View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by KU ScholarWorks

PARAMETRIC BOOTSTRAP INTERVAL APPROACH TO INFERENCE FOR
FIXED EFFECTS IN THE MIXED LINEAR MODEL
BY

Copyright 2009
Vincent S. Staggs

Submitted to the graduate degree program in Psychology and the
Graduate Faculty at the University of Kansas in partial fulfillment
of the requirements for the degree of Doctor of Philosophy.

Chairperson

Date defended:



https://core.ac.uk/display/213389441?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The Dissertation Committee for Vincent S. Staggs certifies thatstkie iapproved

version of the following dissertation:

PARAMETRIC BOOTSTRAP INTERVAL APPROACH TO INFERENCE FOR

FIXED EFFECTS IN THE MIXED LINEAR MODEL

Chairperson

Date approved:




Abstract

In mixed models, empirical best linear unbiased estimators of fixed effects
generally have mean square errors (MSESs) that cannot be written infcloeed
Standard methods of inference depend upon approximation of the estimator MSE, as
well as upon approximation of the test statistic distribution by some known
distribution, and may not perform well under small samples. The parametric bootstrap
interval is presented as an alternative to standard methods of inferencal Sever
parametric bootstrap intervals (Efron percentile, bias-corrected [Bdll]percentile,
and bootstrap) were compared using simulated data, along with analytic intervals
based on the naive MSE approximation and the Kenward-Roger method. Among the
bootstrap methods, the bootsttageems especially promising.
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Chapter 1. Introduction
1.1.Purpose

Standard methods of statistical inference generally involve a statistisen
as an estimator of the parameter or effect of interest, and an estineter¢dérred to
as astandard erroj of the statistic’s standard deviation (SD). The SD is the square
root of the statistic’s sampling variance—a measure of how dispersed one would
expect the values taken by the statistic to be in repeated sampling. tie stadl its
standard error are used to forrteat statistiqsuch as &orF), and statistical
inference is carried out based on the known or approximate distribution of the test
statistic and its observed value for the given sample. The accuracy of sl snaft
inference depends in part upon the accuracy with which the statistic’s sgmpli
variance can be estimated and, if the distribution of the test statistic is unknown, upon
the adequacy of the chosen distributional approximation.

In most mixed models, a straightforward estimate of the variance ok#uk fi
effect estimator is unavailable, and accurate approximation of this vadandee
difficult, especially when sample size is small. Moreover, becausesgfrtbiblem,
the distribution of the test statistic used for inference must be approximasesne
known probability distribution.

These hurdles can be sidestepped entirely by constructing parametric
bootstrap confidence limits for the effect of interest; under this approachatccur
inference can be conducted without approximating the estimator varianceétlaowt w

using a known distribution to approximate the distribution of the test statistict®espi



these advantages and its relative ease of implementation, published applications of
this method to the problem of fixed effect estimation are scarce. The ppongyse
of this dissertation is to present the parametric bootstrap interval ademiethod
of conducting inference for fixed effects in mixed models.
1.2. Overview

The problem of small sample inference in mixed modeling is treated in detail
in Chapter 2. The general linear mixed model is presented in Section 2.1, and
estimation of both fixed and random effects in the mixed model is discussed in
Section 2.2. Analytic methods of MSE approximation are described in Section 2.3,
analytic confidence interval construction is covered in Section 2.4, and results from
studies of the performance of various analytic approximations are given ionSect
2.5.

In Chapter 3, the proposed bootstrap-based solution to the problem of small
sample inference is laid out. An introduction to bootstrapping is provided in Section
3.1, and applications of the bootstrap to mixed models are discussed in Section 3.2.
An account of bootstrap approaches to the problem of MSE approximation is given in
Section 3.3. A general treatment of bootstrap interval construction is presented in
Section 3.4, followed by a discussion of parametric bootstrap intervals for mixed
models in Section 3.5.

The methods of three simulation studies are detailed in Chapter 4. In the first
(Section 4.1), data were generated from a one-way random effects ANOW& far

each of four (2 small sample size2 small ICC values) conditions, and five intervals



(two analytic, three parametric bootstrap) were compared based on observed rate
coverage. In the second study (Section 4.2), data were generated under a random
coefficient model using estimates from a longitudinal study of personasitin the
first study, five intervals were constructed and compared based on ratesdge.
Data for two sample sizes were generated from a different randdficien¢é model
in the third study (Section 4.3), and three analytic and four bootstrap intervals were
compared.

The results of these studies are presented and discussed in Chapter 5.
References are listed in Chapter 6, and Chapter 7 is a technical apperux for t
reader interested in delving more deeply into the mathematics underlytaig ce

concepts.



Chapter 2. The Problem: Inference under Small Samples
2.1. The Problem in Brief

In linear regression, ordinary least squares (OLS) estimators of thesiegre
coefficients are unbiased—i.e., an OLS estimator takes the value of its targe
parameter on average in repeated sampling, neither systematicallytiowegreg or
underestimating the target. Among linear unbiased estimators, OLStessiimave
minimum variance, meaning that no other linear unbiased estimator has a sampling
distribution less dispersed about the target. (One might say that a minimuntearia
estimator “bounces around” its target less from sample to sample, tendingfteare
to take values close to its target than estimators with greater variAnagnpiased
linear estimator with minimum variance is known dgeat linear unbiased estimator
or BLUE.

OLS coefficient estimators have known sampling variance formulas, allowing
for straightforward variance estimation and computation of the observed value of the
test statistic. Moreover, the test statistic for any regression @eetfhas a Student’s
t distribution with a known number of degrees of freedom.

In mixed models, the situation is more complex. Best linear unbiased
estimators of fixed effects depend upon the variances of the random terms in the
model. These variances are usually unknown and must be approximated. Fixed effect
estimators constructed using variance estimates generally havergawapiance that
cannot be written in closed form, and a test statistic constructed using affiectd e

estimator and an approximation of its sampling variance has an unknown distribution



for finite sample size. Thus, there are two potential sources of error in angniodé
based on this standard method.

This problem is laid out in more concrete terms in the following example.
After this, the general linear mixed model is presented more formally, and the
problem is revisited in theoretical detail.

2.2. An Example

Consider a longitudinal study in which a personality measure is administered
to subjects at several time points over a number of years in order to edtienctet
at which personality changes in adulthood (e.g., see Terracciano, McCragg&Brant
Costa, 2005). The researcher could ignore the clustering of scores within subjects and
regress the personality trait score of interest on subject age in & simealr
regression. This would yield an unbiased OLS estimate of the rate of changg (slope
but the within-subject errors would be correlated, violating the OLS model
assumptions and making the SD estimate for the slope estimator, and thus any
inference based upon the SD estimate, unreliable.

A mixed model is more appropriate. Consider the following growth curve
model:

Yij = Bo + AGE;B1 + wi + AGE;uy; + g,
where Y; is the personality trait score for tith subject at thgth time point;Bo is the
fixed overall interceptf; is the fixed slope (i.e., the average slope across subjects);
AGE; is the age of thgh subject at thgth time point, centered about the grand

mean; y; is the random deviation of thign subject’s intercept from the mean



interceptBo; Ww; is the random deviation ah subject’s slope from the mean slope,
B1; and ¢ is the random error term associated withjthescore for théth subject.
The gs are assumed independent with distribution N, and 4 and y; are
assumed independent from the with joint distribution N(O, G), where G is a2
diagonal variance-covariance matrix.

In this mixed model, the best linear unbiased estimator of the fixed slope
depends upon the unknown variances of the random terms in the model. When
estimates of these variances are substituted for their targets in theéaféonthe
BLUE, the sampling variance of the resulting estimator cannot be expresdeddd
form and must be approximated. Confidence intervals for the slope, and the test of the
null hypothesi$; = 0 (i.e., personality score does not change with age), depend upon
the accuracy of the estimator variance approximation and upon adequately
approximating the distribution of the appropriate test statistic. In the settieins
follow, these concepts are developed in theoretical detail, beginning withralgene
treatment of the mixed linear model in the next section.

2.3. The General Linear Mixed Model
2.3.1. Fixed vs. Random Effects

In a simple linear regression model, say Bo= B1x + e, the intercept and
regression coefficient afexed effects-constant, unobservable, “population-
averaged” (Demidenko, 2004) quantities. These parameters characterizé&r¢he ent
population; the intercept is the mean of Y at x = 0, and the slope is the mean change

in Y per unit increase in x. Other examples of fixed effects are gendetsedfel



treatment effects (assuming the treatments are selected purposghélythan
randomly).

Unlike a fixed effect, aandom effectloes not characterize the population as a
whole, but rather one or more units present in a random sample from the population.
The effect is random because its realized value depends upon the particular units
sampled from the population. For example, in a repeated measures study, the
responses are likely to be determined in part by individual differences among the
subjects in the study. This idiosyncratic subject effect can be modeledragoanr
effect, as the realized values it takes in a given study will depend upon the sampl
subjects selected for the study. Similarly, if a sample of classraoch®sen in a
study of student achievement scores, the effect of belonging to a partics¢aocia
can be modeled as a random effect. The error term in linear regression is a random
effect.

2.3.2. Mixed Model Notation

Simply stated, a mixed linear model is a linear regression model having one or
more random terms in addition to the error term. The general linear mixed model can
be expressed as

Y=XB+Zu+e,
where Y is am x 1 vector of responses ap x 1 vector of unknown fixed effect
parameters, u is anx 1 vector of random effects, and e isnex 1 vector of random
errors. X is a knowm x p design matrix for the fixed effects, comprising a column

for each fixed term in the model. Similarly, Z is a knawnr design matrix for



random the effects vector u. The random terms, u and e, are assumed to be
independent with u ~ N(O, G) and e ~ N(O, R), where G and R are variance-
covariance matrices known up to a ve@&af unknown variance parameters.
According to the model, Y (given B, G, and R) is normally distributed with mean
XB and variance-covariance matrix V = ZGZ' + R.

A hierarchical models a special case of the mixed model involving nested
data. In a two-level hierarchical model, sampling units (the lowest larehested
within clusters (the second level), and the vector Y is constructed by stacking
responses by cluster. Lielhdex them clustersi(= 1, 2, ...,m); letj index the
observations within a given clust¢=1, 2, ...,n;)); and let ¥; denote thgth
observation in théh cluster. Then thgth component of Y is ¥, whereij = 11, 12,

oo Ang, 21, 22, ..., By, ..., ml, M2, ...,mn,. The rows of design matrices X and Z
are constructed in the same mannerjjtiherow of each corresponding to tijin
response in vector Y. Accommodation of more than two levels of clustering is
straightforward.

The two-level hierarchical model can also be written in terms of a
representative cluster as

Yi=Xp + 4u + 8,
where Y is the observation vector for thté cluster, vis the vector of random effects
for theith cluster, and so forth. Let; & Cov(u) and R = Cov(g). In theory the values
of the parameters in thegxan differ across clusters, but it is generally assumed that

they do not (Bryk & Raudenbush, 1992; Wolfinger, 1996). (For an example of a



study in which the use of two different @atrices might be appropriate, see Lee and
Bryk, 1989).

The variance-covariance matrix of the error terms inttheluster, R is
generally assumed to be the same for clusters of the same sizemAgeneousr
homoscedastimodel (or covariance structure) is one in which the errors within each
cluster are assumed to have equal variance. This corresponds to each entry on the
diagonal of Rhaving the same value.

The mixed model can accommodate repeated measures models and other
designs in which there is spatial or temporal dependence among the etnorawi
given cluster. In terms of the model written as=¥X;p + Zu; + g, the off-diagonal
entries of R(the variance-covariance matrix f are not assumed to be zero when
intra-cluster errors may be correlated. See Wolfinger (1996) for a discuddboth
homogeneous and heterogeneous covariance structures for repeated measures.
2.3.3. Multivariate Approach vs. Mixed Model Approach

Muller, Edwards, Simpson, and Taylor (2007) noted that in studies in which
the data are balanced (i.e., cluster sizes are equal), none of the dasanig onis
mistimed, and there is no need to model a particular variance-covariance staucture,
multivariate approach to statistical tests is preferable to the univarieéel model
approach. Multivariate tests successfully control error rates, even fthrsaimples;
and power methods for the multivariate tests are well established and more

convenient. However, the conditions under which the multivariate model is applicable



are seldom encountered in social science research, and the flexibilityuofthaate
mixed model makes it the obvious choice for many researchers.
2.4. Common Mixed Models

2.4.1. One-way Random Effects ANOVA Model

The one-way random effects ANOVA (RANOVA) model (also known as the
one-way random classification moyldbes not technically satisfy the definition of a
mixed model given above, as it has no fixed predictors, but it is an ideal model with
which to begin a discussion of mixed models. According to Scheffé (1956), this
model appeared as early as 1861 in the work of an astronomer, Airy, who used it to
model repeated telescopic observations of a phenomenon over several nights.

Let Y; represent thgh observation in thgh cluster, urepresent thih
(random) cluster effect (aluster intercept and ¢ represent the random error
associated with ) The model is given by

Yi=Bo+ u+ e,
where the 15 areiid (independent and identically distributed) N¢G), the gs areiid
N(0, o¢?), and the | and gs are independent. The fixed effect param@tgilis an
overall mean. By assumptios” > 0 ando,” > 0. Note that Var(Y) = o, + o’

Intra-class correlation coefficienThe intra-class correlation coefficient
(ICC), p, is defined for the one-way RANOVA model @s 6,7/ (o.° + 6¢?). The ICC
is the proportion of total variance attributable to the clustering of the observations, or
equivalently, the correlation between any pair of observations from the sastes cl

(Fisher, 1925). The ICC can be expressed in terms ofifience ratiq y = 6,%/cc,
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asp =7y/(y + 1). Note that the ICC and variance ratio are both equal to zero when the
between-cluster variance is zero.
2.4.2. Fay-Herriot Model

The Fay-Herriot model (Fay & Herriot, 1979) is used in survey sampling for
small area estimatior-predicting and drawing inferences about the mean of some
variable for geographical areas or subpopulations thanaa# in the sense that they
contain few (or no) sampling units (Hulting & Harville, 1991). The model can be
expressed as

Yi=XB+u+ae,
where the 1$ and & are mutually independent random variables withN(0, 5%
and €~ N(0,5;?). Theith small area mean to be predicted i8 Xu, Y; is the
observed survey estimator of this mean (i.e., the sample mean ftr sheall area),
u; is the random effect associated with ifearea, and; és the error in sampling the
ith area (Datta, Rao, & Smith, 2005). The regression predictorgaroXde area-
level (i.e., cluster-level) information, and responses within each smallrereae
only in computing the small area means, so a two-level model is unnecesaaag(Pr
& Rao, 1990).

Following Fay and Herriot (1979), survey researchers commonly assume the
si’sto be known for this model (Ghosh & Rao, 1994), as estimates are usually
available from a survey organization (Pfefferman & Glickman, 2004). Methods of

small area estimation are discussed in Ghosh and Rao (1994) and Rao (2003, 2005).
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2.4.3. Nested Error Regression Model

The Fay-Herriot model and one-way RANOVA model are special cases of the
nested error regression model, given by

Yij = Xip +u + 6§,
where the |$ and gs are mutually independent random variables with N(0, 6.
and ¢ ~ N(0,cs%). This model can be used to incorporate unit-level (i.e., lower-level)
predictors in small area models (in contrast to the Fay-Herriot model, wioais al
for only area-level predictors). Amconditional ICCcan be estimated for this model
by fitting it with all of the fixed effects other than the intercept orditiad
substituting the variance component estimates into the ICC formula. Ifothel s fit
with all of the fixed effects included, the resulting ICC estimatecisnaitionalor
residual ICC
2.4.4. Random Coefficient Model

The random coefficient model is common in education research (e.g.,
Goldstein, 1995) and longitudinal studies (e.g., Laird & Ware, 1982). It allows not
only for random cluster intercepts, but also for slopes (corresponding to known
regression predictors) that vary randomly among clusters. The simplest adehisn
given by

Yij = PBo + XjB1 + Wi + Xjusi + §,
where % is the observed regression predictor value foytthanit in theith cluster,
Ugi Is theith (random) cluster intercept;; is the (random) regression slope for itite

cluster, an@, andp; are the traditional, fixed regression intercept and slope,

12



respectively. The growth curve model described in Section 2.2 is an exampke of thi
model. Let ube the row vector comprising; @nd y;, and define (as above) &

Cov(u). If Gj is unstructured, it includes three parameters: The intercept variance and
slope variance, both on the diagonal; and the covariance between the intercept and
slope off the diagonal.

The random coefficient model can include multiple predictors, each with a
fixed and/or random regression coefficient, and it need not include an intercept. For
example, Dempster, Rubin, and Tsutakawa (1981) used a random coefficient model
with no intercept and two centered predictors, undergraduate GPA and LSAT score,
each with random slope coefficient, to predict the first-year GPA of law school
students.

After specifying an appropriate model for a data set, the variance parame
fixed effects, and random effects can be estimated. Methods of estimation ar
described in the next section, beginning with estimation of variance parameter

2.5. Estimation and Prediction under the Mixed Model
2.5.1. Variance Parameter Estimation

The variance parameterstirare usually unknown in practice and must be
estimated in order to carry out inferences regarding the fixed or randons effieete
are several methods of variance parameter estimation, including ANOYhdse
maximum likelihood (ML), and restricted (or residual) maximum likelihooENR).
Searle, Casella, and McCullouch (1992) provided a detailed exposition in their book,

much of which is devoted to the topic.
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ANOVA estimatiorSearle et al. (1992) credit the idea of ANOVA estimation
of variance parameters to Fisher (1925), who had introduced thevaiarsceand
analysis of variancén 1918 (Scheffé, 1956). For balanced data, one can compute
ANOVA estimates by setting observed values of ANOVA sums of squarektequa
their expected value (mean) and solving the resulting equations for the variance
parameters. For example, in the one-way classification modehwdthsters and
observations per cluster, the mean of the within-cluster ANOVA sum of sqsares
E(SSW) =m(n — 1), and the mean of the between-cluster sum of squares is E(SSB)
= (M- 1) + n(m— 1) The notation EJ indicates the expected value, or mean, of
the quantity within the parentheses. The ANOVA estimates are the soluatitires t
following set of equations:

SSW =m(n — 1p¢

SSB = (n— 1o + n(m— 1o,

Note that the estimate fer?> may be negative. In the case of unbalanced data,
ANOVA estimation is less straightforward. Henderson (1953) proposed three
methods that bear his name; see Searle et al. for detalils.

Likelihood-based methods of estimatibikelihood-based methods are a
popular alternative to ANOVA estimation. Under the distributional assumptions made
about the random terms in the mixed model, the distribution of Y, conditiorfial on
ando, is known. Thdikelihood functionis obtained by expressing this distribution as
a function off and®, given Y. Themaximum likelihood estimates$ and6 are those

values that maximize the likelihood function (or, equivalently, its natural |bgarit
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known as thdog-likelihood over all possible values @§fandf. In non-technical
terms, ML estimates are those parameter values that make the observed Value
most likely to have been observed in sampling.

In REML estimation (Patterson & Thompson, 1971), the fixed effects are
removed from the likelihood function before ML variance parameter estimation is
carried out. One can obtain REML estimates by computing the residuals from OLS
regression of Y on X and then fitting the mixed model with the OLS residual vector
in place of Y (i.e., treating the OLS residuals as the dependent observations). The
resulting ML variance parameter estimates are the REML essrfatthe original
model.

Both ML and REML estimators am®nsistentor asymptotically unbiased

meaning that the expected value of the estimatorésapnverges to the target
parameter value as the total sample size goes to infinity. REMLagstsrhave the
additional advantage of being essentially corrected for the degreegddrin lost in
estimating fixed effect parameters, whereas ML estimators arendofiprabalanced
data, REML estimators are unbiased regardless of sample size Gedrd992).
Lacking this correction, ML estimators tend to be biased downward. Moreover, Datta
and Labhiri (2000) showed that bias in REML estimators converges to zero more
quickly than the bias of ML estimators (see Section 7.1 in the Technical Appendix for
discussion of rate of estimator convergence).

As noted, ANOVA methods may yield a negative solution for a variance

parameter. Similarly, under ML or REML estimation, it is possible for théHiked
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function to achieve its maximum at a negative value for some variance pardmeter
practice, would-be negative variance estimates are set to some rabivangglue,

and this truncation introduces bias into any estimator that would otherwise be
unbiased.

2.5.2. Point Prediction for Mixed Effects

Given variance parameter estimates, one can proceed witinatsti of the
fixed and/or random effects in the mixed modemied effects an estimable linear
combination of fixed and random effects, say Tp=tkm'u for some constant vectors
k and m. For example, th#n small area mean in the Fay-Herriot model, T;§Xu,
is a mixed effect, and the goal in small area studiespsetdict the realized value of
T for each small area using the observed data.

Searle et al. (1992) pointed out that prediction of a mixed effect, saypl+= k'
m'u, involves bottprediction(of the realized value of the random component, m'u)
andestimation(of the fixed component, [}, and opted for the terpredictionin
dealing with a mixed effect. Following Searle et @stimationis reserved in this
dissertation for fixed effects, apdedictionis used for mixed effects.

Best linear unbiased predictio@oldberger (1962) and Henderson (1963)
showed that the best linear unbiased predictor (BLUP) of the mixed effedY s t
KBeLs + M'GZ'VX(Y — XPoLs), WhereBe.s is a solution fop in the generalized least
squares (GLS) equations (Aitken, 1935),

XV = X'VIXB,

16



sayPoLs = (X'VIX)X'VY, with generalized inverses taken as needed. In addition
to being the best linear unbiased estimatd¥, Bt s is the maximum likelihood
estimator of3 for any given V (Birkes & Wulff, 2003). Note thab}(depends on the
vector of variance parameteésthrough G and V.

The BLUP is unbiased in the sense that its expected value (mean) is equal to
the expected value of its target. The BLUBastin the sense that its mean squared
error (MSE), defined as the mean squared difference between the BLUB auedit,
MSE[t(®)] = E[t(®) — T is minimum among all other linear unbiased predictors
(Searle et al., 1992). A predictor's MSE can be expressed as the sum of iteevaria
and the square of its bias; thus, for an unbiased predictor like the BLUP, MSE equals
variance.

Empirical best linear unbiased predictioBecause the variance parameters in

0 are usually unknown in practice, estimatiorp @nd prediction of T involve a two-
step approach. First, variance parameter estimateé,,saye computed and used to

form estimates of the variance-covariance mati@&esd V, sa;? @nd V. Second,
the variance parameter estimates are substitutetdm respective targets in the

formulas forBgLs and t.
UsingVin place of V in the formula fdig.s yields theestimated generalized

least square$EGLS) estimator off, Beors = (X' VX)X VY. When G,V , and
BecLs are substituted for their targets in the formuwlat{®), the result is thempirical

best linear unbiased predict¢qEBLUP) of T,

t(é) = k'BEGLS +m' ’GZ'\A/l(Y - XBEGLS)-

17



Fortunately, substituting an ANOVA, ML, or REML @stte for its target
value in the formula for & does not change the expected value (Das, Jiafa&
2004; Kackar & Harville, 1981). Thus, the EBLURKdithe BLUP, is unbiased.
2.2.3. Point Estimation for Fixed Effects

In many applications of the mixed model, the redearis primarily
interested in inference concerning the fixed effeEstimation of a linear
combination of fixed effects is a special casehefrhixed effect prediction problem
described above; setting m equal to the zero vactive mixed effect T = '+ m'u
yields the fixed effect T = g Thus, the theoretical results presented for mefézstt
case can simply be restated in adjusted form ®fiked effect case. Note that in the
absence of random effects, the problem becomesfastimation, not prediction.

Thebest linear unbiased estimatLUE) of the fixed effect T = R'is t®) =
k'BcLs, Where as abov@g, s is the generalized least squares estimatfir A6 a
special case of the BLUP, the BLUE is also unbias®tihas minimum variance
among all other linear unbiased estimators.

As with the BLUP g s cannot be computed when the variance parameters

are unknown, and 6 used in place of V in the formula fP&Ls to obtain the
estimated generalized least squares estimafrfet s SubstitutingBecis for BeLs

in the formula for ) yields theempirical best linear unbiased estima{&BLUE)

of T, t(é) = kIBEGLS-

18



The problem with the EBLUP (and EBLUE) is that foost mixed models, its
MSE cannot be written in closed form (Hulting & Midle, 1991). Approximations of
this MSE are described in the next section.

2.6. Analytic MSE Approximations
2.6.1. Naive MSE Approximation

Kackar and Harville (1984) showed that for the ntmshmon variance
parameter estimators (including ML and REML estonsY, the variance of the
EBLUP, MSE[t(é )], can be expressed as

MSE[t(8)] = MSE[t©)] + E[t(0) - t(©)]>
The term on the far right is the MSE 0b )@s an estimator ofet. For known
variance parameters, MSH{Y], the variance of the BLUP, is known, and a commo
naive approximation of MSE[@()] is obtained simply by substitutinAgfdr Vin the
formula for MSE[t0)]. Let MSE[t(e)|é] denote this approximation.

The naive approximation involves two potential sesrof error. First, V&
used in place of V to estimate MSHBJi( Second, Vs used in place of V to obtain
t(é), resulting in a discrepancy betweeé)t@nd tf), and the mean square of this
discrepancy, E[ﬁ)— t(0)]? is ignored completely in the approximation. In athe
words, the variance in the EBLUP is inflated by pang variability in the variance
parameter estimates used to compute it, and thve agproximation fails to account

for this “variance propagation,” as Littell (2042,486) called it.
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Because ML and REML methods yield consistent estirsaunder these

methods \tends to improve as an estimator of V as sampéeisizeases, and the

expected error of the naive approximation tend=to (Littell, 2002). However, for

a small or moderate number of clusters, MSE)Ht@an be seriously underestimated,
so it is not surprising that for small samples, dtiyesis tests based on the naive
approximation can yield inflated rates of TyperberCatellier & Muller, 2000;
Schaalje, McBride, & Fellingham, 2002; Kenward &geo, 1997). It is also
noteworthy that the error in the naive approxinragoes to zero only as the number
of clustersgoes to infinity, not as the number of observatipar cluster goes to
infinity for a fixed number of clusters (Demideni&04).
2.6.2. Analytic Alternatives to the Naive Approxioma

Aware of the deficiency of the naive approximatiamumber of researchers
(Das, Jiang, & Rao, 2004; Datta et al., 2005; Dattaahiri, 2000; Fuller & Harter,
1987; Harville & Jeske, 1992; Kackar & Harville,84 Lahiri & Rao, 1995; Prasad
& Rao, 1990; Wang & Fuller, 2003) have studied ioyad analytic approximations
of the MSE of the EBLUP based on Taylor series agmms for various mixed
models and for various methods of variance paranestenation. See Das et al. for a
review.

In their seminal paper, Kackar and Harville (198f)posed an MSE
approximation based on a first-order Taylor segigsansion. Harville and Jeske

(1992) modified the Kackar-Harville approximatiarsing a second-order Taylor

series to adjust for bias in MSEﬂ[@] as an estimator of MSEft(]. They referred to
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this MSE approximation as tiirasad-Rao estimatdyecause it is a generalization of
a similar estimator developed by Prasad and Ra@0{1f@r three specific mixed
models. In this dissertation, the teRrasad-Rao approximatiois used to refer to the
Prasad-Rao estimator as described by Harville agkie] (The termastimatoris also
appropriate, as analytic MSE approximations aredas unknown parameter values
and must be estimated using data in practice.)iBetboth the Kackar-Harville and
Prasad-Rao approximations are given in Sectiof/tl2e Technical Appendix.

Given an MSE approximation, standard methods efre@rfce can be carried
out based on an approximation of the distributibthe appropriate test statistic.
Confidence interval construction (which subsumegsotiyesis testing) is discussed in
the next section.

2.7. Analytic Intervals for Fixed Effects

In the fixed effect case, each estimatopgg.sis a linear combination of the

normally distributed components of Y, so the EBth(Iﬁ,) = kBecLsis also normally

distributed. The EBLUE is unbiased, so its variaseso’, is equal to its MSE. If

o> were known, the test statistic@[tX— T]/o: would have a standard normal
distribution, and a le- confidence interval for T could be obtained frdme equation
P(—zo2 < [t(é) — Tlloy < z1412) = 1-e, where P{ denotes the probability of the
statement in the parentheses, afg.4s a standard normal cutoff. Solving the middle

of the inequality for T yields the interval ﬁt][ — Z14/2Ct, t(é) + 214/2G4].

21



In the case of knowa+?, the test statistic [@0 — T)/ot is apivot—a function
of the data and parameter(s) whose distributiors do¢ depend upon the value(s) of
the parameter(s). Such functions are said toilo&al. In practice, pivotal quantities
generally depend on unknown parameters, which brisstimated. The terquasi-
pivotis used in this dissertation to describe functitwas are approximately, but not

exactly, pivotal.

Whenc¢ is unknown, the pivot can be approximated b@):t(— T)/s, where
s? is an approximation af. The distribution of this quasi-pivot is often
approximated by a Student'slistribution. Given degrees of freedom for thstatistic
(discussed below), an approximatexcenfidence interval can be constructed using

the formula

(1) [t(0) — tas:, 1) + trs],
where 1., is at distribution cutoff (Hulting & Harville, 1991).

One option for computing confidence limits undes #pproach is to take’s
as the naive approximation and nsep degrees of freedom (whepas number of
fixed terms in the model) for the approximatingjstribution (Demidenko, 2004).
However, the distribution of the quasi-pivot mayé&deavier tails than this
distribution due to the naive approximation’s dovanavbias and/or due to the
degrees of freedom being incorrect (Harville & @griry, 1992). This can lead to
interval coverage rates that fall short of the nmahlevel, as demonstrated in a

simulation study by McLean and Sanders (1988).
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Instead of using — pdegrees of freedom, Giesbrecht and Burns (1985)
adapted Satterthwaite’s (1941, 1946) method of@apprating degrees of freedom,
details of which are given in Section 7.3 of thefAmcal Appendix. Fai and
Cornelius (1996) and Kenward and Roger (1997) agesl extensions of this
approach.

For testing a set of linear combinations of fiedficts, Kenward and Roger
(1997) proposed ah statistic based on the Prasad-Rao MSE approximaswell
as an approximation for its denominator degredseetiom. In the case of a single
linear combination of fixed effects, the degredreédom approximation is the same
as the adapted Satterthwaite (1941, 1946) approxmased by Giesbrecht and

Burns (1985). For the linear combination T B, khe square root of the Kenward-

RogerF statistic is the quasi-pivot fl() — T)/s, where g is the Prasad-Rao
approximation. This quasi-pivot has an approximalstribution and can be used to
construct confidence limits for T using formula ébove. The Kenward-Roger
statistic, its degrees of freedom, and the PrassalNRSE approximation are
calculated when the DDFM=KR option is specified5iAS PROC MIXED.

It is important to note that the accuracy of thettmds described in this
section for the case of unknowtf depends both upon the adequacy of the chosen
MSE approximationand upon the similarity between the unknown distribatof the
guasi-pivot and the Student'slistribution used to approximate it. The perforoen

in simulation studies of the naive, Kackar-Haryidled Prasad-Rao MSE
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approximations, as well as that of the Kenward-Rogethod, is discussed in the
next section.
2.8. Performance of Analytic Approximations

The naive, Kackar-Harville, and Prasad-Rao apprations were compared
in simulation studies by Harville and Jeske (198#)Iting and Harville (1991), and
Singh, Stukel, and Pfeffermann (1998). The naivkkaxckar-Harville
approximations tended to be biased downward, ther leess than the former. The
Prasad-Rao approximation generally exhibited thstlbias of the three methods
except for small values of the variance rafic 6,7/c¢).

Hulting and Harville (1991) noted that the rightrntesm in the equation
given by Kackar and Harville (1984),

MSE[t(8)] = MSE[t©)] + E[t(0) - t©)]?,
might be inadequately approximated in both the léad¢karville and Prasad-Rao
approximations for values of the variance raticelto or equal to zero (see Section
7.2). This is evidently much more of a problem iadiction than in estimation.

For example, when the effect of interest in theudation studies cited above
was mixed, the relative bias of the Prasad-Raompation under small numbers of
clusters in< 21) was higher than 12% fex 0.2 and exceeded 100% in some cases
for y <0.1. By contrast, when the effect of interest Wesd (a case considered as
part of the study conducted by Hulting and Haryill891), the bias of the Prasad-Rao

approximation fom= 12 was only 5.1% for= 0 and 2.3% foy = 0.2. Evidently the
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presence of a random term in the effect being eséidhgreatly exacerbates the
problem of bias under small values of the variaatie.

In their study of MSE approximation for the EBLUHIting and Harville
(1991) found that the Prasad-Rao approximationgerd become less biasedyas
increased, and was less biased than the otherpgproxamations in every condition
savey = 0 (the Kackar-Harville having smaller bias 0f49% in this case). Moreover,
for all values ofy in the study, thé-based confidence intervals constructed using the
Prasad-Rao approximation had coverage rates dloslee nominal level than did
intervals constructed using the other approximation

Except, perhaps, for small valuesypthe Prasad-Rao approximation is a
better choice for use in standard methods of infexdor fixed effects than the other
two analytic approximations considered here. Thewad-Roger method is based
on Prasad-Rao approximation, and on a sophisticktgree of freedom
approximation, so it can be expected to outperfotimer standard methods of
inference under most conditions.

Kenward and Roger (1997) conducted a simulatiodystoi evaluate the small
sample performance of their method under four mixedels. They found that the
Prasad-Rao approximation adequately correctedah&stent, and sometimes severe,
downward bias of the naive approximation, and iyabthesis tests based on their
method had reasonably accurate rates of Type . 8@ Kenward-Roger method
also performed well in repeated measures simulattonducted by Schaalje et al.

(2002) and by Gomez, Schaalje, and Fellingham (R@hough it led to inflated
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Type | error rates for some complex covariancectires when sample size was
small.

Because the Kenward-Roger method is based on #sadRao
approximation, very small variance ratios may himtieperformance. Savin,
Wimmer, and Witkosky (2003) simulated data undene-way RANOVA model for
small numbers of clusterm(= 2, 5, 11, and 21})everal cluster size conditions, and
values ofy ranging from zero to four. They then used the KamlaRoger method to
construct 95% confidence intervals for the fixetdkioept in the RANOVA model and
compared rates of interval coverage under the waronditions.

Under nearly every sample size condition, coveratgs were least accurate
fory = 0, in most cases due to severe over-coveragdalger sample sizes (11 or 21
clusters, each with 10 or 30 observations), coverates were mostly excellent for
all non-zero values of (i.e., fory > 0.25). However, in several small sample
conditions, coverage rates were poonfer0.25; in some of these cases, rate of
coverage improved asincreased, achieving or nearly achieving the nairigvel for
vy = 4.

Conclusion An alternative to standard methods of inferenceptiing the
Kenward-Roger method, is worth considering. WHile tase of = 0 is somewhat
trivial, as a mixed model is usually unnecessatkiefe are no differences between
cluster means, small ICCs (corresponding to snaalbnce ratios) are not uncommon
in applied research. For example, Hedges and HgdB607) obtained a national

sample of academic achievement scores for gradez &xd found an overall average
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ICC (for students nested within schools) of 0.2fu{ealent to a variance ratio of
about 0.28), and an average ICC of only 0.09 (edent to a variance ratio of about
0.10) for low-achievement schools. Moreover, eveoases for which the Kenward-
Roger method is adequate, greater accuracy maghiievad by an alternative,
bootstrap-based approach.

Preview.In the next chapter, a general introduction to ipetaic and
nonparametric bootstrapping is provided, the appba of bootstrapping to mixed
models is discussed, and an account is given dsbap-based methods of MSE
approximation. Bootstrap intervals are then desdiitiollowed by a discussion of the

parametric bootstrap interval approach to estimahanixed models.
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Chapter 3. Proposed Solution: Parametric Bootdirapvals
3.1. The Bootstrap—Basic Concepts

Efron introduced bootstrapping to the scientificenunity in 1979 with his
seminal paper ifhe Annals of Statisticén it, he showed that the jackknife
(Quenouille, 1949; Tukey, 1958) can be underst®oa @aylor series approximation
of the bootstrap and demonstrated its effectivenass number of estimation
problems. (Jackknifing is described briefly in $&ct3.1.2 below.) Chernick (2008)
provided a recent overview of bootstrapping techegjand applications, including
extensive historical notes and a massive biblidgyap

The following descriptions of the parametric ancyparametric bootstraps for
a single univariate sample are based on Efron (129 X = (X, Xz, ..., X,) be a
random sample from probability distributién Let t(X, F) be a statistic chosen to
estimate some parameter T, where the notationatechat t may depend both on
the sample, X, and on the distribution from whiclsXirawn F. Standard methods of
inference concerning T are based upon the samgigtigbution of t, which may be
unknown.
3.1.1. Parametric Bootstrap

If the distributionF is known up to a number of unknown parametersarnit
be estimated using ML estimates of these paramedenputed from the observed
data. The estimated distributionfobased on these estimates is known as the
empirical distribution For example, if is known (or assumed) to be normal with

unknown mean and variance, the empirical distrdyuits the normal distribution
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centered at the sample mean with variance equbetdL sample variance estimate.
In parametric bootstrappingpotstrap sampleare random draws from the empirical
distribution, usually approximated by computer-daed draws. Let X* denote one
bootstrap sample.

For each bootstrap sample, a bootstrap estimdiesay t*, is computed using
the observed bootstrap data. A sampling distriloutoo the statistic t* is constructed
by drawing a large number of bootstrap samplegsakidg the probability of t*
falling in a given range to be the proportion obtstrap samples for which the
observed value of t* falls in that range. Thotstrap distributiorof t* is used as an
estimate of the sampling distribution of t.

3.1.2. Nonparametric Bootstrap

If data are drawn from an unknown distribution, ane is unwilling to make
assumptions about its form, it can be approximagedg a nonparametric bootstrap
by assigning equal probability to each observaiticthe sample ancesampling—

i.e., drawing random (or pseudo-random) sampleszeh with replacement from the
original data. Note that in any one of these boapssamples, a given observation
may appear more than once, or not at all. (By esttfackknifing is carried out by
assembling, without replacement, every possibleoganf sizen — 1 from the data;
no randomness is involved.) As in the parametrsecthe sampling distribution of
the statistic t is estimated by the bootstrap ithstion of t* across a large number of

bootstrap samples.
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Residual bootstrap for regressidéfron (1979) showed how the
nonparametric bootstrap could be applied to a {plyssonlinear) regression model
to estimate the sampling distribution of a reg@ssioefficient estimate—an
instructive case for the problem addressed indisisertation. (See Ch. 6 in Davison
& Hinkley, 1997, for further discussion of bootginmethods for linear regression.)

Applied to a linear regression model with ordinkegst squares (OLS)
regression, this procedure (known asrésdual bootstrapis carried out as follows.
Express the linear regression model in matrix team¥ = X3 + e. Y is regressed on
X to obtain the OLS estimate pf saypo.s, and the corresponding vector of
residuals, say r. Bootstrap samples are drawn fhenempirical distribution of the
OLS residuals to approximate the (unknown) distrdyuof the errors. For each
bootstrap residual sample, say r*, a bootstraporespvector, Y*, is constructed by
adding the bootstrap residual vector to the es@thatean structure, Y* =pg s + r*.
Then Y* is regressed on X to obtain the bootstistpreate of, Bo.s*, for each
sample.

The sampling distribution ¢fo.s (as well as its mean and variance) can be
estimated by the bootstrap distributiorBefs*. The mean offo.s can be estimated
by taking the average value [@f, s* across bootstrap samples. Similarly, an estimate

of the variance offo s is given by

B
Z Pors ™ BOLS '
Bia

where bootstrap samples are numbéredl, 2, ...,B (Chernick, 2008).
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Cases bootstraphe residual bootstrap corresponds to the comrhongh
often dubious, assumption of fixed covariates. Eftad Tibshirani (1993) proposed
an alternative for the case of random covariatess—+egression predictors assumed
to take observed values as a result of a randormplsajprocess.

Let Y; denote theth response and genote the corresponding row vector of
random covariates. A bootstrap data set, (X*, ¥¥ormed by drawing a sample of
sizen from the set of pairs (xY1), (X2, Y2), ..., (%, Yn), Stacking the bootstrapped
covariates to form X*, and stacking the bootstrapmsponses to form Y*. For each
bootstrap sample, Y* is regressed on X* to obfiyis*, and the sampling
distribution offio s is estimated by the bootstrap distributiorpefs*.

This method of bootstrapping pairs is an exampleladt is known as eases
bootstrap Whereas the residual bootstrap is based on thenom assumption that
the error terms are independent of the covarittespnly assumption underlying the
cases bootstrap that the original sample ofsxand Ys was drawn randomly from
some bivariate distribution (Efron & Tibshirani,93).

The parametric and nonparametric bootstrap methlbdge can be adapted
for models giving rise to nested data. Bootstraphows for mixed models are
described in the next section.

3.2. Bootstrap Methods for Mixed Models
3.2.1. Parametric Bootstrap
The most straightforward mixed model bootstraphésgarametric bootstrap,

which is designed to imitate the sampling of datenfthe underlying population. As
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described below, the parametric bootstrap is basgtie assumption of a fixed
design matrix, X, as well as on the standard dhistronal assumptions concerning u
and e (van der Leeden et al., 2008).

The method is implemented as follows. The distidns of u and e, which are
assumed known up to the variance parameters, tmeagsd using variance
parameter estimates from the original data. A logggandom effects vector u* is
obtained by simulatingr random draws (corresponding to thelusters in the
original data) from the distribution of u. For eatster y n; random errors are
simulated by simulating draws from the distributadre (wheran; is the size of the
ith cluster in the original data). These bootstrapgreors are stacked by cluster to
form a bootstrap error vector e*. The bootstrapeokaion vector Y* is given by

Y* = BeeLsX + ZU* + €7,
wherefecisis estimated from the original data. This samppngcess is repeated to
form a large number of bootstrap data sets, anahpeter estimates are obtained for
each bootstrap data set using the same estima#troas employed for the original
data. The sampling distribution of the statisticndérest can then be estimated by its
bootstrap distribution.

3.2.2. Nonparametric Bootstrap

When the distributional assumptions of the mixedlat@re violated,

nonparametric bootstrap methods can be considéheit. application to mixed

models, especially involving clustered data, isasstraightforward as for regression
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models. See Field and Welsh (2007) for an ovenakhootstrap methods for
clustered data.

Residual bootstraplhe mixed model residual bootstrap is nonparamatri
the sense that it is not based on the usual disivital assumptions associated with
the mixed model. In this context, the temesidualapplies to any estimated random
term (in u or in e), and the residual bootstrapines pseudo-random sampling of
these residuals. The following description is basedan der Leeden et al. (2008).

There are various methods of obtaining an estiwfate sayd, which is
equivalent to estimating factor scores in factalgsis (see ten Berge, Krijnen,
Wansbeek, & Shapiro, 1999). An OLS estimate ofrulmaobtained by estimatiifig
(by EGLS, say), expressing the mixed model as WecXs = ZU + €, and regressing
(Y — XBecLs) on Z. Denote the resulting estimate byBy assumption, E(u) = 0, so
0 must be mean-centered to remove any bias. Aftéedag U, e is simply
estimated by centering = Y — (XBeLs + Z11).

The random effects in u can also be estimated wsimgrical best linear
unbiased prediction. The EBLUP estimator of u imetimes referred to as a
shrinkageestimator because compared to estimators obtaihed wis treated as
fixed (such as the OLS estimator described abalre)EBLUP isshrunkertoward its
mean (Robinson, 1991). After centering this estinwditu, an estimate of e is
obtained by subtraction as described above foOllf® case.

Given estimates of u and e, the bootstrap vectas tdrmed by taking one

pseudo-random draw per cluster from the estimatednd stacking by cluster. The
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bootstrap error vector e* is obtained by simulatimgndom draws from e. Note that
independent sampling from u and e yields bootststimnates u* and e* that are
independent, consistent with the standard assumfitat u and e are independent
(Carpenter, Goldstein, & Rasbash, 2000). The bausibservation vector Y* is
given by Y* =Bg X + Zu* + e*.

Carpenter et al. (2000) pointed out that withoutexion, the bootstrap
variance parameter estimates obtained using tidusddootstrap under EBLUP
(shrinkage) estimation are biased downward beddesestimates of u and e (from
which bootstrap samples are drawn) tend to be dispersed—i.e., the variance-
covariance matrices of the estimates of u andspeaively, will tend to be smaller
(in a matrix sense) than the estimates of G antitRireed from the original data.
They proposed a method for “reflating” the estiraiéu and e to correct this
problem. (See also Wang, Carpenter, & Kepler, 2006)

Cases bootstraplhere are various versions of the cases boot&irap
clustered data involving sampling of clusters andfats within clusters (Davison &
Hinkley, 1993; van der Leeden et al., 2008). Nbotd for clustered data, thj¢h case
comprises the observation ¥nd thejth row of the X and Z matrices.

If sampling with replacement is to be carried dus@th levels, the procedure
is as follows. One begins by drawing (with replaeath a pseudo-random sample of
clusters. For each cluster selected, random draeases from within the cluster are

simulated. Data for the selected cases are stdpkellister to form bootstrap vectors
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Y*, X*, and Z*. The bootstrap model is Y* Bg sX* + Z*u + e, and parameter
estimates are obtained as usual for each bootstraple.

The cases bootstrapusually less efficient than the residual bootstrapis
more appropriate in cases in which X contains ran@ather than fixed) explanatory
variables (van der Leeden et al., 2008). Noteftirainbalanced data, the total
bootstrap sample size may vary depending on whigdtars are selected in a given
bootstrap sample.

Regardless of the bootstrap method employed, laftletstrap data sets are
generated the procedure for obtaining bootstrapatgs is the same. The value of
the statistic of interest is computed for each stwap sample, and the resulting
bootstrap distribution is used to approximate #ra@ing distribution of the statistic
of interest for purposes of inference and/or iraeoonstruction.

3.3. Bootstrap Approaches to MSE Approximation ireld Models

Given the promise of bootstrap methods and theleno of MSE estimation
in mixed modeling, it is not surprising that bocgtbased approaches to MSE
estimation have been proposed. These include jdek&stimation (Jiang, Lahiri, &
Wan, 2002), bootstrap-based improvements of aadyiproximations (Butar &
Lahiri, 2003; Gonzalez-Manteiga, Lombardia, MoliMarales, & Santamaria, 2008;
Pfefferman & Glickman, 2004), and parametric boafstMSE estimation (Hall &
Maiti, 2006).

Bootstrap-based MSE estimates computed using thed®ds can be used in

standard methods of inference—for example, to caenponfidence limits for a fixed
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effect using formula (1). However, standard methafdaference depend not only
upon accurate MSE estimation, but also upon themess of the approximation to
the test statistic distribution; if bootstrappiisgo be carried out, there is no reason to
limit its use to MSE estimation when it can alsaused to estimate the test statistic
distribution, thereby eliminating the need to apymate it by some known
distribution.

In fact, bootstrap estimation of the test statidistribution makes MSE
estimation unnecessary as well. Under the bootsttapral approach, discussed in
the following sections, confidence limits are basadutoffs of a bootstrap
distribution rather than onor z distribution cutoffs, and an MSE estimate is not
required. A general presentation of bootstrap vatisris provided in Section 3.4,
followed by a discussion of parametric bootstraprivals for fixed effects in mixed
models in Section 3.5.

3.4. Bootstrap Interval Construction
Let statistic t be an estimator of T, where T m@del parameter or some

function of model parameters. Lt Be an estimator for the variance of t. In this

A

dissertation, the statistic of interest is the EBL&f the fixed effect T, t = ), but
bootstrap intervals are presented below in moremgéterms. First, however, the
standard analytic approach to interval construasareviewed.

Standard analytic intervaldt the sampling distribution of t is normal, or
becomes so asymptotically, then standard analgtibadence limits for T are based

on the quasi-pivot (t — T)}swhich is assumed to have an approximate standard
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normal distribution (or, for samples that are r@oge, & distribution). An
approximate le: normal-based confidence interval is given by #{.50%, t — 2,25),
which simplifies to the more familiar formula

(2) (t—2.uSt+ 2.408)
by symmetry of the normal distribution.

Bootstrap normal intervalThe bootstrap normal interval is constructed
simply by substituting a bootstrap estimate of 3@y ¢, for s in the normal-
based interval formula (2). Givdhbootstrap samples and values of t*, a reasonable
substitute for gs

1 B 1/2
5* {—Z(t * _ﬂ :
B b=1
In the mixed model context, where t is the EBLURg of the bootstrap-based
methods mentioned in Section 3.3 could be usedtimate SD(t).

Because the quasi-pivot distribution is approxirdateder this method by the
normal distribution, not by a bootstrap distribatithe bootstrap normal is not a
bootstrap interval in the strictest sense. Noteithaonstructing the interval, the
bootstrap distribution of t* is used only to comgtite sampling variance of t*; the
other information contained in the bootstrap disttion—i.e., information about its
shape—is ignored. This is not the case with the baotstrap intervals described
below.

Efron’s percentile intervalEfron’s percentile interval (see Efron &

Tibshirani, 1993) is based on the premise thabtwstrap distribution of t*

37



resembles the sampling distribution of t. Undes firiemise, it seems reasonable that
an interval containing 100(2)% of the ordered realized values of t* would also
contain T in roughly the same percentage of repesdenples from the population
(Chernick, 2008). Let,t denote aru cutoff for the bootstrap distribution of t*—i.e.,
a value that cuts off approximately 100%o of the observed values of t* to its left.
Based on the approximations

(B)  loamP(w2* <t <trur*) = P(t2* <t <tiw2*) = P(t2* < T <trap2*)
an approximate Jxconfidence interval for T is given by &, t1.2%).

For theoretical reasons beyond the scope of tegediation (see Chernick,
2008), t* should ideally be defined as togB + 1)" ordered value of t* in the
bootstrap sample, wheBeis chosen such thaiB + 1) is an integer. (B + 1) is
not an integer, interpolation can be used to fim@pproximate value fogt (see
Davison & Hinkley, 1993). Referencesdacutoffs of bootstrap distributions in the
remainder of this dissertation are given with teinition in mind.

Efron’s percentile interval does not work well Bmall samples, especially
when drawn from asymmetric distributions (Chern@B08). Its performance can be
improved by modifications discussed below. Noté tha interval may not be
symmetric about t, unlike standard analytic intésva

Bias-corrected (BC) intervalf t is a biased estimator of T, the two
probabilities on the far right in (3) above wilhtéto be unequal. Assuming tis a

plug-in estimatoiof T—i.e., t is calculated using the formula fob¥ substituting an
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estimate for each unknown parameter—Efron’s petlegnterval can be bias-
corrected by the following method, described byE&fand Tibshirani (1993).

Let p+<; denote the proportion of observed values of t§ lx&n the observed
value of t. The bias correctiog & the point on the standard normal distributiat t
cuts off p of the area under the curve to the left—i.g5 B™(pr<), whered is the
standard normal cumulative distribution functioor Example, if pt = 0.512,
indicating a tendency of t* to underestimateyt=20.03 (which cuts off 51.2% of the
area under the normal distribution to its left).

In constructing the Je-bias-corrected (BC) interval, the usual cutoff
proportionso/2 and 1-e/2, are replaced by the following bias-adjustedoprtions:

oo = D (220 + Zy2) andowp = D (220 + Z1-42),
where z,, and 7Z.,> denote standard normal cutoffs. As indicated byntbtation, oy,
is the area under the normal curve to the lefzgf2z,,, andoy,p is the area under
the normal curve to the left of 2% z,». The lower endpoint of the BC interval is
the value that cuts off;, of the observed values of t* to its left, sayt§], and the
upper endpoint the value that cuts @ff of the values of t* to its left, say ©i(y).

Note that if the sample median of the bootstragrithution of t* is equal to t,
pe<t = 0.5, 3 = 0, and no bias adjustment takes place. On ther diand, if p<; is less
than 0.5, the observed median bias of t* is pasjtand the bias-correctiog will be
negative, resulting in both the lower and upperfidemce limits being adjusted
downward. Similarly, a negative median bias wiuk in adjusting the confidence

interval upward.
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Bias-corrected accelerated (Bdnterval.In some cases the standard
deviation of t, SD(t), may depend on the true vati€, and the performance of the
BC interval can be improved by adjusting for thegpendence. Thaccelerations the
rate at which SD(t) changes with respect to T. Vhlse is approximated on a
normalized scale by the constanGivena, the following cutoff proportions are

computed:

Znt+2Z Z,t+2Z
o0, =@ z,+—2—42 | q,=0Q|z,+—2L 2 :
1-a(z, +2,,) 1-a(z,+ 2z, )

The BG interval has lower endpoint ©{) and upper endpoint ), where each
cuts off the indicated proportion of the observatues of t* to its left. This interval
performs well in a wide range of cases (Cherni€ig).

Efron (1987) proposed various methods of estimatiegacceleration, as well
as a method for reducing a multi-parameter prolitemsingle-parameter problem
using multivariate calculus so that an acceleratstimate can be obtained. This
multi-parameter technique can be used with thenpaitéc bootstrap for mixed
models but is rather complicated (van der Leedeh. €2008).

Hall's percentile intervalHall (1992) proposed a percentile interval based o
the bootstrap estimate of the sampling distribugb(t — T). Let g* denote thex
cutoff for the bootstrap distribution of g* = (t*t}: Assuming P[g>* < (t—T) <q.
«2"] = 1-a, an approximate Ixconfidence interval for T is given by (t —&p*, t —

2%). In terms of t* as defined above for Efron’s pentile interval, g* equals t* —t,
q
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and Hall's interval is given by (2t +4,2*, 2t — t,2*). Thus, Hall's interval seems
backwards compared to Efron’s, and vice versa.

Bootstrap-t intervalThe bootstragor percentiled interval (Efron &
Tibshirani, 1993) is based on the bootstrap eséimahthe sampling distribution of
the quasi-pivot (t — T){sLet g* = (t* — t)/s* denote the bootstrap pivot
approximation, wherg*sis an estimate of SD(t*). Let,§ denote thex. cutoff for the
bootstrap distribution of g*. Assuming

1o~ Plopz* < (t* — t)/s* < Qrar*] = P[Gu2* < (t = T)/S < tho2”],
an approximate J¢confidence interval for T is given by

4) (t — qo2*st*, t — Qu2*st®).

The bootstrag-interval generally performs better than Hall’seivial because
(t* — t)/s* behaves more like a pivot (i.e., is less depehdarthe parameter
estimates) than (t* — t), the quantity on whichlidahterval is based (van der
Leeden, Meijer, & Busing, 2008). Although it conges at a faster rate (see Section
7.1, Technical Appendix) than standard analytienvells and bootstrap percentile
intervals, the bootstrapis susceptible to influence from outliers and geahd erratic
results (Efron & Tibshirani, 1993). The performarnd¢he interval depends upon
having a reasonably accurate estimate of SD(t),ianthe absence of such an
estimate, the results can be “disastrous” (Ha®21$. 141). If a good analytic
estimate is unavailable, a bootstrap estimate ¢t*$Pan be computed using a
second layer of bootstrapping, but this adds ecostrims of computing time and the

complexity of the calculations required to compilie confidence limits.
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Comparison of bootstrap intervaldamong the available bootstrap intervals,
the bootstrafi-seems to provide the best balance between penaerand cost,
provided SD(t*) can be conveniently and accuragstymated. Like the bootstrap-
the BG interval converges at a faster rate than stanal@adi/tic intervals and
bootstrap percentile intervals (Efron & Tibshirat®93), but the difficulty of
estimating the acceleration for the B6terval seems prohibitive for most
researchers.

In those cases in which the problem of estimatiDg™ makes the bootstrap-
t a poor choice, Hall's interval seems the betteheftwo basic percentile intervals.
Hall (1992) argued that Efron’s interval is inadatpuwithout adjustment. Efron and
Tibshirani (1993) acknowledged that Efron’s intém@uld benefit from adjustment
but pointed out that neither percentile intervaf@ens well generally and gave two
cases for which Efron’s interval is more approgridh cases for which SD(t*) is
relatively constant with respect to t*, the quantipon which Hall’s interval is based,
t* —t, closely approximates a pivotal quantityddtall’s interval should outperform
Efron’s.

3.5. Parametric Bootstrap Intervals for Mixed Maslel

Using a parametric bootstrap to construct basicgmgile and bootstrap-
intervals for a mixed effect T in the mixed modehtext is relatively straightforward.
With the parametric version of the bootstrap themo need to choose a resampling
scheme, total sample size remains constant acoméstiap samples even with

unbalanced data, and no programming is necessagjlate underdispersed
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residuals. Its limitation, of course, is that landard analytic methods (including
likelihood-based methods), it is based upon thaludistributional assumptions
regarding the random terms in the mixed model.

Applications of the parametric bootstrap to intéa@nstruction in mixed
modeling have been relatively few. Carpenter et24l03) used both a parametric
bootstrap and a nonparametric residual bootstralifrad to correct for
underdispersion) to construct Efron percentilenrdks for fixed effects using data
simulated under a random coefficient model with-nonrmal random effects and
non-normal errors. The nonparametric intervalsdwacatrage levels closer to the
nominal rate than the parametric intervals fopallameters for each of the three
sample sizes studied, with coverage accuracy tontimparametric intervals
generally improving with increased sample sizesThsult is not surprising, as the
parametric bootstrap is based on the assumptianrafially distributed random
terms, whereas the nonparametric bootstrap is not.

Harville and Carriquiry (1992) proposed what isezdgmlly a bootstrap-
prediction interval based on a parametric bootstfaging this idea further,
Chatterjee, Lahiri, and Li (2008) developed a patin bootstrap method for
constructing intervals for mixed effects of thenfol = c'(X§3 + Zu), where c is a
constant vector. Define (as above) a parametritsirap data set by Y* =f¢cLs +
Zu* + e*. Because u* is known (after simulation) Bogiven bootstrap sample, a
parametric bootstrap (PB) estimate of T is givenpgy= c'(XPecLs + ZuU*).

Alternatively, T can be estimated by the boots&E&vUP, say ¢g ur*, Which is
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computed by treating the bootstrap data set likleahdata set (i.e., with unobservable
random effects and errors that must be estimatetiuaing the usual EBLUP
formula.

Let o*rjy denote the conditional variance of T given Y, &tdsy denote the
plug-in estimator oty (obtained by substituting variance component eesifor
their targets in the formula ferry). As an alternative to the standard interval based
on the normal pivot (T tr)/ory, Chatterjee et al. (2008) simulated parametric
bootstrap samples and computed the quasi-pivot@stur* — tre*)/stiy* for each
bootstrap sample, whergy denotes the bootstrap value @fys Their prediction
interval is given by fsLup + Gi*Stjv, tesLup + B*ST)y), Where g* and g* are
appropriate quantiles of the bootstrap distributbthe quasi-pivot g*.

Chatterjee et al. (2008) showed that this intelmaal a high rate of
convergence that is dependent upon total sampe rsiganing accuracy can be
improved by increasing the number of clusters ombyeasing cluster size. By
contrast, coverage rates of intervals based ory@m8SE approximations can be
increased only by adding clusters. Chatterjee. eirmulated data under the Fay-
Herriot model and found that the coverage ratdbaf intervals were consistently
closer to the nominal rate than those of standdgeivals based on the Prasad-Rao
approximation.

The theoretical and simulation results presente@hmtterjee et al. (2008) are
promising, but their method cannot be appliedstedieffect estimation without

modification. The denominator of their quasi-pivéiy*, is an estimator ofry, the
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conditional variance of T given Y; but when T isdd (e.g., T = i§), its variance
(conditional or otherwise) is zero, like that ofyasonstant.

A fixed effect version of the quasi-pivot used byaierjee et al. is

g* = (teLue™ — teBLUE)/S™,
where tg ue IS estimated from the original data agidapproximates the SD of
tegLue* (i.€., the square root of its MSE as an estimafdgg ye). This is identical to
the quantity one would use in applying the boogstrapproach to interval estimation
of T, and given a suitable choice f@t, sntervals can be constructed using the
bootstrapt formula (4), with t* = gg ue* and t = kg e

As noted above, the performance of the bootdteggproach depends upon
the quality of the estimator of SD(t*) used in thenominator of the quasi-pivot. Use
of a bootstrap-based estimator requires a secooistbap iteration; given the
additional programming and computing time assodiatith an added layer of
bootstrapping, an analytic approximation seemsepabte. This is the approach taken
by Chatterjee et al. (2008), who used a simpleyticgllug-in estimator in their
study. In fixed effect estimation, the Kenward-Rogethod would seem to be the
best choice for approximating SD(t*) under mostdibans.

Simple alternatives to the bootstriagpproach are Hall's (1992) percentile
interval, based on the bootstrap distribution g@f (f+* — tesLup), and Efron’s interval.
Unless the SD of the numerator is roughly constartss bootstrap samples, Hall's
interval may not perform as well as the bootstr@gan der Leeden et al., 2008), but

its advantage is that it can be computed withowgstimate of this SD.
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Chapter 4. Methods

Three simulation studies were carried out to campize performance of
several analytic and parametric bootstrap intenAdlparameter estimates were
obtained using SAS PROC MIXED with the REML option.

4.1. Simulation Study 1

In the first simulation study, interval methods evieompared using data
simulated from the one-way RANOVA modej ¥ o + U + g;, with 3o = 0. Two
ICC conditions were considered, with the values 6fainds’ chosen such that
Var(Y;) = o,° + 6 = 10 and ICC = 0.05 or 0.10. Data were generatetifo sample
size conditionsmn = 10 andn = 15. Each group of five clusters comprised foung
clusters and one 6-unit cluster.

Scores for a fixed predictor; xwere simulated with random draws from a
N(O, 100) distribution, each rounded to the neadd3t, and the following nested
error regression model was fit for each simulatath det: Y = o + f1Xj + Wi + §;.
Note that the data were generated independentheafjs—i.e., the value d¥; in the
generating model was zero.

For each data set, formula (1) was used to corigtmacanalytic intervals for
B1 at 90%, 95%, and 99% confidence levels. Naivevate were computed using
distribution cutoffs witm — pdegrees of freedom, and Kenward-Roger intervate we
computed using the Kenward-Roger (KR) option in $ABOC MIXED.

Using the random coefficient model, 999 paramdtootstrap samples were

generated for each simulated data set and usexhstract Hall, Efron, and
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bootstraptintervals forp; at the three nominal confidence levels: 90%, 9864,
99%. The Prasad-Rao MSE approximation, obtainetjusie KR option in SAS
PROC MIXED, was used in calculating the bootstragtervals. The observed
coverage rate of the five intervals was calcula®the proportion of data sets for
which the interval contained zero.

A two-sided,a-level test of the hypothesissH; = 0 can be conducted by
constructing a le- confidence interval fof; and rejecting blif the interval does not
contain zero. Because the data in this study warelated withp; = 0, the Type |
error rate of the interval-based hypothesis test, he probability of rejecting a true
null hypothesis) can be estimated by the proporicsimulated data sets for which
the interval does not contain zero, or equivalertlyone minus the observed
coverage rate of the confidence interval.

Note that an interval may have poor coverage becaistoo wide or too
narrow, because it is biased upward or downwarteoause of some combination of
these problems. In order to assess bias in therfieevals, each case in which an
interval failed to contain zero was classified a®gerestimate (when the lower
endpoint exceeded zero) or an underestimate, @prtportion of misses due to
overestimation was computed for each interval uedeh nominal level.

4.2. Simulation Study 2

In the second simulation study, repeated measateswere simulated using a

fitted model obtained by Terracciano et al. (200=) study of personality change in

adulthood. During this 15-year study, researchémsiaistered the Revised NEO
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Personality Inventory (NEO-PI-R; Costa & McCrae92pat least once, and as many
as 11 times, to each of 1,944 (967 female, 977 paleicipants in the Baltimore
Longitudinal Study of Aging. The average numbeadiinistrations per participant
was 2.6; the average time between administrati@s2i8 years. Data were gathered
from participants as young as 20 and as old asuigithe study, but the bulk of the
data came from participants over 60. The averageatfirst administration was 56.7,
and average age across all administrations was 64.5

For each scale in the NEO-PI-R, Terracciano €R805) fit a random
coefficient model with age (in decades, centerexiailts grand mean) as a linear
predictor, as well as a random coefficient modehwage as a quadratic predictor.
After choosing the better of the two models basediodel fit using a likelihood
ratio test, they tested for effects of gender astibct. They arrived at the following
fitted model for Impulsiveness (a facet of the Nelgism factor):

Y; = 48.3 + g — 0.975(AGE — 6.45) + 4i(AGE; — 6.45) + ¢,
where Y; is the Impulsiveness score for tltle subject at thggh administration, AGE
is the age in decades of title subject at thgh administration, gl is theith subject’s
random deviation from the mean intercept,sitheith subject’'s random deviation
from the mean slope, anglie the random error term associated withjthescore for
theith subject. The variances of,wh;, and ¢ were estimated to be 52.91, 2.27, and
25.76, respectively. (Terracciano et al. did notleldhe covariance betweeg and

U;.)
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The rationale of the simulation study is as fokoWBuppose the fitted model
and variance parameter estimates obtained by Teracet al. (2005) provide a
reasonably accurate estimate of the population heoakthat the standard mixed
model assumptions are valid. If the variance patenestimates are treated as
population parameters, the distributions of thelcan terms are knowngu~ N(O,
52.91), ui ~ N(O, 2.27), and;je~ N(0O, 25.76). Given values for the AGE variable,
random sampling of subjects and their scores cainbglated by drawing random
terms from these distributions for each subject@sidg these values to compute
simulated Impulsiveness scores. After simulatitgrge number of such data sets, the
performance of confidence intervals can be assdssedmparing each interval’'s
nominal coverage rate to the proportion of simulatata sets for which it contains
the value of the target parameter—in this study fiked slope associated with AGE,
which was equal to —0.975.

Data were simulated for 5,000 samples of 15 suhjé&ar simplicity, three
scores were simulated for each subject, with eaatescorresponding to one of three
equally spaced time points. (This is comparabke teal-life study in which each
administration occurs on the same day for all stibjeTime points were 2.8 years
apart. Subject ages at the median time point weaeesl at equal intervals from 59.5
to 69.5 years (and thereby centered at 64.5 yg&8®3ause subject age is considered
fixed in the model, simulating a random samplegdsais unnecessary. The random
coefficient model allows a unique regression irgpt@and slope for each subject, and

in theory the ages at which data are gathered $obgect have no effect on the line;
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they simply determine the points on the line tatabserved.) Ages were converted
to decades, mean-centered, and used (along withirthegated random terms) to
compute Impulsiveness scores.

For each simulated data set, SAS was used toasttime fixed intercept and
slope, and the variances of the three random tdBowstrap Impulsiveness scores
were generated using these fixed intercept aneéstepmates from PROC MIXED,
the subject ages in the simulated data set, arbnamerms (intercepts, slopes, and
errors) obtained by pseudo-random draws from tiespective estimated
distributions. In other words, bootstrap samplesevgenerated in the same way as
the simulated data sets but based on differentetea estimates: Bootstrap data
were based on parameter estimates obtained fromuased data set, and the
simulated data were based on estimates from Tearaxet al. (2005).

For each simulated data set, naive, Kenward-Rétgh, Efron, and
bootstrapt intervals for the fixed slope were constructethatthree nominal
confidence levels. The bootstrap intervals weretas 1,999 parametric bootstrap
samples per data set. The Prasad-Rao approximvadisnised to compute the
bootstrapt intervals. As in the first simulation study, profons of misses due to
overestimation were computed along with intervalezage rates.

4.3. Simulation Study 3

In the third simulation study, 3,250 data sets vemaulated using the random

coefficient model Y = o + Wi + iUy + g, with Bo = 0,B1= 2, Var(wi) = 1, Var(ui)

= 1, andoé® = 4. The random components of the intercept amgesivere generated
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independently—i.e., Cov{y uy;) = 0. Scores for a fixed predictor, xvere simulated
with random draws from a N(O, 1) distribution, eactinded to the nearest 0.01.
Each of the data sets comprised either ten or wEdHUNIt clusters.

For each data set, PROC MIXED was used to obtaimates of the model
parameters, including the covariance between thaora intercept and slope. The
FAO(2) option was used to ensure that each estdr@taatrix was a plausible
covariance matrix (i.e., convertible to a correlatmatrix), and a lower bound of 0.01
was set for both the random intercept variancerandom slope variance.

Analytic and parametric bootstrap intervals ffpmwere constructed at 90%,
95%, and 99% confidence levels. In addition tortAa/e and Kenward-Roger
intervals considered in the first two simulationdies, a third analytic interval was
constructed using the naive MSE approximation hedSatterthwaite degree of
freedom approximation developed by Giesbrecht amth$3(1985) and adopted by
Kenward and Roger (1997) for use in their methdok Fatterthwaite degrees of
freedom were obtained using the KR option in PROGED.

Using 2,500 bootstrap samples for each simulateisd, Hall, Efron, BC,
and bootstrap-intervals were constructed. Bootstrap samples/foch PROC
MIXED did not converge were omitted, but this hadegligible effect on the number
of bootstrap samples per data set, the minimungl&B86. In pilot studies, intervals
computed using the naive approximation and Sattarth degrees of freedom had
more accurate rates of coverage than Kenward-Roggvals, so the naive MSE

approximation was used to compute the bootdtiafervals.
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Chapter 5. Results and Discussion
5.1. Results of Simulation Study 1

Interval coverage rates and percentages of overatstin, respectively, are
presented in Tables 1 and 2 in Chapter 8. Ovetafive intervals performed well in
terms of coverage, regardless of sample size onm&@:. Not surprisingly, coverage
rates and levels of bias were generally better utindelarger sample size. In most
cases, either the Kenward-Roger or bootstriaperval had rate of coverage closest to
the nominal level. There was no discernable effééCC value on Kenward-Roger
coverage rates; in fact, for both sample sizesgi@ge rates were better in some cases
for the smaller ICC value.

5.2. Results of Simulation Study 2

Tables 3 and 4 (see Chapter 8) contain coverage aad percentages of
overestimation for the second simulation study. &e intervals had the best
coverage rates for all three nominal levels, whig iHall percentile intervals coming
in a close second. The Efron interval coveragesratiénoticeably short of the
nominal levels, while the Kenward-Roger coveragesaxceeded them.

5.3. Results of Simulation Study 3

Satterthwaite degrees of freedom could not be comdpuith PROC MIXED
for 121 of the 3,250 simulated data sets with 10 and for 8 data sets wittn= 20.
Intervals based on the Satterthwaite degrees eflérm were not computed for these

data sets, and their reported coverage rates aesl lom the data sets for which they
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could be computed. Coverage rates for the othenials were based on all 3,250
data sets.

As shown in Table 5, the naive intervals computét ®atterthwaite degrees
of freedom had the best coverage rates, followetthéyootstrap-intervals.
Coverage rates for the other intervals fell shbthe nominal rate by over one
percent in nearly every case. Better coverage wiais\eed for the larger sample size
by all the intervals save the naive/Satterthwaitervals, which performed at the
same level for both sample sizes.

The performance of the three percentile intervdlll( Efron, and BC) was
nearly identical. The bias correction used in dalitng the BC intervals did little to
correct the bias in the Efron intervals and, irt,fawreased it in some cases (see
Table 6).

5.4. Discussion

As demonstrated in the simulation studies, therpatac bootstrap interval
approach represents a viable alternative to stdndathods of inference for fixed
effects in the mixed model, even with small sangites. The bootstrapmethod
seems especially promising, in spite of its depenéde@ipon an accurate MSE
estimate. The question of which bootstrap interaa¢sbest suited for which models
and conditions might be addressed in future studies

The primary limitation of the parametric bootstiapts dependence upon the
mixed model assumption of normally distributed @mderms. If this assumption is

not met, or cannot be verified, the nonparameimt&irap is more appropriate than
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either standard methods of inference or parametratstrap methods. To the author’s
knowledge, the question is open as to whether teexry advantage, other than
convenience, to choosing the parametric bootstvap @ nonparametric bootstrap
when the mixed model assumptions are met.

The issue of statistical power is not addressdhdigndissertation but merits
consideration. A comparison of the power of varibaststrap and standard methods,
coupled with further research regarding intervalezage rates, might help to identify

a best method for various sample sizes.
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Chapter 7. Technical Appendix
7.1. Rate of Estimator Convergence

In comparing estimators, it is useful to considher tate at which the estimator
converges to its target (or, equivalently, the edtevhich the estimator’s bias goes to
zero) as sample size goes to infinity. Rates oeogence can be expressed
succinctly using the Landau symli(-), which can be defined as follows: An
estimator { of target T has rate of converger@@ ) if there exists some constant k
such that Jt— T| <kn™ for constant g and sufficiently large Informally, one might
say thatt converges at least as quickly as’kThis notation facilitates comparison of
an estimator’s rate of convergence with that adraifiar function ofn, and with rates
of convergence of other estimators.

For example, consider the ML variance estimatot.X_be a random variable,

and let %, xo, ..., X, be a random sample drawn from the distributioX.ofhe ML

estimator ok = Var(X) is given byc?, :EZ(Xi —X)*. This estimator has
n

expected value®(1 — 1h), so its bias is given by*(1 — 1h) —c® = 6°/n. Asn goes to
infinity, this bias goes to zero at same rateral fwhere k =52, so the ML estimator
has rate of convergencn™).
7.2. Kackar-Harville and Prasad-Rao Approximations
Kackar and Harville (1984) showed MSH[}] = MSE[t(©0)] + E[t(0) — t©)]>
The term on the far right (which is neglected by tlaive approximation) can be

approximated as follows. The first-order Taylor arpion of té) abouto is given by
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t(0) ~ t(0) + t'()(6 —0), where t' ) is the row vector of partial derivatives af)(
with respect to the componentstf Subtracting ) from both sides, squaring, and
taking the expected value yields B t@)]? ~ E[t'(0)(§ —0)]>.

Kackar and Harville (1984) proposed approximatimgterm on the right (and

thus the term on the left) by tr[®B(0)], where AQ) is the variance-covariance

matrix of t'@), and BQ) is an estimate of E§(—e)2. Computational formulas for A)
are given in Kackar and Harville and, for the fiveftect case, in Kenward and Roger

(2997). If ML or REML estimation is used, the asyotfr variance-covariance
matrix of & can be used for B]. The Kackar-Harville MSE approximation is
obtained by adding their approximation of lﬁﬂ(— t(0)] to the naive approximation:

MSE[t(0)] ~ MSE[t()]0] + tr[A(0)B(6)].

Harville and Jeske (1992) modified the Kackar-Hi&approximation to
adjust for bias in MSE[G()lé] as an estimator of MSEf)]. Let MSE'[t0)] =
(0l00)MSE[t(0)], the column vector of first partial derivativeEMSE[t(0)] with
respect to the components®f The second-order Taylor expansion of MS(B[@(]
abouto is given by
(5)  MSE[t©)|0] ~ MSE[t®)] + (6 —0)MSEt(0 )] + ¥2(6 —0)'C(©®)(6 —0),
where C@) is the matrix of second partial derivatives of Bf§6 )] with respect to

o*MSH[t(0)]

0—i.e., CP) hasijth element £=
6) hasij 2 26,00,

, Where®; is theith component of.

63



Taking the expected value of each side of (5) igndring bias ind yields the
approximation

E{MSE[t(0)|0]} ~ MSE[t()] + (L/2)tr[C®)B(0)].
The second term on the right approximates theibiMSE[t(O)|é] as an estimate of
MSE[t(6)].

For linear covariance structures (i.e., modelsafbich V can be expressed as
a linear combination of the component®RfC{O) = —2A@), where as above, A is
the variance-covariance matrix obji(Thus, the bias in MSEHI|§]} is
approximately —tr[AQ)B(0)]. Subtracting this (negative) bias from the Kaeka
Harville approximation, Harville and Jeske (199Bjaoned the approximation
MSE[t(0)] ~ MSE[t(©)|0] + 2tr[A(0)B(0)].

Note that the bias adjustment, trpNB(0)], is exactly the approximation of
E[t(é) — 1(0)]? derived by Kackar and Harville (1984); thus thetéa of two in the
rightmost term. Prasad and Rao (1990) developéditasestimator for three
specific mixed models, but unlike Harville and J=§k992), they modified the
Kackar-Harville approximation by defining @) differently.

In both the Kackar-Harville and Prasad-Rao appraxioms, the term
tr[A(0)B(0)] is used in approximating Efi() — (0)]% Hulting and Harville (1991)
noted that for values of the variance ratio clasertequal to zero, this approximation

may be inadequate.
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7.3. Satterthwaite’s Degree of Freedom Approxinmatio
Satterthwaite’s (1941, 1946) method is based omssamption that the
variance quantity for which degrees of freedomtaree approximated has a chi-
square distribution when suitably scaled. Settivggttue variance of the scaled
variance quantity equal to what the variance ofstteded quantity would be under an
assumed chi-square distribution allows one to sfdwéhe degrees of freedom.

The method can be used for inference in the mixedeias follows (Littell,

2002). Consider the quasi-pivotQtX— T]/s, where té) is the EBLUE and;&is an
MSE approximation. The scaled MSE approximatigfiE(s?) is assumed to have
chi-square distribution witki degrees of freedom. The variancerst/E(s?) is
Var[vs?/E(s%)] = v¥Var(s?)/[E(s)]?. Under the chi-square assumption, this variance
equals twice the degrees of freedovfiVar(s?)/[E(s)]? = 2. It follows thatv =
2[E(s9)]%Var(s?). In practice, this quantity is approximated bg2{/g'Dg, where D

is the asymptotic variance-covariance matrix) ofand g (known as thgradien) is

the column vector obtained by differentiatingusith respect to each componenifof

and evaluating the result at

(SAS Institute Inc., 2008).
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Chapter 8. Tables

Table 1
Coverage Percentages—Simulation Study 1
Nominal ICC =0.05 ICC =0.10
Rate Interval m= 10 m=15 m= 10 m=15
Naive 89.5 89.8 88.7 89.4
Kenward-Roger 90.1 90.4 88.75 90.0
90% Efron 90.6 90.6 89.6 89.6
Hall 90.6 90.9 89.7 89.9
Bootstrapt 90.0 90.4 89.8 90.0
Naive 94.4 94.6 93.9 94.4
Kenward-Roger 95.1 95.0 94.55 95.1
95% Efron 95.4 95.1 94.9 94.9
Hall 95.3 95.1 94.7 94.8
Bootstrapt 95.1 95.1 94.7 95.0
Naive 98.7 98.8 98.6 98.9
Kenward-Roger 98.9 99.0 98.8 99.0
99% Efron 98.9 99.0 98.7 99.0
Hall 98.8 98.9 98.8 99.1
Bootstrapt 98.9 98.9 98.9 99.2
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Table 2

Percentages of Misses due to Overestimation—SiionlStudy 1

Nominal ICC =0.05 ICC=0.10
Rate Interval m= 10 m= 15 m= 10 m= 15
Naive 51.2 52.0 51.1 49.3
Kenward-Roger 51.3 51.5 50.9 49.1
90% Efron 51.3 52.3 51.3 49.6
Hall 51.3 52.4 51.0 49.6
Bootstrapt 51.3 51.0 51.2 49.6
Naive 54.7 52.6 51.2 50.8
Kenward-Roger 55.4 53.2 50.6 49.9
95% Efron 54.2 53.3 49.9 49.3
Hall 53.8 53.5 49.4 47.3
Bootstrapt 53.0 53.3 51.8 50.0
Naive 50.8 55.1 45.7 50.5
Kenward-Roger 514 524 47.4 50.0
99% Efron 56.9 53.8 48.4 48.5
Hall 56.0 54.5 45.8 50.0
Bootstrapt 48.6 55.0 47.4 57.1
Table 3
Coverage Percentages—Simulation Study 2
Nominal Coverage Rate
Interval 90% 95% 99%
Naive 90.4 94.9 99.0
Kenward-Roger 91.9 96.1 99.4
Efron 88.5 92.8 96.8
Hall 90.8 95.1 99.2
Bootstrapt 91.0 95.7 99.3

67



Table 4
Percentages of Misses due to Overestimation—Siionl8Study 2

Nominal Coverage Rate

Interval 90% 95% 99%
Naive 50.4 47.5 47.1
Kenward-Roger 49.4 45.4 42.9
Efron 39.8 38.0 44.1
Hall 48.9 45.9 38.1
Bootstrapt 49.0 46.1 40.0
Table 5
Coverage Percentages—Simulation Study 3
Nominal Coverage Rate
90% 95% 99%
Interval m=10 m=20 m=10 m=20 m=10 m=20
Naive 6 —p 87.2 88.4 92.2 93.7 97.2 97.9
Naive (Satterthwaite) 90.2 90.3 95.2 94.8 98.9 98.9
Kenward-Roger 85.2 87.7 914 93.3 97.3 98.1
Efron 87.3 88.5 91.9 93.6 97.2 97.9
BC 87.2 88.6 92.2 93.6 97.1 97.9
Hall 87.2 88.6 92.1 93.6 97.1 97.8
Bootstrapt 89.3 90.5 93.8 94.9 98.2 98.9
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Table 6
Percentages of Misses due to Overestimation—Siionl&Study 3

Nominal Coverage Rate

90% 95% 99%
Interval m=10 m=20 m=10 m=20 m=10 m=20
Naive o —p 50.8 50.3 48.8 51.7 48.4 515

50.0 50.6 50.7 52.1 57.1 54.3
51.9 49.9 47.4 50.5 a7.7 51.7

Naive (Satterthwaite)
Kenward-Roger

Efron 50.5 49.6 48.5 51.4 46.7 47.8
BC 50.4 49.7 48.0 51.9 45.7 47.8
Hall 51.0 50.7 49.2 53.1 47.4 49.3

Bootstrapt 49.6 50.8 46.8 52.7 49.2 56.8
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