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Abstract

In this work we obtain results in two areas of topology, normal condensations of prod-

ucts and size of realcompact subspaces of a space.

In 2000 Swardson proved that every uncountable compact space has a realcompact

subspace of size ω1. In the Chapter 2 the work of Swardson in [Swa00] is continued to

prove that realcompact spaces with pseudocharacter no greater than ω1 have realcom-

pact subspaces of size ω1. Under continuum hypothesis, a consequence is that every

uncountable realcompact space has a realcompact subspace of size ω1. We also prove

that every realcompact right-separated set of size larger than continuum has a realcom-

pact subspace of size of any cardinal less or equal to continuum. A corollary is that

every compact set of size bigger or equal to continuum has a realcompact set of size

less or equal to continuum, answering a question by Professor William Fleissner.

In 1997 Buzjakova in [Buz] proved that for a pseudocompact space X , X × (κ + 1)

condenses onto a normal space if and only if X condenses onto a compact space, where

κ =| βX |+. In the Chapter 3 we extend Buzjakovas’s method to prove if X × (κ + 1)

condenses onto a normal space, then X condenses onto a countably paracompact space,

where κ = 22|X |+.
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Chapter 1

Introduction

In this dissertation, two distinct but connected areas of topology are studied. The first

area is realcompact spaces. Realcompact spaces are those spaces that are homeomor-

phic to closed subsets of products of the real line (with the usual topology). Every

Lindelöf (in particular, compact) space is realcompact. It follows that every subspace

of the real line is realcompact. Realcompactness, like Lindelöfness and compactness,

is closed hereditary but not hereditary. Swardson has proved that every uncountable

compact space has a realcompact subspace of size ω1. Her result is a partial answer to

one of the main problems of interest to topologists. This is the problem of determin-

ing those spaces with property P that have a subspace of a certain size and property

Q. Since a countable space is Lindelöf, we seek realcompact subspaces of size ω1 or

larger.

It is known that the statement that an uncountable compact space has a compact sub-

space of size ω1 is not true. In fact, in βω , the Stone-Čech compactification of positive

integers, every uncountable closed set in isomorphic to βω itself and

|βω| = 2(2ω ) > 2ω ≥ ω1. Therefore all the uncountable compact subspaces of βω

are of size larger than ω1 and 2ω .
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It is unknown whether the statement that uncountable Lindelöf spaces have Lindelöf

subspaces of size ω1 is consistent with ZFC. In one direction, Tall and Koszmider

have showed, with additional axioms, that there exists a Lindelöf space which does not

contain any Lindelöf subspace of size ω1.

In the second chapter, we show that every uncountable realcompact space has a re-

alcompact subspace of size ω1 that has a coarser topology homeomorphic to a subspace

of the real line, a discrete subspace of size ω1, or a zero-dimensional right-separated

subspace of size ω1. In all three cases, the subspace of size ω1 has a coarser topology

that is Lindelöf. Therefore, an uncountable Lindelöf space has a subspace of size ω1

with a coarser Lindelöf topology.

One of the problems that remains, is to determine the weakest property P for space

X to possess to imply that X has a realcompact subspace of size ω1 or 2ω . In the

second chapter, we discuss different possibilities for property P and also the possibility

of independence from ZFC.

In the third chapter we explore a variation of a well-known theorem under a weaker

hypothesis. The property of a space X that X × I is normal ( X is said to be binormal)

had long been a hypothesis for certain homotopy extension theorems. The obvious

question is whether X being binormal means more than X being normal. In 1951,

Dowker [Dow] examined this problem and proved for a normal space X , X × I is nor-

mal iff X × (ω + 1) is normal iff X is also countably paracompact. ( Definition of

paracompact can be found in the third chapter.) The result by Dowker gave a useful

property for normal spaces that are not binormal. Normal spaces that are not binor-

mal are called Dowker spaces, and the question is do the exist. There have been a few

Dowker spaces with extra set theoretic assumptions but the first real Dowker space was

constructed by Mary Ellen Rudin [Rud] in 1971. In spite of the existence of Dowker

spaces, Morita and Starbird showed, in 1974, that the “X × I is normal” assumption in

6



the old homotopy extension theorem was unnecessary. In other ways, Dowker spaces

are part of broader question of normality of the products.

There is also a long history of topologists investigating the relationship between

topological properties and continuous bijections, called condensations, i.e., the prop-

erties of coarser topologies. It is possible that the condensation topology is stronger.

For example, Pytkeev proved that any σ−compact Borel space can be condensed onto

a compact set. Buzjakova [Buz] presented some sufficient conditions for a space to

condense onto a compact space; she provided a solution to a question of Arhangelskii

concerning coarser normal products. We extend her result by starting with spaces with

a weaker hypothesis. There exists an example witnessing the fact that our weaker hy-

pothesis can not imply condensation onto a compactuum. Also, Pavlov [Pav99] proved

that for any infinite compact set K, there exists a normal space X such that X ×K can

not be mapped one-to-one and onto a normal space; showing that the assumption that

a Cartesian product can condense onto a normal space, the assumption which was used

both by Buzjakova and the author, is not in vain.

Condensations can be useful in different areas of topology. Knowing condensation

results are useful in understanding the properties of the original space.
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Chapter 2

Realcompact Subspaces of Size Less than Continuum

2.1 Introduction

In 2000 Swardson proved that compact spaces of size > ω1 have a realcompact sub-

space of size ω1. In 2003 Professor Fleissner asked :

• Is it true that compact spaces of size > c have realcompact subspaces of size c ?

• Is it true that all Lindelöf spaces of size > ω1 have realcompact subspace of size

ω1?

• Is it true that the property called CRV , which we define shortly, on X is equivalent

to no realcompact subset of size ω1 for X , in a model of set theory with no S-

spaces?

We answer the first question in affirmative by proving that every compact space of size

> κ where κ ≤ c has a realcompact subspace of size κ .

For the second question, we obtain partial results by showing that if a realcompact

space of size > ω1 has pseudocharacter ≤ ω1 then there is a realcompact subspace of

size ω1. As a corollary, the Continuum Hypothesis implies every uncountable realcom-

pact space has a realcompact subspace of size ω1.
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The third question was answered by Justin Moore. In 2005 he constructed an L-

space with the CRV property. As we progress into this chapter, the properties of CRV

and realcompact subspaces of size ω1 become related. We show if a Tychonoff space

X does not have the CRV property, then X has a realcompact subspace of size ω1. The

L-space constructed by Justin Moore demonstrates that the converse is not true.

2.2 Preliminaries about Realcompact Spaces

Most of the results in this section are well-known. The proofs are included as they are

a variation of the proofs given in [PW] and [GJ].

Lemma 1. If S and T are Hausdorff extensions of X and f : S→ T is a continuous

extension of the identity function on X, then f [S\X ]⊆ T\X.

Proof. By the way of contradiction, assume x ∈ X and y ∈ S\X be such that

f (x) = f (y). Since S is Hausdorff, there are disjoint open sets Ux and Uy in S such that

x∈Ux and y∈Uy. Let W be an open set in T such that W ∩ f [X ] = f [Ux∩X ]. There is an

open set R in S such that y∈ R⊆Uy and f [R]⊆W . It follows that f [R∩X ]⊆ f [Ux∩X ].

As f is one-to-one on S, ∅ 6= R∩X ⊆Ux∩X , a contradiction as R∩Ux = ∅.

Definition 2. A Tychonoff space X is called realcompact if it can be embedded as a

closed subspace of a product of reals.

Definition 3. For a topological space X , C(X) is defined to be the set of continuous

functions f : X → R.

Fact 4. A Tychonoff space X is realcompact if and only if the embedding

e : X →∏C(X) R defined by e(x)( f ) = f (x) for x ∈ X and f ∈ C(X), is closed.

9



Proof. The sufficiency is obvious so we prove only the necessity. Let X be a Tychonoff

space and f : X → ∏A R an embedding so that f [X ] is closed in ∏A R. For a ∈ A ,

let πa : ∏A R → R be the projection map onto the ath coordinate and ga = πa ◦ f .

Now, ga : X → R is continuous. The function h : A → C(X) : a 7→ ga has the property

that {h←(ga) : a ∈ A } is a partition of A . Let B ⊆ A such that |h←(ga)∩B| = 1

for each a ∈ A . So, h|B : B→ C(X) is an one-to-one function and for each b ∈B,

h(b) = gb. Define i : ∏B R→∏A R by i(x)(a) = x(b), where b ∈ h←(ga); i is a closed

embedding. Let πB : ∏C(X) R→ ∏B R be the projection map. With this notation,

i◦πB ◦ e : X →∏A R is a commutative diagram as shown below.

X
i◦πB◦e−−−−→ ∏A R

e
y xi

∏C(X) R πB−−−→ ∏B R

Next we show that f = i ◦ πB ◦ e. Let x ∈ X and a ∈ A . Now,

(i ◦ πB ◦ e)(x)(a) = e(x)(b) where b ∈ h←(ga) or gb = ga. So,

e(x)(b) = e(x)(gb) = e(x)(ga) = ga(x) = (πa ◦ f )(x) = f (x)(a).

This shows that f = i◦πB ◦ e, f [X ]⊆ i[∏B R], and the map i◦πB : ∏C(X) R→∏A R

is a continuous extension of the homeomorphism f ◦ e← : e[X ]→ f [X ]. By continuity,

i◦πB[cl∏C(X) Re[X ]]⊆ cl∏A R[i◦πB[e[X ]]]⊆ cl∏A R[ f [X ]] = f [X ].

By Lemma 1 , this shows that cl∏C(X) Re[X ] = e[X ].

Definition 5. Let X be Tychonoff space and e : X → Y := ∏C(X) R be the canonical

embedding defined by e(x)( f ) = f (x) for all f ∈ C(X). Then the Hewitt realcompacti-

fication of X is denoted by υX and is defined to be clY e[X ].
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Fact 6. Let X be a Tychonoff space and f : X → S be a continuous function into a

realcompact space S. Then there exists a unique continuous extension of f , denote it

by υ f : υX → S, such that υ f |X = f .

Proof. Let eX : X →∏C(X) R and eS : S→∏C(S) R be the canonical embeddings of X

and S into a product of reals.

It is straightforward to show that the function π : ∏C(X) R→ ∏C(S) R defined by

π(p)(g) = p(g ◦ f ) is continuous; note that for x ∈ X and g ∈ C(S),

π(eX(x))(g) = eX(x)(g◦ f ) = g◦ f (x) = eS( f (x))(g), i.e. π ◦ eX = eS ◦ f

Thus the composition function π|eX [X ] = eS ◦ f ◦ e←X : eX [X ]→ eS[S] is noted in the

following commutative diagram.

eX [X ]
π|eX [X ]−−−−→ eS[X ]

e←
y xeS

X
f−−−→ S

For υ f = π|cl∏C(X) ReX [X ], υ f : cl∏C(X) R[eX [X ]]→ cl∏C(S) ReS[S] is the continuous ex-

tension of f . As eS[S] is closed in ∏C(S) R by Fact 4 and υX = cl∏C(X) R[eX [X ]], we

have that υ f : υX → S is a continuous extension of f . Note that υ f is unique because

for any other continuous extension of f , denoted by f̂ : υX → S, υ f and f̂ agree on X ,

a dense subset of their domain, thus they are equal.

Definition 7. A closed subset Z ⊆ X is called a zero-set or z−set of X if Z = f←[{0}],

for some continuous function f : X→R. The collection of all zero-sets of X is denoted

by Z (X).

Definition 8. A z−filter F on X is a subfamily of Z (X) with the following properties,

1. /0 /∈F .

2. If Z1 and Z2 ∈F , then Z1∩Z2 ∈F .

11



3. If Z ∈F , Z′ ∈Z (X), and Z ⊆ Z′, then Z′ ∈F .

Definition 9. A z−ultrafilter F on X is a z−filter with the additional property that if

Z1 and Z2 ∈Z (X) where Z1∪Z2 = X , then Z1 ∈F or Z2 ∈F .

Definition 10. A z−ultrafilter has countable intersection property (denoted by cip) if

every countable subset of it has non-empty intersection.

Fact 11. A z−ultrafilter F with countable intersection property includes any countable

intersection of its elements.

Proof. Let {Zi : i∈ω}⊆F . Since the intersections of finitely many z−sets are z−sets

and finite intersection of members of a z−filter belongs to that filter, we can assume

there exists a descending chain {Z( fi) : i ∈ ω} ⊆F where Z( fi) is the zero-set of fi

and fi : X → [0,1] is continuous ; and ∩i∈ωZi = ∩i∈ωZ( fi). Then Z := ∩{Z( fi) : i ∈ω}

is the zero-set of the function f (x) := Σi∈ω fi(x)/2i+1. For Z′ ∈F , Z′∩Z( fi) 6= /0 for

all i ∈ ω; and F has cip. Thus, Z′∩Z 6= /0 for all Z
′ ∈F , and as F is a z−ultrafilter

therefore, Z ∈F .

Note 12. For a Tychonoff space X , let βX denote the Stone-Čech compactification of

X . For each p∈ βX , Fp = {Z ∈Z (X) : p∈ clβX Z} is the unique z−ultrafilter that con-

verges to p (see [GJ], [PW]). For Z1 and Z2 ∈ Z (X),

clβX Z1∩ clβX Z2 = clβX(Z1∩Z2).

Lemma 13. A space X is realcompact if and only if every z−ultrafilter with countable

intersection property on X is fixed.

Proof. Suppose e : X → ∏C(X) R is a closed embedding, Y = ∏C(X) R and let αR

be the one-point compactification of R. Then there exists a continuous extension

βe : βX → Ŷ where Ŷ = ∏ξ∈C(X) αRξ . Now Let p ∈ βX\X and Fp be the free

12



z−ultrafilter on X that converges to p. Since e[X ] is closed in Y , clŶ e[X ]⊆ e[X ]∪ Ŷ\Y .

By Lemma 1, βe(p) ∈ βe[βX\X ] ⊆ clŶY\Y ⊆ Ŷ\Y . There is f ∈ C(X) such that

π f (βe(p)) ∈ αR\R.

For every n ∈ ω , let Zn = (αR \ (−n,n)) × ∏C(X)\{ f}αR and

Kn = [−n,n]×∏C(X)\{ f}αR; both Zn and Kn are zero-sets in Ŷ with βe(p) ∈ Zn. Also,

Kn∪Zn = Ŷ . Now, e←[Zn] and e←[Kn] are zero-sets in X and X = e←[Zn]∪e←[Kn]. So,

p ∈ clβX e←[Zn] ∪ clβX e←[Kn]. If p ∈ clβX e←[Kn], then

βe(p)∈ βe[clβX e←[Kn]]⊆ clŶ βe[e←[Kn]]⊆ clŶ Kn, a contradiction. So, p∈ clβX e←[Zn]

and e←[Zn] ∈Fp. Then
⋂

n∈ω e←[Zn] = ∅ which means Fp does not have countable

intersection property.

Conversely suppose every z−ultrafilter on X with countable intersection property

is fixed. Consider the embedding e : X → ∏C(X) R where Y = ∏C(X) R. It suffices to

show that e[X ] is closed. Again there is a continuous extension of e, βe : βX→ Ŷ where

Ŷ = ∏C(X) αR. Now clŶ e[X ] is compact. It suffices to show that clŶ e[X ]∩Y = e[X ]. Let

p ∈ βX\X . So, Fp is a free z−ultrafilter on X without cip. There exists a collection of

z-sets {Zn : n ∈ ω} ⊆Fp in X such that ∩{Zn : n ∈ ω}= ∅. Without loss of generality

we assume that Z0⊇ Z1⊇ Z2⊇ ·. For each n∈ω , let fn ∈C(X) be such that Zn = Z( fn)

and fn[X ] ⊆ [0,1]. We define a function g : X → [0,1] by g(x) = ∑
i∈ω

fi(x)
2i+1 . and note

that g is a continuous function and positive on X . On the other hand for every i ∈ ω ,

Zi ⊆ g←[0,1/2i]. Thus p ∈ clβX g←[0,1/2i] for every i ∈ ω . Let βg : βX → [0,1] be

the continuous extension of g. Then βg(p) ∈ [0,1/2i] for every i ∈ ω . It follows that

βg(p) = 0. Now the function
1
g

: X → [1,∞) is also continuous and has a continuous

extension to βX . But β (1/g)(p) > n for all n ∈ ω and therefore β (1/g)(p) ∈ αR\R.

This implies that e(p) /∈ Y .

Corollary 14. Lindelöf spaces are realcompact.

13



Proof. Every z−filter, with cip on a Lindelöf space has non-empty intersection. There-

fore, every z−ultrafilter with countable intersection property has non-empty intersec-

tion. Thus by Lemma 13, every Lindelöf space is realcompact.

Corollary 15. Let T be a realcompact extension of a Tychonoff space X. Then every

z−ultrafilter with countable intersection property on X has an adherent point in T .

Proof. Let F be a z−ultrafilter with countable intersection property on X . Then

G = {Z ∈ Z (T ) : Z ∩X ∈F} is a z−ultrafilter with countable intersection property

on T and therefore by Lemma 13 it is fixed. Denote the intersection by {p}= ∩G . By

the way of contradiction assume there exists Z ∈ F such that p /∈ clT Z. Then there

exists a continuous function f : T → [0,1] such that f (p) = 0 and f [clT Z] = 1. Let

Z1 = f←[[0,1/2]] and Z2 = f←[[1/2,1]]. Z1 /∈ G therefore Z2 ∈ G , a contradiction to

p ∈ ∩G .

Fact 16. A closed subspace of a realcompact space is realcompact.

Proof. Let A be a closed subspace of a realcompact space X and let e : X→∏C(X) R be

the canonical embedding. e[A] is closed in e[X ] and e[X ] is closed in ∏C(X) R. Therefore

e|A : A→∏C(X) R is an embedding of A onto a closed subspace of ∏C(X) R.

Fact 17. Let X ⊆ A⊆ υX . If A is realcompact then A = υX .

Proof. Let i : X→ A and j : A→ υX be the inclusion maps and let υ i : υX→ A be the

continuous extension defined by Fact 6. Now let h = j ◦υ i : υX → υX , h|X : X → υX

is the identity map and by Fact 6 the extension has to be unique. Therefore h is the

identity map and also υ i has to be identity map.

Fact 18. A product of a collection of realcompact spaces is realcompact.

14



Proof. Let C := {Xξ : ξ ∈A } be a collection of realcompact spaces and let eξ denote

the canonical embedding eξ : Xξ → ∏C(Xξ ) R. Then let

e : X := ∏A Xξ →∏ξ∈A (∏C(Xξ ) R) defined by e(∏ξ∈A xξ ) = ∏ξ∈A (∏C(Xξ ) eξ (xξ )).

Now e[X ] is closed in every coordinate of the product over A , therefore it is closed in

the product space.

Corollary 19. An intersection of a family of realcompact subspaces is realcompact.

Proof. Let {Xξ : ξ ∈ A } be a family of realcompact subspaces of a space Y and let

X = ∩ξ∈A Xξ . The function e : X → ∏ξ∈A Xξ defined by e(x)(ξ ) = x is a closed

embedding into the product space and the product space is realcompact, therefore e[X ]

is realcompact.

Fact 20. A Tychonoff space X is compact if and only if X is both countably compact

and realcompact.

Proof. Let X be compact. Then every z− ultrafilter on X converges. Therefore any

z−ultrafilter with cip converges, which, by Lemma 13, implies X is realcompact. On

the other hand since X is compact, every countable cover on X has a finite subcover;

thus X is countably compact.

Now, let X be realcompact and countably compact. Let F be a z−ultrafilter on X .

If we assume F has cip, by X being realcompact, F converges in X . Without loss of

generality assume F does not have cip, then there exists a countable family of z−sets

Z := {Zi : i∈ω} with empty intersection. Now, {X \Zi : i∈ω} is a countable cover of

X and since X is countably compact there exists a finite subcover, which implies there

exists a finite subset of Z with empty intersection, a contradiction.

Fact 21. A Tychonoff space that is the union of a realcompact subspace and a compact

subspace is realcompact.
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Proof. Let Y = X ∪K be a Tychonoff space where X is realcompact and K is compact.

Assume that Y is not realcompact. There is a z−ultrafilter F on Y with cip such that

∩F = ∅. There is Z ∈F such that Z ∩K = ∅. Moreover, there is a zero-set Z′ in Y

such that K ⊆ intY Z′ and Z′∩Z = ∅.

The goal is to show that FX = {T ∩X : T ∈ F} is a z−ultrafilter on X . Since

Z ∈F , FX is a z−filter on X with cip. We need to show that FX is a z−ultrafilter

on X . Let W be a zero-set in X such that W meets FX . Note that W ∩Z is a zero-set

in X . There is f ∈C(X) such that W ∩Z = f←(0) and f [X ] ⊆ [0,1]. Also, Z′ ∩X is

a zero-set in X . There is g ∈C(X) such that Z′ ∩X = g←(0) and g[X ] ⊆ [0,1]. Let

h =
f

f +g
. Note that Z(h) = Z( f ) = W ∩ Z and h←(1) = Z(g) = Z′ ∩ X . Define

H : Y → R by H|X\intY Z′ = h|X\intY Z′ and H|Z′ = 1. By the Pasting Lemma, H is con-

tinuous. Now H←(0) = Z(h) = W ∩Z. Since W ∩Z meets FX , W ∩Z meets F . As

F is a z−ultrafilter on Y , W ∩Z ∈F and hence W ∩Z ∈FX . This shows that FX is a

z−ultrafilter on X . As FX has cip and ∩FX = (∩F )∩X = ∅. This shows that X is not

realcompact, a contradiction. Thus, every z−ultrafilter on Y with cip has non-empty

intersection. It follows that Y is realcompact.

The next result is a well-known fact in basic topology.

Lemma 22. Let f : X→Y be a continuous function and πX : X×Y → X the projection

map. Then πX |gr( f ) : gr( f )→ X : (x, f (x)) 7→ x is a homeomorphism.

Fact 23. Let f : X → Y be a continuous function from a realcompact space X to a

Tychonoff space Y . Then the preimage of a realcompact subspace of Y is realcompact.

Proof. Let Z be a realcompact subspace of Y . Then X ×Z is also realcompact. Now,

gr( f ) is a closed subspace of X ×Y ; so, gr( f )∩ (X × Z) is realcompact as a closed

subspace of a realcompact space. But gr( f )∩ (X × Z) = gr( f | f←[Z]). By previous

lemma, f←[Z] is homeomorphic to gr( f | f←[Z]). Thus, f←[Z] is realcompact.
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Fact 24. Let X be a Tychonoff space and f : X → Y be a continuous, one-to-one func-

tion into a space Y that is hereditary realcompact. Then X is also hereditary realcom-

pact.

Proof. There is a continuous extension υ f : υX → Y that extends f by Fact 6. Let

p ∈ Y . By Fact 23, υ f←[Y\{p}] = υX\υ f←(p) is realcompact. So, by Fact 21,

υX\υ f←(p)∪{ f←(p)} is realcompact. As X ⊆ (υX\υ f←(p))∪{ f←(p)} ⊆ υX , it

follows that υX\υ f←(p)∪{ f←(p)}= υX . That is, for each p∈Y , υ f←(p) = f←(p).

This shows that υX = X and X is realcompact. By Fact 23, since f is one-to-one, X is

hereditary realcompact.

2.3 Size of Realcompact Spaces

The following result is an extension of a theorem used by Swardson in [Swa00] from

ω1 to arbitrary infinite cardinal κ ≤ 2ω .

Theorem 25. If X is a space with a subspace Y ⊆ X and f ∈ C(Y ) such that | f [Y ]| ≥ κ ,

then X has a realcompact subspace of size κ .

Proof. Pick B ⊆ f [Y ] such that |B| = κ , then by Axiom of Choice pick A ⊆ f←[B]

such that f |A is one-to-one. By Fact 24, A is realcompact.

Definition 26. A space X is right-separated (resp. left-separated) if it can be enumer-

ated as {xξ : ξ ∈ η} where η an ordinal and the initial segment {xξ : ξ ∈ α} is open

(resp. closed) for any α ∈ η . We consider X ordered by this enumeration.

Definition 27. A cardinal κ is called measurable if a non-trivial {0,1}-valued count-

ably additive measure can be defined on P(κ).
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Lemma 28. [GJ] Every discrete space of size κ , where κ is a non-measurable cardinal,

is realcompact.

Note that measurable cardinals are very large cardinals and ω1 and c are non-

measurable cardinals. We are going to use Lemma 28 in the next Lemma and in Lemma

49.

Lemma 29. If a Tychonoff space X is not hereditary separable then X contains a real-

compact subspace of size ω1.

Proof. Let A ⊆ X be a non-separable subspace. Then we can recursively form a left-

separated subset of A by inductively picking a point xα ∈ A\ clA{xξ : ξ ∈ α} for each

α ∈ ω1. If B := {xξ : ξ ∈ ω1} is Lindelöf then we are done. If B is not Lindelöf, we

can build a right-separated subset as follows: Since B is not Lindelöf, it has a cover

U := {Uξ : ξ ∈ ω1} with no countable subcover.

At level α , let Uδα
∈U be such that

Vα := Uδα
\ (∪ξ∈αUδξ

∪{xζ : ζ ∈ (sup{γξ : ξ ∈ α}+1)}) 6= /0.

Pick xγα
∈Vα .

Now {xγα
: α ∈ ω1} is both right-separated and left-separated. Thus {xγα

: α ∈ ω1} is

discrete and discrete spaces of size ω1 are realcompact.

This proof can be simplified by using ω1→ (ω1,ω)2, as follows:

Let B be a left-separated space as above. Denote the left-separated order by <L. If

B is not Lindelöf we build a right-separated subset C ⊆ B; denote the ordering by <R.

Now, by ω1→ (ω1,ω)2, either there exists a subset D⊆C of size ω1 such that <L=<R

on D, or there exists a countable subset on which <L=>R which is a contradiction to

the fact that there exists no infinite descending chain in any well-ordered set. So there
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exists a subset D of size ω1 that is both left-separated and right-separated. Thus D is

discrete and realcompact.

Definition 30. A space X is < κ real-valued if for all Y ⊆ X and for f ∈ C(Y ),

| f [X ]|< κ .

Definition 31. A Tychonoff space X has the countable real valued property or CRV

if for all Y ⊆ X and all f ∈ C(Y ), f has a countable image.

The following two results are well-known and proofs are included for completeness.

Fact 32. A Tychonoff space with countable real valued property is zero-dimensional.

Proof. Let x ∈U an open set in X then there exist a function f : X → [0,1] such that

f (x) = 0 and f [X \U ] = {1}. Since f has countable image let r ∈ [0,1] \ f [X ] then

x ∈ f←[[0,r]]⊂U is a clopen set. So X has a clopen base.

Fact 33. A countably compact, Tychonoff space X with no isolated points has a closed

subspace A and a continuous f ∈ C(A) such that | f [A]|= 2ω .

Proof. We build a binary tree of size ω of regular-closed sets such that each branch

has size ω and the collection of intersections of the branches map continuously onto a

Cantor space 2ω ⊆ R: Let U0 and U1 be two open set with disjoint closure in X then

let U0,0 and U0,1 be two open sets with disjoint closure in U0 and U1,0 and U1,1 be two

open sets with disjoint closure in U1.

At stage n + 1, Uha0 and Uha1 have disjoint closure inside Uh for all h ∈ 2n. Let

Ag = ∩n∈ωclUg|n for g ∈ 2ω . Ag 6= /0, for X is countably compact. Let A = ∪g∈2ω Ag.

Define f : ∪g∈2ω Ag→ 2ω by f (x) = g if x ∈ Ag. f is well-defined and continuous:

f←[g|n×∏
m>n

2] = clUg|n ∩A⊆ (X \∪l∈2ω ,l 6=gclUl|n)
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which means preimage of every basic open set is clopen.

A is closed because it is an intersection of closed sets A = ∩n∈ω ∪h∈2n clUh.

Definition 34. An uncountable regular Hausdorff space is sub-Ostaszewski if every

open subset of it is either countable or co-countable.

Definition 35. A sub-Ostaszewski space is called Ostaszewski if it is countably com-

pact and non-compact.

Definition 36. ♣ is the statement that there exists a collection {Aδ : δ ∈ ω1∩ lim} of

countable subsets of ω1 such that

1. Aδ ⊆ δ ,

2. for any uncountable subset A⊆ ω1, there exists a ξ ∈ ω1 so that Aξ ⊂ A.

In 1975, assuming ♣ Ostaszewski [AO] constructed an Ostaszewski space of size

ω1 that is locally compact but is not realcompact.

Definition 37. A point p is a κ-accumulation point of a subset A of a space X , if |A| ≥ κ

and for all open sets U 3 p, |A∩U |= κ .

The following result is a basic property in topology.

Lemma 38. An uncountable subset A⊆ R has at least two ω1-accumulation points.

Proof. Define Ai := A∩ (i, i+1) for i ∈ Z. A is uncountable and A = ∪i∈ZAi∪ (A∩Z).

Therefore, there exists i ∈ Z such that Ai is uncountable.

Let

r1 := sup({q ∈Q : |Ai∩ (i,q)|< ω}∪{i})

and let

r2 := inf({q ∈Q : |Ai∩ (q, i+1)|< ω}∪{i+1}).
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r1 < r2: By the way of contradiction, assume r1 > r2. It follows from the definition of

r1 and r2 that for every q ∈Q∩ (r2,r1), |Ai∩ (i,q]| ≤ ω and |Ai∩ [q, i+1)| ≤ ω which

implies Ai = (Ai∩ (i,q])∪ (Ai∩ [q, i+1)) is countable, a contradiction. Thus r1 < r2.

Now pick p1, p2 ∈ (r1,r2) such that p1 < p2. Then both sets [i, p1] and [p2, i + 1]

are compact and their intersection with Ai is uncountable. Every uncountable subspace

of a compact space has at least one ω1-accumulation point and therefore Ai∩ [i, p1] and

Ai∩ [p2, i + 1] each have at least one ω1-accumulation point. Therefore Ai has at least

two ω1-accumulation points.

Fact 39. A sub-Ostaszewski space X has the countable real valued property.

Proof. By the way of contradiction, assume Y ⊆ X , and f : Y → R is a continuous

function that has uncountable image. By the Lemma 38, f [Y ] has two ω1-accumulation

points, denote them by p1 and p2 where p1 < p2. Let r1,r2 ∈ (p1, p2) such that r1 < r2.

Then f←[(p1,r1)] is an open set in Y , and there exists an open set in X , U , such that

U ∩Y = f←[(p1,r1)]. Therefore U is uncountable and since f←[(r2, p2)]⊆ X \U , U is

also not co-countable, a contradiction. Thus f has countable image.

In light of Theorem25, the question is whether ”a realcompact space X has a re-

alcompact subspace of size ω1” is equivalent to ”X does not have CRV property”.

The one-point compactification of locally compact Ostaszewski space is a realcompact

space of size ω1 with CRV property which contradicts that fact with assuming some

extra axioms. Justin Moore constructed a hereditary Lindelöf, non-separable space that

has the CRV property. This shows that having a realcompact subspace of size ω1 is not

equivalent to not having the CRV property in ZFC. So, the converse of Theorem 25 is

not true.
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2.4 Realcompact Subspaces of Size ω1

Fact 40. Let X be an uncountable space with countable real-value property and A⊆ X .

If FA is a z−ultrafilter on A with the countable intersection property (denoted as cip),

then FX = {Z ∈Z (X) : Z∩A ∈FA} is a z−ultrafilter on X with cip .

Proof. Let V be a clopen set in X that meets FX , we show that V ∈FX :

If V ∩A = ∅, then X\V ⊇ A. Then (X\V )∩A = A ∈FA and hence X\V ∈FX , a

contradiction to V meeting FX . This implies that V ∩A 6= /0.

Now if V ∩A 6= /0 and (X \V )∩A ∈ FA, then X \V ∈ FX , a contradiction to V

meeting FX . So V ∩A ∈FA which implies V ∈FX .

Now let Z ∈ Z (X). Then Z =
⋂

i∈ω Vi where Vi is clopen in X (follows from the

CRV property). If Z ∈Z (X) meets FX , then each Vi meets FX and therefore Vi ∈FX

and Vi∩A ∈FA. By cip for FA, ∩i∈ωVi∩A ∈FA which means Z ∈FX .

For the rest of this section for A ⊆ X and FA a z−ultrafilter with cip on A we use

FX as defined above.

Definition 41. The pseudocharacter of a point x in a T1 space X is the cardinal

inf{|U | : U ⊆ τ(X),∩U = {x}} and is denoted by ψ(x,X). The pseudocharacter

of a space X is the supremum of all infinite cardinals ψ(x,X) for x ∈ X and is denoted

by ψ(X).

Lemma 42. Let X be an uncountable realcompact space with CRV and let x ∈ X be

such that ψ(x,X) = ω1. Then X contains a realcompact subspace of size ω1.

Proof. Let {Uξ : ξ ∈ ω1} be a collection of clopen neighborhoods of x such that

∩ξ∈ω1
Uξ = {x} and for all α ∈ ω1,

⋂
ξ<α

Uξ \Uα =
⋂

ξ<α

Uξ \ (
⋂

ξ≤α

Uξ ) 6= /0.
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Now pick xξ ∈ ∩ξ<αUξ \Uα . Note that xα = xβ if and only if α = β .

We claim that A = {xξ : ξ ∈ ω1}∪{x} is realcompact.

Let FA be a z−ultrafilter on A with cip. There are two cases:

Case 1) There exists α ∈ω1 such that Uα ∩A 6∈FA. Thus, (X \Uα)∩A∈FA. Let α

be least such ordinal. Then, Uξ ∩A ∈ FA for all ξ < α . It follows that

∩ξ<αUξ ∩ (X \Uα)∩A = {xα} and FA has cip. So {xα} ∈FA and ∩FA = {xα}.

Case 2) For all ξ ∈ ω1, Uξ ∩A ∈FA. Then, for all ξ ∈ ω1, Uξ ∈FX . Since FX is

a z−ultrafilter with cip on X , ∩FX 6= /0. But ∩FX ⊆ ∩ξ∈ω1
Uξ therefore ∩FX = {x}

which implies ∩FA ⊆ {x}.

But if Z ∈ Z (A) and x /∈ Z, then since x ∈ A and Z is closed in A, x 6∈ clX Z. So,

there is a clopen set U in X such that x ∈U and U ∩ clX Z = ∅. As ∩FX = {x} and FX

is a z−ultrafilter, U ∈FX which implies U ∩A ∈FA and Z /∈FA.

In [GJ], Lindelöf spaces whose points are Gδ sets are shown to be hereditary real-

compact. Here is an improvement of their result.

Lemma 43. Let X be a realcompact space such that ψ(X) = ω . Then X is hereditary

realcompact.

Proof. Let A be a subspace of X and F be a z−ultrafilter with cip on A. Since X is

realcompact, clX A is a realcompactification of A. Therefore, there exists a continuous

onto function β id : υA→ clX A such that β id|A = id . β id(F ) = x for some x ∈ clX A.

Now since ψ(x,X) = ω , {x} = ∩i∈ωUi where Ui’s are open. Let Vn = ∩i∈nUi and

fi : X→ [0,1/2i+1] be a continuous function such that fi(x)= 0 and fi[X \Vi] = {1/2i+1},

then f : X → [0,1] defined by f (y) = Σi∈ω fi(y) is a continuous function and

Z( f ) = {x}. Let Zi := f←[[0,1/i]] for i ∈ ω , Zis are zero-sets and {x} = ∩i∈ωZi. Let
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Z
′
i := f←[[1/i+1,1]] for all i ∈ ω . The Z

′
i’s are also zero-sets and Zi∪Z

′
i = X so for all

i ∈ ω either Zi∩A ∈F or Z
′
i ∩A ∈F .

Let us assume there exists an n ∈ ω such that Zn ∩ A /∈ F . Then

β id(F ) 6= x /∈ Z
′
n∩A, a contradiction.

So for all i ∈ ω Zi ∩ A ∈ F and by countable intersection property of F ,

{x} ⊇ ∩i∈ω(Zi∩A) 6= /0. Therefore x ∈ A. Which means F is fixed in A.

Now by the Lemma 42 and Lemma 43 and the fact that any space without CRV

property has a realcompact subspace of size ω1 (Theorem 25) we have the following:

Corollary 44. If X is an uncountable realcompact space and ψ(X) ≤ ω1, then X has

a realcompact subspace of size ω1.

Now by the above corollary we show the following:

Corollary 45. [CH] Every uncountable realcompact space has a realcompact sub-

space of size ω1.

Proof. By Lemma 29 we can assume that the uncountable realcompact space X is

separable. By the cardinality formula χ(X) ≤ 2d(X), the fact that ψ(X) ≤ χ(X), and

CH, we have that ψ(X)≤ ω1. By above corollary, we are done.
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2.5 Realcompact Subspaces of Size less or equal to

Continuum

Definition 46. A Hausdorff space is called scattered if every subspace of X has isolated

points.

Fact 47. A space X is scattered if and only if X is right-separated.

Proof. Let X be scattered and let x0 be an isolated point of X . At stage α if

X \{xξ : ξ < α} 6= /0, let xα be an isolated point of X \{xξ : ξ < α} 6= /0. For some η ,

X \{xξ : ξ ∈ η}= /0. Then {xξ : ξ ∈ η} witnesses that X is right-separated.

Conversely suppose X = {xξ : ξ < α} is right-separation of X and A⊆ X is a non-

empty subset. Now A = {xξ : ξ ∈ Ω} where Ω ⊆ α . Let η = minΩ, xη is an isolated

point of A.

Fact 48. Let X be right-separated of order type κ+. If X has no dense subspace of size

< κ , then X has a discrete set of size κ .

Proof. Let X = {xξ : ξ < κ+} be a right-separation of order type κ+. Define

φ : κ → κ+ as follows: φ(0) = 0. At stage α < κ , pick xζ ∈ X \ cl{xφ(ξ ) : ξ < α}

such that ζ > sup{φ(ξ ) : ξ < α}. Let φ(α) = ζ . Now {xφ(ξ ) : ξ < κ} is the desired

set.

Lemma 49. Let κ be a cardinal and X be a right-separated, realcompact Hausdorff

space such that |X | ≥ κ . Then X has a realcompact subspace of size κ .

Proof. If |X | = κ , then we are done so let’s assume |X | ≥ κ+.

Enumerate X := {xξ : ξ ≤ η}, for some ordinal η (η ≥ κ+), where the indices cor-

respond to the right-separation of X . Let Y := {xξ : ξ < κ+} ⊂ X . Regarding Y we

have three cases:
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Case 1: There exists ξ < κ+ and an open set U such that xξ ∈U ⊆ clU ⊆ [x0,xξ+1)

and |clU | ≥ κ . In this case we are done as clU is realcompact and has size κ .

Case 2: There is a subspace S ⊆ Y such that |S| > κ and S has no dense subset of

size < κ . By Fact 48, S has a discrete subset of size κ .

Case 3: Neither Case 1 nor Case 2. Let’s build Bξ by the way of induction.

B1 is a set of size < κ that is dense in Y . Bδ is a set of size < κ that is dense in

Y \
⋃
{Bξ : ξ < δ}. Then B :=

⋃
{Bξ : ξ < κ} is of size κ . Let α = sup{ξ : xξ ∈ B},

α < κ+. Then there is an open set U such that xα ∈U ⊆ clU ⊆ [x0,xα ]. However, as

U has to intersect all Bξ ’s, |U | ≥ κ . A contradiction to not Case 1.

Theorem 50. Let ω ≤ κ ≤ 2ω . If X is a compact space of size ≥ κ , then X has a

realcompact subspace of size κ .

Proof. If there exists A ⊆ X and f ∈ C(A) such that | f [A]| ≥ κ then we are done by

Theorem 25. Suppose for all A⊆ X and for all f ∈ C(A), | f [A]|< κ ( X has < κ real-

valued property). By the way of contradiction let B ⊆ X such that B has no isolated

point. Then clX B is countably compact and since B has no isolated point, clX B has

no isolated point. By Fact 33, there exists f ∈ C(clX B) such that | f [clX B]| = 2ω , a

contradiction. Now, scattered implies right-separated, and X is compact, Hausdorff,

right-separated, and |X | ≥ κ . By Lemma 49, X has to have a realcompact subspace of

size κ .
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Chapter 3

Normal images of the product and countably

paracompact condensation

3.1 Introduction and Preliminaries.

3.1.1 Background and Introduction

There is a long history of examining when the product of two normal spaces is also

normal. In homotopy theory, it is useful to know when X×I is normal when X is normal

and I is the unit interval with the usual topology. In 1951, Dowker [Dow] examined

this problem and proved for a normal space X , X×I is normal iff X×(ω +1) is normal

iff X is also countably paracompact.

The question of whether every normal space is countably paracompact was solved in

1971 by Mary Ellen Rudin [Rud] who constructed a normal space that is not countably

paracompact.

In 1960, Tamano [Tam] proved this amazing result: For a normal space X , X ×βX

is normal if and only if X is paracompact.
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We list a few results that are variations of Tamano’s theorem. One is the result

by Kunen discussed in 3.1.3. In 1984, Kunen [Kun] proved for a normal space X ,

X× (|X |+1) is normal iff X is paracompact.

In 1997, Buzjakova [Buz] proved another variation of Tamano’s theorem. She

proved:

Let X be a pseudocompact Tychonoff space and κ = |βX |+. Then X condenses

onto a compact space if and only if X× (κ +1) condenses onto a normal space.

Comparing the Buzjakova’s result to Kunen’s result the natural question is whether

it is possible to prove a condensation variation of Kunen’s result without the extra as-

sumption that X is pseudocompact.

The final background result is due to Pavlov [Pav99]. In 1999, he proved that for

every compact space K, there exists a space X such that X ×K can not be condensed

onto a normal space. This shows that not all spaces have coarser normal products and

assuming that a space X has this property is not vacuous.

In this chapter we show for a Tychonoff space X , if X × (κ + 1) condenses onto a

normal space, then X condenses onto a countably paracompact space, where κ = 22|X |+.

Let all spaces be Tychonoff and for chosen κ , let Y := X× (κ +1).

3.1.2 Preliminaries

Definition 51. Let U be an open cover of space X . A cover C of X is a locally finite

refinement of U if for every V ∈ C there exists a U ∈ U such that V ⊆U and each

x ∈ X has a neighborhood that intersects only finitely many members of C .

Definition 52. A space X is called paracompact if every open cover has a locally finite

open refinement.
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Definition 53. A space X is called countably paracompact if every countable open

cover has a locally finite open refinement.

Definition 54. A Dowker space is a normal space that is not countably paracompact.

Definition 55. A continuous function f : X −→ Y is a condensation if f is one-to-one

and onto Y . If f is the identity, we can say that Y has a coarser topology than X .

3.1.3 Normal Product and Paracompactness

Theorem 56. [Kun] Let X be a Tychonoff space and let |X |+1 have the order topology.

If X× (|X |+1) is normal, then X is paracompact.

Proof. Let {Uα}α∈λ be an open cover of X and {Vα}α∈λ be a collection of open sets

in βX such that Vα ∩X = Uα . Note: without loss of generality We may assume that the

open covers are indexed by a cardinal λ ≤ |X |. If
⋂

α∈λ (βX \Vα) = /0, then since βX

is compact, we are done. So let us assume

/0 6= A =
⋂

α∈λ

(βX rVα)⊆ βX r X

.

Now let Aα = X \ (
⋃

β<α Vβ ).
⋃

α∈λ (Aα ×{α}) is a closed set in X × (|X |+ 1)

because
⋂

α∈λ Aα = /0 and Aα is decreasing. Also
⋃

α∈λ (Aα×{α}) is disjoint from the

closed set X×{λ}

So there exists a continuous function f : X× (|X |+1)→ [0,1] such that

• f [X×{λ}] = 0, and

• f [∪α∈λ (Aα ×{α})] = 1.
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Use f to define a pseudometric d on X by:

d(x,y) = supα∈λ+1 | f (x,α)− f (y,α)|.

We verify the pseudometric properties.

For x,y,z ∈ X :

1. d(x,x) = 0,

2. d(x,y) = d(y,x),

3. d(x,y)= supα∈λ+1 | f (x,α)− f (y,α)| ≤ supα∈λ+1(| f (x,α)− f (z,α)|+| f (z,α)−

f (y,α)|)≤ supα∈λ+1 | f (x,α)− f (z,α)|+supα∈λ+1 | f (z,α)− f (y,α)|= d(x,z)+

d(z,y).

Claim: τ(d)⊆ τ(X).

Let x ∈ X and ε > 0. First we show there is a T ∈ τ(X) such that x ∈ T ⊆ Bd(x,ε).

Let α ∈ λ + 1 and let Bα = Wα ×Oα (where Oα is open in α + 1 containing α and

x ∈Wα is open in X) be a basic open set containing (x,α) such that for all (y,β ) ∈ Bα

(β ∈ Oα ), | f (y,β )− f (x,α)|< ε/2.

X×λ +1

Aξ

|X |+1

· · ·Bα1 Bαn (x,λ )

Figure 3.1: An illustration of a finite open cover of λ +1.
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Since | f (y,β )− f (x,β )|< | f (y,β )− f (x,α)|+ | f (x,α)− f (x,β )|,

sup
β∈Aα

| f (y,β )− f (x,β )|< ε.

Now λ + 1 is compact; therefore, it can be covered by finitely many {Oαi}i<k. Then

(∩i<kWαi)× (|λ |+ 1) is open in X × (|X |+ 1). For all y ∈ ∩i<kWαi and for α ∈ λ +

1, supα∈|λ |+1 | f (y,α)− f (x,α)| ≤ ε implies d(y,x) < ε . T := ∩i<kWαi is open in X

and x ∈ ∩i<kWαi ⊆ Bd(x,ε). Now to show Bd(x,ε) is open in X , let x′ ∈ Bd(x,ε).

There is T ′ ∈ τ(X) such that x′ ∈ T ′ ⊆ Bd(x′,ε−d(x,x′)) ⊆ Bd(x,ε). This shows that

Bd(x,ε) ∈ τ(X).

By continuity of f at (x,λ ), there is α < λ such that

| f (x,β )− f (x,λ )|< 1/4 for all β > α .

For ξ > α , define a continuous function gξ : X → [0,1] by gξ (x) = f (x,ξ ).

Let gξ be the extension of gξ to βX . For x′ ∈ Bd(x,1/4),

gξ (x′)≤ gξ (x)+ |gξ (x′)−gξ (x)| ≤ gξ (x)+1/4 = f (x,ξ )+1/4 < 1/2.

Therefore,

gξ [clβX Bd(x,1/4)]⊆ clRgξ [Bd(x,1/4)]⊆ clR[0,1/2] = [0,1/2].

For y ∈ clβX Aξ , gξ (y) = 1. Hence, clβX Bd(x,1/4)∩Aξ = /0, for all x ∈ X . As

A⊆ Aξ , clβX(Bd(x,1/4)∩A = /0.

Now {Bd(x,1/4) : x ∈ X} has a locally finite open refinement in τ(d) call it

{Wγ : γ ∈ δ} and clβXWγ ∩A = /0 and clβXWγ is compact. Therefore, there exists a finite

open cover, {Vα}α∈Fγ
, of clβXWγ and then {Wγ ∩ Vα : γ ∈ δ , α ∈ Fγ} is

the locally finite refinement of {Uα}α∈λ .
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3.2 Condensation of the Product onto a Normal Space

and Countable Paracompactness

3.2.1 Structure of the Product

We will start with a few facts about Stone-Čech compactification of product space

X× (κ +1):

Fact 57. Let X be a Tychonoff space, κ a cardinal, and C a closed subset of κ +1. Then

X×C is C∗-embedded in X× (κ +1)

Proof. Enumerate C, C = {αξ : ξ ∈ η + 1} where η ≤ κ is an ordinal and ξ < ζ

implies αξ < αζ in κ +1. Let g : X×C −→ [0,1] be a continuous function. Define the

extension g : X× (κ +1)−→ [0,1] in the following manner:

g(x,β ) =



g(x,α0), if β ≤ α0;

g(x,αξ+1), if β ∈ (αξ ,αξ+1];

g(x,αξ ), if β = αξ , where ξ is a limit ordinal;

g(x,αη), if β > αη .

κ +1

X

g is identical for each of these blocks of lines.

Figure 3.2: Extending g from X×C (the red set) to the whole space.

g is continuous at (x,β ), where β ∈ (αξ ,αξ+1], because :
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For basic open set (r1,r2)∩ [0,1] 3 g(x,β ) in [0,1],

πX [g←[(r1,r2)]∩ (X×{β})]× (αξ ,αξ+1]

= πX [g←[(r1,r2)]∩ (X×{αξ+1})]× (αξ ,αξ+1]⊆ g←[(r1,r2)]

is an open set containing (x,β ). (It is a product πX [g←[(r1,r2)]∩ (X ×{αξ+1})], an

open set in X , and (αξ ,αξ+1], an open set in κ +1.)

g is continuous at (x,β ) for β ≤ α0:

Again for basic open set (r1,r2)∩ [0,1] 3 g(x,β ) in [0,1],

πX [g←[(r1,r2)]∩ (X×{β})]× [0,α0]

= πX [g←[(r1,r2)]∩ (X×{α0})]× [0,α0]⊆ g←[(r1,r2)]

is an open set. (It is a product πX [g←[(r1,r2)]∩ (X ×{α0})], an open set in X , and

[0,α0], an open set in κ +1.)

g is continuous at (x,β ) for β > αη :

For basic open set (r1,r2)∩ [0,1] 3 g(x,β ) in [0,1],

πX [g←[(r1,r2)]∩ (X×{β})]× (αη ,κ]

= πX [g←[(r1,r2)]∩ (X×{αη})]× (αη ,κ]⊆ g←[(r1,r2)]

is an open set. (It is a product πX [g←[(r1,r2)]∩ (X ×{αη})], an open set in X , and

(αη ,κ], an open set in κ +1.)

g is continuous at (x,β ), where β = αξ for ξ a limit ordinal:
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For basic open set (r1,r2)∩ [0,1], let U open in X and ζ ≤ ξ be such that

(U× (αζ ,αξ ])∩ (X×C)⊆ g←[(r1,r2)],

then

(x,β ) ∈ (U× (αζ ,αξ ])⊆ g←[(r1,r2)].

Notation.

For a Tychonoff space X , a cardinal κ , and α ∈ κ + 1, by Fact 57, X ×{α} is C∗-

embedded in X× (κ +1) =: Y . As Y is C∗-embedded in βY , it follows that X×{α} is

C∗-embedded in βY . So hα : βX×{α} ≈ clβY (X×{α}). For y ∈ βX , hα(y,α) ∈ βY .

To avoid confusion, we denote hα(y,α) by e(y,α) and

e[βX× (κ +1)] = {e(y,α) : y ∈ βX ,α ∈ (κ +1)}.

Using this notation, the Stone-Čech compactification of Y := X × (κ +1) is shown

in Figure 3.3.

βY \ e[βX× (κ +1)]

· · ·

κ +1
β (X× (κ +1))

X

βX \X

· · ·

e[(βX \X)× (κ +1)]

Figure 3.3: Demonstrating βY as a set.

34



Corollary 58. Let X be a Tychonoff space and κ be a cardinal and Y := X × (κ + 1),

then

β (Y )⊇
⋃

α∈κ+1

e[βX×{α}]

.

Proof. By Fact 57, X ×{α} is C∗-embedded in Y . As Y is C∗-embedded in β (Y ), it

follows that X×{α} is C∗-embedded in β (Y ). So, βX×{α} ' clβ (Y )(X×{α}).

Warning: With this notation, we have βX× (κ +1) ↪→ βY ; however, βX× (κ +1)

does not have the product topology as a subspace of βY .

The above corollary enables us to think of β (X × (κ + 1)) as a space containing a

copy of e[βX × (κ + 1)], as a subset not as a subspace, and later on serves as a tool to

work with the β (X×Hα) where the Hα ’s are isomorphic closed subsets of κ .

3.2.2 Convergence Tools

The final step of the proof needs convergence properties of sequences of the form

{e(y,ξ ) : ξ ∈ α} in βY for some ordinal α ∈ κ and y ∈ βX \ X , and the next fact

helps us achieve convergence for some specific α’s.

Fact 59. Let Y = X × (κ + 1) and α ∈ κ + 1 be such that co f (α) > |X |. Then for

y ∈ βX \X and e(y,α) ∈ U ∈ τ(βY ), there exists β < α and V ∈ τ(βX) such that

e(y,α) ∈ e[V × (β ,α]]⊆U .

Proof. There exists W ∈ τ(βY ) such that e(y,α) ∈W ⊆ clβYW ⊆U , and there exists

V ∈ τ(βX) such that e[V ×{α}]⊆W where y ∈V .

For each x ∈V ∩X , as (x,α) ∈W ∩ (X×{α}), there exists βx < α such that

{x}× (βx,α]⊆W , let β = sup{βx : x ∈V ∩X}. Then (V ∩X)× (β ,α]⊆W .
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For each γ ∈ (β ,α], (V ∩X)×{γ} ⊆W ; therefore,

clβY ((V ∩X)×{γ})⊆ clβYW ⊆U.

But clβY ((V ∩ X) × {γ}) = e[clβX(V ∩ X) × {γ}] ⊇ e[V × {γ}].

Thus e[V × (β ,α]]⊆U .

κ +1

X V

W
∪|

clYW ⊆U e(y,α)

y

β = supx∈V∩X βx

βx α

(x,α)Rx

Figure 3.4: A neighbourhood of e(yF ,α) contains a product of two open sets.

Definition 60. A point p is a complete accumulation point of a subset A of a space X ,

if for all open sets U 3 p, |A|= |U ∩A|.

Definition 61. A point p ∈ X has large neighbourhoods in A ⊆ X if for any open set

U 3 p, |A\U |< |A|.

Note 62. For a Hausdorff space X , if p ∈ X has large neighbourhoods in A⊆ X , then p

is the unique accumulation point of A.
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Corollary 63. Let Y = X × (κ + 1), let y ∈ βX \X and let α ∈ κ + 1 be such that

co f (α) > |X |. If {βγ : γ < co f (α)} is a cofinal sequence in α , then

{e(y,βγ) : γ < co f (α)}→ e(y,α). In other words, for open set U 3 e(y,α),

|{e(y,βγ) : γ < co f (α)}\U |< |{e(y,βγ) : γ < co f (α)}|.

That is, e(y,α) is the unique complete accumulation point of the set {e(y,βγ) : γ <

co f (α)}.

Proof. Obviously, by Fact 59, e(y,α) is a complete accumulation point of the set

{e(y,βγ) : γ < co f (α)}. If z ∈ clβY{e(y,βγ) : γ < co f (α)} and z 6= e(y,α), then

there is an open set W in βY such that z ∈ W and e(y,α) /∈ clβYW . By Fact 59,

there is β < α and V ∈ τ(βX) such that y ∈ V and e[V × (β ,α]] ⊆ βY \ clβYW .

There is δ < co f (α) such that W ∩{e(y,βγ) : γ < co f (α)} ⊆ {e(y,βγ) : γ < δ} and

|{e(y,βγ) : γ < δ}| < co f (α). So, z is not a complete accumulation point of

{e(y,βγ) : γ < co f (α)}.

Note 64. Let A⊆ T be a C∗-embedded subset. Then βA = clβT A⊆ βT . Therefore, ev-

ery free z−ultrafilter on A converges to a point in

βA \A = (clβT A \A) ⊆ (βT \A). When we talk about a free z−ultrafilter on A as a

point we are talking about the adherence point of that filter in βT .

We still need more convergences statements about points other than the points of

e[βX ×κ]; these other points appear in the Stone-Čech compactification of infinitely

many X ×{ξ}’s which is a requirement in our proof. To understand the repetitive

behavior of such points, we need to use isomorphic subspaces of Y of the form X×Cα ,

so we can have a large number of isomorphic free z−ultrafilter defined on them. Then
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we need to make convergence statement about those isomorphic z−ultrafilters and the

Fact 66. is a crucial tool to accomplish that.

Before Stating the Fact 66, we prove the following well-known Lemma:

Lemma 65. The projection map πX : X×C→ X is closed, where C is a compact set.

Proof. Let F ⊆ X ×C be a closed subset and y /∈ πX [F ]. Then {y}×C ⊆ (X ×C)\F .

Since C is compact, {y}×C can be covered by finitely many basic open sets in the

product. Therefore, there exists an open set U ∈ τ(X) such that {y}×C ⊆U ×C and

(U × C) ∩ F = /0. Then y ∈ πX [U × C] = U and U ∩ πX [F ] = /0.

Thus y /∈ clX πX [F ].

Note that for z−ultrafilter F on X ×C, if y ∈
⋂

F∈F clβX πX [F ]∩ X , then there

exists ξ ∈C such that (y,ξ ) ∈ F for all F ∈F . By the way of contradiction suppose

for all ξ ∈C there exists Fξ ∈F such that (y,ξ ) /∈ Fξ . Then since Fξ is closed, we can

find an open set containing (y,ξ ) missing Fξ . On the other hand, {y}×C is compact,

so it can be covered by finitely many of these open sets. Hence, there exists an F ∈

F such that ({y}×C)∩ F = /0 and by Lemma 65 y /∈ clX πX [F ]. A contradiction.

We conclude that for free z−ultrafilter F on X×C,

⋂
F∈F

clβX πX [F ]∩X = /0

.

Fact 66. For every free z−ultrafilter F on X ×C, where C is closed in κ + 1, there

exists a unique yF ∈ βX \X such that
⋂

F∈F clβX πX [F ] = {yF}. Denote yF as the

corresponding βX- element of F .

Proof.
⋂

F∈F clβX πX [F ] is nonempty because it’s an intersection of compact sets with

nonempty finite intersection. The intersection can not have more than one point since
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F is a z−ultrafilter. If there are two points y1 and y2 in
⋂

F∈F clβX πX [F ], there are two

disjoint z−set neighborhood, Z1 and Z2, in βX such that y1 ∈ Z1 and y2 ∈ Z2. Now for

F ∈F , F∩e[Z1×C] and F∩e[Z2×C] are two disjoint z−sets and they both intersect F

, a contradiction to the maximality of the z−ultrafilter. So,
⋂

F∈F clβX πX [F ] = {yF}.

κ +1

X

πX [F1]
clβX πX [F1] F1

clβX πX [F2] yF

F2

Figure 3.5: The projection of the filter F .

We introduce the last two convergence tools of this section:

Fact 67. Let C be a closed set in κ such that C ' η + 1 for some η ∈ κ . Let g :

η + 1→ C be the homeomorphism and let F be a free z−ultrafilter on X × (η + 1).

Then F ′ := {{(x,g(ξ )) : (x,ξ ) ∈ F} : F ∈F} is a z−ultrafilter on X ×C and has the

same corresponding βX−element as F . In other words, yF ′ = yF .

Proof. It is easy to see that F ′ is a z−ultrafilter. It suffices to show yF ′ = yF :

{yF ′} :=
⋂

F∈F ′
clβX πX [F ] =

⋂
F∈F ′ clβX{x : (x,g(ξ )) ∈ F for some ξ ∈C}=
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⋂
F∈F clβX{x : (x,ξ ) ∈ F for some ξ ∈C}= {yF}.

Fact 68. Let {Cη
α : α ∈ κ} be a collection of closed sets in κ + 1, where η < κ , with

these properties:

1. Each Cη
α is closed and bounded in κ +1.

2. minCη
α > supCη

β
if α > β .

3. Cη
α
∼= η +1 and gα : η +1−→Cη

α is the isomorphism.

Let F be a free z-ultrafilter on X × (η + 1), then

F(α) := {{(x,gα(ξ )) : (x,ξ ) ∈ F} : F ∈ F} is a free z-ultrafilter on X ×Cα , and

yF(α)
= yF for α ∈ κ .

Furthermore, for ζ , a regular cardinal, such that |X |< ζ ≤ κ , e(yF ,λ ) has large neigh-

bourhoods in the set {adβY F(αν ) : ν ∈ ζ}, where λ := sup∪ν∈ζCη
αν

and yF is the

corresponding βX− element of F(αν ).

Proof. Let e(yF ,λ ) ∈ V , where V is open in βY . By the Tychonoff property of βY ,

there is an open set U in βY such that e(yF ,λ ) ∈ U ⊆ clβ (X×(κ+1))U ⊆ V , where

clβYU is a z−set in βY . By Fact 59 there exists µ ∈ λ and yF ∈W ∈ τ(βX) such that

e[W × (µ,λ ]] ⊆ U . Now, for all ν ∈ ζ such that minCη
αν

> µ ,

[U ∩ (X ×Cη
αν

)]∩F ⊇ [e[W × (µ,λ )]∩ (X ×Cη
αν

)∩F ] 6= /0 for all F ∈ F(αν ). Thus

[clβYU ∩ (X ×Cη
αν

)] ∈ F(αν ). Now, F(αν ) = ∩F∈F(αν )
clβY F ∈ clβYU (which means

adβY F(α) is in clβYU ⊆ V ) , Therefore, (yF ,λ ) is a complete accumulation point

of the set {F(αν ) : ν ∈ ζ} := {adβY F(αν ) : ν ∈ ζ}. On the other hand, since βY is

Hausdorff and βY \V contains at most < ζ many elements of the set {F(αν ) : ν ∈ ζ},

e(yF ,λ ) has large neighbourhoods in that set.
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F(ξ )

e(yF ,α)

V

α

· · ·

X×Cξ

κ +1

X

Figure 3.6: A neighbourhood of e(yF ,α).

3.2.3 Skirting around Pseudocompactness

In this section we are going to expand various notions in Buzjakova’s proof. Here is a

Lemma to clarify the method used in finding closures in the rest of this chapter.

Lemma 69. Let T be a Tychonoff space and f : T → S be a one-to-one, continuous

function, then for closed set A⊆ T

1) If z ∈ clS f [A]\ f [A] then z = f (y) for some y ∈ clβT A\T where f : βT → βS is

the extension of f .

2) For y ∈ clβT A\A if f (y) ∈ S\ f [A] then f (y) ∈ clS f [A].

Henceforth, let f denote a condensation from X × (κ + 1)→ Z, as shown in the

figure below, where Z is normal. Let f : βY → βZ be the continuous extension of

f : Y → Z to Stone-Čech compactification of Y .

In the Definition that follows, we present a variation of Buzjakova’s definition,

which suits our case, of the sets C1 and C2. Different properties of these sets help

us find the ordinals ξ ’s for which closures of f [X ×{ξ}]’s in βZ are isomorphic to

each other and have minimal points, compared to images of other such lines, in some

section of Z with large ordinals.
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κ +1

(X ,τ)

Z

f
Condensation

Figure 3.7: The condensation f : X×κ → Z.

Definition 70. Let X be a Tychonoff space and κ be a cardinal such that co f (κ) > |βX |

and let f : X× (κ +1)→ Z be a condensation onto a normal space Z, then let

C1 := {y ∈ βX \X : |{α ∈ κ : f (e(y,α)) ∈ Z}| = κ and | f [e[{y}× κ]]∩Z| = κ}

and

C2 := {y ∈ βX \X : |{α ∈ κ : f (e(y,α)) ∈ Z}|= κ and | f [e[{y}×κ]]∩Z|< κ}.

C1 3 y1

κ +1

(X ,τ)

βZ

Z

f

Image of a spine on an element of C1 under f .

κ +1

(X ,τ)

βZ

Z

f
C2 3 y2

Figure 3.8: Image of a spine on an element of C2 under f .
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In Fact 73, we are going to establish some properties of C1 and C2 by using conver-

gence facts from previous section and the following lemmata.

Lemma 71. Let R and T be Hausdorff spaces, A ⊆ R, and f : R→ T be a continuous

and onto function. If p ∈ A has large neighbourhoods in A and |A|= | f [A]|, then f (p)

is the unique complete accumulation point of f [A].

Proof. Let f (p) ∈ V ∈ τ(T ). It suffices to show that | f [A] \V | < | f [A]|. Note that

A∩ f←[T \V ] = A∩( f←[T ]\ f←[V ]) = A∩(R\ f←[V ]) = A\ f←[V ]. Now p∈ f←[V ].

Thus, by hypothesis, |A\ f←[V ]|< |A|.

Therefore, | f [A\ f←[V ]]| ≤ |A\ f←[V ]|< |A|= | f [A]|. On the other hand,

f [A\ f←[V ]] = f [A∩ f←[T \V ]] = f [A]∩ (T \V ) = f [A]\V.

Thus | f [A]\V |< | f [A]|.

Lemma 72. Let R and T be Hausdorff spaces, A ⊆ R, let f : R→ T be a continuous

and onto function and let p be such that whenever p ∈ U ∈ τ(R), |A \U | < |A|. If

|A|> | f [A]| and |A| is a regular cardinal, then f (p) is the unique point q in T such that

| f←[{q}]∩A|= |A|.

Proof. Let q 6= f (p). There exists open sets U and V in T such that q ∈ U and

f (p) ∈ V and U ∩V = /0. Then f←[{q}] ⊆ f←[U ] and f←[{ f (p)}] ⊆ f←[V ] and

f←[U ]∩ f←[V ] = /0. Now, by hypothesis, |A\ f←[V ]|< |A|.

Therefore, | f←[U ]∩A|< |A|. That is, | f←[{q}]∩A|< |A|. On the other hand,

|
⋃

q∈ f [A]\{ f (p)}
( f←[{q}]∩A)|< Σ| f [A]| f

←[{q}]∩A|< | f [A]|.

Therefore, | f←[{ f (p)}]∩A|= |A|.

43



Fact 73. Let X be Tychonoff, κ a regular ordinal such that co f (κ) > |X |, then

(a) for y ∈C1,

(i) there exists xy ∈ X such that f (e(y,κ)) = f (xy,κ).

(ii) for x ∈ X \{xy} , |{ f (e(y,α)) : α ∈ κ}∩{ f (x,α) : α ∈ κ}|< κ .

(iii) there exists β
′
y < κ such that if α > β

′
y and f (e(y,α)) ∈ Z there exists γα ≤ κ

such that f (e(y,α)) = f (xy,γα).

(iv) furthermore if co f (κ) > |X |+, |{α ∈ κ : f (e(y,α)) = f (xy,γ)}| < κ , for

γ ∈ κ +1.

Therefore, there exists βy < κ such that if α > βy and f (e(y,α)) ∈ Z, then there

exists γα < κ such that

f (e(y,α)) = f (xy,γα).

(b) For y ∈C2,

let Iy := f [e[{y}×κ]]∩Z, note that |Iy|< κ , then

(i) there exists a unique xy ∈ X and αy ∈ κ +1 such that f (e(y,κ)) = f (xy,αy).

(ii) for (x,αx) ∈ Iy \{(xy,αy)}, |{ξ : f (e(y,ξ )) = f (x,αx)}|< κ

(iii) there exists βy such that for ξ > βy if f (e(y,ξ )) ∈ Z then f (e(y,ξ )) =

f (xy,αy).

(c) For y ∈ βX \C1∪C2, there exists βy such that for ξ > βy f (e(y,ξ )) /∈ Z.

Proof. (a) (i) As f [e[{y}× κ]]∩ Z =
⋃

x∈X{ f [e[{y}× κ]]∩ f [{x}× κ]}, there exists

xy ∈ X such that | f [e[{y}×κ]]∩ f [{xy}×κ]|= κ .

Note: for α < κ , | f [e[{y} × (α,κ)]] ∩ f [{xy} × (α,κ)]| = κ .

Let Bα = {β ∈ κ : α < β and f (e(y,β )) ∈ f [{xy}× (α,κ)]}. Let Cα be defined by

f [e[{y}×Bα ]] = f [{xy}×Cα ].
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|Bα |= κ; therefore, by the one-to-one property of f , |Cα |= κ .

By Fact 59 e(y,κ) ∈ clβX e[{y}×Bα ]. So,

f (e(y,κ)) ∈ f [clβY e[{y}×Bα ]]⊆ clβZ f [e[{y}×Bα ]] = clβZ f [e[{xy}×Cα ]]

⊆ f [{xy}× (α,κ]].

On the other hand, f [{xy}×(α,κ]] is the continuous image of a compact set. Therefore,

it is closed . So, f (e(y,κ)) ∈
⋂

α<κ f [{xy} × (α,κ]] = { f (xy,κ)}. Thus,

f (e(y,κ)) = f (xy,κ).

The uniqueness follows from one-to-one property of f . If f (e(y,κ)) = f (xy,κ) and

f (e(y,κ)) = f (x′,κ), then f (xy,κ) = f (x′,κ). So, x′ = xy as f is one-to-one.

(a) (ii) If for some x ∈ X \{xy}, | f [e[{y}×κ]]∩ f [{x}×κ]|= κ , then by the proof

of (i), f (e(y,κ)) = f (x,κ). But f (x,κ) 6= f (xy,κ) as f is one-to-one, a contradiction.

In fact, | f [e[{y}×κ]]∩ f [{x}×κ]|< κ .

(a)(iii) For x ∈ X \ {xy}, there exists βy,x < κ such that

f [e[{y}×κ]]∩ f [{x}×κ]⊆ f [{x}× [0,βx]].

Let β
′
y = supx∈X\{xy}βy,x. For α > β

′
y and f (e(y,α)) ∈ Z, then

f (e(y,α)) ∈ f [{xy} × (κ + 1)], that is, there exists γα ≤ κ such that

f (e(y,α)) = f (xy,γα).

(a) (iv) By the way of contradiction, assume |{α : f (e(y,α)) = f (x,γ)}| = κ , for

γ ∈ κ +1. (Note that |Ay(x,γ)|= κ .)

Define Ay(x,γ) := {α ∈ κ : f (e(y,α)) = f (x,γ)},

and By := {α ∈ κ : f (e(y,α)) = f (xy,ν) for some ν ∈ κ},

and Cy be such that f [e[{y}×By]] = f [{xy}×Cy].
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It is easy to reach a contradiction from (x,γ) 6= (xy,κ), in fact e(y,κ) has large

neighbourhoods in both sets e[{y}×By] and e[{y}×Ay(x,γ)] which, by Lemma 71,

means f (xy,κ) is the unique complete accumulation point of f [e[{y}×By]] = f [{xy}×

Cy]

and f (x,γ) is a complete accumulation point of f [e[{y}×Ay(x,γ)]]. Therefore, both

f (xy,κ) and f (x,γ) are complete accumulation points of the set f [e[{y}×κ]] which is

a contradiction to uniqueness of complete accumulation point of that set.

To reach a contradiction from the case of (x,γ) = (xy,κ), we inductively define αξ ,

βξ , δξ for ξ ∈ |X |.

Let α0 ∈ Ay(xy,κ) and β0 ∈ By∩ (α0,κ) be such that δ0 ∈ (α0,κ), where δ0 is defined

by f (y,β0) = f (xy,δ0).

At stage ξ ∈ |X |+, where ξ is a limit ordinal, let αξ ∈ (sup{ας : ς ∈ ξ},κ) and

βξ ∈ B∩(αξ ,κ) such that δξ ∈ (αξ ,κ), where δξ is defined by f (e(y,βξ )) = f (xy,δξ ).

At stage ξ = ς + 1, let αξ ∈ Ay(xy,κ)∩ (max{βς ,δς},κ). Define βξ and δξ as in

the previous case.

Let λ := sup{αξ : ξ ∈ |X |+}= sup{δξ : ξ ∈ |X |+}< κ .

1) By by Corollary 63, e(y,λ ) has large neighbourhoods in

{e(y,βξ ) : ξ ∈ |X |+, where f (e(y,αξ )) = f (xy,δξ ), for δξ 6= κ}.

So by Lemma 71 f (e(y,λ )) is the complete accumulation point of

{ f (e(y,βξ )) = f (xy,δξ ) : ξ ∈ |X |+} = { f (xy,δξ ) : ξ ∈ |X |+} ⊆ { f (xy,δ ) : δ ∈ (0,λ ]}

in βZ. That is f (e(y,λ )) = f (xy,λ ).

2) On the other hand, by Lemma 72, f (e(y,λ )) is the unique point in

{ f (e(y,αξ )) = f (xy,γ) : ξ ∈ |X |+} = { f (xy,κ)} such that

| f←[{ f (e(y,λ ))}]∩{e(y,βξ ) : ξ ∈ |X |+, where f (e(y,αξ )) = f (xy,δξ )}|= |X |+.

So f (e(y,λ )) = f (xy,κ), a contradiction to the first case.

Let βy = sup({γ : f (e(y,γ)) = f (xy,κ)}∪{β ′y}).
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Figure 3.9: Image of a final segment of a spine on an element of C1 under f .

b) For y ∈C2:

(b)(i) Since |{ξ : f (e(y,ξ )) ∈ Z}| = κ and

{ξ : f (e(y,ξ )) ∈ Z} =
⋃

f (x,α)∈Iy
{ξ : f (e(y,ξ )) = f (x,α)}, there exists

f (xy,αy) ∈ Iy such that |{ξ : f (e(y,ξ )) = f (xy,αy)}|= κ .

Now for α < κ , let Bα := {ξ > α : f (e(y,ξ )) = f (xy,αy)}.

By Fact 59, e(y,κ) ∈ clβY e[{y}×Bα ]. So

f (e(y,κ))∈ f [clβY e[{y}×Bα ]]⊆ clβZ f [e[{y}×Bα ]] = clβZ{ f (xy,αy)}= { f (xy,αy)}.

Therefore, f (e(y,κ)) = f (xy,αy).

Uniqueness again follows from the one-to-one property of f .

(b)(ii) If there exists (x
′
,αx′ ) such that |{ξ : f (e(y,ξ )) = f (x

′
,αx′ )}| = κ , then, by

proof of (b)(i), f (e(y,κ)) = f (x
′
,αx′ ), which implies (x

′
,αx′ ) = (xy,αy).

(b)(iii) For (xξ ,αξ ) ∈ Iy \ {(xy,αy)}, there exists β(xξ ,αξ ) < κ such that for

α > β(xξ ,αξ ), if f (e(y,α)) ∈ Z, then f (e(y,α)) 6= f (xξ ,αξ ). Let

βy = sup{β(xξ ,αξ ) : (xξ ,αξ ) ∈ Iy \ (xy,αy)}
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Figure 3.10: Image of a final segment of a spine on an element of C2 under f

c) This follows directly from the definition of C1 and C2.

Note 74. Let κ be regular cardinal such that co f (κ) > |βX | and let

β ∗ := max{sup{βy : for y∈ βX \X},sup{αy : y∈C2,αy 6= κ and f (e(y,κ))= f (xy,αy)}}.

For all α > β ∗ and y ∈ βX \X ,

if y ∈C1 and f (e(y,α)) ∈ Z, then f (e(y,α)) = f (xy,γα),

if y ∈C2 and f (e(y,α)) ∈ Z, then f (e(y,α)) = f (xy,γy), and

if y /∈C1∪C2, then f (e(y,α)) /∈ Z.

Note 75. For a regular ordinal κ such that co f (κ) > |X |+, for α ∈ κ , and every y ∈C1

there exists β(y,α) such that for ξ > β(y,α), if f (e(y,ξ )) = f (xy,γ), then γ > α .

Proof. For y ∈ C1 and δ ≤ α , there exists γ(y,δ ) > βy such that for ξ > γ(y,δ ),

f (e(y,ξ )) 6= f (xy,δ ). Now let β(y,α) := sup{γ(y,δ ) : δ ∈ α +1}.

Let β(α) := sup{β(y,α) : y∈C1}. Let ξ > β(α), for all y∈C1, if f (e(y,ξ )) = f (xy,γ),

then γ > α .

Using the concepts of β ∗ and β(y), we will define an unbounded subset, B, of κ , such

that f [X×{ξ}] has the optimal closure in Z for large ξ ’s, i.e., f [X×{ξ}] has the coars-

est topology among large ξ ’s, up to an isomorphism, and
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clZ f [X×{ξ}]\ f [X×{ξ}] are the same, for all ξ ∈ B. This will produce enough verti-

cal lines with the same topology but also enables us to predict the closure of particular

triangle shape subset of a bunch of those lines.

Claim 76. There exists an unbounded subset B of κ such that

for α ∈ B and y ∈C1 , f (e(y,α)) = f (xy,α)

and for α ∈ B and y ∈C2 , f (e(y,α)) = f (xy,γy)

and γy /∈ B.

Proof. For the first element of B, we choose any ordinal above β ∗.

Assuming that we have found the first γ < κ elements of B, we start with an ordinal

above all those elements of B and we follow the process below to find the next element

of B.

Enumerate C1 := {yα
1 : α ∈ η1} and C2 := {yα

2 : α ∈ η2}.

(C1 and C2 are defined in Definition 70.)

At every stage ξ pick γ i
ξ ,α

in this manner:

For α = 0, require γ1
ξ ,0 > sup{γ i

δ ,α : δ < ξ and α ∈ ηi, i = 1,2}.

For yα
1 ∈C1, f (e(yα

1,γ1
ξ ,α)) = f (xyα

1,γ1
ξ ,α

′
),

where γ1
ξ ,α > sup{β

(y1
α ,max{γ1

ξ ,δ
,γ1

ξ ,δ

′
})

: δ < α}.

So that

γ1
ξ ,α > γ1

ξ ,δ for all δ < α ,

γ1
ξ ,α > γ1

ξ ,δ

′
for all δ < α ,

γ1
ξ ,α

′
> γ1

ξ ,δ for all δ < α ,

γ1
ξ ,α

′
> γ1

ξ ,δ

′
for all δ < α .

Let γ2
ξ ,0 > max{sup{γ1

ξ ,α : α ∈ η1} , sup{γ2
ξ ,δ : δ < α}}.

let γ2
ξ ,α be such that

f (e(yα
2,γ2

ξ ,α)) = f (xy2
α
,γy2

α
).
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Now let δ := sup{γ i
ξ ,α

: α ∈ ηi for i = 1,2 and ξ ∈ |X |+}. We need to show that δ ∈ B:

Let yα ∈ C1, by Corollary 63, e(yα ,δ ) has large neighbourhoods in

{e(yα ,γ2
ξ ,α) : ξ ∈ |X |+}. Thus by Lemma 71, f (e(yα ,δ )) is the complete accumu-

lation point of

{ f (e(yα ,γ1
ξ ,α)) : ξ ∈ |X |+}= { f (xyα

,γ1
ξ ,α

′
) : ξ ∈ |X |+} ⊆ { f (xyα

,ξ ) : ξ ∈ δ +1},

a compact set, and that means f (e(yα ,δ )) = f (xyα
,δ ).

For yα ∈ C2, again by Corollary 63, e(yα ,δ ) has large neighbourhoods in

{e(yα ,γ2
ξ ,α) : ξ ∈ |X |+}. On the other hand,

{ f (e(yα ,γ2
ξ ,α)) : ξ ∈ |X |+}= { f (e(yα ,γ2

ξ ,α)) : ξ ∈ |X |+ +1}= { f (xyα
,αyα

)}.

Therefore, by Lemma 72, f (e(yα ,δ )) = f (xyα
,αyα

).

Fact 77. For δ , δ
′ ∈ B, f [X×{δ}]∼= f [X×{δ ′}].

Proof. Let U be open in f [X×{δ}], and let V be an open set in βX such that

e[V ×{δ}]∩ ( f |e[(X∪C1)×{δ}])
←[ f [X×{δ}]] = f |e[(X∪C1)×{δ}]

←[U ].

Then V
′

:= f [X × {δ ′}] \ f [e[(βX \ V ) × {δ ′}]] is open in

f [X×{δ ′}].

We need to show that f [e[(V ∩X)×{δ ′}]] = V
′
:

Obviously V
′ ⊆ f [e[V × {δ ′}]] because f (x,δ

′
) ∈ V

′
, we have

f (x,δ
′
) /∈ f [e[(βX \ V ) × {δ ′}]]. On the other hand,

f (x,δ
′
) ∈ f [e[βX×{δ ′}]], so f (x,δ

′
) ∈ f [e[V ×{δ ′}]] and we are done.
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Next we have to prove the reverse inclusion:

Let f (x,δ
′
) ∈ f [(V ∩ X) × {δ ′}] \ V

′
. f (x,δ

′
) /∈ V

′
implies

f (x,δ
′
) ∈ f [e[(βX \V )×{δ ′}]].

For y ∈ βX \ V such that f (e(y,δ
′
)) ∈ f [e[(βX \ V ) × {δ ′}]] ∩ f [X × {δ ′}]

and f (e(y,δ
′
)) = f (x,δ

′
), y ∈ C1 because f (e(y,δ

′
)) ∈ Z and f (e(y,δ

′
)) = f (x,δ

′
).

y ∈C1 implies f (e(y,δ )) = f (x,δ ). Thus x /∈V , a contradiction.

Therefore, g : f [X×{δ}]−→ f [X×{δ ′}] defined by g( f (x,δ ))= f (πX [ f←( f (x,δ ))],δ
′
)

is a homeomorphism.

Note 78. clβZ{ f (e(y,δ )) : y ∈C2 and δ ∈ B}∩ f [X×{γ}] = /0 for all γ ∈ B.

Proof. { f (xy,αy) : y ∈ C2} = { f (e(y,δ )) : y ∈ C2,δ ∈ B} ⊆
⋂

γ∈B f [e[βX × {γ}]]

which is a compact set and does not include any of f [X×{γ}] for γ ∈ B.

Note 79. For δ ∈ B, f [e[C2×{δ}]]⊆ f [X×{δ}] and clβZ f [e[C2×B]∩ f [X×B]] = /0.

Note 80. f [e[(X ∪ C2) × {δ}]] = f [X × {δ}] ∪ (clβZ f [e[C2 × {δ}]] ∩ Z)

is closed in Z for δ ∈ B.

3.2.4 Using the Structural Facts about Stone-Čech Compactifica-

tion to Find a Good Subset of B

In this section, we prove that f [X ×{δ}]∪ (clβZ f [e[C2×{δ}]]∩Z) is countably para-

compact but since it also is a good candidate for being paracompact, we keep the pro-

cess so that it works with any cover of any size until very end. Then, since the same

proof does not go through for covers of uncountable size, we prove the countable para-

compact property. We begin with finding collections of subsets of κ , of order type η

for every η ≤ |X |, whose closure of image of their product with X under f becomes

predictable for larger ordinals.
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Fact 81. Let κ > 22|X | For every η ≤ |X | we can find a collection of sets {Hη
α : α ∈ κ}

where

1. Hη
α ⊆ B.

2. |Hη
α |= η .

3. supHη
α < infHη

β
if and only if α < β .

4. If A⊂ Hη
α such that |A|< η then clZ f [X×A]∩ f [X× (Hη

α \ (supA+1))] = /0.

5. For every cofinal subset A ⊂ Hη
α , and for y ∈ C1 f (y,supA) = f (xy,γ), where

γ ≥ supA.

Proof. For α ∈ κ to define Hη
α , we start with B\ (sup(∪ξ∈αHη

ξ
)+1) and we pick the

first element of B\ (sup(∪ξ∈αHη

ξ
)+1) to be the first element of Hη

α .

At every successor stage γ +1 ∈ η , if γ is a successor ordinal let

hα,η
γ+1 = min(B\ (max{hα,η

γ ,β(γ)}+1)),

where β(γ) is the function described in Note 75.

At every successor stage γ +1 ∈ η , if γ is a limit ordinal then let

hα,η
γ+1 = min(B\ (supL+1))

where L := πκ+1[ f←[clZ f [X×{hα,η
ξ

: ξ ∈ γ}]]]\{κ}.

At a limit stage γ ∈ η +1 define hα,η
γ = sup{hα,η

ξ
: ξ ∈ γ} .

Now let Hη
α = {hα,η

γ : γ ∈ η and γ is a successor ordinal }. Then

clκ+1Hη
α = {hα,η

ξ
: ξ ∈ η +1}.

Note 82. clκ+1Hη
α is homeomorphic to η +1.
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Proof. Define gα : η + 1→ clκ+1Hη
α to be the function gα(ξ ) = hα,η

ξ
. The function

gα is obviously one-to-one and onto.

The function gα is open because: gα [(ξ1,ξ2)] = (hα,η
ξ1

,hα,η
ξ2

)∩ clκ+1Hη
α .

The function gα is continuous because: g←α [(hα,η
ξ1

,hα,η
ξ2

)∩clκ+1Hη
α ] = (ξ1,ξ2).

Note 83. X× clκ+1Hη
α
∼= X× clκ+1Hη

β
, for α and β ∈ κ .

Proof. Define gα,β : clκ+1Hη
α → clκ+1Hη

β
to be the function gα,β (x,ξ )= (x,gβ (g←α (ξ ))).

gα,β is a homeomorphism.

Note 84. Using Fact 68, for a free z−ultrafilter F on X× (η +1), and {F(α) : α ∈ κ}

defined on collection {X ×Hη
α : α ∈ κ} as in Fact 68, f (e(yF ,κ)) is the complete

accumulation point of the set { f (F(α)) : α ∈ κ}.

Fact 85. There exists a γ∗η ∈ κ such that for every collection of free z−ultrafilters

{F(α) : α ∈ κ} on {X × clκ+1Hη
α : α ∈ κ}, where each F(α) is a free z−ultrafilter on

X×clκ+1Hη
α , such that for β > γ∗η , if f (∩F∈F(β )

clβY F∩clβY (X×Hη

β
)) =: f (F(β ))∈ Z

then f (F(β )) = f (xy,α) for some y ∈C1 or f (F(β )) = f (xy,γy) for some y ∈C2.

Proof. There are three cases:

Case 1) If |{ f (F(α)) ∈ Z : α ∈ κ}|= κ , then yF ∈C1:

To prove that yF ∈C2, we need to show |{ f (e(yF ,ξ )) ∈ Z : ξ ∈ κ}|= κ . Now again

since co f (κ) > |X |, there exists xF such that |{ξ : f (F(ξ )) = f (xF ,αξ ) for some

ξ ∈ κ}|= κ . For any µ ∈ κ \ sup({β ∗}∪π(κ+1)[ f←[ f [e[C2×B]]]]), let

Eµ := {ξ ∈ (µ,κ) : f (F(ξ )) = f (xF ,αξ )}.

Pick |X |+ elements of Eµ and denote them as K, in such a way that at every suc-

cessor ordinal ς = ρ + 1, ξς ∈ (max{ξρ ,αξρ
},κ)∩E where f (F(ξρ )) = f (xF ,αξρ

)
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and αξς
∈ (max{ξρ ,αξρ

},κ), where f (F(ξς )) = f (xF ,αξς
). At limit stage ς , let

ξς ∈ E ∩ (sup{ξρ : ρ < ς},κ). By the same technique as above, e(y,supK) has large

neighbourhoods in {F(ξ ) : ξ ∈ K}. Therefore, { f (xF ,αρ) : ρ ∈ K} converges to

f (e(yF ,supK)). Thus f (e(yF ,supK)) = f (xF ,supK) and this proves that y ∈ C1

and xF = xyF . (Because for all ξ > β ∗ and the fact that ξ > β(supπX f←[ f [e[C2×B]]]) and

y ∈ βX \X , f (e(y,ξ )) ∈ Z \ f [e[C2×B]] implies y ∈C1 and f (e(y,ξ )) = f (xy,ξ
′
).)

Now since e(yF ,κ) has large neighbourhoods in the set {F(α) : α ∈ κ}, for every

x 6= xyF in X , there exists φ(F ,x) such that for all α > φ(F ,x) f (F(α)) 6= f (x,ξ ) for any

ξ ∈ κ .

Using the fact that e(yF ,λ ) has large neighbourhoods in the set {F(α) : α ∈ λ} for

λ > |X |, and by the way of contradiction, if |{α : f (F(α)) = f (xyF ,γ)}|= κ , then for κ

many ξ ’s, e(yF ,ξ ) has a large neighbourhoods in a subset of

{F(α) : f (F(α)) = f (xyF ,γ)} of size |X |+ which means for κ many ξ ’s

f (e(yF ,ξ )) = f (xyF ,γ), a contradiction to Fact 73(a)(iv).

So |{α ∈ κ : f (F(α)) = f (xyF ,γ)}|< κ for all γ ∈ κ +1.

Therefore, there exists a φ(F ,κ) such that for α ∈ (φ(F ,κ),κ) f (F(α)) 6= f (xyF ,κ) and

for f (xξ ,αξ )∈ f [e[C2×B]] there exists φ(F , f (xξ ,αξ )) such that for α ∈ (φ(F , f (xξ ,αξ )),κ),

f (F(α)) 6= f (xξ ,αξ ).

Let

ΦF := sup({φ(F ,x) : x∈X \{xyF }}∪{φ(F , f (xξ ,αξ )) : f (xξ ,αξ )∈ f [e[C2×B]]}∪{φ(F ,κ)}).

Now for ξ > ΦF if f (F(ξ )) ∈ Z, then f (Fξ ) = f (xyF ,γ) for some γ ∈ κ .

Case 2) |{ f (F(α)) ∈ Z : α ∈ κ}| < κ but |{ξ : f (F(ξ )) ∈ Z}| = κ then we claim

yF ∈C2:
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First we need to show |{ξ : f (e(yF ,ξ )) ∈ Z}| = κ and

|{ f (e(yF ,ξ )) : f (e(yF ,ξ )) ∈ Z}|< κ .

Since |{ f (F(ξ )) : f (F(ξ ))∈Z}|< κ but |{ξ : f (F(ξ ))∈Z}|= κ , there exists f (xF ,αF )

such that |{ξ : f (F(ξ )) = f (xF ,αF )}| = κ . For any

µ ∈ κ \sup({β ∗}∪πX f←[ f [e[C2×B]]]), let Eµ := {ξ ∈ (µ,κ) : f (F(ξ ))= f (xF ,αF )}.

Denote |X |+ elements of Eµ as subset K in this manner: At every

successor stage ς = ρ + 1, let ξς = min((ξρ ,κ) ∩ Eµ). At limit stage ς , let

ξς = min(Eµ ∩ (sup{ξρ : ρ ∈ ς},κ)). Now e(yF ,supK) has large neighbourhoods in

{ξ : f (F(ξ )) : ξ ∈ K}. Therefore, f (e(yF ,supK)) = f (xF ,αF ) and this shows y ∈C2

and (xyF ,αyF ) = (xF ,αF ). (Because for all ξ > max(β ∗,β(supπX [ f←[ f [e[C2×B]]]])) and

for all y ∈ βX \X , f (e(y,ξ )) ∈ f [e[C2×B]] implies y ∈C2 and f (e(y,ξ )) = f (xy,αy).)

Now define J := { f (xξ ,αξ ) : f (F(ξ )) = f (xξ ,αξ )}; |J| < κ . Since e(yF ,κ) has

large neighbourhoods in {F(ξ ) : ξ ∈ κ}, for f (xξ ,αξ )∈ J \{ f (xyF ,αyF )}, there exists

φ(F ,(xξ ,αξ )) such that for all β > φ(F ,(xξ ,αξ )), f (F(β )) 6= f (xξ ,αξ ).

Let φF = sup{φ(F ,(xξ ,αξ )) : f (xξ ,αξ ) ∈ J \{ f (xyF ,αyF )}}.

Now for all β > φF , if f (F(β )) ∈ Z, then f (F(β )) = f (xyF ,αyF ).

Case 3) |{ξ : f (F(ξ )) ∈ Z}| < κ , then we claim there exists ΦF ∈ κ such that

f (F(α)) /∈ Z, for all α > ϕ .

Since at every level α , there are at most 22|X | many z−ultrafilters on X × clκ+1Hη
α , we

can say that there exists γ∗η = sup{ΦF : F z−ultrafilter on X× (η +1)}.

3.2.5 Using a Cover to Build Two Disjoint Closed Sets

Now let {Uξ : ξ ∈ η} be any cover of f [X×{δ}]∪ (clβZ f [e[C2×{δ}]]∩Z).

We pick minHη
α larger than γ∗η to build a family of decreasing closed sets on f [X×Hη

α ]

whose closure is disjoint from closure of f [X×{supHη
α }].
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Claim 86. Let {Uξ : ξ ∈ η} be an open cover of f [X ×{γ}]∪ clβZ f [e[C2×{γ}]] for

γ ∈ B. There exists finitely many Uξ that cover clβZ f [e[C2×{γ}]], denote that finite

union by W , and for α > γ∗η let

D1 := f [clX×(κ+1)(∪ξ∈η((X \ (πX [ f←[(∪δ∈ξUδ ∪W )∩ f [X×{γ}]]])×{hα,η
ξ+1}))]

and D2 := f [X×{supHη
α }]. Then clZD1∩ clZD2 = /0.

D2

f [X×{ξ}]
\Uξ ×{ξ}

Z
D1

Figure 3.11: An illustration of D1 and D2 in the space.

Proof. Since we used β(γ) in the construction of Hη

ξ
’s,

clZD2∩ f [X× [hα,η
0 ,supHη

α )] = /0 and if we show clZD1 ⊆ f [X× [hα,η
0 ,supHη

α )] we’ll

be done:

By the Lemma 69 if f (x,β ) ∈ clZD1 \D1 then f (x,β ) = f (F(α)) for some free

z−ultrafilter F(α) on X× clκ+1Hη
α .

Now since α > γ∗η , for y = y[F ], where {yF}= ∩F∈F(α)
clβX πX(F) we have two cases:

Case 1) y ∈C2: y ∈ π(X∪C2)[ f←[W ]] so there exists V open in βX such that y ∈ V

and V ∩X = πX [ f←[W ]] thenV ∩ clβX πX [ f←[D1 ∩ (X ×{hα,η
ξ
})]] = /0 for all ξ ∈ η ;

therefore, y /∈ clβX πX [ f←[D1]] but f←[D1] ∈F(α), a contradiction.
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Case 2) y∈C1: Now if F(α) is in the closure of less than η many X×{hα,η
ξ
}’s then

by the construction of Hη
α and the restriction by γ∗η on elements of C1 it stays within the

sets above. If F(α) is not in the closure of less than η many of X×{hα,η
ξ
}’s then notice

that there exists ξ such that y ∈ π(X∪C1)[ f←[Uξ ]] which implies there exists an open set

V 3 y in βX such that V ∩ X = πX [ f←[Uξ ]]. Therefore,

V ∩ clβX πX [ f←[D1 ∩ f [X × {hα,η
ζ
}]]] = /0, for ζ ∈ (ξ ,η). Which means

y /∈ clβX πX [ f←[D1] \ ∪{X × {hα,η
ζ
} : ζ ∈ [0,ξ + 1)}] But

f←[D1]\∪{X×{hα,η
ζ
} : ζ ∈ [0,ξ +1)} ∈F(α), a contradiction.

f [X×{ξ}]
\Uξ ×{ξ}

Z

clZ f [e[C2×B]]

Figure 3.12: Closure of D1 and D2 in Z

Now, we apply the normality of Z.

Claim 87. Let κ > 22|X |+ and f : X × (κ + 1)→ Z be a condensation onto a normal

space Z. Then f [X×{γ}]∪ clβZ f [e[C2×{γ}]] is countably paracompact for γ ∈ B.

Proof. Let {Ui : i ∈ ω} be an open cover of the space f [X ×{γ}]∪ clβZ f [C2×{γ}],

we enumerate Ui such that the first n elements cover clβZ f [e[C2×{γ}]] and denote

∪i∈nUi by W . Define D1 and D2 as in Claim 86 and

Ai := f [X×{hα,ω
i }]\ f [πX [ f←[∪ς∈iUς ∪W ]]×{hα,ω

i }].

Since clZD1∩clZD2 = /0, there exists a function g : Z→ [0,1] such that g[D2] = {0}

and g[D1] = {1}. Then let
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Bi j := f [πX [ f←[g←[0,1−1/ j]∩ f [X×{hα,ω
i }]]×{γ}]]∪clβZ( f [e[C2×{γ}]])∩g←[0,1−1/ j]

and define Vi = Ui for 0≤ i < n and Vi+n := Ui+n \∪ j<iB ji for i≥ 0. Then {Vi : i ∈ ω}

is a locally finite refinement of the cover.

Here is how clZD1 and clZD2 look like for countable cover.

f [X×{ξi}]
\Ui×{ξi}

Z

clZ f [e[C2×B]]

Figure 3.13: An illustration of clZD1 and clZD2 for a countable cover

By utilizing the next claim we get the final result:

Claim 88. Let Y ∪C be a normal space where C is compact and Y ∩C = /0. If Y ∪C

is countably paracompact, then there exists a coarser topology on Y that is countably

paracompact.

Proof. Define a topology on Y as following: Pick y ∈ Y and let

τ ′ := {U ∩Y : y ∈U ∈ τ(Y ∪C) implies U ⊇C}.

τ
′

is obviously a coarser topology on Y . We need to show it’s countably paracompact

and normal.

Define h : Y ∪C→ (Y,τ
′
) by h(x) = x if x ∈ Y and h(c) = y if c ∈ C. Note that

h is continuous. Now let {Ui : i ∈ ω} be an τ ′−open cover of Y , such that y ∈ U0.

{h←[Ui] : i∈ω} is an open cover of Y ∪C and has a locally finite refinement {Vi : i∈ω}.

Let W0 = V0∪
⋃

V where V is a finite collection of Vi’s which covers the compact set
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{y}∪C. Now {h[W0∩Y ]}∪{h[Vi∩Y \ {y}] : i ∈ ω \ {0}} is the desired locally finite

refinement of the original cover. Note that singletons are obviously closed in τ ′ so

to show τ ′ is normal, it suffices to show that disjoint closed sets can be separated by

disjoint open sets. Let A and B be closed sets in τ ′. We have two cases:

Case 1) y /∈ A and y /∈ B. Then A and B are closed in τ . There exists U and V ,

disjoint open sets in τ , such that A ⊆U and B ⊆ V . Then A ⊆U \ ({y}∪C) ∈ τ ′ and

B⊆V \ ({y}∪C) ∈ τ ′.

Case 2) y ∈ A. Then A∪C and B are closed in τ . Thus there exists U and V , disjoint

open sets in τ , such that A∪C ⊆U and B⊆V . Then A⊆U ∩Y ∈ τ ′ and B⊆V ∈ τ ′.

It is necessary to prove Claim 88 as Weiss [Wei] has constructed a locally compact

Dowker space X , whose one-point compactification is a normal, countably paracom-

pact space but X is not countably paracompact.

Finally, we note that Pavlov [Pav99] proved that for every compact space K, there

exists a space X such that X×K can not be condensed onto a normal space. In our case,

there exists a space X such that X × I does not have a coarser normal topology. There-

fore, there exists a space X such that X does not have coarser countably paracompact

topology. That is, our conclusion is not vacuous.
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Chapter 4

Questions and Research Possibilities

In this final chapter, we present a few questions the author will continue investigating.

First, in the second chapter, we showed that realcompact right-separated spaces have

realcompact subspaces of size κ , where κ is a cardinal less than the size of the space

and the continuum and we showed that for a realcompact space X with pseudocharacter

less than or equal to ω1, X has a realcompact subspace of size ω1.

So what is remaining to investigate is:

Question 89. Is it true that any uncountable realcompact space has a realcompact sub-

space of size ω1?

If, as we suspect, the answer to Question 89 is negative, we ask again with a stronger

hypothesis

Question 90. Is it true that any uncountable Lindelöf space has a realcompact subspace

of size ω1?

Since in Chapter 2, we also showed that Continuum Hypothesis implies that every

realcompact space has a realcompact subspace of size ω1, a counterexample to either of

the Questions 89 and 90 can be only constructed in a model in which 2ω > ω1 is true.

That is, a negative answer to either of the questions will result in independence of the
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question from ZFC. Also this space, if it existed, will have the following properties: X

is hereditary separable. It is not hereditary Lindelöf. Its pseudocharacter exceeds ω1.

It has CRV property. It contains no uncountable realcompact right-separated subspace.

In chapter 2, we also showed that a compact space of size larger than continuum

has a realcompact subset of size continuum. The question remains:

Question 91. Is it true that any realcompact space of size larger than continuum has a

realcompact subspace of size continuum?

A counterexample to Question 91 should have the following properties. Every sub-

set of it has a dense subset of size < c. It is < c real-valued. It is not hereditary Lindelöf.

It contains no realcompact right-separated subspace of size c.

In Chapter 3, we showed for different ordinal less than the size of the space X , there

exists a good subset of κ + 1 which has all the properties needed for Claim 86. We

need to investigate whether there exists a closed such subset or at least such subset with

some convergent property. This investigation can lead us to answering the following

question.

Question 92. Is it true that for κ = (22|X |)+, if X × (κ + 1) condenses onto a normal

space, then X can be condensed onto η−paracompact space, where η > ω?

Of course, if Question 92 was true for all η ≤ |X | and the topology that witnesses

the truth of the statement was the same for all η ≤ |X |, then X can be condense onto a

paracompact space and the following question will be answered.

Question 93. Is it true that for κ = (22|X |)+, X×(κ +1) condenses onto a normal space

iff X condenses onto a paracompact space?

Note that the next example shows we can not achieve much stronger conclusions

than the one proposed in Question 93.
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Example 94. Q×K is a normal space for any compact space K, because Q is para-

compact. But Q does not condense onto any compact, Hausdorff space.

Q⊂ I and the unit interval I is hereditary Lindelöf, hence hereditary paracompact.

Thus by Tamano’s theorem Q×K is normal for any compact set K. It suffices to

show that Q does not condense onto a compact space. By the way of contradiction, let

f : Q→K be a condensation, where K is a compact space. Enumerate K = {qi : i∈ω}.

Let U0 be an open set in K such that clKU0∩{q0}= /0. At stage i+1, let Ui+1 ⊆Ui be

an open set in K such that clKUi+1∩{qi+1} = /0. Note that an open set Ui+1 exists by

the fact that K is Hausdorff and since K has coarser topology than Q, every open set is

infinite. Now ∩i∈ωclKUi = /0, a contradiction to the compactness of K.

On the other hand, Question 92 and/or 93 might be answered in negative by finding

the following counterexamples.

Question 95. Is there a space X , such that X × (κ +1) condenses onto a normal space

but X does not condense onto a η−paracompact space, where κ = (22|X |)+ and η ≤ |X |?

Question 96. Is there a space X such that X × (κ + 1) condenses onto a normal space

but X does not condenses onto a paracompact space, where κ = (22|X |)+?

Note that if a space fulfills the requirements of Question 92, then the same space

satisfies the requirements of Question 93 but the other way around is not true.

Finally in the same chapter, one might ask whether it is possible to lower the size

of κ . That is:

Question 97. Let X be a Tychonoff space. Is there an ordinal κ < (22|X |)+ such that

X× (κ +1) has a coarser normal topology implies X has a coarser countably paracom-

pact topology?
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Among all the questions in Chapter 3 Question 93 or its counterexample, Question

96, interests the author the most. For they can settle whether or not the condensation

variation of Tamano’s theorem, without any extra assumption, exists.
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