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Goals of the Study 

Cranial neural crest cells are a multipotent, migratory cell population which 

forms the majority of the bone, cartilage, nerves, and connective tissue of the head 

and face.  Craniofacial malformations account for one-third of all congenital birth 

defects, and are mainly attributed to defects in cranial neural crest cell induction, 

patterning, or differentiation.  Because of their importance in craniofacial 

development, it is essential to understand the mechanisms underlying the formation 

and patterning of this unique cell population. Therefore, the main goal of these 

studies was to examine the signaling pathways regulating neural crest cell formation 

and patterning.   

The first study detailed herein examines the molecular morphogens required 

for neural crest cell induction in the mouse embryo.  Multiple signaling pathways, 

including BMP, FGF, NOTCH, PAX, and WNT signaling have shown to be involved 

in the induction of neural crest cells.  Despite evidence indicating the requirement of 

these morphogens in other model systems, a specific role for these pathways has not 

been addressed in the mouse.  Therefore, we took an in vivo and in vitro approach to 

determine which of these signaling pathways, if any, were required for neural crest 

cell induction.  Analysis of Pax3-/-;Pax7-/-, Fgf8Δ2,3/Δ2,3, and RBP-Jκ-/- mutants failed 

to reveal the requirement of any of these pathways in crest cell formation.  

Additionally, antagonist treatment of embryo explants in vitro did not prevent the 

expression of Sox10, a marker of migratory neural crest cells, indicating that BMP, 

FGF, NOTCH, and WNT signaling are not regulating the induction process.   
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Our data demonstrates that BMP, FGF, NOTCH, PAX, and WNT signaling 

are not required for neural crest cell induction in the mouse, indicating that novel 

regulators of this process have yet to be elucidated.  Indeed, we have identified Germ 

cell nuclear factor (Gcnf/Nr6a1) as a novel regulator of neural crest cell induction.  

Gcnf is transiently expressed in neural crest cells in the cranial region and analysis of 

Gcnf-/- embryos revealed a complete absence of the neural crest cell markers Crabp1, 

Sox9, Sox10, and Snail.  In contrast, the neural plate markers Sox2, Pax3, and Wnt1 

were expanded in mutant embryos, suggesting a failure in the transition from a 

neuroepithelial to neural crest cell.  Indeed, Gcnf may govern initial formation of 

neural crest cells via activation of Snail, the gene required for their epithelial-to-

mesenchymal transition.  Additionally, we have identified putative Gcnf binding sites 

within neural crest cell specific genes that regulate viability, migration, and lineage 

selection.  Therefore, Gcnf appears to act as a bi-modal regulator of neural crest cell 

induction acting at the onset of crest cell formation and in the subsequent activation 

of crest cell differentiation paradigms.   

The second study addresses the roles for Fgf8 in the patterning of the 

frontonasal prominence (FNP), the craniofacial primordium that gives rise to mid-

facial structures, such as the nose, forehead, and philtrum of the upper lip (Tapadia et 

al. 2005).  We set out to conditionally inactivate Fgf8 in the surface ectoderm of the 

FNP using the Cre-loxP system via an AP-2cre driver, which is expressed in the 

ectoderm and mesenchyme of the frontonasal region (Zhang and Williams 2003).  

Despite examining both AP-2cre;Fgf8fx/fx and AP-2cre;Fgf8Δ2,3/fx embryos, excision 
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of Fgf8 in the surface ectoderm did not occur.  Further examination of the AP-2cre 

mice revealed that AP-2cre expression was present in the mesenchyme of the FNP, 

but not in the surface ectoderm of this region as had originally been reported (Zhang 

and Williams 2003), most likely due to background strain differences.  The lack of 

overlap between Fgf8 and the AP-2cre in the surface ectoderm of the FNP results in a 

lack of Fgf8 excision from this region and does not contribute to obvious craniofacial 

phenotypes in conditional Fgf8 mutants. 

Finally, we have identified an insertional mouse mutant of Hedgehog 

acyltransferase (Hhat), a gene required for the palmitoylation of Hedgehog proteins.  

HhatCre-face embryos exhibit holoprosencephaly (HPE), a midline craniofacial anomaly 

characterized by the failure of the cerebral cortex to divide into left and right 

hemispheres (Belloni et al. 1996a; Roessler et al. 1996).  Additionally, HhatCre-face 

mutants exhibit neural crest cell and branchial arch patterning defects as well as 

defects in skeletogenesis.  Underpinning the HPE phenotype in HhatCre-face embryos is 

disrupted SHH signaling, as evidenced by the lack of Shh transcript and protein at 

9.5dpc; loss of SHH in the pharyngeal endoderm results in altered branchial arch 

development and disrupted patterning of the lower jaw, ultimately leading to cartilage 

and bone defects.  Disrupted Hh signaling impacts on neural crest cell lineage 

selection as the expression of Sox9 and Sox10 is decreased.  Additionally, peripheral 

nerve development is impaired in HhatCre-face mutants.  At later developmental stages, 

HhatCre-face mutants exhibit delayed chondrogenesis, tooth agenesis, and an absence of 

cranial vault bones.  Interestingly, Chromosome 1, where Hhat is positioned, has been 



 16

identified as a HPE locus in human cases of HPE, indicating that HhatCre-face embryos 

provide a model for understanding the role of hedgehog signaling during craniofacial 

development and the etiology of HPE. 
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V. Introduction 

Significance of the Neural Crest 

Neural crest cells are a transient population of multipotent cells that arise 

along the dorsal neural folds and migrate throughout the embryo to give rise to 

numerous derivatives (LaBonne and Bronner-Fraser 1999; Le Douarin and Kalcheim 

1999).  Derivatives include, but are not limited to, the peripheral nervous system, the 

dermis, connective tissue, muscle, bone, and pigment cells (Le Douarin and Kalcheim 

1999).  Indeed, there is not a single organ or tissue in the vertebrate body that is not 

comprised of neural crest cells, even if the contribution is minor (Le Douarin 2004).  

Therefore, neural crest cells are a classic model used by developmental biologists for 

studying cell induction, migration, and differentiation. 

One such structure that is highly dependent on neural crest cells for proper 

development is the craniofacial complex, which is the most anatomically 

sophisticated part of the body.  The craniofacial complex is composed of neural crest 

cells and paraxial mesoderm (Noden 1988; Couly et al. 1992), with additional 

contribution from the endoderm and surface ectoderm (Couly and Le Douarin 1990).  

Normal craniofacial development requires the orchestrated differentiation of these 

germ layers for functional integration of the facial and skull bones, muscle, 

connective tissue, skin, and the central and peripheral nervous systems (Trainor 

2005).  Therefore, it is not surprising that without the proper integration of these 

tissues during development craniofacial defects arise, accounting for one-third of all 

congenital malformations within human populations.  Craniofacial malformations 
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primarily arise from defects in the formation, migration and/or differentiation of 

cranial neural crest cells and understanding the mechanisms which regulate these 

processes is crucial for the prevention or repair of congenital craniofacial defects.  Of 

central importance, is a more thorough understanding of the specific tissue 

interactions that occur between the neural crest cells and surrounding tissues in 

regulating craniofacial morphogenesis. 

Collectively, neural crest cells provide an intriguing model for studying a 

wide range of developmental processes.  Additionally, they provide a unique 

paradigm for studying how changes in the craniofacial architecture affect the 

evolutionary adaptation of the face (Helms et al. 2005).  Although neural crest cells 

have a number of roles along the anterior-posterior axis of the embryo, this work 

focuses on the neural crest cells and their role in the development of the craniofacial 

complex; experiments addressing the induction and patterning of the neural crest are 

presented herein. 

 

Neural Crest Cell Induction: an Intersection of Multiple Signaling Pathways  

 Neural crest cells arise along the dorsal aspect of the neural plate border: the 

junction of the non-neural ectoderm (presumptive epidermis) and the neural plate 

(presumptive central nervous system).  Neural crest cells flank the neural plate 

bilaterally and are induced along the entire region caudal to the prospective 

diencephalon (LaBonne and Bronner-Fraser 1999; Yanfeng et al. 2003; Basch et al. 

2004; Huang and Saint-Jeannet 2004).  The induction and formation of the neural 
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crest is tightly linked to the neurulation process, in which the neural plate and 

surrounding epidermal cells undergo changes in cell shape that result in the formation 

of the neural tube, and ultimately the central nervous system (Colas and Schoenwolf 

2001).  Previous experiments have demonstrated that the neural crest forms as a result 

of inductive interactions between the border of the neural plate and surrounding 

surface ectoderm (Selleck and Bronner-Fraser 1995; LaBonne and Bronner-Fraser 

1999; Christiansen et al. 2000).  Multiple signaling molecules have been shown to 

play a role in the induction of neural crest cells including BMP, FGF, NOTCH , PAX 

and WNT signaling (Figure One), although specifies-specific differences exist in the 

induction process. 

Although inductive interactions between the surface ectoderm and neural plate 

are necessary for inducing neural crest cells, the molecular signals underlying this 

process are less understood and multiple morphogens have been indicated in 

regulating this process.  Experiments in Xenopus have suggested that a gradient of 

BMP signaling is necessary to induce neural crest cells (Mayor et al. 1995; Morgan 

and Sargent 1997; Marchant et al. 1998), with the highest concentrations of BMP 

molecules present in the surface ectoderm.  In avian embryos, BMP4/7 have also 

been implicated neural crest cell induction (Liem et al. 1995; Selleck et al. 1998); 

Bmp4/7 are expressed in the epidermal ectoderm adjacent to the neural plate in 

cranial regions.  Contact-mediated interactions between the surface ectoderm and 

neural plate explants are required for the induction of Slug+ and HNK-1+ neural crest 
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cells in vitro (Liem et al. 1995).  BMP4- or BMP7-conditioned media enhances the 

expression of Slug+ and HNK-1+ migratory cells, mimicking the epidermis and its 

ability to induce neural crest cells in neural plate explants (Liem et al. 1995).  In 

contrast, grafts of Noggin-expressing cells into the neural tube results in the 

downregulation of Bmp4 and subsequent absence of Slug+ migratory neural crest cells 

Figure One.  Genetic Regulation of Neural Crest Cell Induction.  A) 
Scanning electron micrograph of an 8.5dpc mouse embryo.  Neural crest 
cells (NCC) are induced along the neural plate border, the junction of the 
neural plate (NP) and the surface ectoderm (SE); experiments have indicated 
that both the NP and SE give can rise to NCC.  B) Schematic of the tissue 
interactions and morphogens required for NCC induction.  A gradient of 
BMP signaling is required at the neural plate border to specify NCC identity; 
the effects of BMP signaling are partially modulated by NOTCH signaling.  
In the SE, Wnt6 is sufficient to induce NCC in avian embryos.  Additionally, 
Pax3 and Pax7 play a role in the induction process; the domain of Pax7 
expression in the early epiblast-staged avian embryo has been shown to 
specify NCC, while mouse mutants of Pax3 and Pax7 have decreased 
numbers of NCC.   Finally, FGF8 signaling from the paraxial mesoderm 
converges on Pax3 to regulate NCC formation in Xenopus.  Adapted from 
Trainor et al. 2003. 
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(Selleck et al. 1998).   BMP4 appears to be a downstream target of NOTCH signaling 

(Endo et al. 2002); electroporation of dominant-negative constructs to Delta1 (a 

Notch ligand) results in a marked reduction of Slug and Bmp4, thereby indicating an 

indirect requirement for NOTCH signaling in neural crest cell induction.  Transient 

exposure to NOTCH signaling is required for the induction of Bmp4 in the surface 

ectoderm, which in turn, regulates neural crest cell formation  (Endo et al. 2002).      

Interestingly, Bmp4 mouse mutants are embryonic lethal at approximately 

9.5dpc but exhibit normal branchial arch development (Winnier et al. 1995), 

suggesting that Bmp4 is not a key regulator of neural crest cell induction as has been 

indicated in avian and Xenopus embryos.  In contrast, Bmp2-/- embryos exhibit little 

evidence for the existence of migrating Crabp1+ neural crest cells (Kanzler et al. 

2000), although embryonic lethality has precluded further examination of additional 

neural crest cell markers.  Furthermore, although the phenotype of Bmp2 null 

embryos was suggestive of a role for BMP signaling in neural crest cell induction 

(Kanzler et al. 2000), a more recent conditional allele of Bmp2 has shown it is only 

required for neural crest cell migration (Correia et al. 2007).  Conditional ablation of 

BMPr1a (Alk3) signaling in neural crest cells using Wnt1-cre results in cardiac 

outflow tract defects, such as a lack of septation and shortened conotruncal length 

(Stottmann et al. 2004).  Despite the cardiac defects, the induction of neural crest 

cells is normal, suggesting that signaling through the BMPr1a is not a requirement 

during the initial specification of neural crest cells at early somite stages (Stottmann 

et al. 2004).  Interestingly, this data suggests that contact mediated BMP induction of 



 22

neural crest cells is highly conserved in avian and Xenopus embryos, but that this 

pathway may not be the key regulator in the mouse.   

In addition to BMP signals from the epidermis, there is considerable evidence 

for a role of the underlying mesoderm in the induction of the neural crest.  Paraxial 

mesoderm, which is a source of FGF signaling, has been shown to be a potent inducer 

of the neural plate border (Bang et al. 1997) and neural crest cell markers (Monsoro-

Burq et al. 2003).  Co-culture of presumptive paraxial mesoderm with animal cap 

explants induces Slug and Twist in Xenopus; conversely, removal of presumptive 

paraxial mesoderm results in decreased expression of Slug (Bonstein et al. 1998; 

Marchant et al. 1998).  In particular, Fgf8 has been shown to regulate this process 

(Monsoro-Burq et al. 2003), injection of Fgf8 in Xenopus embryos or animal caps 

results in the upregulation of Slug, as well as the additional crest cell markers Zic5 

and FoxD3 (Monsoro-Burq et al. 2003).  Induction of neural crest cells by Fgf8 is 

mediated through Pax3 (Monsoro-Burq et al. 2005), indicating that integration of 

multiple signaling pathways is required for proper neural crest cell induction in 

Xenopus. 

A role for WNT signaling in neural crest cell induction comes from 

experiments performed in Xenopus and avian embryos.  In Xenopus, analysis of the 

Slug promoter region identified a Lef/β-catenin binding site necessary for expression 

of Slug, indicating the direct activation of neural crest cell induction via WNT 

signaling (Vallin et al. 2001).  Multiple Wnt family members have been identified as 

inducers of neural crest cells; Wnt7b in conjunction with BMP inhibition induces Slug 



 23

and Twist in ectodermal explants (Saint-Jeannet et al. 1997; Chang and Hemmati-

Brivanlou 1998; LaBonne and Bronner-Fraser 1998) and overexpression of Wnt1 or 

Wnt3a results in an increased Slug expression at the expense of the ectoderm (Saint-

Jeannet et al. 1997; Chang and Hemmati-Brivanlou 1998; LaBonne and Bronner-

Fraser 1998).  Additionally, overexpression of downstream members of the Wnt 

canonical pathway, such as β-catenin (LaBonne and Bronner-Fraser 1998; Wu et al. 

2005) or dishevelled (Yanfeng et al. 2003) results in ectopic expression of neural crest 

cell markers.  In contrast, overexpression of dominant-negative Wnt ligands or the 

Wnt antagonist glycogen synthase kinase-3 blocks neural crest cell production (Saint-

Jeannet et al. 1997; Chang and Hemmati-Brivanlou 1998; LaBonne and Bronner-

Fraser 1998).  In avian embryos, Wnt6a is expressed in the epidermis during the 

induction process and in vivo treatment with a dominant negative Wnt1 construct 

blocks Slug expression with embryos exhibiting altered crest cell migration as 

indicated by HNK-1 staining (Garcia-Castro et al. 2002).  Wnt6 appears to be acting 

through the canonical signaling pathway as β-catenin was located within the nuclei of 

the neural folds, consistent with reports highlighting the importance of canonical 

WNT signaling in Xenopus.  Wingless-conditioned media (Wg, Drosophila 

homologue of Wnt1) induces neural crest cells from naïve neural plate tissue in vitro, 

an effect that was inhibited with the addition of functional antibodies to Wg (Garcia-

Castro et al. 2002).  Interestingly, treatment with BMP4-conditioned media did not 

induce neural crest cells without additional additives (Garcia-Castro et al. 2002), 

suggesting that early reports demonstrating the induction of crest cells in vitro by 



 24

BMP4 were most likely a result of serum additives present within the culture media 

as opposed to a specific role for BMP4 in the induction process. 

Genetic analysis of Wnt pathway mutants in the mouse has revealed roles for 

WNT signaling in the maintenance of neural crest cell progenitors but not as 

regulators of the induction process.  Wnt1-/-;Wnt3a-/- embryos have decreased 

expression of Mash1 and Pax3, markers of dorsolateral progenitor cells of the neural 

tube (Ikeya et al. 1997).   Further, analysis of Wnt1-/-;Wnt3a-/- double mutants 

revealed migratory Crabp1+ and Ap2α+ neural crest cells, although the cells were 

reduced in number compared to wild-type littermates.  Decreased neural crest cell 

production is a result of the requirement of WNT signaling in the maintenance and/or 

expansion of neural crest cell progenitors.  This is reflected by the hypoplastic dorsal 

root ganglia at 11.5dpc and the lack of the stapes and hyoid bone at 18.5dpc in Wnt1-/-

;Wnt3a-/-  embryos (Ikeya et al. 1997).   

Subsequent analysis of conditional inactivation of β-catenin in neural crest 

cells using Wnt1-cre has revealed a role for WNT signaling in the maintenance of 

neural crest cells as well as lineage selection of sensory neurons (Brault et al. 2001; 

Hari et al. 2002).  Conditional β-catenin mutants exhibit severe craniofacial defects at 

late developmental stages and lack all neural crest derived bone, including the 

maxillary and mandibular bones (Brault et al. 2001).  Underlying these late stage 

craniofacial defects is increased apoptosis at mid-gestational stages.  Indeed, analysis 

of mutant embryos at 9.5dpc revealed migratory Ap2α+, Crabp1+, and Hoxa2+ neural 

crest cells that were comparable in number to wild-type littermates; cells which are 
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subsequently lost due to increased apoptosis at 10.5dpc (Brault et al. 2001).  Although 

neural crest cell induction proceeds normally in conditional β-catenin mutants, 

mutant analysis at 12.5dpc revealed an absence of sensory neurons, indicating WNT 

signaling in neural crest cell lineage selection (Hari et al. 2002).  Indeed, Sox10+ 

neural crest cells in wildtype littermates differentiate into sensory neuronal precursors 

as indicated by the transcription factors Ngn2 and Brn-3A.  In contrast, mutant Sox10+ 

neural crest cells fail to express Ngn2 and do not differentiate into Brn-3A+ precursors 

(Hari et al. 2002).  As a result, conditional β-catenin mutants lack dorsal root ganglia, 

but exhibit normal formation of the enteric and sympathetic chain ganglia.   

Furthermore, overexpression of a constitutively active β-catenin in mouse 

embryos results in ectopic sensory neurogenesis at the expense of other neuronal cell 

fates (Lee et al. 2004).  Mutant embryos have decreased migratory neural crest cells 

populating the cranial nerve ganglia as evidenced by Sox10; in contrast, expression of 

the sensory neuron marker Cadherin-6 (Cad6) was significantly upregulated in 

regions normally devoid of Cad6, including the mesenchyme surrounding the cranial 

nerve ganglia, indicating that the neural crest cells in these regions had adopted a 

sensory neuron fate (Lee et al. 2004).   Consistent with the loss of Ngn2 in conditional 

β-catenin mutants, Ngn2 was dramatically increased in mutants with sustained 

activation of  β-catenin; Ngn2+ cells were increased in the trunk as were the sensory 

neuron markers Neurogenin 1 (Ngn1) and NeuroD.  In contrast, the autonomic 

markers Mash1 and eHand were absent in the mutants in comparison to wildtype 
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littermates (Lee et al. 2004).  Overall these data indicate that WNT signaling through 

 β-catenin is promotes the differentiation of neural crest-derived sensory neurons. 

Two members of the Pax family of genes, Pax3 and Pax7, have been 

implicated in neural crest cell formation.  In Xenopus, Pax3 has been shown to 

regulate neural crest cell formation as knockdown of Pax3 function using antisense 

morpholinos results in decreased neural crest cell markers (Sato et al. 2005; Hong and 

Saint-Jeannet 2007).  More recently, Pax7 has been shown to regulate neural crest 

cell formation in the avian embryo, acting during early gastrulation stages to specify 

neural crest cell precursors; treatment of chick embryos with Pax7 morpholinos 

resulted in decreased expression of the neural crest cell markers Slug, Sox9, and 

HNK-1 (Basch et al. 2006).  In zebrafish, both Pax3 and Pax7 are expressed in neural 

crest cells (Lacosta et al. 2007), but do not appear to be required for the formation of 

the population as a whole.  Morpholinos directed to either Pax3 or Pax7 do not 

prevent neural crest cell induction, but rather reduce specific populations of crest cells 

that contribute to xanthophores (pigment cells) (Lacosta et al. 2007; Minchin and 

Hughes 2008) and enteric neuron development (Minchin and Hughes 2008).     

In the mouse, Pax3 and Pax7 have similar domains of expression within the 

neural tube and both genes are expressed in neural crest cells (Mansouri et al. 1996).  

Pax3-/- embryos, or Splotch mutants, exhibit defects in neural crest cells migrating 

into the developing heart, cranial and dorsal root ganglia, and pigmentation defects 

(Conway et al. 1997; Epstein et al. 2000).  Splotch mutants survive until late 

gestational stages and exhibit trunk specific defects.  Indeed, examination of neural 
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crest cell migration in Splotch mutants has revealed that mutant embryos exhibit 

normal crest cell migration in anterior regions of the embryo, with the most caudal 

tail regions lacking any identifiable migration (Serbedzija and McMahon 1997).  

Interestingly, Pax7-/- embryos survive until postnatal stages and exhibit minor defects 

in the overall size of the maxilla (Mansouri et al. 1996). Neural crest cell defects have 

been described in both Pax3-/- and Pax7-/- embryos but the overall lack of severity in 

phenotype has been attributed to functional redundancy between the two genes 

(Mansouri et al. 1996).  To date, Pax3-/-;Pax7-/- double mutant embryos have not been 

assayed for defects in neural crest cell formation, examination of double mutant 

embryos would ultimately clarify the direct role, if any, for Pax3 and Pax7 in neural 

crest cell induction in the mouse.   

Evidence in avian, frog, and fish embryos indicate that Bmp Fgf, Notch, Pax 

and Wnt play significant species specific roles in neural crest cell induction (Figure 

One).  In contrast, in the mouse, none of the Bmp Fgf, Notch, Pax or Wnt pathway 

mutants that have been generated, exhibit a complete absence of neural crest cell 

formation.  Instead, these pathways appear only to effect the migration and/or 

differentiation of mammalian neural crest cells.  One reason for the discrepancy may 

be that in frogs, fish, and chicks it is very difficult to temporally separate the process 

of neurulation from neural crest cell induction and those key signaling pathways are 

used reiteratively.  In mice, the slower pace of embryogenesis combined with 

conditional mutagenesis provides for a better, more specific assessment of the neural 

crest cell induction process, separately from neurulation.   
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Migration and Derivatives of the Neural Crest 

During the induction process, neural crest cells are formed via an epithelial to 

mesenchymal transition, after which they delaminate from the neural tube, and 

migrate throughout the embryo (Le Douarin and Kalcheim 1999; Christiansen et al. 

2000; Yanfeng et al. 2003; Basch et al. 2004; Huang and Saint-Jeannet 2004).  This 

epithelial to mesenchymal transition is marked by specific transcription factors, such 

as Snail (Snail1 & Snail2), which are some of the earliest known markers of neural 

crest induction.  The Snail family of genes act as transcriptional repressors which 

downregulate cell adhesion molecules, in particular, E-cadherin, allowing individual 

crest cells to delaminate from the neural tube and migrate to appropriate destinations 

in the developing embryo (Cano et al. 2000).  The first evidence of the involvement 

of the Snail family of genes in neural crest cell EMT was reported in avian embryos; 

treatment with antisense oligonucleotides to Slug (the avian homologue of Snail) 

resulted in the inhibition of neural crest cell delamination (Nieto et al. 1994).  

Treatment with an antisense or dominant negative constructs in Xenopus embryos 

lead to defects in crest cell migration (Carl et al. 1999; LaBonne and Bronner-Fraser 

2000; Mayor et al. 2000); conversely, overexpression of Snail results in increased 

neural crest cell production (del Barrio and Nieto 2002).  Although Snail/Slug is 

required for the delamination of neural crest cells in avian and Xenopus embryos, 

genetic analyses in mouse have indicated that Snail1 and Snail2 are not required for 

crest cell delamination, suggesting that additional pathways may regulate this process 
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(Murray and Gridley 2006).  Indeed, recent reports have indicated non-canonical 

WNT-signaling as a regulator of neural crest cell formation as injection of dominant-

negative Dishevelled results in complete inhibition of neural crest cell migration (De 

Calisto et al. 2005; Matthews et al. 2008).   

The migration patterns of neural crest cells are highly conserved across 

vertebrate species, but the onset of migration differs.  For example, neural crest cells 

in mice and opossums begin to migrate prior to the closure of the neural tube (Le 

Douarin and Kalcheim 1999; Kulesa et al. 2004), while crest cells in avian embryos 

do not migrate until neural tube closure is complete (Le Douarin and Kalcheim 1999; 

Kulesa et al. 2004), suggesting that neural tube closure is not required for neural crest 

cell induction and migration. 

Neural crest cells can be divided into four major domains along the anterior-

posterior axis; the cranial, cardiac, trunk and vagal populations (Le Douarin 2004) 

and fate maps have elegantly demonstrated the specific derivatives that arise from 

each axial population of neural crest cells (Le Douarin and Kalcheim 1999; Le 

Douarin 2004) (Figure Two).  Cranial neural crest cells arise from the mid-

diencephalon caudally to rhombomere 7 of the hindbrain (Osumi-Yamashita et al. 

1994; Osumi-Yamashita et al. 1996) and migrate in highly conserved migratory 

streams (see Neural Crest Cell Contribution to the Developing Face).  Cranial neural 

crest cells give rise to the connective tissue, teeth, melanocytes, and sensory and 

parasympathetic ganglia of the head (Larson 1993).  In addition, the cranial neural 
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crest forms the majority of bone and cartilage of the head and face; two endogenous 

derivatives unique to this domain of crest cells.    

Cardiac neural crest cells migrate ventrally from a region spanning the 

rhombomere 6 of the hindbrain to somites 3, with each somitic level contributing to 

the septation of the aorta and pulmonary artery as well as the aortic arch smooth 

muscle (Kirby et al. 1983; Kirby and Stewart 1983).  Additional contribution to the 

heart includes the semilunar and atrioventricular valves as well as the 

parasympathetic innervation of the heart (Hutson and Kirby 2007).  Cardiac neural 

 

 

 

 

 

 

 

 

 

 

crest cells give rise to the connective tissue of the thymus, thyroid, and parathyroid 

glands.  Cardiac neural crest cells were first identified in chick ablation experiments 

(Kirby et al. 1983) and were so named due to the resulting cardiac phenotypes 

identified in ablated-embryos.  Interestingly, ablation of premigratory cardiac neural 

Figure Two.  Derivatives of the 
Neural Crest.  Neural crest cells 
are a multipotent cell population 
which give rise to a diverse array of 
cell types.  Neural crest cells 
contribute to the majority of the 
tissues and organs in the body 
extending the length of the anterior-
posterior body axis.  From Crane & 
Trainor, 2006.   
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crest cells results in cardio- and non-cardiovascular defects, including persistent 

truncus arteriosus, an incomplete septation of the aortic and pulmonary outflow tracts; 

non-cardiovascular phenotypes include defects in thymic, parathyroid, and often 

thyroid gland development (Hutson and Kirby 2007).   

Trunk neural crest cells arise at the axial level of somite 5 to the caudal tip of 

the neural tube and follow two migratory routes that dictate the types of derivatives 

formed.  Neural crest cells that migrate along the dorsolateral pathway travel between 

the ectoderm and somites and give rise to melanocytes (Krull 2001); cells that travel 

along the ventromedial pathway generate the dorsal root and sympathetic ganglia, 

adrenomedullary cells and Schwann cells (Krull 2001).  In avian and murine 

embryos, cells migrate ventrally through the anterior portion of each somite, a process 

mediated by repulsive Eph/ephrin signaling.  Posterior portions of each somite 

express ephrin-B1, while neural crest cells express EphB3; Eph/ephrin signaling 

restricts neural crest cells to the anterior somitic regions (Krull et al. 1997).  In 

addition to the restrictive signaling mediated by Eph/ephrin signaling, neural crest 

cell migration through the somites is regulated by neuropilin/semaphorin signaling.  

Neuropilin2 (Npn2) is expressed in migratory neural crest cells in avian and murine 

embryos that normally only cross the anterior half of each somite.  Loss of Npn2 

results in aberrant migration through anterior and posterior halves of the somites, with 

cells migrating as a uniform sheet instead of in characteristic streams (Gammill et al. 

2006).  Semaphorin 3f (Sema3f), a ligand for Npn2, is expressed in the posterior 

region of the somites, in a complimentary pattern to Npn2, indicating that reciprocal 
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signaling may restrict neural crest cell migration to the anterior half of each somite; 

indeed, analysis of Sema3f-/- embryos mimics the phenotype of Npn2-/- mutants 

(Gammill et al. 2006).  Two additional domains of neural crest cells, the vagal and 

sacral neural crest contribute to the parasympathetic ganglia of the gut (Burns and 

Douarin 1998; Le Douarin and Kalcheim 1999).  Vagal neural crest cells (somites 1-

7) colonize the entire length of the gut, while the sacral neural crest cells (caudal to 

somite 28) only contribute to the caudal portions of the bowel (Le Douarin and 

Kalcheim 1999).     

Because of the multipotent nature and numerous derivatives produced by 

neural crest cells, the neural crest has been suggested to be a stem cell or stem cell-

like population (Bronner-Fraser and Fraser 1989).  Although extensive evidence 

demonstrates the multipotent nature of neural crest cells in vivo and in vitro, the 

actual numbers of bona fide neural crest stem cells is extremely small, accounting for 

approximately 1-3% of the entire crest cell population (Bronner-Fraser and Fraser 

1989; Crane and Trainor 2006).  However, while this suggests that the neural crest 

population does contain a small percentage of cells with stem cell characteristics, the 

neural crest is a transient population generated during a limited time window at each 

axial level.  Therefore, the neural crest population, as a whole, consists of both 

multipotent and more developmentally restricted progenitor cells (Crane and Trainor 

2006). 
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Neural Crest Cell Contribution to the Developing Face 

Neural crest cells stereotypically migrate into the developing face in patterns 

highly conserved across vertebrate species.  Populations of neural crest cells 

contributing to the posterior facial structures migrate out from the hindbrain (Figure 

Three) (Lumsden et al. 1991; Osumi-Yamashita et al. 1994).  Rhombomeres are 

structurally distinct segments of the hindbrain and are critically important for 

specifying the crest cell contribution to each particular migratory stream (Trainor and 

Krumlauf 2000a).  Indeed, the contribution of crest cells to a branchial arch is highly 

conserved across multiple vertebrate species (Kiecker and Lumsden 2005). 

Cells migrate laterally into the first branchial arch (BA1) from rhombomeres 

one and two and rostrally from rhombomere 3 (Lumsden et al. 1991; Serbedzija et al. 

1992; Sechrist et al. 1994), to form the maxilla and mandible, trigeminal ganglia, and 

the incus and malleus bones of the middle ear (Le Douarin and Kalcheim 1999).  The 

second branchial arch (BA2) is populated by cells arising from rhombomeres three, 

four, and five (Lumsden et al. 1991; Sechrist et al. 1994; Trainor and Tam 1995; 

Trainor and Krumlauf 2000b).  Interestingly, this second stream receives laterally 

migrating cells from rhombomere four (R4) as well as caudal and rostrally migrating 

cells from R3 and R5, respectively (Sechrist et al. 1993).  Indeed, very little to no 

neural crest cells are found in regions lateral to the odd-numbered rhombomeres, the 

underlying mechanism of which remains poorly understood.  Repulsive signaling 
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may play a role as intermingling between segments is restricted by interactions 

between the ephrin/Eph receptors and Neuropilin2/semaphorin3f, further defining 

segmental identity (Becker et al. 1994; Mellitzer et al. 1999; Xu et al. 1999; Gammill 

et al. 2006).  Derivatives of the second branchial arch include the hyoid bone, styloid 

processes of the temporal bone, the stapes bone (middle ear), as well as the facial 

nerve ganglia (Le Douarin and Kalcheim 1999).  BA3 is populated by cells from the 

sixth and seventh rhombomeres and contributes to the hyoid bone and the 

glossopharyngeal ganglia (Kontges and Lumsden 1996; Le Douarin and Kalcheim 

1999). 

Figure Three.  Neural Crest Cells 
migrate from the Hindbrain in 
Three Streams conserved across 
Vertebrates.  Neural crest cells 
(NCC) (green) migrating from 
rhombomere (r) 1, r2, and r3 form 
the first stream of migratory NCCs 
that will populate branchial arch 
(ba) 1.  The second stream is 
composed of NCCs migrating from 
r3, r4, and r5 to populate ba2.  The 
third stream is composed of NCCs 
from r5, r6, and r7.  This pattern of 
migration correlates to the position 
of cranial nerve ganglia (orange), 
including the trigeminal (V), facial 
(VII), and glossopharyngeal (IX), 
seen at later developmental stages.  
From Trainor and Krumlauf, 2001. 
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The mid- to upper facial region is populated by neural crest arising from the 

developing dien- and mesencephalon (Figure Four & Five) (Osumi-Yamashita et al. 

1994).  In total, seven prominences comprise the vertebrate face: the frontonasal 

prominence (FNP), and the paired lateral nasal, maxillary and mandibular 

prominences (Helms et al. 2005; Tapadia et al. 2005).  The FNP is derived from a 

midline primordium that forms on top of the forebrain and is populated by neural 

crest cells that migrate ventrally from the mid-diencephalon, integrating with 

rhombomeric neural crest cells (Osumi-Yamashita et al. 1994; Tapadia et al. 2005).  

Neural crest cells begin to migrate into the FNP as early as 8.25dpc (5-somite stage) 

and will continue to populate this region until late 8.5 to early 9.0dpc (9-10 somite 

stage) (Osumi-Yamashita et al. 1994).  At 9.0dpc, the FNP is distinguishable as a 

smooth outgrowth in the developing facial region and by 10.5dpc the FNP is divided 

into the median (frontal) and lateral nasal prominences.  The median nasal 

prominence is a bi-partite structure that, in conjunction with the lateral nasal 

prominences, form the nasal pits.  The median nasal prominence will give rise to the 

forehead, middle of the nose, philtrum of the upper lip, and primary palate.  The 

lateral nasal prominence contributes to the nasal pits, and forms the sides of the nose 

(Tapadia et al. 2005).  Additionally, the lateral nasal prominence is required for 

components of the upper jaw in avian embryos, including the lateral edges of the 

premaxillary bone (Szabo-Rogers et al. 2008).   
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The two remaining prominences, the mandibular and maxillary prominences, 

are components of the first branchial arch that contribute to lower facial structures.  

The mandibular prominences are a bilateral outgrowth of BA1, identifiable as early as 

8.5dpc and continue to extend distally until they begin to fuse maybe as early as 

9.5dpc. The mandibular prominences give rise to the components of the lower jaw, 

including Meckel’s cartilage.  The maxillary prominence is first identifiable at 

Figure Four.  Contribution of Cranial Neural Crest Cells to the 
Developing Frontonasal Region and Branchial Arches.  A)  Neural crest 
cell (NCC) territories prior to migration from the diencephalon (orange) to the 
posterior hindbrain (dark blue).  B)  Schematic of NCC and the craniofacial 
regions they populate.  The frontonasal region (orange/red) is populated by 
diencephalic & mesencephalic NCC.  BA1 (red/yellow/light blue) is populated 
by NCC from the posterior mesencephalon and r1-r3, while BA2 (light 
blue/pink/green) is populated by NCC from r3-r5.  BA3 and BA4 are 
populated by cells from r5-r7 and r7-r8, respectively.  From Creuzet et al. 
2005. 
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approximately 8.75dpc as a proximal bulge of tissue positioned just anterior to the 

mandibular prominence.  As it is populated by neural crest cells, the maxillary 

prominence extends antero-ventrally and forms the zygomatic complex (cheekbones), 

upper jaw components, lips, and the secondary palate (Tapadia et al. 2005).  

 

 
 

 

 

 

 

 

  

The positional identity of the branchial arches is mediated in part by two families of 

homeodomain transcription factors, the Homeobox (Hox) and Distal-less (Dlx) genes.  

Hox genes were first identified in Drosophila for their ability to cause homeotic 

transformations of the body plan (Akam et al. 1988).  While flies have eight Hox, 

(HomC) genes located in a single cluster, mammals have 39 Hox genes, resulting 

Figure Five.  Development of the Craniofacial Primordia.  A) At 
9.5dpc, the frontonasal prominence (pink) is medially positioned; the 
maxillary and mandibular prominences (green) are also identifiable.  B) 
By 10.5dpc, the medial nasal prominence (pink) and lateral nasal 
prominence (blue) are identifiable and will give rise to the middle and 
lateral sides of the nose.  C)  At 11.5dpc, the maxillary and mandibular 
prominences (green) have fully formed and will give rise to upper and 
lower jaw components, including the mandible and secondary palate.  
D) View of an embryo indicating the final position of each facial 
primordium.  Adapted from Tapadia et al. 2005. 
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from duplications of the ancestral Hox cluster.  Mammalian Hox genes are arranged 

in four clusters, Hoxa-Hoxd, of 13 paralogous groups; paralogous Hox genes have 

been established based on sequence similarity and position within the cluster.  The 

identification of conserved Hox genes throughout vertebrate evolution has indicated 

their importance in patterning the vertebrate body plan (Santagati and Rijli 2003).  

The expression of Hox genes in the hindbrain mediates the antero-posterior 

identity of the rhombomeres as well as neural crest cells migrating from this region 

(Trainor and Krumlauf 2000a).  Rhombomeric segments and neural crest cells share a 

unique pattern of Hox gene expression, although each tissue is independently 

regulated (Trainor and Krumlauf 2000a).  For example, rhombomere 1 (r1) does not 

express any Hox genes, nor do neural crest cells migrating from this segment to 

populate BA1 (Trainor and Krumlauf 2000a).  In contrast, rhombomere 2 (r2) 

expresses Hoxa2 up to the posterior r1 boundary, as well as in the more posterior 

hindbrain segments.  Despite Hoxa2 expression in r2, neural crest cells migrating 

from this segment do not express Hoxa2, leaving BA1 devoid of any Hox gene 

expression as it is populated by cells from r1 and r2.  Instead, Hoxa2+ neural crest 

cells populate the second branchial arch from rhombomeres 3/4 (Hunt et al. 1991).  

This Hox code, present in neural crest cells, results in the regulation of inter-BA 

identity (Depew et al. 2002).  Indeed, specific deletion of Hoxa2 results in the 

transformation of second branchial arch derivatives to those of the first branchial arch 

(Gendron-Maguire et al. 1993; Rijli et al. 1993).  Conversely, overexpression of 

Hoxa2 in the first branchial arch (normally devoid of Hox expression) results in the 



 39

transformation of first arch derivatives, such as Meckel’s cartilage, to those of the 

second arch (Grammatopoulos et al. 2000; Pasqualetti et al. 2000).  These 

transformations indicate a role for Hoxa2 in the specification of second branchial arch 

identity and that an absence of Hox gene expression in r1/r2 is responsible for the 

patterning of the first branchial arch and its derivatives.   

Despite the evidence supporting a patterning role for Hox genes in neural crest 

cell and branchial arch development, the surrounding environment in which neural 

crest cells migrate also influences crest cell patterning and plasticity.  Elegant 

experiments involving intra-species grafts have highlighted the degree of plasticity 

exhibited by neural crest cells (Trainor and Krumlauf 2000b).  Intra-species 

transplantation of small numbers of Hox-expressing neural crest cells into a non-Hox 

environment, results in neural crest cells reprogramming the Hox genes expressed to 

match the surrounding environment (Trainor and Krumlauf 2000b).  In contrast, when 

large numbers of Hox+ neural crest cells are grafted into a Hox-negative environment, 

the original Hox code is maintained, indicating that migratory neural crest cells are 

subject to community as well as environmental cross-talk; plasticity is ultimately 

dependent on the size of the population affected as well as timing.  Collectively, these 

results indicate a unique role for Hox genes in the patterning of neural crest cells and 

their facial derivatives that is dependent on the numbers of neural crest cells present 

within a cohort. 

While Hox genes regulated the antero-posterior identity of the caudal BAs, the 

antero-posterior and proximo-distal identity of BA1 is mediated by Distal-less (Dlx) 
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genes.  Dlx genes were first identified in Drosophila as regulators of proximodistal 

patterning of the limbs (Cohen 1990).  In vertebrates, Dlx genes are expressed at 

various sites of outgrowth, including the limbs and branchial arches (Depew et al. 

2005).  Mice have six Dlx genes, Dlx1-Dlx6, which are clustered as first-order 

paralogues adjacent to the Hox genes (Panganiban and Rubenstein 2002) and can 

further subdivided into second-order paralogues based on sequence similarity (Depew 

et al. 2005).  The genomic clustering of Dlx genes results in set of genes being tightly 

regulated, which directly impacts their expression patterns within the BAs.  Indeed, 

Dlx genes exhibit a nested pattern of expression within the ectomesenchyme of BA1 

(Figure Six).  BA1 has two proximodistal subdivisions, the maxillary (MxBA1, 

proximal) and mandibular (MdBA1, distal) arches, which contribute to the upper and 

lower jaws, respectively.  First-order paralogues Dlx1 and Dlx2 are expressed 

throughout the mesenchyme of BA1, including the proximal MxBA and distal MnBA 

(Depew et al. 2002; Depew et al. 2005).  In contrast, Dlx5/Dlx6 and Dlx3/Dlx4 share 

more restrictive domains within the distal MnBA (Depew et al. 2002; Depew et al. 

2005).  Overall, this results in a unique array of Dlx gene expression within BA1 

along the proximodistal axis. 

The nested pattern of Dlx expression in the branchial arches indicates that a 

Dlx code is responsible for establishing intra-BA identity.  Indeed, mutant analysis of 

single or compound Dlx embryos supports the specific role of Dlx family members in 

specifying BA identity along the proximodistal axis.  Indeed, single mutants of Dlx1 

and Dlx2 exhibit varying degrees of skeletal defects in maxillary derived structures. 
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Dlx1-/- embryos lack the ala temporalis (proximal component of the sphenoid bone, a 

MxBA derivative) and the incus has an altered morphology in comparison to wildtype 

embryos (Qiu et al. 1997), while Dlx2-/- mutants have defects in the ali- and 

basisphenoid bones (Qiu et al. 1995).  Dlx1/2-/- compound mutants are embryonic 

lethal and exhibit more severe defects of proximal MxBA-derived bones than single 

Figure Six.  Distal-less Genes regulate Intra-BA Identity.  A)  Mice have 
six Dlx genes that are tightly clusted and arranged in bigene pairs of first-
order (cis) paralogues, Dlx1/2, Dlx5/6, and Dlx3/4 (dark blue arrows).  
Similarity of genomic sequence outside of the homeodomain further 
identifies two groups of second-order (trans)  paralogues, Dlx1, 6, and 4 and 
Dlx2, 3, and 5 (purple arrows).  Third-order paralogues (light purple arrows) 
are those that are not linked as first-order or are not part of a second-order 
paralogous group.  B)  First-order Dlx paralogues exhibit a nested pattern of 
expression in the ectomesenchyme of the BAs; Dlx1/2 (yellow/purple/blue) 
are expressed throughout the proximodistal axis of BA1/BA2.  Dlx5/6 
(purple/blue) and Dlx3/4 (red/blue) are expressed in more distally restricted 
patterns in the distal portion of BA1/BA2; only Dlx1/2 are expressed in the 
maxillary prominence, the proximal region of BA1.  Images to the right of 
panel B are in situ hybridizations of Dlx2, Dlx5, and Dlx3, demonstrating the 
progressive restriction of Dlx5 and Dlx3 to more distal portions of BA1/2.  
From Depew et al. 2005. 
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Dlx1/2 mutants, indicating that Dlx1/2 are particularly important for proximal MxBA 

derivatives (Qiu et al. 1997). 

The distal component of BA1, the mandible, is patterned by more distally 

restricted Dlx genes, in particular Dlx5 and Dlx6.  Dlx5-/- mutants exhibit a shortening 

of Meckel’s cartilage which is split proximally and exhibits ectopic intramembranous 

bone; the ectopic bone associated with Meckel’s cartilage is abnormally jointed to the 

tympanic ring (Depew et al. 1999).  Mutant embryos exhibit a thickening of the 

tympanic ring and the malleus and dentary bones (Depew et al. 1999).  Compound 

Dlx5/6-/- embryos exhibit a homeotic transformation of MnBA into MxBA 

derivatives, highlighting the importance of Dlx5/6 in the specification of antero-

posterior identity of the mandible.  Additionally, the proximo-distal patterning of 

MnBA is altered in Dlx5/6-/- embryos; heterozygous embryos exhibit Dlx3, Alx4, and 

Bmp7 at the distal edge of the developing mandible, domains of expression that were 

lost or altered in Dlx5/6-/- mutants.  In contrast, markers of more proximal maxillary 

regions, such as Dlx2, Wnt5a, and Prx2, are upregulated in the mandible of mutant 

but not heterozygous embryos (Depew et al. 2002).   

At later developmental stages, mutant embryos exhibit a duplication of upper 

jaw structures; where the mandible would normally be positioned, mutant embryos 

have ectopic maxillary and palatine bones and Meckel’s cartilage was transformed 

into a duplicate ala temporalis.  Additionally, soft tissue structures normally 

associated with the upper jaw were duplicated in Dlx5/6-/- embryos; whisker vibrissae 
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and a second set of rugae (roof of the mouth) were present in the duplicated jaw 

structure (Depew et al. 2002).   

Studies from Dlx1/2-/- and Dlx5/6-/- mutants demonstrate the importance of 

first-order Dlx paralogues in the patterning of proximal and distal skeletal elements.  

Recent analysis of compound Dlx2/5-/- mutants has indicated cross-talk between first- 

and second-order Dlx paralogues.  As expected, Dlx2/5-/- embryos exhibit defects 

similar to those originally characterized in single Dlx2 (Qiu et al. 1995) or Dlx5 

mutant embryos (Depew et al. 1999).  Additionally, Dlx2/5-/- mutants exhibit more 

severe defects in distal regions of BA1, where Dlx2/5 have overlapping domains of 

expression.  Dlx2/5-/- mutants lack all but the rostral region of Meckel’s cartilage and 

exhibit cleft mandibles; the soft tissues are also abnormal with vibrissae and rugae 

present on the mandible (Depew et al. 2005), similar to Dlx5/6-/- embryos (Depew et 

al. 2002).  Collectively, analysis of Dlx1/2-/- (Qiu et al. 1997), Dlx5/6-/- (Depew et al. 

2002), and Dlx2/5-/- (Depew et al. 2005) compound mutants highlights the 

requirement of a Dlx-code in establishing intra-BA1 identity through the antero-

posterior and proximodistal patterning of maxillary and mandibular derivatives.  

Furthermore, the alterations in BA morphology and patterning in compound Dlx 

mutant embryos demonstrate the importance of first-order and second-order Dlx 

paralogues in regulating BA identity.   
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Neural Crest Cell Patterning is mediated by Extrinsic Signaling 

The vertebrate face is an integration of multiple craniofacial primordia: the 

frontonasal (FNP), maxillary, and mandibular prominences, and requires the proper 

assimilation of tissue layers and cell types for craniofacial development to occur.  

Indeed, the outgrowth and patterning of the developing face is partially a result of 

extrinsic signaling between multiple tissue layers, including the ectoderm, mesoderm, 

endoderm, and neural crest-derived mesenchyme.  For example, within the FNP, the 

mesenchyme receives signals from the underlying forebrain and overlying facial 

ectoderm which are required for proper outgrowth and patterning of the FNP and its 

derivatives (Hu et al. 2003; Marcucio et al. 2005; Tapadia et al. 2005).  Additionally, 

the pharyngeal endoderm (PE) mediates tissue interactions that regulate the 

development of the mandibular prominence.  The mandibular prominence is 

comprised of multiple tissues, including the ectoderm, mesoderm and neural crest 

cell-derived mesenchyme; extrinsic signaling from the PE acts on the mandibular 

ectoderm (Moore-Scott and Manley 2005; Haworth et al. 2007) and neural crest cells 

(Brito et al. 2006) to regulate the proper development of the lower jaw.  Collectively, 

tissue interactions between neural crest cells and the ectoderm and endoderm play a 

key role in the development of the craniofacial complex and involve multiple 

signaling pathways, such as SHH, FGF, and BMP signaling; the key roles of each of 

these pathways in craniofacial development are discussed below. 
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Ectodermal & Endodermal Hedgehog Signaling regulates Craniofacial Development 

Hedgehog (Hh) proteins are a family of secreted proteins, first characterized 

in Drosophila, that are essential for the patterning of multiple regions of the 

developing embryo.  Mammals have three Hh orthologues, Sonic hedgehog (Shh), 

Indian hedgehog (Ihh), and Desert hedgehog (Dhh), each regulating various aspects 

of embryonic development.  Dhh is required for spermatogenesis (Bitgood et al. 

1996) and the formation of peripheral nerve sheaths (Parmantier et al. 1999); Ihh 

regulates endothelial cell development in the  yolk sac (Byrd et al. 2002), 

hematopoiesis (Dyer et al. 2001), and endochondral bone development (St-Jacques et 

al. 1999) see Cartilage and Bone Development below).  Roles for Shh in the 

patterning of the embryonic axis (Mohler and Vani 1992), craniofacial complex 

(Jeong et al. 2004; Brito et al. 2006), spinal cord (Echelard et al. 1993), and limb bud 

(Riddle et al. 1993; Chang et al. 1994) have been extensively studied.   

Disruptions of SHH in humans results in a range of craniofacial birth defects, 

the hallmark being  holoprosencephaly (HPE), a failure of the forebrain to divide into 

the left and right hemispheres (Belloni et al. 1996a; Roessler et al. 1996).  Classic 

knockouts of Shh result in HPE and a complete absence of the anterior craniofacial 

skeleton (Chiang et al. 1996).  Shh-/- embryos have a single optic vesicle along the 

midline and a reduction in the overall size of the brain and dorsalization of the spinal 

cord.  At later developmental stages, a single nasal proboscis extends from the rostral 

midline and no external eye structures are seen (Chiang et al. 1996).    
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In the mouse, Shh is expressed in the prechordal plate, zone of polarizing 

activity (ZPA), floorplate, notochord, pharyngeal endoderm, and in the surface 

ectoderm of the maxillary and mandibular prominences (Echelard et al. 1993; Chang 

et al. 1994).  Shh expression in the notochord and floorplate is required for proper 

development of ventral cell fates in the brain and spinal cord  (Echelard et al. 1993; 

Riddle et al. 1993); while expression in the ZPA is required for antero-posterior 

patterning of the developing limb (Riddle et al. 1993).   

SHH is a secreted glycoprotein that undergoes cholesterol modification via 

autocatalytic cleavage of its carboxyl (C)-terminus (Porter et al. 1996a; Porter et al. 

1996b), which is required for determining the range of SHH diffusion to Hh-

responsive cells.  In Drosophila, lack of C-terminal modification results in an 

extended range of SHH signaling in the imaginal discs (Porter et al. 1996a), while in 

the mouse, the cholesterol modification is required in restricting the spread of SHH 

from its sites of synthesis (Huang et al. 2007).  The role of cholesterol modification 

differs in various model organisms but overall plays a role in establishing the SHH 

signaling gradient via regulation of SHH diffusion. 

Shh undergoes an additional modification at its amino (N)-terminus via the 

addition of a palmitic acid moiety (Pepinsky et al. 1998), which has been suggested to 

increase SHH potency (Taylor et al. 2001).  In Drosophila, skinny hedgehog (ski) 

(Chamoun et al. 2001), sightless (sit) (Lee and Treisman 2001), central missing (cmn) 

(Amanai and Jiang 2001) and rasp (Micchelli et al. 2002) correspond to the same 

gene which encodes a Hedgehog acyltransferase responsible for the palmitoylation of 
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Hh proteins (Pepinsky et al. 1998; Chamberlain et al. 2008).  Drosophila mutants that 

lack ski/sit/cmn/rasp resemble other mutants of Hh signaling and exhibit aberrant 

patterning defects, indicating that palmitoylation is required in Hh-producing cells to 

establish a normal Hh-signaling gradient (Amanai and Jiang 2001; Chamoun et al. 

2001; Lee and Treisman 2001; Micchelli et al. 2002). 

More recently, the murine homologue of ski, Skinny hedgehog (Skn) or 

Hedgehog acyltransferase (Hhat) has been characterized.  Skn mutants lack N-

terminal palmitoylation of SHH and exhibit HPE as well as neural tube and limb 

patterning defects (Chen et al. 2004).  Classical knockouts of Skn indicate a direct 

role for palmitoylation in establishing the long-range SHH signaling gradient in the 

neural tube due to the lack of formation of SHH multimeric complexes (Chen et al. 

2004).  Additionally, palmitoylation of SHH is required for the formation of SHH 

multimeric complexes in vitro (Goetz et al. 2006) and enhances the ability of SHH to 

induce neuronal differentiation paradigms in forebrain explants (Kohtz et al. 2001).  

Ski/Skn/Hhat are all members of a large family of multipass transmembrane 

proteins termed MBOAT (membrane-bound O-acyltransferase) (Hoffman 2000).  

MBOAT family members include a diverse group of enzymes responsible for the 

transfer of fatty acid residues and other lipids onto hydroxyl groups of membrane-

embedded lipids (Hoffman 2000).  Skn/Hhat are palmitoylacyltransferases (PAT) that 

add a palmitic acid moiety to an N-terminal cysteine via an amide bond linkage 

(Pepinsky et al. 1998; Buglino and Resh 2008).  Studies have indicated that Skn/Hhat 

functions to specifically palmitoylate SHH and IHH.  The direct palmitoylation of 
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DHH has not been demonstrated, although the amino acid consensus site where 

Skn/Hhat acts on SHH and IHH is conserved in DHH, indicating that DHH is most 

likely palmitoylated in a manner similar to other Hh proteins (Buglino and Resh 

2008).  Porcupine (Porc) is a PAT required for the acylation of Wnt/Wg proteins 

(Kadowaki et al. 1996; Tanaka et al. 2002) and is responsible for the palmitoylation 

of WNT1 and WNT3a at N-terminal cysteine residues (Galli et al. 2007).  Although 

the palmitoylation of Wnt and Hh proteins occurs at similarly positioned cysteine 

residues, cross-talk between Porc/Hhat and Hh/Wnt proteins does not occur; Hhat 

shows specificity for SHH palmitoylation and does not modify WNT3a or WNT7a.  

Similarly, Porc does not palmitoylate SHH, indicating that there is no cross talk 

between the two PATs despite similar sites of activity within their respective family 

of proteins. 

In contrast, rasp, the Drosophila homologue of Hhat, has been shown to 

palimtoylate SPITZ, the ligand for the epidermal growth factor receptor (Miura et al. 

2006).   RASP palmityolates SPITZ at an N-terminal cysteine residue which is 

required for restricting SPITZ secretion and enhancing its association with the plasma 

membrane; overexpression of an unpalmitoylated SPITZ in vitro results in an 

increased range of secretion but the protein exhibits decreased activity (Miura et al. 

2006).  Interestingly, rasp/Hhat is required in Hh-producing cells for the spread of the 

Hh protein, thereby establishing the Hh signaling gradient (Amanai and Jiang 2001; 

Chamoun et al. 2001; Lee and Treisman 2001; Micchelli et al. 2002; Chen et al. 

2004).  Evidence of rasp restricting the spread of SPITZ protein (Miura et al. 2006) 
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suggests that rasp/Hhat may have dual functions in protein modification, although the 

determinant of whether palmitoylation at N-terminal cysteine residues restricts or 

enhances protein distribution remains to be addressed.  Collectively, palmitoylation of 

Hh proteins by Skn/Hhat is required for establishing the Hh signaling gradient during 

development in a manner conserved in other signaling pathways, such as WNT 

signaling, highlighting the importance of palmitoylation in embryonic development.   

During craniofacial development, SHH signaling arises from two sources: the 

ectoderm and pharyngeal endoderm.  Shh expression in the cranial region is restricted 

to the epithelia of the frontonasal and BA ectoderm; each domain of Shh has distinct 

roles in the patterning of the facial prominences and neural crest cells that migrate 

into these regions.  Shh in the frontonasal ectoderm defines a region of tissue known 

as the frontonasal ectoderm zone (FEZ), which is responsible for the outgrowth and 

patterning of the FNP (Hu et al. 2003).  In avian embryos, the FEZ is comprised of 

adjacent domains of Shh and Fgf8 that correspond to the tip of the upper beak (Hu et 

al. 2003).  Ectopic transplantation of the FEZ results in the reactivation of signaling 

events in the neural crest-derived mesenchyme resulting in duplicated upper- and 

lower-beak structures (Hu et al. 2003), indicating that Shh in the FEZ is not only 

required for the outgrowth but also the patterning of FNP derivatives.  In contrast, 

inhibition of FEZ formation through SHH blockades results in truncations of the 

upper jaw structures (Cordero et al. 2004; Marcucio et al. 2005).  SHH signaling from 

the ventral telencephalon induces Shh in the FEZ and is required for FEZ formation 

and subsequent facial outgrowth (Cordero et al. 2004; Marcucio et al. 2005).   
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The second domain of Shh is located in the maxillary ectoderm and is required 

for tooth germ initiation (Hardcastle et al. 1998).  Mammalian teeth form in the 

maxillary and mandibular processes of the head via reciprocal interactions between 

the oral ectoderm and the underlying neural crest-derived mesenchyme (Tucker and 

Sharpe 1999). In the mouse, individual thickenings within the BA ectoderm at 

11.5dpc mark the first morphological signs of tooth development. These thickenings 

proliferate to form an epithelial bud that, together with BA mesenchyme, forms a 

tooth germ (Tucker and Sharpe 2004).  As development proceeds, the mesenchyme 

will give rise to the tooth pulp and dentine, while the ectoderm gives rise to the tooth 

enamel (Tucker and Sharpe 2004).   

During the tooth bud initiation, expression of Shh is localized to the 

ectodermal thickenings of future teeth and has been shown to positively regulate tooth 

development (Bitgood and McMahon 1995; Hardcastle et al. 1998).  In vitro, SHH 

acts as a mitogen, inducing proliferation as the thickenings form a tooth bud 

(Hardcastle et al. 1998; Sarkar et al. 2000; Cobourne et al. 2001).  Overexpression of 

Shh results in the activation of target genes in the mandibular mesenchyme 

(Hardcastle et al. 1998), while inhibition of SHH signaling in mandibular explants 

results in a failure of bud formation and an arrest of tooth development (Sarkar et al. 

2000; Cobourne et al. 2001).  Furthermore, conditional knockouts of Shh in the 

developing tooth germ leads to a reduction in overall size of the developing tooth bud 

(Dassule et al. 2000).  Collectively, the localized sites of Shh in the oral ectoderm are 

important for specifying the sites of tooth bud initiation and development.   
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In addition to the requirement of Shh in the facial and oral ectoderm, SHH 

signaling from the pharyngeal endoderm (PE) is required for the development of the 

lower jaw structures.  Removal of the pharyngeal endoderm in avian embryos results 

an absence of lower jaw structures, including Meckel’s cartilage; a phenotype that is 

rescued by exogenous SHH (Brito et al. 2006).  Additionally, injection of Shh-

expressing cells into the PE results in the duplication of the lower jaw (Brito et al. 

2008).  SHH emanating from the PE is necessary for the maintenance of Bmp4 and 

Fgf8 in the mandibular ectoderm (Moore-Scott and Manley 2005; Brito et al. 2006; 

Haworth et al. 2007; Brito et al. 2008), genes with well characterized roles in the 

proximo-distal patterning of this region (Moore-Scott and Manley 2005; Brito et al. 

2006; Yamagishi et al. 2006; Haworth et al. 2007).  Collectively, SHH signaling in 

the PE is responsible for the maintenance of genes in the BA1 ectoderm and is a 

source of an organizing center required for the development of the lower jaw.   

Neural crest cells populating the facial and mandibular mesenchyme are 

directly impacted by SHH signaling.  Treatment with SHH antibodies, tissue ablation, 

or conditional activation of Shh in neural crest cells results in a range of craniofacial 

dysmorphologies.  In avian embryos, treatment with SHH-antibodies results in 

embryos that exhibit reduced growth of the facial prominences, increased cell death, 

and decreased proliferation (Ahlgren and Bronner-Fraser 1999).  Ablation of the 

pharyngeal endoderm, a potent source of SHH, results in markedly increased 

apoptosis in the mandible (Brito et al. 2006; Brito et al. 2008).  Shh-/- embryos exhibit 

a reduction in the outgrowth of the maxillary and mandibular prominences and have 
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increased apoptosis in these regions (Yamagishi et al. 2006), while conditional 

inactivation of Shh in neural crest cells using Wnt1-cre results in reduced facial 

outgrowth, increased cell death, and bone formation defects (Jeong et al. 2004).  

Collectively, SHH signaling, whether emanating from the ectoderm or endoderm, 

plays multiple roles in the development of the craniofacial complex and is critically 

important in the integration of other signaling pathways during craniofacial 

development.  

 

Fgf8 and the Facial Ectoderm 

Fibroblast growth factors (Fgfs) are a large family of signaling polypeptides 

with diverse functions during embryogenesis; in mammals, twenty-two Fgfs have 

been identified, arising from two phases of genome duplication.  FGFs vary in size 

from 17 to 34 kDa and share a conserved 120 amino acid sequence (Ornitz and Itoh 

2001).  FGFs signal to surrounding tissues, often mediating epithelia-mesenchymal 

interactions, which is achieved through the binding and activation of the FGF-

receptors.  FGF-receptors are a family of receptor tyrosine kinases and include four 

family members, Fgfr1–Fgfr4.  Additionally, FGFs bind heparan sulfate 

proteoglycans (HSPG), which function as an accessory molecule that regulates FGF-

binding and the activation of FGFRs (Eswarakumar et al. 2005; Itoh and Ornitz 

2008).  Upon binding to FGFRs, receptor/ligand complexes dimerize and 

phosphorylation of cytoplasmic tyrosine residues results in the activation of multiple 

intracellular signaling cascades, including the MAP kinase, PI-3 kinase, and PLCγ 
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pathways (Eswarakumar et al. 2005; Itoh and Ornitz 2008).  Fgfs are expressed in 

many, if not all, mammalian tissues in distinct yet overlapping patterns.  A number of 

Fgfs (Fgf3, 4, 8, 15, 17, and 19) are expressed only during embryogenesis, 

highlighting the importance of FGF-mediated tissue-specific interactions required 

during development (Ornitz and Itoh 2001). 

In particular, Fgf8 has well characterized roles in the patterning of the embryo 

during development (Itoh and Ornitz 2004).  Indeed, roles for Fgf8 in neural 

patterning (Delaune et al. 2004; Fletcher et al. 2006), limb development 

(Lewandowski et al. 2000), and cardiovascular development (Abu-Issa et al. 2002) 

have been reported.  Fgf8 is expressed in the primitive streak and newly formed 

mesoderm at early developmental stages  (Crossley and Martin 1995). At mid-

gestational stages, Fgf8 is present in the frontonasal ectoderm of the medial and 

lateral nasal prominences and the proximal surface ectoderm of the first branchial 

arch; Fgf8 is also heavily expressed in the apical ectodermal ridge (AER) of the 

developing limb (Crossley and Martin 1995).    Fgf8 null embryos (Fgf8Δ2,3/ Δ2,3) are 

gastrulation defective and are embryonic lethal by 9.5dpc (Meyers et al. 1998).  Fgf8 

hypomorphs (Fgf8neo) also exhibit multiple developmental defects including 

perturbed brain development and an absence of posterior midbrain and anterior 

hindbrain tissues as well as the olfactory bulbs (Meyers et al. 1998).  At both early 

and mid-gestational stages, FGF8 signaling is required for the patterning of multiple 

regions of the developing embryo.     
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Fgf8 is expressed in the developing head in the ectoderm of the nasal 

prominences and the mandible.  FGF signaling is well characterized in mediating 

tissue-tissue interactions, such as in the limb (Niswander et al. 1993; Fallon et al. 

1994; Sun et al. 2002); FGF8 signaling from the AER signals to the underlying 

mesenchyme to promote outgrowth of the limb buds (Lewandoski et al. 2000; Moon 

and Capecchi 2000).  In the head, nasal ectoderm serves a similar role in promoting 

outgrowth.  As cranial neural crest cell populate the frontonasal prominence (FNP), 

interactions between FGF8 and migrating crest cells regulate various aspects of 

craniofacial development.  Indeed, Fgf8 in the frontonasal ectoderm is a critical 

component of the frontonasal ectoderm zone (FEZ), a region of tissue comprised of 

adjacent domains of Fgf8 and Shh.  The FEZ is responsible for the outgrowth and 

patterning of the upper beak (Hu et al. 2003); transplantation of the FEZ results in the 

duplication of upper or lower jaw derivatives (Hu et al. 2003).  Furthermore, recent 

data indicates regionalized FGF signaling from the surface ectoderm coordinates the 

growth and contact of the facial prominences and their derivatives (Szabo-Rogers et 

al. 2008).  Conditional inactivation of Fgf8 in the forebrain using Foxg1-cre results in 

reduced forebrain and frontonasal structures (Kawauchi et al. 2005).  Mutants at late 

developmental stages have a small, shortened snout, and the lower jaw and ears are 

reduced in size or absent (Kawauchi et al. 2005).  Additionally, Foxg1-cre;Fgf8 

conditional mutants exhibit an absence or reduction of the nasal cavity/olfactory 

epithelium and accompanying nasal bone (Kawauchi et al. 2005).    
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Conditional inactivation of Fgf8 in the branchial arch ectoderm using Nestin-

cre (Nes-cre) (Trumpp et al. 1999) or AP2α-IREScre (Macatee et al. 2003) results in 

craniofacial defects.  Fgf8;Nes-cre conditional mutants exhibit a marked reduction of 

the maxillary and mandibular prominences due to increased cell death in the branchial 

arch mesenchyme, indicating a role for FGF8 in the survival of cells populating BA1 

(Trumpp et al. 1999).  Additionally, patterning of the maxillary and mandibular 

prominences is disrupted in mutant embryos, as assayed by the expression of Fgf8-

target genes, Lhx6, Gsc, Barx1, and Et1 (Trumpp et al. 1999).  Analysis of cartilage 

and bone development in Fgf8;Nes-cre conditional mutants at 14.5dpc revealed an 

absence of the cartilaginous elements derived from BA1, including the ala temporalis 

and incus as well as Meckel’s cartilage (Trumpp et al. 1999).  At birth, most of the 

neural crest-derived bones of BA1 are absent, such as the mandible, palantine, 

pterygoid, and tympanic bones; additionally, the squamosal, maxillary, and 

alisphenoid bones are significantly reduced.  The removal of Fgf8 from the Nestin-cre 

domain of BA1 results in severe craniofacial defects caused by increased cell death, 

BA1 patterning defects, and a lack of neural crest-derived bone (Trumpp et al. 1999).   

Conditional inactivation of Fgf8 from the BA ectoderm using AP2α-IREScre 

results craniofacial defects similar to those in Fgf8;Nes-cre mutants.  Fgf8;AP2α-

IREScre mutants exhibit severe hypoplasia of BA1 as early as 9.5dpc and lack 

derivatives of the lower jaw at 18.5dpc (Macatee et al. 2003).  Cell death is increased 

in Fgf8;AP2α-IREScre mutants, although increased TUNEL staining specifically in 

BA1 was not addressed; neural crest cells in more posterior BAs (BA2-6) were 



 56

TUNEL-positive, indicating that the increased cell death the pharyngeal region 

directly affects neural crest cell survival (Macatee et al. 2003).  Overall, these studies 

demonstrate the requirement of FGF8 signaling within two craniofacial primordia, the 

FNP and BA1, in the development of upper and lower jaw structures. 

 

Bmp4 in Mandibular Development 

Bone morphogenetic proteins (Bmps) are members of the Transforming 

growth factor-β (TGF-β ) family of paracrine factors which share similar sequence 

alignment with decapentaplegic (ddp) in Drosophila (Hogan 1996).  To date, more 

than twenty Bmp family members have been characterized, many of which are 

required for normal embryonic development (Hogan 1996).  Bmps are expressed in 

regions of the developing embryo where reciprocal interactions between epithelia and 

mesenchymal cells are required for cellular differentiation and tissue morphogenesis, 

including the amnion (Zhang and Bradley 1996), kidney (Dudley et al. 1995), 

cartilage (Kingsley et al. 1992), and skin (Wilson and Hemmati-Brivanlou 1995).  

Knockout analysis has revealed critical roles for Bmp2 and Bmp4 in heart (Zhang and 

Bradley 1996) and mesoderm formation (Winnier et al. 1995).  Finally, BMP 

signaling through BMP receptor I (BMPR1a) is required for gastrulation (Mishina et 

al. 1995). 

BMPs are synthesized as large precursor proteins which are cleaved so that 

the C-terminal active domain is released (Rosen 2006); mature BMP molecules 

homodimerize and are secreted from the cell.  BMPs elicit their cellular responses 
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through activation of the SMAD pathway via binding of type I and type II 

serine/threonine kinase receptors (Rosen 2006).  Three type I receptors have been 

shown to bind BMP ligands: BMPr1a (Alk3), BMPr1b (Alk6), and the type IA 

activin receptor (ActRIA or Alk2).  BMPs activate the type II receptors BMPR-II and 

the activin receptors type II and IIb (ActR-II, ActR-IIb) (Rosen 2006).   

Ligand binding of type I receptors results in the intracellular association of 

type I and type II receptors, resulting in the phosphorylation of type I receptors (Li 

and Cao 2006).  Once activated, type I receptors recognize and phosphorylate the 

Smad proteins 1, 5, and 8, present in the cytoplasm; phosphorylated Smads1, 5, and 8 

dissociate and form complexes with the common Smad partner, Smad4 (Li and Cao 

2006).  Once complexed, the Smad dimer translocates to the nucleus to regulate gene 

transcription, either in a positive or negative manner (Li and Cao 2006; Rosen 2006).  

Multiple Bmp family members are expressed during craniofacial development, 

including Bmp2, -4, -5, and -7.  Bmp2 is transiently expressed in the early-staged 

embryo in the surface ectoderm adjacent to the neural folds (Kanzler et al. 2000), 

while Bmp4, -5, and -7 are expressed in the developing branchial arches (Winnier et 

al. 1995; Solloway and Robertson 1999).  Additionally, Bmp4 is expressed in the 

frontonasal prominences at mid-embryonic stages (Winnier et al. 1995).  Bmp5 and 

Bmp7 mutants exhibit minor craniofacial defects, including reduced ears (Kingsley et 

al. 1992) and anophthalmia (Dudley et al. 1995).  Analysis of Bmp2 and Bmp4 

mutants has precluded any examination of cranioskeletal development due to 

embryonic lethality (Winnier et al. 1995; Kanzler et al. 2000).   
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Of the Bmp family members expressed in the craniofacial primordia, Bmp4 is 

particularly important for the development and outgrowth of the lower jaw (Barlow 

and Francis-West 1997).  At 10.5dpc, Bmp4 is expressed in the distal branchial arch 

ectoderm and at later stages in the branchial arch mesenchyme (Bennett et al. 1995). 

During development, the mandible is patterned in a proximo-distal gradient and 

reports have demonstrated that Bmp4 is required for the specification of lower jaw 

derivatives, including teeth, cartilage, and bone (Tucker et al. 1999; Liu et al. 2005a).   

Conditional inactivation of Bmp4 in the ectoderm of the mandible using 

Nestin-cre results in cleft lip due to the lack of fusion between the median nasal and 

maxillary prominences (Liu et al. 2005b); lack of analyses at late developmental 

stages has precluded any characterization of cartilage and bone defects.  Analysis of 

Bmp4 conditional mutants using Nkx2.5cre, also expressed in the mandibular 

ectoderm, results in the absence of the lower jaw and its derivatives; only a 

rudimentary mandible is present in the conditional mutants by 17.5dpc (Liu et al. 

2005a).  Bmp4 is also required for the development of the jaw joint; Bmp4 regulates 

Bapx1, a gene expressed in the mandibular arch in two distinct domains and is 

required for the positioning of the jaw joint (Wilson and Tucker 2004). Bmp4 is 

required for restricting Bapx1 to the proximal part of the mandible, thereby regulating 

the final position of the jaw joint; indeed, ectopic application of BMP4 downregulates 

Bapx1, resulting in jaw fusion defects (Wilson and Tucker 2004).   

Finally, Bmp4 from the mandibular ectoderm is required for the maintenance 

of odontogenic precursors and positively regulates target genes, such as Msx1, that 
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specify the development of the incisors (Tucker et al. 1998).  In contrast, BMP4 

signaling from the ectoderm negatively regulates Barx1, which is required for the 

specification of molar teeth (Tucker et al. 1998).  In mandibular explants, application 

of Noggin resulted in a marked upregulation of Barx1 and an absence of Msx1; 

culturing of molar or incisor explants treated with Noggin resulted in the expected 

numbers of teeth forming from the molar explants, but multi-cuspid molars developed 

from incisor explants (Tucker et al. 1998).  Collectively, these data indicate an 

important role for Bmp4 in regulating multiple aspects of lower jaw development, 

including cartilage and bone formation and the development and patterning of the 

teeth.   

Bmp4 expression in the mandible is regulated by Shh; Shh-/- embryos lack 

Bmp4 in the distal ectoderm of the mandible (Moore-Scott and Manley 2005; 

Washington Smoak et al. 2005; Yamagishi et al. 2006).  More specifically, the 

pharyngeal endoderm, a source of SHH signaling, is required for Bmp4 activation; 

conditional inactivation of Shh from the pharyngeal endoderm results in the loss of 

Bmp4 in the mandible (Goddeeris et al. 2007) as does surgical ablation of the 

pharyngeal endoderm in avian embryos (Brito et al. 2006).  Collectively, these data 

indicate that SHH signaling from the pharyngeal endoderm is required for the 

maintenance Bmp4 and the subsequent development of the lower jaw. 

Finally, Bmp4 has been shown to be critical for the evolutionary changes 

associated with beak morphology in Darwin’s finches.  Darwin’s finches are a group 

of 14 related songbirds on the Galapogos Islands analyzed by Charles Darwin during 
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the Beagle expedition in 1835 (Abzhanov et al. 2004).  Although closely related, the 

birds exhibit morphological diversity in the size and shape of their beaks; ground 

finches have broad and deep beaks used for crushing seeds and cactus finches have 

long, pointed beaks for reaching into flowers.  The differences in beak morphology 

are suggested to reflect differences in the respective craniofacial skeletons, which are 

apparent at hatching, and therefore genetically determined (Abzhanov et al. 2004). 

In a series of elegant experiments embryos from six species of Darwin’s 

finches belonging to the genus Geospiza were analyzed for species-specific 

differences in beak morphology.  Three species of ground finches, G. fuliginosa, G. 

fortis, and G. magnirostris (small, medium, and large ground finches) and two species 

of cactus finches (cactus and large cactus finches), G. scandens and G. conirostris 

were analyzed.  The most basal species of the genus, G. difficilis, was analyzed as 

well (Abzhanov et al. 2004).  Species-specific differences in the frontonasal 

prominence, which gives rise to the upper beak, were identifiable by embryonic stage 

26 (Stage 26 of 35), indicating that genetic factors responsible for variations in beak 

morphology should also be present at this time.  Indeed, analysis of Bmp4 in St. 26 

embryos revealed Bmp4 in the mesenchyme of G. magnirostris, G. fortis, and G. 

conirostris, which was absent in G. difficilis, G. fuliginosa, and G. scandens 

(Abzhanov et al. 2004).  

 By St. 29, increased levels of Bmp4 were present in G. magnirostris, G. 

fortis, and G. fuliginosa, coinciding with the appearance of species-specific 

differences in beak morphology (Abzhanov et al. 2004).  Additionally, functional 
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analysis of Bmp4 overexpression in chick embryos using retroviral constructs results 

in beaks with increased width and depth; conversely, overexpression of Noggin, a 

Bmp antagonist, results in a dramatic decrease in beak size (Abzhanov et al. 2004).  

Overexpression of Bmp4 or Noggin resulted in increased and decreased type II 

collagen, which is required for the development of beak skeletal elements.  In 

contrast, other genes known for regulating beak outgrowth, such as Shh and Fgf8, did 

not show any differences between species (Abzhanov et al. 2004).  Collectively, these 

data indicate that increased Bmp4 in the FNP mesenchyme regulates the width and 

depth of developing beak and highlights the evolutionary importance of Bmp4 in 

species diversification.   

 

Cartilage and Bone Development 

The skeletal system is comprised of specialized forms of supportive and 

connective tissue, cartilage and bone.  While both cell types are derived from 

mesenchymal precursors during development, each has unique functions within the 

vertebrate skeleton.  Cartilage provides semi-rigid support in the ear, lungs, and 

joints.  Additionally, cartilage is often an intermediate during development in bone 

formation.  Bone, which forms through two main modes of osteogenesis, provides 

rigid structural skeleton for the soft tissues of the body.   

The vertebrate skeleton can be divided into three lineages; cranial neural crest 

cells give rise to the majority of the skull, although a few bones are derived from 

mesodermal precursors (Noden 1978a; Couly et al. 1993; Jiang et al. 2002; 
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McBratney-Owen et al. 2008).  The two remaining lineages, the axial and limb 

skeletons are derived from somitic tissue from the paraxial mesoderm and the lateral 

plate mesoderm, respectively (Olsen et al. 2000).  In general, osteogenesis occurs 

through intramembranous or endochondral ossification, each giving rise to bone from 

preexisting mesenchymal tissue.  Intramembranous ossification involves the 

differentiation of mesenchymal cells directly into osteoblasts and is mainly restricted 

to the facial skeleton and anterior skull (Opperman 2000; Franz-Odendaal et al. 2006; 

McBratney-Owen et al. 2008).  In contrast, endochondral ossification involves the 

condensation of mesenchymal cells into a cartilaginous matrix that is eventually 

replaced by bone (Olsen et al. 2000; Kronenberg 2003); the long bones of the axial 

skeleton and bones of the limbs are formed via endochondral ossification (Olsen et al. 

2000). 

Intramembranous ossification involves the direct formation of bone without a 

cartilage intermediate (Opperman 2000; Franz-Odendaal et al. 2006); this process 

governs the ossification of the developing skull.  The skull is divided into two 

compartments; the viscerocranium, which comprises the facial skeleton and the 

neurocranium, which comprises the cranial vault and the cranial base.  The 

viscerocranium is derived entirely from neural crest cells (Jiang et al. 2002; 

McBratney-Owen et al. 2008).  In contrast, the developing neurocranium arises from 

two distinct cell populations, the neural crest and the paraxial mesoderm (Noden 

1978a; Couly et al. 1993; Jiang et al. 2002; Yoshida et al. 2008), the contribution of 

which appears to be species dependent.  In avian embryos, reports have indicated that 
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the cranial vault is derived from both neural crest cells and paraxial mesoderm 

(Noden 1978b; Couly et al. 1993), although some discrepancies exist regarding the 

frontal and parietal bones.  Reports from Couly and colleagues (Couly et al. 1993) 

have indicated that the cranial vault, including the frontal and parietal bones, is 

derived from entirely from neural crest cells, with the exception of the occipital bone 

and the otic capsule, which are derived from the paraxial mesoderm.  Lineage tracing 

experiments performed by Noden indicate that the frontal bone is a derivative of both 

neural crest cells and paraxial mesoderm (Noden 1978b), a result that is supported in 

recent lineage tracing of neural crest cells and the mesoderm using retroviral 

constructs (Evans and Noden 2006).  Additionally, the parietal bone has been shown 

to be entirely of mesodermal origin (Evans and Noden 2006). 

In murine embryos, the contribution of neural crest cells and paraxial 

mesoderm to the developing skull has been elucidated through the use of genetic 

labeling experiments.  The frontal and nasal bones are derived entirely from neural 

crest cells, which also contribute to a small portion of the interparietal bone (Jiang et 

al. 2002).  The remaining bones of the cranial vault, the parietal, ex- and 

supraoccipital, and occipital bones, are derived from the paraxial mesoderm (Yoshida 

et al. 2008).  Similarly, the cranial base is also derived from neural crest cells and the 

paraxial mesoderm (Yoshida et al. 2008).  The cranial base includes the ethmoid, 

presphenoid, basisphenoid, and basioccipital bones as well as auditory capsule (a 

region of the temporal bone) (Yoshida et al. 2008).  Neural crest cells contribute to 

the anterior cranial base, the ethmoid, presphenoid and basisphenoid bones; the 
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paraxial mesoderm contributes to the posterior basioccipital bone and the auditory 

capsule (Yoshida et al. 2008) (Figure Seven). 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

Figure Seven.  Contribution of Neural Crest Cells and the Paraxial 
Mesoderm to the Developing Skull.  A) Schematic of a portion of the bones 
of the skull.  B) Contributions of neural crest cells (light blue) and paraxial 
mesoderm (dark blue) to the facial skeleton, cranial vault, and cranial base.  
Neural crest cells contribute to the frontal (FN), interparietal (IP), and nasal 
(NA) bones of the cranial vault as well as the facial skeleton (light blue).  The 
parietal (PA), occipital (OC), and supraoccipital (SO) bones of the cranial 
vault are derived from the paraxial mesoderm.  The cranial base is derived 
from neural crest cells (basisphenoid, BS) and paraxial mesoderm 
(basioccipital, BO).  (AS) alisphenoid; (BH) basihyoid; (BO) basioccipital; 
(BS) basisphenoid; (CH) ceratohyoid; (DNT) dentary; (EO) exoccipital; (FN) 
frontal; (GN) gonial; (Il) lower incisor; (IN) incus; (IP) interparietal; (Iu) upper 
incisor; (JG) jugal; (MA) malleus; (MC) Meckel's cartilage; (ME) 
mesethmoid; (Mo) molar; (MX) maxilla; (NA) nasal bone; (NC) nasal 
cartilage; (OC) otic capsule; (OS) orbitosphenoid; (PA) parietal; (PL) palatine; 
(PM) premaxilla; (PS) presphenoid; (PT) pterygoid; (SO) supraoccipital; (SQ) 
squamosal; (ST) stapes; (TH) thyrohyoid; (TY) tympanic ring; (VM) vomer. 
From Jeong et al. 2004, McBratney-Owen et al. 2008, and Yoshida et al. 2008. 
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Initiation of intramembranous ossification occurs through the development of 

condensations (Franz-Odendaal et al. 2006) and consists of neural crest-derived 

mesenchymal cells; osteoblasts differentiate directly from the mesenchyme without 

the formation of a cartilage intermediate and begin to secrete an osteoid matrix rich in 

collagen types I, II, and III.   Collagen fibers are laid down in a polarized fashion and 

osteoblasts orient themselves along the edge of the nodules, the osteogenic front 

(Franz-Odendaal et al. 2006).   

Early bone condensations/nodules ultimately transition into ossification 

centers as the deposition of osteoid matrix continues, osteoblasts become embedded 

within the osteoid matrix and transform into osteocytes (Franz-Odendaal et al. 2006).  

Differentiation of osteoblasts into osteocytes is regulated by Runx2 (Cbfa1).  Runx2 is 

a member of the Runx family of transcription factors which contain a Runt DNA-

binding domain (Adams et al. 2007).  Runx2 is required for the activation of multiple 

osteoblast-specific genes, including osteopontin, bone sialoprotein (BSP) and 

osteocalcin (Ducy et al. 1997).  Runx2-/- embryos lack all osteoblasts and do not form 

any bones of the cranial vault (Komori et al. 1997; Otto et al. 1997).    The activation 

of bone matrix proteins such as osteocalcin by Runx2 results in the calcification of the 

osteoid matrix along the osteogenic fronts (Ducy et al. 1999).  Osteoblasts embedded 

in the calcified matrix transform into osteocytes, or bone cells, and mesenchymal 

cells encase these fronts, forming the periosteum.  Matrix secretion and osteoblast 

differentiation proceed in a repetitive fashion as the calvarial bones enlarge and 

calcify (Franz-Odendaal et al. 2006).  
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As the brain enlarges during development the ossification centers continue to 

enlarge but never fuse with adjacent bones.  Instead, the cranial bones abut at the 

junction sites known as sutures (Opperman 2000; Ornitz and Marie 2002).  

Comprised of fibrous tissue, sutures are required for the separation of the cranial 

bones and regulate expansive growth of the skull.  In humans, five sutures are present 

in the developing cranial vault: the metopic (between the frontal bones), the sagittal 

(between the parietal bones), the paired coronal (between each set of frontal and 

parietal bones), the paired lamboid (between each set of parietal and supraoccipital 

bones), and the squamosal (located between the parietal, temporal, and sphenoid 

bones) (Opperman 2000).   

As the skull continues to develop, sutures act as major sites of 

intramembranous bone growth and continue to add bone throughout development.  

Osteogenic mesenchymal cells located along sutures edges differentiate into 

osteoblasts and express type I collagen, BSP, and osteocalcin (Ornitz and Marie 

2002).  Growth and differentiation at the sutures is regulated by interactions between 

the mesenchyme, osteogenic front, and the dura mater, the fibrous tissue that 

surrounds the brain (Opperman 2000); signaling from these tissues directs the 

secretion of bone matrix from osteoblasts along the bone margins (Ornitz and Marie 

2002).  The majority of sutures remain patent, allowing for continued growth of the 

brain and calvaria, although they fuse late in adulthood (Opperman 2000). 

In the axial and limb skeleton, bone development occurs via endochondral 

ossification (Figure Eight) which requires the formation of a cartilage intermediate 
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before ossification takes place (Olsen et al. 2000; Kronenberg 2003).  Endochondral 

ossification commences as mesenchymal cells become adherent and form 

condensations, ultimately giving rise to chondrocytes (cartilage precursors).  

Chondrocytes within a developing skeletal element extensively proliferate and secrete 

a matrix rich in type II collagen (Olsen et al. 2000); the developing cartilage enlarges 

as chondrocytes proliferate, secreting matrix at the most distal regions of the skeletal 

element.  Chondrocytes positioned along the exterior-most regions of the 

mesenchymal condensations form the perichondrium, which will give rise to the bone 

collar once ossified (Kronenberg 2003).   

Centrally located chondrocytes become hypertrophic: they increase in size, 

cease proliferating, and become post-mitotic (Kronenberg 2003).  Hypertrophy of 

chondrocytes occurs once the cells are a significant distance from the end of an 

elongating skeletal element, a process that appears to be regulated by Indian 

hedgehog and Parathyroid hormone-related protein (PTHrP) (discussed below) 

(Vortkamp et al. 1996; Olsen et al. 2000; Kronenberg 2003).  Once the cells undergo 

hypertrophy, they secrete type X collagen, a protein unique to these cells.   

Additionally, hypertrophic chondrocytes adjacent to the perichondrium secrete 

angiogenic factors, such as vascular endothelial growth factor (VEGF), and initiate 

the vascular remodeling of the skeletal element (Olsen et al. 2000; Kronenberg 2003). 

Simultaneously, hypertrophic chondrocytes direct the differentiation of the 

perichondrium into osteoblasts, giving rise to the bone collar (Kronenberg 2003).  

The invasion of blood vessels and the ossification of the perichondrium identify this 
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Figure Eight.   Schematic of Endochondral Ossification.  Mesenchymal 
cells (A) coalesce to form organized condensations (B) and cells 
subsequently differentiate into chondrocytes (ch) (C).  D) Centrally located 
chondrocytes cease proliferating and become hypertrophic chondrocytes 
(hy).  E)  Perichondrial cells at the outermost regions ossify, forming the 
bone collar (BC, green).  Hypertrophic chondrocytes secrete a matrix 
containing VEGF that attracts blood vessels (red) and then undergo 
apoptosis.  F) Osteoblasts (dark gray), the precursors of bone, invade the 
remaining scaffold left behind by apoptotic chondrocytes to form the 
primary spongiosa (ps, light gray); this region is also known as the primary 
ossification center.   G) Chondrocytes continue to proliferate and lengthen 
the distal ends of the element.  H) At the end of the developing bone a 
secondary ossification center (SOC) forms.  SOCs form through cycles of 
chondrocytes undergoing hypertrophy and apoptosis, and is accompanied 
by vascular invasion and osteoblasts.  Bone growth continues as 
chondrocytes (col) between the primary and secondary ossification sites 
proliferate; these regions are referred to as the growth plates.  In humans, 
growth plates eventually disappear after puberty.  Recreated from 
Kronenberg, 2003. 
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region as the primary ossification center, thereby forming the diaphysis (Olsen et al. 

2000).  Within the primary ossification center, hypertrophic chondrocytes undergo 

apoptosis and osteoblasts replace the cartilage with trabecular bone.  At this point in 

development, bone marrow is formed and hemataepoesis begins.  At the epiphyses, 

the ends of the skeletal element, secondary ossification centers form, leaving a plate 

of cartilage known as the growth plate between the epiphyses and diaphysis (Olsen et 

al. 2000).  Coordinated regulation of chondrocyte proliferation, hypertrophy, and 

apoptosis results in the longitudinal growth of the developing bone.  Remarkably, 

proliferating and hypertrophic chondrocytes move towards the epiphyses as 

elongation proceeds (Olsen et al. 2000); this is accompanied by simultaneous 

elongation of bone collar (Kronenberg 2003).   

Numerous transcription factors are required during endochondral ossification 

to regulate cellular differentiation and growth (Olsen et al. 2000; Kronenberg 2003).  

During the initial stages of chondrocyte development, Sox9, a member of the SRY-

related (sex-determining region Y gene) HMG (high-mobility-group) family of 

transcription factors (Pevny and Lovell-Badge 1997), is expressed by proliferating 

chondrocytes.  Sox9 is required for the differentiation, proliferation, and survival of 

chondrocytes from mesenchymal precursors and is essential for preventing the 

premature conversion of proliferative chondrocytes into hypertrophic (non-

proliferating) chondrocytes (Wright et al. 1995).  Sox9 stimulates the production of 

collagens type II, IX, and XI and aggregan, a proteoglycan involved in the structural 

support of mature cartilage (Bell et al. 1997; Lefebvre et al. 1997; Bi et al. 1999).  In 
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humans, haploinsufficiency of SOX9 results in camplomelic dysplasia, a rare form of 

congenital short-limb dwarfism, where patients exhibit bowing of the long bones, 

pelvic hypoplasia, decreased number of ribs, and a reduced cranial vault (Foster et al. 

1994; Wagner et al. 1994; Akiyama et al. 2002).  Heterozygous Sox9+/- mice mimic 

these malformations, indicating a role for Sox9 in determining bone length (Bi et al. 

2001).  Additionally, Sox5 and Sox6, two other Sox family members, are involved in 

the expression of type II collagen and complex with SOX9 to regulate chondrocyte 

development (Zhou et al. 1998; Smits et al. 2001; Akiyama et al. 2002).  Collectively, 

multiple Sox family members, particularly Sox9, are required for chondrocyte 

development, including the initial differentiation of chondrocytes from mesenchymal 

precursors to regulating cartilage matrix secretion and outgrowth.   

For bone development to proceed, proliferating chondrocytes are required to 

elongate the growth plate but must also undergo hypertrophy and apoptosis for 

osteoblasts to invade the bone collar.  This balance is regulated by two signaling 

pathways, Indian hedgehog and parathyroid hormone-related protein signaling, which 

regulate a feedback loop necessary for the maintenance of proliferative chondrocytes 

and bone growth (Vortkamp et al. 1996).  Indian Hedgehog (Ihh) coordinates 

chondrocyte proliferation and differentiation as well as osteoblast differentiation 

(Vortkamp et al. 1996; St-Jacques et al. 1999).  Ihh is synthesized by prehypertrophic 

chondrocytes (those leaving the proliferative pool) and by early hypertrophic 

chondrocytes (Vortkamp et al. 1996).  Ihh-/- embryos have normal bones at the initial 

stages of mesenchymal condensation but develop pronounced defects at later stages 
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of bone development; all cartilage elements are reduced due to decreased chondrocyte 

proliferation, ultimately resulting in dwarfism (St-Jacques et al. 1999).  Additionally, 

Ihh-/- embryos exhibit increased numbers of hypertrophic chondrocytes due to 

premature maturation.  At late developmental stages, mutant embryos lack any signs 

of osteoblast formation and do not show any signs of endochondral bone formation 

(St-Jacques et al. 1999).   

Parathyroid hormone-related protein (PTHrP) is a protein secreted by early 

proliferative chondrocytes and functions to negatively regulate chondrocyte 

hypertrophy within the growth plate (Karaplis et al. 1994).  PTHrP also maintains a 

proliferative pool of chondrocytes just distal to the hypertrophic zone (Lee et al. 

1996).  PTHrP effects are mediated through the parathyroid hormone receptor (PPR), 

present in proliferative and prehypertrophic chondrocytes (Lanske et al. 1996).  

PTHrP (Karaplis et al. 1994) or PPR (Lanske et al. 1996) mutants exhibit decreased 

proliferating chondrocytes at the growth plate and increased numbers of hypertrophic 

chondrocytes.  Conversely, overexpression of PTHrP results in the delayed 

appearance of hypertrophic cells but increased proliferative cells (Schipani et al. 

1997).  Both loss of function or gain of function mutations in PTHrP results in 

dwarfism; loss of function mutations cause a decrease in the pool of proliferative 

chondrocytes thereby decreasing the number of chondrocytes undergoing hypertrophy 

(Olsen et al. 2000; Kronenberg 2003).  Gain of function mutations also result in 

decreased chondrocyte hypertrophy due to impaired chondrocyte maturation.  Hence, 
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PTHrP signaling is crucial for maintaining chondrocytes in the proliferative pool, 

thereby allowing for proper elongation at the growth plate. 

Interestingly, Ihh and PTHrP are partners in a feedback loop (Figure Nine) 

that negatively regulates the differentiation of hypertrophic chondrocytes (Vortkamp 

et al. 1996; Kronenberg 2003; Ehlen et al. 2006).  IHH+ prehypertrophic 

chondrocytes activate PTHrP in distal proliferative chondrocytes (Karaplis et al. 

1994; Lanske et al. 1996).  In turn, PTHrP prevents the differentiation of proliferating 

chondrocytes in distal regions into Ihh+ prehypertrophic cells (Vortkamp et al. 1996).  

As a result, IHH and PTHrP act as paracrine factors, controlling the decision of 

chondrocytes to leave the proliferative pool (Kronenberg 2003; Ehlen et al. 2006).  

As the distance within the growth plate increases, more centrally located 

chondrocytes are no longer stimulated by distal PTHrP signaling; at this point, the 

cells cease proliferating and activate Ihh (St-Jacques et al. 1999).  Because IHH 

directly stimulates PTHrP production at the distal ends of the developing bone, distal 

chondrocytes remain in a proliferative state and the elements continue to elongate (St-

Jacques et al. 1999).  Although interactions between IHH and PTHrP are crucial for 

the proper regulation of chondrocyte proliferation and bone elongation (Kronenberg 

2003; Ehlen et al. 2006), Ihh acts as a master regulator of endochondral bone 

development by directly stimulating chondrocyte proliferation through its regulation 

of PTHrP synthesis.  In addition, Ihh determines the region in which chondrocytes 

undergo hypertrophy.  Finally, Ihh is required for the differentiation of perichondrial 
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cells into osteoblasts and the subsequent formation of the bone collar (Vortkamp et al. 

1996).   

Chondrocyte proliferation and differentiation is also regulated by FGF and 

BMP signaling.  Numerous members of the Fgf gene family and their receptors 

(Fgfrs) are expressed during bone development (Ornitz and Marie 2002), which has 

made studying their direct roles in endochondral ossification particularly difficult.    

 

 

 

 

 

 

 

 

 

Figure Nine. An IHH and PTHrP Negative Feedback Loop regulates 
Endochondral Ossification.   Parathyroid hormone-related protein 
(PTHrP) is secresed from chondrocytes at the distal ends of skeletal 
elements.  1) PTHrP acts on proliferating chondrocytes (blue) to delay 
activation of Indian hedgehog (Ihh).  When chondrocytes are are 
sufficiently distant from the PTHrP source, they activate Ihh.  IHH acts on 
chondrocytes to increase proliferation (2) and directly stimulates PTHrP at 
the ends of the developing bone (3).  4) IHH also directs the differentiation 
of the perichondrium into osteoblasts, forming the bone collar.  Recreated 
from Kronenberg, 2003. 
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Indeed, Fgfr2 is expressed in condensing mesenchyme and perichondrial cells, Fgfr3 

is present in proliferating chondrocytes, and Fgfr1 is expressed in 

prehypertrophic/hypertrophic chondrocytes.  Of each of these receptors expressed 

during development, the role for Fgfr3 is best understood.  Fgfr3 knockouts results in 

increased rates of proliferation of chondrocytes and increased length of the skeletal 

elements (Colvin et al. 1996; Deng et al. 1996).  Transgenic mice with activating 

point mutations of Fgfr3 result in decreased rate of chondrocyte proliferation, which 

mimic human chondrodysplasias, and lead to shortened disorganized chondrocyte 

elements (Naski et al. 1998).  Overall these studies indicate an anti-proliferative role 

for FGF signaling in bone development, although the activating ligand(s) responsible 

are not fully defined.  One Fgf ligand that appears to regulate this process is Fgf18; 

mutant embryos exhibit delayed ossification along the anterior-posterior body axis 

(Liu et al. 2002).  Fgf18-/- embryos are more severe than Fgfr3-/- embryos, indicating 

that Fgf18 may also be signaling through Fgfr1 in hypertrophic chondrocytes and 

Fgfr2 in early condensing mesenchyme and the perichondrium. 

In contrast, activation of BMP signaling induces ectopic bone formation, so 

remarkably that it is from this process that the gene family name is derived.  Similar 

to Fgf family members, numerous Bmps and their receptors, (BMPrs), are expressed 

throughout cartilage and bone formation.  BMPr1b is expressed in cartilage 

condensations (Kawakami et al. 1996; Zou et al. 1997), while BMPr1a is expressed 

within the mesenchyme (Zou et al. 1997).  Bmp2, -4, -5, and -7 are expressed in the 
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perichondrium, Bmp2 and -6 are present in hypertrophic chondrocytes, and Bmp7 is 

expressed in proliferating chondrocytes (reviewed in (Li and Cao 2006)).   

As indicated by the expression pattern of numerous Bmp genes, BMP 

signaling is required for the initial formation of cartilage condensations.  Exposure to 

Noggin, a BMP signaling antagonist in the developing avian limb results in the 

suppression of condensation formation (Pizette and Niswander 2000); in contrast, 

Noggin-/- mice exhibit enlarged cartilage primordia (Brunet et al. 1998).  Numerous 

mutations in Bmp5 (“short ear mice”) results in abnormal or absent ear cartilage 

(Kingsley et al. 1992); BMPr1b mutants have abnormal digit formation resulting from 

the failure of chondrocyte condensations to extend into digits (Baur et al. 2000; Yi et 

al. 2000).  Collectively, these results highlight the importance of BMP signaling in 

positively regulating chondrocyte development, although individual roles for Bmp 

family members need additional characterization.      

Interestingly, it appears that both FGF and BMP signaling directly impact on 

IHH/PTHrP signaling to regulating growth and differentiation of the skeletal 

elements.  Fgfr3 knockouts results in increased Ihh expression (Ornitz and Marie 

2002), while activation of Fgfr3 results in decreased Ihh (Naski et al. 1998).  These 

data suggests that part of the effects of FGF signaling is mediated through 

suppression of Ihh, thereby decreasing chondrocyte proliferation in an indirect (via 

Ihh) and direct manner (Fgfr3).  Data indicating a positive role for BMP signaling 

impacting Ihh comes from in vitro limb explant assays; BMP signaling increases Ihh 

in prehypertrophic chondrocytes (Minina et al. 2001; Minina et al. 2002), resulting in 
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increased proliferation and lengthening of skeletal elements.  Overall, BMP and FGF 

signaling have opposite effects on the differentiation of hypertrophic chondrocytes, 

indicating that these two pathways antagonize each other during bone development, 

the mechanisms of which remain unknown. 

Finally, in addition to its role in intramembranous ossification, Runx2 is 

important for osteoblast differentiation in endochondral ossification.  As previously 

discussed, Runx2-/- embryos lack all bone due to the absence of osteoblast formation 

but mutant embryos do develop a cartilaginous skeleton (Komori et al. 1997; Otto et 

al. 1997).  Although Runx2 is not required for chondrocyte formation, it does appear 

to have a role in chondrocyte maturation.  Runx2-/- embryos have decreased numbers 

of hypertrophic chondrocytes and the few that are present fail to mineralize their 

matrix (Komori et al. 1997; Otto et al. 1997).  Interestingly, transgenic expression of 

Runx2 in wildtype mice accelerates the transition of chondrocytes to hypertrophic 

chondrocytes and can even induce ectopic bone formation in cells that would 

normally never ossify, such as the tracheal rings; conversely, overexpression of a 

dominant-negative form of Runx2 blocks the hypertrophy of all chondrocytes (Ueta et 

al. 2001).  These data indicate a dual role for Runx2 in endochondral ossification; 

Runx2 is initially required for the maturation of proliferating chondrocytes, driving 

their differentiation into hypertrophic chondrocytes.  Furthermore, Runx2 is required 

for the subsequent differentiation of osteoblasts through the activation of multiple 

osteoblast-specific genes, including osteopontin, BSP, and osteocalcin (Ducy et al. 

1997).  Additionally, Runx2 is required for the deposition of bone matrix by 
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osteoblasts (Ducy et al. 1999).  Indeed, haploinsufficiency of RUNX2 in humans 

(Zhang et al. 1997) and mice (Otto et al. 1997) results in cleidocranial dysplasia 

which is characterized by a delayed skeletal development, alterations in the closure of 

cranial sutures, hypoplastic or aplastic clavicles, and dental anomalies (Mundlos et al. 

1997).  Collectively, Runx2 is an important mediator of endochondral ossification at 

multiple stages of cartilage and bone development.  

 

Concluding Remarks 

This body of work examines both early and late aspects of neural crest cell 

development, from their initial formation to the final stages of patterning during late 

embryogenesis.  The studies herein have made important contributions in 

understanding how a neural crest cell forms and the key steps required in regulating 

migration and differentiation paradigms under normal developmental circumstances.  

Additionally, this work addresses the signaling required for neural crest cell 

patterning in order to result in the proper development of the craniofacial complex.  

The prevalence of congenital craniofacial birth defects in human populations also 

requires the examination of how neural crest cell patterning is disrupted, resulting in 

the array of craniofacial malformations.  Classically, cranial neural crest cells have 

been thought to function cell autonomously and that intrinsic defects resulted in the 

majority of craniofacial malformations.  However, cranial neural crest cells have 

recently been shown to be influenced by extrinsic cues able to govern patterning and 

differentiation.  As a consequence, craniofacial anomalies can arise due to primary 
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defects in the tissues with which the neural crest cells interact; Holoprosencephaly 

(HPE) is one such anomaly resulting from impaired survival and improper patterning 

of neural crest cells, which affects the forebrain and facial structures.  Analysis of 

mouse models of HPE, contributes to the understanding of the etiology of this 

syndrome with the aim of future preventative measures.   
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VI. Chapter One:  Germ cell nuclear factor (Gcnf /Nr6a1) plays a novel role in 

the induction of neural crest cells in the developing mouse embryo.  Dennis, J.F., 

Cooney, A.J., and Trainor P.A.  

 

A) Abstract 

Neural crest cells (NCC) are a multipotent migratory cell population that 

generates the majority of the bone, cartilage, nerves, connective tissue, and pigment 

cells in the vertebrate head and face. During embryonic development, NCCs are 

generated along the neural plate border, the junction between the dorsal 

neuroepithelium and the surface ectoderm, although, the mechanisms regulating their 

induction are poorly understood. We recently identified Germ cell nuclear factor 

(Gcnf /Nr6a1), an orphan nuclear receptor, as an important regulator of mammalian 

NCC formation. In Gcnf-/- loss of function analyses, mutant embryos lack migrating 

NCCs as evidenced by the absence or downregulation of the NCC markers Crabp1, 

Snail, Sox9, and Sox10.  Interestingly, Sox2, Wnt1, and Pax3 expression in the 

neuroepithelial population from which NCCs are derived was expanded in mutant 

embryos, coinciding with an enlarged neural plate and increased numbers of mitotic 

cells. This is indicative of a disruption in the balance between neuroepithelial 

proliferation and differentiation, implying that Gcnf plays important roles in 

regulating the epithelial to mesenchymal transition (EMT) of neuroepithelial cells 

into NCCs.  The transcriptional repressor Snail is a key global regulator of EMT and 

importantly we have identified a putative Gcnf binding domain within the Snail 
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promoter.  Therefore, we propose that Gcnf regulates EMT and the formation of 

NCCs via the direct activation of Snail.  Additionally, putative binding sites for Gcnf 

have been identified in Sox9, Sox10, Sip1, and Crabp1, indicating a role for Gcnf in 

the activation of neural crest specific genes once the cells have undergone EMT. 

Collectively, these data suggest a role for Gcnf in regulating EMT and the formation 

of NCCs as well as the activation of NCC specific genes.  Our work has important 

implications for understanding NCC evolution together with the origins and 

pathogenesis of congenital craniofacial birth defects since they arise primarily 

through abnormalities in NCC patterning and development. 

 

B) Introduction  

 Neural crest cells (NCC) are a multipotent, migratory cell population induced 

at the neural plate border, the junction of the surface ectoderm and the 

neuroepithelium; each of these tissue layers gives rise to NCCs (Selleck and Bronner-

Fraser 1995) and interactions between the ectoderm and neuroepithelium are required 

for NCC formation (Rollhauser-ter Horst 1977; Moury and Jacobson 1990).  Upon 

their induction, NCCs undergo an epithelial to mesenchymal transition regulated by 

the transcriptional repressor Snail (Nieto et al. 1994).  Snail, expressed in NCCs, is 

required for the downregulation of cell adhesion molecules, such as E-Cadherin 

(Cano et al. 2000), allowing for NCCs to delaminate from the neuroepithelium.  Cells 

migrate in a stereotypic manner along the entire neuraxis of the developing embryo 

(reviewed in (Kulesa et al. 2004)), contributing to derivatives unique to each axial 
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level.  Cranial neural crest cells, which give rise to the cartilage and bone of the head, 

are a vertebrate invention and are fundamental to vertebrate craniofacial evolution 

(Trainor et al. 2003).  

Because of their importance in craniofacial development, numerous efforts 

have focused on the key events required for the commencement of NCC formation.  

Indeed, multiple signaling pathways have been implicated in this process including, 

BMP, FGF, NOTCH, PAX, and WNT signaling.  At the neural plate border in 

Xenopus and zebrafish embryos, a gradient of BMP signaling within the ectoderm is 

required for NCC formation to occur (Mayor et al. 1995; Morgan and Sargent 1997); 

intermediate levels of BMP are required to induce Slug and are established by the 

secretion of BMP antagonists from the underlying mesoderm (Marchant et al. 1998).  

In the mouse, Bmp2 mutants lack migratory neural cells (Kanzler et al. 2000).  

Finally, Bmp4/7 have been shown to induced NCC markers in avian embryos (Liem 

et al. 1995; Selleck et al. 1998) and are mediated in part through NOTCH signaling 

(Endo et al. 2002). 

 In addition to roles for BMP and NOTCH signaling, reports have argued the 

importance of WNT and FGF signaling in NCC induction.  In avian and zebrafish 

embryos, dominant negative constructs of Wnt1 (Garcia-Castro et al. 2002) and 

morpholinos to Wnt8 (Lewis et al. 2004) result in the loss of crest cell markers.  In 

Xenopus, FGF signaling, particularly FGF8, from the underlying mesoderm has also 

been shown to induce NCC formation (Monsoro-Burq et al. 2003), through mediation 

of Pax3 and Msx1 (Monsoro-Burq et al. 2005).  Additionally, Pax3 and Pax7 have 



 82

long been suggested as NCC regulators in the mouse, but analyses of Pax3-/- (Conway 

et al. 1997; Epstein et al. 2000) and Pax7-/- (Mansouri et al. 1996) embryos has 

revealed that NCCs are decreased, albeit present, in mutant embryos.  More recently, 

Pax7 reemerged as a mediator of crest cell induction in avian embryos, acting during 

early gastrulation stages to specify NCCs (Basch et al. 2006). 

 Collectively, multiple signaling pathways have been indicated as having a role 

in NCC induction in an array of model systems.  From these analyses, one caveat to 

note is the fact that embryonic development in model aquatic species, where much of 

the data has been generated, proceeds quite rapidly, making it very difficult to 

distinguish the signaling required for NCC induction independent of neural 

patterning.  Furthermore, the same signaling pathways suggested to regulate crest cell 

formation are also involved in neural patterning, making it difficult to ascertain which 

pathway directly activates NCC formation, if any.  In the mouse, a longer 

developmental window separates neural versus NCC induction; indeed, genetic 

analysis of Bmp, Fgf, Notch, Pax, and Wnt pathway mutants has not indicated these 

genes as regulators of crest cell development.  Furthermore, the roles for these 

signaling molecules have not been extensively addressed in vitro.  Therefore, we set 

out to identify the key regulator of NCC induction in the mouse embryo using both in 

vivo and in vitro approaches.  Analyses of Fgf8Δ2,3/Δ2,3, Pax3-/-;Pax7-/-, and NOTCH 

signaling mutants has revealed that none of these pathways are required for NCC 

induction in the mouse embryo.  Additionally, we developed an explant culture 

system for assaying the known regulators of NCC development in vitro; our data 
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support our in vivo analyses and do not indicate any of the current pathways 

suggested to be involved in crest cell formation as being required.  Finally, we have 

identified Germ cell nuclear factor, Gcnf (Nr6a1), as a novel regulator of NCC 

induction in the mouse.   

 

C) Results 

Notch Signaling is not required for Neural Crest Cell Induction 

 One signaling pathway shown to regulate NCC induction is the Delta/Notch 

signaling pathway; alterations in NOTCH signaling results in an expansion or 

reduction of Slug in avian embryos (Endo et al. 2002; Endo et al. 2003).  

Furthermore, activation of NOTCH signaling in Xenopus embryos results in 

expanded neural crest cell territories (Glavic et al. 2004).  Activation of NOTCH 

signaling occurs when Notch, a transmembrane receptor, binds to its transmembrane 

ligand, Delta, on neighboring cells.  Upon binding of Delta, the Notch Intracellular 

Domain (NICD) is cleaved by the enzyme γ-secretase (reviewed in (Selkoe and 

Kopan 2003)) and translocates to the nucleus to activate recombinant binding protein 

J-κ (RBP-Jκ), the nuclear effector of NOTCH signaling (Oka et al. 1995; de la Pompa 

et al. 1997). 

 To address the role of NOTCH signaling in NCC induction, we analyzed 

RBP-Jκ mutants for defects in NCC formation.  RBP-Jκ mutants were harvested at 

8.5-9.5dpc and processed for in situ hybridization for Snail, Crabp1, Sox9, and Sox10  
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Figure Ten.  Notch Signaling is not required for Neural Crest 
Cell Induction.  RBP-Jκ heterozygote (left columns) and mutant 
embryos (right colums) were processed for in situ hybridization 
with neural plate and neural crest cell markers.  The neural plate 
marker Sox2 (C, D) is not affected in RBP-Jκ−/− embryos.  Mutant 
embryos express Snail (G, H) and Crabp1 (K, L), indicating neural 
crest cell formation in the mouse does not require NOTCH 
signaling.  In contrast, Sox9 (O,P) and Sox10 (S, T) are present but 
decreased in the mutants, indicating that NOTCH signaling is 
required for lineage selection of Sox9+ and Sox10+ neural crest 
cells.    
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(Fig. 10).  Although Snail (Fig. 10G, H) and Crabp1 (Fig. 10K, L) were similarly 

expressed in mutant embryos in comparison to heterozygous littermates, the neural 

crest cell lineage markers Sox10 and Sox9 were affected.  Sox10 (Fig. 10S, T) was 

slightly reduced, while Sox9 was absent in the cranial region of RBP-Jκ-/- embryos 

(Fig. 10O, P).  Sox9 was present in the otic vesicle and in cells along the neural tube 

at mid-axial levels, indicating that Sox9 was not completely downregulated in mutant 

embryos, but is more affected in anterior regions.  RBP-Jκ-/- embryos were also 

processed for Sox2 to determine if the neural plate was intact; Sox2 expression in 

mutant embryos was comparable to that seen in heterozygote littermates, indicating 

that the precursor population from which NCCs arise was present (Fig. 10 compare 

A, B with C, D).  Overall, analysis of RBP-Jκ-/- mutants indicates that NOTCH 

signaling is not required for NCC formation as a whole in the mouse but rather 

appears to be required for lineage selection of Sox10+ and Sox9+ cells. 

 

Migratory Neural Crest Cells are present in Pax3-/-;Pax7-/- Mutants 

 Pax3 and Pax7 are expressed in the dorsal neural tube and have been 

implicated in the induction of NCCs in Xenopus (Sato et al. 2005; Hong and Saint-

Jeannet 2007) and avian (Basch et al. 2006) embryos.  In the mouse, Pax7-/- mutants 

are perinatal lethal and have malformations of the maxilla and nose (Mansouri et al. 

1996); Pax3-/- embryos exhibit decreased NCCs (Conway et al. 1997; Epstein et al. 

2000).  The presence of NCC in single Pax3 and Pax7 mutants has been attributed to 

functional redundancy of the two genes, thereby underlying the failure to prevent 
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NCC induction as a whole (Mansouri et al. 1996).  To directly address the role of 

Pax3 and Pax7 in NCC induction in the mouse embryos, we analyzed Pax3-/-;Pax7-/- 

double mutants for defects in NCC formation using the migratory markers Sox10 

(Fig. 11) and Crabp1 (Fig. 12).  At 9.0dpc, Sox10 was present in the first two 

migratory streams of neural crest cells that will populate branchial arches one (BA1) 

and two in Pax3+/-;Pax7+/- (Fig. 11A, E) and Pax3+/-;Pax7-/- embryos (Fig. 11B, F).  

Additionally, Sox10 was present in the otic vesicle and in the dorsal neural tube.  In 

Pax3-/-;Pax7+/- embryos, Sox10+ cells populating the developing frontonasal region 

and along the dorsal neural tube were present (Fig. 11C, G), although there was 

clearly a decrease in the number of Sox10+ cells, which could be developmental delay 

or decreased proliferation in the neural tube and neural crest cells.  Finally, in Pax3-/-

;Pax7-/- double mutants, Sox10+ cells were present along the dorsal neural folds and 

had migrated ventrally into the developing facial region (Fig. 11D, H).  

 In addition to the analysis of Sox10 in Pax3-/-;Pax7-/- double mutants, we 

analyzed the expression of Crabp1 at 10.5dpc.  Pax3-/-;Pax7-/- double mutants had 

Crabp1+ cells along the anterior dorsal neural folds and in the frontonasal region, 

indicating that migratory NCCs were present (Fig. 12M, N), although the medial 

(MNP) and lateral (LNP) nasal prominences were difficult to distinguish. Sections at 

the level of the frontonasal prominences in Pax3-/-;Pax7-/- double mutants revealed the 

specific location of Crabp1+ NCCs in the frontonasal region (Fig. 12O), although the 

numbers in mutant embryos are reduced in comparison to littermates (Fig. 12).   
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Figure Eleven.  Pax3 and Pax7 are not required for Neural Crest 
Cell Formation in Murine Embryos. Embryos were harvested at 
9.0dpc and processed for Sox10 in situ hybridization.  A, E) Pax3+/-

;Pax7+/- compound heterozygous embryos have Sox10 expression in 
migratory neural crest cells populating BA1 (arrow).  Additional Sox10+ 
cells (arrowheads) are located in the frontonasal region.  B, F)  Pax3+/-

;Pax7-/- embryos exhibit Sox10 expression in the developing head (B) 
and dorsal neural tube (F) as seen in Pax3+/-;Pax7+/- embryos; Sox10+ 
cells present in the trigeminal (V) ganglia and the otic vesicle (OV).  C, 
G)  Pax3-/-;Pax7+/- embryos are slightly delayed in comparison to 
compound heterozygotes but still exhibit Sox10+ neural crest cells 
(arrowheads) in the developing head (C) and along the dorsal neural plate 
(G, arrowheads).  In Pax3-/-;Pax7-/- double mutants (D, H), Sox10+ 
migratory neural crest cells (arrowheads) are present in the anterior head 
and the dorsal neural plate, albeit reduced in number, indicating that 
Pax3 and Pax7 are not required for neural crest cell induction in the 
mouse embryo.   
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Figure Twelve.  Neural Crest Cells populate the developing Facial 
Region in Pax3-/-;Pax7-/- Double Mutants.  Pax3;Pax7 litters were 
harvested at 10.5dpc and processed for Crabp1 in situ hybridization.   
Pax3+/-;Pax7+/+ and Pax3+/-;Pax7+/- embryos express Crabp1 in neural 
crest cells populating the medial (MNP, arrowhead) and lateral (LNP, 
arrow) nasal prominences (B, F) as well as the maxillary (Mx, arrow) 
and mandibular (Mn, arrow) prominences (A, E).  Sections of Pax3+/-

;Pax7+/+ (C, D) and Pax3+/-;Pax7+/- (G, H) embryos revealed Crabp1+ 
neural crest cells throughout the MNP and LNP (arrowheads) and the 
dorsal neural tube (NT, arrow).  Pax3+/-;Pax7-/- mutants (I, J) exhibit 
altered morphology of LNP (arrow) but still have Crabp1+ neural crest 
cells in the MNP (J,K arrowheads).  L)  Crabp1 is also present in the 
neural tube (arrowheads).  M, N)  Pax3-/-;Pax7-/- double mutants have 
Crabp1+ neural crest cells (NC, arrows) in the frontonasal region (O, 
arrowheads), but the overall distribution of cells is reduced.  P) Crabp1+ 
cells are present in the dorsal NT (arrowheads) of Pax3-/-;Pax7-/- double 
mutants.  The overall reduction of the neuroepithelium in comparison to 
wildtype littermates may be indicative of a role for Pax genes in 
neuroepithelial proliferation and maintenance.   
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Analysis of neural tube sections revealed Crabp1+ cells at the dorsal-most aspect of 

the neural tube in both heterozygous (Fig. 12H) and mutant (Fig. 12P) embryos, 

despite the neural tube closure defect in mutant embryos.  Overall, migratory NCCs 

were present in Pax3-/-;Pax7-/- embryos but were slightly decreased in number, 

indicating that these genes are not conserved in the mouse in the specification of 

NCCs but probably play a more important role in maintaining neural plate 

proliferation. 

 

Development of the Cranial Explant Culture System 

In conjunction with the in vivo analyses of genes required for NCC induction, 

we analyzed this process in vitro, taking advantage of the longer developmental 

period separating neural versus NCC induction in the mouse embryo.   In the mouse, 

NCCs migrate from the dorsal neural folds prior to the closure of the neural tube in a 

rostral-caudal manner with cranial NCCs commencing this process at the 4-5ss stage 

(Nichols 1986), well after neural plate identity is established.  Therefore, we 

developed a cranial explant culture assay to block NCC formation before their initial 

induction in vitro, using antagonists to known signaling pathways involved in the 

induction process.  To test for proper NCC formation in the culture system, we 

isolated 7.5dpc cranial explants, cultured them for 24hours, and processed the 

explants for the expression of Sox10 to determine the presence of migratory NCCs 

(Fig. 13A, B).  Indeed, Sox10 was present in all control explants (Fig. 13C, D), in a 

pattern similar to that seen in the cranial region of whole-mount 8.5dpc embryos.  The  
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Figure Thirteen.  Development of the Cranial Explant Culture 
System.  A) Embryos were harvested at 7.5dpc and dissected as 
indicated.  B) Embryos were removed from the extraembryonic 
membranes (EEM, red).  The embryos were bisected using insect 
pins and the caudal region (blue, arrow) containing the primitive 
streak was discarded.  The cranial region (black, arrow) was 
positioned on a cell culture membrane in standard DMEM/F12 
media containing glutamax; explants were cultured for 24hrs at 
37°C in 5% CO2.  Explants were assayed for beating heart tissue 
prior to fixation to ensure optimum culture conditions.  C, D) 
Explants were processed for Sox10 in situ hybridization to mark 
migratory neural crest cells; neural crest cells were present in all 
control explants examined.  Sox10 expression in the explants is 
reminiscent of the Sox10 staining pattern in whole-mount embryos 
at 8.5dpc.   
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presence of Sox10+ NCCs in our cranial explants indicated that the culture system 

was appropriate for assaying the morphogens required for NCC induction in the 

mouse embryo.   

 As control experiments, we analyzed 7.5 and 8.0dpc cranial explants for the 

expression of neural plate and NCC markers to ensure that we were harvesting the 

explants prior to NCC induction.  Cranial explants at both stages diffusely expressed 

Sox2 throughout the neuroepithelium (Fig. 14A, G), indicating the presence of the 

progenitor neuroepithelial population, from which NCCs arise.  In contrast to the 

expression of Sox2, NCC specific markers Crabp1, Snail, Sox9, and Sox10 were not 

present in the cranial explants at 7.5 (Fig. 14B-E) or 8.0dpc (Fig. 14F-J), 

demonstrating that the tissue was harvested prior to the formation of NCCs. 

 

BMP, NOTCH, and WNT Signaling are not required for Neural Crest Cell Induction  

In Vitro 

 To determine the key regulator for the induction of NCCs in the mouse, we 

introduced antagonists in our explant cultures to known pathways involved in NCC 

formation.  Explants were treated with recombinant Noggin/Fc, SU5402, DAPT, or 

Frizzled-8/Fc proteins to inhibit the BMP, FGFR, NOTCH, and WNT signaling 

pathways and the effect of neural crest cell induction was subsequently analyzed via 

examination for migrating NCC with Sox10.  The presence of Sox10+ cells indicated 

that treatments as high as 100μg/μL (Noggin/Fc and Frizzled-8/Fc) or 100μM 

(DAPT) did not affect the induction of NCCs in the explant cultures (Fig. 15B-D).   
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Collectively, this data in conjunction with knockout analyses, suggests that BMP, 

NOTCH, and WNT signaling pathways do not regulate NCC induction in the mouse 

embryo.     

 In contrast, treatment with SU5402 at 50μM resulted in an absence of Sox10 

(Fig. 15E; 16L-O) as well as Crabp1 (Fig. 16G-J), but the explants exhibited an 

altered morphology in comparison to controls; cranial explants had a tufted 

appearance and were reduced in size, indicating problems regarding viability.  

Additionally, the lack of Sox10 and Crabp1 in cranial explants could be a secondary 

defect due to failure of neural plate maintenance.  We examined Sox2 expression in 

cranial explants to determine if there were alterations in the maintenance of the neural 

plate with SU5402 treatment; indeed, there was a progressive loss of Sox2 throughout 

the neural plate with increasing concentrations of SU5402 when cultured for 24hrs 

(Fig. 16B-E).  Therefore, the loss of Sox10 and Crabp1 in SU5402-treated cranial 

explants is most likely a secondary defect from the inhibition of FGF signaling and 

failure to maintain the neural plate. 

 

Neural Crest Cells are present after 8- and 12-Hour SU5402-Treated Explant 

Cultures 

 Treatment with SU5402 in cranial explant cultures resulted in the 

absence of Sox10 and Crabp1 possibly as a secondary defect due to failure of neural 

plate maintenance.  Despite the lack of NCC markers, FGF signaling may still be 

important for NCC induction independent of neural plate maintenance.   



 97

 

 

  

 Figure Sixteen.  SU5402 Treatment for Twenty-Four Hours 
inhibits the Neural Plate in Cranial Explant Cultures.  A-E) 
Treatment with SU5402 results in the downregulation of the neural 
plate marker, Sox2, concomitant with increasing SU5402 
concentration.  Decreased Sox2 expression indicates the lack of 
neural plate maintenance and inhibition of the progenitor population 
from which neural crest cells arise.  Additionally, explants exhibit 
altered morphology at 50μM SU5402, indicating poor culture 
conditions at high concentrations of SU5402.  Neural crest cell 
markers Crabp1 (F-J) and Sox10 (K-O) were inhibited with 
increasing SU5402 concentration, indicating the loss of neural crest 
cells with prolonged SU5402 exposure. 
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 To further dissect the specific role for FGF signaling in NCC induction, we 

attempted to rescue the defects in the neural plate while blocking crest cell formation 

by varying the exposure time and concentration of SU5402.  Additionally, we 

harvested embryos at 8.0dpc, prior to the appearance of somites and cultured the 

whole embryo as an explant; embryo explants were directly attached to the cell 

culture insert membranes via the surrounding extraembryonic tissues and cultured in 

37.5μM SU5402 for 8- or 12-hours, fixed, and processed for in situ hybridization. 

In all cultures harvested at 8.0dpc, beating heart tissue was present and the 

cultures did not exhibit significant alterations in morphology.  As previously shown, 

8.0dpc explants lacked NCC markers (Fig. 14F-J) indicating that the explants were 

harvested prior to crest cell induction.  Embryo explants cultured for 8- (Fig. 17G-J) 

and 12hrs (Fig. 18G-J) exhibited a decrease in the NCC markers Snail, Crabp1, 

Sox10, and Sox9 indicating that NCCs were reduced in number but still present.  

Additionally, analysis of Sox2 (Fig. 17,18 compare F with A) indicated that neural 

plate identity was somewhat compromised, as the marker was decreased despite the 

reduced culture period and SU5402 concentration.  Therefore, the specific role for 

FGF signaling in NCC induction remains unclear as reduced numbers of NCCs were 

present in both treatment groups, which in conjunction with the decreased Sox2, 

suggests that FGF signaling may not directly regulate NCC induction in the mouse 

but rather is responsible for maintenance of the neural plate. 
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Fgf8 is not required for Neural Crest Cell Induction in the Mouse 

Reports in Xenopus have demonstrated the role for FGF8 signaling from the 

paraxial mesoderm in regulating NCC induction through mediation of Pax3 

(Monsoro-Burq et al. 2005).  Indeed, overexpression of Fgf8 in vivo or animal cap 

assays results in an expanded domain NCC markers (Monsoro-Burq et al. 2003; 

Monsoro-Burq et al. 2005).  Therefore we analyzed the Fgf8 null mouse mutant, 

Fgf8Δ2,3/Δ2,3 (Meyers et al. 1998), for defects in NCC formation to ascertain whether 

this signaling pathway was conserved in the mouse and to gain further insight from 

our in vitro studies using SU5402.  Because the identity of the neural plate was 

compromised in our explant cultures, we first analyzed Sox2 in Fgf8Δ2,3/Δ2,3 embryos 

at 9.5dpc.  Despite the altered morphology of the neural tube, which was often kinked 

or failed to close in mutant embryos, Sox2 was present throughout the neural plate 

(Fig. 19C, D).  Analysis of the NCC markers Snail, Crabp1, Sox10 and Sox9 revealed 

a normal pattern of expression for each of these genes (Fig. 19I-X), indicating that 

Fgf8 is not involved in NCC induction in the mouse.   

Interestingly, the expression of Pax3 is downregulated in Fgf8Δ2,3/Δ2,3 mutants 

(Fig. 19G, H), suggesting that while FGF8 signaling may be acting upstream of Pax3 

within the neural plate, neither pathway is required for crest cell induction. This is 

consistent with our data obtained in Pax3-/-;Pax7-/- double mutants and Pax3 and 

Pax7 knockout mice.  Collectively, these data demonstrate that the requirement for 

FGF8 signaling in NCC induction in Xenopus is not conserved in the developing 

mouse embryo. Additionally, our data implicate a direct role for FGF signaling in the 
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Figure Nineteen.  FGF8 Signaling is not required for Neural Crest 
Cell Induction in the Mouse.  Embryos were harvested at 9.5dpc and 
processed for in situ hybridization.  A, B) Lateral (A) and dorsal (B) 
views of Fgf8+/Δ2,3 embryos stained for Sox2 to label the neural plate.  C, 
D) Fgf8 Δ2,3/Δ2,3 mutants also exhibit a normal pattern of Sox2 expression, 
indicating proper maintenance of the neural plate in Fgf8 mutants.  
Analysis of the neural crest cell markers Snail (K, L), Crabp1 (O, P), 
Sox10 (S, T), and Sox9 (W, X) in Fgf8 Δ2,3/Δ2,3 mutants revealed a lack of 
crest cell formation defects, indicating that FGF8 signaling is not 
required in the mouse for neural crest cell induction.  Additionally, 
analysis of Pax3 (E-H) revealed a slight decrease in expression in mutant 
embryos (G, H) indicating that Fgf8 acts upstream of Pax3.  
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maintenance of the neural plate rather than a direct requirement for FGF signaling in 

NCC induction which is supported by conditional knockouts of FgfR1 (Trokovic et 

al. 2003) or full knockouts of FgfR2 (Xu et al. 1998) which still generate NCCs. 

 

Germ cell nuclear factor (Gcnf) is required for Neural Crest Cell Formation 

 In vivo and in vitro experiments aimed at identifying the key morphogens 

regulating NCC induction in the mouse failed to identify any known signaling 

pathways as a requirement to produce crest cells.  To identify new regulators in NCC 

induction, we used data from a microarray screen performed in Tcof1+/- embryos 

(Jones et al. 2008), searching for genes that were significantly downregulated in an 

attempt to identify novel regulators of NCC development.  Tcof1+/- embryos have 

defects in neural crest cell formation due apoptosis of neural crest cells as well as in 

the neuroepithelial progenitors from which they arise (Dixon et al. 2006).  Hence, any 

genes associated with neural crest cell development, in theory, would be 

downregulated in Tcof1+/- embryos due to decreased numbers within the neural crest 

population.  We identified Germ cell nuclear factor (Gcnf/Nr6a1) as significantly 

downregulated in Tcof1+/- embryos compared to wildtype.  Gcnf is an orphan nuclear 

receptor required during embryogenesis in the regulation of pluripotency genes 

(Fuhrmann et al. 2001; Gu et al. 2005), neural development (Chung et al. 2006), and 

somitogenesis (Chung et al. 2001).   

In the microarray screen performed in Tcof1+/- embryos, Gcnf was 

downregulated almost two-fold (N. Jones and P. Trainor, unpublished) in comparison 
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to Tcof1+/+ littermates.  To validate these data, we performed in situ hybridization for 

Gcnf in Tcof1+/- embryos at 8.5dpc.  Indeed, Tcof1+/- mutants express Gcnf throughout 

the neuroepithelium but at levels decreased in comparison to wildtype littermates 

(Fig. 20, compare A,B).  Faint staining of migratory neural crest cells in the stream 

originating from rhombomere 2 (r2) is present in Tcof1+/+ embryos, which are absent 

in the heterozygous littermates (Fig. 20 compare C, D).   

 Analysis of Gcnf beginning at 7.5dpc revealed a regionally restricted pattern 

of expression; at 7.5dpc Gcnf was specifically expressed in the primitive streak, but 

was absent in more anterior regions of the embryo (Fig. 21A-C).  By 8.5dpc, Gcnf 

was present throughout the neuroepithelium (Fig. 21D), with heaviest expression 

along the dorsal neural folds (Fig. 21E), the region from which neural crest cells 

arise; sections of 8.75dpc embryos revealed Gcnf expression in migratory NCCs (Fig. 

21J, K).  Gcnf was restricted to the neural tube at 9.5dpc (Fig. 21F), subsequently 

downregulated at 10.5dpc (Fig. 21G), and was completely absent by 11.5 and 12.5dpc 

(Fig. 21H, I).  Overall, these data validate that Gcnf is downregulated in Tcof1+/- 

embryos and identifies Gcnf expression along the dorsal-most regions of the neural 

folds and in migratory neural crest cells.   

Gcnf expression in migratory NCCs and the confirmation that Gcnf was  

downregulated in Tcof1+/- embryos with decreased NCCs suggested that this gene 

may be regulating NCC development.  Therefore, we examined Gcnf-/- embryos for 

defects in NCC formation.  Indeed, Gcnf mutants exhibited an absence or  
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Figure Twenty.  Gcnf is downregulated in Tcof1+/- Embryos.  Tcof1+/- 
embryos were harvested at 8.5dpc and processed for Gcnf in situ 
hybridization to validate microarray results (Jones and Trainor, 
unpublished).  A) In Tcof1+/+ embryos  Gcnf is expressed throughout the 
neuroepithelium (arrowheads).  B) Gcnf is present in Tcof1+/- embryos 
throughout the neuroepithelium (arrowheads) although its expression is not 
as intense as in wildtype littermates (A).  C) Faint Gcnf expression is 
identifiable in migratory neural crest cells arising from rhombomere 2 (r2) 
to populate the first branchial arch.  Gcnf is also present in the developing 
nasal prominence (NP). In contrast, Gcnf expression is barely detectable in 
migratory neural crest cells; Gcnf is reduced in cells populating the NP 
(arrowhead).  E, F) Dorsal view of Tcof1+/+ and Tcof1+/- embryos reveals 
decreased Gcnf expression within the hindbrain.   
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Figure Twenty-One.  Gcnf is dynamically expressed during Mid-
Embryonic Development.  A-C) Embryos collected at 7.5dpc have Gcnf 
expression in the posterior region of the embryo within the primitive 
streak (arrow).  D, E) By 8.5dpc, Gcnf is expressed throughout the 
neuroepithelium, with heaviest expression along the dorsal neural folds 
(arrowheads).  F) At 9.5dpc, Gcnf remains in the neural tube along the 
anterior-posterior axis.  G-I) By 10.5dpc, Gcnf is downregulated and is 
no longer expressed in the embryo.  J, K) Sections at the level of the first 
branchial arch of 8.75dpc embryos demonstrates that Gcnf is transiently 
expressed in emigrating neural crest cells (arrowheads) and is present 
along the dorsal neuroepithelium (arrows).  
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significant downregulation of Crabp1, Snail, Sox10, and Sox9 expression at 9.5dpc 

(Fig. 22E-H) indicating a role for Gcnf in regulating NCC induction.  Crabp1 

expression was absent in mutants (Fig. 22H), while Crabp1+ cells were present along 

the dorsal neural folds in Gcnf+/- littermates (Fig. 22D).  Snail and Sox9 were present 

in the developing frontonasal region and along the dorsal neural folds in Gcnf+/- 

embryos, respectively (Fig. 22A, C); while each of these genes was absent in mutant 

embryos (Fig. 22E, G).  Additionally, Sox10 was significantly downregulated in Gcnf-

/- embryos and exhibited an altered pattern of expression (Fig. 22F); Sox10+ cells 

(arrowheads) were present along the anterior half of the embryo and were positioned 

as abnormal groups of cells.  In contrast, Gcnf+/- embryos had Sox10+ NCC in the 

cranial nerve ganglia (Fig. 22B).  Interestingly, throughout our analysis an occasional 

embryo was processed that exhibited very few Sox10+, Sox9+, or Crabp1+ NCC, 

although these embryos were not representative of the total numbers of embryos 

processed.  Gcnf expression in migratory NCCs and the absence of multiple NCC 

markers in Gcnf-/- embryos clearly indicate a direct role for Gcnf in regulating NCC 

induction in the mouse. 

 

Gcnf-/- Embryos have an Enlarged Neural Plate due to Proliferation Defects 

To ensure that the defects in NCC formation were not due to inhibition of the 

neural plate, we analyzed the expression of Sox2, Wnt1, and Pax3 in Gcnf-/- embryos.  

Gcnf-/- mutants exhibit an enlarged neural plate, coinciding with increased expression 

of Sox2 (Fig. 23D).  Dorsal neural tube markers, such as Wnt1 (Fig. 23E) and Pax3  
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Figure Twenty-Two.  Gcnf Mutants have Neural Crest Cell Formation 
Defects.  A) At 9.5dpc, Gcnf+/- embryos have normal expression of Snail, a 
marker of migratory neural crest cells undergoing an epithelial-to-
mesenchymal transition.  In contrast, Gcnf-/- embryos (E) lack any expression 
of Snail, indicating that the mutant embryos have decreased neural crest cell 
production.  B) Migratory Sox10+ neural crest cells are present in Gcnf+/- 
embryos in the trigeminal (V) and facial (VII) ganglia as well as the otic 
vesicle (OV).  F) Gcnf-/- embryos have an abnormal pattern of Sox10 
expression; punctuate regions of Sox10+ cells are present along the anterior 
half of the embryos (arrowheads) but do not exhibit the classic migratory 
streams seen in the heterozygous littermates.   C) Sox9 is present in the 
frontonasal prominence (FNP), branchial arch (BA), and OV in Gcnf+/- 
embryos; Gcnf mutants (G) have a complete absence of Sox9 expression.  D) 
Crabp1+ neural crest cells are present along the dorsal neural tube 
(arrowheads) and cells can be seen in the migratory stream populating BA2 
(arrow).  H) In Gcnf-/- embryos, no Crabp1+ cells are present in anterior 
regions, although decreased Crabp1 expression is present in the posterior 
neural plate (arrowhead). 



 110

(Fig. 23F) were also expanded in Gcnf-/- embryos in comparison to wildtype 

littermates (Fig. 23A-C).  Furthermore, we examined the distribution of the neural 

plate markers SOX2 (Fig. 24A-B) and PAX3 (Fig. 24E-F) in Gcnf-/- embryos as well 

as the mitotic marker phospho Histone H3 (pH3) (Fig. 24C-D).   SOX2 was 

upregulated throughout the neural plate of Gcnf-/-  embryos while in contrast was only 

present along the medial neural plate in Gcnf +/+ embryos (Fig. 24A-B), indicating 

that cells within the neuroepithelium of mutant embryos are maintained in a 

progenitor-like state.  Additionally, pH3+ mitotic cells were increased in number in 

Gcnf-/- embryos indicating enhanced proliferation in the mutants which ultimately 

results in an enlarged neuroepithelium (Fig. 24C-D).  Consistent with in situ 

hybridization analysis of Pax3, PAX3+ cells were present at the dorsal-most aspect of 

the neural plate in Gcnf+/+ and Gcnf-/- embryos, indicating that dorsal neural plate 

identity remains intact in Gcnf-/- embryos.  Interestingly, PAX3+ neural crest cells 

(arrowheads) were present in Gcnf+/+ embryos (Fig. 24E, E’) but were absent in Gcnf-

/- embryos (Fig. 24F, F’) indicating a failure of PAX3+ neural crest cells to migrate.  

Collectively, the expanded SOX2 and increased number of mitotic cells within the 

neural plate of Gcnf-/- embryos demonstrate that neural plate identity is intact and the 

precursor population from which NCCs arise is present, which in conjunction with 

the absence of NCC markers and PAX3+ neural crest cells, suggests that Gcnf 

mutants have specific defects in the transition from a neuroepithelial to neural crest 

cell. 
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Figure Twenty-Three.  Neural Plate Identity is unaltered in 
Gcnf Mutants.  A) Sox2 is expressed throughout the neural plate in 
Gcnf+/- embryos.  D)  Gcnf mutants have increased Sox2 expression 
in the neural plate; mutants also exhibit open neural tube defects.  
B, E) Wnt1 is expressed in the dorsal lip of the neural tube in 
heterozygous (B) and mutant (C) Gcnf embryos, but appears to be 
more intensely stained in Gcnf-/- embryos.  C) Pax3 is expressed in 
the dorsal neural tube of Gcnf+/- embryos.  F) In Gcnf-/- embryos 
Pax3 expression remains but appears expanded in comparison to 
heterozygous littermates.  
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Figure Twenty-Four.  Gcnf-/- Embryos exhibit prolonged maintenance 
of the Neural Plate.  SOX2 is present in the medial (arrows) regions of the 
neural plate in Gcnf+/+ embryos (A, A’).  Similarly, Gcnf-/- embryos have 
SOX2 present in the medial neural plate but was expanded to the lateral 
tips (arrows) of the neural plate (B, B’).  C-D)  Analysis of mitotic cells 
using phospho Histone H3 (pH3) in Gcnf-/- embryos (D, D’) revealed a 
dramatic increase in the number of mitotic cells (arrowheads) in 
comparison to Gcnf+/+ embryos (C, C’).  E-F) PAX3 staining in the dorsal 
neural tube is comparible between Gcnf+/+ (E, E’) and Gcnf-/- (F, F’) 
embryos; in contrast, PAX3+ neural crest cells (NCC) are only identifiable 
in Gcnf+/+ embryos (E, arrowheads) indicating an absence of migratory 
PAX3+ NCC in mutant embryos (F, F’).  Green, SOX2; Red, pH3 (C, D) or 
PAX3 (E, F).  Blue, DAPI.  Scale bar, 50μM.   
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Gcnf is required for the activation of Neural Crest Cell Specific Genes 

 Gcnf has been previously shown to specifically downregulate the pluripotency 

genes Oct4 and Nanog in embryonic stem cells (Fuhrmann et al. 2001; Gu et al. 

2005), allowing for the activation of differentiation paradigms.  The upregulation of 

the pluripotency marker SOX2 and increased numbers of mitotic cells in Gcnf-/- 

embryos suggests that the absence of NCC may result from defects in the transition of 

a neuroepithelial to NCC and the subsequent activation of NCC specific 

differentiation paradigms.  Therefore, we hypothesized that Gcnf might directly 

regulate NCC formation through the activation of NCC specific genes.  Indeed, a 

putative Gcnf  binding site (AGGTCA) was identified in the promoter region of 

Snail1 and Snail2 (Fig. 25), genes responsible for the epithelial-to-mesenchymal 

transition in NCCs from the neural plate border (Nieto et al. 1994).  Additionally, 

putative Gcnf binding sites were also identified in Sox9, Sox10, Sip1, and Crabp1 

(Fig. 25) indicating that Gcnf may be responsible for the activation of neural crest cell 

specific gene paradigms. Chromatin immunoprecipitation (ChIP) assays are currently 

underway to determine the extent of GCNF binding to these putative consensus 

sequences and the role of Gcnf in the activation of neural crest cell specific gene 

paradigms.   
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Figure Twenty-Five.  Identification of Putative Gcnf Binding 
Sites in Genes required for Neural Crest Cell Development.  
Putative Gcnf binding sites (red) were identified in multiple neural 
crest cell specific genes.  A Gcnf binding site was identified in the 
promoter regions of Snail1 (nt315-320) and Snai2 (nt336-341), 
genes required for the epithelial to mesenchymal transition (EMT) 
of neural crest cells.  Two Gcnf binding sites were also identified in 
Intron 2 of Sip1 (nt6035-540, top; 12603-608, bottom), a gene 
important for crest cell migration.  Binding sites for the neural crest 
cell lineage specific genes, Sox9 (nt3298-3303; 6450-6455) and 
Sox10 (nt2282-2287), were identified, suggesting a role for Gcnf in 
neural crest cell formation and viability (Sox9) and lineage pathway 
selection (Sox9 and Sox10).   
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D) Discussion 

 Analyses of a variety of model organisms has resulted in the identification of 

multiple signaling pathways potentially regulating neural crest cell induction, 

including BMP, FGF, NOTCH, PAX and WNT signaling.  Interestingly, while these 

signaling pathways are a consistent theme across multiple species, analysis of the 

current literature suggests that crest cell formation is regulated in a species dependent 

manner and that a single pathway may not be conserved across multiple model 

systems.  Interestingly, each of these pathways is also required for neural induction, 

which in species such as Xenopus and avian embryos, occurs just before neural crest 

cell induction, indicating that the identification of the key signaling pathway required 

for neural crest cell induction may be difficult due to temporal overlap of these two 

processes.  In contrast, murine embryos have a much larger window separating neural 

and neural crest cell induction, suggesting that this model system may be ideal for 

determining the key regulator of crest cell induction, thereby allowing one to decipher 

the role, if any, of known signaling pathways, such as BMP or FGF signaling, in 

neural and/or neural crest cell induction.   

 

 BMP, FGF, NOTCH, PAX and WNT Signaling are not required for Neural Crest 

Cell Induction 

 Previous reports in avian embryos have demonstrated that NOTCH signaling 

is required for the induction of neural crest cells (Endo et al. 2002), although our 

analyses in the mouse have indicated that NOTCH signaling is not required for this 
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process in vivo and in vitro.  Treatment of cranial explants with DAPT in vitro at 

concentrations up to 100μM failed to prevent the expression of Sox10, indicating that 

neural crest cells were induced in the explant cultures (Fig. 15).  These data are 

consistent with our in vivo analyses of RBP-Jκ mutants (Fig. 10); we failed to detect 

any differences in the  expression of Crabp1 and Snail, general markers of migratory 

neural crest cells.  RBP-Jκ is the nuclear effector of NOTCH signaling and is required 

for the activation of target genes through all of the Notch receptors (Notch1-4) (Kato 

et al. 1996). Hence, our analyses provide a functional knockout of all NOTCH 

signaling, thereby preventing examination of individual or compound Notch receptor 

mutants. 

Although RBP-Jκ mutants did not exhibit alterations in Crabp1 or Snail, the 

expression of neural crest cell lineage specific markers, Sox9 and Sox10 were reduced 

(Fig. 10), indicating a role for NOTCH signaling in neural crest cell lineage selection.  

Sox9 (Cheung and Briscoe 2003) and Sox10 (Britsch et al. 2001) are both required for 

the development of glial cells in the peripheral nervous system; additionally, Sox10 is 

important in the development neurons of the dorsal root ganglia (Carney et al. 2006) 

and the enteric nervous system (Herbarth et al. 1998; Southard-Smith et al. 1998).  

Interestingly, it has been only recently that the role of NOTCH in regulating Sox9 or 

Sox10 expression has been addressed.  NOTCH promotes the expression of Sox9 in 

the central and peripheral nervous systems, as conditional removal of RBP-Jκ in the 

Wnt1-cre or Nestin-cre domains results in the absence of Sox9 during gliogenesis 
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(Taylor et al. 2007).  Additionally, NOTCH signaling is an important mediator of 

Sox10 expression; particularly in the maintenance of Sox10+ neural crest cells that 

will give rise to the enteric nervous system (Okamura and Saga 2008).  Conditional 

inactivation of a core component of the NOTCH signaling pathway, Pofut1, in neural 

crest cells results in the absence of Sox10, leading to a lack of enteric ganglia 

development.  Hence, NOTCH signaling is required for the maintenance of Sox10 in 

neural crest cells prior to their differentiation into enteric neurons (Okamura and Saga 

2008).  Collectively, the decreased expression of Sox9 and Sox10 in RBP-Jκ-/- 

embryos does not reflect defects in neural crest cell induction but rather role for 

NOTCH signaling in the maintenance of neuronal and glial progenitors.   

Our analyses of Pax3-/-;Pax7-/- double mutants did not reveal a role for either 

of these genes in neural crest cell formation as has been previously reported 

(Mansouri et al. 1996; Conway et al. 1997; Epstein et al. 2000; Monsoro-Burq et al. 

2005; Basch et al. 2006).  Indeed, double mutant embryos form migratory Sox10+ and 

Crabp1+ neural crest cells (Fig. 11, 12), although the cells were reduced in number.  

Pax3-/-;Pax7-/- double mutants exhibited a decrease in the thickness of the neural 

plate, which was significantly thinner in double mutant embryos in comparison to 

single- and compound heterozygous littermates.  Overall, the presence of migratory 

neural crest cells and the decreased thickness of the neural plate indicate a potential 

role for Pax3/Pax7 in the maintenance of neural plate progenitors; hence, loss of both 

of these genes in double mutants may result in decreased numbers of cells in the 

neural plate and therefore decreased NCCs.   
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Pax3 and Pax7 have been suggested as serving functionally redundant roles in 

the neural tube.  Interestingly, Pax3 heterozygous embryos exhibit increased thinning 

of the neural tube with progressive loss of Pax7 alleles; Pax3+/-;Pax7+/- and Pax3+/-

;Pax7-/- embryos have decreased thickness of the neural plate in comparison to 

Pax3+/-;Pax7+/+ embryos (Fig. 12), indicating a redundant role for Pax7 and Pax3 in 

neural plate maintenance.  Indeed, it is not until the loss of both Pax3/7 alleles occurs 

that the neural plate is severely affected.  Previous data has demonstrated the dramatic 

upregulation of Pax7 in Pax3-/- embryos (Borycki et al. 1999), indicating that Pax3 

normally functions to negatively regulate Pax7 in the neural tube.  In the absence of 

Pax3, the upregulation of Pax7 results in PAX7 mediating PAX3 signaling (Borycki 

et al. 1999).  Hence, the specific role of Pax3/7 in neural plate maintenance cannot be 

fully characterized unless both genes are absent.  Subsequent analysis of neural plate 

identity, proliferation, and apoptosis in Pax3-/-;Pax7-/- double mutants would serve to 

further characterize the specific roles of these genes in the development of the neural 

plate.  Collectively, Pax3 and Pax7 are not conserved in mouse NCC induction as in 

Xenopus and avian embryos, but instead appear to be required for maintenance and 

proliferation. 

Furthermore, analysis of Fgf8 null embryos, Fgf8Δ2,3/ Δ2,3, revealed no defects 

in the induction of neural crest cells in the absence of FGF8 signaling (Fig. 19).  

FGF8 signaling from the paraxial mesoderm is required for neural crest cell induction 

in Xenopus and mediates its affects in part through Pax3.  Fgf8Δ2,3/ Δ2,3 embryos do 

exhibit reduced Pax3, indicating that Fgf8 does act upstream of Pax3 in the mouse, 
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but that this signaling pathway is not conserved in crest cell induction.  Although our 

in vivo analyses did not support a role for Fgf8 in neural crest cell formation, our in 

vitro data using the FGF receptor antagonist, SU5402 (Fig. 16-18), did result in 

defects in crest cell production.  Sox10 was decreased in SU5402-treated cultures 

even with decreased concentration and exposure to SU5402, preventing us from 

precisely dissecting the specific role of FGF signaling in neural plate maintenance 

versus neural crest cell induction.  Concomitant with the deceased Sox10 expression 

was a decrease in Sox2, indicating that the neural plate maintenance was inhibited 

with the FGF signaling blockade.  FGF signaling is necessary for the maintenance of 

Sox2 (Takemoto et al. 2006; Stavridis et al. 2007; Rogers et al. 2008), indicating that 

SU5402 results in the failure of neural plate maintenance and the loss of the precursor 

population from which neural crest cells arise.  Although there is considerable 

evidence supporting the role of FGF signaling in the maintenance and viability of the 

neural plate, we cannot rule any loss of Sox2 due to cell death.  Finally, our in vivo 

and/or in vitro analyses of BMP, FGF, NOTCH, PAX, and WNT signaling failed to 

indicate any of these genes as required for neural crest cell induction in the mouse, 

suggesting that the key regulator of this process involves one of the gene family 

members not examined or that the key regulator of this process is yet to be identified.     

 

Germ cell nuclear factor is a Novel Regulator of Neural Crest Cell Formation 

Germ cell nuclear factor (Gcnf) is an orphan nuclear receptor first identified 

in germ cells, where it has well characterized roles regulating gametogenesis (Chung 
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et al. 2001).  Knockout analysis of Gcnf has revealed novel roles for this transcription 

factor in development; Gcnf-/- embryos are embryonic lethal due to chorioallantoic 

fusion defects.  Additionally Gcnf-/- embryos fail to undergo axis rotation resulting in 

tailbud truncation defects (Chung et al. 2001) and halted somitogenesis (Chung et al. 

2001).  Anteriorly, Gcnf mutants exhibit neural tube closure and neural patterning 

defects (Chung et al. 2006), indicating the importance of this transcription factor 

during embryonic development.  The defects observed in Gcnf-/- embryos are 

indicative of the dynamic expression of Gcnf during embryogenesis; Gcnf is present 

in the primitive streak at 7.5dpc.  By 8.5dpc, Gcnf is upregulated in the 

neuroepithelium along the entire anterior-posterior axis, with heaviest expression 

along the dorsal neural folds (Fig. 21); at mid-gestation, Gcnf is subsequently 

downregulated until it is re-activated in adult germ cells (Chung et al. 2001).   

We identified Gcnf from a microarray screen performed in the mouse model 

of Treacher Collins Syndrome (TCS) (Jones et al. 2008).  TCS results from the 

haploinsufficiency of TCOF1; mTcof1+/- embryos decreased number of neural crest 

cells due to increased neuroepithelial apoptosis (Dixon et al. 2006).  The 

downregulation of Gcnf in Tcof1+/- embryos indicates that Gcnf may be involved in 

the formation of neural crest cells (N. Jones and P. Trainor, unpublished data).  

Recently, Gcnf was identified in a microarray screen in avian embryos as a potential 

regulator of neural crest cell induction; Gcnf is expressed in migratory neural crest 

cells in the chick embryo, although functional analysis of Gcnf in neural crest cells 

was not addressed (Adams et al. 2008).  Additionally, Gcnf-/- embryos have not been 
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examined for defects in neural crest cell formation.  Collectively, the expression of 

Gcnf in the dorsal neural folds, the region from which neural crest cells arise, as well 

as the identification of Gcnf in microarray screens in neural crest cell populations, 

indicates this gene as a potential player in the induction of neural crest cells. 

Analysis of neural crest cell formation in Gcnf-/- embryos revealed a lack of 

crest cell markers in general.  In the majority of embryos analyzed, multiple neural 

crest cells markers were not expressed (Fig. 22), indicating that Gcnf is required for 

the generation of NCCs.  Despite the absence of neural crest cell markers as a whole, 

an occasional Gcnf-/- embryo was processed that did exhibit minimal expression of 

neural crest cell markers; interestingly, the cells did not exhibit the normal expression 

pattern characterized for the respective gene in any of the embryos examined.  For 

instance, Sox9 was expressed in an occasional Gcnf mutant at the lateral edges of the 

neural folds but no migratory cells were present, indicating that if a neural crest cell 

was induced, they failed to migrate.  This would be consistent with a role for Gcnf in 

the initiation of EMT and the onset of neural crest cell migration.  Further, Gcnf-/- 

embryos may not activate the entire cascade of neural crest cell specific genes, 

indicating that if a Sox9+ crest cell is induced, it may not express Snail and therefore 

would fail to migrate and remain in the neuroepithelium.  In these circumstances, the 

definition of the neural crest cell come into question, is a cell a bona fide neural crest 

cell if it fails to migrate?  Despite the occasional Gcnf mutant embryo with abnormal 

and diminished neural crest cell marker expression, as a whole, the majority of the 
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mutants analyzed failed to express any of the panel of crest cell specific genes, 

indicating that Gcnf is required for neural crest cell formation in the mouse. 

Accompanying the defects in neural crest cell formation, Gcnf-/- embryos 

exhibit an enlarged neural plate, most likely the result of increased proliferation; 

indeed, the mitotic marker pH3 was dramatically increased in Gcnf-/-  embryos (Fig. 

24).  Gcnf acts as a transcriptional repressor to downregulate the pluripotency genes 

Oct4 (Fuhrmann et al. 2001; Gu et al. 2005) and Nanog (Gu et al. 2005) in the 

neuroepithelium; previous analysis of Gcnf-/- embryos revealed a dramatic 

upregulation of these genes (Fuhrmann et al. 2001; Gu et al. 2005), which in theory, 

would prevent the activation of differentiation paradigms within the neural plate and 

maintain the cells in a stem-cell like state.  Indeed, overexpression of Sox2 in the 

neural plate of avian embryos results in the downregulation of neural crest cell 

production as measured by inhibition of Sox9 and Sox10 (P. Trainor, unpublished).  

Analysis of SOX2 in Gcnf-/- embryos revealed an expansion in the domain of SOX2+ 

cells within the neural plate (Fig. 24) further supporting the hypothesis that Gcnf is 

required for downregulation of pluripotency within the neural plate, and that in its 

absence, the neural plate is maintained in a progenitor-like state.  These data in 

conjunction with the increased numbers of mitotic cells indicate that the 

overproliferation of the neural plate due to maintenance of pluripotency gene 

expression prevents the activation of differentiation paradigms, such as the transition 

to a neural crest cell.   
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Figure Twenty-Six.  Model for Gcnf in regulating Neural Crest 
Cell Formation and Differentiation.  FGF signaling (green arrow)  
is required for the maintenance of Sox2 (purple) but has not been 
directly shown as a regulator of Oct4 and Nanog.  
Sox2/Nanog/Oct4 (purple) within the neural plate is required for the 
maintenance of the neural plate and the stem cell progenitor pool.  
Gcnf (orange) in the neural plate is required to downregulate 
Sox2/Nanog/Oct4, allowing for the induction of cellular 
differentiation paradigms within the neuroepithelium.  Binding of 
Gcnf to Snail (dark blue) activates the epithelial to mesenchymal 
transition (EMT) of neural crest cells, initiating their formation.  
Subsequent activation of neural crest cell specific genes (light 
blue), such as Crabp1, Sip1, Sox10, and Sox9, by Gcnf results in the 
onset of neural crest cell migration and differentiation paradigms.    
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Does Gcnf activate Neural Crest Cell Specific Genes? 

Putative Gcnf binding sites were identified in Snail1 and Snail2, Sox9, Sox10, 

Sip1, and Crabp1 (Fig. 26).  Currently, ChIP assays are being used to determine the 

binding of Gcnf to these genomic regions.  Our analyses of Gcnf-/- embryos has 

indicated defects in neural crest cell formation and the transition of a neuroepithelial 

to neural crest cell; binding of Gcnf to the Snail promoters would demonstrate the 

requirement of Gcnf in the initiation of NCC formation through regulation of EMT.  

Further, binding of Gcnf to NCC specific genes, such as Sox9, Sox10,  Sip1, and 

Crabp1, would result in the activation of neural crest cell specific gene paradigms 

(Sox9, Sox10) as well as the activation of genes required for proper crest cell 

migration (Sip1 and Crabp1).  Collectively, these data suggest that Gcnf may act as a 

bi-modal regulator of NCC formation (Fig. 26); first, Gcnf would regulate EMT 

through direct activation of Snail1 and Snail2.  Second, once EMT has commenced, 

Gcnf would subsequently activates NCC specific paradigms required for migration 

and differentiation. 

 

E) Experimental Methods 

Mouse lines and maintenance 

CD1, Fgf8+/Δ2,3, Gcnf, and RBP-Jκ mice were housed in the Laboratory 

Animal Services Facility at the Stowers Institute for Medical Research according to 

IACUC animal welfare guidelines. For embryo collection, dams were sacrificed by 
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cervical dislocation; day of plug was noted as 0 days post coitum (dpc).  Embryos 

were removed from maternal tissue and fixed; yolk sacs collected for genotyping.  

Embryos were genotyped for the Fgf8+/Δ2,3 (Meyers et al. 1998), Gcnf (Chung et al. 

2001) and RBP-Jκ (de la Pompa et al. 1997) as previously reported.  Pax3;Pax7 

embryos were kindly provided by S. Tajbakhsh (Pasteur Institute).   

 

Cranial Explant Cultures 

For 24-hour cranial explant cultures CD1 dams were sacrificed at 7.5dpc by 

cervical dislocation; embryos were removed from maternal tissue and dissected in 

Tyrode’s solution (8.0g NaCl, 0.2g/L KCl, 0.2g CaCl2, 0.21g/L MgCl2, 0.057g 

NaH2PO4, 1.0g/L NaHCO3, 1.0g/L Glucose in DEPC-H2O).  To harvest cranial 

explants, embryos were bisected into the cranial and posterior regions with insect 

pins, and the cranial regions collected; all three germ layers of the explants were kept 

intact.  Cranial explants were attached to 0.4μM cell culture insert membranes 

(Millipore, Billerica, MA) in 3mL DMEM/F12-high glucose (control) (Invitrogen) or 

in DMEM/F12-high glucose with the antagonists DAPT (Sigma, St. Louis, MO), 

Frizzled-8/Fc (R & D Systems, Minneapolis, MN), Noggin/Fc (R & D Systems, 

Minneapolis, MN), or SU5402 (Calbiochem, San Diego, CA) in DMEM-F12 and 

cultured at 37°C with 5% CO2; culture times are as indicated.  Antagonist treatment 

was as follows: DAPT at 25, 50, 75, or 100μM and SU5402 at 12.5, 25, 37.5, and 

50μM in DMSO; Frizzled-Fc and Noggin-Fc were used at 1, 5, 10, 20, 50, and 

100μg/μL in sterile PBS.  Explants were examined for viability as indicated by 



 127

beating heart tissue.  After culturing, explants were fixed O/N in 4% PFA at 4°C; 

embryos were dehydrated in MeOH and processed for in situ hybridization.  

 For 8- and 12-hour SU5402 explant cultures, CD1 dams were sacrificed early 

on 8.0dpc by cervical dislocation; embryos were removed from maternal tissue and 

dissected in Tyrode’s solution.  For culture, two cuts were made in the yolk sac along 

the anterior-posterior axis, allowing for the planar attachment of the embryo to the 

cell culture insert membrane via the remaining extraembryonic membranes.  Once 

attached with forceps, the developing amnion was removed from the neural plate 

region.  Embryo explants were cultured in 37.5μΜ SU5402 for 8- or 12hrs; all 

cultures were viable as determined by the presence of beating heart tissue at the end 

of the culture period.  Cultures were fixed in 4% PFA O/N at 4°C and processed for 

in situ hybridization. 

 

In situ hybridization: 

In situ hybridization was performed following the standard protocol described 

by Nagy et al. (2003).  Briefly, embryos were fixed, dehydrated in methanol, and 

stored at -20°C until ready for use in the hybridization protocol.  Anti-sense 

digoxigenin-labeled mRNA riboprobes were synthesized for Crabp1 (S. Schneider-

Maunoury), Gcnf (A. Cooney), Pax3 (Takayoshi), Snail (A. Nieto), Sox2 (P. Trainor), 

Sox9 (R. Krumlauf), Sox10 (M. Gassmann), and Wnt1 (A. Gavalas).  
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Immunohistochemistry 

For section immunohistochemistry, Gcnf litters were collected at 9.0dpc and 

fixed O/N in 1% PFA at 4°C.  Embryos were processed through a sucrose gradient 

(15%, 30% in PBS), mounted in Tissue Tek O.C.T. (VWR, West Chester, PA) and 

sectioned at 10microns.  Sections were rinsed 3X in PBT (PBS with 0.1% Triton X-

100) for 5min and blocked in 10% normal goat serum (Invitrogen, Carlsbad, CA) in 

PBT for 1hr at RT.  Slides were incubated in primary antibody diluted in 10% goat 

serum/PBT O/N at 4°C.  The monoclonal antibodies to SOX2 (R & D Systems, 

Minneapolis, MN), anti-phospho Histone H3 (pH3; Upstate/Millipore, Billerica, 

MA), and anti-PAX3 were used at 1:500 (SOX2 and pH3) and 1:200 (PAX3) 

respectively.  The antibody to PAX3 was obtained from the Developmental Studies 

Hybridoma Bank developed under the auspices of the NICHD and maintained by the 

University of Iowa, Department of Biological Sciences (Iowa City, IA 52242).   

Slides were rinsed 3X 10min in PBT at RT on shaker and incubated in the 

appropriate Alexa 488 or 594 secondary antibody at 1:250 (Molecular 

probes/Invitrogen, Carlsbad, CA) for 2hrs at 4°C.  Sections were counterstained with 

a 1/1000 dilution of 2mg/ml DAPI (Sigma, St. Louis, MO) in PBS for 5minutes, 

followed by rinses in PBS; slides were mounted with fluorescent mounting medium 

(DakoCytomation, Carpinteria, CA).  All images were collected using a Ziess 

Axioplan microscope and processed using Photoshop CS2 (Adobe, San Jose, CA). 
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VII. Chapter Two:  Conditional Inactivation of FGF8 Signaling in the 

Frontonasal Prominence using the AP-2cre Transgene does not result in 

Craniofacial Defects. 

 

A) Abstract 

The frontonasal prominence (FNP) develops as a midline tissue primordium 

populated by the cranial mesoderm and neural crest cells and forms mid-facial 

structures such as the forehead, nose, and the primary palate.  Previous studies have 

indicated that the surface ectoderm overlying the FNP is required by cranial neural 

crest cells populating this region for patterning and outgrowth of the FNP (Hu et al. 

2003; Marcucio et al. 2005), indicating that interactions between these two tissue 

layers are necessary for proper craniofacial development. Fgf8, expressed in the nasal 

ectoderm (Crossley and Martin 1995), has well characterized in regulating the 

outgrowth of the FNP (Hu et al. 2003).  Hence, Fgf8 is a good candidate for 

mediating interactions between the surface ectoderm and neural crest cells populating 

this region.  To address the role of FGF8 signaling in the FNP of the mouse, we 

attempted to conditionally inactivate Fgf8 in the surface ectoderm of the FNP using 

an AP-2cre driver.  Analysis of AP-2cre;Fgf8fx/fx and AP-2cre;Fgf8Δ2,3/fx mutants 

revealed normal development of the cranial vault; cartilage and bone formation was 

identical between wildtype embryos and conditional mutants.  In situ hybridization of 

conditional mutants at 10.5dpc revealed the maintenance of Fgf8 in the nasal 

ectoderm of the FNP, indicating a lack of Fgf8 excision by the AP-2cre driver in 
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mutant embryos.  AP-2cre mice have been reported to express AP-2cre in the surface 

ectoderm of the FNP (Zhang and Williams 2003), but analyses of AP-2cre;R26R+ 

embryos revealed LacZ expression in the mesenchyme but not the ectoderm of the 

FNP.  Hence, the lack of overlap between Fgf8 and AP-2cre in the FNP ectoderm 

results in the failure of Fgf8 excision in conditional AP-2cre;Fgf8fx/fx and AP-

2cre;Fgf8Δ2,3/fx mutants.  Collectively, our analyses failed to address the specific role 

of Fgf8 in the development of the FNP and indicate that use of the AP-2cre mice in 

FNP development is restricted to studies involving the FNP mesenchyme. 

 

B) Introduction 

Fgf8 and the Patterning of Craniofacial Tissues 

Neural crest cells migrate into the developing facial region to form the 

craniofacial mesenchyme located between the surface ectoderm and the 

neuroepithelium.  Interactions between neural crest cells and the surface ectoderm are 

essential in the patterning of the frontonasal prominence (FNP), the craniofacial 

primordium that gives rise to mid-facial structures.  Indeed, the surface ectoderm of 

the FNP has been shown to be essential for the outgrowth, viability, and 

differentiation of cranial neural crest cells populating this region (Hu et al. 2003; 

Tapadia et al. 2005).  Although many genes are known to be involved in the 

patterning of this region, Fgf8 has been implicated in playing a critical role in 

influencing the growth and patterning of the face.   
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A specific region of the FNP, the frontonasal ectoderm zone (FEZ), is 

demarcated by a dorsal domain of Fgf8 expression abutted to a ventral domain of 

Sonic hedgehog (Shh) expression (Hu et al. 2003).  In chick embryos, this domain of 

Fgf8/Shh expression coincides directly with the tip of the upper beak; a derivative of 

the FNP (Hu et al. 2003).  Experiments have demonstrated that the FEZ is responsible 

for establishing the dorsoventral axis of the upper beak; ectopic transplants of the 

FEZ to more dorsal regions of the FNP results in duplications of upper beak 

structures.  In contrast, transplantation to more ventral regions resulted in duplication 

of lower beak structures (Hu et al. 2003).  Collectively, these results indicate the FEZ 

as a critical regulator of outgrowth of the FNP and patterning of subsequent facial 

structures, and furthermore, it suggests that Fgf8 may mediate this process. 

A requirement for Fgf8 in the patterning of the developing face is seen in 

experiments conditionally inactivating Fgf8 in specific craniofacial tissues.   Specific 

removal of FGF8 signaling in the olfactory epithelium and forebrain (Kawauchi et al. 

2005) or the pharyngeal arch ectoderm (Trumpp et al. 1999; Macatee et al. 2003) 

results in severe craniofacial defects.  Conditional excision of Fgf8 from the Foxg1-

cre domain of the forebrain results in a lack of the nasal cavity, forebrain, and 

eyelids; the snout is shortened and the lower jaw is reduced or absent (Kawauchi et al. 

2005).  When Fgf8 is conditionally excised from the pharyngeal arch ectoderm, using 

Nestin-cre or AP2-IREScre, embryos lack first branchial arch derivatives, including 

the mandible and exhibit a reduced maxillary bone (Trumpp et al. 1999; Macatee et 

al. 2003).  Although the conditional mutants do not exhibit defects in neural crest cell 
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formation, loss of FGF8 from the pharyngeal arch ectoderm results in increased 

neural crest cell death, indicating that FGF8 acts as a survival cue to cells populating 

the first branchial arch (Trumpp et al. 1999; Macatee et al. 2003). 

 

Tcfap2a and the AP-2cre Transgene 

AP-2 genes belong to a family of transcription factors critical for the 

development of both invertebrate and vertebrate species (Schorle et al. 1996; Zhang 

et al. 1996; Nottoli et al. 1998; Hilger-Eversheim et al. 2000; Donner and Williams 

2006).   To date, four members have been characterized in mouse and human, AP-2α, 

AP-2β, AP-2γ, and AP-2ε (Williams et al. 1988; Bosher et al. 1995; Moser et al. 

1995; Oulad-Abdelghani et al. 1996; Zhao et al. 2001; Cheng et al. 2002), each 

sharing a conserved C-terminal basic-helix-span-helix DNA binding and dimerization 

domain (Williams and Tjian 1991b; Williams and Tjian 1991a; Garcia et al. 2000; 

Wankhade et al. 2000).  The AP-2 genes are expressed in somewhat overlapping 

domains of the extraembryonic tissues, central nervous system, neural crest, face, 

limb bud, kidney, eye, and skin (Hilger-Eversheim et al. 2000). Despite the 

similarities in their expression patterns, each individual AP-2 gene is required for 

distinct aspects of embryonic development. AP-2α is important for formation and 

patterning of the eyes, heart, face, neural tube, limbs, and body wall (Schorle et al. 

1996; Zhang et al. 1996; Nottoli et al. 1998; Brewer et al. 2002); AP-2β is crucial for 

kidney development (Moser et al. 1997).  AP-2γ is required for development of the 

extraembryonic lineages that eventually give rise to the mature placenta, but it does 
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not appear to have a major role in development of the embryo proper (Auman et al. 

2002).  Finally, AP-2ε is required for establishing the neuronal network of the 

olfactory system (Feng and Williams 2003). 

In the developing craniofacial region, AP-2α or Tcfap2a in mouse is 

expressed in the FNP, neural crest cells, branchial arches, and limbs (Mitchell et al. 

1991).  Tcfap2a is critically important for craniofacial development as Tcfap2a-/- 

embryos have severe craniofacial and body wall defects, including cranial clefting 

and outgrowth of the neural folds over the FNP, forcing midline structures to develop 

more laterally on the head (Schorle et al. 1996; Zhang et al. 1996).  In addition, the 

maxilla and mandible fail to fuse medially and the embryos exhibit cranio-

abdominoschisis, the failure of midline to close along the anterior-posterior body axis 

(Schorle et al. 1996; Zhang et al. 1996).  Tissue-specific deletion of AP-2α in cranial 

neural crest cells using Wnt1-cre results in a range of craniofacial defects and 

perinatal lethality associated with neural tube closure defects and cleft secondary 

palate, delayed craniofacial growth, abnormal middle ear development, and defects in 

pigmentation (Brewer et al. 2004). 

The cis-regulatory elements required for the tissue-specific domains of human 

AP-2α expression have been characterized (Zhang and Williams 2003).  Major 

regulatory elements directing AP-2α expression to the developing facial prominences 

and limb buds were identified in the intronic sequence between exons 5 and 6 (Zhang 

and Williams 2003).  Recently, transgenic AP-2cre “Cre-face” mice harboring this 

human FNP- and limb-specific enhancer element fused to Cre recombinase have been 
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characterized;  AP-2cre mice are reported to have tissue specific expression of Cre in 

the developing ectoderm and mesenchyme of the FNP as well as in migratory neural 

crest cells and the distal limb bud (Nelson and Williams 2004).  Tissue-specific 

deletion of Tcfap2 in the AP-2α domain results in shortened snouts and hypertelorism 

(Nelson and Williams 2004).  AP-2cre mice are particularly useful for tissue-specific 

gene inactivation as human AP-2α is expressed in both migratory neural crest cells as 

well as the ectoderm of the FNP (Nelson and Williams 2004), allowing for 

conditional studies of genes expressed in the FNP ectoderm.  In contrast, while the 

mouse Tcfap2 gene is expressed in migratory neural crest cells, it is not expressed in 

the ectoderm of the FNP (Mitchell et al. 1991).  Overall, these studies highlight the 

important roles for AP-2α in craniofacial development and provide new avenues for 

addressing the roles of genes important during FNP development using the AP-2cre 

mice. 

 

The Cre-loxP System 

The Cre-loxP system is a method used for conditionally inactivating a gene of 

interest from a specific tissue or cell population (Nagy 2000; Kwan 2002); mating of 

two different strains of mice is required for the recombination event to take place.  

“Floxed” mice contain two Cre-recombinase recognition sites or “loxP” sites; loxP 

sites are composed of a 34 base pair consensus sequence consisting of two 13 base 

pair inverted repeats, flanking an eight base pair non-palindromic core that defines 

the orientation of the overall sequence of the recognition site (5’-
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ATAACTTCGTATA-GCATACAT-TATACGAAGTTAT-3’).  LoxP sites often 

flank one or more exons of the gene of interest and are called floxed alleles (flanked 

with loxP sites).  Once the loxP sites are recognized by Cre recombinase the genomic 

sequence contained between the loxP sites is excised which can render the gene 

inactive (Nagy 2000; Kwan 2002).  In addition, floxed mice may be intercrossed with 

a null allele of the gene of interest to obtain lines heterozygous for the floxed and null 

alleles.  As only one floxed allele is present for the Cre-recombinase to recognize, the 

excision efficiency of the loxP sites is increased; the null allele remains resulting in 

no gene product being produced.   

To produce conditional mutants, the “Cre” line, which contains Cre-

recombinase fused to a tissue-specific promoter, is intercrossed with the floxed line.  

The “Cre” line directs Cre expression only to regions where the promoter is 

endogenously expressed.  For example, using an enhancer of the human AP-2α 

transcription factor gene drives Cre expression specifically in the ectoderm and 

mesenchyme of the FNP (Nelson and Williams 2004).  To obtain conditional mutants 

of the gene of interest, the floxed and Cre mouse strains are intercrossed to produce 

mice carrying both the Cre transgene and the fx/fx or null/fx alleles.  In these 

embryos, the Cre-recominbase binds to the loxP sites, deleting any intervening 

sequence; excision can remove specific regulatory elements or exonic sequences, 

encoding for a tissue-specific null allele.  Recombination is specific to the cells 

expressing the Cre-transgene; all remaining cells that do not express the promoter-

Cre transgene do not undergo recombination and in theory, will show no defects.  
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Collectively, the Cre-loxP system allows for tissue-specific inactivation as the Cre-

transgene is only located in a particular group of cells. 

The Cre-loxP system is particularly useful for examining the roles of genes in 

a temporal manner (Nagy 2000), bypassing the limitations of complete knockouts of 

genes, such as when a gene of interest has multiple roles throughout development.  

This is particularly true for Fgf8, which in addition to its roles in craniofacial 

development, is also crucial in earlier developmental stages.  Fgf8 is expressed in the 

primitive streak and conventional knockouts of the gene result in embryonic lethality, 

as no mesoderm or endoderm develops (Sun et al. 1999).  Conditional inactivation of 

the Fgf8 gene, using the Cre-loxP system, is an advantageous approach for examining 

the specific role of Fgf8 in craniofacial development without affecting other 

developmental roles of the gene (Meyers et al. 1998).   

Fgf8, expressed in the facial ectoderm, and has been shown to play critical 

roles in the patterning of the developing face (Hu and Helms 1999; Tapadia et al. 

2005).  As cranial neural crest cells contribute to the majority of developing head and 

facial structures, a direct interaction between FGF8 signaling from the ectoderm and 

migrating neural crest cells during craniofacial development may have critical roles in 

the patterning of the face.  In order to determine the role of FGF8 signaling from the 

surface ectoderm in the patterning of neural crest cells, the Cre-loxP system was used 

to conditionally inactivate Fgf8.  The expression of a human AP-2α enhancer and 

Fgf8 have similar domain of expression in the ectoderm of the FNP, hence removal of 
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the Fgf8 domain from AP-2α-expressing cells in the ectoderm would be expected to 

result in craniofacial anomalies.   

 

C) Results 

Breeding of Fgf8 Conditional Mutants 

To examine the craniofacial anomalies resulting from the removal of FGF8 

signaling in the developing FNP, we employed the Cre-loxP system to create 

conditional mutants of FGF8 signaling using an AP-2cre driver; AP-2cre mice were 

intercrossed to generate conditional mutants using two mating schemes (Fig. 27).  

The first mating scheme intercrossed AP-2cre males with Fgf8fx/fx females to produce 

the AP-2cre;Fgf8+/fx heterozygous mice; AP-2cre;Fgf8+/fx females were backcrossed 

to Fgf8fx/fx males order to obtain AP-2cre;Fgf8fx/fx conditional mutants.  The second 

mating scheme intercrossed the AP-2cre males with Fgf8+/Δ2,3 females to obtain AP-

2cre;Fgf8+/Δ2,3 females, which were backcrossed to Fgf8fx/fx males to produce AP-

2cre;Fgf8Δ2,3/fx conditional mutants.  Using the mating schemes described above 

addressed any potential problems of the Cre recombinase excising the homozygous 

Fgf8fx/fx allele; when using the Cre-loxP system to generate conditional knockouts of a 

specific gene, it is common practice to examine the gene of interest using a Fgf8fx/fx 

and Fgf8null/fx approach as it results in a more efficient excision of the gene by the Cre 

recombinase as the enzyme is only required to excise one copy of the gene. 
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 Figure Twenty-Seven.   Breeding Scheme of Fgf8 Conditional Mutants.  

AP-2cre males (blue) were outcrossed to homozygous Fgf8fx/fx females (red) to 
obtain AP-2cre;Fgf8+/fx (purple) females.  AP-2cre;Fgf8+/fx females were then 
backcrossed to Fgf8fx/fx (yellow) males to obtain conditional AP-2cre; Fgf8fx/fx 

embryos (green).  For AP-2cre; Fgf8Δ2,3/fx mutants, AP-2cre males (blue) were 
outcrossed to heterozygous Fgf8+/delta2,3 females (red) to obtain AP-
2cre;Fgf8+/Δ2,3 (purple) females, which were backcrossed to Fgf8fx/fx (yellow) 
males to obtain conditional AP-2cre;Fgf8Δ/fx embryos (green). 
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Examination of AP-2cre; Fgf8fx/fx Conditional Mutants 

Fgf8 is expressed in the ectoderm of the nasal prominences at 10.5dpc and is 

subsequently downregulated by 11.5dpc (Crossley and Martin 1995).  Therefore, we 

hypothesized that excision of Fgf8 from the nasal ectoderm using the AP-2cre driver 

would result in late-staged bone and cartilage defects as indicated by previous reports 

of conditional Fgf8 excision (Trumpp et al. 1999).   To examine the craniofacial 

phenotypes resulting from Fgf8 excision in the AP-2cre domain, we harvested AP-

2cre;Fgf8fx/fx litters at 17.5 and 14.5dpc and stained the embryos with Alcian Blue 

and Alizarin Red to stain cartilage and bone, respectively.    

At 17.5dpc, AP-2cre;Fgf8fx/fx conditional mutants exhibited normal cranial 

vault and vertebral column development in comparison to wild-type littermates (Fig. 

28G, H).  In all mutants examined, the exoccipital (EO), frontal (F), interparietal (IP), 

mandibular (Mn), maxillary (asterisks), premaxillary (Pmx), parietal (P), and 

supraocciptal (SO) bones were present, identical to the bones identified in wild-type 

littermates.  Additionally, the bones of the limbs and vertebral column are unaffected 

in AP-2cre;Fgf8fx/fx conditional mutants.  Similar to conditional mutants harvested at 

17.5pdc, AP-2cre;Fgf8fx/fx mutants harvested at 14.5dpc were indistinguishable from 

their wild-type littermates (Fig. 29G, H).  Analysis of mutant embryos revealed 

cartilage in the cranial vault, nasal region, limbs, and vertebral column; additionally, 

early ossification of the frontal (F), mandibular (Mn), maxillary (Mx), and 

premaxillary (PMx) bones was present.  In posterior regions, AP- 2cre;Fgf8fx/fx     
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 Figure Twenty-Eight.  Skeletogenesis is unaffected in AP-2cre; Fgf8fx/fx 
Mutants.  Conditional AP-2cre; Fgf8fx/fx mutants at 17.5dpc do not have 
defects in cranial vault bones due to a lack of Fgf8 excision during early 
embryonic development.   AP-2cre; Fgf8fx/fx (G, H) are identical to wild-type 
(A-F) littermates.  Frontal bone (F); exocipital bone (EO); interparietal bone 
(IP); mandible (Mn); maxilla (**); parietal bone (P); premaxillary bone (PMx);  
supraoccipital bone (SO). 
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Figure Twenty-Nine.  AP-2cre; Fgf8fx/fx Mutants do not exhibit Defects in 
Chondrogenesis.  Embryos were stained at 14.5dpc with Alcian blue and 
Alizarin red to stain cartilage and bone, respectively.  G, H) Conditional AP-
2cre; Fgf8fx/fx mutants do not have obvious defects in cartilage or early bone 
formation in comparison to wild-type (A-F) littermates.  The nasal cartilage 
(N) appears normal in conditional mutants, as do the early condensations of 
the frontal (F), maxilla (Mx), mandible (Mn) and premaxillary (PMx) bones. 
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   Figure Thirty.   Fgf8 Expression in AP-2cre; Fgf8fx/fx Embryos.  Embryos 
were harvested at 10.5 and 11.5dpc and processed for Fgf8 in situ 
hybridization.  A-C) Wildtype embryos at 10.5dpc have Fgf8 expression in the 
lateral nasal prominence (LNP, arrow), the proximal ectoderm of the maxillary 
(Mx) and mandibular (Mn) prominences (A, arrowheads), and in the limb in 
the apical ectodermal ridge (AER) (A, arrow).  A’) Fgf8 is present in the 
medial (MNP, arrowhead) and lateral (LNP, arrow) nasal prominences.  D, D’) 
Fgf8 expression in the conditional AP-2cre; Fgf8fx/fx mutants at 10.5dpc is 
normal in comparison to wild-type (A-C) littermates.  By 11.5dpc, Fgf8 is 
downregulated in the ectoderm of the nasal pits (NP, arrow) in wildtype (E-G) 
and conditional Fgf8 mutants (H).  Fgf8 remains in the AER (A, arrow) in all 
embryos examined (E-H). 
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mutants exhibited ossification sites in the developing limbs, shoulder girdle, and 

vertebral column.  Collectively at both stages examined the conditional AP-

2cre;Fgf8fx/fx mutants did not exhibit any developmental abnormalities. 

The lack of skeletal phenotype in AP-2cre;Fgf8fx/fx mutants suggested a lack 

of function for FGF8 in the ectoderm of the FNP.  However, as a control for proper 

excision of Fgf8 from the nasal ectoderm (as this was an unexpected result) 

conditional mutants were harvested at 10.5 and 11.5dpc and processed for Fgf8 in situ 

hybridization.  Conditional mutants at 10.5dpc exhibited a normal pattern of Fgf8 

expression in the ectoderm lining the nasal pits of the medial and lateral nasal 

prominences (Fig. 30D, D’) as well as the apical ectodermal ridge (AER) of the 

developing limb.  By 11.5dpc, Fgf8 was downregulated in the nasal pits in all 

embryos examined, but remained in the AER (Fig. 30H, H’).  Rather than an absence 

of a role for FGF8 these data indicate a failure of the AP-2cre driver to excise Fgf8 

from the ectoderm of the nasal prominences at early stages of development; 

collectively, the lack of Fgf8 excision accounts for the presence of normal bone and 

cartilage development.   

 

Examination of AP-2cre;Fgf8Δ2,3/fx Conditional Mutants 

The lack of Fgf8 excision in AP-2cre;Fgf8fx/fx conditional mutants had no impact on 

craniofacial development.  One potential explanation for the lack of Fgf8 excision is 

inefficient excision of the Fgf8flox/flox allele by the Cre recombinase.  Therefore, we 

examined AP-2cre;Fgf8Δ2,3/fx conditional mutants for defects in craniofacial 
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development.  Fgf8Δ2,3, the null allele of Fgf8, was used to create  conditional mutants 

resulting in more efficient excision of Fgf8 due to the presence of only one floxed 

allele.  AP-2cre;Fgf8Δ2,3/fx conditional mutants were harvested at 17.5 and 14.5dpc 

and processed for cartilage and bone staining.  AP-2cre;Fgf8Δ2,3/fx conditional mutants 

at 17.5 (Fig. 31) and 14.5dpc (Fig. 32) were indistinguishable in comparison to their 

wild-type littermates.  At 17.5dpc, AP-2cre;Fgf8Δ2,3/fx mutants exhibited normal 

development of cranial vault bones (Fig. 31G, H), including the exoccipital (EO), 

frontal (F), interparietal (IP), mandibular (Mn), maxillary (asterisks), premaxillary 

(Pmx), parietal (P), and supraocciptal (SO) bones.  Analysis of 14.5dpc embryos 

revealed normal development of the nasal cartilage (N) and Meckel’s (Mk) cartilage 

(Fig. 32G, H).  Cartilage staining in the limbs and vertebral column of AP-

2cre;Fgf8Δ2,3/fx mutants was identical to that in wild-type embryos.   

To determine if Fgf8 was excised in AP-2cre;Fgf8Δ2,3/fx mutants, embryos 

were harvested at 10.5 and 11.5dpc and processed for Fgf8 in situ hybridization; at 

10.5dpc, Fgf8 was located in the ectoderm lining the nasal pits (Fig. 33D, D’) and the 

expression pattern was identical to that in wild-type littermates, indicating a lack of 

Fgf8 excision using the AP-2cre driver.  Fgf8 expression at 11.5dpc was 

downregulated in the facial ectoderm in all embryos examined but was present in the 

AER of the limb bud (Fig. 33H, H’).   

In addition to examining AP-2cre;Fgf8Δ2,3/fx mutants to address the excision 

efficiency of the Cre recombinase, conditional Fgf8 mutants harboring two copies of 
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Figure Thirty-One.  Conditional AP-2cre;Fgf8Δ2,3/fx Mutants do not have 
Cranial Bone Defects.  Embryos were collected and stained at 17.5dpc to 
examine cartilage and bone.  Conditional AP-2cre;Fgf8Δ2,3/fx mutants (G, H) 
have normal cranial bone formation in comparison to wild-type littermates (A-
F).  Exoccipital bone (EO); frontal bone (F); interparietal bone (IP); mandible 
(Mn); maxilla (asterisks); premaxillary bone (PMx); parietal bone (P); 
supraoccipital bone (SO); tympanic bone (Ty). 
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Figure Thirty-Two.  Cartilage and Bone Staining of AP-2cre;Fgf8Δ2,3/fx 
Embryos.  Embryos were processed at 14.5dpc in Alcian blue and Alizarin red 
to stain carilage and bone, respectively.  Conditional AP-2cre;Fgf8Δ2,3/fx 
mutants (G, H) do not have obvious defects in cartilage and early bone 
formation in comparison to wild-type (A-F) littermates.  The nasal cartilage 
(N) appears normal in conditional mutants, as does Meckel’s cartilage (Mk). 
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 Figure Thirty-Three.   Fgf8 is Expressed in AP-2cre;Fgf8Δ2,3/fx Embryos.  

Embryos were harvested at 10.5 and 11.5dpc and processed for Fgf8 in situ 
hybridization.  D)  Fgf8 expression in the conditional AP-2cre;Fgf8Δ2,3/fx 
mutants (D, D’) is normal in comparison to wild-type littermates (A-C) and is 
present in the surface ectoderm of the maxillary (Mx) and mandibular (Mn) 
prominences (arrowheads) and the apical ectodermal ridge (AER, arrow) of the 
limb bud.  D’)  Fgf8 is present in the nasal ectoderm of the medial (MNP, 
arrowheads) and lateral (LNP, arrow) nasal prominences in a pattern identical 
to wildtype littermates at this stage (A-C).  E-H) At 11.5dpc, Fgf8 is 
downregulated in wildtype and mutant embryos in the nasal ectoderm (NP, 
arrowheads) but remains in the AER (A, arrow).   
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the AP-2cre transgene were examined.  In theory, if the Cre recombinase is not 

sufficiently produced in the FNP, excision of Fgf8 may be inefficient in the 

conditional mutants.  Therefore, AP-2creT/T;Fgf8Δ2,3/fx mutants were created by 

mating AP-2cre;Fgf8+/fx mutants to AP-2cre;Fgf8+/Δ2,3 mice to enhance the amount of 

Cre recombinase present in mutant embryos due to two copies of the Cre-face 

transgene; embryos were harvested at 14.5dpc to determine if any mutants embryos 

with craniofacial defects were present.  Indeed, AP-2creT/T;Fgf8Δ2,3/fx mutants at 

14.5dpc exhibited  holoprosencephaly, a single nasal proboscis, reduced mandible, 

and often lacked external eyes (Fig. 34A, B); mutant embryos also had severe limb 

defects, vascular abnormalities, and edema.   

To ensure that the phenotype identified in AP-2creT/T;Fgf8Δ2,3/fx mutants was 

due to conditional excision of Fgf8, control embryos from matings of AP-2cre mice 

were harvested at 14.5dpc.  Surprisingly, AP-2creT/T embryos at 14.5dpc were 

identical to AP-2creT/T;Fgf8Δ2,3/fx mutants at this stage (Fig. 34C, D), indicating that 

the defects identified in AP-2creT/T;Fgf8Δ2,3/fx mutants were not due to inactivation of 

FGF8 signaling, but rather homozygosity of the Cre-face transgene (characterization 

of the Cre-face mutants is described in Chapter Three).  Collectively, these data 

demonstrate that the AP-2cre driver is not effective in excising Fgf8 from the facial 

ectoderm in either AP-2cre;Fgf8fx/fx or AP-2cre;Fgf8Δ2,3/fx conditional mutants. 
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 Figure Thirty-Four.  Comparison of AP-2creT/T;Fgf8Δ2,3/fx and AP-2creT/T 

Mutant Embryos at 14.5dpc.  A-D)  AP-2creT/T;Fgf8Δ2,3/fx mutant embryos 
(A, B) harvested at 14.5dpc are identical to AP-2creT/T (C, D) embryos 
harvested from intercrossing AP-2cre mice, indicating that the craniofacial 
defects identified in AP-2creT/T;Fgf8Δ2,3/fx embryos are not due to conditional 
excision of Fgf8 but rather homozygosity of the Cre-face transgene.  A, C) low 
magnification of mutant embryos reveals severe edema (arrows).  B, D) At 
higher magnification, mutant embryos exhibit vascular defects (arrowheads), a 
single nasal proboscis (NP, arrow), and limb defects (double arrowheads).   
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Expression Pattern of the Cre-face Transgene 

Characterization of AP-2cre;Fgf8fx/fx and AP-2cre;Fgf8Δ2,3/fx mutant embryos 

resulting from conditional inactivation of FGF8 signaling using a human AP-2α 

promoter revealed a lack of phenotype in the frontonasal prominence and head 

region.  Previous studies have reported the expression pattern of the AP-2cre “Cre- 

face” transgene to be located in the surface ectoderm of the developing nasal 

prominences at 10.5dpc (Nelson and Williams 2004).  One possible explanation for 

the failure of Fgf8 excision in conditional Fgf8 mutants could be a lack of 

overlapping expression between the AP-2cre transgene and Fgf8 in the ectoderm of 

the nasal prominences.  To address this as a possible cause for the failure of Fgf8 

excision in AP-2cre;Fgf8fx/fx and AP-2cre;Fgf8Δ2,3/fx mutant embryos, we determined 

the expression domain of the “Cre-face” transgene by mating AP-2cre mice to the 

Rosa 26 reporter (R26R) mice.  R26R mice have a neo cassette and triple 

polyadenylation stop signal flanked between two loxP sites with the lacZ gene located 

3’ to the second loxP sequence (Soriano 1999).  Once mated to the AP-2cre 

expressing line, a portion of the mice will not receive the Cre transgene and therefore 

will not undergo a recombination event, preventing the transcriptional read through of 

the LacZ gene.  In contrast, embryos that are positive for the Cre-face transgene will 

undergo a recombination event and the neo cassette/stop signal is removed, resulting 

in the expression of the LacZ gene in the cells which express Cre (Soriano 1999) 

under the control of the AP-2α promoter (Zhang and Williams 2003).     
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 Figure Thirty-Five.  Expression Pattern of the AP-2cre Transgene using 
the Rosa 26 Reporter Mice.  Embryos were harvested at 9.5dpc (A-C) and 
10.5dpc (D-F) and processed for β-galactosidase staining (blue).  A-C) AP-
2cre expression is seen in the mesenchyme of the FNP (arrow) but not in the 
maxillary (Mx) and mandibular (Mn) prominences of the first branchial arch.  
E, F) At 10.5dpc, LacZ expression is present in both the medial (MNP, 
arrowheads) and lateral (LNP, arrow) nasal prominences and in the developing 
limb bud.  G)  Sections of the embryo in panel D; level of section is indicated 
by the black line.  β-gal staining is present in the mesenchyme of the right 
nasal prominence (arrow) but is absent from the nasal ectoderm (arrowheads).  
H)  Sections of a 10.5dpc embryo processed for Fgf8 in situ hybridization; 
Fgf8 is expressed in the nasal ectoderm of the right nasal prominence but not 
in the nasal mesenchyme.  
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Embryos were harvested at 9.5 and 10.5dpc and stained for β-galactosidase to 

confirm the expression pattern of the Cre-face transgene (Fig. 35).  At 9.5dpc, LacZ 

expression was present in a patchy pattern in the FNP (Fig. 35A-C) and analysis of 

the nasal prominences at 10.5dpc revealed mesenchymal-specific expression of the 

Cre-face transgene (Fig. 35D-F); the ectoderm lining the nasal pit was devoid of any 

β-gal staining (Fig. 35G, arrowheads).  In contrast, Fgf8 expression is specific to the 

surface ectoderm of the nasal pits (Fig. 35H, arrowheads) (Crossley and Martin 

1995).  Expression of the AP-2cre transgene does not overlap with the known 

expression pattern of Fgf8, which prevents Fgf8 excision during embryogenesis.  

Therefore, this strain AP-2cre is not sufficient to examine the role of FGF8 signaling 

in the development of the FNP.  

 

D)    Discussion 

 Fgf8 is a key regulator of numerous developmental processes and has well 

characterized role in the patterning of the neuroepithelium (Delaune et al. 2004; 

Fletcher et al. 2006), limb bud (Lewandowski et al. 2000), and cardiovascular tissue 

(Abu-Issa et al. 2002).  Additionally, Fgf8 has been shown to be important for the 

patterning of the craniofacial region, including the frontonasal prominence (Hu and 

Helms 1999; Hu et al. 2003), mandible (Trumpp et al. 1999; Macatee et al. 2003), and 

neural crest cells (Trumpp et al. 1999; Hu et al. 2003; Macatee et al. 2003).  The 

specific role of FGF8 signaling from the FEZ has well characterized roles in avian 
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embryos in the outgrowth of the upper beak and is required for the survival of neural 

crest cells populating this region (Hu et al. 2003; Marcucio et al. 2005).   

The specific role of FGF8 signaling during mouse development has been more 

difficult to address due to the embryonic lethality of Fgf8Δ2,3/Δ2,3 mutants.  Indeed, 

Fgf8Δ2,3/Δ2,3 embryos do not survive past 9.5dpc due to gastrulation defects (Meyers et 

al. 1998).  Studies examining the role of FGF8 signaling in the craniofacial region 

have employed the Cre-loxP system to bypass the embryonic lethality at early 

developmental stages.  Specific inactivation of Fgf8 in the branchial arch ectoderm 

(Trumpp et al. 1999; Macatee et al. 2003) or the forebrain (Kawauchi et al. 2005) 

results in severe craniofacial defects, including a reduced mandible, increased cell 

death, and bone defects.  We set out to address the role of FGF8 signaling from the 

ectoderm of the FNP in the patterning of neural crest cells that populate this 

developing primordium.  Using the Cre-loxP system, we attempted to conditionally 

inactivate Fgf8 using an AP-2 cre driver, which is expressed in the ectoderm and 

mesenchyme of the FNP. 

Initial characterization of conditional AP-2cre;Fgf8fx/fx mutants revealed the 

lack of an obvious craniofacial phenotype, which is due to the lack of Fgf8 excision at 

mid-gestational stages (Fig. 28-30).  To determine if the failure of Fgf8 excision was 

a result of reduced excision efficiency in the conditional mutants harboring two Fgf8 

floxed alleles by the AP-2cre driver, AP-2cre;Fgf8Δ2,3/fx were subsequently analyzed.  

AP-2cre;Fgf8Δ2,3/fx embryos harbor one floxed allele and a null allele, thereby 

potentially enhancing the excision efficiency of the Cre recombinase; interestingly, 
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conditional mutants harvested at 17.5 (Fig. 31) and 14.5dpc (Fig. 32) failed to exhibit 

craniofacial defects in comparison to wildtype littermates.  Additionally, analysis of 

Fgf8 expression at 10.5 and 11.5dpc revealed a lack of Fgf8 excision (Fig. 33), 

indicating that the AP-2cre driver was not a useful tool for conditional excision of 

Fgf8.   

Additional characterization of the AP-2cre transgene expression pattern 

revealed a lack of expression in the ectoderm of the FNP (Fig. 35).  Using 

intercrosses of AP-2cre and R26R mice, embryos were processed for β-gal staining.  

At 10.5dpc, β-gal staining was present throughout the mesenchyme but not the 

surface ectoderm of the medial and lateral nasal prominences (Fig. 35G).  In contrast, 

Fgf8 is expressed in the ectoderm of the nasal prominence is a very thin layer of cells 

lining the nasal pits (Fig. 35H), revealing adjacent but non-overlapping expression 

domains of AP-2cre and Fgf8.  Collectively, the lack of overlap between the AP-2cre 

transgene and Fgf8 underlies the lack of craniofacial phenotype in conditional AP-

2cre;Fgf8fx/fx and AP-2cre;Fgf8Δ2,3/fx embryos.     

Interestingly, the pattern of expression characterized in AP-2cre mice differs 

from the previous characterization of these mice, where Cre is expressed in the nasal 

mesenchyme as well as the surface ectoderm (Nelson and Williams 2004).  In 

contrast, the AP-2cre mice used in these series of experiments do not exhibit Cre 

expression in the ectoderm of the nasal pits where Fgf8 is normally expressed.  As the 

Cre-face transgene and Fgf8 do not have overlapping domains of expression, 

resulting in the wild-type morphology of AP-2cre;Fgf8fx/fx and AP-2cre;Fgf8Δ2,3/fx 
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embryos.  The original AP-2cre mice characterized were maintained on a FVB 

background (Nelson and Williams 2004), while the AP-2cre mice housed in our 

animal colony were maintained on a CD1 background; this slight difference in 

background may result in the differences in the expression patterns between the two 

AP-2cre strains.   

Although these analyses did not reveal the specific role of FGF8 signaling in 

the nasal ectoderm, the breeding of AP-2cre mice to homozygosity in the attempt to 

enhance Cre excision of Fgf8, lead to the identification of the “Cre-face” phenotype.  

Cre-face mice are a mouse model of holoprosencephaly, resulting from integration of 

two copies of the Cre-face transgene into a genomic locus required for proper 

craniofacial development; characterization of the Cre-face phenotype is addressed in 

following chapter.       
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E) Experimental Methods 

Maintenance of Mouse Lines and Embryo Collection 

Mice were housed in the Laboratory Animal Services Facility at the Stowers 

Institute for Medical Research according to IACUC animal welfare guidelines.  AP-

2cre “Cre-face” (Nelson and Williams 2004), Fgf8fx/fx, (Meyers et al. 1998)  Fgf8Δ2,3 

(Meyers et al. 1998), and Rosa 26 reporter (R26R) (Soriano 1999) mice were 

maintained and genotyped as previously described.  Embryos were collected at 9.5, 

10.5, 11.5, 14.5, and 17.5dpc; dams were sacrificed by cervical dislocation and day of 

plug was noted as 0 days post coitum (dpc). 

 

β-Galactosidase Staining 

To stain for β-galactosidase, AP-2cre mice were mated to Rosa 26 reporter 

(R26R) mice and embryos were collected at 9.5 and 10.5dpc as described above.  

Briefly, embryos were fixed on wet ice for 20-30min in the Tissue Fixative Solution, 

washed in Tissue Rinse Solution A for 30min and Tissue Rinse Solution B for 5min 

at RT.  Embryos were incubated O/N at 37°C in Tissue Stain Solution with X-gal 

(40mg/mL in DMF) (Invitrogen, Carlsbad, CA).  After incubation, embryos were 

washed PBS and re-fixed O/N in the Tissue Fixative Solution.  Embryos were 

processed in paraffin, cut in 10micron sections, and counterstained in Nuclear Fast 

Red (Sigma, St. Louis, MO). 
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In situ hybridization 

In situ hybridization for Fgf8 was performed following the standard protocol 

described by Nagy et al. (2003).  Briefly, embryos were fixed, dehydrated in 

methanol, and stored at -20°C until ready for use in the hybridization protocol.  An 

anti-sense digoxigenin-labeled mRNA riboprobe was synthesized for Fgf8 (I. 

Mason).    

 

Cartilage & Bone Staining 

Embryos were collected at 14.5 and 17.5dpc and fixed in 95% EtOH O/N.  

Embryos were washed in a stain solution containing 0.5% Alizarin red (Sigma, St. 

Louis, MO) and 0.4% Alcian blue 8X (Sigma, St. Louis, MO) in 60% EtOH O/N at 

RT.  For 14.5dpc embryos, soft tissue was dissolved in 1% KOH for three hours and 

transferred to 0.25% for 30min.  For 17.5dpc staining, the embryos were anesthetized 

in PBS for 1hr at 4°C, fixed O/N in 95% EtOH, skinned and eviscerated prior to 

staining; all remaining soft tissue was dissolved in 2% KOH for six hours and 

transferred to 0.25% KOH for 30min.  Embryos were cleared in glycerol:KOH 

(20%:0.25%; 33%:0.25%; 50%:0.25%).  Embryos were stored in 50% 

glycerol:0.25% KOH until photographed.   
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VIII. Chapter Three:  Insertional Mutation of Skinny Hedgehog (Skn/Hhat) 

results in disrupted Hedgehog Signaling and Severe Craniofacial Defects.  

Dennis, J.F., Williams, T., and Trainor, P.A. 

 

A)   Abstract 

We have identified an embryonic mouse phenotype characterized 

by holoprosencephaly (HPE) with hypoplastic and fused maxillary and 

frontonasal prominences.  Characterization of “Cre-face” mutant embryos revealed a 

disruption in Sonic hedgehog (Shh) as evidenced by its absence from the prechordal 

plate and SHH signaling is lost in the ventral telencephalon, pharyngeal endoderm, 

and floorplate.  Furthermore, activation of Patched1, is significantly decreased, in 

these regions as well, indicating a global downregulation of Hedgehog (Hh) 

signaling.  Coinciding with the loss of SHH in the pharyngeal endoderm, Fgf8 and 

Bmp4 are absent from the mandibular ectoderm, correlating with a role for SHH in 

branchial arch development and patterning of the jaw.  Additionally, peripheral 

nervous system development are impaired; cranial nerve ganglia are reduced in size 

and exhibit fusion defects, which is not reflective of decreased contribution of neural 

crest or sensory placode cells.  At later stages, HhatCre-face mutants exhibit tooth 

agenesis, delayed chondrogenesis, and an absence of cranial vault bones.  Mapping of 

the "Cre-face" (Zhang and Williams 2003) transgene integration site revealed 

disruption of Hedgehog acyltransferase (Hhat), a gene responsible for palmitoylation 

of Hedgehog proteins; palmitolyation of SHH is required for the proper establishment 
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of the SHH signaling gradient (Chen et al. 2004).  Our work therefore underscores the 

role of Hh signaling during craniofacial development. 

 

B) Introduction 

Holoprosencephaly (HPE) is a heterogeneous congenital malformation 

resulting from the failure of the forebrain to divide into the left and right hemispheres 

(Belloni et al. 1996a; Roessler et al. 1996).  HPE occurs at the frequency of 1 in 

10,000-20,000 live births, although embryonic cases are suggested to be as high as 1 

in 250 pregnancies, making it the most common brain anomaly in humans (Muenke 

and Beachy 2000; Wallis and Muenke 2000).  HPE manifests in a range of 

craniofacial anomalies in humans, including hypotelorism, microcephaly, cleft palate 

and/or a single incisor (Muenke et al. 1994; Roessler et al. 1996).  In the most 

extreme cases of HPE, cyclopia and a nasal proboscis can occur (Muenke and Beachy 

2000).  Genetically, mutations in at least 12 different loci have been mapped to 

patients with HPE and include multiple signaling pathways, such as BMP, ZIC, SIX, 

and SHH (Wallis and Muenke 2000).  Additionally, exposure to environmental 

teratogens such as alcohol (Cohen and Shiota 2002; Aoto et al. 2008) or retinoids 

(Cohen and Shiota 2002) can result in HPE phenotypes.  

SHH, a member of the Hedgehog (Hh) family of secreted signaling molecules 

(Chiang et al. 1996), was the first loci mapped to human cases of HPE (Belloni et al. 

1996a; Roessler et al. 1996).  In the mouse, knockouts of Shh result in HPE and a 

complete absence of the craniofacial skeleton; Shh-/- embryos have a single optic 
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vesicle along the midline and a reduction in the overall size of the brain as well as 

dorsalization of the spinal cord (Chiang et al. 1996).  At later developmental stages, a 

single nasal proboscis extends from the rostral midline and no external eye structures 

are present (Chiang et al. 1996), indicating the importance of this gene in embryonic 

development and the etiology of HPE.  Additionally, knockouts of SHH signaling 

pathway members, such as Patched (Ptc), Smoothened (Smo), or Glioma associated 

proteins (Gli)  (reviewed in (Wallis and Muenke 2000)) results in HPE phenotypes, 

further highlighting the importance of Shh in craniofacial development.   

SHH is a secreted glycoprotein that undergoes post-translational modification 

into its active form via lipid modification.  Autocatalytic cleavage of the carboxyl 

(C)-terminus results in the addition of a cholesterol moiety (Porter et al. 1996a; Porter 

et al. 1996b), which is required for determining the range of SHH diffusion to Hh-

responsive targets; mutants that lack the C-terminal modification exhibit an extended 

range of SHH signaling (Porter et al. 1996a; Huang et al. 2007).  Additionally, SHH 

undergoes an additional modification at its amino (N)-terminus via the addition of a 

palmitic acid moiety at an N-terminal cysteine residue (Pepinsky et al. 1998), which 

has been suggested to increase SHH potency (Taylor et al. 2001).  In Drosophila, 

skinny hedgehog (ski) (Chamoun et al. 2001), sightless (sit) (Lee and Treisman 2001), 

central missing (cmn) (Amanai and Jiang 2001) and rasp (Micchelli et al. 2002) 

correspond to the same gene that encodes a Hedgehog acyltransferase responsible for 

the palmitoylation of Hh proteins. 
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More recently, Skinny hedgehog (Skn) or Hedgehog acyltransferase (Hhat), 

the murine homologue of ski, has been characterized.  Skn mutants lack N-terminal 

modification of SHH, resulting in HPE as well as neural tube patterning defects 

(Chen et al. 2004).  Classical knockouts of Skn indicate a direct role for 

palmitoylation in establishing the long-range SHH signaling gradient in the neural 

tube; lack of palmitoylation prevents the formation of SHH multimeric complexes, 

subsequently preventing establishment of the SHH gradient (Chen et al. 2004).   

We have characterized the role of Hhat in an insertional mutant that carries 

the “Cre-face” transgene (Zhang and Williams 2003) in the Hhat locus.  HhatCre-face 

mutants exhibit HPE and disrupted Hh signaling, which ultimately contributes to 

extensive craniofacial patterning defects.  Indeed, HhatCre-face mutants have neural 

crest cell, branchial arch, and skeletal patterning defects, indicating the importance of 

Hh signaling in the proper development of the craniofacial complex and human 

syndromes such as HPE.   

 

C) Results 

Hedgehog acyltransferase (Hhat) is disrupted in Cre-face Mutants 

“Cre-face” mutants are identifiable at early embryonic stages due to an 

abnormally shaped telencephalon and HPE, indicating disruptions in SHH signaling.  

Therefore, we intercrossed Cre-face mice to Shh+/- (Chiang et al. 1996), Patched1-

LacZ (Goodrich et al. 1997), and Gli3+/Xt (Hui and Joyner 1993) mice, respectively, to 

directly test for genomic disruptions in Shh and Shh pathway components.  
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Intercrosses of Cre-face mice to Shh pathway mutants did not lead to a HPE 

phenotype; Cre-face+/-;Shh+/-, Cre-face+/-;Ptc-LacZ+/-, and Cre-face+/-;Gli3+/Xt 

embryos harvested at 17.5dpc did not show any alterations in craniofacial 

development (data not shown), indicating that the HPE phenotype identified was not 

a direct result of integration of the Cre-face transgene into the Shh, Ptc, or Gli3 

genomic locus..  Therefore, we identified the transgene integration site using a 

Vectorette DNA library and sequenced clones; the Cre-face transgene integrated into 

Intron 9 of Hedgehog acyltransferase (Hhat) (Fig. 36A). 

To verify Hhat as the gene disrupted in Cre-face mutants, genomic DNA from 

Cre-face embryos at 10.5dpc was genotyped using wild-type and transgene-specific 

reactions.  Genotyping of the endogenous Hhat Intron 9 region produced a Wt band 

in both wild-type and heterozygous (Cre-face+/-) DNA, but did not produce a band in 

mutant DNA as expected (Fig. 36B).  In Cre-face+/- heterozygous and Cre-face 

mutant DNA, a Cre-face:Hhat specific product was amplified, indicating that these 

embryos have a Cre-specific sequence located within the Hhat intronic region (Fig. 

36B).  Integration of the Cre-face transgene most likely creates a physical disruption 

of Intron 9 of Hhat, rendering the gene non-functional; transgenes are well 

characterized as integrating into the host genome as concatemers and are therefore 

present in multiple copies (Costantini and Lacy 1981; Jaenisch 1988; Heaney and 

Bronson 2006).  Indeed, cDNA created from Cre-face mutants failed to amplify Hhat  
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Figure Thirty-Six.  Hhat is disrupted by the insertion of the Cre-face 
Transgene.  A)  Structure of the Cre-face transgene (Zhang and Williams 
2003) and its position within Intron9 of Hhat.  B)  Genotyping of Cre-face 
genomic DNA at 10.5dpc using Hhat intronic primers amplifies a wild-
type band of 1.4kb in wild-type (Wt) and heterozygous (Het) embryos but 
not in mutant embryos (Mut).  A mutant band of 250bp using Cre-face and 
Hhat-specific primers was produced in Het and Mut embryos but not in 
Wt.  Sequencing of these bands from genomic DNA identifies Hhat as the 
gene disrupted in mutant embryos.  C)   Amplification of Hhat mRNA in 
Wt, Het, and Mut embryos indicates that Hhat is not amplified as a result 
of transgene insertion in HhatCre-face mutants.   
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in comparison to wild-type and heterozygous cDNA (Fig. 36C), indicating that in 

Cre-face mutants Hhat is most likely degraded.  These data verify that integration of 

the Cre-face into Intron 9 of Hhat results in the morphological defects characterized 

in Cre-face mutants and will herein be referred to HhatCre-face.   

 

Characterization of the HhatCre-face Phenotype 

HhatCre-face mutants are readily identifiable at 9.5dpc due to an abnormally 

shaped telencephalon (Fig. 37A,A’); by 10.5dpc, mutant embryos were smaller in 

size and exhibited HPE, a hallmark of disrupted SHH signaling (Fig. 37B,B’).  In 

mutant embryos, the medial and lateral nasal prominences were fused to the maxillary 

prominence; as a result, the FNP is hypoplastic and tube- or heart-shaped in 

appearance.  The most proximal region of the maxillary prominence was identifiable 

but distal regions are not due to fusion with the FNP.  The mandibular prominence 

was present but reduced in size, with an abnormal morphology at its most proximal 

regions.  At 14.5dpc HhatCre-face embryos have a single tube-shaped nasal proboscis 

and a hypoplastic mandible.  Moreover, mutant embryos exhibited micro- or 

anophthalmia and ear atresia.  HhatCre-face embryos were edemic with the outer layer 

of skin significantly displaced from the body cavity most likely due to lymphatic 

defects; vascular defects were present with large blood pooling often seen in the 

anterior region of the embryos (Fig. 37C, C’).  Additionally, organ development was 

impaired in the mutants, as the heart (Fig. 38B), liver (Fig. 38A), lungs (Fig. 38E), 

and stomach (Fig. 38D) were all reduced in size in comparison to heterozygotes. 
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Figure Thirty-Eight.  HhatCre-face Mutants have defects in Organogenesis 
at 14.5dpc.  A) The liver in mutant embryos (Mut, right) is lobed but 
abnormally shaped and reduced in size in comparison to wildtype (Wt, left) 
embryo.  B) The heart in HhatCre-face mutants is reduced in size but is multi-
chambered although the right atrium and ventricle appear more reduced in 
size in comparison to the left atrium and ventricle.  C) The gonads in the 
mutant embryo (right) are improperly formed; only one testes was present 
and it was reduced in size in comparison Wt littermates.  D) The stomach 
was reduced overall in HhatCre-face embryos and the adjacent small intestine 
was not as elongated as in the Wt littermate.  E) The lungs in HhatCre-face 
mutants were significantly reduced and the lobes were altered in appearance.  
F) No identifiable kidneys were present in the mutant embryos at this stage.   
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By 17.5dpc, the defects identified at 14.5dpc were much more pronounced (Fig. 37D, 

D’); all litters examined contained no live mutant embryos at 18.5dpc. 

Histological examination of HhatCre-face mutants revealed a single–lobed 

neuroepithelium (NE) that was increased in size (Fig. 39F), perhaps due to the lack of 

cortical organization.  The optic tissue (E), embedded in the telencephalic 

mesenchyme, was grossly disorganized (Fig. 39H).  The single tubular nasal 

proboscis consisted of a ring of chondrocytes; mutants lacked the cartilage 

primordium of the nasal septum (NS) and had a large hole in this region (Fig. 39G, 

arrow).  The palatal shelves (PS) (Fig. 39I) were also absent, indicating a defect in the 

vertical extension and medial protrusion of the palatal shelves toward the midline; in 

contrast, the vertical extension of the palatal shelves was readily identifiable in wild-

type embryos (Fig. 39D, arrows).  Additionally, HhatCre-face mutants exhibited 

disrupted tooth maintenance, early primordia of the lower and upper incisor and 

molar teeth were mis-shapen and had an altered morphology (Fig. 39I, arrowheads), 

whereas in wild-type littermates early primordia of the upper and lower molars and 

incisors were readily identifiable (Fig. 39D, arrowheads).  By late developmental 

stages, mutants exhibited tooth agenesis, indicating a disruption in the maintenance of 

odontogenic precursors.  In the trunk, Hhat+/Cre-face embryos had normal morphology 

of the spinal cord (Fig. 39E).  In contrast, the spinal cord was grossly disorganized; 

no identifiable gray (G) or white (W) matter was present (Fig. 39J). 
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Loss of Hhat disrupts SHH Signaling  

As HHAT is required for the palmitoylation of Hh proteins, we examined the 

expression of Shh in HhatCre-face mutants.  Shh expression was absent from the 

prechordal plate (PCP, arrowhead) and downregulated in the notochord (NC, arrow) 

at 8.5 (Fig. 40C, D) and 9.5dpc (Fig. 40G, H) indicating a mis-regulation of Shh in 

HhatCre-face mutants.  By 10.5dpc, Shh was absent from the branchial arch (BA) 

ectoderm (arrowheads) (Fig. 40K, L), this altered pattern of expression continued in 

mutant embryos up to 11.5dpc (Fig. 40O, P).  The alterations in Shh expression and 

the HPE phenotype in HhatCre-face embryos suggested a specific disruption of the SHH 

pathway as Hhat is required for the proper establishment of the SHH signaling 

gradient (Chen et al. 2004), therefore we examined protein distribution at 9.5dpc to 

determine if the SHH gradient was established.  SHH was absent from the ventral 

telencephalon (Fig. 41E, arrow), pharyngeal endoderm (Fig. 41G, arrowheads) and 

floorplate (Fig. 41H, arrow) in HhatCre-face mutants indicating disruptions in the SHH 

signaling gradient.  Punctate labeling of SHH was present in random cells in the 

branchial arch (BA) ectoderm (Fig. 41F, arrowheads) and the notochord (Fig. 41H; 

NC, arrowhead) of HhatCre-face mutants indicating that localized signaling may occur 

in mutant embryos but that the SHH gradient is absent.  Overall, the disruptions in 

SHH identified in HhatCre-face mutants indicate a direct requirement for Hhat in 

establishing the SHH signaling gradient.
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Figure Fourty.  Shh  is downregulated in HhatCre-face Mutants 
throughout Development.  A-F) In Hhat+/Cre-face embryos at 8.5 
and 9.5dpc, Shh is expressed in the prechordal plate (PCP) (B, F, 
arrowheads) and notochord (NC) (A, E, arrows).  D, H) HhatCre-face 

mutants at 8.5 and 9.5 dpc lack Shh expression in the PCP (D, H; 
arrowhead) and have decreased NC expression (C, G; arrow) in 
comparison to heterozygous littermates.  I, J) At 10.5dpc, Shh is 
expressed in the ectoderm of the maxillary prominence (arrowhead) 
and in the zone of polarizing activity (ZPA, arrow) in the 
developing limb bud.  K, L) In HhatCre-face mutants at 10.5dpc, Shh 
is absent from the maxillary ectoderm (L, arrowheads) but is still 
present in the ZPA (K, arrow).  M, N) At 11.5dpc, Shh remains in 
the maxillary ectoderm (arrowheads) as well as in the ZPA.  O, P)  
HhatCre-face embryos lack Shh expression at 11.5dpc in the ectoderm 
of the maxillary prominence (arrowheads) as well as the ZPA (O, 
arrow)..    
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Figure Fourty-One. SHH Signaling is disrupted in HhatCre-face Mutants.  A, 
A’) SHH (red) is present in the ventral telencephalon (arrow) in Hhat+/Cre-face  
embryos while HhatCre-face mutants (E, E’) lack SHH in this region.  F, F’) SHH 
is absent from the branchial arch (BA) ectoderm in HhatCre-face mutants, although 
a few random SHH+ cells are present (F, arrowheads).  In contrast, SHH is 
present throughout the BA ectoderm of the maxillary (Mx, arrow) and 
mandibular (Mn, arrowhead) prominences in Hhat+/Cre-face (B, B’) embryos.  
SHH is present in the pharyngeal endoderm (arrowheads) of Hhat+/Cre-face (C, C’) 
embryos but HhatCre-face mutants (G, G’) lack SHH in this region.  HhatCre-face 

mutants (H, H’) have reduced SHH signaling in the notochord (NC, arrowhead) 
and but lack SHH in the floorplate (FP, arrow); Hhat+/Cre-face (D, D’) embryos 
have SHH present in both of these regions.  g, gut.  Red, SHH; Blue, DAPI; 
Scale bar for all images, 200μM. 
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 HhatCre-face Mutants have decreased Activation of Patched 

To further characterize the degree of altered Hh signaling in HhatCre-face 

mutants, Hhat+/Cre-face mice were outcrossed to Patched1-LacZ (PtcLacZ) mice 

(Goodrich et al. 1997) as a readout of Ptc activation.  Hhat+/Cre-face;PtcLacZ+  

embryos from 9.5-11.5dpc exhibit intense LacZ expression in the ventral 

telencephalon (VT) (Fig. 42A, D, G), pharyngeal endoderm (PE) (Fig. 42B, E, H), 

notochord (NC, arrowhead) (Fig. C, F, I), and in the floorplate (FP, arrow) (Fig. 42C, 

F, I), reflecting Hh signaling in each of these regions.  Additionally, a gradient of Ptc 

activation is present adjacent to these sites of synthesis (VT, PE, NC, FP), indicating 

the activation of Ptc through a gradient of Hh signaling.   

The loss of SHH signaling in HhatCre-face mutants should lead to decreased 

activation of Ptc and therefore decreased LacZ expression in HhatCre-face;PtcLacZ+ 

embryos.  Indeed, HhatCre-face;PtcLacZ+ mutants lack LacZ expression in the VT (Fig. 

42J, M, P), PE (arrowheads) (Fig. 42K, N, O), and FP (Fig. 42L, O, R) from 9.5 to 

11.5dpc indicating a lack of Hh signaling in these regions in comparison to Hhat+/Cre-

face;PtcLacZ+  littermates.  In the notochord (NC, arrowhead), decreased LacZ 

expression was present at all stages examined, but the gradient of Ptc activation is 

absent, indicating that localized Hh signaling may occur adjacent to the NC but that 

the gradient of Hh signaling is absent.  Therefore, decreased Hh signaling, results in 

the defects characterized in HhatCre-face mutants. 
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Figure Fourty-Two. Patched (Ptc) Activation is diminished in 
HhatCre-face Mutants.  Embryos were harvested from 9.5 to 
11.5dpc and processed for β-galactosidase (blue) staining as a 
readout of Hh signaling.  A-I) Hhat+/Cre-face;PtcLacZ+ embryos 
exhibit intense LacZ expression at the sites of SHH synthesis, 
including the ventral telencephalon (A; VT), pharyngeal 
endoderm (B; arrowheads), notochord (C; NC, arrowhead), and 
the floorplate (C; FP, arrow).  Adjacent to these regions a 
gradient of Ptc activation is present as indicated by the more 
diffuse LacZ expression.  J-R) In HhatCre-face;PtcLacZ+  mutants, 
LacZ expression is absent from the VT (J, M, P), PE (K, N, Q), 
and FP (L, O, R) in all stages examined.  Significantly decreased 
Ptc activation remains in the NC (L, O, Q, R) but the gradient of 
Ptc activation is absent, indicating localized Hh signaling through 
Ptc occurs in the notochord but that long-range signaling is 
inhibited.  Double asterisks in (K) indicate localized Ptc 
activation around the NC.  Scale bar for 9.5dpc panels is 50μM; 
for 10.5 and 11.5dpc 100μM.  
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HhatCre-face Mutants exhibit Increased Apoptosis 

The hypoplastic frontonasal and maxillary prominences were suggestive of 

alterations to cell survival either via apoptosis and/or proliferation.  We examined 

HhatCre-face mutants for increased staining of the apoptotic marker cleaved Caspase-3, 

as SHH is required for the survival of neural crest cells (Ahlgren and Bronner-Fraser 

1999; Ahlgren et al. 2002; Jeong et al. 2004).  Loss of SHH signaling at early 

developmental stages in HhatCre-face mutants resulted in increased apoptosis in the 

frontonasal (Fig. 43E, E’; arrows), maxillary (Fig. 43F, F’; arrows), and mandibular 

prominences (Fig. 43G, G’; arrows).  Additionally, increased apoptosis was present in 

the mesenchyme dorsal to the pharyngeal endoderm (Fig. 43H, H’).  Interestingly, we 

did not see significant differences in the number of proliferative cells using the 

marker phospho Histone H3, a marker of cells in mitosis, or with Bromodeoxyuridine 

(BrdU), which marks cells in the synthesis phase (data not shown).  The number of 

proliferative cells in the frontonasal prominence, mandible, and spinal cord of  

HhatCre-face mutants was comparable with heterozygous littermates and appeared only 

slightly decreased if at all (data not shown), indicating that disrupted SHH signaling 

results in increased apoptosis but does not drastically affect the cell cycle. 

 

HhatCre-face mutants have alterations in the Patterning of the Mandible 

We analyzed the expression of Fgf8 and Bmp4 in the mandible as these genes 

are known Shh targets; Fgf8 is normally expressed in the proximal mandible (Fig. 

44B, F; arrows) with an adjacent domain of Bmp4 expression located in the distal  
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Figure Fourty-Three.  HhatCre-face Mutants exhibit increased Apoptosis in 
the Developing Head.  Embryos were harvested at 10.5dpc and processed 
for cleaved-Caspase 3 immunohistochemistry to mark apoptotic cells.  A-D) 
Hhat+/Cre-face embryos have minimal Caspase-3 staining (red), indicating an 
overall lack of apoptosis in the frontonasal (A, A’) and mandibular 
promiences (C, C’).  A few Caspase-3+ cells (arrowheads) are present in the 
maxillary prominence (B, B’).  The mesenchyme surrounding the pharyngeal 
endoderm (D, D’) also lacks apoptotic cells.  All other Caspase-3+ apparent 
cells are autofluorescent red blood cells.  E-H) In contrast, HhatCre-face 
mutants have increased numbers of Caspase-3+ cells in the frontonasal (E, 
E’; arrows), maxillary (F, F’; arrows), and mandibular (G, G’; arrows) 
prominences as well as in the mesenchyme dorsal to the pharyngeal 
endoderm (H, H’; arrows).  Red, cleaved-Caspase 3; blue, DAPI.  Scale bar, 
200μM 
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mandible (Fig. 44D, H; arrows).  In HhatCre-face mutants, Fgf8 (Fig. 44I, J;  

arrowheads) and Bmp4 (Fig. 44K, L; arrowheads) were both  absent from the 

mandibular ectoderm.  Interestingly, both, Fgf8 and Bmp4, were not affected in the 

nasal region (Fig. 44J, L), despite the single nasal prominence, indicating a region-

specific role for SHH signaling in patterning the lower jaw.  Collectively, the loss of 

SHH results in the downregulation of these genes, and in conjunction with the 

increased apoptosis in these regions, leads to the jaw patterning defects seen at late 

developmental stages. 

 

Neural Crest Lineages are altered in HhatCre-face Mutants 

HhatCre-face mutants have decreased SHH signaling in the ventral telencephalon 

beginning at 9.5dpc, coinciding with cranial neural crest cell migration into the 

adjacent frontonasal prominence and branchial arches.  Shh is required for the proper 

migration and proliferation of cranial neural crest cells (Ahlgren and Bronner-Fraser 

1999; Jeong et al. 2004; Moore-Scott and Manley 2005; Yamagishi et al. 2006), 

therefore, we examined HhatCre-face embryos for defects in neural crest cell formation 

using in situ hybridization and cell lineage tracing analysis.  We examined the 

induction of neural crest cells using the markers Crabp1, Snail, Sox9, and Sox10; 

HhatCre-face mutants did not show specific defects in the initial induction of the neural 

crest cell population as indicated by Crabp1 (Fig. 45C, D) and Snail (Fig. 45G, H).  

Expression of the lineage-specific neural crest cell markers Sox9 (Fig. 45K, L) and 

Sox10 (Fig. 45O, P) were slightly decreased in HhatCre-face mutants, particularly in the  
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Figure Fourty-Four.  Branchial Arch Patterning is disrupted in 
HhatCre-face Mutants.  HhatCre-face embryos have disruptions in the 
patterning of the mandibular prominence at 10.5dpc.  (B, F) Fgf8 is 
normally expressed in the surface ectoderm of the proximal branchial arch 
(BA) in wild-type (B, arrows) and heterozygous littermates (F, arrows).  J) 
HhatCre-face mutants lack Fgf8 in the BA ectoderm (arrowheads) in 
comparison to Wt and Het littermates.  D, H) Bmp4 is normally expressed 
in the surface ectoderm of the distal BA in wild-type (D, arrows) and 
heterozygous embryos (H, arrows).  L)  In HhatCre-face mutants, Bmp4 is 
absent from the distal BA ectoderm (arrowheads) compared to Wt and Het 
littermates.  Collectively, the lack of Fgf8 and Bmp4 expression in HhatCre-

face mutants indicates a role for SHH in the patterning of the developing 
jaw. 
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anterior-most region of the head, suggesting that SHH may play a role in the  

maintenance of Sox9 and Sox10+ neural crest cells. 

Additionally, we performed lineage tracing analysis in HhatCre-face mutants 

using Wnt1-cre, to permanently label neural crest cells.  At 9.5dpc, Wnt1-cre+;R26R+ 

embryos (Fig. 46E) had LacZ+ neural crest cells populating the developing 

frontonasal prominence (FNP, arrowhead); streams of migratory neural crest cells 

from rhombomeres2/3 (r2, arrow) and 3/4 (r4, arrow) were present populating BA1 

and BA2, respectively.  In HhatCre-face;Wnt1-cre+;R26R+ embryos (Fig. 46G), neural 

crest cells were present in similar regions and were present in approximately equal 

numbers; cells had populated the FNP (arrowhead) and BA1/BA2 (arrows).  At 

10.5dpc, neural crest cells in Wnt1-cre+;R26R+ embryos (Fig. 46F) had populated the 

entire nasal region, as well as BA1/BA2.  Additionally, cranial nerve ganglia 

(arrowheads) of the trigeminal (V), facial (VII), hypoglossal (IX) and vagus (X) 

nerves were identifiable.  Although HhatCre-face;Wnt1-cre+;R26R+ embryos (Fig. 46H) 

did not exhibit any obvious reductions in the pattern of LacZ+ neural crest cells at 

10.5dpc, mutant embryos at this stage did exhibit defects in the development of the 

cranial nerves (see  HhatCre-face Mutants exhibit Cranial Nerve Fusion Defects below).  

Collectively, disruptions in the Hh signaling gradient due to loss of Hhat does not 

significantly impact neural crest cell formation.   
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Figure Fourty-Five.  HhatCre-face Mutants have defects in Neural Crest 
Cell Lineage Segregation.  The neural crest cell markers Crabp1 (C, D) 
and Snail (G, H) were unaffected in HhatCre-face mutants in comparison to 
heterozygous littermates (A, B) and (E, F), indicating normal induction of 
neural crest cells.  In contrast, Sox9 (K, L) and Sox10 (O, P) staining is 
slightly decreased in mutant embryos compared to heterozygous littermates 
(I, J and M, N) indicating alterations in the specification of these cell types. 



 183

 



 184

Figure Fourty-Six.  Lineage Tracing using Wnt1-cre in HhatCre-face

Mutants does not reveal defects in Neural Crest Cell Formation.  A-D) 
Expression pattern of the AP-2cre transgene at 9.5dpc (A, C) and 10.5dpc 
(B, D) in Hhat+/Cre-face;R26R+ (A, B) and HhatCre-face;R26R+  (C, D) embryos; 
LacZ expression is present in the frontonasal prominence (FNP, arrowhead).  
E-H)  Expression pattern of the Wnt1-cre transgene in Wnt1-cre+;R26R+ (E, 
F) and HhatCre-face; Wnt1-cre+;R26R+ (G, H) embryos.  E, G) At 9.5dpc, 
LacZ+ neural crest cells are present in the migratory streams from 
rhombomeres 2/3 (r2, arrow) and 3/4 (r4, arrow) as well as the FNP 
(arrowhead) in Wnt1-cre+;R26R+ (E) and  HhatCre-face;Wnt1-cre+;R26R+ (G) 
embryos.  F, H) By 10.5dpc, cells have populated the entire FNP in Wnt1-
cre+;R26R+ (F) and HhatCre-face;Wnt1-cre+;R26R+ (H) embryos, although the 
mutant embryos (H) exhibit fusion defects of the hypoglossal (IX, 
arrowhead) and vagus (X, arrowhead) nerves.   V, trigeminal ganglia; VII, 
facial ganglia. 
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HhatCre-face Mutants exhibit Cranial Nerve Fusion Defects 

The cranial nerves (CN) are a component of the peripheral nervous system 

that are derived from contributions of both neural crest cells and the sensory placodes 

(Larson 1993).  Analysis of HhatCre-face;Wnt1-cre+;R26R+ embryos did not indicate 

significant defects in neural crest cell formation, although mutant embryos exhibited 

defects in the development of the CN ganglia.  HhatCre-face;Wnt1-cre+;R26R+  

embryos exhibited decreases in the overall size of the CN V and CN VII ganglia (Fig. 

compare 46F, H) and exhibited an obvious fusion defect of the CN IX and CN X (Fig. 

compare 46F, H), which were similarly reduced in size.   

The defects in CN ganglia identified in HhatCre-face;Wnt1-cre+;R26R+ embryos 

were consistent in HhatCre-face mutants stained with anti-neurofilament antibodies (Fig. 

47A, D).  In Hhat+/Cre-face (Fig. 47A) embryos the occulomotor (III) nerve and the CN 

V, VII, IX, and X were readily identifiable.  In contrast, HhatCre-face embryos CN 

development is impaired; the CN III is completely absent, most likely due to the HPE 

phenotype (Fig. 47D).  Additionally, CN V and VII were reduced in size overall and 

CN IX and X exhibited aberrant fusion defects (Fig. 47D). 

As the CN ganglia are derived from neural crest cells and the sensory 

placodes, we subsequently examined each cell type to ascertain any abnormalities that 

would contribute to the overall reduction and/or fusion of the ganglia.  HhatCre-face 

mutants were harvested at 10.5dpc and processed for in situ hybridization for Eya2 

and Sox10, to examine the sensory placodes and neural crest, respectively.  

Surprisingly, we did not find any significant reduction in either of the populations that 
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Figure Fourty-Seven.  HhatCre-face Mutants exhibit Cranial Nerve (CN) 
Fusion Defects.  HhatCre-face litters were harvested at 10.5dpc and 
processed for Neurofilament staining (A, D) and Sox10 (B, E), and Eya2 
(C, F) in situ hybridization to examine the development cranial nerves.  
Neurofilament staining in the mutant embryos (D) revealed a reduced 
trigeminal (V) and facial (VII) ganglia and an abnormal fusion of the 
hypoglossal (IX) and vagal (X) nerves in comparison to heterozygous 
littermates (A).  Additionally, HhatCre-face mutants lack the occulomotor 
(III) nerve.  In HhatCre-face mutants both Sox10 (E) and Eya2 (F) show 
reduced expression in each of the ganglia (V, VII) and in CN IX and X.  
Interestingly, both populations of cells contributing to the CN show an 
abnormal fusion between CN IX and X, indicating a defect in the 
positioning of the nerves in HhatCre-face mutant embryos as opposed to a 
defect in the neural crest or placodal contribution to the CNs.  
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would contribute to  the overall defects identified.  In both Eya2 (Fig. 47C, F) and 

Sox10 (Fig. 47B, E) stained embryos, the CN Vand VII were reduced in HhatCre-face 

mutants in comparison to wildtype littermates.  The fusion defect affecting CN IX 

and X was also present in Eya2 (Fig. 47F) and Sox10 (Fig. 47E) stained HhatCre-face 

embryos, indicating that the fusion was present in both cell populations contributing 

to the ganglia.  Collectively, these results indicate that disrupted Hh signaling is not 

directly required for the maintenance of the cell types contributing to the peripheral 

nervous system, but rather the positioning of the individual ganglia. 

 

Skeletal development is disrupted in HhatCre-face mutants 

Hedgehog signaling is required for cartilage and bone formation through the 

actions of both Shh (Chiang et al. 1996) and Indian hedgehog (Ihh) (St-Jacques et al. 

1999).  Because Hhat is required for the palmitoylation of Hh proteins, mutants 

lacking the palmitate moiety are likely to exhibit defects in the development of the 

cranial skeleton.  To characterize any defects in chondro- and skeletogenesis in 

HhatCre-face mutants, we stained embryos at 15.5 and 17.5dpc (Fig. 48) with Alcian 

blue and Alizarin red to stain cartilage and bone, respectively.  At 15.5dpc, wildtype 

littermates had cartilage present throughout the developing cranium (Fig. 48A, B); the 

nasal cartilage (NA, arrow) was clearly stained.  Early ossification sites were present 

for multiple bones including the frontal (F) and parietal (P) bones (Fig. 48A, B).  By 

17.5dpc, these bones had completely mineralized, forming the   
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Figure Fourty-Eight.  HhatCre-face Mutants have Cartilage and Bone 
Defects.  Hhat+/+ (A, D) and Hhat+/Cre-face (B, E) embryos at 15.5dpc (A, B) 
have ossification of the frontal (F), mandibular (Mn, arrow), maxilla (Mx, 
arrowhead), parietal (P), and premaxilla (double asterisks).  The nasal (Na, 
arrow) cartilage is also identifiable.  C) HhatCre-face mutants exhibit defects in 
cartilage formation and are lacking nasal (Na) cartilage; additionally, mutants 
are lacking any early ossification of the skull vault (arrowheads).  At 17.5dpc, 
HhatCre-face mutants (F) have minimal cranial bone formation in comparison to 
wild-type (D) and heterozygous (E) littermates.  Bones of the ventral face and 
skull are present, such as the exoccipital (EO) and basioccipital (BO) bones.  
Reduced jaw elements of the maxilla (Mx, arrowhead) and mandible (Mn, 
arrow) are present but abnormal.  In HhatCre-face embryos (F), the interparietal 
(IP), parietal (P), frontal (F), nasal (N), and premaxilla (asterisks) bones are 
completely absent.  (At) Atlas; (NC) nasal cartilage; (S) scapula. 
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skull vault (Fig. 48 D, E).  Additionally, the nasal (N) bone (Fig. 48D, E) had ossified 

by this stage in comparison to the nasal cartilage identified at 15.5dpc.  In both 

Hhat+/+ and Hhat+/Cre-face embryos, skeletal components of the jaw, including the 

premaxilla (asterisks), maxilla (Mx, arrowhead), and mandible (Mn, arrow) were 

present at 15.5 and 17.5dpc (Fig. 48; A, D).  

In contrast, HhatCre-face embryos at 15.5dpc had minimal cartilage 

development of the skull and the nasal cartilage was absent (Fig. 48C).  By 17.dpc, 

these defects were much more pronounced, the frontal (F), interparietal (IP), parietal 

(P), and premaxillary bones were completely absent (Fig. 48F).  Instead, a thin layer 

of cartilage appeared to be present surrounded the cranial vault.  The nasal cartilage 

(NC, arrow) was present as a tube-shaped structure but no ossification had taken 

place (Fig. 48F).  The ventral bones of the skull; the basioccipital (BO) and 

exoccipital (EO) bones were present, but reduced in size (Fig. 48F), which is 

consistent with skeletal preparations of late-staged 17.5dpc Shh-/- embryos (Chiang et 

al. 1996).  HhatCre-face mutants have a rudimentary maxilla (Mx, arrowhead) and 

mandible (Mn, arrow), although it appears as though only the proximal regions of 

these jaw elements were present; no distal maxilla or mandible was present in any of 

the mutants examined at this stage (Fig. 48F).  Finally, mutants at 17.5dpc have 

ossification in a portion of the bones that contribute to the shoulder girdle, as scapulae 

and what appears to be a clavicle was present (Fig. 49F). 

The absence of cranial vault bones led us to examine histological sections of 

Hhat+/Cre-face and HhatCre-face embryos at 15.5dpc to identify any defects in 
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endochondral ossification as Ihh regulates this process (St-Jacques et al. 1999).  

During endochondral ossification proliferating chondrocytes at distal ends of a 

skeletal element undergo hypertrophy and dramatically increase in size; as 

development proceeds, hypertrophic chondrocytes undergo apoptosis and are 

replaced by invading osteoblasts (reviewed in (Kronenberg 2003)).   

Sagittal sections of Hhat+/Cre-face through the ex- (Fig. 49A) and basioccipital 

(Fig. 49B) bones revealed normal cartilage development; early signs of osteoblast 

invasion are identifiable in each skeletal element.  In each region, proliferating 

chondrocytes (PC) are located at the most distal end of the element (Fig. 49A, B), 

while prehypertrophic chondrocytes (PHC, arrow) are present more medially (Fig. 

49A, B); hypertrophic chondrocytes (HC) have increased in size and are positioned 

more centrally within the element (Fig. 49A, B).  In contrast, sections of HhatCre-face 

mutants (Fig. 49C, D) revealed a delay in chondrocyte development; the skeletal 

elements are reduced in size and proliferating chondrocytes (PC) and prehypertrophic 

chondrocytes (PHC) are absent from each of the bones.  Indeed, each of the bones are 

almost entirely comprised of hypertrophic chondrocytes (Fig. 49C, D), indicating 

defects in the chondrocyte proliferation and apoptosis.  Finally, osteoblasts were not 

present in either of the elements in all sections examined, indicating a delay in their 

initial invasion in comparison to heterozygous littermates or that the cells do not 

form.   
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Figure Fourty-Nine.  HhatCre-face Mutants have defects in 
Endochondral Bone Formation resulting from defective Hh 
Signaling.  A-D) Histological sections of Hhat+/Cre-face (A, B) and 
HhatCre-face (C, D) embryos at 15.5dpc.  A, B) Hhat+/Cre-face embryos have 
normal development of the ex- (A) and basioccipital (B) bones.  
Proliferating chondrocytes (PC, arrowhead) are present at the distal ends 
of each skeletal element, while hypertrophic chondrocytes (HC, arrow) 
are more medially positioned.  Prehypertrophic chondrocytes (PHC, 
arrow) are located between the PC and HC, and have condensed in size.  
C-D) In HhatCre-face embryos, both skull bones are  reduced in size in 
comparison to littermates.  C) HC are present throughout the exoccipital 
bone, although the PHC and PC are absent; HC are also identifiable in 
the basioccipital bone (D).  E-H) Hhat+/Cre-face;PtcLacZ+ (E, F) and 
Hhat+/Cre-face;PtcLacZ+ (G, H) harvested at 15.5dpc and processed for β-
gal staining.  E, F) In Hhat+/Cre-face;PtcLacZ+ embryos, Ptc activation is 
present along the region that will give rise to the bone collar 
(arrowheads) in the ex- and basioccipital bones.  G, H) In contrast, 
HhatCre-face;PtcLacZ+ mutants lack any LacZ expression in the exoccipital 
(G) bone and have significantly diminished LacZ expression in the 
basioccipital bone (H, arrowhead).  Scale bars, 100μM. 
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  Additionally, we analyzed the activation of Ptc in the ex- and basioccipital 

bones, to determine if impaired Hh signaling was impaired and therefore contributing 

to the skull defects characterized in HhatCre-face mutants.  Hhat+/Cre-face;PtcLacZ+ and 

HhatCre-face;PtcLacZ+  embryos were harvested at 15.5dpc and processed for β-gal 

staining to determine if Ptc activation was diminished in mutant embryos in 

comparison to heterozygous littermates.  Indeed, Ptc activation was completely 

absent from the exoccipital bone in HhatCre-face;PtcLacZ+  mutants (Fig. 49G), 

indicating that decreased Hh signaling, most likely IHH, contributes to the defects in 

bone development at 15.5 and 17.5dpc.  Hhat+/Cre-face;PtcLacZ+ embryos (Fig. 49E) 

have LacZ expression along the outer edges of the bone (arrowheads), a region that 

requires IHH signaling for ossification of the bone collar.  Additionally, decreased 

LacZ expression was present in the basioccipital bone of HhatCre-face;PtcLacZ+  

embryos, a few random LacZ+ cells (Fig. 49H, arrowheads) were present in this 

region but were far decreased in number in comparison to Hhat+/Cre-face;PtcLacZ+ 

embryos (Fig. 49F; arrowheads).  Overall, the bone defects characterized in HhatCre-

face mutants clearly indicate a requirement of Hh signaling, most likely IHH, in 

regulating endochondral bone formation. 

 

D) Discussion 

We have identified a novel mouse model of holoprosencephaly (HPE) 

resulting from insertion of the Cre-face transgene into Hedgehog acyltransferase 

(Hhat), the gene responsible for palmitoylation of Hedgehog (Hh) proteins.   Hhat 
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palmitoylates the N-terminal of SHH post-translationally, a reaction that is specific to 

Hh proteins (Buglino and Resh 2008).  HhatCre-face embryos exhibit a complete 

absence of SHH signaling (Fig. 41) and downregulation of Ptc activation (Fig. 42) by 

9.5dpc.  Mutant embryos exhibit secondary defects including increased apoptosis in 

the developing head (Fig. 43) as well as neural crest cell and branchial arch patterning 

defects, which ultimately contributes to the extensive craniofacial defects at late 

developmental stages.  At 17.5dpc HhatCre-face mutants have delayed chondrogenesis 

and lack the majority of the bones of the anterior skull (Fig. 48); only ventral bones, 

such as the basioccipital and exoccipital bones are present.  Additionally, HhatCre-face 

mutants have defects in endochondral bone development resulting from impaired Hh 

signaling as indicated by histological sections through the skull and decreased Ptc 

activation (Fig. 49).  Previous reports have indicated the importance of palmitoylation 

in Hh signaling; in vitro, palmitoylation increases the potency of SHH, although this 

has not been addressed in vivo (Taylor et al. 2001).  Drosophila mutants lacking Hh 

palmitoylation exhibit patterning defects in Hh-responsive cells (Amanai and Jiang 

2001; Chamoun et al. 2001; Lee and Treisman 2001; Micchelli et al. 2002) and the 

fatty acid modification is required for long-range SHH signaling in the mouse (Chen 

et al. 2004).  Overall, these studies as well as data from HhatCre-face mutants highlight 

the requirement of palmitoylation in establishing the Hh signaling gradient. 

 

HhatCre-face Mutants have altered Hh Signaling 
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The HPE phenotype identified in HhatCre-face mutants suggested disruptions in 

Shh.  Indeed, Shh was absent from the ventral telencephalon (VT) and notochord as 

early as 8.5dpc (Fig. 40).  By 9.5dpc Shh was downregulated in the floorplate (FP) 

and was absent from the branchial arch (BA) ectoderm by 10.5dpc (Fig. 40).  

Subsequent analysis of SHH in HhatCre-face mutants revealed an absence of SHH from 

the VT, pharyngeal endoderm (PE), BA ectoderm, and FP (Fig. 41), indicating a clear 

failure in the establishment of the SHH signaling gradient as has been reported in 

other ski/Skn mutants (Amanai and Jiang 2001; Chamoun et al. 2001; Lee and 

Treisman 2001; Micchelli et al. 2002; Chen et al. 2004).  The loss of SHH at early 

developmental stages, in particular in the VT and PE, underlies the craniofacial 

patterning defects identified in HhatCre-face mutants; SHH signaling from the VT is 

required for the ventral patterning of tissues in the surrounding regions, for example 

the developing eye and nervous tissue (Macdonald et al. 1995; Dale et al. 1997), 

while SHH from the PE is required for patterning of the lower jaw components 

(Moore-Scott and Manley 2005; Brito et al. 2006).  The lack of SHH signaling in the 

VT and PE in HhatCre-face mutants most likely underlies the apoptosis seen in the 

frontonasal, maxillary, and mandibular prominences (Fig. 43) as SHH is required for 

the proliferation and viability of neural crest cells contributing to this region (Ahlgren 

and Bronner-Fraser 1999). 

Hh proteins are trafficked to the cell surface by the Dispatched receptor, 

diffuse to responding cells, and bind to the receptor, Patched1 (Ptc) (Ingham et al. 

1991; Chen and Struhl 1996; Marigo et al. 1996).  In the absence of Hh signaling, Ptc 
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inhibits the Hh co-receptor Smoothened (Smo) (Incardona et al. 2000; Martin et al. 

2001), targeting it for degradation.  Upon binding of Ptc, the complex is internalized 

and targeted for degradation causing the dis-inhibition of the receptor Smo, leading to 

its integration into the cell membrane (Alcedo et al. 2000; Denef et al. 2000; Ingham 

et al. 2000) and activation of Hh targets (Zhu et al. 2003).  To determine the extent of 

Hh signaling present in HhatCre-face mutants, we analyzed the activation of Patched 

(Ptc) using the PtcLacZ reporter line.  Hhat+/Cre-face;PtcLacZ+ embryos exhibit β-gal 

staining in the ventral telencephalon, pharyngeal endoderm, floorplate, and 

notochord; regions that require Hh signaling, in particular SHH, during development.  

In contrast, HhatCre-face;PtcLacZ+ mutants have an absence of Ptc activation, in the 

VT, PE, and FP (Fig. 42), indicating a disruption in Hh signaling in these regions; 

markedly reduced LacZ expression was present in the NC of HhatCre-face;PtcLacZ+ 

mutants.  Although some Ptc activation was present in the HhatCre-face mutants, a 

gradient of LacZ expression was absent in every region analyzed, indicating Hh 

proteins were not secreted from their producing cells or that only localized Hh 

signaling is intact.  Overall, these data indicate that the short- and long-range Hh 

signaling gradient fail to be established.   

Interestingly, this suggests that in HhatCre-face mutants a cycling of Hh 

signaling occurs throughout embryonic development.  At early developmental stages, 

Hh proteins are initially synthesized by Hh-producing cells and localized Hh 

signaling may occur in adjacent cells.  In contrast, the Hh signaling gradient would 

not be established to the absence of palmitoylation of Hh proteins.  As development 
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proceeds, reactivation of Hh signaling would occur at sites of synthesis, but only 

localized signaling could take place, if at all, which in theory would be perpetually 

repeated within each tissue that produces Hh proteins throughout development.  In 

HhatCre-face;PtcLacZ+ mutants, the LacZ expression in the notochord indicate 

activation of Ptc has occurred, although the expression is restricted to cells adjacent 

to the NC.  The induction of SHH in the floorplate by the NC fails to occur due to 

impaired SHH signaling from the lack of palmitoylation; therefore, the multiple 

defects in HhatCre-face mutants therefore reflect a defective Hh signaling gradient.  The 

addition of the palmitic acid moiety is required for establishing the SHH signaling 

gradient (Chen et al. 2004), therefore, HhatCre-face mutants provide a model for 

examining the role of gradient signaling of all Hh proteins throughout development.   

 

Shh is differentially expressed in HhatCre-face and Skn-/- embryos 

Interestingly, Skinny hedgehog (Skn) mutants have defects in the 

palmitoylation of Hh proteins, but exhibit a normal pattern of Shh expression (Chen et 

al. 2004), indicating differences between our insertional mutant in comparison to the 

classic Skn knockout.  Indeed, Shh transcript and protein are absent in HhatCre-face 

mutants at 9.5dpc, while only SHH protein is affected in Skn-/- embryos (Chen et al. 

2004).  Additionally, despite the altered SHH signaling in the neural tube of Skn-/- 

embryos, it was not reported to be disrupted in other tissues where SHH is secreted, 

such as the notochord and pharyngeal endoderm (Chen et al. 2004).  This difference 

between HhatCre-face and Skn mutants has significant affects on the overall 



 200

morphology of the mutant embryos; Skn-/- embryos are postnatal lethal and exhibit 

dwarfism (Chen et al. 2004), defects less severe in comparison to HhatCre-face mutant 

embryos.  In contrast, HhatCre-face mutants are embryonic lethal at 18.5dpc and exhibit 

extensive craniofacial and body wall defects. 

The alterations in Shh transcripts and protein in HhatCre-face mutants are likely 

the result of regulatory feedback loops involving Shh and Gli family members.  The 

Gli genes (Gli1-3) are the nuclear effectors of SHH signaling (Ruiz i Altaba 1999).  

Gli1 and Gli2 have well characterized roles as positive regulators of Shh targets and 

are directly activated by SHH (Ruiz i Altaba et al. 2003).  In contrast, Gli3 can act as 

a transcriptional activator or repressor, a function dependent upon C-terminal 

modification of Gli3 into the repressor form, Gli3Rep (Sasaki et al. 1999).  Gli3Rep is a 

potent repressor of SHH activity and is normally inhibited by the presence of SHH 

signaling (Litingtung and Chiang 2000); Indeed, Gli3Rep is dramatically upregulated 

throughout the neural tube of Shh-/- embryos.  Once activated, Gli3Rep inhibits Shh 

transcription (Ruiz i Altaba et al. 2003). 

In HhatCre-face mutants, Shh would initially be transcribed and translated at 

early developmental stages, but would not undergo the dual post-translational 

modification due to lack of Hhat.  As evidenced by SHH immunohistochemistry at 

9.5dpc, HhatCre-face mutants exhibit a global downregulation of SHH signaling thereby 

removing the inhibition of the Gli3Rep and ultimately resulting in the downregulation 

of Shh at the transcriptional level as a secondary defect.  In contrast, Skn-/- embryos 

lack SHH protein in the neural tube and exhibit a slight reduction of SHH in the 
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developing limb bud.  If SHH signaling is maintained in other regions such as the 

pharyngeal endoderm and notochord, it would not result in a dramatic upregulation of 

Gli3Rep in these regions and Shh transcripts would be normal.  Indeed, Shh is seen in 

the pharyngeal region and notochord of Skn-/- mutants.  Collectively, the lack of SHH 

signaling throughout HhatCre-face mutants directly contributes to the more severe 

phenotype.  

The phenotype characterized in HhatCre-face mutants in comparison to Skn-/- 

embryos may also be indicative of strain background differences.  Humans with 

defective SHH signaling exhibit a wide-range of craniofacial phenotypes, ranging 

from clinically normal to very severe, which are attributed to SHH modifiers and 

background differences reflecting the individual variation within the human 

population (Belloni et al. 1996b; Wallis and Muenke 2000).  Background differences 

in mouse strains have been shown to contribute to different phenotypes in other 

craniofacial syndromes.  Treacher Collins Syndrome (TCS) is an autosomal dominant 

disorder resulting from the haploinsufficiency of TCOF1.  TCS is characterized by 

the hypoplasia of mid-facial structures (Dixon et al. 2006) and is highly penetrant in 

human populations but with varying severity (Dixon et al. 1997).  Tcof1+/- embryos, 

the mouse model of TCS, exhibit varying degrees of severity depending on the 

background strain (Dixon and Dixon 2004).  Considering the importance of 

background modifiers in the severity of TCS and the array of phenotypes associated 

with disrupted SHH signaling, it would not be surprising if background was 

contributing to the severity of defects identified in HhatCre-face mutants.  
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Branchial Arch Patterning is disrupted in HhatCre-face Mutants 

During development, the mandible is patterned in a proximo-distal gradient 

dependent upon Fgf8 and Bmp4 expression, ultimately resulting in the specification 

of lower jaw derivatives, such as odontogenic and skeletogenic precursors (Tucker et 

al. 1999; Liu et al. 2005a).  Fgf8 and Bmp4 are expressed in adjacent domains of the 

developing mandible (Bennett et al. 1995; Crossley and Martin 1995) and are 

regulated by SHH; Shh-/- embryos (Yamagishi et al. 2006; Haworth et al. 2007) show 

a specific absence of both Fgf8 and Bmp4.  Additionally, studies in which the 

pharyngeal endoderm, a source of SHH, was ablated in chick embryos resulted in the 

absence of Fgf8 and Bmp4 (Brito et al. 2006), indicating that SHH signaling from the 

pharyngeal endoderm is required for the maintenance these genes in the development 

of the lower jaw.  Consistent with previous reports in Shh-/- embryos (Yamagishi et al. 

2006; Haworth et al. 2007), retroviral experiments (Abzhanov and Tabin 2004), and 

chick ablation experiments (Moore-Scott and Manley 2005; Brito et al. 2006), 

analysis of HhatCre-face mutants revealed a complete absence of Fgf8 and Bmp4 in the 

proximal and distal branchial arch ectoderm (Fig. 44), respectively.  Interestingly, 

both genes were expressed in the nasal region, despite the fusion of the medial and 

lateral nasal prominences into a single nasal prominence.     

The specific loss of Fgf8 and Bmp4 in the mandible of mutant embryos 

underlies multiple defects in the development of the lower jaw.  Indeed, Fg8 is 

required for the development of molar teeth (Tucker and Sharpe 2004) and restricts 
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odontogenic precursors to the rostral half of the mandible (Tucker et al. 1999); 

conversely, development of the incisors is regulated by Bmp4 in the distal mandible 

(Tucker and Sharpe 2004).  At 14.5dpc, the early primordia of incisor and molar teeth 

were present in HhatCre-face mutants but cease development; by 17.5dpc, mutant 

embryos exhibit tooth agenesis.  Overall, the lack of identifiable molar and incisor 

teeth in HhatCre-face embryos is consistent with the role of Fgf8 and Bmp4 in the 

maintenance of early tooth primordia.   

Additionally, both Fgf8 and Bmp4 are positive regulators of cartilage 

outgrowth in the mandible.  In the lower beak of chick embryos (Abzhanov and Tabin 

2004), a derivative of the mandibular prominence, overexpression of Fgf8 results in 

enhanced chondrogenesis in vitro and in vivo (Abzhanov and Tabin 2004).  

Conditional inactivation of Bmp4 in the mandibular ectoderm results in a severely 

reduced and often absent mandible, indicating Bmp4 in the maintenance of 

chondrogenic precursors in the developing jaw (Liu et al. 2005a).  In HhatCre-face 

mutants, the mandible is reduced beginning at 10.5dpc and is abnormally fused by 

14.5dpc.  Additionally, small circular condensations of cartilage reminiscent of 

Meckel’s cartilage were present within the developing mandible of mutant embryos 

but were significantly delayed in comparison to heterozygote littermates (data not 

shown).  The specific loss of Fgf8 and Bmp4 in the mandible of HhatCre-face mutants at 

early developmental stages results in the lack of the distal mandibular bone by 

17.5dpc (Fig. 48).  Collectively, these data are consistent with previous findings 

demonstrating the requirement of Fgf8 and Bmp4 in the cartilage maintenance and 
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outgrowth.  Collectively, the loss of SHH in HhatCre-face mutants results in the 

downregulation of Fgf8 and Bmp4 in the mandible and results in the lack of 

mandibular ossification seen at late developmental stages. 

 

Neural Crest Cell & Cranial Nerve Defects are secondary to Disrupted Hh Signaling 

Analysis of the neural crest cell induction using the general crest cell markers 

Crabp1 and Snail revealed comparable numbers of neural crest cells in HhatCre-face 

mutants and Hhat+/Cre-face embryos (Fig. 45).  Additionally, lineage tracing analysis 

examining the entire population of neural crest cells using Wnt1-cre did not reveal 

decreased neural crest cells in HhatCre-face embryos (Fig. 46); mutant embryos had 

LacZ+ neural crest cells which had populated the FNP.  Furthermore, cells were 

migrating in the r2/r4 migratory streams populating BA1/BA2.  Although, general 

markers of the crest cell population were normal, HhatCre-face mutants exhibited 

decreased Sox9+ and Sox10+ neural crest cells, indicating lineage specific crest cell 

defects.  The decreased number of cells may indicate a cell fate switch in the mutant 

embryos, or perhaps, delayed differentiation.  Overexpression of Sox10 using in ovo 

electroporation results in an increased number of migratory neural crest cells, 

although the cells fail to express any differentiation markers up to six days after 

electroporation, indicating that increased Sox10 expression results in the maintenance 

of undifferentiated states (McKeown et al. 2003).  Additionally, SHH is required by 

neural crest cell for the prevention of apoptosis (Ahlgren and Bronner-Fraser 1999), 

and the loss of SHH in HhatCre-face  embryos may cause decreased Sox9+ and Sox10+ 
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neural crest cells due to increased apoptosis as a secondary defect; this is supported 

by the increased Caspase-3 staining in the head mesenchyme and maxillary and 

mandibular prominences.  Overall, Hh signaling is likely required for maintenance, 

specification, or survival of Sox9 and Sox10+ neural crest cells but, as a whole, is not 

required for the induction process.   

Although HhatCre-face  mutants do not exhibit neural crest cell induction 

defects, analysis of Wnt1-cre lineage tracing revealed abnormal development of the 

cranial nerves.  In neurofilament stained embryos, the occulomotor nerve was absent 

(Fig. 47), which most likely results as a secondary defect due to the absence of SHH 

in the ventral neural tube and dorsalization of the CNS (Chiang et al. 1996; Ericson et 

al. 1996; Briscoe et al. 2001).  Additionally, the remaining ganglia were reduced and 

CN IX and X were abnormally fused (Fig. 47).  These defects were also present in 

mutants processed for additional CN markers, including Eya2 and Sox10.  The 

contribution of neural crest and sensory placodes appeared normal in HhatCre-face  

embryos, indicating that the fusion defect does not result from the abnormal 

development of either of these cell types, but rather from a requirement of Hh 

signaling in the positioning of the ganglia within the head mesenchyme.     

Interestingly, conditional inactivation of Hh signaling in cranial neural crest 

cells in Wnt1-cre;SmoNC embryos does not lead to decreased neural crest cells or 

defects in CN ganglia formation (Jeong et al. 2004).  HhatCre-face  mutants do not 

exhibit any defects in the initial induction of neural crest cells although HhatCre-face 

embryos have significant disruptions in CN ganglia.  The differences between the CN 
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defects of HhatCre-face and Wnt1-cre;SmoNC embryos are most likely due to the specific 

inactivation of Hh signaling in the cranial neural crest in Wnt1-cre;SmoNC embryos, 

while HhatCre-face mutants have a global downregulation of Hh signaling.  Therefore, 

defects in HhatCre-face mutants may reflect two different phenotypes of Hh signaling: 

first, the role for Hh proteins, particularly SHH, in the proliferation and survival of 

neural crest cells contributing to CN ganglia; HhatCre-face mutants exhibit increased 

apoptosis and slightly decreased Sox9 and Sox10+ cells.  Second, Hh signaling may 

be required in placodal tissues that also contribute to CN ganglia.  Indeed, previous 

reports have indicated a specific role for SHH signaling in the formation (McCabe et 

al. 2007), positioning (Fedtsova et al. 2003) and specification of the trigeminal 

ganglia (Ota and Ito 2003).  Overall, the cranial nerve defects in HhatCre-face mutants 

are more severe than those identified in conditional SHH signaling mutants due to the 

global downregulation as opposed to specific inactivation of Hh proteins in neural 

crest cells.   

 

Cranial Vault Defects may reflect Disrupted Shh and Ihh Signaling 

SHH signaling is required for cranial vault formation; Shh‐/‐ embryos at 

17.5dpc lack the dorsal bones of the skull vault, including the frontal and parietal 

bones, while the ventral bones of the skull are present (Chiang et al. 1996).  

Moreover, conditional inactivation of Hh signaling in neural crest cells results in the 

specific disruption of neural crest derived bone (Jeong et al. 2004).  In addition to the 

well characterized roles for Shh in cranial bone formation, Indian hedgehog (Ihh) is 
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required for this process.  Ihh‐/‐ embryos exhibit a marked dwarfism resulting from 

reduced chondrocyte proliferation and an absence of bone calcification (St-Jacques et 

al. 1999).  Collectively, both Shh and Ihh are required the proper development of the 

cranial vault (St-Jacques et al. 1999; Jeong et al. 2004).  

Similar to Shh‐/‐ embryos, HhatCre-face mutants have extensive skeletal defects, 

lacking all but the ventral bones of the skull (Fig. 48).  Mutant embryos appear to 

have the basioccipital and exoccipital bones, although the exact identification of the 

bones is somewhat difficult due to the severe morphology of the embryos.  The 

severity of skeletal defects identified in HhatCre-face mutants are a clear result of 

defects in chondrogenesis at 15.5dpc (Fig. 48), where the skull vault lacks significant 

cartilage staining; only the nasal cartilage is present.  The similar phenotypes in Shh‐/‐ 

embryos and HhatCre-face mutants indicate the loss of SHH signaling in HhatCre-face 

mutants results in the extensive defects of the cranial vault.  Histological analysis of 

HhatCre-face mutants at 15.5dpc revealed defects in endochondral ossification and 

decreased Ptc activation (Fig. 49), indicating that IHH is also disrupted in the mutant 

embryos; as Hhat is responsible for palmitoylation of IHH, these defects are not 

unexpected.   Interestingly, both the ex- and basioccipital bones had hypertrophic 

chondrocytes throughout the skeletal element, but the absence of proliferating and 

prehypertrophic chondrocytes suggests defects in chondrocyte proliferation and 

apoptosis.  Hypertrophic chondrocytes eventually undergo apoptosis once they are a 

far enough distance from the end of the skeletal element, a process regulated in part 

by IHH (Kronenberg 2003).  As HhatCre-face mutants lack a Hh signaling gradient, this 
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would indicate that defective IHH signaling within each skeletal element would 

prevent the apoptosis of hypertrophic chondrocytes, allowing for osteoblast invasion.  

Additionally, IHH is required for the initiation of the bone collar, the first site of 

osteogenesis to occur in the developing endochondral bone.  HhatCre-face embryos lack 

an identifiable bone collar and the lack of Ptc activation in mutant embryos indicates 

that the lack of IHH signaling underlies the lack of bone collar formation in the 

mutants.   Collectively, these data support the well characterized role of IHH in 

endochondral bone development as well as indicate the cartilage and bone defects 

characterized in HhatCre-face embryos results from defective SHH and IHH signaling.   

In contrast to the defects in chondro- and skeletogenesis in HhatCre-face 

mutants, Skn-/- embryos at 18.5dpc have skeletal abnormalities that are less severe.  

The skeletal defects in Skn-/- embryos more closely resemble the skeletal phenotypes 

present in Ihh-/- embryos, both mutants exhibit dwarfism in comparison to wild-type 

littermates (St-Jacques et al. 1999; Chen et al. 2004), whereas, the skeletal 

abnormalities in HhatCre-face embryos more closely mimic Shh-/- mutants (Chiang et al. 

1996).  The resulting differences in skeletal phenotypes characterized in HhatCre-face 

and Skn mutants most likely reflects the differences in SHH signaling, HhatCre-face 

mutants exhibit a global downregulation of SHH, while Skn-/- embryos lack SHH in 

the floorplate (Chen et al. 2004).  The differences in the disruption of the SHH 

signaling gradient may be reflective of the severity of cranial bone phenotypes 

between the two mutants.  The disruption in IHH signaling in HhatCre-face and Skn 

mutants requires additional examination to identify the differences, if any, exist 
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between the mutant embryos.  As SHH exhibits varying degrees of disruption 

between the Hhat/Skn mutants, it would not be unexpected for IHH to be 

differentially disrupted as well.  Finally, background strain differences may be 

contributing to the severity of phenotypes between the two mutants. 

We have identified a novel phenotype of HPE resulting from the insertional 

disruption of Hhat, the gene required for palmitoylation of Hh proteins.  HhatCre-face 

mutants lack Hh signaling throughout the developing embryo, ultimately resulting in 

increased apoptosis and extensive craniofacial defects.  Mutant embryos have 

branchial arch patterning defects and lack Fgf8 and Bmp4 in the mandible, genes that 

are directly regulated by SHH signaling from the pharyngeal endoderm.  

Additionally, Hh signaling appears to be important for the positioning of CN IX and 

X as HhatCre-face  mutants exhibit a novel fusion defect of the CN ganglia.  Finally, 

HhatCre-face mutants have severe cartilage and bone defects at late developmental 

stages, most likely reflecting disrupted SHH and IHH signaling, as both of these 

genes are required for proper bone development.  As Hhat is required for the 

palmitoylation of Hh proteins and the establishment of the Hh signaling gradient, the 

lack of Hh signaling in HhatCre-face mutants results in multiple craniofacial defects and 

highlights the importance of Hh signaling in craniofacial development and the 

etiology of HPE.   
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E) Experimental Methods 

Mouse lines and maintenance 

Mice were housed in the Laboratory Animal Services Facility at the Stowers 

Institute for Medical Research according to IACUC animal welfare guidelines.  

Hhat+/Cre-face mice were maintained on a CD1 background; genotyping as preformed 

as described below.  The Gli3Xt (Hui and Joyner 1993), Patched1(Ptc)LacZ 

(Goodrich et al. 1997), Rosa 26 Reporter (R26R) (Soriano 1999), Shh (Chiang et al. 

1996), and Wnt1-cre (Chai et al. 2000; Jiang et al. 2000) mice were maintained as 

previously reported.  For embryo collection, dams were sacrificed by cervical 

dislocation; day of plug was noted as 0 days post coitum (dpc).  Embryos were 

removed from maternal tissue at the following stages: 8.5, 9.5, 10.5, 11.5, 14.5, 15.5, 

and 17.5dpc; embryos were fixed and yolk sacs collected for genotyping.   

 

Identification of the Cre-face Transgene Insertion Site 

The insertion location of the Cre-face transgene was identified using the 

Vectorette kit (Sigma, St. Louis, MO).  A Cre-face;Vectorette DNA library was 

created using the EcoRI-Vectorette unit according to manufacturer’s instructions.  To 

amplify clone DNA containing the transgene and surrounding genomic region, the 

primer (5’-ACA TCT GGG GTG AAG GGA ATT AGG GAG TTG-3’) was used in 

addition to the Vectorette-specific primer to amplify DNA bands containing the 

integration site.  A step-down PCR was used according to manufacturer’s 

instructions; a 5kb band, clone E1N3, was gel-purified (Gel Extraction Kit, Qiagen, 
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Valencia, CA) and sequenced using the Vectorette sequencing primer. 

Verification of transgene insertion site was performed using PCR in wildtype, 

heterozygous, and mutant genomic DNA from embryos at 10.5dpc.  Amplification of 

the region spanning the insertion site used the transgene-specific primer (5’-TGG 

TTA CCT TCC TCC AGA TAG TATG-3’) and Hhat-specific primer (5’-CAC TTG 

CTA ACT AGA AGG AAC TTCC-3’) produced a 250bp band; wildtype primers (5’-

CCT GGG AAG GAA AAA CCA ATA TGTA-3’) and (5’-GGT CCT ATC ATG 

CTA CCA AGA AA-3’) amplified a 1.4kb band.  Samples were denatured at 94°C 

for 30sec, annealed at 57°C for 30sec, and extended at 72°C for 30sec for 30 cycles 

for both reactions; PCR bands for the wildtype and mutant reactions were gel purified 

and sequenced, confirming Hhat as the gene disrupted by the Cre-face transgene.   

To confirm the absence of Hhat mRNA in HhatCre-face mutants, RNA was 

isolated from HhatCre-face litters (RNeasy kit, Qiagen, Valencia, CA) and cDNA 

library was created using the Superscript first strand kit (Invitrogen, Carlsbad, CA).  

Primers (5’-AGG TTC TGG TGG GAC CCT GTGT-3’) and (5’-AGA AAG CAG 

TGT CCC CAA CAGG-3’) were used to amplify the full length Hhat mRNA in Wt, 

Het, and Mut embryos.  Primers to glyceraldehyde 3-phosphate dehydrogenase 

(Gapdh) (5’-AGC CTC GTC CCG TAG ACA AAAT-3’) and (5’-ACC AGG AAA 

TGA GCT TGA CAAA-3’) were used as an internal positive control. 
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In situ hybridization 

Embryos were collected as described above, fixed O/N in 4% 

paraformaldehyde (PFA) at 4°C, dehydrated in methanol (MeOH), and stored at -

20°C until used in the staining protocol.  In situ hybridizations were performed 

following the standard protocol described by Nagy et al. (2003).  Anti-sense 

digoxigenin-labeled mRNA riboprobes were synthesized for Bmp4 (R. Arkell), 

Crabp1 (S. Schneider-Maunoury), Eya2 (K. Melton), Fgf8 (I. Mason), Shh (A. 

McMahon), Snail (A. Nieto), Sox9 (R. Krumlauf), and Sox10 (M. Gassmann). 

 

β-galactosidase Staining 

 To stain for β-galactosidase, AP-2cre mice were mated to Rosa 26 reporter 

(R26R) mice and embryos were collected at 9.5 and 10.5dpc as described above.  

Briefly, embryos were fixed on wet ice for 20-30min in the Tissue Fixative Solution 

(Millipore, Billerica, MA), washed in Tissue Rinse Solution A for 30min and Tissue 

Rinse Solution B for 5min at RT.  Embryos were incubated O/N at 37°C in Tissue 

Stain Solution with X-gal (40mg/mL in DMF) (Invitrogen, Carlsbad, CA).  After 

incubation, embryos were washed PBS and re-fixed O/N in the Tissue Fixative 

Solution.  Embryos were processed in paraffin, cut in 10micron sections, and 

counterstained in Nuclear Fast Red (Sigma, St. Louis, MO).   

For β-gal staining on sections, 15.5dpc embryos were harvested and fixed in 

LacZ fixative (0.9% 25%glutaraldehyde, 10% 0.5M EGTA,  and 10% 1M MgCl2 in 

PBS) for 2.5hrs at 4°C.  Embryos were processed through a sucrose gradient (15, 
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30% sucrose in PBS) and snap frozen in OCT.  Eight micron sections were cut and 

re-fixed in LacZ fixative for 10min at RT; sections were washed in LacZ wash buffer 

(0.2% MgCl2, 0.01% NaDOC, 0.02% NP40 in PBS) three times, 5min each.  β-gal 

staining was developed using a LacZ stain solution (0.002% Potassium ferrocyanide, 

0.01% Potassium ferricyanide, 0.04% X-gal (25mg/mL in DMF) in LacZ wash 

buffer) to the desired intensity and washed three times 5min after developing.  

Sections were counterstained in NFR and washed in distilled water for 1-2min; 

sections were mounted and photographed using a Ziess Axioplan microscope and 

processed using Photoshop CS2 (Adobe, San Jose, CA).   

 

 Immunohistochemistry 

For whole-mount staining using a Neurofilament antibody, embryos were 

fixed in 4% PFA O/N at 4°C and dehydrated in a graded MeOH series; dehydrated 

embryos were bleached in methanol:DMSO:30% H2O2 (4:1:1) for 5hrs at RT and 

rehydrated in 50% methanol:PBS and 15% methanol:PBS, PBS for 30minutes each.  

For blocking, embryos were washed in PBSMT (2% milk powder, 0.1% Triton X-100 

in PBS) twice for 1hour at RT.  Embryos were incubated in primary antibody to 

Neurofilament (2H3) diluted at 1:250 O/N at 4°C in PBSMT.  Embryos were rinsed 

in PBSMT and incubated in secondary antibody using a 1:200 dilution in PBSMT of 

HRP-coupled goat anti-rabbit IgG (Jackson Immunoresearch, West Grove, PA).  For 

color development, embryos were rinsed in PBSMT and PBT (0.2% BSA, Sigma, 

0.1% Triton X-100) three times, 20minutes each at RT and washed in 3,3-
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Diaminobenzidine (0.3mg/mL) (Sigma, St. Louis, MO) in PBT for 20minutes; 0.03% 

H2O2 was added and color was developed to the desired intensity.  

For section immunohistochemistry, litters were collected at 9.5 and/or 10.5dpc 

and fixed O/N in 1% PFA at 4°C.  Embryos were processed through a sucrose 

gradient (15%, 30% sucrose in PBS), mounted in Tissue Tek O.C.T. (VWR, West 

Chester, PA) and sectioned at 10microns.  Sections were rinsed 3X in PBT (PBS with 

0.1% Triton X-100) for 5min and blocked in 10% normal goat serum (Invitrogen, 

Carlsbad, CA) in PBT for 1hr at RT.  Slides were incubated in primary antibody 

diluted in 10% goat serum/PBT O/N at 4°C.  The mouse monoclonal antibodies to 

cleaved Caspase-3 (Cell Signaling Technologies, Danvers, MA), anti-phospho 

Histone H3 (Upstate/Millipore, Billerica, MA), anti-BrdU (Abcam, Cambridge, MA), 

and to SHH (5e1) were used at 1:500 (Caspase-3, anti-pH3, anti-BrdU) and 1:25 

(5e1), respectively.  To stain for BrdU, slides were incubated in DNaseI at 1:300 

(Invitrogen, Carlsbad, CA) in React3 buffer for 30min at 37°C to nick the DNA prior 

to blocking with 10% NGS. 

Slides were rinsed 3X 10min in PBT at RT on shaker and incubated in the 

appropriate Alexa 488 or 594 secondary antibody at 1:250 (Molecular 

probes/Invitrogen, Carlsbad, CA) for 2hrs at 4°C.  Sections were counterstained with 

a 1/1000 dilution of 2 mg/ml DAPI (Sigma, St. Louis, MO) in PBS for 5minutes, 

followed by rinses in PBS; slides were mounted with fluorescent mounting medium 

(DakoCytomation, Carpinteria, CA).  All images were collected using a Ziess 

Axioplan microscope and processed using Photoshop CS2 (Adobe, San Jose, CA).  
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Antibodies to SHH (5e1) and Neurofilament (2H3) were obtained from the 

Developmental Studies Hybridoma Bank developed under the auspices of the NICHD 

and maintained by the University of Iowa, Department of Biological Sciences (Iowa 

City, IA 52242).   

 
Hematoxylin and Eosin staining 
 

Hhat+/Cre-face and HhatCre-face embryos were harvested at 14.5dpc and fixed 

O/N in 4% PFA at 4°C.  Samples were dehydrated through a graded ethanol series, 

cleared in xylene, and embedded in liquid paraffin.  Embryos were sectioned at 

12microns and deparaffinized in xylene, and hydrated in graded alcohols to water.  

Sections were stained in Shandon hematoxylin for 1min and 30sec, differentiated in 

1% aqueous acid alcohol for 10sec, blued in PBS for 30 seconds, and stained in eosin 

for 30sec.  Sections were dehydrated in graded alcohols, cleared in xylene, and 

mounted in permanent mounting medium.  All images were collected using a Ziess 

Axioplan microscope and processed using Photoshop CS2 (Adobe, San Jose, CA).   

 

Cartilage & Bone Staining 

Embryos were collected at 15.5 and 17.5dpc and fixed in 95% EtOH O/N.  

Embryos were washed in a stain solution containing 0.5% Alizarin red (Sigma, St. 

Louis, MO) and 0.4% Alcian blue 8X (Sigma, St. Louis, MO) in 60% EtOH O/N at 

RT.  For 14.5dpc embryos, soft tissue was dissolved in 1% KOH for three hours and 

transferred to 0.25% for 30min.  For 17.5dpc staining, the embryos were anesthetized 

in PBS for 1hr at 4°C, fixed O/N in 95% EtOH, skinned and eviscerated prior to 
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staining; all remaining soft tissue was dissolved in 2% KOH for six hours and 

transferred to 0.25% KOH for 30min.  Embryos were cleared in glycerol:KOH 

(20%:0.25%; 33%:0.25%; 50%:0.25%).  Embryos were stored in 50% 

glycerol:0.25% KOH until photographed. 
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IX. Chapter Four:  Conclusions 

Gcnf is required for Neural Crest Cell Induction 

 Neural crest cell induction is regulated by multiple signaling pathways in a 

species dependent manner and includes BMP, FGF, NOTCH, PAX, and WNT 

signaling pathways.  Although these signaling cascades are involved in crest cell 

formation in multiple species, the key regulator of this process in mouse had not been 

extensively addressed.  Therefore, we set out to determine which of these signaling 

pathways, if any, are required in the production of neural crest cells in the mouse 

using in vivo and in vitro approaches. 

 Our genetic analyses of RBP-Jκ−/−  and Fgf8Δ2,3/ Δ 2,3 mutants as well as Pax3-/-

;Pax7-/- double mutants clearly demonstrate that these genes are not required for 

neural crest cell formation in the mouse.  Indeed, the neural crest cell markers 

Crabp1, Snail, Sox9, and Sox10 were all present in the mutant embryos examined, 

with few exceptions.  For example, Sox9 and Sox10 are both decreased in RBP-Jk-/- 

embryos, which most likely reflects roles for NOTCH signaling in neural crest cell 

lineage selection.  Further, Pax3-/-;Pax7-/- double mutants also exhibit decreased 

Crabp1+ and Sox10+ neural crest cells, although the decreased number of crest cells 

appears to be indicative of defects in the maintenance of the neuroepithelium; double 

mutant embryos have a significantly thinner neural plate in comparison to their 

littermates.  Hence, Pax3 and Pax7 may be required for maintenance and proliferation 

of the neural plate rather than the induction of neural crest cells; additional analyses 
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of Pax3-/-;Pax7-/- double mutants is necessary to determine the specific role of these 

Pax genes in neural plate maintenance.   

Although these genes are not required for neural crest cell induction, each of 

these signaling pathways may be involved in later aspects of neural crest cell 

patterning and differentiation.  Indeed, it would be interesting to examine the roles of 

each of these genes in neural crest cell development, perhaps using conditional 

mutants.  Inactivation of NOTCH signaling specifically in neural crest cells may 

address lineage specific roles for Sox9 and Sox10 regulation.  Although previous 

reports have removed NOTCH signaling in neural crest cells using Wnt1-cre, the 

authors focus their efforts on the role of Notch in gliogenesis of the central and 

peripheral nervous systems (Taylor et al. 2007).  It would be useful to analyze these 

mutants at later developmental stages to determine if any alterations in cell fate are 

present in the developing frontonasal prominence or cranial nerve ganglia.  Previous 

reports have indicated a role for NOTCH signaling in the specification of 

chondrocytes (Nakanishi et al. 2007), hence, mutant embryos may also exhibit defects 

in cartilage and bone formation.   

In addition to our in vivo analyses of neural crest cell formation, our in vitro 

analyses did not indicate any of these pathways as required for crest cell induction.  

Treatment with BMP, NOTCH, and WNT signaling antagonists failed to inhibit the 

expression of Sox10.  Treatment with SU5402, a FGFR signaling antagonist, did 

prevent the expression of Sox10 in the explant cultures, but concomitantly resulted in 

decreased expression of the neural plate marker Sox2.  Hence, the decreased 
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expression of Sox10 may not reflect a direct role for FGF signaling in neural crest cell 

formation but may instead reflect decreased neuroepithelial progenitors.  Varying the 

concentration and exposure to SU5402 in an attempt to circumvent these defects 

resulted in the continued decrease in both Sox2 and Sox10 expression, thereby 

preventing us from elucidating the exact role of FGF signaling in neural crest cell 

formation in vitro.  Furthermore, analysis of Fgf8 null embryos (Fgf8Δ2,3/ Δ 2,3) did not 

result in neural crest cell formation defects, indicating that if FGF signaling does 

regulate crest cell induction, it does not elicit its affects via FGF8.  At this point, it 

would be difficult to ascertain a direct role for FGF signaling in neural crest cell 

induction, Fgf8 is the most likely family member to regulate this process as FGF8 is a 

key regulator of crest cell induction in Xenopus (Monsoro-Burq et al. 2003).  As Fgf8 

is not required for crest cell formation or neural plate maintenance in the mouse, this 

leaves the potential for other Fgf family members to be involved.  Fgf4 has a similar 

domain of expression within the primitive streak (Niswander and Martin 1992) and 

plays similar roles in limb bud outgrowth as Fgf8 (Niswander et al. 1993; 

Lewandoski et al. 2000; Sun et al. 2002), hence it is plausible that Fgf4 could be 

involved in neural plate maintenance and/or neural crest cell formation.  Fgf4-/- 

embryos are embryonic lethal (Feldman et al. 1995) at the early postimplantation 

stage and reports analyzing conditional mutants have largely been focused on the 

limb bud (reviewed in (Mariani and Martin 2003)).  Hence to ascertain a role for 

Fgf4, if any, in neural crest cell induction, a conditional inactivation strategy must be 

used.  Finally, analyses of Fgf Receptor 1 (FgfR1) (Trokovic et al. 2003) and 2 
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(FgfR2) (Xu et al. 1998) mutants still generate neural crest cells indicating that to 

determine the specific role of FGF signaling in neural crest cell induction analysis of 

compound conditional FgfR knockouts would be required.   

Our previous analyses did not indicate any of the known signaling pathways 

as a requirement for murine neural crest cell induction to occur.   In an attempt to 

identify novel regulators of neural crest cell induction, we identified Germ cell 

nuclear factor (Gcnf) from a microarray screen performed in Tcof1+/- embryos (Jones 

et al. 2008), the mouse model of Treacher Collins Syndrome (TCS); Gcnf was 

downregulated almost two-fold in Tcof1+/- compared to wildtype littermates (N. Jones 

and P. Trainor, unpublished).  Gcnf is expressed during neural crest cell formation 

and is most intense in the dorsal neural folds, the area from which neural crest cells 

are induced; additionally, Gcnf is expressed in migratory neural crest cells. 

The downregulation of Gcnf in Tcof1+/- embryos, which exhibit decreased 

neural crest cells, and the expression of Gcnf in migratory neural crest cells suggested 

that Gcnf may be a novel regulator of neural crest cell development.  Analyses of 

neural crest cell makers in Gcnf-/- embryos revealed crest cell formation defects; 

Snail, Crabp1, and Sox9 were all absent in Gcnf mutants and Sox10 was abnormally 

expressed and cells significantly reduced in number.  These defects were not a result 

from altered patterning of the neural plate as evidenced by the markers Sox2, Wnt1, 

and Pax3, indicating defects in the transition from a neuroepithelial to neural crest 

cell.  Indeed, analyses of SOX2 and the mitotic marker phospho Histone H3 revealed 

prolonged maintenance of the neural plate and increased numbers of mitotic cells in 
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Gcnf-/- embryos.  The enhanced expression of SOX2 in Gcnf mutants indicates 

prolonged maintenance of stem cell-like states within the neural plate, thereby 

preventing the transition of a neuroepithelial to neural crest cell.  Additionally, the 

identification of putative Gcnf binding sites in neural crest cell specific genes such as 

Snail1 and Snail2, Sox9, and Sox10 indicate a direct role for Gcnf in the activation of 

neural crest cell formation and migration (via Snail1 and Snail2) and differentiation 

paradigms (Sox9, Sox10).  Current analyses are aimed at determining the extent of 

proliferation and apoptosis in Gcnf mutants which will further characterize the defects 

in neural plate maintenance as well as chromatin immunoprecipitation (ChIP) assays 

to determine the extent of Gcnf regulation in crest cell formation and differentiation. 

 Although Gcnf-/- embryos show a clear absence of neural crest cell formation, 

these defects are compounded by the embryonic lethality of the mutants; Gcnf 

mutants are lethal at 10.5dpc due to chorioallantoic fusion defects (Chung et al. 

2001), thereby requiring the examination of conditional Gcnf mutants.  Gcnf floxed 

mice have been generated (Lan et al. 2003) and, in conjunction with Wnt1-cre, would 

allow one to examine the specific neural crest cell defects present without any 

compounding abnormalities such as circulatory defects.  In theory, Wnt1-

cre+;Gcnffx/fx mutants would exhibit a lack of crest cell formation, potentially along 

the entire anterior-posterior axis, but would most likely die between 10.5-12.5dpc due 

to failure of cardiac neural crest cells to populate the heart.  In these mutants, 

frontonasal prominence development would be altered; no neural crest cells would be 

present to give rise to the mesenchyme in this region.  Additionally, early jaw 
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development would be impaired; neural crest cells would not migrate into the 

branchial arches, resulting in a lack of jaw cartilage primorida.  Analyses of 

conditional Gcnf mutants would be a useful series of experiments to examine the 

specific neural crest cell defects resulting from the removal of Gcnf.   

The results discussed herein provide clear evidence that Gcnf is a novel 

regulator of neural crest cell induction, hence, it is interesting to speculate whether 

Gcnf is playing a similar role in other species.  One common theme in regards to crest 

cell formation has emerged, that the process has thus far been shown to be species 

dependent.  When one considers how evolutionarily important neural crest cells are as 

well as the fact that crest cell patterning and differentiation is conserved at multiple 

stages of development, it is somewhat counterintuitive to think that neural crest cell 

induction would not be more highly conserved.  Although, considering that Gcnf acts 

upstream of neural crest cell  induction in the mouse and may be responsible for the 

activation of neural crest cells specific gene paradigms, it is very attractive to suggest 

that Gcnf could be playing similar roles in other model systems, thereby unveiling a 

conserved mechanism regulating crest cell induction across multiple species.  All of 

the current models used for examining neural crest cell development, Xenopus (Joos 

et al. 1996), avian (Adams et al. 2008), and zebrafish (Braat et al. 1999; Bertrand et 

al. 2007) have Gcnf homologues.   Furthermore, Gcnf is expressed in migratory 

neural crest cells in avian embryos (Adams et al. 2008) and the neuroepithelium and 

branchial arches in Xenopus (Joos et al. 1996).  Zebrafish have two Gcnf paralogues, 

Gcnfa and Gcnfb, each of which are expressed in the cranial ganglia and neural tube; 
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Gcnfa is also appears to be expressed in migratory neural crest cells (Bertrand et al. 

2007).   

The pattern of Gcnf expression is conversed across multiple species, 

potentially indicating that Gcnf may be regulating neural crest cell induction in these 

species as well.  Each of these species is amenable to functional assays, including 

overexpression using electroporation or mRNA injection as well as knockdown 

assays with morpholinos or dominant negative constructs.  Hence, it would be very 

informative to determine if under these conditions, whether neural crest cells are 

induced or inhibited when Gcnf is overexpressed or knocked down.  Functional 

analyses in each of these species would be required to determine the exact role of 

Gcnf in neural crest cell induction. Collectively, Gcnf is required for regulating the 

formation and migration of neural crest cells in murine embryos and verification of 

these roles in other model organisms would further define the role for Gcnf in 

regulating crest cell induction upstream of the known signaling pathways required for 

this process.   

 

The Role of FGF Signaling in the Developing Frontonasal Prominence 

 The frontonasal prominence is a midline craniofacial primordia populated by 

neural crest cells that gives rise to mid-facial structures, including the forehead, 

middle of the nose, and philtrum of the upper lip.  The outgrowth and patterning of 

the FNP is critically important for the formation of these tissues, and given that neural 

crest cells populate this region to give rise to FNP derivatives, it is likely that 
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interactions between neural crest cells and the surrounding tissue layers are critical 

for FNP development.  Fgf8 is expressed in frontonasal ectoderm zone (FEZ), a 

region of tissue that corresponds to the upper beak in avian embryos (Hu et al. 2003; 

Marcucio et al. 2005), and is required for the proper outgrowth of the FNP (Hu et al. 

2003).  Although numerous studies have determined the role of FGF8 signaling in 

FNP outgrowth, to date, no studies have examined this process in the mouse.  To 

determine if FGF8 signaling was required by neural crest cells in the outgrowth of the 

FNP, we used the Cre-LoxP system to analyze conditional Fgf8 mutants using the 

AP-2cre driver.   

Our analyses failed to elucidate the specific role of extrinsic FGF8 signaling 

in the frontonasal prominence due to the lack of overlapping expression domains of 

the AP2-cre “Cre-face” transgene and Fgf8 within the FNP ectoderm.  Previous 

reports have characterized the expression pattern of the Cre-face transgene as present 

in the FNP mesenchyme as well as the overlying ectoderm (Nelson and Williams 

2004), whereas our Cre-face mice only express AP-2cre in the mesenchyme.  

Ultimately, this difference in expression resulted in the failure of the Cre recombinase 

to excise Fgf8 from the FNP ectoderm. 

AP-2cre “Cre-face” mice were originally generated and maintained using a 

FVB background strain (Nelson and Williams 2004); our Cre-face mice are 

maintained on a CD1 background.  Therefore, the difference in expression patterns 

between two AP-2cre strains is most likely due to background strain differences.  

Although AP-2cre CD1 mice are not useful in excising genes from the FNP ectoderm, 
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the restricted expression of the Cre-face transgene indicates this Cre driver would be 

useful for conditional excision from the FNP mesenchyme.  Currently, we are in the 

process of generating Cre-face mice on a FVB background, as originally reported 

(Nelson and Williams 2004).  Once these mice are available, it would be useful to 

determine whether the Cre-face transgene is expressed in the FNP ectoderm and 

mesenchyme as initially described.  If so, intercrossing AP-2cre FVB mice with 

conditional Fgf8fx/fx mice would allow one to address the specific role of FGF8 

signaling in the developing of the FNP.  Conditional Fgf8 mutants where Fgf8 has 

been excised from the neuroepithelium (Kawauchi et al. 2005) or branchial arch 

ectoderm (Trumpp et al. 1999; Macatee et al. 2003) have thus far been characterized, 

the specific role of Fgf8 in the FNP ectoderm has yet to be examined.  

 

Hhat is required for establishing the Hedgehog Signaling Gradient 

In our studies examining the role of FGF8 signaling in the developing FNP, 

we mated AP-2cre mice to homozygosity for the Cre-face transgene (AP-creT/T), and 

identified a novel phenotype of holoprosencephaly (HPE) in the resulting Cre-face 

mutants.  HPE results from the failure of the forebrain to divide during 

embryogenesis, thus remaining as a single-lobed brain structure, and is accompanied 

by a range of craniofacial defects, such as a single incisor, hypertelorism, or a nasal 

proboscis (Belloni et al. 1996a; Roessler et al. 1996).  HPE is one of the most 

common neurological malformations to occur in humans (Muenke and Beachy 2000; 
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Wallis and Muenke 2000), understanding the etiology of this syndrome extremely 

important.   

Cre-face mutants present with HPE by 9.5dpc and by 10.5dpc exhibit a fusion 

between the frontonasal and maxillary prominences.  Given the nature of the 

forebrain and craniofacial defects apparent in Cre-face embryos and the relevance of 

HPE to humans, we determined that the Cre-face transgene integrated into Intron 9 of 

Hedgehog acyltransferase (Hhat), the gene required for palmitoylation of Hedgehog 

(Hh) proteins (Pepinsky et al. 1998; Buglino and Resh 2008).  HhatCre-face mutants 

have a clear disruption in SHH signaling as evidenced by SHH immunostaining and 

decreased Patched (Ptc) activation.  HhatCre-face;PtcLacZ+ embryos lack a gradient of 

LacZ expression that is present in heterozygous littermates, instead Ptc activation is 

only present in localized sources of SHH such as the notochord.  In these regions, 

LacZ is restricted to the sites of synthesis indicating that the gradient of Hh signaling 

is disrupted, which is consistent with the role of Hhat in establishing the Hh signaling 

gradient.   

The loss of SHH results in increased apoptosis and neural crest cell and 

branchial arch patterning defects.  Overall, this indicates a role for long-range 

signaling in the maintenance of neural crest cell lineage selection, resulting in cranial 

nerve fusion defects.  Additionally, Bmp4 and Fgf8 are absent in the developing 

mandible, resulting in the absence of odontogenic precursors and early jaw cartilages.  

Finally, the loss of long-range Hh signaling results in cartilage and bone defects, 

which is indicative of disrupted SHH and IHH signaling.  Indeed, defects in 
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endochondral ossification are readily identifiable in HhatCre-face mutants, likely 

reflecting the loss of IHH signaling, although this needs further characterization to 

determine the extent of IHH disruption.  Our data analyses of HhatCre-face;PtcLacZ+ 

embryos revealed significant decreases in Ptc activation in the ex- and basioccipital 

bones in comparison to wildtype littermates, indicating defective IHH signaling 

during cartilage and bone development, thereby contributing to the extensive bone 

defects at late developmental stages.  Direct analysis of IHH protein distribution in 

HhatCre-face mutants, or the expected lack thereof, would further support the role of 

Hhat in the palmitoylation of Hh proteins, in general, and the requirement of 

palmitoylation in establishing the Hh signaling gradient.   

HhatCre-face mice provide a useful mechanism for studying how modulation of 

Hh signaling affects development; it has been widely accepted that a gradient of Hh 

signaling is required for the specification of multiple tissues, in particular, neuronal 

identity in the spinal cord (Briscoe et al. 1999; Briscoe et al. 2000; Wijgerde et al. 

2002) and digit identity and outgrowth in the limb (Zhu et al. 2008).  Additionally, 

recent reports have indicated that a temporal and concentration gradient of SHH is 

required for the generation of specific domains of neurons in the spinal cord (Dessaud 

et al. 2007), indicating that a Hh signaling gradient, as well as its maintenance, is 

particularly important for neuronal specification.  HhatCre-face mutants, in contrast to 

classic knockouts of Shh and Ihh, initiate Hh protein synthesis, although any Hh 

protein synthesized is restricted to localized regions, such as the notochord.  Any 

initial SHH/IHH production may activate short-range Hh signaling cascades in 
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adjacent tissues.  Temporally speaking, harvesting HhatCre-face embryos shortly after 

Hh synthesis in a particular region of interest would allow one to examine the 

requirement of long-range Hh signaling in a given tissue.  Furthermore, it would 

simultaneously indicate any roles for short-range Hh signaling adjacent to its sites of 

synthesis. 

As Hh signaling is critically important in multiple regions of the developing 

embryo for patterning and outgrowth, it is not surprising that the numerous Hh 

signaling components are also under great scrutiny in attempts to understand the role 

of Hh proteins during development.  Hence, multiple knockouts of the genes involved 

in the Hh signaling cascade have been created, including Patched1 (Ptc) (Goodrich et 

al. 1996), Glioma associated protein 3 (Gli3) (Hui and Joyner 1993), and Smoothened 

(Smo) (Zhang et al. 2001).  Each of these genes is differentially modulated within the 

Hh cascade, Hh proteins directly bind to Ptc, their receptor, and cause the 

disinihibition of Smo; in turn, Smo activates certain members of the Gli family in a 

mechanism that remains poorly understood.  Hence, intercrossing HhatCre-face mice to 

various Hh pathway members could provide useful insight into the requirement of Hh 

proteins during development.  For example, Ptc (in the absence of SHH) inhibits 

Smo, targeting it for degradation.  By intercrossing HhatCre-face and Ptc knockout mice 

(PtcLacZ), one can examine how the Hh signaling is transduced or altered in the 

absence of long-range Hh proteins, but in an environment when Smo is constitutively 

disinhibited.  HhatCre-face;PtcLacZ+/+ double mutants would lack long-range Hh 

proteins, but in the absence of Ptc, Smo would not be repressed, and in theory, may 
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activate Hh targets.  Additionally, examination of Shh-/-;Gli3-/- double mutants 

(Litingtung and Chiang 2000; Rallu et al. 2002) results in the rescue of neuronal 

subtypes lost in Shh-/- embryos, indicating a negative feedback loop between Shh and 

Gli3.  In HhatCre-face mutants, the lack of SHH signaling in the floorplate results in the 

loss of ventral neuron specification (A. Iulianella, P. Trainor, unpublished), similar to 

the defects in Shh-/- embryos.  Could these alterations in neuronal specification be 

rescued in HhatCre-face;Gli3-/- double mutants?  Furthermore, would the defects in 

HhatCre-face;Gli3-/- mutants resemble those characterized in Shh-/-;Gli3-/-  embryos?  If 

not, could the differences potentially be due to the presence of short-range Hh 

signaling?  Or perhaps, the disruption of other Hh proteins, such as IHH or DHH in 

HhatCre-face;Gli3-/- double mutants?  As HhatCre-face mutants lack Hh signaling, they 

provide a useful model for teasing out the specific requirements of the signaling 

gradient during development. 

Finally, HhatCre-face mice were identified by mating AP-2cre CD1 mice to 

homozygosity, resulting in the HPE phenotype characterized herein.  As previously 

discussed, we are in the process of generating AP-2cre mice on a FVB background, as 

originally reported.  In humans, HPE manifests in a wide range of neurological and 

craniofacial anomalies due to variations in the human population and background 

modifiers.  Although the Cre-face transgene would be present in Intron 9 of Hhat on a 

FVB background, the surrounding modifiers may be different.  Therefore, it would be 

interesting to determine if there any phenotypic differences were present in HhatCre-

face mutants on a FVB versus a CD1 background. 
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The data presented herein addresses two broad areas of neural crest cell 

development: their initial induction and formation as well as the genes and signaling 

pathways required for their proper patterning and differentiation.  As a whole, the 

identification of Gcnf as a novel regulator of neural crest cell formation introduces a 

gene required upstream of the known signaling pathways of neural crest cell 

induction.  Subsequent analyses of Gcnf function in other model organisms will 

determine if this gene is conserved in this process.  Additionally, the identification of 

a novel phenotype of holoprosencephaly resulting from the disruption of Hhat 

provides a useful for tool for examining how modulation of Hh signaling, a critically 

important pathway used during embryogenesis, results in a varying degree of 

craniofacial and body wall defects.  Further analyses of Hhat mutants in conjunction 

with other Hh pathway mutants will highlight the requirement of this signaling 

cascade in various tissues, including the craniofacial complex, spinal cord, and limb.  

Collectively, these studies have provided new insight into the formation and 

patterning of neural crest cells at multiple stages of development. 
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X. Chapter Five:  Materials & Methods 

 
Mouse lines and maintenance 

AP-2cre, AP-2cre;Fgf8+/fx, AP-cre;Fgf8+/Δ2,3, CD1, Fgf8+/Δ2,3, Fgf8fx/fx, Gcnf, 

Gli3Xt, Patched1(Ptc)LacZ , RBP-Jκ, Rosa 26 reporter (R26R), Shh, and Wnt1-cre 

mice were housed in the Laboratory Animal Services Facility at the Stowers Institute 

for Medical Research according to IACUC animal welfare guidelines. For embryo 

collection, dams were sacrificed by cervical dislocation; day of plug was noted as 0 

days post coitum (dpc).  Embryos were removed from maternal tissue and fixed; yolk 

sacs collected for genotyping.  Embryos were genotyped for the AP-2cre (Nelson and 

Williams 2004), Fgf8+/Δ2,3 (Meyers et al. 1998), Fgf8fx/fx (Meyers et al. 1998), Gcnf 

(Chung et al. 2001), Gli3Xt (Hui and Joyner 1993), PtcLacZ (Goodrich et al. 1997), 

RBP-Jk (de la Pompa et al. 1997), R26R (Soriano 1999), Shh (Chiang et al. 1996), 

and Wnt1-cre (Chai et al. 2000; Jiang et al. 2000) alleles as previously reported.  

Pax3;Pax7 embryos were kindly provided by S. Tajbakhsh (Pasteur Institute).   

 

Cranial Explant Cultures 

For 24-hour cranial explant cultures CD1 dams were sacrificed 7.5dpc by 

cervical dislocation; embryos were removed from maternal tissue and dissected in 

Tyrode’s solution (8.0g NaCl, 0.2g/L KCl, 0.2g CaCl2, 0.21g/L MgCl2, 0.057g 

NaH2PO4, 1.0g/L NaHCO3, 1.0g/L Glucose in DEPC-H2O).  To harvest cranial 

explants, embryos were bisected into the cranial and posterior regions with insect 
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pins, and the cranial regions collected; all three germ layers of the explants were kept 

intact.  Cranial explants were attached to 0.4μM cell culture insert membranes 

(Millipore, Billerica, MA) in 3mL DMEM/F12-high glucose (control) (Invitrogen, 

Carlsbad, CA) or in DMEM/F12-high glucose with the antagonists DAPT (Sigma, St. 

Louis, MO), Frizzled-8/Fc (R & D Systems, Minneapolis, MN), Noggin/Fc (R & D 

Systems, Minneapolis, MN), or SU5402 (Calbiochem, San Diego, CA) in DMEM-

F12 and cultured at 37°C with 5% CO2; culture times are as indicated.  Antagonist 

treatment was as follows: DAPT at 25, 50, 75, or 100μM and SU5402 at 12.5, 25, 

37.5, and 50μM in DMSO; Frizzled-Fc and Noggin-Fc were used at 1, 5, 10, 20, 50, 

and 100μg/μL in sterile PBS.  Explants were examined for viability as indicated by 

beating heart tissue.  After culturing, explants were fixed O/N in 4% PFA at 4°C; 

embryos were dehydrated in MeOH and processed for in situ hybridization.  

 For 8- and 12-hour SU5402 explant cultures, CD1 dams were sacrificed early 

on 8.0dpc by cervical dislocation; embryos were removed from maternal tissue and 

dissected in Tyrode’s solution.  For culture, two cuts were made in the yolk sac along 

the anterior-posterior axis, allowing for the planar attachment of the embryo to the 

cell culture insert membrane via the remaining extraembryonic membranes.  Once 

attached with forceps, the developing amnion was removed from the neural plate 

region.  Embryo explants were cultured in 37.5μΜ SU5402 for 8- or 12hrs; all 

cultures were viable as determined by the presence of beating heart tissue at the end 

of the culture period.  Cultures were fixed in 4% PFA O/N at 4°C and processed for 

in situ hybridization. 
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Identification of the Cre-face Transgene Insertion Site 

The insertion location of the Cre-face transgene was identified using the 

Vectorette kit (Sigma, St. Louis, MO).  A Cre-face;Vectorette DNA library was 

created using the EcoRI-Vectorette unit according to manufacturer’s instructions.  To 

amplify clone DNA containing the transgene and surrounding genomic region, the 

primer (5’-ACA TCT GGG GTG AAG GGA ATT AGG GAG TTG-3’) was used in 

addition to the Vectorette-specific primer to amplify DNA bands containing the 

integration site.  A step-down PCR was used according to manufacturer’s 

instructions; a 5kb band, clone E1N3, was gel-purified (Gel Extraction Kit, Qiagen, 

Valencia, CA) and sequenced using the Vectorette sequencing primer. 

Verification of transgene insertion site was performed using PCR in wildtype, 

heterozygous and mutant genomic DNA from embryos at 10.5dpc.  Amplification of 

the region spanning the insertion site used the transgene-specific primer (5’-TGG 

TTA CCT TCC TCC AGA TAG TATG-3’) and Hhat-specific primer (5’-CAC TTG 

CTA ACT AGA AGG AAC TTCC-3’) produced a 250bp band; wildtype primers (5’-

CCT GGG AAG GAA AAA CCA ATA TGTA-3’) and (5’-GGT CCT ATC ATG 

CTA CCA AGA AA-3’) amplified a 1.4kb band.  Samples were denatured at 94°C 

for 30sec, annealed at 57°C for 30sec, and extended at 72°C for 30sec for 30 cycles 

for both reactions; PCR bands for the wildtype and mutant reactions were gel purified 

and sequenced, confirming Hhat as the gene disrupted by the Cre-face transgene. 

To confirm the absence of Hhat mRNA in HhatCre-face mutants, RNA was 

isolated from HhatCre-face litters (RNeasy kit, Qiagen, Valencia, CA) and cDNA 
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library was created using the Superscript first strand kit (Invitrogen, Carlsbad, CA).  

Primers (5’-AGG TTC TGG TGG GAC CCT GTGT-3’) and (5’-AGA AAG CAG 

TGT CCC CAA CAGG-3’) were used to amplify the full length Hhat mRNA in Wt, 

Het, and Mut embryos.  Primers to glyceraldehyde 3-phosphate dehydrogenase 

(Gapdh) (5’-AGC CTC GTC CCG TAG ACA AAAT-3’) and (5’-ACC AGG AAA 

TGA GCT TGA CAAA-3’) were used as an internal positive control. 

 

In situ hybridization: 

In situ hybridization was performed following the standard protocol described 

by Nagy et al. (2003).  Briefly, embryos were fixed, dehydrated in a graded MeOH 

series, and stored at -20°C until ready for use in the hybridization protocol.  Anti-

sense digoxigenin-labeled mRNA riboprobes were synthesized for Bmp4 (R. Arkell), 

Crabp1 (S. Schneider-Maunoury), Eya2 (K. Melton), Fgf8 (I. Mason), Gcnf (A. 

Cooney), Pax3 (Takayoshi), Shh (A. McMahon), Snail (A. Nieto), Sox2 (P. Trainor), 

Sox9 (R. Krumlauf), Sox10 (M. Gassmann), and Wnt1 (A. Gavalas).  

 

Immunohistochemistry 

For whole-mount staining using a Neurofilament antibody, embryos were 

fixed in 4% PFA O/N at 4°C and dehydrated in a graded MeOH series; dehydrated 

embryos were bleached in methanol:DMSO:30% H2O2 (4:1:1) for 5hrs at RT and 

rehydrated in 50% methanol:PBS and 15% methanol:PBS, PBS for 30minutes each.  

For blocking, embryos were washed in PBSMT (2% milk powder, 0.1% Triton X-100 
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in PBS) twice for 1hour at RT.  Embryos were incubated in primary antibody to 

Neurofilament (2H3) diluted at 1:250 O/N at 4°C in PBSMT.  Embryos were rinsed 

in PBSMT and incubated in secondary antibody using a 1:200 dilution in PBSMT of 

HRP-coupled goat anti-rabbit IgG (Jackson Immunoresearch, West Grove, PA).  For 

color development, embryos were rinsed in PBSMT and PBT (0.2% BSA, Sigma, 

0.1% Triton X-100) three times, 20minutes each at RT and washed in 3,3-

Diaminobenzidine (0.3mg/mL) (Sigma, St. Louis, MO) in PBT for 20minutes; 0.03% 

H2O2 was added and color was developed to the desired intensity. 

 For section immunohistochemistry, litters were collected at the stages 

indicated and fixed O/N in 1% PFA at 4°C.  Embryos were processed through a 

sucrose gradient (15%, 30% sucrose in PBS), mounted in Tissue Tek O.C.T. (VWR, 

West Chester, PA) and sectioned at 10microns.  Sections were rinsed 3X in PBT 

(PBS with 0.1% Triton X-100) for 5min and blocked in 10% normal goat serum 

(Invitrogen, Carlsbad, CA) in PBT for 1hr at RT.  Slides were incubated in primary 

antibody diluted in 10% goat serum/PBT O/N at 4°C.  Antibodies to cleaved 

Caspase-3 (Cell Signaling Technologies, Danvers, MA), anti-phospho Histone H3 

(Upstate/Millipore, Billerica, MA), anti-BrdU (Abcam, Cambridge, MA), anti-SOX2 

(R & D Systems, Minneapolis, MN) and to SHH (5e1) were used at 1:500 (anti-

Caspase-3, anti-pH3, anti-BrdU, anti-SOX2) and 1:25 (5e1), respectively.  To stain 

for BrdU, slides were incubated in DNaseI at 1:300 (Invitrogen, Carlsbad, CA) in 

React3 buffer for 30min at 37°C to nick the DNA prior to blocking with 10% NGS. 

Slides were rinsed 3X 10min in PBT at RT on shaker and incubated in the 
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appropriate Alexa 488 or 594 secondary antibody at 1:250 (Molecular 

probes/Invitrogen, Carlsbad, CA) for 2hrs at 4°C.  Sections were counterstained with 

a 1/1000 dilution of 2mg/ml DAPI (Sigma, St. Louis, MO) in PBS for 5minutes, 

followed by rinses in PBS; slides were mounted with fluorescent mounting medium 

(DakoCytomation, Carpinteria, CA).  Antibodies to SHH (5e1), Neurofilament (2H3), 

and PAX3 were obtained from the Developmental Studies Hybridoma Bank 

developed under the auspices of the NICHD and maintained by the University of 

Iowa, Department of Biological Sciences (Iowa City, IA 52242).  All images were 

collected using a Ziess Axioplan microscope and processed using Photoshop CS2 

(Adobe, San Jose, CA). 

 
Hematoxylin and Eosin staining 
 

Hhat+/Cre-face and HhatCre-face embryos were harvested at 14.5dpc and fixed 

O/N in 4% PFA at 4°C.  Samples were dehydrated through a graded ethanol series, 

cleared in xylene, and embedded in liquid paraffin.  Embryos were sectioned at 

12microns and deparaffinized in xylene, and hydrated in graded alcohols to water.  

Sections were stained in Shandon hematoxylin for 1min and 30sec, differentiated in 

1% aqueous acid alcohol for 10sec, blued in PBS for 30 seconds, and stained in eosin 

for 30sec.  Sections were dehydrated in graded alcohols, cleared in xylene, and 

mounted in permanent mounting medium.  All images were collected using a Ziess 

Axioplan microscope and processed using Photoshop CS2 (Adobe, San Jose, CA).   
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β-Galactosidase Staining 

To stain for β-galactosidase (β-gal), embryos were collected at 9.5-11.5dpc as 

described above and stained with the β-gal stain solution kit (Chemicon/Millipore, 

Billerica, MA).  Briefly, embryos were fixed on wet ice for 20min in the Tissue 

Fixative Solution, washed in Tissue Rinse Solution A for 30min and Tissue Rinse 

Solution B for 5min at RT.  Embryos were incubated O/N at 37°C in Tissue Stain 

Solution with X-gal (40mg/mL in DMF) (Invitrogen, Carlsbad, CA).  After 

incubation, embryos were washed PBS and re-fixed O/N in the Tissue Fixative 

Solution.  Embryos were processed in paraffin, cut in 10micron sections, and 

counterstained in Nuclear Fast Red (Sigma, St. Louis, MO).   

For β-gal staining on sections, 15.5dpc embryos were harvested and fixed in 

LacZ fixative (0.9% 25%glutaraldehyde, 10% 0.5M EGTA,  and 10% 1M MgCl2 in 

PBS) for 2.5hrs at 4°C.  Embryos were processed through a sucrose gradient (15, 

30% sucrose in PBS) and snap frozen in OCT.  Eight micron sections were cut and 

re-fixed in LacZ fixative for 10min at RT; sections were washed in LacZ wash buffer 

(0.2% MgCl2, 0.01% NaDOC, 0.02% NP40 in PBS) three times, 5min each.  β-gal 

staining was developed using a LacZ stain solution (0.002% Potassium ferrocyanide, 

0.01% Potassium ferricyanide, 0.04% X-gal (25mg/mL in DMF) in LacZ wash 

buffer) to the desired intensity and washed three times 5min after developing.  

Sections were counterstained in NFR and washed in distilled water for 1-2min; 

sections were mounted and photographed using a Ziess Axioplan microscope and 

processed using Photoshop CS2 (Adobe, San Jose, CA).   
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Bone & Cartilage Staining 

Embryos were collected at 14.5, 15.5, and 17.5dpc and fixed in 95% EtOH 

O/N.  Embryos were washed in a stain solution containing 0.5% Alizarin red (Sigma, 

St. Louis, MO) and 0.4% Alcian blue 8X (Sigma, St. Louis, MO) in 60% EtOH O/N 

at RT.  For 14.5 and 15.5dpc embryos, soft tissue was dissolved in 1% KOH for three 

hours and transferred to 0.25% for 30min.  For 17.5dpc staining, the embryos were 

anesthetized in PBS for 1hr at 4°C, fixed O/N in 95% EtOH, skinned and eviscerated 

prior to staining; all remaining soft tissue was dissolved in 2% KOH for six hours and 

transferred to 0.25% KOH for 30min.  Embryos were cleared in glycerol:KOH 

(20%:0.25%; 33%:0.25%; 50%:0.25%).  Embryos were stored in 50% 

glycerol:0.25% KOH until photographed.   
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