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ABSTRACT

A variety of events such as gamma-ray bursts and supernovae may ex-

pose the Earth to an increased flux of high-energy cosmic rays, with poten-

tially important effects on the biosphere. Existing atmospheric chemistry soft-

ware does not have the capability of incorporating the effects of substantial

cosmic ray flux above 10 GeV . An atmospheric code, the NASA-Goddard

Space Flight Center two-dimensional (latitude, altitude) time-dependent at-

mospheric model (NGSFC), is used to study atmospheric chemistry changes.

We have created a table that, with the use of the NGSFC code, can be used

to simulate the effects of high energy cosmic rays (10 GeV - 1 PeV ) ionizing

the atmosphere. By interpolation, the table can be used to generate values for

other uses which depend upon atmospheric energy deposition by ensembles

of high-energy cosmic rays. We discuss the table, its use, weaknesses, and

strengths.
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Chapter 1

Introduction

Nearby supernovae [1], gamma ray bursts [2, 3] and possibly galactic shocks

[4] may bathe the Earth in cosmic rays (CRs) of much higher than usual

incident energies. It is of considerable interest to investigate the effect of such

events on the Earth’s atmosphere, and consequent possible connections to mass

extinctions and other events in the fossil record. In studies of supernovae and

gamma ray bursts until now, cosmic rays have been included only by means of

a simple phenomenological approximation, enhancing the existing background

CR ionization, or not at all. Computations of the effects of gamma-ray bursts

[2] have been based on only the effects of photons. However, a sufficiently

strong background of very high-energy cosmic rays can punch through the

galactic and terrestrial magnetic fields [3] and irradiate the Earth, with effect

potentially competitive with those of photons. Other potential scenarios which

may account for a 62 My periodicity in biodiversity [4] are based solely on CR,

and to date the terrestrial effects have only been approximated. Thus there is

considerable value in developing software to model the effects of a spectrum of
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CR with energies above those normally included in atmospheric computations.

We have developed a method to model changes in atmospheric chemistry

when high energy cosmic rays (HECRs) ionize the atmosphere. When HECRs

hit the atmosphere, like other CRs they will interact with atmospheric con-

situents, primarily the molecules of N2 and O2. This interaction will either

result in a nuclear reaction or an ionization reaction, the latter being the in-

teraction of primary importance for chemistry [5]. To study this interaction

we created a normalized HECR ionization spectrum data table that contains

ionization energy due to HECRs at various energies and altitudes. We will

discuss the methods used, how the data table was generated, and its use in a

widely used time-dependent atmospheric ionization and chemistry code. This

result naturally complements and extends basic work on the lower-energy CRs

that normally dominate atmospheric ionization [6].

In order to obtain ionization energy from HECRs, we used CORSIKA

(COsmic Ray SImulations for KAscade), a high energy cosmic ray extensive

air shower simulator [7, 8]. The code follows the interactions of a primary

cosmic ray and its secondary particles through the atmosphere to the ground.

CORSIKA uses Monte Carlo calculations to account for high energy strong and

electromagnetic interactions using a number of extensive air shower simulators

(of which we used UrQMD-low energy and EPOS-high energy) [9].

Using CORSIKA we created a table so that atmospheric ionization can

be calculated for an arbitrary CR spectrum between 10 GeV and 1 PeV . We

intend to continuously update this table to higher energies, eventually reaching

the highest energies observed.
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Chapter 2

Methods

The table we have generated gives energy deposition in bins corresponding

to those used in the NASA-Goddard two-dimensional atmospheric chemistry

code, hereafter NGSFC. However, it can be used for any purpose requiring

estimates of energy deposition in the atmosphere by interpolating between

those bins.

The NGSFC code has been used extensively to study the effects of super-

novae [11], gamma-ray bursts [2] and solar proton events on the atmosphere

[10,13]. We will only briefly describe this code, given detailed accounts else-

where [2, 12, 14]. There are 58 log pressure bands (we use only the first 46 of

these bins here, as discussed below) and 18 bands of latitude. The model com-

putes atmospheric constituents with a largely empirical background of solar

radiation variations, with photodissociation, and including small scale mixing

and winds. Also, it includes an empirical background of CR source ionization

based on current levels, which includes an 11-year solar modulation cycle, all

with a one day timestep.
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Figure 2.1: Fractional energy deposition for a 1 TeV primary at 0o (solid),

45o (dotted), and 70o(dashed) per mb (in bins of the NGSFC code) in log

pressure, proportional to total column density traversed by the shower, which

is approximately linear in altitude.
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CRs of 1010 − 1015 eV are of much larger primary energy than those that

dominate normal galactic CRs, so one should not simply turn up the usual

background, as in a previous supernova study [11]. We used CORSIKA, which

is designed to perform detailed simulations of extensive air showers initiated

by high energy cosmic ray particles. We did 25 simulated showers at each of a

series of energies by 0.1 in log10 intervals of primary energy between 10 GeV

and 1 PeV , i.e. at 50 different primary energies.

We created a lookup table using data from CORSIKA runs that contains

atmospheric ionization energy deposition per primary due to CRs in the range

of 10 GeV - 1 PeV . The sum of deposition over altitude is less than the total

of the primary energy, as not all energy is deposited in the the atmosphere

by electromagnetic processes. Nuclear interactions also occur between HECRs

and atmospheric particles, but nuclear energy is dumped into nuclei, mostly

not into atmospheric chemistry. Energy that goes into nuclear interactions or

reaches the ground is not included in the deposition table.

An arbitrary spectrum can be convolved with this data and the results

used in the NGSFC code (or other similar codes) to simulate the effects this

energy flux deposition will have on atmospheric chemistry. It is computa-

tionally unfeasible at this time to do Monte Carlos over a very large number

of angles of incidence. Because of this, we investigated and applied an ap-

proximation scheme. We investigated the effect of zenith angle by running 50

shower ensembles (2500 primary particle simulation runs) at zenith angles of

0o (vertical), 45o, and 70o at 1013 eV . In Figure 1 we show the fractional energy

deposition for each of these zenith angles (excluding nuclear interactions) per
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interval (intervals of the NGSFC code) in log pressure, proportional to total

column density traversed by the shower, which is approximately linear in alti-

tude. Note that the lateral displacement in the lines, and the location of their

maxima, are reasonably approximated by a (cos θ)−1 factor, confirming the

simplest thing one would expect from a column density factor. For a general-

purpose code at the energies we consider, it is appropriate to assume the flux

is isotropic. At the level of approximation needed for this assessment of the

atmospheric ionization, we replace the ensembles of angles of incidence by a

single ensemble at arc cos < sinθ cosθ >, where the mean <> is over a hemi-

sphere; this is arc cos (π−1), or 71.44o. At the level of precision needed for this

study, and given the complications in using CORSIKA for greater incidence

angles, we have used the 70o ensemble for this purpose. For a non-isotropic

source, a column density approximation can be used to adjust the deposition.

For each shower, we recorded the fractional energy deposition in each of

1000 bins of 1 g cm−2 column density. We used their mean to construct a

lookup table describing the energy deposition for a particle of given primary

energy as a function of pressure. Below we describe in detail the construction

and use of the table.

The greatest deposition of energy per bin corresponds to the first interac-

tion between the incoming CR and the atmosphere, which occurs very high

in the atmosphere. Since log column density is nearly linear with altitude, we

analyze the maximum energy deposition per bin of log column density. This

has weak trends with primary energy, as shown in Figure 2. This gives about

100-200 g cm−2 for 70o zenith angle as the site of the greatest deposition of
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energy per unit distance, corresponding to an altitude of about 11-16 km.

This can be compared with (a) about 13 km as the mean altitude of maximal

energy deposition density for the normal CR spectrum as implemented in the

NGSFC code, strongly biased toward latitudes greater than above about 60

degrees, and (b) 22 to 35 km as the peak deposition for keV −MeV photons,

depending upon energy [2,15]. One would expect higher energy CRs to pene-

trate deeper based on their smaller cross sections. This apparent discrepancy

between the altitudes in (a) and our CR data results from the fact that the

normal dominant CR spectrum up to about a GeV , strongly interacts with the

Earth’s magnetic field, comes down with a small zenith angle near the poles,

and consequently encounters a lower mean column density than an isotropic

ensemble.

The table was originally created to compute ozone (O3) depletion and

other atmospheric chemistry changes [5] resulting from energy deposition by

HECRs. O3 lives at altitudes of 10-35 km [16] with considerable latitude

dependence [15]. Our data is inaccurate from 46-90 km because CORSIKA

runs on a linear column density scale starting with 1 g cm−2 , but main effects

of atmospheric chemistry changes on the biosphere occur at lower altitudes. A

46-90 km altitude is less significant because high-energy CRs rarely have their

first interaction that high in the atmosphere.
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Figure 2.2: Electromagnetic energy deposition from a 100GeV primary (solid),

a 10 TeV primary (dotted) and an PeV primary (dashed) per g cm−2, in bins

of NGSFC code . Energy deposition for the higher energy primaries is deeper in

the atmosphere. Energy going into nuclear interactions or hitting the ground

is not included in this table
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Chapter 3

Construction of the Lookup

Table

The CORSIKA model 6.720 was used in all simulations. When installing

CORSIKA, UrQMD was used for the low energy hadronic interaction model

and EPOS was used as the high energy hadronic interaction model. None

of the extra options were needed here and therefore not installed with COR-

SIKA. The following are the important variables used in the input file for

CORSIKA. The Longitudinal Shower Development variable (LONGI) was set

as LONGI T 1 T F giving longitudinal ionization for every 1 g cm−2 bin.

The variable THETAP gives the angle of incidence of particles and was set as

THETAP 70 70 as discussed above. The energy range variable (ERANGE)

we set as ERANGE x x, where x is the variable energy of the primary par-

ticle. CORSIKA was then run 25 times at each of the energies stated above

using different SEED random number variables from the input file for each

run (Table 1). The data file will output a variety of information. The sum
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of the average longitudinal energy deposit in GeV given at every 1 g cm−2 is

the only data we are interested in. In the future we plan to extend this table

above the PeV range. Computing time and size of the files for primaries above

PeV range increase approximately linearly with energy. In order to limit these

factors within a reasonable range, the thinning algorithm available in COR-

SIKA will be used when we compute the PeV - EeV range. When thinning

is active, below a fraction (EFRCTHN) of the primary energy, only one of the

secondary particles is followed, selected at random according to its energy and

the rest of the secondaries are discarded. An appropriate weight (WMAX) is

attached to the surviving particle to conserve energy. Parameter RMAX is the

radius within which all particles are subjected to inner radius thinning. The

following values of the thinning parameters, EFRCTHN = 1.E-5, WMAX =

1.E5 and RMAX = 3.E4, THINRAT = 1.E0, WEITRAT = 1.E2, produced

reasonable data quality keeping the computing time and size of the data files

within acceptable range. The following lines will be added to the CORSIKA

input file for primary energy >1 PeV : THIN 1.000E-05 1.000E+05 3.000E+04

and THINH 1.000E+00 1.000E+02.

CORSIKA ran at 50 different energy levels 25 times each at intervals of

0.1 in log energy. Each time it was run CORSIKA simulated 15 protons

entering the atmosphere. Therefore, we compiled 375 particles for each of the

50 energy levels. The energy was averaged linearly for each of the 25 runs at

each longitudinal pressure bin.

Minor problems arose when transferring the CORSIKA data to the NGSFC

code. First, the lowest column density at which energy deposition is given
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is 1 g cm−2 in CORSIKA, while 22 of the 46 pressure levels are below 1 g

cm−2 in the NGSFC code. Secondly, CORSIKA outputs deposition in a linear

pressure scale. We interpolated to a logarithmic scale for the NGSFC code. We

converted CORSIKA density units of g cm−2 to millibars (needed for NGSFC)

by a conversion factor of 0.98.

To resolve the problem of CORSIKA’s highest interaction altitude being

below 22 of the NGSFC codes altitudes we linearly interpolated the data using

the ionization from the 1 g cm−2 bin. Because the first interaction point of

primaries is rarely within the first g cm−2, most of the CORSIKA output

files have no energy deposition for this altitude. Also, the data we used from

CORSIKA is binned in 0.1 GeV intervals, meaning for the lower energy runs

many of the 1036 altitude levels are zero. For this reason our output file may

have no energy in the 22 highest altitude bins for certain energy levels. For

our purpose of looking at the ozone these higher altitudes, above ∼ 46 km,

are not important, since the amount of ionization in them from HECR would

be quite small.

We use the same linear interpolation method used for each bin with less

than 1 g cm−2, depositing the energy from ground level to the highest logarith-

mic altitude level in the last bin. The logarithmic altitude bins are centered

on the bins used in the NGSFC code (Table 2).

The geomagnetic field should be mentioned with regard to the lookup table.

Its impact on CRs is minor for protons with energies greater than 17 GeV [17].

Because this only impacts a small region of the CR range of importance (10

GeV - 1 EeV ) effects due to the magnetic field are small. If desired, alterations
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to the latitude distribution of energy deposition can be made in the 10 to 17

GeV range to simulate the effects of deflection by the geomagnetic field.
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Table 3.1: Input File for CORSIKA - Complete Description of Variables at [8]
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Table 3.2: Altitudes for NGSFC code.
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Chapter 4

How to use the lookup table

The lookup table is formatted into 50 columns and 46 rows corresponding to

the primary energy of the particle and the altitude bins of the NGSFC code,

respectively. As is, it displays ionization energy deposition for a spectrum of

1 particle for every 0.1 logarithmic energy bin, or 1 particle at each of the

50 energies, in units of GeV . Trivially, one must multiply by the number of

particles per unit area per second in their bin to get the total energy flux at

each altitude bin for a given spectral form. From this point the procedure

may vary depending on the use to which the lookup table is put. To input this

data into the NGSFC code the energy at each altitude must be added over all

energy levels, creating a 1-dimensional data set of total energy deposition flux

at each altitude.

As mentioned previously, the NGSFC code takes ionization energy flux

in a 2-dimensional format using altitude and latitude. The data is now in

1-dimension with respect to altitude, so the user must create a latitude com-

ponent. The NGSFC code has 18 latitude bins (90o− 80o, 80o− 70o, 70o− 60o
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etc). For an isotropic flux, the same flux is entered for each latitude bin. The

final data file to be input into the NGSFC code should now be a 2-dimensional

set of ionization energy flux deposition at the 18 latitude bins for 46 altitudes,

a total of 828 data points. For a point source, the input into latitude bins

may be adjusted by the appropriate factor, including a correction for the cos

θ factor as in [2]. This may result in hemispheric differences in the results.

The energy flux data as a function of altitude and latitude, generated as

described above, may be used in the NGSFC code by way of a simple read-

in subroutine. Depending on the units of the spectrum used, conversion to

cm−2s−1 may be necessary since the NGSFC code uses cgs units. In order to

use the input as a source of NOy, the energy flux must first be converted to

ionization flux. This is accomplished using 35 eV per ion pair [18], which finally

gives values in units of ions cm−2s−1. Constituents in the code are stored with

units of number cm−3s−1. Therefore, the area ionization rate is converted to

a volume rate using the height of the altitude bins, which depends on the

current density of each bin at read in (the density depends on temperature,

which depends on the presence of sunlight, etc.). This ionization rate is then

used as a source for NOy, assuming 1.25 molecules are created for each ion

pair [16]. The model then runs as usual, incorporating this source of NOy in

the relevant chemistry computations. The general procedure here is the same

as that used in previous work with both photon and solar proton ionization

sources [2, 10].
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Chapter 5

Discussion

Since the Sun is a major source of atmospheric ionization on earth, the atmo-

spheric ionization studies until now have been focussed on solar cosmic rays

which fall in the lower energy part of the observed cosmic ray spectrum. There

are other phenomena, such as supernovae, gamma-ray bursts and the periodic

motion of the earth perpendicular to the plane of our galaxy, which have a

potential to expose the Earth to a flux of high energy cosmic rays. A study of

the effects of such phenomena on the Earth’s atmosphere is not possible based

on atmospheric ionization work done on lower energy cosmic rays.

We have not only produced ionization data for high energy cosmic rays,

but have also interfaced this data to run with the photochemical code (NASA

GSFC 2D Atmospheric Modeling code) to compute changes in atmospheric

chemistry. We found that as we go higher in energy, particles penetrate deeper,

as expected from the cross sections. As a result, we see enhanced ionization

near the ground for higher energies.

Our data can also be interpolated to any other format suited for that par-
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ticular model to explore other effects caused due to atmospheric ionization.

We plan to extend our results up to the highest energies observed. Also, the

inclusion of CR effects will make possible a more accurate investigation of

the effects of gamma-ray bursts on the Earth, which have the potential to

explain certain mass extinction events [19]. A quantitative treatment of pos-

sible time-varying flux of high-energy CRs becomes possible [5]. It may have

other applications which we cannot anticipate, and should be made generally

available.

This lookup table will be made freely available via ftp, and upgraded in

the future as appropriate.

Look for a link at http : //kusmos.phsx.ku.edu/ ∼ melott/Astrobiology.htm.
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