )[ ]
ji θ∂θ∂

∂ θtMSE2

, where θi is the ith component of θ. 
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Taking the expected value of each side of (5)  and ignoring bias in θ̂  yields the 

approximation  

E{MSE[t(θ)|θ̂ ]} ≈ MSE[t(θ)] + (1/2)tr[C(θ)B(θ)].  

The second term on the right approximates the bias in MSE[t(θ)|θ̂ ] as an estimate of 

MSE[t(θ)].  

For linear covariance structures (i.e., models for which V can be expressed as 

a linear combination of the components of θ), C(θ) = –2A(θ), where as above, A(θ) is 

the variance-covariance matrix of t'(θ). Thus, the bias in MSE[t(θ)|θ̂ ]} is 

approximately –tr[A(θ)B(θ)]. Subtracting this (negative) bias from the Kackar-

Harville approximation, Harville and Jeske (1992) obtained the approximation 

MSE[t(θ̂ )] ≈ MSE[t(θ)|θ̂ ] + 2tr[A(θ)B(θ)].  

Note that the bias adjustment, tr[A(θ)B(θ)], is exactly the approximation of 

E[t( θ̂ ) – t(θ)]2 derived by Kackar and Harville (1984); thus the factor of two in the 

rightmost term. Prasad and Rao (1990) developed a similar estimator for three 

specific mixed models, but unlike Harville and Jeske (1992), they modified the 

Kackar-Harville approximation by defining A(θ) differently. 

In both the Kackar-Harville and Prasad-Rao approximations, the term 

tr[A(θ)B(θ)] is used in approximating E[t(θ̂ ) – t(θ)]2. Hulting and Harville (1991) 

noted that for values of the variance ratio close to or equal to zero, this approximation 

may be inadequate.  
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7.3. Satterthwaite’s Degree of Freedom Approximation 

Satterthwaite’s (1941, 1946) method is based on the assumption that the 

variance quantity for which degrees of freedom are to be approximated has a chi-

square distribution when suitably scaled. Setting the true variance of the scaled 

variance quantity equal to what the variance of the scaled quantity would be under an 

assumed chi-square distribution allows one to solve for the degrees of freedom.  

The method can be used for inference in the mixed model as follows (Littell, 

2002). Consider the quasi-pivot [t(θ̂ ) – T]/st, where t(θ̂ ) is the EBLUE and st
2 is an 

MSE approximation. The scaled MSE approximation vst
2/E(st

2) is assumed to have 

chi-square distribution with v degrees of freedom. The variance of vst
2/E(st

2) is 

Var[vst
2/E(st

2)] = v2Var(st
2)/[E(st

2)]2. Under the chi-square assumption, this variance 

equals twice the degrees of freedom:  v2Var(st
2)/[E(st

2)]2 = 2v. It follows that v = 

2[E(st
2)]2/Var(st

2). In practice, this quantity is approximated by 2(st
2)2/g'Dg, where D 

is the asymptotic variance-covariance matrix of θ̂ , and g (known as the gradient) is 

the column vector obtained by differentiating st
2 with respect to each component of θ 

and evaluating the result at θ̂ : 

g = 
θ̂θ

2
t

θ

s

=
∂
∂

 

(SAS Institute Inc., 2008). 
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Chapter 8. Tables 
 
 
Table 1  
Coverage Percentages—Simulation Study 1 

Nominal 
Rate Interval 

ICC = 0.05 ICC = 0.10 

m = 10 m = 15 m = 10 m = 15 

90% 

Naïve 89.5 89.8 88.7 89.4 

Kenward-Roger 90.1 90.4 88.75 90.0 

Efron 90.6 90.6 89.6 89.6 

Hall 90.6 90.9 89.7 89.9 

Bootstrap-t 90.0 90.4 89.8 90.0 

95% 

Naïve 94.4 94.6 93.9 94.4 

Kenward-Roger 95.1 95.0 94.55 95.1 

Efron 95.4 95.1 94.9 94.9 

Hall 95.3 95.1 94.7 94.8 

Bootstrap-t 95.1 95.1 94.7 95.0 

99% 

Naïve 98.7 98.8 98.6 98.9 

Kenward-Roger 98.9 99.0 98.8 99.0 

Efron 98.9 99.0 98.7 99.0 

Hall 98.8 98.9 98.8 99.1 

Bootstrap-t 98.9 98.9 98.9 99.2 
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Table 2  
Percentages of Misses due to Overestimation—Simulation Study 1 

Nominal 
Rate Interval 

ICC = 0.05 ICC = 0.10 

m = 10 m = 15 m = 10 m = 15 

90% 

Naïve 51.2 52.0 51.1 49.3 

Kenward-Roger 51.3 51.5 50.9 49.1 

Efron 51.3 52.3 51.3 49.6 

Hall 51.3 52.4 51.0 49.6 

Bootstrap-t 51.3 51.0 51.2 49.6 

95% 

Naïve 54.7 52.6 51.2 50.8 

Kenward-Roger 55.4 53.2 50.6 49.9 

Efron 54.2 53.3 49.9 49.3 

Hall 53.8 53.5 49.4 47.3 

Bootstrap-t 53.0 53.3 51.8 50.0 

99% 

Naïve 50.8 55.1 45.7 50.5 

Kenward-Roger 51.4 52.4 47.4 50.0 

Efron 56.9 53.8 48.4 48.5 

Hall 56.0 54.5 45.8 50.0 

Bootstrap-t 48.6 55.0 47.4 57.1 
 

 
Table 3 
Coverage Percentages—Simulation Study 2 

 
 

Interval 

Nominal Coverage Rate 

90% 95% 99% 

Naïve 90.4 94.9 99.0 

Kenward-Roger 91.9 96.1 99.4 

Efron 88.5 92.8 96.8 

Hall 90.8 95.1 99.2 

Bootstrap-t 91.0 95.7 99.3 
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Table 4 
Percentages of Misses due to Overestimation—Simulation Study 2 

 
 

Interval 

Nominal Coverage Rate 

90% 95% 99% 

Naïve 50.4 47.5 47.1 

Kenward-Roger 49.4 45.4 42.9 

Efron 39.8 38.0 44.1 

Hall 48.9 45.9 38.1 

Bootstrap-t 49.0 46.1 40.0 
 
    

Table 5 
Coverage Percentages—Simulation Study 3 

 
 
 
 

Nominal Coverage Rate 

90% 95% 99% 

Interval m = 10 m = 20 m = 10 m = 20 m = 10 m = 20 

Naïve (n – p) 87.2 88.4 92.2 93.7 97.2 97.9 

Naïve (Satterthwaite) 90.2 90.3 95.2 94.8 98.9 98.9 

Kenward-Roger 85.2 87.7 91.4 93.3 97.3 98.1 

Efron 87.3 88.5 91.9 93.6 97.2 97.9 

BC 87.2 88.6 92.2 93.6 97.1 97.9 

Hall 87.2 88.6 92.1 93.6 97.1 97.8 

Bootstrap-t 89.3 90.5 93.8 94.9 98.2 98.9 
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Table 6 
Percentages of Misses due to Overestimation—Simulation Study 3 

 
 
 

Nominal Coverage Rate 

90% 95% 99% 

Interval m = 10 m = 20 m = 10 m = 20 m = 10 m = 20 

Naïve (n – p) 50.8 50.3 48.8 51.7 48.4 51.5 

Naïve (Satterthwaite) 50.0 50.6 50.7 52.1 57.1 54.3 

Kenward-Roger 51.9 49.9 47.4 50.5 47.7 51.7 

Efron 50.5 49.6 48.5 51.4 46.7 47.8 

BC 50.4 49.7 48.0 51.9 45.7 47.8 

Hall 51.0 50.7 49.2 53.1 47.4 49.3 

Bootstrap-t 49.6 50.8 46.8 52.7 49.2 56.8 
 


