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Abstract  

To fully understand the underlying mechanisms of living cells, it is essential to delineate the 

intricate interactions between the cell proteins at a genome scale. Insights into the protein 

functions will enrich our understanding in human diseases and contribute to future drug 

developments. My dissertation focuses on the development and optimization of machine 

learning algorithms to study protein-protein interactions and protein function annotations 

through discovery of domain-domain interactions. First of all, I developed a novel domain-

based random decision forest framework (RDFF) that explored all possible domain module 

pairs in mediating protein interactions. RDFF achieved higher sensitivity (79.78%) and 

specificity (64.38%) in interaction predictions of S. cerevisiae proteins compared to the 

popular Maximum Likelihood Estimation (MLE) approach. RDFF can also infer interactions 

for both single-domain pairs and domain module pairs. Secondly, I proposed cross-species 

interacting domain patterns (CSIDOP) approach that not only increased fidelity of existing 

functional annotations, but also proposed novel annotations for unknown proteins. CSIDOP 

accurately determined functions for 95.42% of proteins in H. sapiens using 2,972 GO 

‘molecular function’ terms. In contrast, most existing methods can only achieve accuracies of 

50% to 75% using much smaller number of categories. Additionally, we were able to assign 

novel annotations to 181 unknown H. sapiens proteins. Finally, I implemented a web-based 

system, called PINFUN, which enables users to make online protein-protein interaction and 

protein function predictions based on a large-scale collection of known and putative domain 

interactions. 

 
Keywords: Systems Biology, Bioinformatics, Computer Science, Data Mining, Machine 

Learning, Protein Interaction Network, Domain Interaction Network, Protein Function 
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Chapter 1. Introduction 

The science of biology was established in the early 19th century as scientists discovered that 

living organisms on earth shared fundamental characteristics, and ever since, people have 

become increasingly fascinated by the origin, evolution, classification, structure, function and 

growth of all living organisms. We are genuinely intrigued by the seemingly simple yet 

intricate question, “What is life?” 

Over the last half century, molecular biologists have adopted reductionist thinking in 

understanding life from a scientific point of view by breaking living organisms down to their 

fundamental components, the individual genes and molecules. The principle behind 

reductionist thinking is that we can figure out what happens at the higher-levels from what we 

observe at the lower-levels. As Denis Noble interpreted in his book, the reductionist causal 

chain for living organisms runs entirely ‘one-way’ upward, from genes to the organism [1]. It 

is commonly known that genes produce proteins, the proteins constitute cells, and the cells 

organize into tissues such as skin, bone, and muscle. Then the tissues form organs such as 

heart and kidney, and finally, all the organs together with immune and hormonal systems 

form the organism (Figure 1.1). 

Throughout the years, reductionist thinking and methods have produced tremendous 

amount of knowledge about the molecular static properties. It has answered many questions 

but raised many more at the same time. The main challenge now is to work out how to extend 

this lower-level knowledge up to entire living systems. This is not an easy problem. A living 

organism is a complex system featuring a large number of simple and identical components 

(e.g. genes and proteins) interacting with each other whose collective activity is nonlinear. 

When we move from proteins to their interactions, the problem becomes seriously 

complicated. Yet understanding the complexities is only the beginning to answer the larger 
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question “What is life?” From genes to organisms (Figure 1.1), assorted components at each 

level are embedded in an integrated system where each has its own logic. Carlson and Doyle 

described an interesting analogy of biological cells to central processing units (CPU) in 

computers [2]. Each cell or CPU is considered to be a complex system composed of 

thousands of components i.e. genes and proteins or transistors. But these systems themselves 

are also components embedded in larger systems such as organs or control systems of 

machines. This encapsulation continues upwards to even larger networks that make up 

organisms, ecosystems, and computer networks [2]. Thus, it is not possible to learn the true 

logic of each system by only examining properties of its individual components. In fact, we 

are confronted by a crucial challenge today: will we be able to reassemble the little pieces 

back together to their original form again? This is where systems biology comes into play. 

 

Figure 1.1 Tree of life – the reductionist causal chain of living organisms 
 

Systems biology is a relatively new field in biological study that focuses on the 

systematic understandings of complex interactions in biological systems. Different people 
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bear different perspectives on the field. There are those who see it as a logical continuation of 

functional genomics where genome-scale experiments are carried out to understand better the 

entirety of processes that occur in a biological system [3, 4]. Their aim is to understand how 

the whole is greater than the sum of its parts. On the other hand, others see systems biology 

as a branch of mathematical biology which involves the study of small systems [5, 6]. For 

these small systems, it is assumed that sufficient parameters can be measured to allow 

simulations of how the individual molecules function together to achieve a particular 

outcome. Aloy and Russell [7] view systems biology as both of these things. Indeed, studying 

single macromolecules no longer dominates the current trend of molecular biology. Now, it is 

the norm to analyze how groups of molecules behave together in complexes, pathways, or 

even complete organisms.  

Over the years, genome-sequencing projects have provided an encouraging domain for 

the studies in systems biology by producing a near complete list of the components that are 

present in various organisms. Post-genomic efforts have aspired to determine relationships 

between those catalogued components. Essentially, systems biology is about understanding 

these complex relationships when all components are considered together in a biological 

network. For example, full comprehension of the metabolic and signaling pathways or gene-

regulatory networks relies on the detailed discernment of the interactions between proteins, 

metabolites, and nucleic acids.  

In this dissertation, I will address two specific problems: (1) elucidating the complex 

interplays between proteins and (2) inferring functions of uncharacterized proteins. Section 

1.1 discusses the problems and their significance in detail. Section 1.2 and 1.3 provides in-

depth reviews of related works. 
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1.1 Significance of Protein Interaction & Function Predictions 

Proteins are the major components of living organisms and the fundamental units of life. The 

entire complement of proteins expressed at any given time under defined conditions by a 

genome, cell, tissue, or organism is called proteome. Compared to an organism’s genome, the 

proteome is much more dynamic because it changes during development due to external 

stimuli, and the proteins can form large interaction networks to regulate and support each 

other. Proteins are fascinating molecular devices, in which they exhibit a wide variety of roles 

in cellular processes such as composing cellular structure, promoting chemical reactions, 

carrying messages from one cell to another and acting as antibodies. For example, structural 

proteins define the physical shape of cells and other parts of our body. Enzymatic proteins are 

the most varied and the most highly specialized proteins that catalyze different kinds of 

chemical reactions. Moreover, there are transport proteins, storage proteins, receptor proteins 

involved in cell’s response to chemical stimuli, hormonal proteins in coordinating bodily 

activities, contractile proteins important in movement, and defensive proteins for our immune 

system. 

For an increasing number of organisms, near-complete lists of genes and encoded 

proteins are made available as a result of the genome sequencing projects. Sequence data is 

deposited at an exponential rate. In the human genome alone, it is estimated that there are 

approximately 20,000 to 25,000 protein coding genes [8]. Nowadays, amino acid sequences 

are available for millions of proteins. However, in order to fully understand the cellular 

machinery, simply cataloging the protein sequences is not enough. The multiplicity of 

functions that proteins execute in most cellular processes and biochemical events is attributed 

to their interactions with other proteins. Thus, it is necessary to delineate the intricate 

interplays between proteins in the post-genomic era.  
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Fundamentally, protein-protein interactions can be studied from two different 

perspectives. In the traditional view, the goal has been to study each interaction individually 

to understand the physical interaction mechanism between two proteins. These individual 

interactions can be determined through experimental methods such as genetic, biochemical, 

and biophysical techniques. To expedite the interaction discovery process, the more recent 

‘high-throughput’ view of protein interactions emerged. It aims to understand the system of 

interactions as a whole by treating proteins as logical entities in which their interactions can 

be visualized as a network. The high-throughput experimental technologies include yeast 

two-hybrid system, tandem affinity purification, and mass spectrometry.  

However, results from two proteome-wide screens in the Saccharomyces cerevisiae [9, 

10] yielded very little overlap. In two later studies by mass spectrometry of purified protein 

complexes [11, 12], the results again exhibited little overlap with each other as well as with 

the interactions from yeast two-hybrid analysis. Such unexpected results have prompted 

speculations that the little overlap between studies may be caused by two factors. First, the 

large-scale interaction screens may be associated with high error rates. Second, the number of 

interactions in yeast is probably much larger than what was expected. 

As a matter of fact, in the most extensively studied organism, Saccharomyces cerevisiae, 

there are approximately 6,000 proteins, and more than 80,000 interaction pairs are recorded 

up to date. Drosophila melanogaster is much bigger compared to Saccharomyces cerevisiae, 

which consists of roughly 13,600 genes. In yeast, it was estimated that each protein may be 

involved in 3-10 interactions [13]. Assuming that this also holds true for the Drosophila 

proteins, the total number of interaction pairs would undoubtedly exceed 100,000. The 

protein interaction statistics in BioGRID [14] indicates that there are only 32,852 interaction 

pairs currently observed in D. melanogaster. Moreover, the human proteome contains close 
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to 100,000 proteins, which would lead to a conservative estimate of at least 300,000 

interactions, and there are only ~35,000 pairs currently available in Human Protein Reference 

Database (HPRD) [15]. Hence, we are still far away from full understanding of the protein 

interactomes. Within one cell, the number of possible interactions is enormous, and this 

presents a potentially limiting factor for experimental analyses. It is simply infeasible to 

experimentally study each and every protein pair in all proteomes. Therefore, we need fast, 

cost-effective and reliable in silico approaches to extrapolate the accumulated knowledge of 

characterized proteins to the uncharacterized proteins. 

It is these interaction linkages between proteins that provide the basis for a precise 

understanding of cellular pathways. Since proteins play a central role in an organism’s life, 

they may guide the discovery of biomarkers that are indicative of a particular disease. There 

are many proteins specific to pathogens that we may want to deactivate. A complete protein 

interaction network may ultimately help us to understand disease mechanisms and facilitate 

the development of therapies optimized for efficacy. 

Although most amino acid sequences of proteins encoded by the genome may be known, 

only a fraction of the protein functions have been annotated. For instance, among the current 

list of Drosophila genes downloaded from FlyBase in November 2006 [16], only 54% are 

annotated with “molecular function” terms in Gene Ontology (GO) [17]. Additionally, many 

proteins are modular, consisting of multiple functional domains, so the existing annotations 

may still be incomplete. While experimental methods such as loss of function mutational 

analysis, RNAi, or targeted misexpression approaches have been very successful in 

identifying protein functions, they are labor-intensive and time-consuming. As a result, much 

of the genome-wide functional annotations are based upon in silico methods. Most function 

prediction algorithms can predict protein functions with 50% - 75% accuracy, and this 
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performance may not be of practical use for biologists. Moreover, some methods use only 

several tens to hundreds of functional categories in the prediction process which results in 

more generic rather than specific functional assignments. Therefore, developing more 

effective in silico methods to increase the fidelity of these functional annotations and to 

propose novel functions for currently uncharacterized proteins presents a major challenge to 

the life science community. The research will eminently aid the biological community as 

higher quality functional annotations are often used by scientists to generate new hypotheses 

and direct their research focus. 

Our understanding of protein functions and disease mechanisms is still under-developed 

relative to the proportion of available supporting biological data. Post-genomic biological 

discoveries have confirmed that proteins execute multiple biochemical functions in extended 

networks. In particular, many proteins must physically bind to other proteins, either stably or 

transiently, to perform their functions. Hence, the functions proteins exhibit are inseparable 

from their interactions. It is only possible for us to study the function of a living cell when we 

understand the structure and dynamics of the complex web of protein interactions. The goal 

of my dissertation research is not only to study the protein interaction network, but also to 

elucidate the unknown protein functions. 

1.2 Methods for Protein Interaction Prediction 

There exist numerous computational approaches for protein interaction discovery. Some 

earlier methodologies focused on estimating the interaction sites by recognizing specific 

residue motifs [18] or by using features and properties related to interface topology, solvent 

accessible surface area and hydrophobicity [19, 20]. Many computational techniques are 

based on other interesting features and combination of features. Table 1.1 lists different 
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prediction methods and for which purpose each is designed for. In this dissertation, these 

methods are classified into two main categories: comparative genomic and classification 

approaches. Details are discussed in the following sections. 

Table 1.1 Different protein interaction prediction methods 

Method Name Protein (P) / Domain (D) 
Interaction 

Physical Binding (P) / 
Functional Association (F) 

Gene co-expression P F 
Gene neighborhood / cluster P F 
Rosetta Stone P, D F 
Phylogenetic profile P, D F 
Sequence co-evolution P, D F 
Protein structure P, D P 
Interaction network topology P P, F 
Interlog P, D P, F 
Amino acid physiochemical property P P 
Kmers P P 
Motifs P P 
Domain association D P 
Domain profile pairs (IDPP) P P 
Set cover  D P 
Probabilistic model P, D P, F 
Domain pair exclusion D P 
Parsimonious explanation D P 
Domain combination D P 
Data Integration P, D P, F 

First column lists different prediction methods, while the second column shows if each method is 
designed to predict protein (P) or domain (D) interactions. The third column shows if the method is 
intended to infer direct physical interaction (P) of indirect function associations (F). Note that methods 
based on protein domain can subsequently be used to predict protein interactions. The predicted 
protein interactions can be used to identify potential protein functional annotations. 

 

1.2.1 Comparative Genomic Approaches 

In the late 1990s, a class of computational methods to decipher protein-protein interactions 

emerged on the basis of genomic context. Genomic context is described as any statistical, 

physical or biological properties of genes that can be measured. The unifying theme is to 

propose protein interactions for which there is evidence of an association. The association can 

be similarities either in gene expression patterns or how the genes are placed relative to each 
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other in known genomes (e.g. chromosomal location). Interactions derived from a genomic 

context do not necessarily imply a direct physical binding, but instead suggest functional 

associations between proteins. For example, proteins at opposite ends of a single pathway or 

complex may yield the same signal as those proteins in tight, direct, physical contact. In 

addition, errors in the underlying genomic context data may lead to false positives and false 

negatives. Caution should be taken when applying the context based methods in eukaryotic 

genomes because some are tuned primarily in prokaryotes. The following sections describe 

each genomic context in detail. 

Gene Co-expression 

The functionality of a protein complex is often determined by the functionality of all its 

subunits, and these subunits are often observed to be co-expressed or correlated (Figure 1.2). 

The gene expression profile data can be obtained from cell cycle experiments and expression 

flunctuations of a gene under different conditions. Similarity between expression profiles is 

defined as the correlation coefficient between relative expression levels of two genes or 

encoded proteins [21-24]. Researchers have observed that interacting proteins are much more 

likely to have their genes co-expressed than the non-interacting ones [21, 25-31]. Moreover, 

expression levels of protein pairs that physically interact tend to co-evolve, and this co-

evolution of gene expressions can be a better predictor than the co-evolution of sequences 

[31]. 
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Figure 1.2 PPI prediction based on gene co-expression 
 

Local Context of Genes 

It is a well-known fact that bacterial genomes are organized into regions that tend to code for 

functionally related proteins called operons. These co-transcribed genes, or gene clusters, 

often fill related function roles, bind to one another, or act in the same metabolic pathway. 

Researchers have developed different methods to predict operons based on intergenic 

distances [32-36] (Figure 1.3). This gene clusters relationship sometimes is conserved in 

different species which forms a gene neighborhood (Figure 1.3). The co-regulated genes 

determined by the gene neighborhood based methods can provide additional evidence about 

functional linkages between the genes [37-40]. Research groups analyzed the gene order 

conservation in three bacterial and archaeal genomes and found that 63% to 75% of the co-

regulated genes interact physically [37, 41]. Similar results were observed in some eukaryotes 

[27]. Nevertheless, this method has a major limitation: it may only be directly applicable to 

bacteria genomes where the genome order is a consistent property. In addition, prediction of 

unknown operons is a difficult and error-prone procedure. 
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Figure 1.3 PPI prediction based on local context of genes – gene cluster and gene neighborhood. 
Different boxes represent different genes. 
 

“Rosetta Stone” 

Many researchers deduced interactions between proteins from the same protein domain 

occurrence in different genomes. This is called the gene fusion method or “Rosetta stone” 

(Figure 1.4) [42-46]. Research groups have detected that certain protein families in a given 

species consist of fused domains, and such proteins are referred to as composite proteins. 

Each domain of the composite proteins sometimes corresponds to single and full-length 

proteins in other species, and these are called component proteins. Based on this gene fusion 

event, one can conclude that the two component proteins may interact with each other. 

Analysis found that more than half of the interacting protein pairs proposed by the Rosetta 

stone approach were functionally related [42]. 

 

Figure 1.4 PPI prediction based on Rosetta Stone 
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Phylogenetic Profiles 

The fundamental idea of phylogenetic profile (PP) based methods is to discover patterns of 

the presence or absence of a given gene in a set of genomes. The basic assumption is that 

under evolutionary pressure, it is necessary for an organism to encode both or either of the 

proteins within its genome because encoding just one lowers its fitness. Therefore, genes with 

similar phylogenetic profiles are more likely to be functionally connected than those with 

different profiles [47-51]. 

A phylogenetic profile of a protein is constructed as a vector of N elements where N is 

the number of genomes (Figure 1.5). Each element of a profile can be either “0” or “1”, 

which indicates the absence or presence of a given gene, respectively. Profile similarity can 

be calculated using distance measures including Hamming distance and Pearson correlation 

coefficient. Proteins can then be clustered based on these distance measures, and proteins 

from the same cluster may be considered as functionally related. Some researchers have even 

taken higher-order relationships between proteins into consideration [52, 53], and some have 

incorporated phylogenetic tree to analyze the correlated gains and losses of protein pairs [54]. 

Despite the promising results, the PP method suffers from high computational cost and its 

dependence on high information profiles. Moreover, the PP method is more suited for 

interaction prediction in prokaryotic genomes. In prokaryotic genomes, functionally related 

genes are often transferred as a unit between organisms. Thus, the group of genes can 

maintain their association directly in various genomes. Secondly, those linked genes are often 

located near each other; they have a higher probability of being transferred or lost at the same 

time. Eukaryotic genomes, on the other hand, may not have these properties, which may 

result in less informative profiles. In order for PP to perform well, one must select the optimal 

reference organism by picking organisms that are evolutionarily farthest from the rest [50]. 
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Figure 1.5 PPI prediction based on phylogenetic profile – showing absence (0) or presence (1) of four 
proteins in four genomes. 
 

Sequence Co-evolution 

Many groups observed interacting proteins to evolve at a similar rate. The property of co-

evolution is realized when changes in one protein lead to the loss of function or compensated 

interaction by correlated changes in the other protein. Different types of computational 

techniques exist based on genomic sequence analysis, including analyzing correlated 

mutations in amino acid sequences between interacting proteins [55, 56] and exploring the 

similarity of phylogenetic trees (Figure 1.6) [57-59].  

 

Figure 1.6 PPI prediction based on sequence co-evolution. It looks for similarity between distance 
matrices of two phylogenetic trees. 
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The aim of the correlated mutation based method is to quantify the degree of co-variation 

between two residues from pairs of proteins. On the other hand, the phylogenetic tree based 

method studies co-evolution in terms of similarity between phylogenetic trees of two non-

homologous interacting protein families. It is believed that phylogenetic trees of interacting 

proteins show a greater degree of similarity or symmetry than expected in non-interacting 

proteins. The similarity between two phylogenetic trees can be quantified by the correlation 

coefficient between distances matrices employed in constructing the trees. Each element in a 

distance matrix corresponds to a tree branch. Agreements between branches of two trees are 

required in computing correlation coefficients; however, such information is not always 

available. Several groups have tried to address this issue by identifying specific interaction 

partners between two interacting families [60-62]. It was found later that similarity between 

two phylogenetic trees may be influenced by the speciation process which implies that there 

is always a “background” similarity between trees of any proteins. In order to account for the 

“background” similarity, groups have developed different statistical techniques for 

“phylogenetic subtraction” [63-65]. 

1.2.2 Classification Approaches 

Researchers have proposed different classification methods to infer protein interaction 

partners using various data sources. The basic idea is to train a classifier to find patterns that 

can distinguish between interacting and non-interacting protein pairs. The following sections 

discuss the different information sources employed. 

Protein Structure 

The three-dimensional (3D) structure of a protein is determined by its amino acid sequence. 

In a given environment and physiological conditions, a protein can only assume one 3D 
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structure. The biochemical function of a protein predominantly depends upon this unique 3D 

structure. Consequently, researchers have adopted the structural information of proteins in 

protein interaction prediction [66-69]. The 3D structure information can enhance our 

knowledge in how protein molecules interact because they provide crucial atomic details 

about binding. 

Unfortunately, determining protein 3D structures is difficult. Structural information can 

be experimentally determined by X-ray crystallography or nuclear magnetic resonance (NMR) 

experiments. It took decades to solve the first X-ray structure. Nowadays, individual protein 

structures can be learned in a matter of weeks if sufficient material is available, but obtaining 

sufficient material can be an enormous problem when we have large complexes of proteins. 

Complex assembly requires precise control and timing in the cell which is not easy to 

reproduce in vitro. In addition, these techniques are labor intensive and time consuming, and 

not all proteins’ structures in the universe can be determined experimentally. 

Several groups have proposed in silico methods to predict atomic details involved in a 

pair of interacting proteins. The classic docking approach attempts to find the docked 

complex based on the shape or electrostatic complementarity between interfaces. Instead of 

distinguishing pairs of proteins that interact from those that do not, the current methods only 

search for the optimal fit between two proteins. In the past five years, a new class of 

techniques has emerged. It models interacting structures by homology. Basically, it uses 

protein-protein complexes with known structural data to model interactions between their 

homologues by assessing how well a homologous sequence pair ‘fit’ onto a previously 

determined structure of a complex. These approaches suffer when the interactions undergo 

conformational changes at the interface. Even though it is increasingly rare to not find a 

protein with structural information from existing database or through homology, the current 
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3D structure based approaches still struggle with what it can deliver. Large protein complexes 

and entire systems would require years of study in order to reach a detailed understanding. 

Orthology and Interaction Network Topology 

Many researchers think that protein interaction pairs co-evolve across multiple organisms, 

and these conserved interactions are referred to as interlogs. Walhout et al. [58] showed that 

many interactions in signal transduction pathways or molecular machines are conserved 

across different species. Matthews et al. [70] applied BLAST [71] to search for potential 

orthologs of known interacting pairs and attempted to identify possible conserved interactions. 

Several research groups strived to determine topological structure of a protein interaction 

network in order to infer protein interactions [72, 73]. A protein interaction network is 

usually created using available high-throughput protein interaction data in which network 

nodes represent the proteins and connected edges depict interaction. Sharan et al. [74] 

performed multiple comparisons between interaction networks of model organisms to 

discover conserved network topological patterns. More specifically, they searched for two 

types of conserved subnetwork structures: short linear paths of interacting proteins, which 

may model signal transduction pathways, and dense clusters of interactions, which may 

model protein complexes. 

Protein Sequence 

This group of methods intends to explore characteristic sequences, or structural motifs that 

distinguish interacting proteins from non-interacting ones based on the protein primary 

structure, namely their amino acid sequences [75]. Bock and Gough [76] introduced a method 

to predict protein interactions based on physiochemical properties of the associated residues 

in protein sequences. Hydrophobicity profiles have been demonstrated to be sensitive 
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descriptors of local interaction sites, and Bock and Gough extended it by including more 

properties such as charge and surface tension. Martin et al. [77] later proposed a method 

strictly based on the protein sequences to identify signature patterns. In their study, a 

signature is similar to a k-tuple (subsequences) except it is represented in a tree structure 

instead of linear string. Fundamentally, their goal is to detect subsequence pairs more likely 

to occur together when two proteins interact. 

Integrative Method 

Recently, numerous independent research groups have been exploiting the idea of combining 

various interaction evidences from different data sources such as gene expression, gene 

fusion, correlated mutations, etc. for interaction prediction. von Mering et al. [78] is among 

the first to explore the idea of data integration in assessing the reliability of inferred protein 

interactions. They validated protein-protein interactions (PPIs) based on overlapping 

interaction data from multiple sources including yeast two-hybrid system, mass spectrometry 

of purified protein complexes, correlated mRNA expression profiles, genetic interaction data, 

and computationally predicted interaction data. At the same time, numerous other groups 

have tried to combine a variety of data sources through intersection [79], association rule 

discovery to uncover PPI related knowledge [80], and greedy algorithms in which a dataset 

with the lowest error rate is added successively until a good compromise between the error 

rate and coverage is reached [81]. 

Although promising, the aforementioned integrative methods do not consider error rates 

in individual data sources. To address the issue, researchers combined heterogeneous data 

sources to infer protein interactions de novo according to reliabilities of each independent 

evidence source using Bayesian statistics [82-86]. The reliability of each source is analyzed 
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by comparison against the known true positives and true negatives which are referred to as 

gold-standards. Gilchrist et al. [87] employed a statistical model to analyze tandem affinity 

purification (TAP) and high-throughput mass spectrometric protein complex identification 

(HMS-PCI) datasets. They considered the number of experimental trials performed between 

bait and prey proteins and the number of associations observed. One shortfall of their method 

is that they limit the datasets to provide information on the same level of biological 

organization. Several groups developed kernel methods to infer protein interaction networks 

from multiple genomic data types [88, 89]. Other research groups attempted to combine 

heterogeneous data sources through probabilistic decision trees [90, 91], logistic regression 

[92], and Markov Random Fields (MRF) [93]. In another study, Random Forest (RF) was 

applied to measure similarities between protein pairs where each node in the tree corresponds 

to a feature or data source, and a k-nearest neighbor algorithm was then adopted to classify 

protein pairs according to the calculated similarities [94]. 

All of the above mentioned integrative methods for protein interaction predictions were 

applied in S. cerevisiae. In 2005, Rhodes et al. [95] employed a naïve Bayesian network to 

integrate different evidences across model organisms to infer interactions in human. They 

suspected interactions in three model organisms, S. cerevisiae, D. melanogaster, and C. 

elegans, may suggest interactions among orthologous proteins in human. Other features 

considered were: similar gene expression profiles across human tissue samples, enrichment of 

protein domain pairs among human protein interactions, and shared biological functions. 

Their preliminary results seemed promising with nearly 40,000 predicted protein interactions 

in human. However the naïve Bayesian network assumes conditional independence between 

data sources. High dependence between the genomic features may exist, and it would become 

more prominent as more features are integrated.  
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More recently, Zhong and Sternberg [96] combined multiple data sources from the three 

model organisms to predict genetic interactions in C. elegans using logistic regression. The 

orthologous information was exploited in a different way. For each C. elegans gene pair as 

well as its orthologous pairs in D. melanogaster and S. cerevisiae, they attempted to identify 

five features: identical anatomical expression, phenotype, function annotation, microarray 

coexpression, and presence of interlogs. Finally, interaction predictions are made on the basis 

of all features from the C. elegans gene pair and its orthologs. The algorithm employed in 

their study, logistic regression, is a statistical regression model for binary dependent variables. 

It is a generalized linear model that utilizes the logit as its link function. The logarithm of the 

likelihood odds is modeled as a linear function of the explanatory variables; therefore, it is 

not adept at modeling nonlinear complex systems such as interaction networks.  

1.3 Methods for Protein Function Annotation 

The most established computational approaches to function detection primarily depend on 

homology matching to genes with known functions utilizing programs such as FASTA [97] 

and PSI-BLAST [71]. However, assuming functional annotations by sequence similarity 

poses some critical questions: at what level of sequence similarity can we feel assured that the 

two proteins carry out the same function, and even if the function is conserved, at what level 

of detail is the conservation? Over the years, numerous non-homology based computational 

techniques have been developed to derive protein functions from additional sources of 

biological data such as gene fusion events [42, 43], phylogenetic profiles of proteins in 

multiple genomes [47], gene expression and mutant phenotype data [98], and heterogeneous 

data sources including gene expression, physical interactions, motif information and 

transcription factor binding sites data [99-102]. 
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With the ever-increasing accumulation of high-throughput protein-protein interaction 

data, a number of computational approaches emerged to take advantage of these data for gene 

function prediction [103-110]. In general, these approaches are based upon the premise that 

proteins often physically interact to achieve a common objective. Hence, it may be possible 

to infer functions for a protein based on its interaction partners. The concept is also known as 

‘guilt-by-association’, which assumes that interacting proteins are more likely to carry out 

similar functions. Schwikowski et al. [103] introduced a neighbor counting method where 

unknown proteins were assigned functions with the most occurrences among their interaction 

partners. Thereafter, several research groups attempted to improve the neighbor counting 

method through application of χ2 statistics [104], Bayesian analysis [105], and Markov 

Random Field analysis [106, 107]. Moreover, several researchers have introduced protein 

interaction network based methods [108, 109], and Brun et al. and other colleagues [110-113] 

clustered the Saccaromyces cerevisiae proteome into several groups to predict cellular 

functions using protein interaction data.  

1.4 My Research Contribution 

Despite various progresses computational methods have made toward protein interaction 

predictions and their fair share of successes, the existing methods still have a limited range of 

applicability: the specificity and sensitivity are normally low. To this day, high-throughput 

experimental data describing protein interactions still provide the most coverage. There is still 

a strong need for more reliable in silico models for the inference of protein interactions that 

can cover a larger spectrum of the interactome. The available protein interaction information 

is extremely valuable, but it does not provide any insights into how the molecules are 

associated or interacting. In fact, proteins physically bind to each other only through small 
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regions on their surfaces. The ability to pinpoint such binding sites is critical in 

comprehending cellular roles that different proteins fulfill; in particular, mutations at the 

binding sites may disrupt existing protein interactions or create new undesirable interactions 

that could lead to many human diseases [114]. 

Essentially, the protein-protein interaction prediction problem is a two-fold problem. (1) 

Given two proteins A and B, do they interact or not? (2) If proteins A and B are known to 

interact, how do the two molecules interact? In other words, what is the three-dimensional 

(3D) structure of the protein complex? Solving the latter question will provide crucial atomic 

details about protein binding, and these details may permit more rational design of biological 

experiments to disrupt an interaction. Before studying the atomic details, we need to predict 

who interacts with whom. In this dissertation, one of my two main goals is to answer the first 

question, whether two proteins interact or not, and provide a confined search space for the 

second question, or approximately where the two proteins physically bind. 

It is sometimes feasible to locate finer details such as domains or segments of proteins 

that may mediate the interaction so that interacting sites of larger proteins are narrowed down. 

Protein domains are considered to be the building blocks of proteins that are conserved 

through evolution to represent protein functions or structures. It is a generally-acknowledged 

assumption that protein interactions involve bindings of two or more specific domains. Hence, 

understanding domain interactions can not only predict protein-protein interactions, but it 

also can provide additional information on how two molecules are interacting. 

The other main goal of my dissertation is to develop computational models to study 

protein functions. Improving the quality of current functional annotations and proposing new 

annotations to the numerous uncharacterized proteins still presents a major challenge, and this 

research can eminently assist the research community. Protein functions are inseparable from 
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its interactions. Proteins do not perform functions in isolation but as part of a complex 

network of physical complexes and pathways. Since domain-domain interactions are the 

foundation of protein-protein interactions, domain interactions can undoubtedly be used to 

learn protein functions. 

It is obvious that domain-domain interaction is the key here. Therefore, my approach is to 

first discern domain-domain interactions and then use the knowledge to extrapolate protein-

protein interactions and protein functions. In the elucidation of protein-protein interactions, I 

have made several contributions. First, protein interaction prediction is formulated as a binary 

classification problem with novel domain-based feature representation. Due to the features’ 

unique characteristics, the standard random forest algorithm cannot be directly applied to the 

protein-interaction inference problem. Instead, a new framework based on random forest, 

RDFF, is proposed. Second, unlike most of the existing domain-based computational 

approaches, RDFF does not assume domain pairs to be independent of each other. Third, 

rather than considering single-domain pairs as the basic unit of protein interactions, 

contributions of all the possible domain combinations to protein interactions are explored. As 

a result, the RDFF method not only inferred domain-domain interactions but also predicted 

protein-protein interactions with better performance compared to the popular Maximum 

Likelihood Estimation (MLE) method (in terms of the specificity and sensitivity). 

For the protein function determination problem, I proposed a novel approach CSIDOP, 

Cross-Species Interaction Domain Patterns, to take advantage of the ever-increasing 

accumulation of high-throughput protein interaction data. CSIDOP is fundamentally different 

from other protein interaction based function detection algorithms where the function of a 

target protein is determined strictly by the annotations of its interaction partners. Compared 

with existing methods, CSIDOP is distinctive in the following aspects: (i) protein functions 



 23

are detected through the shared interacting domain patterns, (ii) the patterns are mined from 

cross-species protein-protein interaction data, and (iii) unknown proteins can be assigned to 

various functional categories in GO, in contrast to most other methods where proteins are 

assigned with a limited number of functional categories such as MIPS [115] that are less 

specific than GO. 

Finally, to tie everything up, I integrated our discovered domain-domain interactions with 

other known and putative domain interactions into an online system called PINFUN for 

protein interaction and function predictions. 

In summary, my dissertation consists of the following three major modules. Details about 

each module are respectively discussed in Chapter 3, 4, and 5. 

1. A novel domain-based framework for protein interaction prediction. 

2. A novel model to construct the domain-domain interaction network for protein 

function prediction. 

3. An online system tool PINFUN for people to use in protein interaction prediction and 

protein function annotations. 
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Chapter 2. Research Background 

Domain-domain interaction is the foundation of our approach to protein interaction and 

function predictions. This chapter provides basic background information on protein domains 

and different types of domain interactions in sections 2.1 and 2.2, respectively. Section 2.3 

discusses the existing domain-domain interaction prediction methods based on protein-

protein interaction data. 

2.1 Protein Domain 

Protein domains are defined as evolutionary, functional, and structural units of proteins that 

can fold independently of other such units. In order for a domain to fold into stable and 

unique structures when excised from a complete protein, the cohesion between side chains is 

required for its organization, and it needs to be of a certain size before recognized. Domains 

do vary in size, but they typically have 100 to 250 residues [116]. 

 

Figure 2.1 Examples of single-domain and multi-domain proteins. PDB structures of (a) Single-
domain protein ANGI_HUMAN (P03950) in H. sapiens. The 3D structure is the PDB entry 1b1e. Red 
colored residues belong to the domain RnaseA (PF00074). (b) Multi-domain protein THIC_HUMAN 
(Q9BWD1) in H. sapiens (PDB entry 1wl5). Red and Green colored residues represent two different 
domains: Thiolase_C (PF02803) and Thiolase_N (PF00108), respectively. 
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Domains come in different types, and proteins are created from this pool of limited types 

of domain architectures [117, 118]. These compact and stable domain units alone can form 

single-domain proteins or undergo duplication and recombination with others to form multi-

domain proteins (Figure 2.1). The majority of proteins, especially in higher organisms, are 

built from the fusion and shuffling of domains [116, 119-122]. Small proteins usually contain 

a single domain whereas larger proteins (i.e. having more complex architectures) are formed 

by combinations of domains. For instance, some human proteins can contain up to 130 

domains.  

It is believed that once a set of domains with sufficient functions to support the basic life 

form, it would be much easier and faster for the genome to produce various new proteins by 

duplication, divergence, and recombination [116]. Koonin et al. observed that there is a 

propensity for eukaryotic proteins to have more domains than their prokaryotic homologs, 

this is termed domain accretion [123]. A rough estimate reveals that approximately two-thirds 

of proteins in prokaryotes and four-fifth of proteins in eukaryotes are multi-domain proteins 

[124]. This observation suggests a connection between increased recombination of domain 

architectures and organism complexity. Indeed, Koonin et al. observed that the likelihood of 

domain combination increases in the order of archea, bacteria, and eukaryotes [120]. It is now 

clear that the complexity of an organism is not determined by its number of genes; for 

instance, fruit flies have fewer genes than nematodes and humans have fewer genes than rice. 

However, the organism complexity does seem to be related to the extent of their domain 

duplications and recombinations. The reason for this is that organism complexity mainly 

originates from the complex networks of protein interactions, and a modest increase in the 

number of domains in interacting partners may directly translate into numerous new 

interactions. This probably explains why complex organisms have fewer genes [125]. 
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2.2 Domain-Domain Interaction 

While examining protein-protein interactions, it is often feasible to locate finer details such as 

domains or segments of proteins that mediate the interaction such that interacting sites of 

larger proteins are narrowed down. Protein interactions involve binding between two or more 

specific domains is a generally acknowledged notion. In addition to the determination of 

protein interactions, analysis of the domain architectures can be extremely beneficial for 

function predictions of uncharacterized proteins. A domain can either exhibit an independent 

function or cooperate with other domains to execute a certain function of a multi-domain 

protein. In brief, domains and their interactions determine the functions of proteins [121]. 

Thus, it is important to understand the principles of domain-domain interactions. 

There are four basic types of domain-domain interactions that can explain protein-protein 

interactions, and these are illustrated in Figure 2.2. 

 

Figure 2.2 Types of domain-domain interactions. Various shapes and colors representing different 
domains (a) Interactions between two single-domain proteins. (b) Interactions between a single-
domain protein and a multi-domain protein. (c) Multi-domain proteins bind through a single domain. 
(d) Multi-domain proteins bind through multiple domains. 
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• Singlet-to-Singlet: Interactions between two single-domain proteins can be explained 

by the binding of their respective single domains (Figure 2.2a). 

• Singlet-to-Multiplet: Interaction is often observed between single-domain proteins 

and multi-domain proteins where the single domain binds to one of the multiple 

domains (Figure 2.2b). 

• Multiplet-to-Multiplet via Single Binding: If two multi-domain proteins interact, the 

interaction may be explained by a single binding between one of many domains from 

each protein (Figure 2.2c). 

• Multiplet-to-Multiplet via Multiple Bindings: If two multi-domain proteins interact, 

the interaction may also be explained by multiple bindings between two or more 

domains from each protein (Figure 2.2d). 

The analysis of domain-domain interactions is an extremely important task for protein 

interaction and function annotation as mutations at the binding sites can disrupt existing 

protein interactions or create new undesirable interactions, and this may, as a consequence, 

disturb normal functions of proteins in cells and cause various diseases for the organism. 

Hence, understanding interactions at the domain level is not only a critical step towards 

thorough understanding of protein interaction networks and their evolution, but it is also one 

step closer to acquiring insights into the functions of proteins and causes of human diseases. 

The research will inevitably contribute to protein and drug design in the future. 

2.3 Existing Methods for Domain Interaction Prediction 

In the past decade, domain-domain interaction discovery has been the subject of intensive 

study. Some methods focused on interactions involving specific mediating domains such as 

SH2, SH3, and PDZ domains [126, 127]. Some attempted to understand domain-domain 
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interactions (DDI) from genetic variations among multiple genomes [128-130]. Some 

analyzed architecture of the domain interaction networks that revealed high scoring domain 

interactions indeed give rise to reliable protein interactions [131-135]. Some approaches 

utilized heterogeneous data [136, 137]. Many other DDI prediction methods rely on the 

protein-protein interaction (PPI) network. The following sections give an overview of these 

prediction methods for domain-domain interactions utilizing PPI data (Table 1.1). 

2.2.1 Domain Interactions as Predictor of Protein Interactions 

The original studies in domain-domain interaction view it as a predictor of protein-protein 

interactions. The Association Method is one of the pioneering works that seeks domain pairs 

co-occurring more often in interacting protein pairs than expected by chance. Available 

experimental protein interaction data is utilized to compute the probability of two domains 

interacting. This is the fraction of interacting protein pairs among all protein pairs containing 

the domain pair (Eq. 2.1) [138].  

mn

mn
nm N

I
ddP =),(                                                      (2.1) 

Imn refers to the number of interacting protein pairs that contain domain pair (dm, dn), and Nmn 

is the total number of protein pairs that contain the domain pair (dm, dn). However, Equation 

2.1 may assign high association scores to domain pairs with low frequency which may not 

correspond well to the interaction probability. Other colleagues tried to address the issue by 

considering the number of domains in each protein, but this correction may preferentially 

identify promiscuous domain interactions because they screen for pairs that occur with the 

highest frequency [139]. Generally, the association-based method considers interacting 

domain pairs to be independent which ignores other domains in a given protein pair. 

Moreover, they do not explicitly consider the errors in interaction dataset. 
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Taking these errors into account, an optimization approach, Maximum Likelihood 

Estimation (MLE), was proposed to infer domain interactions by maximizing the likelihood 

of the observed protein interaction data [140, 141]. The likelihood function is a function of 

parameters θ (λmn, fp, fn), where λmn is the probability that domain m interact with domain n, 

fp refers to false-positive rate, and fn refers to false-negative rate. The domain interaction 

probability λmn was optimized using the Expectation-Maximization (EM) algorithm. Other 

groups proposed Bayesian network based models to capture the protein interaction 

probabilities based on domain pair frequencies in a domain attraction-repulsion model [142-

144]. Later, Nye et al. described the p-value method which tests the null hypothesis that the 

presence of a domain pair in a protein pair do not affect whether the two proteins interact or 

not [145]. To test the hypothesis, p-value statistics are calculated considering fractions of 

false positives and false negatives. The domain pair with the lowest p-value is the most likely 

to interact. Results suggest that the p-value method performs reasonably well when there are 

nine or more domains in a protein pair. 

Furthermore, an interesting graph-oriented approach called the Interacting Domain 

Profile Pairs (IDPP) was proposed, which employed a combination of sequence similarity 

searches and clustering based on interaction patterns and domain information across multiple 

species [146]. First, they clustered domains of different proteins that interact with a common 

region of another protein into interaction clusters (IC). Then the domains within an IC are 

regrouped by sequence similarity, and the regrouped domains are later clustered into n-SICs 

(Similarity & Interaction Cliques). Each n-SIC consists of domains that are similar in 

sequence and interact with common domains. The Interacting Domain Profile Pairs are 

generated from the interactions between SICs. The use of domain profile pairs has resulted in 

better predictions than methods solely based on sequence information. Nevertheless, the main 
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goal of the IDPP method is to infer the protein interaction map of a target organism from a 

large-scale interaction map of a source organism which can be very expensive to obtain. 

2.2.2 Domain Interactions as Explanation of Protein Interactions 

More recently, a unique class of methods for domain-domain interaction prediction emerged, 

and they consider DDIs as putative explanations of protein-protein interactions rather than 

their predictors. For instance, the domain pair exclusion analysis (DPEA) method [147] 

introduced a new measure for each potentially interacting domain pair, called E-score, that 

measures degree of reduction in likelihood of observing the given protein interaction network 

when excluding a domain pair. Different from previous methods where the most probable 

domain interactions identified tend to be the most promiscuous, or least specific, DPEA can 

detect specific interacting domain pairs. It extends the MLE method by adding a likelihood 

ratio test to assess the contribution of each potential interacting domain pair to the likelihood 

of a set of observed protein interactions. This is achieved by estimating the Eij score which is 

defined as the logarithm of two probabilities. The numerator probability represents the 

probability of two proteins interacting given that domains i and j interact. The denominator 

probability corresponds to the probability of two proteins interacting given that the domains 

do not interact. For a given domain pair, the numerator probability is computed with the EM 

procedure to maximize θ. Higher E-scores indicate a higher tendency for the two domains to 

interact. In order to identify specific domain interaction pairs, one can simply screen for low 

θ and high E-score values. A variation of the method was proposed later [148].  

To generalize the complex problem of interactions among proteins and their 

corresponding domain architectures, Huang et al. [149] conceptualized a maximum-

specificity set cover procedure (MSSC). Formally, they represented a protein interaction 
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network as a set cover problem by defining Y = {all protein pairs (Pi, Pj) | Pi, Pj ∈ P} as the 

set of all protein pairs, X = {protein pairs (Pi, Pj) | Pi interacts with Pj} as the set of 

interacting protein pairs, and F as the set of all domain pairs (dm, dn). Essentially, it strives to 

find a set C of domain pairs that can “cover” the given protein-protein interactions to the 

largest extent. 

On the other hand, Guimaraes et al. explain protein interactions as evolving in 

parsimonious ways [150, 151]. Parsimony is a ‘less is better’ concept that displays preference 

for the least complex explanation of an observation. In general, mathematical models with the 

smallest number of parameters are preferred because each parameter introduced into the 

model inserts more uncertainty to it. The Parsimonious Explanation (PE) approach 

hypothesized that interactions between proteins evolve in parsimonious way. That means the 

set of true domain-domain interacting pairs should be well approximated by the minimal set 

of domain pairs necessary to explain a given protein interaction data. 
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Chapter 3. Domain Interaction Based PPI Prediction 

Ever since the beginning of the 21st century, there has been a growing interest in the inference 

of protein-protein interactions from their corresponding domain-domain interactions. One of 

the pioneering works is the Association Method by Sprinzak and Margalit [138]. Numerous 

methods followed, and the preliminary results have demonstrated their feasibility. However, a 

majority of the approaches do not consider the fact that multiple domains in a protein can 

collaborate with each other as a single module to interact with another domain module in the 

other protein. Moreover, most approaches assume independence of domain-domain 

interactions which means that they ignore other possible domain interaction information 

between a pair of proteins. To overcome the inherent flaws of existing methods, I propose a 

novel domain-based random forest framework (RDFF) to learn protein-protein interactions. 

Details on the methodology and experimental evaluation are provided in the upcoming 

sections. 

3.1 Methodology 

The following sections describe our domain based approach to protein-protein interaction 

prediction. Section 3.1.1 describes the feature representation, section 3.1.2 explains the 

learning model selection, and section 3.1.3 discusses our proposed model. 

3.1.1 Feature Representation 

The protein-protein interaction (PPI) prediction problem can be formulated as a two-class 

classification problem where each pair of proteins is considered to be a sample belonging to 

either the ‘interaction’ class (i.e. two proteins interact with each other) or ‘non-interaction’ 

class (i.e. two proteins do not interact). Since the goal in this study is to investigate protein 
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interactions at the domain level, it is necessary to characterize a protein pair by their 

respective domains. Thus, each protein pair is represented by a vector of features where each 

feature corresponds to a domain. Let ],...,,[ 21 nXXXD =  represent n data samples 

and ],,...,,[ )()(
2

)(
1 i

i
M

ii
i yxxxX =  represent the i-th sample with M feature attributes xj 

belonging to the class yi. In the problem formulation, yi = 1 denotes the ‘interaction’ class and 

0 refers to the ‘non-interaction’ class. The feature vector size M is the total number of unique 

domains in the dataset, and each feature attribute xj has a discrete value of 0, 1, or 2. If both 

proteins in a sample pair do not contain the domain attribute xj, the associated feature value 

will be 0. On the other hand, if one of the proteins has the domain, then its value is 1. Lastly, 

if both proteins contain the domain, its assigned value is 2. This ternary-value feature 

representation is distinct compared to the binary representations in other domain-based 

methods. It is necessary as domains often self-interact. Moreover, it allows us to distinguish 

between protein pairs with a domain existing in one protein and those in both proteins. 

3.1.2 Model Selection 

The unique characteristic of our data feature prompts a challenge for the well known machine 

learning algorithms like Bayesian Network, Neural Network, and Decision Tree. Here, the 

size of the feature space is equivalent to the total number of unique domains which is 

extremely large, in the range of thousands. An extraordinarily large feature space can be 

destructive to the learning process of classification algorithms with reduced accuracy and 

longer learning time. In order to tackle the challenge, I propose to adopt the random forest 

framework.  

The ‘random forest’ is an ensemble classifier. Its main principle is that when the input 

space is extraordinarily large, random subspace (RS) feature selection can potentially 
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improve classifier diversity. The algorithm for inducing a random forest was developed and 

popularized by Leo Breiman [152]. It involves construction of an ensemble of decision trees 

from randomly sampled subspaces of the input features, and final classification is obtained by 

combining results from the trees via voting. It has been shown that combination of multiple 

trees produced from randomly selected subspaces can improve the generalization accuracy 

[153, 154]. When using the combined power of multiple trees to increase accuracy, it is 

particularly important to produce a large number of sufficiently different trees. The 

application of randomization in feature selection is a way to explore various possibilities of 

subspaces. While most classification methods suffer from the curse of dimensionality, the RS 

feature selection method can take advantage of the high dimensionality. In contrast to 

Occam’s Razor, the method improves accuracy as it grows in complexity [155].  

Generally, the random decision forest constructs many decision trees, and each is grown 

from a different set of training data. To construct individual decision trees, training samples 

are randomly selected with replacement from the original training dataset. More precisely, if 

the number of samples in the original training set is N, then N samples are randomly drawn 

with replacement. At each splitting or decision node, it determines the best splitting feature 

from a randomly selected subspace of m features where m is much smaller than the M total 

number of features. Each tree in the forest is then grown to the largest extent possible without 

pruning. To classify a new object, each tree in the forest outputs a classification which is 

interpreted as the tree ‘voting’ for that specific class. The final classification of the object is 

determined by a majority vote among the classes decided by the forest of trees. 
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3.1.3 Domain-based Random Decision Forest Framework 

Because of the distinctive characteristics of our domain-based features, a traditional random 

forest cannot be directly applied here. Similar to the standard random forest algorithm, our 

individual decision trees in the forest are still built from different sets of training data. For 

each tree, positive and negative samples from the original training dataset are selected 

randomly with replacement. To preserve the same proportion of positive samples among all 

samples, we drew samples from positive and negative sets separately.  

While building a decision tree, the standard random forest randomly selects a subspace of 

features to focus on at each splitting node. However, our application is unique, and this 

randomness introduced may not work as well as in other applications. In other applications, 

all features contain information for classification no matter what the values are. In our 

application, a feature with a value 0 does not give us any information about the interaction 

status of a pair of proteins. Consider the following example. A protein pair (P1, P2) has 

domains {a, b, c} and {d, e}, respectively. Assume that the true domain interacting pair is (a, 

d) and it has appeared frequently in many different protein pairs. With random selection, 

domain {a} or {d} may not be selected properly even though they are the domains that appear 

in many proteins. We could randomly select {a} and {e} as the splitting attributes to classify 

the protein pair (P1, P2) as interacting. Although the classification is correct, we have the 

wrong conclusion on the interacting domain pair. 

In order to address this issue, we introduce probability selection for the feature subspace. 

Each feature in the entire feature space is assigned with a selection probability. The 

probability is calculated based on the number of protein interaction pairs in the original 

training dataset that include such domain feature (i.e. at least one protein in a pair contains 

the domain). A Roulette wheel representing the feature attributes is then created. Each 
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domain feature is assigned with a real number in range [0.0, 1.0] to represent a section on the 

wheel where the range is calculated based on the probabilities. Thus, if a domain is common 

among large number of proteins, it will have a higher probability of being selected.  

Each decision tree is built level by level from a bootstrapped training dataset starting at 

the root. At each splitting node of a decision tree, in order to form the feature subspace, we 

spin the Roulette wheel by generating random numbers. If the generated random number falls 

in between a feature’s range, then the feature is added to the subset unless it is already used as 

a splitting attribute by one of the parent nodes in the same branch up to the root. This process 

continues until log2M + 2 (M is the total number of features) features are selected for the 

feature subspace. For each feature in the subspace, information gain splitting criteria by 

Quinlan [156, 157] is calculated as the ‘goodness of split’ measure which is based on the 

classic formula from information theory. The information gain measures theoretical 

information content of a code by ∑i ii pp )log( , where pi is the probability of the i-th 

message. Assume that the number of samples in ‘interaction’ class and ‘non-interaction’ class 

are n1 and n2, respectively. The information required to classify samples given only the 

decision class totals as a whole is 

   ))1(log)1()0(log)0(()( ==+==−= yPyPyPyPCH   (3.1) 

where P(y) is the class probability among all samples (i.e. P(y=1) = n1/n and P(y=0) = n2/n). 

The information needed to classify samples given knowledge of the attribute xj is defined as 
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where P(x = xj) is the probability of the attribute x taking the value xj. In our ternary-value 

representation, x can take three discrete values: 0, 1, and 2. The information needed given 

each attribute value H(C | x = xj) is then defined by 
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where P(y = yi | x = xj) is the conditional probability of i-th class given attribute value xj. 

Finally, the information gain (IG) measure for an attribute x can be calculated with Eq. 3.1 

and Eq. 3.2 as follows. 

)|()()( xCHCHxIG −=     (3.4) 

The attribute with the largest information gain is selected from the subspace of features. 

Individual trees of a traditional random forest are normally built completely without 

pruning. In an ideal situation, a decision tree stops growing only when all samples are well 

classified. By well classified, it means that all samples at a leaf node must belong to the same 

class. Unfortunately, the world is never perfect. In addition, due to the high dimensionality of 

our data, each tree is expected to be extremely large when entirely grown. Thus it is 

necessary to impose some stopping conditions. Several early stopping criterions are 

employed as a forward pruning technique that stops pursuing branches with little statistical 

significance. A node in a decision tree stops splitting when any of the following conditions is 

met: a node is at the maximum level, the node impurity is smaller or equal to a certain 

threshold, or there are minimum number of samples left to be classified. Node impurity is 

defined as the proportion of samples that are in the minority class. 

Finally, a forest forms when multiple decision trees are grown. To classify a protein pair, 

instead of collecting votes from all trees in the forest as in the standard random forest 

algorithm, votes are obtained only from the trees that contain at least one domain feature 

from each protein in the pair as a splitting attribute. This is essential because domain features 

of the input protein pair not appearing in a decision tree as nodes do not imply non-

interaction for the proteins. In that situation, we consider the decision tree as incompetent to 
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come up with an adequate verdict on this particular protein pair; thus, we take away its voting 

rights. Certainly, this action reduces the number of voting trees as a consequence. In order to 

have an appropriate number of voters, a sufficient number of decision trees need to be built to 

cover all domains found in the training samples. In other words, we need to make sure that 

each domain feature in the training samples is covered by at least a certain number of trees. In 

the worst case scenario, if no tree is able to vote for a protein pair, we assume the protein pair 

to be non-interacting. Otherwise, protein pairs are classified by majority votes. A tree casts a 

vote of value 1 for interaction and a vote of value 0 for non-interaction. 

The benefit of our domain-based random decision forest framework (RDFF) is two-fold. 

First of all, RDFF can predict whether two proteins interact or not. Secondly, it can infer 

domain-domain interactions. Since each splitting attribute represents a single domain, if an 

occurrence of two or more such attributes in different proteins of a pair leads to an interaction 

classification, then we can interpret the domains as forming an interacting domain pair or 

domain combination pair (Figure 3.1). However, a potential problem associated with our 

ternary-value feature representation is that it cannot tell whether two domains are from the 

same protein or from two different proteins. To handle this problem, in decision-making 

procedures, we consider the domains as an interacting domain pair only if these domains (two 

or more) are from different proteins and they lead to an interaction classification. For 

example, assuming that (a) and (b) in Figure 3.1 are decision trees in the forest, we can infer 

interacting domain pairs from a path of decision nodes (green colored nodes) that induce a 

classification result of 1 (represented as pink dashed boxes) for a particular protein pair if and 

only if domains from both proteins appear in the path. At each node, it trails down the 

leftmost branch if it does not contain the domain feature and the feature value is 0 (details in 

Section 3.1.1). The middle branch is pursued if the feature value is 1, and otherwise the 
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rightmost branch is chosen. The tree (a) in Figure 3.1 classifies a protein pair to be interacting 

if one protein in the pair contains domain 25 and the other protein contains domain 15. One 

can also conclude that domains 15 and 25 may interact with each other because they 

contribute to an interaction prediction. Similarly in tree (b), domains 38, 269 or 848 may 

form interacting domain combination pairs. 

 

Figure 3.1 Domain-domain interaction inference using RDFF. Assume that (a) and (b) are two 
decision trees in a forest. The leftmost branch is taken if the domain attribute value is 0, middle branch 
is followed if it is 1, and lastly rightmost branch is chosen if domain feature value is 2. Boxes with 
solid borderlines represent decision nodes with selected domain features among which the green boxes 
represent domains that form interacting domain or domain combination pairs and the yellow boxes are 
the regular domain feature nodes. Pink boxes with dashed borders are the leaf nodes that display 
classification results. 
 

3.2 Experimental Results 

Here, we discuss the experiments performed in evaluation of our RDFF method. Details 

about the experimental data, evaluation metrics, and model parameters are presented in 

sections 3.2.1, 3.2.2 and 3.2.3. The performance of RDFF in both domain-domain interaction 

and protein-protein interaction predictions are demonstrated in sections 3.2.4 and 3.2.5. 
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3.2.1 Data Source 

For protein-protein interaction (PPI) predictions, our domain-based random forest framework 

is evaluated over the most studied model organism Saccharomyces cerevisiae. Protein 

interaction data in yeast is collected from the Database of Interacting Proteins (DIP) [158, 

159], Deng et al. [140], and Schwikowski et al. [103]. The PPIs used in Deng et al. is a 

combined interaction dataset from experimental two-hybrid assays by Uetz et al. [9] and Ito 

et al. [10]. Schwikowski et al gathered their data from yeast two-hybrid, biochemical and 

genetic data. 

Initially, we obtained 15,409 interacting protein pairs in the yeast organism from DIP, 

5,719 pairs from Deng et al. and 2,238 pairs from Schwikowski et al. The datasets are then 

merged by removing overlapping interaction pairs. Also, because domains are the basic units 

of protein interactions, proteins without domain information cannot provide any useful 

information for our prediction. Therefore, we only keep the pairs where both proteins have 

domain information. 9,834 protein interaction pairs remained among 3,713 proteins, and 

these pairs are evenly separated (4917 pairs each) into training and testing datasets. Since 

non-interacting protein information is not available, the negative samples are randomly 

generated. A protein pair is considered to be a negative sample if the pair does not exist in the 

interaction set. A total of 8,000 negative samples were generated and also separated into two 

halves. Both final training and testing datasets contain 8917 samples, 4917 positive and 4000 

negative samples. 

The protein domain information is gathered from Pfam [160] which is a protein domain 

family database that contains multiple sequence alignments of common domain families. In 

Pfam, hidden Markov model profiles were used to find domains in new proteins. The Pfam 

database consists of two parts: Pfam-A and Pfam-B. Pfam-A is manually curated, and Pfam-
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B is automatically generated. Both Pfam-A and Pfam-B families are used here. In total, there 

are 4293 Pfam domains defined by the set of proteins. 

3.2.2 Evaluation Metrics 

After building our domain-based random forest PPI prediction system, it is important to 

estimate how accurately the model will perform in practice. Ordinarily, a predictive model 

has one or more unknown parameters and the model can be fitted as well as possible on a 

training dataset through parameter optimization. Nonetheless, the model may not perform as 

well when fitted on an independent test dataset. This is commonly known as overfitting. 

Overfitting is most likely to occur when the training dataset is small or number of parameters 

is large.  

In order to assess the fit of our domain-based random forest model on test data, we 

calculated two statistical measures: sensitivity (SN) and specificity (SP). The sensitivity (also 

known as recall in other fields) measures the proportion of true positives (TP) which are 

correctly identified. The specificity measures the proportion of true negatives (TN) which are 

correctly predicted. In our case, true positives and true negatives are the observed protein 

interaction and non-interaction pairs, respectively. False negatives are the observed 

interaction pairs wrongly identified as non-interactions. Similarly, false positives are the non-

interaction samples wrongly classified as interactions. Sensitivity and specificity are defined 

in the following formulas (Eq. 3.5 & 3.6). 

          
FNTP

TPSN
+

=      (3.5) 

          
FPTN
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+

=      (3.6) 
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3.2.3 Model Parameter Selection 

The predictive accuracy of a random forest depends on the strength of the individual tree 

classifiers, and these may be affected by tree size. In our implementation, we have set three 

stopping criteria to limit the tree size, and they are maximum tree level, impurity and 

minimum node size thresholds. Minimum node size defines the minimum number of samples 

to be classified by each node. In our forest, each decision tree is constructed with node 

impurity threshold of 0.01, and the minimum number of samples at a node is 3. Among those 

early stopped nodes, less than 10% reached impurity and minimum node size thresholds. This 

implies that the maximum tree level criterion has the most impact in restricting the tree size.  

In order to make an appropriate parameter choice for the maximum tree level threshold, 

we grew multiple forests with trees having different heights and analyzed their generalization 

accuracies via cross-validation. Keeping in mind the computational time, K-fold cross-

validation seems to be more suitable. In K-fold cross-validation, the original set of samples is 

partitioned into K subsets of samples. Among the K subsets of samples, one subset is drawn 

to be the validation dataset for testing the model, and the remaining (k-1) subsets are used as 

training data. The cross-validation process is repeated for K times (folds), in which each of 

the K subsets are used exactly once as the validation set. To produce the final accuracy 

estimation, results from the K folds are averaged. Here, we used 5-fold cross-validation and 

found that classification error rates over the validation sets decrease first as the tree levels 

increase. This is due to the increased performance of each individual tree. Because of 

majority voting, when each individual tree in a random forest performs better, the entire 

forest also performs better. As shown in Figure 3.2, the forest classification error rate reaches 

the minimum for the heights of 350 and 450 and increases slightly after 450. Therefore, we 

select the maximum tree size at 450 levels. 
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Another parameter to be considered is how many trees should be grown. To determine an 

appropriate number of trees in a forest, we set a limit on minimum coverage of each domain 

feature at 30 trees. In other words, it makes sure that each domain feature appeared in the 

training dataset is one of splitting attributes in at least 30 trees. In this way, we guaranteed 

that at least a certain number of trees will vote to classify each protein pair. It is estimated 

from experiment that with 100 trees in a forest, each domain feature would be covered by at 

least 74 trees. To be on the safe side, we grew 150 trees. 

 

Figure 3.2 RDFF maximum tree height parameter selection – classification error comparisons of 
different tree sizes using 5-fold cross-validation 
 

3.2.4 Domain-Domain Interaction Prediction by RDFF 

After training our domain-based random forest model, for each true protein interaction pair, 

we can derive domain-domain interactions from the domain nodes that contributed to the 

interaction classification by tracing the branch or path the protein pair followed to reach such 
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classification. In total, RDFF predicted 4,366 single-domain interaction pairs (i.e. one domain 

from one protein). Among them, 1,891 pairs are found with Pfam-B domains for which 

interaction information is not available from Pfam or other sources, and remaining 2,475 

pairs are composed of Pfam-A domains. Out of the 2,475 single Pfam-A domain interaction 

pairs, 95 of them are also reported by the iPfam database [161] and 2,239 of them are found 

in the InterDom database [162]. In iPfam, two domains are defined as interacting if and only 

if they are close enough in at least one PDB complex to form an interaction. The domain 

interactions reported by crystal structures of protein complexes are generally regarded by 

colleagues as true positives. On the other hand, the InterDom contains putative interacting 

domains from heterogeneous data sources; thus, they can also be treated as high confident 

domain interactions. 

Table 3.1 Examples of inferred single-domain interaction pairs confirmed by iPfam 

Domain A Pfam_ID Domain A Name Domain B Pfam ID Domain B Name 

PF00069 Pkinase PF00023 Ank 
PF00069 Pkinase PF02984 Cyclin_C 
PF00069 Pkinase PF00134 Cyclin_N 
PF00364 Biotin_lipoyl PF02852 Pyr_redox_dim 
PF00117 GATase PF02786 CPSase_L_D2 
PF00117 GATase PF02787 CPSase_L_D3 
PF00117 GATase PF00289 CPSase_L_Chain 
PF00071 Ras PF00996 GDI 
PF00560 LRR_l PF00076 RRM_l 
PF00183 HSP90 PF00515 TPR_l 

 

Table 3.1 lists some of the single-domain interacting pairs identified by our method and 

also confirmed by the iPfam. For example, the domain biotin_lipoyl (PF00364) is annotated 

as biotin-requiring enzyme and it has a conserved lysine residue that binds to biotin or 

lipoicacid. Biotin performs catalysis in some carboxyl transfer reactions and is covalently 

attached to a lysine residue via an amide bond. The pyr_redox_dim (PF02852) domain is 
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annotated as pyridine nucleotide-disulphide oxidoreductase, dimerization domain and 

determined to involve in oxidation–reduction reaction. 

Table 3.2 lists some identified single-domain interaction pairs that are not found in iPfam, 

but are found as interacting with a high confidence by the InterDom [162]. For example, SH3 

(PF00018) and Pkinase (PF00069) in Table 3.2 are derived from a PPI only involving single-

domain proteins by InterDom. In InterDom, a protein is considered as a single-domain 

protein if it has only one domain and the domain accounts for at least 50% of the protein 

length [162]. Domain interactions derived from such single-domain protein interactions are 

usually considered to be highly likely. The SH3 domain is also found to interact with 

Pkinase_Tyr (PF07714) by iPfam [161]. Pkinase and Pkinase_Tyr are both members of the 

protein kinase superfamily clan. A complete list of single domain interaction pairs identified 

is available in our publication [163]. 

Table 3.2 Examples of inferred single-domain interaction pairs confirmed by InterDom 

Domain A Pfam ID Domain A Name Domain B Pfam ID Domain B Name 

PF00153 Mito_carr PF01423 LSM 
PF00248 Aldo_ket_red PF00106 adh_short 
PF00155 Aminotran_1_2 PF00735 GTP_CDC 
PF00018 SH3_1 PF00069 Pkinase 
PF00241 Cofilin_ADF PF00400 WD40 
PF00694 Aconitase_C PF01028 Topoisom_I 
PF00330 Aconitase PF01336 tRNA_anti 
PF00501 AMP-binding PF01253 SUI1 
PF00022 Actin PF01853 MOZ_SAS 
PF00249 Myb_DNA-binding PF00098 zf-CCHC 

 

While most of the existing domain-based methods can only infer interactions for single-

domain pairs, RDFF is capable of retrieving two or more domains for each protein in a pair 

from a tree branch that leads to an interaction classification. This is attractive as in some PPIs, 

it is highly probable that two or more domains in a protein cooperate with each other to form 

a module that interacts with another domain or domain module in the other protein. Here, a 
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domain module is defined as two or more domains functioning as a whole during interaction 

binding. Some of our identified domain module interactions are listed in Table 3.3.  

Table 3.3 Examples of domain module interactions discovered 

Domain Module in Protein A Domain Module in Protein B 

PF00083 PF00397; PF00168 
PF00676 PF02779; PF02780 
PF00036 PF00612; PF02736; PF00063 
PF00009 PF02798; PF00043; PF00647 
PF00459 PF00627; PF00442; PF00443 
PF00026 PF00176; PF00271; PF00097; PB019909 
PF01412 PF02826; PF00389; PF01842; PB042699 
PF00076; PF00806 PF00248 
PF00249; PF00569 PF00628 
PF00004; PB030344; PF01426 PF02178 
PF00006; PF02874; PF00306 PF00231 
PF00169; PF00620; PF00617 PF00252 

 

It is observed that domains in a module demonstrate strong association. For example, 

domains in the module {PF00006, PF02874, PF00306} listed in Table 3.3 (row #11) are 

annotated in Pfam as ATP synthase alpha/beta family, nucleotidebinding domain; ATP 

synthase alpha/beta family, beta-barrel domain; and ATP synthase alpha/beta chain, C-

terminal domain, respectively. Actually, the three domains were identified by iPfam to 

cooperate with each other in binding to the ATP synthase (PF00231). Moreover, another 

domain module {PF00612, PF02736, PF00063} in Table 3.3 (row #3) is annotated as IQ 

calmodulin-binding motif; Myosin N-terminal SH3-like domain; and Myosin head (motor 

domain), respectively. The iPfam reported that the domains work together to form bonds with 

the EF hand (PF00036). Furthermore, the domains of the module {PF02779, PF02780} in the 

second row are Transketolase, pyridine binding domain, and Transketolase, C-terminal 

domain, respectively. The two domains are identified by iPfam to bind together in proteins to 

interact with the dehydrogenase E1 component (PF00676). In this study, total 867 

interactions between domain modules were identified. A complete list can be found in our 
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publication [163]. Verifying those predictions is a challenging task because currently there 

are not enough resources available on domain module interaction pairs. 

3.2.5 Protein-Protein Interaction Prediction by RDFF 

With the putative domain–domain interactions, we can predict PPIs. To exemplify this, we 

select some predicted domain–domain interactions and then find proteins that contain these 

domains to see if these proteins interact with each other or not. For instance, as identified by 

Pfam [160], cell division control protein 7 (CDC7) contains protein kinase domain (PF00069). 

Both our model and Pfam identify the domain to be interacting with the ankyrin repeat 

(PF00023) domain. Regulatory protein SWI6 is known to contain the ankyrin repeat. Our 

model predicts the proteins CDC7 and SWI6 to be interacting. Indeed, the protein CDC7 is a 

conserved Dbf4-dependent protein kinase (DDK). Bailis et al. [164] has demonstrated that 

Schizosaccharomyces prombe Hsk1 (CDC7) regulates replication initiation, interacts and 

phosphorylates the heterochromatin protein 1 (HP1) which is the equivalent of SWI6. For 

another example, cell cycle protein kinase DBF2 contains the protein kinase domain 

(PF00069) and protein G2/mitotic-specific cyclin 2 (CLB2) contains Cyclin, N-terminal 

domain (PF00134). The PF00069 and PF00134 domain pair is inferred by our model and 

verified by iPfam as an interacting domain pair. The cell cycle protein kinase DBF2 and 

G2/mitotoicspecific cyclin 2 protein is predicted by our model to be an interacting protein 

pair. The DBF2 protein kinase is found to control the inactivation of the CLB2 (G2/mitotic-

specific cyclin 2) kinase in late mitosis [165]. This clearly demonstrates the potential of the 

domain-based random forest framework in protein-protein interaction prediction. 

We assessed the performance of RDFF for protein-protein interactions prediction in 

Saccharomyces cerevisiae and compared its results to the MLE method by Deng et al. [140]. 
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The MLE method requires two input parameters: false positive (fp) and false negative (fn) 

rates. Deng et al. analyzed various values of the two parameters but did not observe any 

significant change in accuracy among the tested various values. Therefore, we choose to use 

one of their tested values, fp = 1.0E-5 and fn = 0.85, to train the MLE method over our 

training dataset. For RDFF, we chose a forest of 150 trees and each with maximum height 

threshold equal to 450. Impurity and minimum node size are set to 0.01 and 3, respectively. 

Details regarding the parameter selection are discussed in previous Section 3.2.3. To compare 

the MLE method and our method RDFF, sensitivity vs. (1 - specificity) was calculated on the 

test dataset and plotted in a receiver operating characteristic (ROC) in Figure 3.3. 

 

Figure 3.3 ROC performance comparison of RDFF and MLE 
 
 

The ROC curve of our model is constructed by varying a classification threshold placed 

on the number of extra ‘interaction’ votes required for the final interaction prediction. 

Typically, majority votes win if the threshold equals to 0; however, the threshold can be 
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changed. For instance, a threshold at 5 implies that at least five more ‘interaction’ votes than 

‘non-interaction’ votes must be obtained to classify a protein pair as interacting. Otherwise, 

the pair is classified as non-interacting. Therefore, with different thresholds, our model would 

perform differently in terms of specificity and sensitivity. There has always existed a trade-

off between specificity and sensitivity. Regardless of the trade-off between the measures, it is 

clearly shown in Figure 3.3 that our method outperforms the MLE method in all ranges of the 

classification threshold. Table 3.4 compares the results of our method and the MLE over the 

test dataset. With comparable sensitivities fixed at approximately the same level 79%, RDFF 

can achieve 64.38% in specificity and the MLE can only reach 37.53% in specificity. 

Table 3.4 Accuracy comparisons of RDFF and MLE 

Method Name RDFF MLE 

True Positives (TP) 3923 3850 
False Positives (FP) 1425 2499 
True Negatives (TN) 2575 1501 
False Negatives (FN) 994 1067 
Sensitivity (SN) 79.78% 78.30% 
Specificity (SP) 64.38% 37.53% 
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Chapter 4. Domain Interaction Network for Function Prediction 

As we move into the post genome-sequencing era, an immediate challenge is how to make 

the best use of the large amount of available high-throughput experimental data to assign 

functions to currently uncharacterized proteins. While experimental methods have been 

successful in identifying protein functions, they are extremely labor intensive and time 

consuming. Thus, genome-wide functional annotations must rely on in silico methods. Over 

the years, many computational methods have been developed and shown great promises; 

however, they still suffer from two major limitations: (1) low accuracy – the prediction 

accuracy of most methods are under 75%, which may not be of practical use for biologists; 

and (2) low specificity – predictions are normally generic functional categories. 

In this research, I first explore a novel model to construct a weighted network of domain-

domain interactions from cross-species protein interaction data where nodes are the domains 

and edges correspond to their interactions (Section 4.2). The proposed method is named 

CSIDOP for Cross-Species Interacting Domain Patterns. After building the DDI network 

with CSIDOP, we then statistically analyze the network with metrics that combine the static 

network topology and weights of the underlying interactions (Section 4.3). Finally, domain-

domain interactions and protein-protein interactions predictions by the CSIDOP method are 

statistically evaluated in Section 4.4 and 4.5. 

4.1 Principle of CSIDOP 

It is well known that protein domains are the structural and/or functional units of proteins that 

are conserved through evolution. Some protein domains serve specific functions such as 

tyrosine kinase domains that covalently attach phosphate groups to select tyrosine residues in 

target proteins. Other protein domains may be more generic; for example, they may 
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participate in protein-protein binding and thereby are associated with numerous biological 

activities. A protein may encompass only one domain or multiple domains. In some cases, 

multiple domains may work together as a unit in a protein to direct physical bindings and 

executions of protein functions [166]. Pereira-Leal and Teichmann [167] suggested that 

protein interactions often evolve through duplication of the proteins involved in the 

interaction. In their work, Pereira-Leal and Teichmann defined partial duplicates as any two 

interaction pairs with one protein in common and homology between the other proteins. They 

defined complete duplicates as any two interactions where both proteins are homologous. 

Their results indicated that the duplicated modules in proteins tend to retain similar general 

functions. This suggests that interacting modular domains may be conserved over time and 

between organisms. Moreover, a shared pattern between two interacting protein pairs may 

signify that both protein pairs interact through the shared modular domains; thus they may 

exhibit similar functions.  

Under this hypothesis, if two PPI pairs contain a common interacting domain pattern, 

then proteins in the two pairs with similar modular domains are more likely to be associated 

with similar functions. For example, assume that there exist two PPI pairs: protein A interacts 

with protein B and protein C interacts with protein D. If proteins A and C contain the same 

modular domain X that interact with the modular domain Y in proteins B and D, then we 

conclude that the two PPI pairs share a common interaction domain pattern. Therefore, we 

extrapolate that proteins A and C are more likely to have similar functions, and the same 

applies to proteins B and D (Figure 4.1).  
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Figure 4.1 Function annotation scheme based on interacting domain patterns. This also illustrates how 
domain interaction can contribute to protein interactions. One or more domains in a protein may form 
modular domains and interact with other modular domains in other proteins. Dashed rectangles 
represent modules. In each module, one or more domains may exist and form a unit during interaction. 
The dashed lines represent interactions between proteins. Since the protein-protein interaction pairs A-
B and C-D share common domain interaction patterns, and proteins A and C and B and D share the 
same interacting modular domains, we may deduce that the proteins are associated with similar 
functional annotations. 
 
 

To further analyze the hypothesis in real data, we looked into protein interaction pairs 

from different species and observed evidence of this conservation of function between the 

pairs. For example, in C. elegans, nhr-67 [Swiss-Prot: Q9XVV3] and daf-21 [Swiss-Prot: 

Q18688] have been shown to interact [168], whereas in H. sapiens, ESR1 [Swiss-Prot: 

P03372] and HSP90AA1 [Swiss-Prot: P07900] are also known to interact [169]. Both protein 

interaction pairs contain a common domain interaction pattern, (PF00105)-(PF02518, 

PF00183), where ‘-’ denotes interaction and the parentheses denote modular domains. 

PF00105 is described by Pfam [160] as the zinc finger, C4 type domain, and PF02518 and 

PF00183 refer to HATPase_c and HSP90 domains, respectively. The proteins nhr_67 and 

ESR1 contain the PF00105 domain, whereas daf-21 and HSP90AA1 contain the modular 
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domain (PF02518, PF00183). In the Gene Ontology database [17], the proteins nhr-67 in C. 

elegans and ESR1 in human are annotated to the same GO terms including regulation of 

transcription, DNA dependent (GO:0006355) and DNA binding (GO:0003677). Analogously, 

daf-21 and HSP90AA1 were also found to be annotated with the same GO terms: ATP 

binding (GO:0005524) and protein folding (GO:0005515). Hence, we can explore this 

property of interaction conservation as means to build a domain interaction network and 

assign protein functions by concentrating on protein-protein interaction (PPI) pairs with 

similar interacting modular domain patterns. 

4.2 Domain-Domain Interaction Network 

Most DDI prediction methods are based on protein interaction data. As much as we 

appreciate the available data generated from high-throughput protein interaction experiments, 

several independent studies have indicated their false positive rates to be in the order of 50% 

[22, 29, 78, 92]. In order to construct a reliable domain-domain interaction network from the 

noisy protein interaction network, we employ the CSIDOP principle to extract conserved 

interacting domain patterns buried in the enormously noisy assembly of protein interaction 

pairs across diverse species. 

4.2.1 Data Source 

To build a DDI network, we utilized a large scale collection of protein-protein interaction 

data in four species: S. cerevisiae, C. elegans, D. melanogaster, and H. sapiens, from the DIP 

January 2008 release [159], BioGRID 2.0.38 release [14], and HPRD September 2007 release 

[15]. Specifically, this dataset contains 54,987, 3,085, 5,375, and 30,223 protein interaction 

pairs among 3,794, 1,609, 2,059, and 7,167 proteins in S. cerevisiae, C. elegans, D. 

melanogaster, and H. sapiens, respectively.  



 54

Protein domain information is extracted from Pfam 22.0 [170]. For each protein, both 

pfam-A and pfam-B domains are considered. Among our protein interaction datasets, there 

are 4,542, 2,346, 3,715, and 12,082 unique Pfam domains identified in S. cerevisiae, C. 

elegans, D. melanogaster, and H. sapiens, respectively. Some domains are shared across 

species. In total, there are 429 Pfam domains in common between all four species. Complete 

information regarding domain distribution across the four organisms is available in Figure 4.2. 

For protein annotation information, we obtained ‘molecular function’ terms from the GO 

January 2008 release [17]. Within our interaction dataset, there are a total of 2,972 unique 

GO annotated molecular function terms. 

 

Figure 4.2 Domain distribution of different organisms: S. cerevisiae, C. elegans, D. melanogaster, and 
H. sapiens. Each organism can share different number of Pfam domains with other organisms. Among 
the protein-protein interactions we have collected for the four organisms, there are 429 Pfam domains 
in common between all four species as shown. There are total 753, 1,016, and 1,737 common domains 
between S. cerevisiae and the remaining three organisms: C. elegans,  D. melanogaster, and H. sapiens.  
On the other hand, C. elegans has 808 and 1,194 domains in common with D. melanogaster and H. 
sapiens. Finally, D. melanogaster and H. sapiens share 1,710 Pfam domains. 
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4.2.2 Weighted DDI Network Construction by CSIDOP 

In an effort to construct a reliable domain-domain interaction network, a new algorithm is 

devised to gather functionally related protein-protein interaction pairs into groups and then 

apply χ2-statistics to acquire significantly conserved interacting domain patterns. Figure 4.3 is 

a flowchart of the CSIDOP approach. In essence, for each pair of interacting proteins in the 

protein interaction network, we strive to identify its close neighbors based on functional 

distances between individual proteins. The distance between proteins is defined as the closest 

GO-graph-node distance among their annotated GO molecular function terms. Since GO is 

designed as a directed acyclic graph where each node represents a GO term, the GO-graph-

node distance is defined here as the least number of nodes separating two GO terms. More 

precisely, each protein interaction pair in the PPI network serves as a mean point, or centroid, 

and functional distances between the centroid pair and all remaining pairs are computed. An 

incoming PPI pair is accepted to join the group if and only if the distances among individual 

proteins in the centroid pair and the pair under consideration are below a certain threshold t. 

For instance, assume that there are two PPI pairs, A-B and C-D, where ‘-’ denotes interaction. 

The two pairs are said to be functionally related if and only if the following condition is 

satisfied: the closest GO-graph-node distance between either (A, C) and (B, D) or (A, D) and 

(B, C) are less than or equal to t. The threshold t is empirically set to 3 in this study. In the 

end, PPI pairs in the same cluster are assuredly more likely to share the same or similar 

functions. 

After forming a group of functionally related PPI pairs, we attempt to derive the most 

representative interacting domain patterns that are uniquely conserved across multiple 

organisms with the same or similar functions (i.e. in the same group). Since proteins often 

contain multiple domains, and one or more domains may form a functional unit during 
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interaction (i.e. modular domain), both single and modular domains are considered. Therefore, 

all possible combinations of modular domains in a protein are considered in generating the 

potential interacting domain patterns. Due to the existence of some big proteins with more 

than 15 domains, measures must be taken to trim down the set of all possible combinations by 

restricting the modular domain size to 4. This assumption is reasonable because it is unlikely 

for a large number of domains to come together and form a single unit during interaction. 

Additionally, the same set of a large number of domains is unlikely to occur repeatedly in 

other proteins across organisms. 

 

Figure 4.3 Flowchart of the CSIDOP approach. The model begins with a collection of protein 
interaction pairs across various species and extraction of their domain and function information. Then, 
for each PPI pair, it searches for its close neighbors based on their GO-graph-node functional distances. 
Finally, from each group, significant interacting domain patterns can be derived and in turn form a 
lookup table of patterns and associated functional assignments. 
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As a result, for each PPI pair in an individual group, a list of possible interacting domain 

patterns is enumerated. Each domain pattern will be associated with a list of function terms 

from their corresponding PPI pairs. In order to select the most significant interacting domain 

patterns, the χ2 statistic is calculated for each potential pattern using the following formula 

(Eq. 4.1):  
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N is the total number of PPI pairs in the protein interaction network. Variable A is the number 

of PPI pairs in the group that contain the particular ‘pattern’, and B is the number of 

remaining PPI pairs outside the group that contain the ‘pattern’. Variables C and D are the 

number of PPI pairs that do not contain the ‘pattern’ in the group and in the remaining 

samples outside the group, respectively. An interacting domain pattern occurring more 

frequently in PPI pairs inside the group than outside the group is expected to have a higher χ2 

value; hence it is more significant. Finally, the highest scoring interacting domain patterns are 

reported to create the DDI network where nodes denote domains and edges represent 

interactions with strength equals to its χ2-value and a lookup table for protein function 

annotations (Figure 4.3). 

4.2.3 Weighted DDI Network Analysis 

Network structures are observed in many natural and man-made complex systems such as 

social phenomena (e.g. scientific collaborations), communication systems (e.g. Internet), 

transportation infrastructures (e.g. airline routes), and biological systems (e.g. gene and/or 

protein interaction network). These highly interconnected systems have been extensively 

studied, which highlighted a number of topological features. One remarkable finding is the 

presence of scale-free nature in these networks [171], or a degree distribution showing 
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power-law behavior, which is extremely relevant to networks’ robustness or vulnerability. In 

scale-free networks, there are a small number of highly connected nodes, often referred to as 

hubs, which secure the network integrity. The prevalence of this property in biological 

systems may indicate an evolutionary advantage because scale-free networks are more robust 

to random perturbations than other network architectures [172]. However, these networks are 

vulnerable to targeted attacks of their hubs. For instance, viruses may interfere with activities 

of the hub proteins to induce massive changes in cellular behavior. In past studies, these 

topological features have mainly been considered in networks with links between nodes that 

represent binary states. However, biological networks are generally not determined only by 

their layouts. Many expect heterogeneity to exist in the capacity and intensity of the 

connections. Recently, Barrat et al. [173] studied weighted scientific collaboration and world-

wide transportation networks considering interplays between links and their weights. 

Here, we present a statistical analysis of the weighted Pfam domain interaction network 

constructed in Section 4.2.2 using the CSIDOP method where the nodes denote Pfam 

domains and edges represent interactions. The DDI network is composed of 5,582 domains 

and 20,837 interactions. Each link between domains is weighted by a score – expectation 

value – to reflect the strength of the interaction. The score is calculated through χ2-statistic 

which are used to derive significant domain interacting patterns in CSIDOP. In this network 

analysis, we desire to investigate the interplay between the DDI network topology and 

strength of the underlying interactions. 

As a first insight into the role of weights, we examine the interplays between vertex 

degree products and edge weights. In real world networks, interrelation of the degree product 

kikj and weight wij often follows a power-law curve. This possibly signifies dependency 

between the network layout and weights of links. For an undirected graph, the degree of a 
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vertex ki = ∑j aij is the number of edges incident to the vertex i where aij = 1 if a link exists 

between vertex i and j. In our DDI network, we hardly notice any such dependence where the 

mean expectation value is almost constant throughout a wide range of degree products 

(Figure 4.4). This phenomenon generally implies a lack of correlation between number of 

domain interaction partners and their interaction strengths [173]. 

 

Figure 4.4 Node degree product vs. mean expectation value. The dependence of mean interaction 
expectation value from the domain degree product kikj shows a weak correlation ~kikj

-0.003.  
 
 

To further investigate the dependence between the DDI network topology and their 

interaction strengths, we apply a series of measures introduced by Barrat et al. [173] that 

combines both network topology and weights to assess the impact of weights. In a weighted 

DDI network, the initial definition of vertex degree ki = ∑j aij is extended in terms of domain 

strength si, which is defined as 

∑=
j

ijiji Eas      (4.2) 
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where Eij is the expectation values or strengths of interactions of domain i. When comparing 

cumulative frequency distributions of the domain degree k and its strength s, we observe that 

both distributions have power-law tails P(x) = x-α (Figure 4.5). The observation of power-law 

tails in the degree distribution implies the existence of the scale-free property [174]. In other 

words, it suggests that the DDI network integrity depends on a small subset of highly 

interactive domains. Similarly, it signifies that a majority of domains have low strength while 

only a minority of domains can reach high strength. 

 

Figure 4.5 Cumulative frequency distributions of node degree and strength. For measures that consider 
single domain such as the node degree k and interaction strength s, we observe a power-law tail in 
cumulative frequency distribution with P(k) = k-2.64 and P(s) = s-2.5822. 
 
 

Another typical network analysis measure is called local network cohesiveness. The 

clustering coefficient Ci (Eq. 4.3) of a vertex in an unweighted network is calculated to 

quantify how close its neighbors are to being a clique (complete graph). For additional 

information about the structure of the underlying DDI network, we examine the average 

clustering coefficient C(k) that is restricted to a class of domains with degree k.  
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In most real world networks, C(k) exhibits a highly nontrivial behavior with a power-law 

decay as degree k increases. High C(k) values indicate that low degree vertices belong 

generally to well interconnected communities, and small C(k) values mean that hubs serve as 

bridges for many vertices. Here, we examine the average clustering coefficients of domains 

with a certain degree k in both weighted and unweighted networks. By considering 

interaction strengths, the weighted clustering coefficient can be defined as in Eq. 4.4. 
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As expected, power-law dependence is observed in both networks which demonstrates that 

the weighted clustering coefficient preserves its dependence from the degree k (Figure 4.6). 

 

Figure 4.6 Mean clustering coefficient. For clustering coefficient that measures local group 
cohesiveness or network modularity, we notice the dependence of unweighted clustering coefficient C 
decays as a power-law, C(k) ~ 0.223k-0.41. The same trend is observed for the weighted clustering 
coefficient Cw(k) ~ 0.111k-0.405. We logarithmically binned the data points first and calculated mean 
values in each bin. 
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Furthermore, to gain a deeper understanding of the relationship between network layout 

and weights, degree-degree correlations are evaluated by the average degree of nearest 

neighbors knn,i. In unweighted and weighted networks, knn,i is defined respectively as 
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The average nearest-neighbor degree with connectivity k is referred to as knn,i(k). This can be 

used to identify two types of networks. If knn,i(k) is an increasing function of k, then higher 

degree vertices are more likely to connect with large-degree vertices, a property that is known 

as assortative mixing. In contrary, if knn,i(k) is an decreasing function of k, then it means that 

majority of the higher degree vertices are connected to ones with low degree, which is called 

disassortative mixing. In our case, we have found both unweighted and weighted DDI 

networks have a trend toward disassortative mixing (Fig. 4.7) which was also recognized in 

other biological networks [133, 175]. 

 

Figure 4.7 Average nearest neighbor degree. We reached roughly the same result for unweighted and 
weighted average nearest neighbor degree, which slightly decays as increasing degree. The weak 
dependency can be approximated by a power-law ~ 43.686k-0.088. We logarithmically binned the data 
points first and calculated mean values in each bin. 
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In summary, our constructed DDI network exhibits the scale-free property, and while 

investigating interplays between the network topology and strengths of the underlying 

interactions, we observe that the unweighted measures and their weighted counterparts 

generally follow the same trends. The same phenomena were also identified by Wuchty [133]. 

Thus, these observations further confirm the effectiveness of our CSIDOP method for DDI 

predictions. 

4.3 Domain-Domain Interaction Predictions 

In the previous section, our network analysis of the DDI network built by CSIDOP showed 

that the network as a whole exhibits the scale-free property which is consistent with the 

observations of other studies in domain interaction network. In this section, we would like to 

assess the quality of individual domain-domain interactions in the network. 

4.3.1 Statistical Evaluations 

Due to limited availability of a gold standard dataset for domain-domain interactions, 

evaluation of domain interaction prediction methods becomes a challenging problem. As a 

standard solution, domain pairs reported to interact in crystal structures of protein complexes 

are often used as the benchmark of true positives. To verify the DDIs predicted by our 

algorithm CSIDOP, we compare them to domain pairs reported in iPfam [161] and 3DID 

[176], which are referred to here as known DDIs. Both databases regard two domains as 

interacting if and only if they are close enough in at least one PDB complex to form an 

interaction. However, one must keep in mind that iPfam and 3DID only embody a small 

fraction of all true interacting domain pairs. According to a recent study conducted by Itzhaki 

et al. [177], domain interaction pairs stored in iPfam and 3DID databases account for no more 

than 20% of the protein-protein interactions for any of the E. coli, S. cerevisiae, C. elegans, D. 
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melanogaster, and H. sapiens organisms examined. Hence, it is expected that the number of 

predicted DDIs to be verified by the two databases is low. For instance, only 11.35% of the 

predictions by the domain co-evolution based method, RCDP, are confirmed by iPfam [129]. 

Those predictions without any PDB evidences are not necessarily false positives. It is highly 

probable that domain interaction prediction methods will retrieve many true interacting 

domain pairs that are just not part of the high-confidence databases yet. 

To evaluate the reliability of the predicted DDIs, we adopt a statistical approach 

described by Deng et al. [140]. If CSIDOP is reasonable, a real domain interaction pair 

should be much more likely to be verified by the known interacting domain pairs than 

random pairs. To measure the excess, we calculate a quantity called Fold or ratio of the 

fraction of matched DDIs in predicted domain pairs with those in all pairs (Eq. 4.6). 

          
Ln
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/
/0=      (4.6) 

L denotes the total number of domain pairs, n is the number of predicted DDIs, K is the total 

number of known DDIs, and k0 is the number of matching domain pairs between the 

predicted and known DDIs. 

When the DDI network was built, a χ2-value or expectation value is assigned to each 

derived domain pair. One would assume that the larger the score, the more likely the 

interaction is real. Thus, to assess performance of our method in detail, we set up a threshold 

by which two domains are considered to be interacting if and only if the expectation value is 

greater than this threshold. Comparing to the known DDIs, experiments are performed over 

various combinations of the threshold. Since individual databases cover different parts of the 

protein domain space, we only consider those domain pairs that exist in each. Fold 

calculation of the predicted DDIs to the known ones in iPfam and 3DID databases are shown 

in Table 4.1 and 4.2, respectively. 
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Table 4.1 Evaluation of the predicted domain-domain interactions vs. known interactions in iPfam 

Top % scoring DDIs 
considered 

Total # of predictions # of overlaps with 
iPfam 

Fold 

10% 298 48 103.38 
20% 630 84 85.58 
30% 1036 104 64.43 
40% 1442 122 54.30 
50% 1745 141 51.86 
60% 2125 162 48.93 
70% 2548 182 45.84 
80% 3169 201 40.71 
90% 4572 266 37.34 
100% 5796 319 35.32 
Random 2377290 3704 1 

 

Table 4.2 Evaluation of the predicted domain-domain interactions vs. known interactions in 3DID 

Top % scoring DDIs 
considered 

Total # of predictions # of overlaps with 
3DID 

Fold 

10% 324 52 195.68 
20% 730 96 160.34 
30% 1183 119 122.65 
40% 1677 138 100.33 
50% 2071 161 94.79 
60% 2545 182 87.19 
70% 3058 207 82.53 
80% 3813 229 73.23 
90% 5513 310 68.56 
100% 6934 373 65.59 
Random 6126750 5025 1 

 

As shown in Table 4.1 and 4.2, the domain-domain interaction predictions by our 

algorithm CSIDOP are significantly better than random. The comparison results against 

iPfam and 3DID databases demonstrate similar trends. The Fold decreases as we lower the 

threshold in determining whether two domains interact or not. This is expected as the higher 

the threshold, the smaller and more reliable the resulting DDI network is. 

4.3.2 Comparison to Other Methods in DDI Prediction 

We compared the domain interaction predictions by CSIDOP with those of our previous 

method RDFF [163], RCDP by Jothi et al. [129] and DPEA by Riley et al. [147]. The 
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objective of this comparison is to figure out how the percentage of the CSIDOP predictions 

confirmed by iPfam compares against other methods. It must be emphasized here that this is 

only an indirect comparison because different datasets were utilized in each study, and it 

would be extremely difficult to test these methods on the same dataset as some of the 

methods impose unique set of constraints on the input dataset. For example, RCDP [129] 

considers only those PPIs with both proteins having orthologous hits in 10 or more genomes. 

As shown in Table 4.3, when the top 10% and 20% of the scoring DDIs are utilized in 

CSIDOP, the percentage of overlap with iPfam is 16.11% and 13.33%, which are slightly 

lower than the best performing RCDP with a test set of SLA ≥ 75% (17.26%).  

Table 4.3 Indirect comparison of CSIDOP to RDFF, DPEA, and RCDP 

 # of Pfam DDI 
predictions 

# of predictions 
confirmed by iPfam 

% of predictions 
confirmed by iPfam 

RDFF 2475 104 4.20% 
DPEA 1812 185 10.21% 
RCDP_SLA50 960 109 11.35% 
CSIDOP_20 630 84 13.33% 
CSIDOP_10 298 48 16.11% 
RCDP_SLA75 336 58 17.26% 

Numbers listed in the table for RDFF, DPEA, and RCDP are obtained from the study by Jothi et al. 
[129]. For our method CSIDOP, top 10% and 20% scoring DDIs are utilized in the comparisons. 
 

Furthermore, we want to find what percentage of our predictions is confirmed by other 

methods. We compared the CSIDOP prediction results with DDIs listed in the DOMINE 

database [178]. DOMINE collects DDIs inferred from PDB entries and those by eight 

different computational approaches. For each domain pair, it assigns a label HCP, MCP, LCP 

or PDB to represent high-, medium-, or low-confidence and PDB inferred interactions. High-

confidence pairs (HCP) are those predicted using multiple sources of information or by at 

least two sufficiently different computational methods. Medium-confidence pairs (MCP) are 

predicted by just one approach in which both domains are a part of the same GO biological 
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process. Low-confidence pairs (LCP) are the ones predicted simply by one computational 

approach. The comparison summary is illustrated in Table 4.4. For different choices of 

parameters, 15.06% to 28.17% of our predictions are confirmed by the DOMINE database, 

and among them 6.65% to 19.21% are verified either by PDB determined interactions or 

predictions from heterogeneous data sources and multiple approaches. 

Table 4.4 Fraction of CSIDOP domain-domain interaction predictions confirmed by DOMINE 

Top % scoring DDIs 
considered 

% of DDI predictions 
confirmed by DOMINE 

% of DDI predictions confirmed 
by PDB + HCP 

10% 28.17% 19.21% 
20% 27.74% 17.60% 
30% 23.10% 13.77% 
40% 19.77% 11.53% 
50% 19.14% 10.56% 
60% 18.07% 9.53% 
70% 17.77% 8.98% 
80% 16.49% 7.96% 
90% 15.52% 6.91% 
100% 15.06% 6.65% 

 

For those DDI predictions not in DOMINE, we investigate them further for supporting 

evidences. As we know, two domains often interact to achieve a common objective; therefore, 

two interacting domains are more likely to share similar GO annotations. By examining the 

closest GO-graph-node distance between each pair of domains predicted, many pairs are 

found to share the same GO annotation or have the closest GO-graph-node distance of 1 

indicating a direct parent-and-child relationship where the parent is a more general 

description and the child is more specific. For example, ARID (PF01388) and SAM_PNT 

(PF02198) domains are predicted to interact. The ARID domain is known to participate in 

DNA binding (GO:0003677). The SAM_PNT domain is known to execute sequence-specific 

DNA binding (GO:0043565), which is a children term of the DNA binding (GO:0003677). 

For another example, our method predicted the ERM (PF00769) and WW (PF00397) 
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domains to interact. The ERM domain participates in protein binding (GO:0005515), and the 

WW domain is annotated to cytoskeletal protein binding (GO:0008092). Cytoskeletal protein 

binding (GO:0008092) is a more specific term of the protein binding (GO:0005515).  

Under a fixed parameter (i.e. top 10% scoring DDIs), a total of 329 DDIs were predicted 

but not found in DOMINE. Among those, 176 pairs contain both domains with GO 

annotation from Pfam. Out of the 176 pairs, we found 47 domain pairs (26.70%) with 

constituent domains having GO-graph-node distances less than and equal to 2. To assess the 

significance of the percentage, we computed the GO-graph-node distance for all possible 

domain pairs (2,377,290 in total) to see how many of the random domain pairs would have a 

distance less than or equal to 2. Out of all 2,377,290 domain pairs, 1,408,681 pairs had GO 

annotations available for both domains. Among the 1,408,681 random domain pairs, 167,309 

(11.88%) had GO-graph-node distance of 2 or less, which is more than a two-fold reduction 

compared to what is observed in predicted DDIs (26.70%). Table 4.5 summarizes the results 

for various GO-graph-node distances as thresholds. 

Table 4.5 Comparison between fractions of our DDI predictions (176 pairs) and random domain pairs 
(1,408,681 pairs) having certain GO-graph-node distance 

Shortest GO-graph-
node distance 

# Random 
domain pairs 

% Random 
domain pairs* 

# Predicted 
DDIs 

% Predicted 
DDIs¶  

= 0 47,150 3.35% 21 11.93% 
≤ 1 76,648 5.44% 32 18.18% 

≤ 2 167,309 11.88% 47 26.70% 

≤ 3 330,705 23.48% 62 35.23% 

≤ 4 559,503 39.72% 83 47.16% 

*Calculated based on a total of 1,408,681 random domain pairs 
¶Calculated based on a total of 176 predicted DDIs 
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Annotations of some predicted DDIs with GO distance of 1, 2, and 3 are listed in Table 4.6. 

Examples of some predicted domain pairs with shared annotations (i.e. distance = 0) are 

illustrated in Table 4.7. A complete list of the 329 domain pairs can be found in appendix A. 

Table 4.6 Examples of domain-domain interactions predicted with the closest GO-graph-node distance 
of 1, 2, and 3 (not found in DOMINE) 

Domain A Domain B Annotation A Annotation B Dist 
RNase_PH 
(PF01138) 

DEAD 
(PF00270) 

RNA binding 
(GO:0003723) 

Nucleic acid binding 
(GO:0003676) 

1 

RNA_pol_Rpb1
_7 (PF04990) 

RRM_1 
(PF00076) 

DNA binding 
(GO:0003677) 

Nucleic acid binding 
(GO:0003676) 

1 

bZIP_1 
(PF00170) 

SH2 (PF00017) Protein dimerization 
activity (GO:0046983) 

Protein binding 
(GO:0005515) 

1 

Ets (PF00178) ARID (PF01388) Sequence-specific DNA 
binding (GO:0043565) 
Transcription factor 
activity (GO:0003700) 

DNA binding 
(GO:0003677) 

1 

RBD (PF02196) Hint (PF01079) Signal transduction 
(GO:0007165) 

Cell communication 
(GO:0007154) 

1 

Zf-C2H2 
(PF00096) 

KIX (PF02172) Nucleic acid binding 
(GO:0003676) 

Protein binding 
(GO:0005515) 

2 

C1_1 (PF00130) Hint (PF01079) Intracellular signaling 
cascade (GO:0007242) 

Cell communication 
(GO:0007154) 

2 

RBD (PF02196) HH_signal 
(PF01085) 

Signal transduction 
(GO:0007165) 

Cell-cell signaling 
(GO:0007267) 

2 

TFIIA 
(PF03153) 

Homeobox 
(PF00046) 

RNA polymerase II 
transcription factor 
activity (GO:0003702) 

Transcription factor 
activity (GO:0003700) 

2 

SAM_PNT 
(PF02198) 

TSC22 
(PF01166) 

Sequence-specific DNA 
binding (GO:0043565) 

Transcription factor 
activity (GO:0003700) 

2 

HLH (PF00010) Wnt (PF00110) Transcription regulator 
activity (GO:0030528) 

Signal transducer activity 
(GO:0004871) 

3 

RHD (PF00554) Ribosomal_S5_
C (PF03719) 

Regulation of 
transcription 
(GO:0045449) 

Translation 
(GO:0006412) 

3 

Cadherin 
(PF00028) 

ZZ (PF00569) Calcium ion binding 
(GO:0005509) 

Zinc ion binding 
(GO:0008270) 

3 

SQS_PSY 
(PF00494) 

TIP49 
(PF06068) 

Transferase activity 
(GO:0016740) 

DNA helicase activity 
(GO:0003678) 

3 

C1_1 (PF00130) HH_signal 
(PF01085) 

Intracellular signaling 
cascade (GO:0007242) 

Cell-cell signaling 
(GO:0007267) 

3 
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Table 4.7 Examples of domain interaction pairs predicted with shared GO annotations (not found in 
DOMINE) 

Domain A Domain B Shared GO Annotation 
Pkinase_Tyr 
(PF07714) 

Furin-like 
(PF00757) 

ATP binding (GO:0005524) 
Protein amino acid phosphorylation (GO:0006468) 

Ets (PF00178) TSC22 
(PF01166) 

Regulation of transcription, DNA-dependent 
(GO:0006355) 
Transcription factor activity (GO:0003700) 

PHD 
(PF00628) 

Zf-C4 (PF00105) Zinc ion binding (GO:0008270) 

Ku (PF02735) Histone 
(PF00125) 

DNA binding (GO:0003677) 

wnt (PF00110) Hint (PF01079) Multicellular organismal development (GO:0007275) 

 

The above results suggest that our algorithm CSIDOP is able to discover biologically 

relevant novel interacting domain pairs. Our method can indeed predict true interacting 

domain pairs overlooked by other methods. It can be used along with other method to detect 

unrecognized domain interactions; thus it provides a wider coverage of the entire domain 

interaction space. 

4.4 Protein Function Predictions 

An essential issue concerning the protein function prediction problem is the assessment of 

method reliability. To evaluate the CSIDOP method, the collected protein interaction data is 

partitioned into two groups: training and testing. The training data is used to extract 

interacting domain patterns, and it only contains PPI pairs where both proteins are annotated 

in the GO. The test dataset, on the other hand, consists of interaction pairs that have either 

one of the proteins uncharacterized or both unknown. Thus, we can assess the reliability of 

the CSIDOP method by determining how well it works in function prediction for those GO-
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characterized proteins and infer novel functions for proteins that are currently not 

characterized in GO in the test dataset.  

For the function prediction evaluation, we decided to analyze the CSIDOP method over 

proteins in H. sapiens. The collected human protein interaction data are separated accordingly 

into training and test datasets. Interaction pairs in the two datasets are exclusively different, 

so a protein pair can only belong to one set. To train the CSIDOP method, we integrated PPI 

data from the organisms S. cerevisiae, C. elegans, and D. melanogaster, in addition to the 

large dataset from H. sapiens. In order to assess the relative performance of our method, 

inferred functions of the H. sapiens proteins (by CSIDOP) were then compared to the known 

functions in the GO database which we designate as the ‘true’ terms. Throughout this paper, 

the ‘true’ function terms of a protein refer to the known function terms of this protein listed in 

the GO. One match between the predicted terms and the corresponding true GO terms for a 

protein indicates a correct prediction; it is otherwise a wrong prediction. 

4.4.1 Comparison to Other Methods in Function Prediction 

After training, CSIDOP produces a lookup table of significant interacting modular domain 

patterns from protein interaction pairs in the training dataset where each pattern is associated 

with a number of function terms (please refer to Section 4.2.2 for details). Function 

annotations can be assigned to a PPI pair in the test dataset if it contains at least one 

interacting modular domain pattern listed in the table. Overall, we assigned GO function 

terms to 618 H. sapiens proteins from PPIs with common domain patterns in the lookup table. 

Among the 618 predicted proteins, 437 had existing annotations in the GO database and 

could be used to evaluate the CSIDOP method. Among the 437 proteins, 417 were assigned 

with correct functions by the CSIDOP (assigned functions have an exact match with the 
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‘true’ terms), i.e., the CSIDOP method had an accuracy of 95.42% (Table 4.8) using 2,972 

GO functional terms, which is higher than most of the existing in silico methods. For 

comparison, we also tested the Majority Rule (MR) method by Schwikowski et al. [103], a 

simple domain based method, and an orthology based method. 

Table 4.8 Accuracy comparison for different function prediction methods 

Method Accuracy 

CSIDOP 95.42% 
Orthology based method 83.86% 
Pfam domain based method 61.98% 
Majority Rule (MR) 59.50% 

Accuracies of the listed methods are compared in protein function prediction. The accuracy is defined 
as the percentage of proteins predicted with correct function terms. A protein is considered to be 
correctly annotated if there is a match between the predicted and known function terms.  
 

Generally, the MR algorithm assigns a protein with the function terms that occur most 

frequently amongst its direct interaction partners. Assessing the MR algorithm on the same 

test dataset that we used in CSIDOP, MR made functional predictions with an accuracy of 

59.50% (Table 4.8). As for the domain based method, considering the fact that a number of 

protein domains are annotated in Pfam [160] with specific functions, it is possible to make 

protein function predictions according to the functional terms of its constituent domains. 

Using the same set of proteins, only 61.98% were assigned with correct functions using the 

simple domain based scheme (Table 4.8). Lastly, for the orthology based method, we 

attempted to assign functions to proteins according to their annotated orthologs in other 

species. The orthologs were retrieved using Inparanoid [179]. The orthology based method 

achieved a prediction accuracy of 83.86%, and among the novel predictions, it only covered 

56.35% of our novel discoveries. Therefore, this demonstrates that our CSIDOP method can 

provide extra power in protein function prediction compared to the orthology detection. 
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Most existing methods have been evaluated on the S. cerevisae proteome using a much 

smaller number of functional categories. Schwikowski et al. [103], Hishigaki et al [104], and 

Brun et al [110] used 42, 41, and 44 “cellular role” categories in the Yeast Protein Database 

(YPD) [180], and the accuracies achieved were 72%, 64%, and 67%, respectively. Vazquez 

et al. [108] evaluated their method using two different level of functional classification in 

MIPS [115]. In the coarse-grained level containing only 20 functional categories, the 

accuracy was about 83%. In the finest level containing 424 functional categories, the 

accuracy decreased to 65%. Noticeably, the CSIDOP prediction is made over 2,972 GO 

functional categories. This is significantly larger than those employed in other methods. 

Accordingly, the assigned functions are specific rather than generic. In principle, the more 

coarse-grained the classification, the easier the prediction is. Applying the same definition of 

success, our CSIDOP method is able to make correct predictions an astounding 95.42% of the 

time using the full 2,972 GO molecular function categories. However, in the GO function tree, 

the closer a node is to the root, the lower the level in the GO tree which means that the 

corresponding function is more abstract and the farther it is from the root, the higher the level 

in the GO tree, and thus, the more detailed. An important advantage of the CSIDOP method 

is that it can be tailored to different levels in the GO database based upon demand. For 

example, suppose that the GO level is set to five, then all predicted terms at GO tree levels 

higher than or equal to five will be generalized to the corresponding function at level five. In 

other words, the more specific functional terms that reside at higher levels of the tree are 

replaced with their ancestor terms which are located at level five. Higher prediction accuracy 

is expected as we lower the GO depth. Consistent with the expectation, the prediction 

accuracy in the test dataset reached 98.85% when the depth parameter is set to 2, which still 

contains 129 GO functional categories (Table 4.9). Table 4.9 shows the prediction accuracies 
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as a function of GO level for this test dataset and indicates the robustness and reliability of 

the CSIDOP method. This depth parameter allows users to assign function terms for a protein 

at different resolutions according to their individual needs. 

Table 4.9 Evaluation of the CSIDOP algorithm at different prediction resolution 

Depth in 
the GO 
graph 

# of unique GO 
function 
categories 

# of correctly 
predicted proteins 

# of proteins w/ 
predicted terms different 
from their GO terms 

Prediction 
accuracy 

2 129 432 5 98.85% 
3 473 427 10 97.71% 
4 961 422 15 96.56% 
5 1996 419 18 95.88% 
6 2598 418 19 95.65% 
7 2816 417 20 95.42% 
8 2938 417 20 95.42% 
9 2957 417 20 95.42% 
10 2972 417 20 95.42% 

Accuracy is assessed over a number of values for the depth parameter (i.e. generalizing annotated 
terms when parameter decreases). A protein is considered to be correctly annotated if the known 
function occurred among the predicted terms. 
 

4.4.2 CSIDOP Contribution to Current GO Annotation 

A protein often exhibits multiple molecular functions, so its annotation in GO may not be 

complete. CSIDOP may provide additional functional terms to existing proteins. For example, 

the Alpha-2-macroglobulin precursor (Swiss-Prot: P01023) was predicted by CSIDOP to be 

involved in protease inhibitor activity (GO:0030414) which is not among the current list of 

functions annotated in GO. Consistent with this prediction, alpha-2-macroglobulin is found to 

be a major human plasma protease inhibitor capable of inhibiting most endopeptidases tested 

[181]. Another example is the PRS7 (Swiss-Prot: P35998) gene in human. This gene is 

currently annotated in GO to participate in protein binding (GO:0005515) with no other listed 

terms. Our CSIDOP method predicted that it is also involved in ATP binding (GO:0005524), 

hydrolase activity (GO:0016787), nucleotide binding (GO:0000166), and 

nucleoside_triphosphatase activity (GO:0017111), all of which can be verified in InterPro 
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[182]. Other assigned terms for PRS7 by CSIDOP included endopeptidase activity 

(GO:0004175) and ATPase activity (GO:0016887), which were observed in the orthologous 

protein of PRS7. An orthologous protein in D. melanogaster, RPT1 (Fly-Base: 

FBgn0028687), is annotated with endopeptidase activity inferred from direct assay [183]. 

Another orthologous protein in S. cerevisiae, YKL145W, is also annotated with the function 

terms endopeptidase activity and ATPase activity. 

Moreover, for the 20 proteins (in previous section 4.4.1) with predicted functions that do 

not match with their ‘true’ terms, the differences between the predicted terms and the ‘true’ 

terms may be due to the incompleteness in current GO annotations. To gain insight into the 

20 proteins that were “incorrectly” annotated by CSIDOP, we analyzed the relationship 

between the predicted terms and their true GO terms. Figure 4.8 shows a histogram of 

distances between the predicted terms and the ‘true’ GO terms, which is defined as the 

number of edges between these two terms in the GO graph. As illustrated in Figure 4.8, 15 

out of the 20 proteins were predicted with function distances of one or two. A distance of one 

means that the two terms have a direct parent-child relationship; for instance, protein binding 

(GO:0005515) is a known function of Furin precursor protein (Swiss-Prot: P09958), and our 

method predicted it to be involved in protein domain specific binding (GO:0019904) which is 

a direct child term of protein binding in GO. If we consider such case to also be a successful 

prediction, then the accuracy improves from 95.42% to 97.71%. A distance of two indicates 

that the two terms share a parent. For example, suppressor of cytokine signaling 1 (Swiss-

Prot: O15524) was identified in GO to be associated with insulin-like growth factor receptor 

binding (GO:0005159), whereas we assigned the function term, sevenless binding 

(GO:0005118). The two terms share a parent term, receptor binding (GO:0005102). In this 
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case, if the more general terms were used, a correct functional annotation would have been 

achieved. 

 

Figure 4.8 Histogram of distances between the wrongly predicted terms and the ‘true’ terms. 
 

Moreover, we analyzed correlations between the predicted function terms and the ‘true’ 

terms. In GO, gene products can be associated with more than one term. Therefore, the 

correlation between two GO terms is defined based on the number of gene products in 

common. The larger the correlation value is, the closer the two GO terms are. In order to 

assess the significance of the correlation scores between predicted and ‘true’ terms, 10,000 

GO term pairs were randomly selected, and a correlation score was computed for each pair. 

E-value is described as the probability of random GO term pairs achieving at least a certain 

correlation score. For instance, an E-value of 0.0008 implies that only eight out of the 10,000 

random GO term pairs have scores equal to or higher than a particular correlation score. As a 

result, we observed that among the 20 “incorrectly” annotated proteins, many predicted terms 

are closely correlated to the true GO terms with significant E-values. Table 4.10 shows the 
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number of proteins versus different E-values. Examples of proteins in which extremely high 

correlation exists between the predicted and ‘true’ terms (E-value ≤ 0.0008) are illustrated in 

Table 4.11. 

Table 4.10 Correlation analysis of proteins with known terms that differ from the predicted ones 

E-value Correlation score (≥ score) # of proteins 

0.0116 1 19 
0.0028 10 16 
0.0021 20 14 
0.0014 50 12 
0.0008 100 10 
0.0006 200 8 
0.0005 300 6 
0.0003 500 5 
0.0001 3000 3 
0.0000 10000 1 

Correlation score between two GO terms is defined as the number of gene products in common. E-
value is defined as the probability of random GO term pairs achieving at least a certain correlation 
score. The third column shows number of the wrongly predicted proteins reaching different correlation 
scores between predicted and ‘true’ terms. 
 
Table 4.11 Examples of proteins with high correlation scores between predicted and ‘true’ terms 

Protein ‘True’ GO term Predicted GO term Correlation  

Partitioning defective 6 
homolog alpha (Swiss-
Prot: Q9NPB6) 

Rho GTPase binding 
(GO:0017048) 

Actin binding 
(GO:0003779) 

186 

SH3-containing GRB2-
like protein 2 (Swiss-Prot: 
Q99962) 

Transferase activity 
(GO:0016740) 

Calcium ion binding 
(GO:0005509) 

425 

Hepatocyte growth factor 
precursor (Swiss-Prot: 
P14210) 

Serine-type 
endopeptidase activity 
(GO:0004252) 

Peptidase activity 
(GO:0008233) 

6430 

Erythrocyte membrane 
protein band 4.2 (Swiss-
Prot: P16452) 

ATP binding 
(GO:0005524) 

Transferase activity 
(GO:0016740) 

33762 

Examples of proteins with predicted terms different from their ‘true’ terms but sharing high correlation 
scores (i.e. E-value ≤ 0.0008). 
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4.4.3 Novel Protein Function Assignment 

Most importantly, CSIDOP has made novel functional annotations for 181 H. sapiens 

proteins that are not currently described in the GO database. Some of these novel annotations 

are supported with evidence provided by QuickGO, a web browser of gene ontology data 

maintained by the European Bioinformatics Institute. For instance, the gene FHL1, four and a 

half LIM domains protein (Swiss-Prot: Q13642), is identified by CSIDOP to participate in 

metal ion binding (GO:0046872) and zinc ion binding (GO:0008270). The metal ion binding 

annotation can be found in QuickGO which was inferred from UniProt keywords. The zinc 

ion binding term was found by both the UniProt keywords and in InterPro [182], which is a 

database of protein families, domains and functional sites in which identifiable features found 

in known proteins can be applied to unknown protein sequences.  

Many novel functional annotations are supported by evidences found in their orthologous 

protein annotations. Orthologous proteins are generally believed to have similar functions, 

and the orthologs can be obtained from Inparanoid [179]. For example, the H. sapiens gene 

POLA2, DNA polymerase subunit alpha B (Swiss-Prot: Q14181), was predicted by CSIDOP 

to exhibit alpha DNA polymerase activity (GO:0003889). Orthologs of POLA2 found by 

Inparanoid include: POL12 (ORF: YBL035C; SGD:S000000131) in S. cerevisiae, POLA2 

(RGD:621817) in R. norvegicus, and CG5923 (FlyBase: FBgn0005696) in D. melanogaster. 

All three orthologs are associated with the alpha DNA polymerase activity (GO:0003889). 

Furthermore, the CSIDOP method detected three molecular function terms for the human 

protein SLY, SH3 protein expressed in lymphocytes homolog (Swiss-Prot: O75995), while 

no information was found anywhere else. The three functions identified are DNA binding 

(GO:0003677), chromatin binding (GO:0003682), and zinc ion binding (GO:0008270). The 

SLY protein contains a COR1 chromatin-binding domain, and it was suggested by Ellis et al. 
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[184] that SLY may be targeted to the gonosomes in spermatids and may regulate gonosomal 

chromatin conformation and expression. Another protein, CCNB3 (Swiss-Prot: Q8WWL7) in 

the human genome, is predicted by the CSIDOP method to be involved in cyclin-dependent 

protein kinase regulator activity (GO:0016538) and protein binding (GO:0005515). An 

orthologous protein found in D. melanogaster, CG5814 (FlyBase: FBgn0015625), shared 

both functional annotations which were inferred from sequence or structural similarity and 

physical interaction [185] respectively. In the literature, CCNB3 was described as sharing 

properties with both A- and B-type cyclins. Cyclins play a key role in controlling progression 

through the cell cycle. They act as regulatory subunits of p34cdc2/CD28 and related cyclin-

dependent protein kinases (cdks) [186]. Tschop et al. found CCNB3 to interact with the 

cyclin-dependent kinase CDK2 which implies that it indeed participates in protein binding 

and cyclin-dependent protein kinase regulator activity [187]. Some of the 181 novel 

functional annotations found with supporting evidences can be found in supplementary Table 

S1 of our published paper [188]. A complete list of the novel predictions for proteins in H. 

sapiens can also be found in supplementary material (Text S3) of our paper [188]. 

4.4.4 Robustness of CSIDOP in Function Prediction 

The CSIDOP method is shown above to produce highly accurate function predictions for 

proteins in H. sapiens. To demonstrate its robustness, we further analyzed the method for its 

performance on D. melanogaster. For this study, we integrated protein interaction data from S. 

cerevisiae, C. elegans, and H. sapiens to form the training dataset to determine functional 

annotations of proteins in D. melanogaster, the test dataset. None of the protein pairs in D. 

melanogaster were involved in training our model. In other words, the interacting domain 

patterns are extracted purely from interaction pairs in S. cerevisiae, C. elegans, and H. 
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sapiens species only. Function annotations are effectively assigned to 447 D. melanogaster 

proteins. Among the 447 proteins, CSIDOP accurately assigned function annotations to 419 

proteins (i.e. 93.73% in accuracy). 

In addition, we are able to discover novel annotations for some proteins. For example, the 

D. melanogaster protein CG15912 (Swiss-Prot: Q9W4J7) is detected by CSIDOP to exhibit 

ATPase activity, coupled to transmembrane movement of ions, phosphorylative mechanism 

(GO:0015662). Its orthologs, Haloacid dehalogenase-like hydrolase domain containing 3 

(Swiss-Prot: Q9BSH5) in H. sapiens and (Swiss-Prot: Q9CYW4) in M. musculus, were both 

found to be associated with phosphoglycolate phosphatase activity (GO:0008967) and 

hydrolase activity (GO:0016787) which is an ancestor term of our predicted term 

(GO:0015662). Moreover, for the protein CG18445 (Swiss-Prot: Q9V5F2), a multispan 

transmembrane protein related to fly Porcupine, our algorithm identified it to carry out the O-

acyltransferase activity (GO:0008374). Through literature search, we discovered that 

biological experiments conducted by Kraut et al. [189] confirmed the findings for CG18445. 

Since the CSIDOP method only keeps the most significant interacting domain patterns 

from the closely related protein interaction pairs across species, PPI pairs in the test dataset 

without patterns in the lookup table will result in no prediction which subsequently leads to 

lower prediction coverage. To enlarge the coverage, we further refine our interacting domain 

pattern based algorithm by devising a two-step prediction method: the first step will predict 

functions for a large number of proteins with lower confidence, and the second step uses 

CSIDOP for more accurate predictions. In the first step, for each protein pair in the test 

dataset, we construct a list of all interacting domain patterns. Then for each of these plausible 

domain patterns, we try to collect a list of protein interaction pairs in the training dataset that 

contain the pattern. Numerous interaction pairs with shared patterns may exist in the training 
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dataset, and certain functions annotated to those pairs may be more likely to be associated 

with the target protein pair than other functions. Thus in order to assess the probability of 

each functional assignment, we calculate the conditional probability of a protein interaction 

pair having function pair F1-F2 given interacting domain pattern D1-D2 (Eq. 4.7), where ‘-

‘ denotes interaction. In other words, F1 and F2 represent function assignments to proteins in 

the query interaction pair with modular domains D1 and D2, respectively. 
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P(F1-F2, D1-D2) is calculated by counting the number of interaction pairs in the reference 

dataset that contain the interacting domain pattern D1-D2 and have the corresponding 

functional annotation of F1-F2, and P(D1-D2) is computed by counting the number of pairs 

that contain the interacting domain pattern D1-D2. For a query protein interaction pair, the 

posterior probabilities of all possible function pairs are calculated, and finally, the top ranking 

function pairs are assigned. In this step, we are able to assign functions to 1,546 proteins, but 

with lower accuracy of 90%. 

Since this prediction step is based on probability of a gene g having term t, terms with 

probabilities above a certain threshold can be treated as a positive prediction, and terms 

below the specified threshold can be treated as a negative prediction; thus, sensitivity and 

specificity measures can be calculated. Applying the same idea in Nariai et al. [102], 

sensitivity is defined as TP/(TP+FN), which corresponds to recall, and specificity is defined 

as TN/(TN+FP), which corresponds to precision. A set of observed positive g-t associations 

is obtained from the GO. The observed negative association set is defined as the association 

not found in the positive set and term t is neither an ancestor nor a descendant of the known 

function terms in GO hierarchy for gene g. Intuitively, true positives (TP) in this case refer to 

the overlaps between our positive predictions and the observed positive set, and true 
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negatives (TN) are the overlaps between our negative predictions and the observed negative 

set. False positives are the g-t associations in our positive prediction list which are observed 

to be in the negative set by GO. Lastly, false negatives are the g-t associations in our negative 

prediction list that should be in the positive list. For varying posterior probability cutoffs, 

sensitivity and 1-specificity is plotted in a ROC curve (Fig. 4.9). As shown, the lowest 

sensitivity of 57% is achieved with specificity equal to 96%. When the specificity is lowered 

to 78%, the sensitivity increases dramatically to 93%. 

 

Figure 4.9 ROC curve in function prediction. Sensitivity = TP/(TP+FN), Specificity = TN/(TN+FP). 
Function terms with probability above certain threshold are considered to be positive predictions and 
terms below the specified threshold are treated as negative predictions. The observed positive set of g-t 
association is obtained from GO. The negative association set is defined as follows: if the association 
is not found in the positive set and term t is neither ancestor nor descendant of the known function 
terms in GO hierarchy for gene g. Therefore, true positives (TP) in this case refer to the overlaps 
between our positive predictions and observed positive set. True negatives (TN) are the overlaps 
between our negative predictions and the observed negative set. False positives describe g-t 
associations exist in our positive prediction list, but should be in the negative set. False negatives are g-
t associations in our negative prediction list, but should be in the positive list. 
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Chapter 5. PINFUN Online System 

In Chapters 3 & 4, we proposed novel domain-domain interaction based methods for protein-

protein interaction prediction and protein function annotation, and experimental results 

demonstrated their robustness and reliability. In this chapter, we integrate all domain-domain 

interactions determined by the proposed frameworks (RDFF & CSIDOP) with those 

identified by other methods (i.e. computational and PDB) into an online system called 

PINFUN for Protein INteraction and FUNction predictions. 

5.1 System Overview 

PINFUN is a web-based systematic tool to infer protein-protein interactions GO function 

annotation for given query proteins on the basis of underlying protein domains and their 

interactions. An overview of the entire PINFUN system is presented in Figure 5.1.  

 

Figure 5.1 PINFUN system overview. 
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To ensure accuracy and coverage, we not only utilized domain-domain interactions 

identified by our aforementioned RDFF and CSIDOP approaches, but we also took advantage 

of the available known domain interactions observed in PDB complexes from iPfam [161] 

and 3DID [176] and putative DDIs discovered by seven other computational approaches: 

MLE [136], RCDP [129], LP [150], InterDom [137], DIMA [128], P-value [145], and DPEA 

[147] (Figure 5.1). Complete known and putative domain-domain interaction data for various 

methods is obtained from DOMINE [178] except for the data from our CSIDOP method. 

Details regarding each source are discussed in Table 5.1. Overall, we gathered 40,632 

interaction pairs among 8,238 domains including both Pfam-A and Pfam-B domains. 

The collected domain interaction pairs are then assigned to four confidence bins: PDB, 

HC, MC, and LC (Figure 5.1). Domain interaction pairs inferred from PDB entries (i.e. DDIs 

from iPfam and 3DID) are regarded as known interactions and assigned to the ‘PDB’ bin. 

The putative interactions by computational approaches are classified into three other 

categories: ‘HC’, ‘MC’, and ‘LC’, which refer to High-, Medium-, or Low-confidence bins, 

respectively. The high-confidence ‘HC’ bin consists of those DDIs inferred from 

heterogeneous data sources of information or by at least two sufficiently different 

computational methods. The medium-confidence ‘MC’ bin includes domain pairs predicted 

by just one approach but both domains are a part of the same GO biological process. Lastly, 

the low-confidence ‘LC’ bin encompasses domain pairs predicted simply by one 

computational approach. 
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Table 5.1 PINFUN domain-domain interaction sources 

Source # of DDIs Source Detail 

iPfam 4,030 iPfam is a database of physical interactions between domains that have 
representative structures in PDB. 

3DID 3,034 3DID is a database of domain-domain interactions in proteins for which 
high-resolution 3D structures are known. Data from August 2005 is used 
here. 

MLE 2,391 MLE refers to the method by Lee et al. [136] that integrates gene 
ontology, domain fusion information, and protein interactions from 
multiple organisms through maximum likelihood estimation (MLE) . 

RCDP 960 Given two interacting proteins, Relative Co-evolution of Domain Pairs 
(RCDP) by Jothi et al. [129] computes the degree of sequence co-
evolution among all pairs of domains, and predicts the pair with the 
highest degree of co-evolution to interact. 

LP 2,588 Linear Programming (LP) approach [150] by Guimaraes et al. seeks the 
minimal set of domain pairs necessary to explain a given protein 
interaction data. Thresholds LP-score ≥ 0.5 and 0.0 ≤ p-score ≤ 0.1 are 
used. After discarding Pfam-B domains, 2,588 DDIs remained. 

Interdom 2,768 InterDom [162] is a database of putative domain interactions from 
multiple sources. Here, only those DDIs inferred by domain fusion 
analysis from version 1.1 February 15, 2003 release are used.  

DPEA 1,812 Domain Pair Exclusion Analysis (DPEA) by Riley et al. [147] infers 
DDIs by assessing the contribution of each potential interacting domain 
pairs to the likelihood of a set of observed protein interactions across 
multiple organisms. Here, only pairs with Pfam-A domains and log odds 
score ≥ 3.0 are used, resulting in 1,812 DDIs. 

P-value 596 Refers to the statistical approach by Nye et al. [145] which tests the null 
hypothesis that presence of a domain pair in a protein pair do not affect 
whether two proteins interact or not. Since their DDIs are predicted 
between SCOP domain families [190], SGD [191] was used to map the 
SCOP domains back to Pfam domains. 

DIMA 8,012 DIMA by Pagel et al. [192] infers DDIs based on phylogenetic profiling. 

RDFF 2,475 Random Decision Forest Framework (RDFF) approach [163]. 
Interactions with Pfam-B domains are discarded. 

CSIDOP 20,837 Cross-Species Interacting Domain Pattern (CSIDOP) method [188]. Both 
Pfam-A and Pfam-B domains are used. 

 

After collecting the DDI data, we attempt to assign GO function annotations to each 

domain-domain interaction pair in our database using a probabilistic approach discussed in 

Section 4.4.4. Basically, for each domain interaction pair in the collection, we compile a set 

of protein-protein interaction (PPI) pairs containing the domain interaction pattern across 
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multiple organisms. Since every protein in a pair is annotated with GO function terms and 

numerous pairs of PPIs may share the same domain interaction pattern, certain functions 

annotated to those protein pairs may be more likely to be associated with the domain 

interaction pattern than other functions. Thus, in order to assess the probability of each 

functional assignment, we calculate the conditional probability of a protein interaction pair 

having function pair F1-F2 given the two proteins interact through domain pattern D1-D2 

where ‘-‘ denotes interaction (Eq. 4.7 in Chapter 4 Page 81). For each domain interaction pair, 

posterior probabilities of all possible function pairs among the associated PPIs are calculated, 

and in the end, function annotations with the highest posterior probabilities are assigned to 

the corresponding domains. 

It is important to note that the above mentioned approach to protein GO function 

prediction is based on domain interaction patterns. Thus, GO annotations of a single domain 

can be derived from the predicted annotations of all DDIs containing the domain. For 

example, assume that domain interaction pair D1-D2 is predicted with function pair F1-F2 and 

D1-D3 is predicted with F3-F4. Then the individual domain D1 would have both annotations F1 

and F3. Besides the putative domain GO annotations, we also collected known domain 

annotations from Pfam version 22.0. Finally, all collected DDIs and domain GO annotations, 

both inferred and known, are utilized in the PINFUN system (Figure 5.1). 

5.2 Database Design 

The previous section discussed how we prepared and processed various types of data that are 

necessary to infer protein-protein interactions and functions in PINFUN. Here, we describe 

the structure of our database system: how to store the prepared data. The central database 

system of PINFUN is implemented using MySQL. Since PINFUN deduces protein-protein 
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interactions and protein functions on the basis of Pfam domains, protein domain assignments 

are quintessential, and we downloaded the Pfam database from release 22.0 [170]. The Pfam 

database is a large repository of protein domain families where each family is represented by 

multiple sequence alignments and hidden Markov models (HMMs).  

 

Figure 5.2 Central tables of Pfam database: pfamseq & pfamA. Each table contains three columns. 
Column 1 contains the table fields and column 2 contains the corresponding field types. Column 3 has 
information on the relational keys: PRI for primary key; UNI for unique key; and MUL for multiple 
key. Complete description of pfamA can be found in Appendix B. 
 

The Pfam database contains three central tables: ‘pfamseq’, ‘pfamA’, and ‘pfamB’. The 

‘pfamseq’ table is an underlying sequence database built from the UniProtKB [193]. The 
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‘pfamA’ table contains information on the Pfam-A domain families, and ‘pfamB’ table 

contains Pfam-B families. There are two supporting tables, ‘pfamA_reg_full’ and 

‘pfamB_reg’, which contain all of the sequence regions that match the HMM for each Pfam 

domain family. Details regarding each table and their relationships are depicted in Figure 5.2 

& 5.3. A complete description of the table ‘pfamA’ can be found in Appendix B. With these 

Pfam tables, one can retrieve protein domain information easily. For example, obtaining 

Pfam-A domains of a UniProtKB protein can be accomplished with simple MySQL queries 

in the following text boxes. 

 

 

 

 
 
 
 
 
 
 
 
 
 

 
  

 
In addition to the Pfam central tables in the core database of PINFUN, we also created 

several tables to store other necessary information such as domain-domain interactions and 

domain annotations (Table 5.2). Details about the tables are shown in Figure 5.4. For a given 

domain, its interacting partner can be easily retrieved using the following SQL command. 

 

 

 

Retrieve all domains for a UniProtKB protein with id = ‘VAV_HUMAN’ 
 
SELECT pfamA_acc 
FROM       pfamseq, pfamA, pfamA_reg_full 
WHERE    pfamseq_id = 'VAV_HUMAN'  
AND      pfamseq.auto_pfamseq = pfamA_reg_full.auto_pfamseq  
AND  pfamA_reg_full.auto_pfamA = pfamA.auto_pfamA  
AND  in_full = '1'; 

Retrieve all domains for a UniProtKB protein with accession = ‘P15455’ 
 
SELECT  pfamA_acc 
FROM     pfamseq, pfamA, pfamA_reg_full 
WHERE  pfamseq_acc = 'P15455'  
AND        pfamseq.auto_pfamseq = pfamA_reg_full.auto_pfamseq  
AND        pfamA_reg_full.auto_pfamA = pfamA.auto_pfamA  
AND        in_full = '1'"; 



 89

Table 5.2 PINFUN tables 

Table Purpose 

DDINet_Interaction Stores information regarding domain-domain interactions, domain 
interaction confidence level, GO function assignments, and associated 
function assignment score computed using Eq. 4.7. 

Domain_Annot It contains single domain annotations compiled from the GO functions 
assigned to each domain interaction pairs (details discussed at the end of 
Section 5.1). 

GO_Terms Provides a full description map for each GO accession ids. Useful in 
display of results. 

 

 

 

Figure 5.3 Central tables of Pfam database: pfamseq & pfamB. Each table contains three columns. 
Column 1 contains the table fields and column 2 contains the corresponding field types. Column 3 has 
information on the relational keys: PRI for primary key; UNI for unique key; and MUL for multiple 
key. 
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Figure 5.4 Remaining tables in the PINFUN database – contribute to protein interaction and function 
predictions. Each table has three columns. Column 1 contains the table fields and column 2 contains 
the corresponding field types. Column 3 has information on the relational keys: PRI for primary key; 
UNI for unique key; and MUL for multiple key. 
 

5.3 Web Interface Design 

The underlying PINFUN system is connected to the outside world via a web interface 

constructed using HTML and PHP scripts. It is currently available at 

http://www.ittc.ku.edu/~meiliu/PINFUN/pinfun.html. Figure 5.5 depicts the entire design of 

the web interface functionalities implemented in PINFUN. Primarily, PINFUN allows for two 

specific functionalities: protein-protein interaction prediction and protein function annotation. 

Details regarding how PINFUN achieves these two tasks are presented in the following 

sections. 
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Figure 5.5 Main processes of PINFUN 
 

5.3.1 PINFUN Protein-Protein Interaction Prediction 

The first objective of PINFUN is to infer protein-protein interactions based on domain-

domain interactions. For a given protein, a user may request to identify its possible 

interacting partners. In this case, the user simply needs to enter the query protein either in 

UniProtKB id or accession number and select the species to which the protein belongs 

(Figure 5.6). PINFUN presently only supports four organisms: S. cerevisiae (yeast), C. 

elegans (worm), D. melanogaster (fruit fly), and H. sapiens (human). After the user submits 

their query, PINFUN starts the protein-protein interaction prediction process by retrieving all 

Pfam-A domains belonging to the query protein. Then, it searches through the 
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‘DDINet_interaction’ table for all domain-domain interactions that each of the protein 

domains participates in. The task can be accomplished using the following SQL query: 

 

 

 

 

From the above database search, a set of domain interaction partners of the constituent 

domains in query protein domains is compiled as a consequence. Intuitively, when domains 

of two proteins interact, the two proteins are sure to interact. Based on this concept, PINFUN 

identifies interaction partners of the query protein by seeking proteins that contain at least one 

of the domain interaction partners. For each domain interaction partner of the query protein, 

corresponding proteins can be retrieved with the following SQL statement. 

 
 

 

 

 

 

 
As a result of the protein-protein interaction prediction from one query protein, PINFUN 

outputs all identified DDIs ordered by confidence level (Figure 5.7). The user may click on 

any one of the DDIs to acquire a list of possible interaction partners of the query protein 

(Figure 5.8). 

 

Retrieve all domain-domain interactions for Pfam domain ‘PF00069’ 
 
SELECT  * 
FROM     DDINet_Interaction 
WHERE  pfam_acc1 = ‘PF00069’ 
OR         pfam_acc2 = ‘PF00069’; 

Retrieve all proteins in yeast with Pfam domain ‘PF00069’ 
 
SELECT  pfamseq_acc 
FROM     pfamseq, pfamA, pfamA_reg_full 
WHERE  pfam_acc = ‘PF00069’ 
AND  pfamA.auto_pfamA = pfamA_reg_full.auto_pfamA 
AND  pfamA_reg_full.auto_pfamseq = pfamseq.auto_pfamseq 
AND  in_full = ‘1’  
AND  pfamseq_id REGEXP ‘YEAST’; 
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Figure 5.6 PPI prediction option #1 query – determines possible interaction partners of a query protein. 
 
 

 
 

Figure 5.7 PPI prediction option #1 results – DDIs identified for the query protein’s domains 
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Figure 5.8 PINFUN PPI prediction option #1 results – partners identified for a specific DDI 

 
A user may simply want to determine whether two proteins interact or not which is 

referred here as PPI prediction option #2 of PINFUN (Figure 5.9). In this particular case, 

PINFUN proceeds by generating all possible pairs of domains between the two query proteins 

and looking up each domain pair in our collected DDI database to find evidences of 

interaction. If two query proteins are found to be interacting, PINFUN displays the domain 

pairs that mediate such interaction (Figure 5.10). 
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Figure 5.9 PINFUN PPI prediction option #2 query – determines whether two query proteins interact 
or not. 
 

 

Figure 5.10 PINFUN PPI prediction option #2 results – displays the DDIs that mediate the interaction 
between the query proteins. 
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5.3.2 PINFUN Protein Function Prediction 

The second goal of PINFUN is to infer GO function annotations for proteins on the basis of 

their constituent domains and interaction patterns. For protein function prediction, PINFUN 

also supports two query options. The user can either infer GO functions of a given protein 

based on the annotations of their constituent domains (Figure 5.11) or infer functions of a 

protein based on its specific domain interaction patterns with other proteins (Figure 5.13). 

The query option #1 is usually pursued when interaction information is unknown and the 

user wants to simply determine functions based on constituent domain annotations of the 

query protein (Figure 5.12). Since we already have derived and known domain annotations 

stored in database, the task can be easily accomplished with the following SQL query:  

 
 

 

 

 

The query option #2 is normally recommended when interactions among proteins are 

already known so that function predictions can be made based on domain interaction patterns 

between the two query proteins. When a pair of proteins is submitted, PINFUN generates all 

possible pairs of domains between the two proteins and check each domain pair to see 

whether they are truly interacting or not according to our DDI database. If at least one domain 

pair is found in our domain interaction database, associated GO annotations would be 

assigned to the query protein pair. PINFUN outputs inferred annotation results to a table 

where columns 1 and 3 are the predicted GO annotations for each of the query proteins 

(Figure 5.14). Column 5 displays the DDIs from which the GO annotations are derived and 

Retrieve annotations of a Pfam domain ‘PF00069’ 
 
SELECT  func 
FROM     Domain_Annot 
WHERE  pfam_acc = ‘PF00069’ 
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their corresponding confidence level and posterior probability of the domain pair having the 

predicted annotation pair (i.e. score) are shown in columns 6 and 7, respectively. 

 

Figure 5.11 PINFUN Protein function prediction option #1 query – infer protein GO functions for a 
single protein. 
 

 

Figure 5.12 PINFUN Protein function prediction option #1 results – GO annotations assigned based 
on constituent domains of a single query protein. 
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Figure 5.13 PINFUN Protein function prediction option #2 query – infer protein GO functions for a 
pair of proteins. 
 

 

Figure 5.14 PINFUN Protein function prediction option #2 results – GO annotations assigned based 
on specific domain interaction patterns between the query proteins. 
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Chapter 6. Conclusion 

Proteins play a central role in nearly all cell functions such as composing cellular structure, 

promoting chemical reactions, carrying messages from one cell to another and acting as 

antibodies. However, proteins rarely act in isolation. The multiplicity of functions that 

proteins execute in most cellular processes and biochemical events is attributed to their 

interactions with other proteins. Thus, to better understand protein functions and the 

underlying cellular processes, it is essential to understand protein-protein interactions at a 

genome scale. Insights into protein functions will subsequently help us to gain further 

understanding of human diseases and may directly contribute to future developments of drug 

and therapeutic treatments. 

6.1 Summary of Research 

In this dissertation, I proposed protein domain-based computational approaches to solve the 

two challenging problems in bioinformatics: protein-protein interaction and protein function 

predictions. It is believed that proteins interact with each other through specific 

intermolecular interactions that are localized to specific structural domains within each 

protein. Determination of the interaction sites is critical as mutations at the sites can disrupt 

normal interactions or create new undesirable interactions between proteins which may lead 

to many human diseases. Hence, understanding interactions at the domain level is not only a 

critical step towards thorough understanding of protein interaction networks and their 

evolution, but it is also one step closer to acquiring insights into the functions of proteins and 

causes of human diseases. 

First of all, I introduced a new domain-based random decision forest framework (RDFF) 

for the prediction of protein-protein interactions. The method is particularly useful because 
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biologically relevant domain–domain interactions can be inferred from the domains involved 

in existing protein interactions. It allows discovery of interactions between modular domains 

(i.e. two or more domains forming a unit to participate in interactions). The learned domain 

interaction patterns can be utilized to reliably determine protein-protein interactions. In terms 

of RDFF performance in protein interaction prediction, we compared it to the MLE method 

by Deng et al. [140], and experimental results on Saccharomyces cerevisiae dataset 

demonstrate that our RDFF approach can predict protein–protein interactions with higher 

specificity (64.38%) and sensitivity (79.78%) than the MLE method. 

Secondly, for the protein function annotation problem, I proposed a novel approach 

called CSIDOP that extracts conserved interacting domain patterns from cross-species protein 

interaction data. As a result of the CSIDOP method, a weighted web of domain interactions is 

constructed and statistically analyzed with metrics that combine the static network topology 

and weights of the underlying interactions. Similar to other biological systems, the domain-

domain interaction network built here exhibits scale-free degree distribution. It has been 

hypothesized that the prevalence of the scale-free property may be the reason that biological 

systems are more robust toward random perturbations but vulnerable to targeted attacks that 

may subsequently result in catastrophic system failures [172]. For metrics that consider the 

interplays between links and their weights, we observe that the unweighted measures and 

their weighted counterparts generally follow the same trends. The same phenomena were 

observed by Wuchty [133]. 

Furthermore, the CSIDOP method was assessed, both biologically and statistically, on the 

Homo sapiens genome for function annotation based on domain patterns extracted from 

interacting protein pairs in S. cerevisiae, C. elegans, D. melanogaster and H. sapiens. 

Functional assignments were made from a pool of 2,972 unique functional categories. This 
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number is considerably larger than the number of categories utilized in attempts by other 

researchers. Using the H. sapiens genome, the CSIDOP method accurately assigned functions 

to 95.42% of the proteins when 2,972 function terms were used, which is highly reliable and 

is of practical use. The accuracy increased to 98.85% when the number of function terms was 

decreased to 129. In contrast, with the same testing dataset, the Majority Rule algorithm, the 

simple domain based method, and orthology based method achieved only 59.50%, 61.98%, 

and 83.86% in accuracy, respectively. The CSIDOP method can not only provide additional 

functions to the incomplete GO annotations, but also assign functions for 181 human proteins 

that currently do not have GO functional terms. Supporting evidences for several of these 

newly annotated proteins can be found from other data sources or biological experiments, 

which confirms the utility of this approach. 

As more genomes are sequenced, there will be a growing need for better analysis of 

protein-protein interactions and protein functional annotations of these genomes. In this 

dissertation, I have shown that in silico methods are capable of making reliable large-scale 

protein-protein interaction and protein function discoveries based on common domain 

interaction patterns. 

6.2 Future Work 

Despite the fact that existing protein interaction prediction methods have generated promising 

results, we are still far away from obtaining complete interactomes especially for those less 

studied organisms where little information is known. In this case, a cross-organism 

computational model for PPI prediction would be attractive and crucial so that we can infer 

interactions for proteins in target organisms using known features from the well studied 

model organisms. Moreover, I only explored domain-domain interactions to explain protein-
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protein interactions in this dissertation. In fact, integration of multiple data sources in protein 

interaction prediction has recently attracted a lot of attention. The main idea is that different 

data sources may cover different part of the interactome; therefore, integrating various data 

sources may increase both prediction accuracy and coverage. There is still a great need in 

developing more efficient algorithms for data integration to predict protein interactions. For 

future studies, I would like to elaborate my protein interaction research by investigating 

different algorithms in cross-species heterogeneous data integration. My goal is to assess the 

existing PPIs and roles that various data features play in protein interactions. Moreover, 

protein interaction prediction is a typical imbalanced data classification problem. There exists 

much greater number of protein pairs that do not interact than the ones that do interact. 

Apparently, failing to identify one of the few true interacting protein pairs is much worse than 

inaccurately classifying one of the many non-interacting pairs as interacting. Thus, it is 

another important topic to address in my future research. 

For protein function prediction, the CSIDOP method is shown to be reliable; however, it 

has its shortcomings. It is limited in predicting functions of proteins with a priori knowledge 

of their interactions. Nevertheless, CSIDOP should continue to improve as protein-protein 

interaction data are increased both in quality and quantity, and it will readily scale to a 

genome-wide application. Another drawback of CSIDOP is that it cannot make predictions if 

domain patterns of a protein pair are not found among the list of derived domain interaction 

patterns. As part of my future research, I would like to address the function prediction 

coverage problem by investigating similar match search for domain interaction patterns rather 

than exact match. For instance, multiple protein domains may be similar in terms of sequence, 

structure, or the function they perform and thereby should be grouped together. Then when 

we perform domain pattern search later, we are not looking for exact pattern matches 
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anymore, but for the group it most likely belongs to. This is a relatively new research field 

which would require considerable investigations.  

Finally, there are several improvements can be made to the PINFUN system in the future. 

The current version has the following limitations: 

1. Since the Pfam database is used to retrieve domain information for query proteins, if 

the query protein is not currently annotated in Pfam, PINFUN would not be able to 

make any predictions. This can be resolved in the future by adding sequence 

alignment capabilities for domain discovery. 

2. Predictions are currently restricted to the four species: S. cerevisiae, C. elegans, D. 

melanogaster, and H. sapiens. This definitely can be expanded in the future. 

3. For protein interaction prediction, only interactions between Pfam-A domains are 

considered to ensure prediction quality. 

4. For protein function predictions, the derived domain annotations are restricted to GO 

‘molecular function’ term. Only the downloaded known annotations of domains from 

Pfam include GO ‘biological process’ and ‘cellular component’ terms. The problem 

can be solved by retraining the CSIDOP model with ‘biological process’ and ‘cellular 

component’ terms. 
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Appendix A: Distance analysis 
 
Table shows a GO annotation distance analysis of total 329 (i.e. top 10% scoring) domain-

domain interactions predicted by CSIDOP. The GO annotations for each domain are obtained 

from Pfam. The first column has the identified domain interaction pairs where two domains 

are separated by a semicolon ‘;’. The second column contains GO annotations for the domain 

pairs that give rise to the closest distance. It has the following format:  

dom1_annot1 ; dom2_annot1 | dom1_annot2 ; dom2_annot2 | … 

‘NA’ means no annotation found for the domains in Pfam. The last column contains the 

closest distance between annotation terms of the two domains. 

Domain Pair Annotation Pair Distance 
PF00628;PF00105 GO:0008270;GO:0008270 0 
PF00628;PF00104 GO:0005515;GO:0003700 4 
PF00089;PF00102 GO:0006508;GO:0006470 4 
PF00627;PF00017 NA  
PF00010;PF00008 NA  
PF00010;PF00047 NA  
PF00010;PF00069 GO:0030528;GO:0004672 6 
PF01833;PF02178 NA  
PF00271;PF00036 GO:0003676;GO:0005509 4 
PF02891;PF01017 GO:0008270;GO:0004871|GO:0008270;GO:0003700 7 
PF00010;PF00110 GO:0030528;GO:0004871 3 
PF00089;PF00373 GO:0004252;GO:0005856|GO:0006508;GO:0005856 11 
PF00225;PF03145 GO:0005875;GO:0005634 5 
PF01477;PF00038 NA  
PF00010;PF00320 GO:0005634;GO:0005634 0 
PF00069;PF03165 GO:0006468;GO:0006355 8 
PF00569;PF00134 NA  
PF01044;PF00076 GO:0005198;GO:0003676 3 
PF00105;PF00850 NA  
PF00170;PF01749 GO:0005634;GO:0005634 0 
PF00096;PF06001 NA  
PF00536;PF08513 NA  
PF00439;PF00856 NA  
PF00554;PF03719 GO:0045449;GO:0006412 3 
PF00443;PF00415 NA  
PF00010;PF00665 GO:0030528;GO:0003677|GO:0045449;GO:0015074 4 
PF00041;PF07714 NA  
PF00688;PF07714 GO:0040007;GO:0006468 7 
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PF00069;PF03508 NA  
PF00046;PF01833 NA  
PF04408;PF00520 GO:0004386;GO:0016020 6 
PF07145;PF00134 NA  
PF01392;PF00702 NA  
PF00009;PF02984 GO:0005525;GO:0005634 12 
PF00178;PF00071 NA  
PF00028;PF00439 NA  
PF00130;PF00130 GO:0007242;GO:0007242 0 
PF00433;PF00089 GO:0006468;GO:0006508 4 
PF00433;PF00096 GO:0005524;GO:0003676 6 
PF00130;PF00089 GO:0007242;GO:0006508 7 
PF00028;PF00569 GO:0005509;GO:0008270 3 
PF08513;PF05485 NA  
PF00412;PF00047 NA  
PF04433;PF00041 NA  
PF00069;PF03957 NA  
PF00433;PF00282 GO:0006468;GO:0019752 6 
PF02198;PF02178 NA  
PF02944;PF01749 GO:0003677;GO:0008565 6 
PF00178;PF00443 GO:0003700;GO:0004221 7 
PF00439;PF00041 NA  
PF04408;PF00036 GO:0004386;GO:0005509 6 
PF02171;PF02170 NA  
PF00069;PF00029 NA  
PF00089;PF07716 GO:0004252;GO:0003700|GO:0006508;GO:0006355 7 
PF00069;PF00038 NA  
PF00089;PF07732 GO:0004252;GO:0016491 5 
PF00069;PF00060 GO:0004672;GO:0016020 9 
PF00069;PF00079 GO:0004672;GO:0004867 10 
PF00069;PF00089 GO:0006468;GO:0006508 4 
PF00071;PF01085 NA  
PF00071;PF01079 NA  
PF00379;PF02363 NA  
PF00006;PF00076 GO:0016469;GO:0003676 7 
PF03166;PF00076 GO:0005622;GO:0003676 6 
PF00010;PF07727 NA  

PF00324;PF00128 
GO:0016020;GO:0003824|GO:0006810;GO:0005975 
|GO:0006810;GO:0003824 5 

PF00069;PF00229 GO:0006468;GO:0006955 8 
PF00178;PF00757 GO:0005634;GO:0016020 5 
PF00069;PF00282 GO:0006468;GO:0019752 6 
PF00855;PF00105 NA  
PF00855;PF00104 NA  
PF01138;PF00270 GO:0003723;GO:0003676 1 
PF00093;PF00514 NA  
PF00102;PF02985 NA  
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PF02259;PF03874 NA  
PF00017;PF00612 NA  
PF00514;PF05485 NA  
PF00069;PF00569 GO:0005524;GO:0008270 9 
PF00651;PF04062 GO:0005515;GO:0005856 8 
PF00856;PF00097 GO:0005634;GO:0005515 8 
PF00069;PF00656 GO:0006468;GO:0006508 4 
PF00856;PF00104 GO:0005634;GO:0005634 0 
PF00856;PF00105 GO:0005634;GO:0005634 0 
PF00630;PF00104 NA  
PF00435;PF02984 NA  
PF00688;PF01030 GO:0040007;GO:0016020 5 
PF02892;PF00514 NA  
PF02170;PF02170 NA  
PF00096;PF02172 GO:0003676;GO:0005515 2 
PF00096;PF02135 GO:0008270;GO:0008270 0 
PF02037;PF02864 GO:0003676;GO:0003700 2 
PF02037;PF02865 GO:0003676;GO:0003700 2 
PF02874;PF00076 GO:0016469;GO:0003676 7 
PF01049;PF00569 GO:0005509;GO:0008270 3 

PF00178;PF07714 
GO:0006355;GO:0006468|GO:0043565;GO:0005524 
|GO:0003700;GO:0004713|GO:0003700;GO:0005524 8 

PF05965;PF00439 NA  
PF01602;PF00861 GO:0030117;GO:0005840 2 
PF05033;PF00850 NA  
PF03931;PF04858 GO:0006511;GO:0016481 9 
PF03957;PF07714 NA  
PF02260;PF02269 NA  
PF01049;PF00439 NA  
PF00850;PF02826 NA  
PF07714;PF00387 GO:0006468;GO:0006629 6 
PF07714;PF00388 GO:0006468;GO:0007165 7 
PF00170;PF07714 GO:0046983;GO:0005524 7 
PF03920;PF00389 NA  
PF08447;PF00010 NA  
PF00751;PF02874 GO:0005634;GO:0016469 6 
PF07714;PF00616 GO:0006468;GO:0051056 8 
PF07714;PF00620 GO:0006468;GO:0007165 7 

PF07714;PF00621 
GO:0004713;GO:0005622|GO:0005524;GO:0005622 
|GO:0006468;GO:0005622|GO:0006468;GO:0035023 10 

PF02196;PF07714 GO:0007165;GO:0006468 7 
PF00385;PF00145 GO:0003682;GO:0003677 3 
PF03931;PF01133 NA  
PF00357;PF00013 NA  
PF07714;PF00757 GO:0005524;GO:0005524|GO:0006468;GO:0006468 0 
PF00305;PF00038 NA  
PF01466;PF04858 GO:0006511;GO:0016481 9 
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PF02210;PF00569 NA  
PF02210;PF00514 NA  
PF03920;PF00010 NA  
PF00194;PF07565 GO:0006730;GO:0006820 7 
PF02210;PF00439 NA  
PF04990;PF00076 GO:0003677;GO:0003676 1 
PF00110;PF01079 GO:0007275;GO:0007275 0 
PF00110;PF01085 GO:0007275;GO:0007275 0 
PF03096;PF07647 NA  
PF02826;PF00439 NA  
PF07717;PF00520 NA  
PF00271;PF02877 GO:0004386;GO:0003950 5 
PF01466;PF01133 NA  
PF00494;PF00004 GO:0016740;GO:0005524 8 
PF00023;PF00560 NA  
PF07529;PF07714 NA  
PF00170;PF00514 NA  
PF00027;PF01133 NA  
PF08441;PF08441 NA  
PF07717;PF00036 NA  
PF00751;PF05986 GO:0005634;GO:0031012|GO:0003700;GO:0031012 5 
PF00271;PF02319 GO:0003676;GO:0003700 2 
PF02891;PF02864 GO:0008270;GO:0004871|GO:0008270;GO:0003700 7 
PF02891;PF02865 GO:0008270;GO:0004871|GO:0008270;GO:0003700 7 
PF00320;PF00008 NA  
PF00178;PF01030 GO:0005634;GO:0016020 5 
PF00178;PF01166 GO:0006355;GO:0006355|GO:0003700;GO:0003700 0 
PF03957;PF00018 NA  
PF03957;PF00017 NA  
PF00071;PF00443 NA  
PF00076;PF04983 GO:0003676;GO:0003677 1 
PF00046;PF00569 GO:0043565;GO:0008270|GO:0003700;GO:0008270 7 
PF00046;PF00554 GO:0005634;GO:0005634|GO:0003700;GO:0003700 0 
PF00554;PF02178 NA  
PF00400;PF00105 NA  
PF00400;PF00104 NA  
PF07653;PF00612 NA  
PF00170;PF00018 NA  
PF00170;PF00017 GO:0046983;GO:0005515 1 
PF00046;PF00439 NA  
PF00178;PF01388 GO:0043565;GO:0003677|GO:0003700;GO:0003677 1 
PF00400;PF00010 NA  
PF01812;PF03096 NA  
PF00046;PF00379 GO:0003700;GO:0042302 4 
PF01749;PF05485 GO:0008565;GO:0003676 5 
PF00071;PF00130 NA  
PF03143;PF00134 NA  
PF02196;PF01079 GO:0007165;GO:0007154 1 
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PF02196;PF01085 GO:0007165;GO:0007267 2 
PF02172;PF00271 GO:0005515;GO:0003676 2 
PF00069;PF01079 GO:0006468;GO:0006508 4 
PF00069;PF01085 GO:0006468;GO:0007267 7 
PF00090;PF00514 NA  
PF02944;PF00514 NA  
PF00536;PF00400 NA  
PF00046;PF00134 NA  
PF00046;PF00110 GO:0003700;GO:0004871 4 
PF00098;PF00105 GO:0008270;GO:0008270 0 
PF00098;PF00104 GO:0003676;GO:0003700 2 
PF07529;PF00628 NA  
PF00046;PF00047 NA  
PF00917;PF00010 NA  
PF00271;PF05406 NA  
PF00389;PF00439 NA  
PF00249;PF07714 NA  
PF04433;PF02319 NA  
PF00130;PF02201 GO:0007242;GO:0005634 10 
PF01049;PF06001 NA  
PF07529;PF00041 NA  
PF01839;PF00013 NA  
PF02198;PF00071 NA  

PF02319;PF03719 
GO:0005667;GO:0005840|GO:0006355;GO:0006412 
|GO:0003700;GO:0003735 4 

PF03153;PF00046 GO:0003702;GO:0003700 2 
PF02735;PF00125 GO:0003677;GO:0003677 0 

PF07714;PF01030 
GO:0004713;GO:0016020|GO:0005524;GO:0016020 
|GO:0006468;GO:0016020 10 

PF02259;PF02269 NA  
PF01812;PF00022 GO:0005524;GO:0005515 6 
PF00097;PF00010 GO:0005515;GO:0030528 3 
PF00071;PF03166 NA  
PF00071;PF03165 NA  
PF02197;PF01133 NA  
PF00041;PF02751 NA  
PF00019;PF01030 GO:0008083;GO:0016020 8 
PF00373;PF00505 GO:0005856;GO:0003677 9 
PF03731;PF00125 NA  
PF00494;PF06068 GO:0016740;GO:0003678 3 
PF02210;PF06001 NA  
PF01833;PF00439 NA  
PF00702;PF00046 GO:0003824;GO:0003700 3 
PF01833;PF00333 NA  
PF02198;PF00757 GO:0005634;GO:0016020 5 
PF02319;PF00333 GO:0003700;GO:0003723 3 
PF00041;PF02268 NA  
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PF00999;PF00999 
GO:0016021;GO:0016021|GO:0006885;GO:0006885 
|GO:0015299;GO:0015299 0 

PF02260;PF03874 NA  
PF00035;PF00036 GO:0003725;GO:0005509 6 
PF03144;PF02984 GO:0005525;GO:0005634 12 
PF02136;PF00397 GO:0006810;GO:0005515|GO:0005622;GO:0005515 6 
PF03920;PF02826 NA  
PF05185;PF07714 GO:0008168;GO:0004713 6 
PF00023;PF01462 NA  
PF00023;PF01463 NA  
PF00493;PF00004 GO:0005524;GO:0005524 0 
PF00514;PF00778 NA  
PF07533;PF00041 NA  
PF00096;PF04062 GO:0005622;GO:0005856 4 
PF01479;PF00076 GO:0003723;GO:0003676 1 
PF01833;PF03719 NA  
PF00023;PF01582 NA  
PF00035;PF00520 GO:0005622;GO:0016020 2 
PF00028;PF02135 GO:0005509;GO:0008270 3 
PF02198;PF07714 GO:0043565;GO:0005524 8 
PF00028;PF02172 GO:0005509;GO:0005515 4 
PF02518;PF00676 GO:0005524;GO:0008152 9 
PF00357;PF01839 NA  
PF04992;PF00076 GO:0003677;GO:0003676 1 
PF01105;PF00324 GO:0006810;GO:0006810 0 

PF01157;PF02671 
GO:0005840;GO:0005634|GO:0005622;GO:0005634 
|GO:0006412;GO:0006355 4 

PF01049;PF02172 GO:0005509;GO:0005515 4 
PF01049;PF02135 GO:0005509;GO:0008270 3 
PF00022;PF01849 NA  
PF02922;PF00393 GO:0005975;GO:0006098 6 
PF00306;PF00076 GO:0016469;GO:0003676 7 
PF00178;PF02178 NA  
PF00019;PF07714 GO:0008083;GO:0005524 8 
PF07533;PF00628 NA  
PF00514;PF00110 NA  

PF00433;PF02201 
GO:0005524;GO:0005634|GO:0004674;GO:0005634 
|GO:0006468;GO:0005634 12 

PF00357;PF08441 NA  
PF00569;PF02984 GO:0008270;GO:0005634 11 
PF00069;PF02078 GO:0006468;GO:0007269 7 

PF00458;PF00458 
GO:0005524;GO:0005524|GO:0006418;GO:0006418 
|GO:0004812;GO:0004812 0 

PF02234;PF00096 GO:0005634;GO:0005622 4 
PF02210;PF02172 NA  
PF02210;PF02135 NA  
PF00069;PF02201 GO:0004672;GO:0005634 11 
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PF02135;PF00271 GO:0003712;GO:0004386|GO:0003712;GO:0003676 4 
PF03143;PF02984 GO:0005525;GO:0005634 12 
PF00090;PF01749 NA  
PF07145;PF02984 NA  
PF00009;PF00134 NA  
PF00096;PF00769 GO:0005622;GO:0005737 2 
PF00019;PF00757 GO:0008083;GO:0016020|GO:0008083;GO:0005524 8 
PF02922;PF03446 GO:0005975;GO:0006098 6 
PF00656;PF00319 GO:0006508;GO:0006355 7 
PF00096;PF00569 GO:0008270;GO:0008270 0 
PF07533;PF07714 NA  
PF00069;PF02750 GO:0006468;GO:0007269 7 
PF00096;PF00373 GO:0005622;GO:0005856 4 
PF00130;PF01085 GO:0007242;GO:0007267 3 
PF00130;PF01079 GO:0007242;GO:0007154 2 
PF03730;PF00125 GO:0003677;GO:0003677 0 
PF02198;PF01030 GO:0005634;GO:0016020 5 
PF00751;PF07679 NA  
PF00071;PF02319 NA  
PF02198;PF01166 GO:0043565;GO:0003700 2 
PF03167;PF00104 NA  
PF03167;PF00105 NA  
PF06001;PF00271 NA  
PF00046;PF02363 NA  
PF00071;PF02178 NA  
PF00005;PF00096 GO:0005524;GO:0003676 6 
PF02198;PF01388 GO:0043565;GO:0003677 1 
PF07714;PF02268 GO:0004713;GO:0003702|GO:0005524;GO:0003702 8 
PF00028;PF06001 NA  
PF00627;PF07714 NA  
PF00093;PF01749 NA  
PF00769;PF00505 GO:0008092;GO:0003677 4 
PF02037;PF01017 GO:0003676;GO:0003700 2 
PF00104;PF00076 GO:0003700;GO:0003676 2 
PF01161;PF00565 NA  
PF01161;PF00567 NA  
PF00128;PF00393 GO:0003824;GO:0004616 4 

PF00520;PF00520 
GO:0016020;GO:0016020|GO:0005216;GO:0005216 
|GO:0006811;GO:0006811 0 

PF00595;PF00702 GO:0005515;GO:0003824 3 
PF00435;PF00134 NA  
PF05351;PF00071 NA  
PF00400;PF05485 NA  
PF00564;PF02201 NA  
PF07714;PF02751 GO:0004713;GO:0003702|GO:0005524;GO:0003702 8 
PF00850;PF00389 NA  
PF00595;PF00388 GO:0005515;GO:0007165 7 
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PF00595;PF00387 GO:0005515;GO:0007165|GO:0005515;GO:0006629 7 
PF00688;PF00069 GO:0040007;GO:0006468 7 
PF02892;PF01749 GO:0003677;GO:0008565 6 
PF00397;PF00769 GO:0005515;GO:0008092 1 

PF00595;PF00122 
GO:0005515;GO:0016020|GO:0005515;GO:0016820 
|GO:0005515;GO:0005524 6 

PF00751;PF00306 GO:0005634;GO:0016469 6 
PF03144;PF00134 NA  
PF00595;PF00005 GO:0005515;GO:0005524 6 
PF00104;PF00850 NA  
PF00789;PF02363 NA  
PF00271;PF00645 GO:0003676;GO:0003677 1 
PF00271;PF00644 GO:0004386;GO:0003950 5 
PF08441;PF00013 NA  
PF00751;PF00095 GO:0003700;GO:0030414 5 
PF00751;PF00090 NA  
PF00751;PF00047 NA  
PF00130;PF07714 GO:0007242;GO:0006468 8 
PF00751;PF00014 GO:0003700;GO:0004867 7 
PF00751;PF00006 GO:0005634;GO:0016469 6 
PF00271;PF00520 GO:0004386;GO:0016020|GO:0003676;GO:0016020 6 
PF00397;PF00373 GO:0005515;GO:0005856 8 
PF04433;PF07714 NA  
PF00128;PF03446 GO:0003824;GO:0004616 4 
PF01193;PF00023 NA  
PF00554;PF00439 NA  
PF00688;PF00757 GO:0040007;GO:0016020 5 
PF00439;PF07714 NA  
PF00554;PF00333 GO:0045449;GO:0006412|GO:0003700;GO:0003723 3 
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Appendix B: Complete description of Pfam-A table 
 

 


