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ABSTRACT 

Nan An, M.A. 

Department of Geography, Jan 2009 

University of Kansas 

 

Aboveground Net Primary Productivity (ANPP) is indicative of an 

ecosystem’s ability to capture solar energy and store it in the form of carbon (or 

biomass).  Annual and interannual ecosystem variation in ANPP is often linked to 

climatic dynamics and anthropogenic influences.  The Great Plains grasslands occupy 

over 1.5 million km2 and are a primary resource for livestock production in North 

America.  The tallgrass prairies are the most productive of the grasslands of the 

region and the Flint Hills of North America represent the largest contiguous area of 

unplowed tallgrass prairie (1.6 million ha) (Knapp and Seastead, 1998).  

Measurements of ANPP are of critical importance to the proper management and 

understanding of climatic and anthropogenic influences on tallgrass prairie, yet 

accurate, detailed, and systematic measurements of ANPP over large geographic 

regions of this system do not exist. For these reasons, this study was conducted to 

investigate the use of the Normalized Difference Vegetation Index (NDVI) to model 

ANPP for the tallgrass prairie. Many studies have established a positive relationship 

between the NDVI and ANPP, but the strength of this relationship is influenced by 

vegetation types and can significantly vary from year-to-year depending on land use 

and climatic conditions. The goal of this study is to develop a robust model using the 
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Advanced Very High Resolution Radiometer (AVHRR) biweekly NDVI values to 

predict tallgrass ANPP. This study was conducted using the Konza Prairie Biological 

Station as the primary study area with data also from the Rannells Flint Hills Prairie 

Preserve and other sites near Manhattan, Kansas. The dominant study period was 

1989 to 2005. The optimal period for estimating ANPP using AVHRR NDVI 

composite datasets is prairie 30 (late July).  The Tallgrass ANPP Model (TAM) 

explained 53% (r2 = 0.53, r = 0.73) of the year-to-year variation.  Efforts to validate 

the TAM results were frustrated by considerable variations among existing remote 

sensing based ANPP model estimates and in situ clipplot measurements of peak 

season tallgrass production.  These findings support the conclusion that ecosystem 

specific ANPP models are needed to improve global scale ANPP estimates.  

The creation of 1 km x 1 km resolution ANPP maps for a four county (~7,000 

ha) for years 1989 – 2007 showed considerable variation in annual and interannual 

ANPP spatial patterns suggesting complex interactions among factors influencing 

ANPP spatially and temporally. The observed patterns on these maps would be lost 

using the much coarser resolution ground weather recording stations. 
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Chapter 1 

INTRODUCTION 

There is increasing research documenting the impacts of climatic variation on 

anthropogenic and “natural” ecosystems (Lauenroth et al.1999). These climatic 

variations influence ecosystem biogeochemical cycles through modification of energy 

and nutrient flow as modified by changing temperature and precipitation patterns 

(Breshear et al. 2005, Pielke et al. 1998, Woodward 1987).  Highly dynamic climatic 

conditions have been shown to impact ecosystem equilibrium, and if system 

perturbations are frequent enough, they may preclude the development of closely 

coupled cybernetic interactions among plant and animal organisms resulting in 

alteration of ecosystem processes that influence system climatically-determined 

equilibrium (Ellis and Smith, 1988).  

 One of the best indicators of ecosystem response to climate change is 

variation in plant and animal development states (phenology - the timing of seasonal 

activities of animals and plants) (Parmesan, 2006).  Changes in phenological patterns 

may be among the easiest ways of tracking species response to changing ecosystem 

conditions (Walther et al. 2002). Phenology is usually measured in Julian dates or 

days since December 31 (Ahas et al. 2002). 

Temperature is the main driver of phenology that influences biophysical 

processes (i.e., phenophases) such as seasonal spring events like plant emergence, 
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growth rate, blooming period, etc. (Price et al. 2004; Yu et al. 2004). Spring 

temperatures have been found to be the most important factor influencing 

phenophases at all other times of the growing season (Walther et al. 2002). For 

example, changes in spring temperature influence the onset date of vegetation that 

can alter plant productivity. Price et al. (2004) showed that vegetation phenological 

patterns could be influenced by water budgets that are significantly altered by 

climatic variations in temperature and precipitation. For this reason, changes in 

vegetation phenological patterns can be utilized as an index of varying climatic 

conditions. 

 An ecosystem of particular interest in terms of climatic influences on 

processes is grasslands. The tallgrass ecosystem of the Great Plains is among the most 

species diverse and productive warm-season (C4 Carbon fixing) grassland ecosystems 

in North America (Knapp et al. 1998). These tallgrass prairies store vast amount of 

above and belowground biomass (carbon (C)) and therefore variations in climatic 

factors such as precipitation and temperature can significantly alter ecosystem 

processes affecting the carbon pool associated with this system (Knapp et al. 2002). 

Due to its diversity of species, the tallgrass prairie ecosystem is one of the most 

responsive terrestrial ecosystems to interannual or annual variability in precipitation 

and temperature (Knapp et al. 2002). Consequently, the tallgrass prairie is an ideal 

ecosystem for monitoring and identifying ecosystem response to varying climatic 

conditions such as those predicted by the Global Climate Models (GCMs) (Running 

et al. 2004). 
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In North America, the distribution and composition of tallgrass prairie are 

primarily determined not only by regional climatic factors, but by edaphic 

characteristics, and land use and land management practices such as burning grazing 

and haying (Fay et al. 2003, Sala et al. 1988, Epstein et al. 1997). For example, the 

use of fire is one of the most important and widely implemented treatments for 

managing grasslands worldwide, and it is an important ecological factor in 

maintaining the compositional integrity of tallgrass prairies (Knapp et al. 1998). 

Historically, humans have used fire as a means of limiting the growth of woody 

plants and promoting greater grass productivity (both net and gross) (Collins and 

Wallace 1990). Many studies have also documented that nitrogen (N) availability and 

cycling of N is highly related to fire frequency (Blair 1997). Thus, different tallgrass 

prairie management practices (i.e., fire, haying, grazing), together with variation in 

the dominant climatic factors, influence tallgrass ecosystem dynamics and their 

associated biogeochemical cycles. 

Net Primary Productivity (NPP) is defined as “the rate at which all the plants 

in an ecosystem produce net useful chemical energy, which is equal to the difference 

between the rate at which the plants in an ecosystem produce useful chemical energy 

and the rate at which they are used for cellular respiration” 

(http://en.wikipedia.org/wiki/Primary_production#cite_ref-0). NPP is an important 

component of the carbon cycle and a useful indicator of ecosystem performance 

(Seaquist et al. 2003, Lobell et al. 2002) that can be used to quantify biogeochemical 

cycles and available energy and nutrient resources within the system. The term, 
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“primary production”, on the other hand is defined as the synthesis of organic 

compounds from carbon dioxide, so it can be thought of as a measure of a plant’s 

ability to transform visible energy into chemical compounds. Aboveground Net 

Primary Production (ANPP) is the accumulated NPP above the ground that marks the 

first visible step of carbon accumulation that quantifies the conversion of atmospheric 

carbon dioxide into biomass (Running et al. 2004). Without a correct understanding 

of ANPP, the processes through which ecosystems respond to environmental 

fluctuations, one cannot completely understand how photosynthetically produced 

chemical energy can be made available and transferred within an ecosystem. 

Therefore, the quantification of annual ANPP over large geographic regions is critical 

to understanding ecosystem energy balances and how these balances influence 

biological and ecological processes throughout a region. 

In the past, biologists, ecologists and biogeographers have estimated ANPP 

for large geographic regions using atmospheric models (Running et al. 2004), which 

is a time-consuming and expensive process. Running et al. (2004) describe the early 

efforts by Lieth and Whittaker (1975) to estimate global NPP, which involved the use 

of temperature in a regression model to calculate annual actual evapotranspiration 

(AET) and from this estimate they produced a global estimate of NPP using the 

following equation: 

NPP = 3000{1 – exp[–0.0009695(AET – 20)]}. 
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While the work of Lieth and Whittaker (1975) proved to be a major step 

forward in improving our understanding of ecosystem dynamics, the method was 

limited by the sparsely distributed weather stations throughout most of the world.  

Even today, in the US, weather stations can be located hundreds of kilometers apart, 

which means AET estimates for locations between stations must be interpolated, and 

such interpolations can be very inaccurate especially in areas of complex terrain 

variation.  In addition, the methods for collecting climatic measurements vary 

considerably around the world, and maintenance of the weather stations is a 

significant problem in many places.  For these reasons, more reliable and higher 

spatial resolution data are needed for modeling ecosystem NPP.  Since the launch of 

the early satellite earth observation systems starting in the 1970s, scientists have been 

working on methods for using remotely sensed spectral data for characterizing earth 

system processes and land use and land cover types. 

 In 1973, Rouse et al. (1974) introduced the Normalized Difference Vegetation 

Index (NDVI), generated using the ratio of the difference between the near-infrared 

band (NIR) and the red band (R) and the sum of these two bands (Eidenshink and 

Faundeen 1994).  The equation for the NDVI is 

  

where NIR is the near-infrared portion of the electromagnetic spectrum that has a 

nominal wavelength range from 0.75 to 1.10 µm and R is the red spectrum that has a 
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wavelength range from 0.58 to 0.68 µm (Eidenshink and Faundeen 1994). 

Chlorophyll in plant tissue absorbs visible energy for photosynthesis primarily in the 

blue and red regions of the electromagnetic spectrum. Plants either reflect or transmit 

all near-infrared (NIR) energy away from or through their plant tissue where it is 

either reflected back into space or absorbed by other forms of matter such as soils or 

water. Therefore, as plant productivity increases, the NDVI values for each image 

picture element (pixel) will also increase. 

 Before the 1980s, ecological studies were mostly confined to research 

questions limited to small field plots, and the ability to conduct regional-to-global 

scale ecosystem studies was limited (Running et al. 2004). Since then, the availability 

of satellite remotely sensed data and development of ecosystem models that employ 

these data have enabled geographers and ecologists to better analyze the interaction 

between climatic variation and vegetation response to this variation – this is 

especially important to an improved understanding of how ecosystem carbon budgets 

are influenced by varying climatic conditions.  

During the last decade, scientists have begun to develop ecosystem-specific 

models that use remotely sensed data as input to estimate ANPP.  For example, 

Paruelo et al. (1997) developed an NDVI-based ecosystem model for the grasslands 

of the Central Great Plains.  Recent studies have focused on the use of NDVI to 

model global scale ANPP (Running et al. 2004; Zhao et al. 2005). While work has 

focused on global scale modeling of ANPP, much less work has focused on more 
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specific regional scale ecosystem or specific species modeling.  This study therefore 

will present a discussion and propose methods for modeling ANPP for the tallgrass 

prairie ecosystem of the Central Great Plains by using NDVI derived from remotely 

sensed data. 

 

Research Background 

 There are generally three approaches for studying ANPP dynamics.  These 

approached include, 1) directly measuring plant biomass accumulated over the 

growing season, 2) use of physical process models to estimate ANPP and 3) use of 

remotely sensed measurements to empirically model ANPP. 

Examples of studies that used direct biomass measurements to study climatic 

influences on ANPP include Briggs et al. (2005) and Reed et al. (2005) who focus on 

the regional-scale ANPP measurement. Some of the previous studies, such as Amthor 

et al. (1998) focus on the global-scale ANPP measurement. And some research focus 

on the ANPP measurement based on varying ecosystems level: Briggs et al. 1991; 

Bragg and Hulbert (1976); Briggs and Knapp (1995). The problem with this 

measurement method is that is is practical at the watershed scale, but becomes very 

impractical in terms of time and money costs as the work is moved up to the regional 

and global scales.  
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Many physical-based model studies have examined the influences of climatic 

variation on ANPP (Churkina and Running 1998; Pielke et al. 1998; Landsberg and 

Gower 1997; Melillo et al. 1993; Walther et al. 2002; Pearson and Dawson 2003).  

Models have also been developed to estimate ANPP at the ecosystem to global scales.  

Some of the earliest work in modeling ANPP was at the global scale.  For example, 

Leith (1975) developed global scale ANPP models using climatic factors as input.  

Many ecosystem-process models were developed that were based on climate, 

soil properties, and biome specific characteristics to responses in biochemical 

processes of vegetation (Haxeltine and Prentice, 1996; Parton et al. 1987). 

Consequently, ANPP models range from fairly simple regressions between main 

climatic variables to quasi-mechanistic models that attempt to simulate the ecosystem 

processes at the plant level (Churkina and Running 1998). The results of these studies 

strongly suggested that vegetation ANPP is a result of the interaction of several 

climatic factors, but these studies also presented the direct measures of ANPP at large 

scales were still problematic, and model-based estimates were at global scales. But 

the weakness of these studies is lack of climate data at high spatial scales, and 

missing vital climate measurements in many parts of the world. 

In recent years, an increasing number of studies on the influences of climate 

on ANPP have focused on the use of remotely sensed data for modeling ANPP.  A 

few models for estimating NPP have been developed to calculate global scale NPP 

(Churkina and Running 1998; Running et al. 2004) directly from remotely sensed 
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data. Zhao et al. (2005) indicated that for monitoring vegetation, the Moderate 

Resolution Imaging Spectroradiometer (MODIS) NDVI datasets is critical to global 

scale plant dynamics studies. Running et al. 2004 states that the globally annual NPP 

can be calculated by using the equation: 

 , 

where  is the conversion efficiency;  is 24-hour maintenance respiration of leaves 

and fine roots;  is annual growth respiration required to construct leaves, fine roots, 

new woody tissues;  is the maintenance respiration of live cells in woody tissues. 

By validating annual NPP across a full range of biome types and climates, Running 

and colleagues found that their MODIS data-derived estimates of NPP for ecosystems 

around the world fell within the ranges of values published in research findings of 

other scientists.  

 Paruelo et al. (1997) presented methods for estimating ANPP for the central 

grassland region by using NDVI data derived from the Advanced Very High 

Resolution Radiometer/National Oceanic and Atmospheric Agency 

(AVHRR/NOAA).  

 Huete (1989) and Paruelo et al. (1997) found that considerable soil 

background in arid and semi-arid regions can significantly alter ANPP estimate 

accuracy. Price et al. (2002) also found that semiarid sites with less that 30% ground 

cover could not be distinguished from bare soil and that the strength of the 
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relationship between tallgrass biophysical factors and spectral properties can 

significantly over the growing season and from year to year (Price et al. 2002). 

 Paruelo et al. (1997) found the relationship between ANPP and NDVI varied 

and was not always linear over the growing season. Paruelo and colleagues used the 

average annual NDVI (NDVI-I for integral NDVI) to estimate grassland ANPP.  

ANPP data from KPBS was among many datasets in grassland areas that were used to 

develop the NDVI-I ANPP model.  The NDVI-I model was found to explain 89% of 

the variation in ANPP for 19 sites within the Central Grassland Region (Paruelo et al. 

1997). 

 During a search of the literature, no ANPP models specific to the tallgrass 

prairie type were identified.  Therefore, a question that needs to be addressed is 

whether an remote sensing based ANPP model designed specifically for tallgrass 

prairie types in the Central Great Plains might provide more accurate estimates of 

ANPP than existing global or large regional scale models such as the GNPP or the 

NDVI-I models referenced above.  

 

STATEMENT OF GOAL 

In this study I seek to develop an ANPP model designed specifically for 

tallgrass prairies of the Central Great Plains and compare productivity estimates 

against ANPP ground reference measurements and existing remotely sensed based 

ANPP model estimations. To achieve this goal, I propose to: 
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 Goal 1 – Determine the optimal period during the growing season for using 

AVHRR NDVI biweekly composites to model ANPP of Tallgrass prairie ecosystems 

representative of the Central Great Plains. 

Goal 2 – Develop an ANPP model and validate its accuracy for all years that 

ANPP in situ data and AVHRR composite images are available (1989 to 2005 or 17 

years). 

 Goal 3 – Analyze the variation in ANPP among the 19 years (1989 - 2007) of 

the study period to determine how ANPP varies geographically and temporally 

among years.
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Chapter 2 

Estimating Annual Net Primary Productivity of the Tallgrass Prairie 

Ecosystem of the Central Great Plains using AVHRR NDVI 

ABSTRACT  

Aboveground Net Primary Productivity (ANPP) is indicative of an 

ecosystem’s ability to capture solar energy and store it in the form of carbon (or 

biomass).  Annual and interannual ecosystem variation in ANPP is often linked to 

climatic dynamics and anthropogenic influences.  The Great Plains grasslands occupy 

over 1.5 million km2 and are a primary resource for livestock production in North 

America.  The tallgrass prairies are the most productive of the grasslands of the 

region and the Flint Hills of North America represent the largest contiguous area of 

unplowed tallgrass prairie (1.6 million ha) (Knapp and Seastead, 1998).  

Measurements of ANPP are of critical importance to the proper management and 

understanding of climatic and anthropogenic influences on tallgrass prairie, yet 

accurate, detailed, and systematic measurements of ANPP over large geographic 

regions of this system do not exist. For these reasons, this study was conducted to 

investigate the use of the Normalized Difference Vegetation Index (NDVI) to model 

ANPP for the tallgrass prairie. Many studies have established a positive relationship 

between the NDVI and ANPP, but the strength of this relationship is influenced by 

vegetation types and can significantly vary from year to year depending on land use 

and climatic conditions. The goal of this study is to develop a robust model using the 
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Advanced Very High Resolution Radiometer (AVHRR) biweekly NDVI values to 

predict tallgrass ANPP. This study was conducted using the Konza Prairie Biological 

Station as the primary study area with data also from the Rannells Flint Hills Prairie 

Preserve and other sites near Manhattan, Kansas. The dominant study period was 

1989 to 2005. The optimal period for estimating ANPP using AVHRR NDVI 

composite datasets is period 30 (late July).  The Tallgrass ANPP Model (TAM) 

explained 53% (r2 = 0.53, r = 0.73) of the year to year variation.  Efforts to validate 

the TAM results were frustrated by considerable variations among existing remote 

sensing based ANPP model estimates and in situ clipplot measurements of peak 

season tallgrass production.  These findings support the conclusion that ecosystem 

specific ANPP models are needed to improve global scale ANPP estimates.  

The creation of 1 km x 1 km resolution ANPP maps for a four county (~7,000 

ha) area for years 1989 – 2007 showed considerable variation in annual and 

interannual ANPP spatial patterns suggesting complex interactions among factors 

influencing ANPP spatially and temporally. The observed patterns on these maps 

would be lost using the much coarser resolution ground weather recording stations. 

 

INTRODUCTION 

 The tallgrass ecosystem of the Great Plains is among the most species diverse 

and productive warm-season (C4 carbon fixing) grassland ecosystems in North 

America (Knapp et al. 1998). These tallgrass prairies store vast amount of above and 
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belowground biomass (carbon (C)) and therefore variations in climatic factors such as 

precipitation and temperature can significantly alter ecosystem processes affecting the 

carbon pool associated with this system (Knapp et al. 2002). Due to its diversity of 

species, the tallgrass prairie ecosystem is one of the most responsive terrestrial 

ecosystems to interannual or annual variability in precipitation and temperature 

(Knapp et al. 2002). Consequently, the tallgrass prairie is an ideal ecosystem for 

monitoring and identifying ecosystem response to varying climatic conditions. 

 Aboveground Net Primary Productivity (ANPP) is an important component of 

the carbon cycle and a useful indicator of ecosystem performance (Seaquist et al. 

2003) that can be used to quantify biogeochemical cycles and available energy and 

nutrient resources within the system. In the past, biologists, ecologists and 

biogeographers have estimated ANPP for large geographic regions using atmospheric 

data (Running et al. 2004), which is expensive and time consuming to collect and 

process.  

 Nippert et al. (2006) found a strong linear relationship (r = 0.79) between 

growing-season (May to September, 1984 to 1999) precipitation and total tallgrass 

ANPP at the Konza Prairie Biological Station (KPBS). In contrast, Towne and 

Owensby (1984) examined the relationship between tallgrass ANPP from different 

burned sites and precipitation from 1928 to 1982 and found correlation values to be 

very low (the strongest relationship they found yielded an r value of 0.37). They 

examined five possible precipitation summary combinations (yearly total, previous 
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year’s total, January to April, May to June, and May to September) and still found no 

strong correlation between these factors. These findings suggest that depending on the 

scale of the study, model estimate accuracy of ANPP for tallgrass using precipitation 

data may produce questionable results. 

Remotely sensed data have been investigated for years as a possible parameter 

for estimating ANPP. The most popular remotely sensed vegetation index in use 

today is the Normalized Difference Vegetation Index that was introduced by Rouse et 

al. in 1973.The index is derived by computing the difference between the near-

infrared (NIR) energy that is reflected by plant tissue and the red energy that is 

absorbed by plant tissue for photosynthesis.  The difference between NIR and red 

energy is than normalized by dividing the difference by the sum of the NIR and red 

energy. While considerable research has been conducted to examine the relationship 

between NDVI and biomass/ANPP, selected examples of such work include: 

Gausman (1974), Rosental et al. (1985), Sellers (1985, 1987), Tucker and Sellers 

(1986), Goward and Dye (1987), Prince (1991), Sellers et al. (1992), Hayes and 

Decker (1996), Paruelo et al. (1997), Tieszen et al. (1997), Guo et al. (2002a and 

2002b), Running et al. (2004)  

Many previous studies (Cao et al. 2004, Churkina and Running 1998, Goetz et 

al. 1999, Running et al. 2004, Zhao et al. 2005; Zhao et al. 2006) have focused on 

using remotely sensed NDVI to build global scale models for estimating primary 

productivity. Zhao et al. (2005) state that the Moderate Resolution Imaging 
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Spectroradiometer (MODIS) NDVI data are among of the primary global remotely 

sensed datasets in the NASA Earth Observing System (EOS) database for monitoring 

vegetation. Goetz et al. (1999) developed a modified production efficiency model 

(PEM) that estimated the conversion efficiency of absorbed photosynthetically active 

radiation (APAR) and turned it into estimates of net and gross primary production. 

Cao et al. (2004) built a model by using a similar theory called the GLObal 

Production Efficiency Model (GLO-PEM) used to quantify global NPP at the 8 km 

and 10-day resolution from 1981 to 2000. Running et al. 2004 stated that global 

annual NPP (hereafter GNPP) could be modeled by calculating the fraction of 

photosynthetically active radiation (FPAR) that is highly correlated with NDVI. 

Running et al. found that the gross net primary production (GNPP) estimates were 

within minimum and maximum ANPP measurements for various ecosystems as 

published in the literature.  For example minimum and maximum ANPP in situ values 

for global grasslands varied from 70 to 410 g carbon per m2 and their model estimates 

fell within these limits (Running et al. 2004).  The GNPP model uses remotely sensed 

measurements from the MODIS satellite based sensor.  A limiting factor in using 

MODIS data as input to ANPP estimates is that the TERRA and AQUA satellites on 

which the MODIS imaging systems reside were launched in 2000 and 2002, 

respectively, and so the GNPP estimates only go back to the years since TERRA and 

AQUA were launched.  

Paruelo et al. (1997) and Wang et al. (2001) presented methods for estimating 

ANPP for the central grassland region by using NDVI derived from the Advanced 
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Very High Resolution Radiometer/National Oceanic and Atmospheric Agency 

(AVHRR/NOAA) data. The spatial resolution of AVHRR NDVI data is 1 km, which 

is very high when compared to the weather measurements from stations in the study 

area, which are often as much as 40 km apart.  

Huete (1989) and Paruelo et al. (1997) found that considerable soil 

background in arid and semi-arid regions can significantly alter ANPP estimate 

accuracy. Price et al. 1992 also found that semiarid sites with less that 30% ground 

cover could not be distinguished from bare soil. Paruelo et al. (1997) found the 

relationship between ANPP and NDVI varied significantly over the growing season. 

Paruelo and colleagues used the average annual NDVI (NDVI-I for integral NDVI) to 

estimate grassland ANPP.  ANPP data from KPBS was among many datasets in 

grassland areas that were used to develop the NDVI-I ANPP model.  The NDVI-I 

model was found to explain 89% of the variation in ANPP for 19 sites within the 

Central Grassland Region (Paruelo et al. 1997). 

During a search of the literature, no ANPP models specific to the tallgrass 

prairie type were identified.  Therefore, a question that needs to be addressed is 

whether an ANPP model designed specifically for tallgrass prairie types in the 

Central Great Plains might provide more accurate estimates of ANPP than more 

global or large regional scale models such as the GNPP or the NDVI-I models 

referenced above.  
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Statement of Goal 

 For this study I seek to develop an ANPP model designed specifically for 

tallgrass prairies of the Central Great Plains and compare productivity estimates 

against ANPP ground reference measurements and existing remotely sensed based 

ANPP model estimations. To achieve this goal, I propose to: 

 Goal 1 – Determine the optimal period during the growing season for using 

AVHRR NDVI biweekly composites to model ANPP of tallgrass prairie ecosystems 

representative of the Central Great Plains. 

Goal 2 – Develop an ANPP model and validate its accuracy for all years that 

ANPP in situ data and AVHRR composite images are available (1989 to 2005 or 17 

years). 

 Goal 3 – Analyze the variation in ANPP among the 19 years (1989 - 2007) of 

the study period to determine how ANPP varies geographically and temporally 

among years. 

 

METHODS 

Study Area 

 The primary study areas for this research are Konza Prairie Biological Station 

(KPBS) (39°05’ N, 96°35’ W), the Rannells Flint Hills Prairie Preserve (39°08’ N, 

96°32’ W) and the Washington Marlatt Memorial Park (WMMP) (39°13’ N, 96°37’ 

W) all near Manhattan, Kansas (Figure 1). These sites are dominated by native 
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tallgrass prairie of the Flint Hills, which is the largest continuous tallgrass prairie in 

North America (Knapp et al. 1998). The interannual and annual climatic 

characteristics of the area are highly variable with respect to precipitation and 

temperature. The 30-year average for annual precipitation is from 835 to 859 mm 

(depending on the field site), and growing season precipitation is about 622 mm/y. 

Seventy five percent of the precipitation comes as rainfall between April and October 

(Hayden 1998). Mean monthly air temperature varies from -3°C in January to 27°C in 

July, and mean monthly soil temperature at a 5 cm depth ranges from 1.6°C in 

January to 29.3°C in July (Blair 1997).  

The plant community is dominated by native warm-season (C4) grasses that 

can provide > 80% of the ANPP for annually burned prairie sites (Knapp et al. 1998, 

Freeman 1998). The KPBS and Rannells sites are located within the Benfield-

Florence soil complex with a range site soil of loamy upland.  These soils reside on 

slopes ranging from 5 to 20% range in depth from 0 (surface to 1 m).   The WMMP 

site resides within the Dwight-Irwin soil complex and the range site is characterized 

as a clay upland with slopes ranging from 1 – 4%.  All three sites reside within an 

elevational range from 340 to 420 m above mean sea level (USDA SCS Soil Survey, 

1975).  

 The plant species composition within the three sites is relatively diverse. The 

vegetation is dominated by native warm-season grasses including big bluestem 

(Andropogon gerardii Vitman), little bluestem (Schizachyrium scoparium Michx. 
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(Nash)), Indiangrass (Sorghastrum nutans (L.)), and switchgrass (Panicum cirgatum 

(L.)). The vegetation in the lowlands is also interspersed with a variety of forbs and 

less common grass species (Freeman 1998).  

Field Data 

Estimates of ANPP that were used for this study were collected at three 

locations that used varying data collection methods.  The three sites are: 1) KPBS, 2) 

Rannells and the 3) WMMP.   

1) ANPP for the KPBS site was collected across watershed 001D that has 

been burned annually in the spring since 1980 and has not been grazed by domestic 

livestock or bison since it was purchased by the Nature Conservancy in 1971 (Knapp 

et al. 1998).  Clipplot samples for watershed 001D were taken from 20 plots (with 6 

quadrats per plot sampled) for each topographic position for a total of 40 plots per 

watershed and 240 quadrats sampled per watershed per year. The mean ANPP was 

determined by computing the average ANPP for all 240 samples collected for each 

watershed annually.  It is possible that this mean would be different if a weighted 

mean by area of the three topographic positions were used, but such weightings are 

seldom used because of the difficulty of computing such a weighting factor for such a 

geographically diverse site.  

 Clipplot measurements from watershed 001D that were used in this study 

spanned from 1989 (earliest year AVHRR NDVI data were available) to 2005 (latest 
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year clipplot data were available). Clipplot samples are normally collected between 

late August and early September, which is near the time of the peak aboveground 

biomass accumulation. Plots were located on soils of the same or very similar types 

(Blair 1997).  

The ANPP clipplot samples were sorted into grasses and forbs and dried in an 

oven at 60°C for at least 24 hours and then allowed to cool before weighing to 

estimate dry weight ANPP (Briggs and Knapp 1991). Fay et al. 2003 states that 

“since the plots were burned each spring and are ungrazed, all above ground biomass 

represented the current year’s production.” ANPP was calculated using the following 

equation: 

ANPP/m2 = sum of aboveground biomass × 10.  

2) ANPP estimates for the Rannells site were taken near the peak plant 

production period (~ mid August) from a 30.5 ha pasture that has been ungrazed by 

livestock since 1996.  Samples have been taken annually from this pasture since 

1998. Estimates of ANPP were derived by clipping all the vegetation within four 

0.25m2 quadrats and sorting by life-forms.  The quadrats were located in random 

fashion near the center of the pasture in close proximity to a carbon flux tower.  Plant 

samples were dried for 72 h at 55oC and weighted after the samples cooled to room 

temperature (Owensby et al. 2006). 
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3) The final ANPP datasets used for comparison purposes were gathered by 

Kansas State University students enrolled in the Agronomy Range Research 

Techniques (RRT) class.  The ANPP data used for this study are collected in 

September every other year starting in 1990 (no data were collected in 1994).  

Clipplot samples are taken using six randomly located 0.25 m2 quadrats in which all 

the vegetation is clipped at ground level and sorted by major live-forms (grass and 

forbs).  The plants are dried at 60oC for a minimum of 48 hours and weighted after 

they have cooled to room temperature.   

For all three field sites, total (grasses and forbs combined) ANPP 

measurements were used for the correlation analysis between NDVI and ANPP. 

Spectral Data 

 The spectral dataset in this study was extracted from the biweekly time-series 

composites of the AVHRR NDVI dataset for the United States that extend from 1989 

to the present. These data were obtained from the U.S. Geological Survey Earth 

Resources Observation Systems (EROS) Data Center (EDC) (Kastens et al. 2005). 

These data were selected over other similar datasets such as the Moderate Resolution 

Imaging Spectrometer (MODIS) data because the AVHRR dataset extends back to 

1989, thus providing more years of NDVI data that could be correlated with the 

ANPP data.  The ANPP data on the KPBS extends back to 1982. 

The format of the NDVI is unsigned 8-bit integer, which is linearly rescaled to 

the integer range of 0 – 200 from the original NDVI range which was -1.0 to 1.0. 
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Values less than 100 typically represent snow, ice, water, and other non-vegetated 

soil background, while values between100 to 200 typically indicate a biomass feature 

(Jakubauskas et al. 2002). Because of the limitation of precision of original 8-bit 

format (precision is 0.01), the numerical error is 0.005 in the pixel-level NDVI 

values. The spatial resolution of AVHRR NDVI imagery is 1 km × 1km or 100 

ha/pixel (Kastens et al. 2005), and the projection is Lambert Azimuthal Equal-area. 

AVHRR NDVI data are composited using the highest NDVI value over the two-week 

composite period to reduce the effects of cloud cover and aerosol contamination. The 

composite periods for sequential NDVI images overlap by one week, so there are 52 

images spanning the entire calendar year. This is relatively high temporal resolution 

compared to other remotely sensed datasets. The time periods of growing season for 

this study will be from AVHRR NDVI composite period 16 (mid April) to period 44 

(the end of October). 

Data Analysis 

 Goal 1: Determine which NDVI AVHRR composite period is optimal for 

estimating ANPP of the tallgrass ecosystems of the Central Great Plains. 

 There are 29 NDVI near cloud-free weekly composite periods from mid-April 

to the end of October that normally span the growing season of the Central Great 

Plains. One challenge of this study is to determine the optimal period over the 

growing season for estimating ANPP of the tallgrass prairies of the Central Great 

Plains.  This segment of the study is designed to identify the NDVI composite period 
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that most strongly correlates year after year with ANPP clipplot data for the period 

for which NDVI and ANPP data are both available, which is from 1989 to 2005.  The 

NDVI composite period that is identified as the best overall predictor of ANPP will 

then be used to develop the mathematical transformation equation for estimating 

ANPP for all years in which NDVI composite data are available which was from 

1989 to 2007 at the time the image analysis research was being completed. 

 Given the 1 x 1 km spatial resolution of the AVHRR pixels, the watershed 

boundaries often intersect more than one pixel as demonstrated in Figure 2, where 

parts of four pixels are found within watershed 001D.  For this reason the NDVI 

value for the watersheds was determined by using a weighted NDVI value according 

to area within the watershed occupied by each pixel.  The weighted value was 

calculated using the Area Calculation Tool I developed in ArcGIS 9.2. The optimal 

correlation period between the ANPP clipplot measurements and the weighted NDVI 

values was determined by computing the correlation coefficients (r-values) between 

the ANPP clipplot measurements and each of the 29 growing season periods for each 

year.  The optimal NDVI composite period was then determined by identifying the 

period with the highest correlation value among the 29 composite periods of the 

growing season.  Period 30 (most closely coinciding with the third week in July) was 

found to be the optimal ANPP prediction period with an r value of 0.73. 
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Goal 2:  Model ANPP for all years that AVHRR composites and ANPP data 

are available, which for the study was from 1989 to 2005 (17 years). 

The accuracy of the linear regression model used for predicting ANPP was 

tested using a Jackknife Cross-Validation (JCV) approach as described in (Price et al. 

2002). This approach was implemented by withholding the NDVI and ANPP values 

for one year and using the remaining 16 years to build the regression models. This 

process was repeated 16 more times to generate an estimate of out-of-sample model 

accuracy (Price et al. 2002). The results of this process allowed for a comparison of 

year-by-year out-of-sample and in-sample model estimates. 

Goal 3:  Analyze the variation in ANPP among the 19 years (1989 - 2007) of 

the study period to determine how ANPP varies geographically and temporally 

among years. 

 Once the ANPP model was developed, the AVHRR optimal period 30 (late 

July) NDVI values were submitted to the linear regression equation to estimate ANPP 

for a four county (Geary, Pottawatomie, Riley and Wabaunsee) area (~ 7,000 ha) 

surrounding the study area.  This resulted in the production of ANPP maps for the 

four-county area for each year from 1989 to 2007 (19 years).  Matlab software was 

then used to extract statistical information from the map time-series sequence 

including ANPP means and standard deviation values on a pixel-by-pixel basis.  Such 

information was used to compare the predicted ANPP value in each year with map 

values for the other 18 years.  From these values, ANPP deviations from the mean 
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“normal” could be maps to create anomaly maps that were used to identify areas of 

change in ANPP within each map and over the study period. 

 

RESULTS AND DISCUSSION 

1.  Correlation between ANPP and precipitation 

 Given the conflicting results concerning the relationships between tallgrass 

ANPP and precipitation as discussed in the introduction section of this paper, it was 

decided to also examine the relationship between these factors. Using the same time 

interval as Nippert et al. (2006), but for years 1989 to 2005, correlation analysis that 

was able to explain 28% (r = 0.53) of the variation in ANPP using seasonal 

precipitation (Figure 3). These findings suggest using precipitation data to model 

ANPP can produce varying results, and there is a significant amount of variation in 

tallgrass ANPP that is not explained by precipitation data.  From these findings, 

models that rely on precipitation measurements to estimate ANPP for tallgrass 

ecosystems in the central Great Plains as a parameter input for modeling such factors 

as CO2 flux could be affected by the weak correlations reported in our study and 

Towne and Owensby (1984). 

2. Determining the optimal AVHRR NDVI composite period 

 Since NDVI composite data are produced on a weekly basis using a biweekly 

sample period, there are normally four composites produced per month.  Given 
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multiple composite periods to select from over a growing season, I needed to 

determine the optimal period for estimating ANPP over the 17 year study period.  

This was accomplished by computing the correlation between NDVI and ANPP for 

each composite periods starting with period 21 (early April) and ending with period 

40 (late October).  The results of these computations indicate that period 30 (late 

July) had the highest correlation explaining 53% (r = 0.73) of the variation in ANPP 

(figure 4). The correlation coefficient (r) values increase as  AVHRR NDVI values 

increase starting in late April when the tallgrass plant species begin to emerge from 

winter dormancy (green-up) and begins to decline after reaching peak plant foliage 

production and continues to decline as plants progress towards full senesces.  

 As shown in Figure 4, the highest AVHRR NDVI value showed up in period 

27 (late June), but the highest correlation values were found in late July, which is 

closer to the time that the ANPP samples were taken in the field. Note that the 

stronger correlation results were two composite periods after peak NDVI. Also note 

the drop in correlation between period 27 and 28. After plotting the points on a scatter 

plot for period 28, it was note that 1989 (drought year) and 1993 (extremely wet year) 

showed up as outliers more so in this period than other periods. Why this might be the 

case is unknown at this time. 

 The robustness of the correlation analysis results was examined by computing 

and plotting correlation results for another KPBS watershed (watershed 002D). The 

available data for watershed 002D allows such an examination using years 1989 to 
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2000. Here too, period 30 (late July) was shown to be the optimal period for 

predicting ANPP using the AVHRR NDVI composite data (r = 0.86). These 

corroborating result show AVHRR NDVI composite period 30 was consistently 

identifies as the best period for estimating ANPP for the study area.  Therefore this 

period was used to develop the prediction equation discussed in the following section.  

3. Development of the Tallgrass ANPP model 

 A positive and statistically significant relationship between AVHRR NDVI 

and ANPP has been identified as described in the in the previous section. Using the 

optimal modeling period of late July, the Tallgrass ANPP estimation equation was 

derived.  

  Tallgrass ANPP = 11.874 × NDVI -1503.324  

 The linear regression results used to produce this equation are shown in scatter 

diagram form in figure 5. The correlation coefficient for the AVHRR and NDVI show 

a strong relationship between these two factors (r = 0.73; r2 = 0.53).  An ANPP 

out-of-sample dataset for testing the accuracy of the model could not be found in the 

region, so the robustness of the model was evaluated using a Jackknife Cross-

Validation (JCV) method described in Price et al. (2002).   Figure 6 shows a year to 

year comparison of the in-sample and out-of-sample prediction results. As shown in 

this figure, the years that exhibited the greatest difference between in- and out-of-

sample estimates were1989 (drought year), 1993 (extreme wet year), 2002 (drought 

year) and 2004 (normal year following two-years of below normal precipitation).  
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The JCV results show the prediction model to be relatively robust with little variation 

between the in and out-of-sample predictions for ANPP (Figure 6). All-in-all, the out-

of-sample model approach produced similar results to the in-sample dataset with the 

greatest differences between estimates manifest in extreme dry and wet years.  

 A comparison among varying independent ANPP model predictions can 

provide in-sights into how similar or dissimilar predictions among various models 

might be.  A review of the literature revealed two NDVI-parameterized models used 

to predict ANPP for grasslands in the study region. These models were the GNPP 

(Running et al. 2004) and the NDVI-I (Paruelo et al. 1997). Figure 7 shows a 

comparison between GNPP, NDVI-I and the new Tallgrass ANPP model, as well as 

ANPP estimates from the three independent clipplot datasets (Konza, Rannells and 

Kansas State University (KSU)) Range Research Techniques (RRT) class field data 

measurements to validate the Tallgrass ANPP model accuracy. 

 In the Figure 7, ANPP clipplot measurements from the KPBS watershed 001D 

are represented by the bold red line, the Rannells by the green line, and the more 

intermittent RRT datasets by orange dots. The GNPP MODIS model estimates are 

plotted on the graph using a light blue line, the NDVI-I estimates using a light purple 

line and the Tallgrass ANPP model estimates using a black line.  In general, this 

graph shows considerable variation in ANPP model and clipplot measurements, with 

the NDVI-I model estimating higher values than the other models and clipplot data, 

and the MODIS derived GNPP estimates being lower than most of the other ANPP 



  34 

estimates.  There are significant differences within years between the Konza and 

Rannells clipplot estimates even though the sites were only about 7.5 km apart and 

both reside a loamy upland range sites.  The year to year clipplot data for the RRT 

estimates are also mostly different from the Konza and Rannells estimates, but this 

site is 18 and 13 km from the Konza and Rannells sites, respectively and on a 

different range site as described in the study area section above.  

 Figure 7 show the Tallgrass ANPP model estimates to be closer to the KPBS 

clipplot ANPP estimates than those produced by the GNPP and the NDVI-I models.  

Table 1 provides a year to year comparison of the ANPP estimates from the three 

remote sensing based ANPP models relative to the KPBS clipplot ANPP estimates.  

From this table we see that estimates from the GNPP model averaged 84.5 g/m2 

below the KPBS estimates, with all estimates falling below the KPBS estimates.  The 

NDVI-I year to year estimates averaged 189.4 g/m2 above the KPBS estimates with 

all but one year being above the KPBS estimates.  The out-of-sample Tallgrass ANPP 

year to year model estimates averaged 66.7 g/m2 above the KPBS estimates, with 9 

estimate years above and 8 years below the KPBS ANPP estimates. 

4. Construct the ANPP Greenness Maps and Variation Maps among 19 years 

 Once the Tallgrass ANPP model was developed and its prediction accuracy 

validated, maps of ANPP were generated for four Kansas counties that surrounded 

the study area.  These counties included: Geary, Pottawatomie, Riley and Wabaunsee, 

which occupy an area of approximately about 7,000 ha.   These maps were made to 
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examine the temporal and spatial dynamics of ANPP over a 19 year period (1989 – 

2007).  Figure 8 shows ANPP maps for eight selected years.  The selected maps 

represent extreme wet and dry years and near “normal” years.   

 According to the Manhattan precipitation data, 1989 and 2002 were drought 

year and the effects of the drought are manifest in the lower ANPP estimates for these 

years (Figure 8).  The rainfall data also show 1993, 2004 and 2007 to be wet years, 

with 1993 qualifying as extremely wet.  In these three years, estimates of ANPP were 

much higher than in the dry years  

 By using a Change Detection method, a series of anomaly maps were 

produced and the same selected years as shown in Figure 8 are also displayed in 

Figure 9. These anomaly maps show deviations from normal on a pixel-by-pixel 

basis, where the average (based on ANPP from 1989 – 2007) ANPP value for a pixel 

is compared to the pixel’s ANPP value for a given year.  Each pixel was then 

classified into a “deviation from normal” category (see Figure 9). 

 These anomaly maps showed considerable spatial and temporal variation in 

ANPP, which is indicative of the annual and interannual climatic variation common 

to the region. The observed patterns are too complex to verbally describe, but these 

maps do show just how dynamic ANPP can be within a year and among years in the 

region.  Since ANPP is only collected at select locations, maps showing variation in 

ANPP over large geography regions do not exist.  By storing such maps in a GIS 

database, trend analysis can be performed to identify areas where ANPP is increasing 



  36 

or decreasing or remaining more or less constant.  Since ANPP is an important 

indicator of energy flow within an ecosystem and considered a measure of ecosystem 

health, such maps could be used to monitor ecosystem changes that are indicative of 

the systems response to natural and anthropogenic factors that place stressing the 

system.  Future work could focus on the development of ecosystem health indicators 

and methods for assessing an ecosystem’s potential of undergoing environmental 

retrogression. The advantage here is that such maps can be produced for larger 

geographic regions that allow the systems within a region to be monitored in ways not 

feasible using conventional ground sampling approaches.   

 Unfortunately, because measurements of ANPP are not collected in a 

systematic manner over much of the region, validation of the map accuracy outside of 

the study area is not possible.  One might use ANPP estimates from other models 

such as the GNPP or the NDVI-I, but as shown in this study, there is some question 

as to how accurate such models are for the tallgrass ecosystem and even the clipplot 

data showed considerable variation in ANPP for very similar range sited residing 

within a relatively close distances of each other. 

 

CONCLUSION 

 The results of this study show that the optimal period for using NDVI to 

estimate ANPP in the study area is around the end of July.  The results also show that 

estimates of ANPP using remotely sensed data and ground level ANPP clipplot 
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measurements are highly variable. Unfortunately, at this time it is unknown which 

estimate or measurement of ANPP is most accurate. If one were to assume that the 

site where the greatest number of ANPP samples were collected would have the most 

accurate estimate of ANPP, then the KPBS dataset would be considered the most 

accurate, which is why the KPBS estimates were used as the benchmark against 

which all other estimates were compared. Use of a simple linear regression model 

produced estimates of ANPP that fell within acceptable limits and were most closely 

aligned with the KPBS clipplot measurements. Given the considerable variation in 

estimates of ANPP among the various sites and models, it is difficult to assess the 

absolute accuracy of the Tallgrass ANPP model at this time.  The findings in this 

study, do however suggest that development of ecosystem specific models of ANPP 

might be needed to more accurately estimate this biophysical factor.   

 It is believed that scaling up directly from the submeter level ANPP clipplot 

measurements to the 1 km spatial resolution of the AVHRR NDVI data might have 

weakened the relationship between the NDVI and ANPP clipplot data.  For this 

reason, future research will investigate the linkage between fine resolution (~ 1.0 m 

pixels) multispectral imagery acquired using an airborne remote sensing system and 

the clipplot ANPP measurements.  If strong linkages are found to exist, then ANPP 

estimated could be made at the 1.0 m resolution over areas larger than the MODIS or 

AVHRR pixel resolutions and the finer resolution ANPP estimates could be 

aggregated to the coarser pixel resolutions.  These aggregated values could then be 
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used in regression analysis to see if a stronger relationship between ANPP and 

coarser resolution remotely sensed data can be established. 

 Finally, once accurate estimates of ANPP can be developed, the development 

of regional scale ANPP maps should be tested.  If ANPP models are robust enough to 

accurately predict this biophysical factor over a region, then the next logical step 

would be to develop methods for accessing ecosystem health and susceptibility to 

natural and anthropogenic disturbance.   
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