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Abstract

In this work we obtain results in two areas of topology, normal condensations of prod-

ucts and size of realcompact subspaces of a space.

In 2000 Swardson proved that every uncountable compact space has a realcompact
subspace of size @;. In the Chapter 2 the work of Swardson in [ ] is continued to
prove that realcompact spaces with pseudocharacter no greater than @; have realcom-
pact subspaces of size @;. Under continuum hypothesis, a consequence is that every
uncountable realcompact space has a realcompact subspace of size @;. We also prove
that every realcompact right-separated set of size larger than continuum has a realcom-
pact subspace of size of any cardinal less or equal to continuum. A corollary is that
every compact set of size bigger or equal to continuum has a realcompact set of size

less or equal to continuum, answering a question by Professor William Fleissner.

In 1997 Buzjakova in [Buz] proved that for a pseudocompact space X, X x (kK + 1)
condenses onto a normal space if and only if X condenses onto a compact space, where
kK =| BX |T. In the Chapter 3 we extend Buzjakovas’s method to prove if X x (k+1)
condenses onto a normal space, then X condenses onto a countably paracompact space,

x|+
where Kk = 22 | .
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Chapter 1

Introduction

In this dissertation, two distinct but connected areas of topology are studied. The first
area is realcompact spaces. Realcompact spaces are those spaces that are homeomor-
phic to closed subsets of products of the real line (with the usual topology). Every
Lindel6f (in particular, compact) space is realcompact. It follows that every subspace
of the real line is realcompact. Realcompactness, like Lindelofness and compactness,
is closed hereditary but not hereditary. Swardson has proved that every uncountable
compact space has a realcompact subspace of size ;. Her result is a partial answer to
one of the main problems of interest to topologists. This is the problem of determin-
ing those spaces with property P that have a subspace of a certain size and property
Q. Since a countable space is Lindelof, we seek realcompact subspaces of size @; or
larger.

It is known that the statement that an uncountable compact space has a compact sub-
space of size @ is not true. In fact, in B, the Stone-Cech compactification of positive
integers, every uncountable closed set in isomorphic to B itself and
|Bo| =22") > 29 > ;. Therefore all the uncountable compact subspaces of B

are of size larger than @, and 2%.



It is unknown whether the statement that uncountable Lindelof spaces have Lindelof
subspaces of size @ is consistent with ZFC. In one direction, Tall and Koszmider
have showed, with additional axioms, that there exists a Lindel6f space which does not
contain any Lindel6f subspace of size ;.

In the second chapter, we show that every uncountable realcompact space has a re-
alcompact subspace of size @; that has a coarser topology homeomorphic to a subspace
of the real line, a discrete subspace of size ®;, or a zero-dimensional right-separated
subspace of size ;. In all three cases, the subspace of size w; has a coarser topology
that is Lindelof. Therefore, an uncountable Lindelof space has a subspace of size @,
with a coarser Lindel6f topology.

One of the problems that remains, is to determine the weakest property P for space
X to possess to imply that X has a realcompact subspace of size @; or 2. In the
second chapter, we discuss different possibilities for property P and also the possibility
of independence from ZFC.

In the third chapter we explore a variation of a well-known theorem under a weaker
hypothesis. The property of a space X that X x I is normal ( X is said to be binormal)
had long been a hypothesis for certain homotopy extension theorems. The obvious
question is whether X being binormal means more than X being normal. In 1951,
Dowker [ ] examined this problem and proved for a normal space X, X x [ is nor-
mal iff X x (@ + 1) is normal iff X is also countably paracompact. ( Definition of
paracompact can be found in the third chapter.) The result by Dowker gave a useful
property for normal spaces that are not binormal. Normal spaces that are not binor-
mal are called Dowker spaces, and the question is do the exist. There have been a few
Dowker spaces with extra set theoretic assumptions but the first real Dowker space was
constructed by Mary Ellen Rudin [Rud] in 1971. In spite of the existence of Dowker

spaces, Morita and Starbird showed, in 1974, that the “X x I is normal” assumption in



the old homotopy extension theorem was unnecessary. In other ways, Dowker spaces
are part of broader question of normality of the products.

There is also a long history of topologists investigating the relationship between
topological properties and continuous bijections, called condensations, i.e., the prop-
erties of coarser topologies. It is possible that the condensation topology is stronger.
For example, Pytkeev proved that any o0 —compact Borel space can be condensed onto
a compact set. Buzjakova [Buz] presented some sufficient conditions for a space to
condense onto a compact space; she provided a solution to a question of Arhangelskii
concerning coarser normal products. We extend her result by starting with spaces with
a weaker hypothesis. There exists an example witnessing the fact that our weaker hy-
pothesis can not imply condensation onto a compactuum. Also, Pavlov [ ] proved
that for any infinite compact set K, there exists a normal space X such that X x K can
not be mapped one-to-one and onto a normal space; showing that the assumption that
a Cartesian product can condense onto a normal space, the assumption which was used
both by Buzjakova and the author, is not in vain.

Condensations can be useful in different areas of topology. Knowing condensation

results are useful in understanding the properties of the original space.



Chapter 2

Realcompact Subspaces of Size Less than Continuum

2.1 Introduction

In 2000 Swardson proved that compact spaces of size > @; have a realcompact sub-

space of size @;. In 2003 Professor Fleissner asked :
e Is it true that compact spaces of size > ¢ have realcompact subspaces of size ¢ ?

e Is it true that all Lindelof spaces of size > @; have realcompact subspace of size

w;?

e Isit true that the property called CRV , which we define shortly, on X is equivalent
to no realcompact subset of size @; for X, in a model of set theory with no S-

spaces?

We answer the first question in affirmative by proving that every compact space of size
> Kk where kK < ¢ has a realcompact subspace of size k.

For the second question, we obtain partial results by showing that if a realcompact
space of size > @; has pseudocharacter < @, then there is a realcompact subspace of
size m;. As a corollary, the Continuum Hypothesis implies every uncountable realcom-

pact space has a realcompact subspace of size ;.



The third question was answered by Justin Moore. In 2005 he constructed an L-
space with the CRV property. As we progress into this chapter, the properties of CRV
and realcompact subspaces of size w; become related. We show if a Tychonoff space
X does not have the CRV property, then X has a realcompact subspace of size @;. The

L-space constructed by Justin Moore demonstrates that the converse is not true.

2.2 Preliminaries about Realcompact Spaces

Most of the results in this section are well-known. The proofs are included as they are

a variation of the proofs given in [PW] and [GJ].

Lemma 1. If S and T are Hausdorff extensions of X and f : S — T is a continuous

extension of the identity function on X, then f[S\X] C T\X.

Proof. By the way of contradiction, assume x € X and y € S\X be such that
f(x) = f(y). Since S is Hausdorft, there are disjoint open sets Uy and Uy in S such that
x € Uyandy € Uy. Let W be an open set in 7 such that W N f[X] = f[U,NX]. There is an
open set R in S such thaty € R C Uy and f[R] C W. It follows that f[RNX] C f[U,NX].

As f is one-to-one on S, @ # RNX C U,NX, a contradiction as RNU, = &. OJ

Definition 2. A Tychonoff space X is called realcompact if it can be embedded as a

closed subspace of a product of reals.

Definition 3. For a topological space X, C(X) is defined to be the set of continuous

functions f: X — R.

Fact 4. A Tychonoff space X is realcompact if and only if the embedding
e: X — [ex) R defined by e(x)(f) = f(x) for x € X and f € C(X), is closed.



Proof. The sufficiency is obvious so we prove only the necessity. Let X be a Tychonoff
space and f : X — [], R an embedding so that f[X] is closed in [, R. For a € <7,
let m, : [].,R — R be the projection map onto the a™ coordinate and g, = 7, o f.
Now, g, : X — R is continuous. The function & : &/ — C(X) : a — g, has the property
that {h"(g,) : a € &/} is a partition of o/. Let # C o/ such that |h" (g,) N B| =1
for each a € 7. So, h|p : ## — C(X) is an one-to-one function and for each b € %,
h(b) = gp. Define i : [[zR — [[s R by i(x)(a) =x(b), where b € h(g,); i is a closed
embedding. Let 7y : [[c(x)R — [I»R be the projection map. With this notation,

iomgoe:X — [[R is a commutative diagram as shown below.

ioTpoe

x LR

| [
Ty
MMeyR —— T[IxR
Next we show that f = iomyoe. Let x € X and a € «&. Now,

(iomy oe)x)(a) = e(x)(b) where b € h“(gs) or g = ga So,

e(x)(b) = e(x)(g) = ex)(g) = 8x) = (M@ o fllx) = fx)(a)
This shows that f =ionmgoe, f[X] Ci[[[zR], and the mapio7y : [Tc(x)R — [T R

is a continuous extension of the homeomorphism foe™ : e[X] — f[X]. By continuity,

io Tglclyqy relX]] € clpy, rlio male[X]]] € clpy, v[fIX]] = fIX].

By Lemma 1, this shows that c/fy, re[X] = e[X]. O

Definition 5. Let X be Tychonoff space and e : X — Y := []¢(x)R be the canonical
embedding defined by e(x)(f) = f(x) for all f € C(X). Then the Hewitt realcompacti-

fication of X is denoted by vX and is defined to be clye[X].

10



Fact 6. Let X be a Tychonoff space and f : X — S be a continuous function into a
realcompact space S. Then there exists a unique continuous extension of f, denote it

by vf:vX — §, such that vf[y = f

Proof. Letex : X — [lcx)R and es : S — [I¢(s) R be the canonical embeddings of X
and S into a product of reals.

It is straightforward to show that the function 7 : [Jc(x)R — [I¢(s) R defined by
n(p)(g) = p(go f) is continuous; note that for x € X and g € C(S),
7(ex (x))(g) = ex(x)(go f) =go f(x) =es(f(x))(g). ie. Toex =eso f

Thus the composition function 7, (x| = eso foey : ex[X] — es[S] is noted in the

following commutative diagram.

ey [x]

ex[X] —— es[X]
- [
X TN S
Forvf = n’clan)Rex » Of el rlex [X]] — el res[S] s the continuous ex-

tension of f. As eg[S] is closed in []¢(5)R by Fact 4 and vX = clHC(X)R[ex [X]], we
have that v f : VX — § is a continuous extension of f. Note that v f is unique because
for any other continuous extension of f, denoted by f: VX — S, vf and fagree on X,

a dense subset of their domain, thus they are equal. 0

Definition 7. A closed subset Z C X is called a zero-set or z—set of X if Z = f[{0}],
for some continuous function f : X — R. The collection of all zero-sets of X is denoted

by Z(X).
Definition 8. A z—filter % on X is a subfamily of 2°(X) with the following properties,
1. 0¢ 7.

2. IfZyand Z, € #,thenZNZy € F

11



3.MZe 7,7 € Z(X),andZC Z', thenZ' € F

Definition 9. A z—ultrafilter % on X is a z—filter with the additional property that if

Zyand Z € Z(X) where Z1UZ, =X, then Z| € F or Z; € F.

Definition 10. A z—ultrafilter has countable intersection property (denoted by cip) if

every countable subset of it has non-empty intersection.

Fact 11. A z—ultrafilter .% with countable intersection property includes any countable

intersection of its elements.

Proof. Let{Z;:i€ w} C.Z. Since the intersections of finitely many z—sets are z—sets
and finite intersection of members of a z—filter belongs to that filter, we can assume
there exists a descending chain {Z(f;) : i € @} C .# where Z(f;) is the zero-set of f;
and f; : X — [0, 1] is continuous ; and NiepZ; = NicwZ(fi). Then Z :=N{Z(f;) :i € 0}
is the zero-set of the function f(x) := Zicq fi(x) /2. For Z' € .#, Z' NZ(f;) # 0 for
all i € ; and .% has cip. Thus, Z' NZ # 0 for all 7 € Z,and as .7 is a z—ultrafilter

therefore, Z € .. O

Note 12. For a Tychonoff space X, let BX denote the Stone-Cech compactification of
X. Foreach p € BX, F, ={Z € Z(X): p € clgxZ} is the unique z—ultrafilter that con-
verges to p (see [GI], [PW]). For Z and Z, € Z(X),

Clﬁle ﬂClﬁX22 = ClﬁX<Zl ﬂZz).

Lemma 13. A space X is realcompact if and only if every z—ultrafilter with countable

intersection property on X is fixed.

Proof. Suppose e : X — []cx)R is a closed embedding, ¥ = []¢(x)R and let aR
be the one-point compactification of R. Then there exists a continuous extension

Be: BX — Y where ¥ = [leccx) @Re. Now Let p € BX\X and .7, be the free

12



z—ultrafilter on X that converges to p. Since e[X] is closed in ¥, clye[X] C e[X]U Y\Y.
By Lemma 1, Be(p) € Be[BX\X] C clpY\Y C Y\Y. There is f € C(X) such that
mr(Be(p)) € aR\R.

For every n € o, let Z, = (aR \ (-n,n) x [lex)( @R and
K, = [—n,n] x [lex ry @R; both Z, and K, are zero-sets in Y with Be(p) € Z,. Also,
K,UZ, =Y. Now, ¢~ [Z,] and e [K,] are zero-sets in X and X = e [Z,] Ue" [K,]. So,
p € clgxe™[Z)] U clgxe™ Kyl If p € clgxe[Ki, then
Be(p) € Be[clgxe™ [Ky]] C clyBele™ [Ky]] C clyKy, a contradiction. So, p € clgye™ [Z,]
and e~ [Z,] € %,. Then (,cqe™ [Z,] = @ which means .%, does not have countable
intersection property.

Conversely suppose every z—ultrafilter on X with countable intersection property
is fixed. Consider the embedding e : X — []cx) R where Y =[]¢(x)R. It suffices to
show that e[X] is closed. Again there is a continuous extension of e, Be : BX — Y where
Y = [Tcx) @R. Now clye[X] is compact. It suffices to show that clye[X]NY = e[X]. Let
p € BX\X. So, %), is a free z—ultrafilter on X without cip. There exists a collection of
z-sets {Z, :n € o} C .#,in X such that N{Z, : n € o} = @. Without loss of generality

we assume that Zy O Z) O Z, O -. Foreachn € w, let f,, € C(X) be such that Z, = Z( f,,)

and f,[X] C [0,1]. We define a function g : X — [0,1] by g(x) = i;) J;(fl) and note
that g is a continuous function and positive on X. On the other hand for every i € o,
Z; C g[0,1/2']. Thus p € clgxg~[0,1/2'] for every i € ®. Let Bg: X — [0,1] be
the continuous extension of g. Then Bg(p) € [0,1/2/] for every i € . It follows that
Bg(p) = 0. Now the function é : X — [1,00) is also continuous and has a continuous
extension to BX. But B(1/g)(p) > n for all n € ® and therefore B(1/g)(p) € aR\R.

This implies that e(p) ¢ Y. O

Corollary 14. Lindelof spaces are realcompact.

13



Proof. Every z—filter, with cip on a Lindel6f space has non-empty intersection. There-
fore, every z—ultrafilter with countable intersection property has non-empty intersec-
tion. Thus by Lemma 13, every Lindel6f space is realcompact.

]

Corollary 15. Let T be a realcompact extension of a Tychonoff space X. Then every

z—ultrafilter with countable intersection property on X has an adherent point in T.

Proof. Let . be a z—ultrafilter with countable intersection property on X. Then
G ={Zec Z(T):ZNX € .Z} is a z—ultrafilter with countable intersection property
on T and therefore by Lemma 13 it is fixed. Denote the intersection by {p} = N¥4. By
the way of contradiction assume there exists Z € .% such that p ¢ clrZ. Then there
exists a continuous function f: 7 — [0, 1] such that f(p) = 0 and f[cl7Z] = 1. Let
Z1 = f]0,1/2]] and Z, = f[[1/2,1]]. Z; ¢ & therefore Z, € ¢, a contradiction to
pENY. O

Fact 16. A closed subspace of a realcompact space is realcompact.

Proof.  Let A be a closed subspace of a realcompact space X and let e : X — [[¢(x) R be
the canonical embedding. e[A] is closed in e[X] and e[X] is closed in []¢(x) R. Therefore

ela:A— [Ic(x) R is an embedding of A onto a closed subspace of []¢(x) R. 0
Fact 17. Let X CA C vX. If A is realcompact then A = vX.

Proof. Leti:X — A and j:A — vX be the inclusion maps and let vi: VX — A be the
continuous extension defined by Fact 6. Now let h = jovi: vX — X, hlx : X — vX
is the identity map and by Fact 6 the extension has to be unique. Therefore 4 is the

identity map and also vi has to be identity map. O

Fact 18. A product of a collection of realcompact spaces is realcompact.

14



Proof. Let% := {Xé : & € o/} be a collection of realcompact spaces and let eg denote
the  canonical ~ embedding ez : X — HC(X‘S) R. Then  let
e: X :=[Llo X = [lzew (Ilcrx,) R) defined by e([ze o xe) = [eew (Mo ec (xe))-
Now ¢[X] is closed in every coordinate of the product over <7, therefore it is closed in

the product space. [
Corollary 19. An intersection of a family of realcompact subspaces is realcompact.

Proof. Let {Xg : & € o/} be a family of realcompact subspaces of a space Y and let
X = NgcyXg. The function e : X — [[ecy Xz defined by e(x)(§) = x is a closed
embedding into the product space and the product space is realcompact, therefore e[X]

is realcompact. 0

Fact 20. A Tychonoff space X is compact if and only if X is both countably compact

and realcompact.

Proof. Let X be compact. Then every z— ultrafilter on X converges. Therefore any
z—ultrafilter with cip converges, which, by Lemma 13, implies X is realcompact. On
the other hand since X is compact, every countable cover on X has a finite subcover;
thus X is countably compact.

Now, let X be realcompact and countably compact. Let .% be a z—ultrafilter on X.
If we assume .# has cip, by X being realcompact, .# converges in X. Without loss of
generality assume .% does not have cip, then there exists a countable family of z—sets
% :={Z;:i € o} with empty intersection. Now, {X \ Z; : i € w} is a countable cover of
X and since X is countably compact there exists a finite subcover, which implies there

exists a finite subset of 2 with empty intersection, a contradiction. [

Fact 21. A Tychonoff space that is the union of a realcompact subspace and a compact

subspace is realcompact.

15



Proof. LetY =X UK be a Tychonoff space where X is realcompact and K is compact.
Assume that Y is not realcompact. There is a z—ultrafilter .# on Y with cip such that
N.Z = &. There is Z € .% such that ZN K = &. Moreover, there is a zero-set Z’ in Y
such that K CintyZ' and Z'NZ = @.

The goal is to show that Zx = {TNX : T € #} is a z—ultrafilter on X. Since
Z e ¥, Fx is a z—filter on X with cip. We need to show that .Zx is a z—ultrafilter
on X. Let W be a zero-set in X such that W meets .%x. Note that W N Z is a zero-set
in X. There is f €C(X) such that WNZ = f=(0) and f[X] C [0,1]. Also, Z'NX is
a zero-set in X. There is g €C(X) such that Z’NX = g~ (0) and g[X] C [0,1]. Let
h = f—ig. Note that Z(h) = Z(f) = W NZ and h™ (1) = Z(g) = Z' N X. Define
H:Y — R by Hx\juyz = hlx\inyz and H|z = 1. By the Pasting Lemma, H is con-
tinuous. Now H(0) = Z(h) = WNZ. Since W NZ meets .Fx, W NZ meets .Z7. As
& is a z—ultrafilteron Y, WNZ € .% and hence W NZ € .%x. This shows that %y is a
z—ultrafilter on X. As .#x has cip and N.%x = (N.%) NX = @. This shows that X is not

realcompact, a contradiction. Thus, every z—ultrafilter on Y with cip has non-empty

intersection. It follows that Y is realcompact. [

The next result is a well-known fact in basic topology.

Lemma 22. Let f: X — Y be a continuous function and wy : X XY — X the projection

map. Then Tix | o r) : 87(f) — X : (x, f(x)) = x is a homeomorphism.

Fact 23. Let f : X — Y be a continuous function from a realcompact space X to a

Tychonoff space Y. Then the preimage of a realcompact subspace of Y is realcompact.

Proof. Let Z be a realcompact subspace of Y. Then X x Z is also realcompact. Now,
gr(f) is a closed subspace of X x Y; so, gr(f) N (X x Z) is realcompact as a closed
subspace of a realcompact space. But gr(f) N (X x Z) = gr(f|;-(z). By previous

lemma, f[Z] is homeomorphic to gr(f|—(z). Thus, f[Z] is realcompact. O

16



Fact 24. Let X be a Tychonoff space and f : X — Y be a continuous, one-to-one func-
tion into a space Y that is hereditary realcompact. Then X is also hereditary realcom-

pact.

Proof. There is a continuous extension Vf : VX — Y that extends f by Fact 6. Let
p €Y. By Fact 23, vf“[Y\{p}] = vX\vf~(p) is realcompact. So, by Fact 21,
vX\vf(p)U{f (p)} is realcompact. As X C (vX\vf(p))U{f (p)} C vX, it
follows that vX\vf~ (p)U{f(p)} = vX. Thatis, foreachpe Y, vf(p) =" (p).
This shows that VX = X and X is realcompact. By Fact 23, since f is one-to-one, X is

hereditary realcompact. ]

2.3 Size of Realcompact Spaces

The following result is an extension of a theorem used by Swardson in [ ] from

@ to arbitrary infinite cardinal x < 2%.

Theorem 25. If X is a space with a subspace Y C X and f € C(Y) such that |f[Y]| > K,

then X has a realcompact subspace of size K.

Proof. Pick B C f[Y] such that |B| = k, then by Axiom of Choice pick A C f[B]

such that f|4 is one-to-one. By Fact 24, A is realcompact. [

Definition 26. A space X is right-separated (resp. left-separated) if it can be enumer-
ated as {xg : § € N} where 1 an ordinal and the initial segment {x¢ : & € a} is open

(resp. closed) for any o € 1. We consider X ordered by this enumeration.

Definition 27. A cardinal x is called measurable if a non-trivial {0, 1}-valued count-

ably additive measure can be defined on & (k).

17



Lemma 28. [(G/] Every discrete space of size K, where K is a non-measurable cardinal,

is realcompact.

Note that measurable cardinals are very large cardinals and @; and ¢ are non-
measurable cardinals. We are going to use Lemma 28 in the next Lemma and in Lemma

49.

Lemma 29. If a Tychonoff space X is not hereditary separable then X contains a real-

compact subspace of size ®;.

Proof. Let A C X be a non-separable subspace. Then we can recursively form a left-
separated subset of A by inductively picking a point xo € A\ cla{x¢ : & € o} for each
« € 0. If B:= {xg : § € o} is Lindelof then we are done. If B is not Lindeldf, we
can build a right-separated subset as follows: Since B is not Lindelof, it has a cover
U = {Ug : & € o} with no countable subcover.

Atlevel «, let Us, € % be such that

Vo :=Us, \ (UgeaUs, U{xg : € € (sup{yz : ¢ € a} +1)}) #0.

Pick xy, € Vy.
Now {xy, : & € @ } is both right-separated and left-separated. Thus {xy, : @ € @} is
discrete and discrete spaces of size w; are realcompact.

This proof can be simplified by using @; — (@;, ®)?, as follows:

Let B be a left-separated space as above. Denote the left-separated order by <. If
B is not Lindelof we build a right-separated subset C C B; denote the ordering by <g.
Now, by @; — (@, a))z, either there exists a subset D C C of size @; such that <;—=<pg
on D, or there exists a countable subset on which <;=>>x which is a contradiction to

the fact that there exists no infinite descending chain in any well-ordered set. So there

18



exists a subset D of size @, that is both left-separated and right-separated. Thus D is

discrete and realcompact. [

Definition 30. A space X is < kK real-valued if for all Y C X and for f € C(Y),

fIX] < x.

Definition 31. A Tychonoff space X has the countable real valued property or CRV

ifforallY C X and all f € C(Y), f has a countable image.
The following two results are well-known and proofs are included for completeness.
Fact 32. A Tychonoff space with countable real valued property is zero-dimensional.

Proof. Let x € U an open set in X then there exist a function f : X — [0, 1] such that
f(x) =0and f[X\U] = {1}. Since f has countable image let r € [0,1]\ f[X] then

x € f[[0,r]] C U is aclopen set. So X has a clopen base. O

Fact 33. A countably compact, Tychonoff space X with no isolated points has a closed

subspace A and a continuous f € C(A) such that |f[A]| = 2°.

Proof. We build a binary tree of size @ of regular-closed sets such that each branch
has size  and the collection of intersections of the branches map continuously onto a
Cantor space 2® C R: Let Up and U, be two open set with disjoint closure in X then
let Up o and Up| be two open sets with disjoint closure in Uy and U ¢ and Uy | be two
open sets with disjoint closure in Uj.

At stage n+1, Uy~ and U,,~; have disjoint closure inside U, for all h € 2". Let
Ag = MpewclU,, for g € 2%. Ay # 0, for X is countably compact. Let A = Ugez0A,.

Define f: Uger0A, — 29 by f(x) = g if x € A,. f is well-defined and continuous:

f(_[g|n X H 2] = ClUg‘n NA C (X\Ulesz?ggClU”n)

m>n
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which means preimage of every basic open set is clopen.

A is closed because it is an intersection of closed sets A = M,cg Upeon clUj,. [

Definition 34. An uncountable regular Hausdorff space is sub-Ostaszewski if every

open subset of it is either countable or co-countable.

Definition 35. A sub-Ostaszewski space is called Ostaszewski if it is countably com-

pact and non-compact.

Definition 36. & is the statement that there exists a collection {Ag : 6 € ®; Nlim} of

countable subsets of @; such that
1. As C 9,
2. for any uncountable subset A C @y, there exists a & € @; so that Ag C A.

In 1975, assuming & Ostaszewski [AO] constructed an Ostaszewski space of size

@ that is locally compact but is not realcompact.

Definition 37. A point p is a k-accumulation point of a subset A of a space X, if |A| > k

and for all open sets U > p, |JANU| = k.
The following result is a basic property in topology.
Lemma 38. An uncountable subset A C R has at least two ®-accumulation points.

Proof. Define A;:=AN(i,i+ 1) fori € Z. A is uncountable and A = U;czA4; U (ANZ).
Therefore, there exists i € Z such that A; is uncountable.

Let

ri=sup({g € Q:|A;N(i,q)| < o} U{i})

and let

r:=inf({g€Q:|A;iN(q,i+1)| < @}U{i+1}).
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r1 < ry: By the way of contradiction, assume r| > r. It follows from the definition of
r1 and r; that for every g € QN (r2,r1), [AiN(i,q]| < w and |[A;N[g,i+ 1)| < ® which
implies A; = (A; N (i,q]) U (AiN[g,i+ 1)) is countable, a contradiction. Thus r; < rp.
Now pick pi, ps € (r1,r2) such that p; < py. Then both sets [i, p1] and [py,i+ 1]
are compact and their intersection with A; is uncountable. Every uncountable subspace
of a compact space has at least one ®;-accumulation point and therefore A; N [i, p1] and
A;N[pa,i+ 1] each have at least one ®;-accumulation point. Therefore A; has at least

two w;-accumulation points. [
Fact 39. A sub-Ostaszewski space X has the countable real valued property.

Proof. By the way of contradiction, assume ¥ C X, and f : Y — R is a continuous
function that has uncountable image. By the Lemma 38, f[Y] has two ®;-accumulation
points, denote them by p; and p, where p; < py. Let ry,r» € (p1, p2) such that r; < r;.

Then f~[(p1,r1)] is an open set in Y, and there exists an open set in X, U, such that
UNY = f[(p1,r1)]- Therefore U is uncountable and since f[(r2,p2)] C X \U, U is

also not co-countable, a contradiction. Thus f has countable image. [

In light of Theorem?25, the question is whether ’a realcompact space X has a re-
alcompact subspace of size ®;” is equivalent to "X does not have CRV property”.
The one-point compactification of locally compact Ostaszewski space is a realcompact
space of size w; with CRV property which contradicts that fact with assuming some
extra axioms. Justin Moore constructed a hereditary Lindelof, non-separable space that
has the CRV property. This shows that having a realcompact subspace of size m; is not
equivalent to not having the CRV property in ZFC. So, the converse of Theorem 25 is

not true.

21



2.4 Realcompact Subspaces of Size o,

Fact 40. Let X be an uncountable space with countable real-value property and A C X.
If .Z, is a z—ultrafilter on A with the countable intersection property (denoted as cip),

then Fx ={Z € Z(X):ZNA € F4} is a z—ultrafilter on X with cip .

Proof. LetV be a clopen set in X that meets .%x, we show that V € Zx:

If VNA = o, then X\V D A. Then (X\V)NA =A € %4 and hence X\V € Fx, a
contradiction to V meeting .#x. This implies that V N A # 0.

Now if VNA # 0 and (X \V)NA € %4, then X \V € Fx, a contradiction to V
meeting .#x. So VNA € %4 which implies V € Zx.

Now let Z € Z°(X). Then Z = ;¢ Vi Where V; is clopen in X (follows from the
CRV property). If Z € 2°(X) meets .Zx, then each V; meets .Zx and therefore V; € .Zx

and V;NA € Z4. By cip for %4, NiceyViNA € %4 which means Z € . O

For the rest of this section for A C X and .%4 a z—ultrafilter with cip on A we use

Fyx as defined above.

Definition 41. The pseudocharacter of a point x in a 77 space X is the cardinal
inf{|%|: % C 1(X),N% = {x}} and is denoted by y(x,X). The pseudocharacter

of a space X is the supremum of all infinite cardinals y(x,X) for x € X and is denoted
by y(X).
Lemma 42. Let X be an uncountable realcompact space with CRV and let x € X be

such that y(x,X) = . Then X contains a realcompact subspace of size @;.

Proof. Let {Ug : & € w1} be a collection of clopen neighborhoods of x such that

NgcawyUg = {x} and for all « € oy,

(VU \Ua= [ U\ ([ Ue) #0.

E<a E<a ¢<a
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Now pick xg € NgqUe \ Ug. Note that xo = xg if and only if a = 3.
We claim that A = {x¢ : § € @; } U{x} is realcompact.

Let .%4 be a z—ultrafilter on A with cip. There are two cases:

Case 1) There exists @ € @; such that Uy NA € F4. Thus, (X \Uy)NA € Z4. Leta
be least such ordinal. Then, UsNA € F#, for all & < a. It follows that
Ne<qUe N (X \Uq) NA = {x¢} and F4 has cip. So {xq} € F4 and NFy = {xq}.

Case 2) For all & € Ug NA € Z4. Then, for all Eew, Ug € Fx. Since Fy is
a z—ultrafilter with cip on X, NFx # 0. But NFx C Ngcg, Ug therefore NFy = {x}
which implies N.%4 C {x}.

Butif Z € Z(A) and x ¢ Z, then since x € A and Z is closed in A, x & clxZ. So,
there is a clopen set U in X such that x € U and U NclxZ = &. As N.Fx = {x} and Fx

is a z—ultrafilter, U € .%x which implies UNA € %4 and Z ¢ .Z4. O

In [GJ], Lindelof spaces whose points are G sets are shown to be hereditary real-

compact. Here is an improvement of their result.

Lemma 43. Let X be a realcompact space such that w(X) = @. Then X is hereditary

realcompact.

Proof. Let A be a subspace of X and .% be a z—ultrafilter with cip on A. Since X is
realcompact, clxA is a realcompactification of A. Therefore, there exists a continuous
onto function Bi; : VA — clxA such that Biy|s = iy. Biy(F) = x for some x € clxA.
Now since y(x,X) = o, {x} = NicpU; where U;’s are open. Let V,, = N;e,U; and
fi:X —[0,1/2""1] be a continuous function such that f;(x) =0and f;[X \ V;] = {1/27+1},
then f : X — [0,1] defined by f(y) = Licefi(y) is a continuous function and

Z(f) ={x}. Let Z; := f[[0,1/i]] for i € w, Z;s are zero-sets and {x} = NjcuZ;. Let
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Z,:= f[[1/i+1,1]] forall i € ®. The Z;’s are also zero-sets and Z; UZ, = X so for all
i € weither ZNA € F or Z,NA € 7.

Let us assume there exists an n € @ such that Z, NA ¢ Z. Then
Bis(F) # x ¢ Z,NA, a contradiction.

So for all i € ® Z;NA € % and by countable intersection property of .Z#,

{x} D Nicw(ZiNA) # 0. Therefore x € A. Which means .# is fixed in A. O

Now by the Lemma 42 and Lemma 43 and the fact that any space without CRV

property has a realcompact subspace of size @; (Theorem 25) we have the following:

Corollary 44. If X is an uncountable realcompact space and y(X) < @y, then X has

a realcompact subspace of size @;.
Now by the above corollary we show the following:

Corollary 45. [CH] Every uncountable realcompact space has a realcompact sub-

space of size @y.

Proof. By Lemma 29 we can assume that the uncountable realcompact space X is
separable. By the cardinality formula y(X) < 24| the fact that y(X) < x(X), and

CH, we have that y(X) < @;. By above corollary, we are done. O
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2.5 Realcompact Subspaces of Size less or equal to
Continuum

Definition 46. A Hausdorff space is called scattered if every subspace of X has isolated

points.
Fact 47. A space X is scattered if and only if X is right-separated.

Proof. Let X be scattered and let xo be an isolated point of X. At stage « if
X\ {xg : & < a} #0, let xg be an isolated point of X \ {x¢ : & < a} # 0. For some 7,
X\{xg: £ €n}=0. Then {x¢ : & € n} witnesses that X is right-separated.
Conversely suppose X = {x¢ : § < o} is right-separation of X and A C X is a non-
empty subset. Now A = {x¢ : § € Q} where Q C a. Let n = min€, xy is an isolated
point of A.
O

Fact 48. Let X be right-separated of order type k™. If X has no dense subspace of size

< K, then X has a discrete set of size k.

Proof. Let X = {xg : § < x"} be a right-separation of order type k". Define
¢ : x — K as follows: ¢(0) =0. At stage o < K, pick xp € X \ cl{xye): & < o}
such that & > sup{¢(&) : & < a}. Let ¢(a) = &. Now {x4(¢) : & < Kk} is the desired

set. ]

Lemma 49. Let x be a cardinal and X be a right-separated, realcompact Hausdorff

space such that |X| > k. Then X has a realcompact subspace of size K.

Proof. If |X| = k, then we are done so let’s assume [X| > k7.
Enumerate X := {xz : £ <1}, for some ordinal  (n > k™), where the indices cor-
respond to the right-separation of X. Let ¥ := {xg : £ < k" } C X. Regarding ¥ we

have three cases:
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Case 1: There exists § < k™ and an open set U such that xg € U C clU C [xo,X¢ 1)
and |cIU| > k. In this case we are done as clIU is realcompact and has size k.

Case 2: There is a subspace S C Y such that |S| > k and S has no dense subset of
size < K. By Fact 48, § has a discrete subset of size K.

Case 3: Neither Case 1 nor Case 2. Let’s build Bg by the way of induction.
By is a set of size < Kk that is dense in Y. Bg is a set of size < k that is dense in
Y\U{Bg : &£ < &}. Then B:=U{Bg : & < K} is of size k. Let a = sup{¢ : xz € B},
a < k. Then there is an open set U such that x, € U C clU C [xg,xq]|. However, as

U has to intersect all B¢’s, [U| > k. A contradiction to not Case 1. O

Theorem 50. Let o < k < 2%. If X is a compact space of size > K, then X has a

realcompact subspace of size K.

Proof. If there exists A C X and f € C(A) such that |f[A]| > k then we are done by
Theorem 25. Suppose for all A C X and for all f € C(A), |f[A]| < k¥ (X has < k real-
valued property). By the way of contradiction let B C X such that B has no isolated
point. Then clxB is countably compact and since B has no isolated point, clxB has
no isolated point. By Fact 33, there exists f € C(clxB) such that |f[clxB]| = 2%, a
contradiction. Now, scattered implies right-separated, and X is compact, Hausdorff,
right-separated, and |X| > x. By Lemma 49, X has to have a realcompact subspace of

size K. ]
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Chapter 3

Normal images of the product and countably

paracompact condensation

3.1 Introduction and Preliminaries.

3.1.1 Background and Introduction

There is a long history of examining when the product of two normal spaces is also
normal. In homotopy theory, it is useful to know when X x I is normal when X is normal
and I is the unit interval with the usual topology. In 1951, Dowker [ ] examined
this problem and proved for a normal space X, X x [ is normal iff X x (@ + 1) is normal
iff X is also countably paracompact.

The question of whether every normal space is countably paracompact was solved in
1971 by Mary Ellen Rudin [Rud] who constructed a normal space that is not countably
paracompact.

In 1960, Tamano [ ] proved this amazing result: For a normal space X, X x BX

is normal if and only if X is paracompact.
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We list a few results that are variations of Tamano’s theorem. One is the result
by Kunen discussed in 3.1.3. In 1984, Kunen [Kun] proved for a normal space X,
X x (]X|+1) is normal iff X is paracompact.

In 1997, Buzjakova [Buz] proved another variation of Tamano’s theorem. She
proved:

Let X be a pseudocompact Tychonoff space and k = |BX|". Then X condenses
onto a compact space if and only if X x (k4 1) condenses onto a normal space.

Comparing the Buzjakova’s result to Kunen’s result the natural question is whether
it is possible to prove a condensation variation of Kunen’s result without the extra as-
sumption that X is pseudocompact.

The final background result is due to Pavlov [ ]. In 1999, he proved that for
every compact space K, there exists a space X such that X x K can not be condensed
onto a normal space. This shows that not all spaces have coarser normal products and
assuming that a space X has this property is not vacuous.

In this chapter we show for a Tychonoff space X, if X x (k + 1) condenses onto a
normal space, then X condenses onto a countably paracompact space, where Kk = 2% +.

Let all spaces be Tychonoff and for chosen K, let Y := X x (k +1).

3.1.2 Preliminaries

Definition 51. Let %/ be an open cover of space X. A cover € of X is a locally finite
refinement of % if for every V € € there exists a U € % such that V C U and each

x € X has a neighborhood that intersects only finitely many members of €.

Definition 52. A space X is called paracompact if every open cover has a locally finite

open refinement.

28



Definition 53. A space X is called countably paracompact if every countable open

cover has a locally finite open refinement.
Definition 54. A Dowker space is a normal space that is not countably paracompact.

Definition 55. A continuous function f : X — Y is a condensation if f is one-to-one

and onto Y. If f is the identity, we can say that Y has a coarser topology than X.

3.1.3 Normal Product and Paracompactness

Theorem 56. [Kun] Let X be a Tychonoff space and let |X |+ 1 have the order topology.

If X x (|X|+1) is normal, then X is paracompact.

Proof. Let {Uqy} 4cy be an open cover of X and {Vy } 42 be a collection of open sets
in BX such that V, N X = U,. Note: without loss of generality We may assume that the
open covers are indexed by a cardinal A < |X|. If Nyex (BX \ Vo) = 0, then since BX

is compact, we are done. So let us assume

0£A= ) (BX Vo) CBX~X

aElL

Now let Aq = X\ (Up<aVp). Uger(Aa x {a}) is a closed set in X x (|X|+1)
because (yep Ao = 0 and Ay is decreasing. Also (Jyep (Aq X {a}) is disjoint from the
closed set X x {1}

So there exists a continuous function f : X x (|X|+1) — [0, 1] such that
o fIXx{A}]=0,and

o flUger(Aax{a})]=1.
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Use f to define a pseudometric d on X by:
d(xay) = SUPger+1 |f(x7 (X) _f(y7 O‘)‘
We verify the pseudometric properties.

For x,y,z € X:
1. d(x,x) =0,
2. d(x,y) =d(y,x),

3. d(x,y) =supgep g1 1f(x, ) = f(y, )] <supgep 4 (1 (x, 00) = f (2, 00) |+ f(z, &) —
f(ya OC)D < SUPgeA+1 |f(x,0£) —f(Z, a)|+supael+l |f(Z,OC)—f(y7OC)’ :d(xvz)+

d(z,y).

Claim: 7(d) C 7(X).
Let x € X and € > 0. First we show there is a T € 7(X) such that x € T C By(x, €).
Let @ € A + 1 and let By, = Wy, X Oy (Where Oy is open in o + 1 containing o and

x € Wy is open in X) be a basic open set containing (x, &) such that for all (y,) € By

(B €0a), |f(y,B) - flx, )| < &/2.

IX|+1

Figure 3.1: An illustration of a finite open cover of A 4 1.
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Since [f(v,B) = f(x,B)| <|f(»B) = f(x, )| +[f(x, &) — f(x, B)],

sup |f(y,B) — f(x,B)| <e.

BeAq

Now A + 1 is compact; therefore, it can be covered by finitely many {Og, };<x. Then
(NickWe;) % (JA| 4 1) is open in X x (|X|+1). For all y € N;j<xWq, and for & € A +
L, supgeiaj1 [f (v, @) — f(x,@)| < € implies d(y,x) < &. T :=N;xWq, is open in X
and x € NixWo, C By(x,€). Now to show By(x,€) is open in X, let X' € By(x,€).
There is 7’ € T(X) such that x' € T’ C B, (x',€ —d(x,x")) C By(x,€). This shows that
Bi(x,€) € T(X).

By continuity of f at (x,A), there is a < A such that
|f(x,B)—f(x,A)| < 1/4forall B > a.

For & > «, define a continuous function gg : X — [0,1] by ge(x) = f(x,8).

Let g¢ be the extension of g¢ to BX. For x' € By(x,1/4),

8e(v) < ge(x) +18e(x) —ge (x)] < ge(x) +1/4=f(x,&) +1/4 < 1/2.

Therefore,

FlclpxBa(x,1/4)] C clige [Ba(x,1/4)] € cl[0,1/2] = [0,1/2].

For y € clgxAg, ge(y) = 1. Hence, clgxBy(x,1/4)NAg =0, for all x € X. As
A CAg, clgx(By(x,1/4)NA =0.

Now {B;(x,1/4) : x € X} has a locally finite open refinement in 7(d) call it
{Wy: yed}andcl gxWyNA =0 and clgx Wy is compact. Therefore, there exists a finite
open cover, {Vy}aer,, of clgxWy and then {WyNVy : 7y €6, ac F} is

the locally finite refinement of {Ug } o - O
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3.2 Condensation of the Product onto a Normal Space

and Countable Paracompactness

3.2.1 Structure of the Product

We will start with a few facts about Stone-Cech compactification of product space
X x(k+1):
Fact 57. Let X be a Tychonoff space, k a cardinal, and C a closed subset of k4 1. Then

X x Cis C*-embedded in X x (k+1)

Proof. Enumerate C, C = {0 : § € N+ 1} where 1 < K is an ordinal and § < {
implies o < oy in K+ 1. Let g : X x C — [0, 1] be a continuous function. Define the

extension g : X X (k+ 1) — [0, 1] in the following manner:

(

glx,00),  if B < ap;
g(x,ae 1), if B € (0, 0 yq];

g(x, ch), if B = g, where & is a limit ordinal;

g(x,OCn), if,B>OCn-
\

g is identical for each of these blocks of lines.

Figure 3.2: Extending g from X X C (the red set) to the whole space.

g is continuous at (x, ), where 8 € (@, @], because :
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For basic open set (r,r2)N1[0,1] 3 g(x,B) in [0,1],

mx [ [(r1,r2)| V(X X {B})] x (0, Otg 4]

= mx (g™ [(r, )] N (X x{ a1 })] X (0, 0z 4] S8 [(r1,72)]

is an open set containing (x,3). (It is a product mx[g™ [(r1,72)] N (X X {@g;1})], an
open set in X, and (aé,aéﬂ], anopensetin K+ 1.)
g is continuous at (x, ) for B < op:

Again for basic open set (r,r2)N[0,1] 3 g(x,B) in [0,1],

nx (& [(r,r2)] N (X < {B})] < [0, &)

= nx[g ™ [(r1,r2)]N (X x {ao})] x [0, 00] € g7 [(r1,72)]

is an open set. (It is a product 7y [g ™ [(r1,r2)] N (X X {aw})], an open set in X, and
[0, ], an open set in K+ 1.)
g is continuous at (x, 8) for B > oy:

For basic open set (r1,r2)N[0,1] 2 g(x,B) in [0, 1],

wx (g [(r1,r2)]N (X X {B})] x (o, K]

= mx[g™ [(r1,2)] N (X x{ay 1] x (o, k] € g7 [(r1,72)]

is an open set. (It is a product 7mx g~ [(r1,72)] N (X X {oy })], an open set in X, and
(o, k], an open set in kK + 1.)

g is continuous at (x, 3), where 8 = o for & a limit ordinal:
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For basic open set (r1,72) N0, 1], let U open in X and { < & be such that
(U x (ag, o)) N (X % C) € g™ [(r1,m2)],

then

(. B) € (U x (o, 0¢]) S8 [(r1,72)]-

Notation.

For a Tychonoff space X, a cardinal x, and o € K + 1, by Fact 57, X x {a} is C*-
embedded in X x (k+1) =:Y. AsY is C*-embedded in BY, it follows that X x {a} is
C*-embedded in BY. So hq : X x {a} = clgy(X x {a}). Fory € BX, ha(y,a) € BY.

To avoid confusion, we denote hy(y, &) by e(y, @) and
e[BX x (k+1)]={e(ra):y€ X, a € (k+1)}.

Using this notation, the Stone-Cech compactification of ¥ := X x (k4 1) is shown

in Figure 3.3.

(k+1))

Figure 3.3: Demonstrating BY as a set.

BX\X
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Corollary 58. Let X be a Tychonoff space and k be a cardinal andY :=X x (k+ 1),

then

Br)2 U elBX x{a}]

acek+1

Proof. By Fact 57, X x {a} is C*-embedded in Y. As Y is C*-embedded in B(Y), it
follows that X x {a} is C*-embedded in B(Y). So, BX x {a} ~clgy)(X x {a}). O

Warning: With this notation, we have BX x (k+ 1) — BY; however, BX x (k+1)
does not have the product topology as a subspace of Y.

The above corollary enables us to think of (X x (k+ 1)) as a space containing a
copy of e[BX x (x+ 1)], as a subset not as a subspace, and later on serves as a tool to

work with the B (X x Hy) where the Hy’s are isomorphic closed subsets of k.

3.2.2 Convergence Tools

The final step of the proof needs convergence properties of sequences of the form
{e(»,&) : & € o} in BY for some ordinal o € k¥ and y € BX \ X, and the next fact

helps us achieve convergence for some specific o’s.

Fact 59. Let Y =X x (k+1) and o € K+ 1 be such that cof(a) > |X|. Then for
y € BX\X and e(y,a) € U € 1(BY), there exists B < @ and V € 7(BX) such that

e(y,a) €e[Vx (B,a]] CU.

Proof. There exists W € 7(Y) such that e(y,at) € W C clgyW C U, and there exists
V € 7(BX) such that e[V x {ot}] CW where y € V.
Foreachx € VNX,as (x,a) € WN (X x {a}), there exists B, < o such that

{x} x (B, ] CW,let B =sup{Bi:x€VNX}. Then (VNX)x (B,a] CW.
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For each y € (B, 0], (VNX) x {y} C W; therefore,

Clﬁy((v ﬂX) X {’}/}) - ClﬁyW cU.

But  clgy((V N X) x {7}) = elcpx(V N X) x {yv}] 2 eV x {7}l
Thus e[V x (B,a]] CU. O
ce(y.a)
X Y
R. (x,00)

B= SUPycvnx B

; K+1
B o

Figure 3.4: A neighbourhood of e(y #, @) contains a product of two open sets.

Definition 60. A point p is a complete accumulation point of a subset A of a space X,

if for all open sets U > p, |A| = |UNA|.

Definition 61. A point p € X has large neighbourhoods in A C X if for any open set
U3 p, |A\U[ <Al

Note 62. For a Hausdorff space X, if p € X has large neighbourhoods in A C X, then p

is the unique accumulation point of A.
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Corollary 63. Let Y =X x (k+1), let y € BX\ X and let & € K + 1 be such that
cof(a) > |X|.  If {By : vy < cof(at)} is a cofinal sequence in «a, then

{e(y,By) : v < cof(e)} — e(y,a). In other words, for open set U > e(y, o),

[{e(By) : v <cof(a)}\U| < [{e(y, By) : ¥ < cof (@) }].

That is, e(y, o) is the unique complete accumulation point of the set {e(y,By) : ¥ <

cof(a)}.

Proof. Obviously, by Fact 59, e(y, o) is a complete accumulation point of the set
{e(y,By) : v < cof(a)}. If z € clgy{e(y,By) : ¥ < cof(@)} and z # e(y,a), then
there is an open set W in BY such that z € W and e(y,&) ¢ clgyW. By Fact 59,
there is B < o and V € 7(BX) such that y € V and e[V x (B,a]] € BY \ clgyW.
There is 6 < cof(a) such that W N {e(y,By) : ¥y < cof(a)} C {e(y,By) : ¥ < &} and

{e(»By) : ¥ < 6} < cof(a). So, z is not a complete accumulation point of

{e(v,By) : v <cof(a)}. 0

Note 64. Let A C T be a C*-embedded subset. Then SA = clgrA C BT. Therefore, ev-
ery free z—ultrafilter on A converges to a point in
BAN\A = (clgrA\A) C (BT \ A). When we talk about a free z—ultrafilter on A as a

point we are talking about the adherence point of that filter in 7.

We still need more convergences statements about points other than the points of
¢[BX x k|; these other points appear in the Stone-Cech compactification of infinitely
many X x {£}’s which is a requirement in our proof. To understand the repetitive
behavior of such points, we need to use isomorphic subspaces of Y of the form X x C,

so we can have a large number of isomorphic free z—ultrafilter defined on them. Then
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we need to make convergence statement about those isomorphic z—ultrafilters and the
Fact 66. is a crucial tool to accomplish that.

Before Stating the Fact 66, we prove the following well-known Lemma:
Lemma 65. The projection map 7wy : X X C — X is closed, where C is a compact set.

Proof. Let F C X x C be a closed subset and y ¢ 7wy [F|. Then {y} xCC (X xC)\F.
Since C is compact, {y} x C can be covered by finitely many basic open sets in the
product. Therefore, there exists an open set U € 7(X) such that {y} x C CU x C and
(UxC)NnF = 0. Then y € nx[lU x C] = U and U N nx[F|] = 0.

Thus y ¢ clxmx [F]. O

Note that for z—ultrafilter # on X x C, if y € pe gz clgxTx[F] N X, then there
exists & € C such that (y,&) € F for all F € .%. By the way of contradiction suppose
for all § € C there exists Fz € .7 such that (y,&) ¢ Fg. Then since Fy is closed, we can
find an open set containing (y,&) missing Fg. On the other hand, {y} x C is compact,
so it can be covered by finitely many of these open sets. Hence, there exists an F €
Z such that ({y} x C)NF = 0 and by Lemma 65 y ¢ clxnx[F]. A contradiction.

We conclude that for free z—ultrafilter % on X x C,

ﬂ Cllgxﬂ'x[F] NX =20
Fes

Fact 66. For every free z—ultrafilter .# on X x C, where C is closed in K + 1, there
exists a unique yz € BX \ X such that gz clgx7x[F] = {y#}. Denote yz as the

corresponding X - element of .%.

Proof. (\peg clgxTx[F] is nonempty because it’s an intersection of compact sets with

nonempty finite intersection. The intersection can not have more than one point since
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F is a z—ultrafilter. If there are two points y| and y; in (\pe g clgx Tx [F], there are two
disjoint z—set neighborhood, Z; and Z,, in BX such that y; € Z; and y, € Z,. Now for
F € .7 ,FNelZ; xC|and F Ne|Z, x C] are two disjoint z—sets and they both intersect .#

, a contradiction to the maximality of the z—ultrafilter. So, Nre & clgxx [F] = {y.#}.

S

K+1

Figure 3.5: The projection of the filter .7 .

We introduce the last two convergence tools of this section:

Fact 67. Let C be a closed set in k such that C ~¥ 1+ 1 for some 1 € k. Let g:
N+ 1 — C be the homeomorphism and let .# be a free z—ultrafilter on X x (n 4 1).

Then ' := {{(x,g(&)): (x,&) € F} : F € #} is a z—ultrafilter on X x C and has the

same corresponding BX —element as .% . In other words, yz = y 2.

Proof. 1ltis easy to see that %’ is a z—ultrafilter. It suffices to show yz =y :

{yz}:= () clpxmx[F] =
FeF'

Nrezrclgx{x: (x,g(&)) € F for some § € C} =
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Nregzclgx{x: (x,§) € F forsome § € C} = {y#}.
0

Fact 68. Let {C]] : & € x} be a collection of closed sets in k + 1, where 7 < &, with

these properties:

1. Each CJ is closed and bounded in x + 1.
2. minCy, > sung if a > .
3. Cg=n+1land gq:n+1— CJ is the isomorphism.

Let # be a free cz-ultrafilter on X x (n + 1), then
Fla) = H{(x,8a(8)) : (x,§) EF}: F € F} is a free z-ultrafilter on X x Cq, and
VF o) =VF for a € k.

Furthermore, for {, a regular cardinal, such that |X| < { < k, e(y#,A) has large neigh-
bourhoods in the set {adgy #(q,) : V € }, where A := supuvegCgv and yg is the

corresponding BX — element of F(ay)-

Proof. Lete(yz,A) €V, where V is open in BY. By the Tychonoff property of BY,
there is an open set U in BY such that e(yz,A) € U C clgxx(x+1)U €V, where
clgyU is a z—setin Y. By Fact 59 there exists 4 € A and yz € W € 7(BX) such that
elW x (u,A]] C U. Now, for all v € ¢ such that minCq, > p,
[UNX xC)NF 2 [elW x (u,4)]N (X xCd,)NF] # 0 for all F € Fg,). Thus
[clgyU N (X x Ca,)] € F(ay)- Now, F(q,) = Npe g, clpyF € clgyU (which means
adﬁyﬁ(a) is in clgyU C V) , Therefore, (y#,A) is a complete accumulation point
of the set {F(q,) : V € {} :={adgy F(4,) : v € {}. On the other hand, since BY is
Hausdorff and BY \ V contains at most < { many elements of the set {F(4,) : V € C},

e(y#,A) has large neighbourhoods in that set.
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XXC& o

Figure 3.6: A neighbourhood of e(y #, @).
3.2.3 Skirting around Pseudocompactness

In this section we are going to expand various notions in Buzjakova’s proof. Here is a

Lemma to clarify the method used in finding closures in the rest of this chapter.

Lemma 69. Let T be a Tychonoff space and f : T — S be a one-to-one, continuous
function, then for closed set A C T

1) Ifz € clsf[A]\ f[A] then z = f(y) for some y € clgrA\T where f : BT — BS is
the extension of f.

2) Fory € clgrA\AIf f(y) € S\ f[A] then f(y) € clsf[A].

Henceforth, let f denote a condensation from X X (kK + 1) — Z, as shown in the
figure below, where Z is normal. Let f : BY — BZ be the continuous extension of
f:Y — Z to Stone-Cech compactification of .

In the Definition that follows, we present a variation of Buzjakova’s definition,
which suits our case, of the sets C; and C,. Different properties of these sets help
us find the ordinals &’s for which closures of f[X x {£}]’s in BZ are isomorphic to
each other and have minimal points, compared to images of other such lines, in some

section of Z with large ordinals.
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Condensation

K+ 1

Z

Figure 3.7: The condensation f : X X Kk — Z.

Definition 70. Let X be a Tychonoff space and k be a cardinal such that cof (k) > |BX]|
and let f : X x (k4 1) — Z be a condensation onto a normal space Z, then let

Cri={y e BX\X: [{a € k: Fle(y,)) € Z}| = k and [Fle[{y} x x]] NZ| = K}
and

G i={yeBX\X: [{acx: Fle(ya)) € Z}| =« and |Fle[{y} x k]| NZ| < K}

f Bz

Cu T

|
| ‘
K+1 ‘ ‘
Z
Image of a spine on an element of C; under f.

N

(X,1) S

en L]
+ Z

Figure 3.8: Image of a spine on an element of C, under f.
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In Fact 73, we are going to establish some properties of C; and C; by using conver-

gence facts from previous section and the following lemmata.

Lemma 71. Let R and T be Hausdorff spaces, A CR, and f : R — T be a continuous

and onto function. If p € A has large neighbourhoods in A and |A| = | f|A]|, then f(p)

is the unique complete accumulation point of f[A].

Proof. Let f(p) € V € ©(T). It suffices to show that |f[A] \ V| < |f[A]|. Note that
ANFTITA\VI=AN(T TN V) =AN R\ f[V]) =A\fT[V]. Now p € fT[V].
Thus, by hypothesis, |A\ f[V]| < |A].

Therefore, |f[A\ fT[V]]| <]A\ fT[V]| < |A| = |f[A]|. On the other hand,

FANSTIVII = fIANSTITAVI = FIAIN(T\ V) = FIA]\ V.

Thus |fIA]\V] <[f[A]l. N

Lemma 72. Let R and T be Hausdorff spaces, A C R, let f : R — T be a continuous

and onto function and let p be such that whenever p € U € ©(R), |A\U| < |A]. If

|A| > |f[A]| and |A| is a regular cardinal, then f(p) is the unique point q in T such that
I a3 nA[ = Al

Proof. Let g # f(p). There exists open sets U and V in T such that ¢ € U and
f(p) €V and UNV = 0. Then f~[{q}] € f~[U] and f~[{f(p)}] € f~[V] and
FUIN f7[V] = 0. Now, by hypothesis, |A\ f~[V]| < |A|.

Therefore, |f[U]NA| < |A|. Thatis, |f[{g}] NA| < |A]. On the other hand,

U FTHSINA) < Zju g} nAl < |F[A]].
q<fIAN{f(p)}

Therefore, |/ [{f(p)}]NA| = |A].

43



Fact 73. Let X be Tychonoff, x a regular ordinal such that cof(x) > |X|, then

(a) fory € Cy,

(i) there exists x, € X such that f(e(y, k)) = f(xy, k).

(i) forx € X\ {x,}, |[{f(e(y,@)): ¢ € k}N{f(x,00) : @ € K}| < K.

(iii) there exists By/ < K such that if o > ﬁy/ and f(e(y,)) € Z there exists Yy < K
such that f(e(y,@)) = f(xy, Ya)-

(iv) furthermore if cof(x) > |X|*, {a € k: fle(y,a)) = f(xy,7)}| < K, for
yek+1.

Therefore, there exists B, < k such that if & > B, and f(e(y, ) € Z, then there

exists Yy < K such that

fle(y, @) = f(xy, Yar)-

(b) Fory € (3,
let I, := fle[{y} x k]] NZ, note that |I,| < k, then
(i) there exists a unique x, € X and o, € kK + 1 such that f(e(y,k)) = f(xy, ).
(i) for (x, ) € L\ {(xy, 00) }, {E : f(e(v.8)) = flx, ) }| < K
(iii) there exists B, such that for & > B, if f(e(y,&)) € Z then f(e(y,€)) =
fxy, o).

(c) Fory € BX \ C; UGy, there exists fy such that for & > B, f(e(y,&)) ¢ Z.

Proof. (a) (i) As fle[{y} x K]]NZ = Urex {fle[{y} x x]] N f[{x} x ]}, there exists
xy € X such that | fle[{y} x k]| N f[{x,} x k]| = k.

Note: for o < Kk |flef{y} x (a.x)] N fH{n} x ()] = «
Let By = {B € k: o < B and f(e(y,B)) € f[{xy} x (a,)]}. Let Cq be defined by
Flel{y} x Ba]] = fl{xy} x Cql-
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|By| = K; therefore, by the one-to-one property of f, |Cy| = K.

By Fact 59 e(y, k) € clgye[{y} x Bqa]. So,
fle(v,x)) € flelgyel{y} x Bal] C clpgzfle[{y} x Bal] = clpzfle[{xy} x Ca]]

C fH{w} x (o, x]].

On the other hand, f[{x,} x (o, k]] is the continuous image of a compact set. Therefore,
it is closed .  So, f(e(y«)) € Nucif{xy} x (0t,k]] = {f(xy,k)}.  Thus,
Fe(y, ) = £y, ).

The uniqueness follows from one-to-one property of f. If f(e(y,x)) = f(xy,k) and

fle(y,x)) = f(¥,x), then f(xy,k) = f(«', k). So, X = xy as f is one-to-one.

(a) (ii) If for some x € X \ {x,}, | fle[{y} x x]] N f[{x} x k]| = K, then by the proof
of (i), f(e(y,k)) = f(x, k). But f(x, &) # f(xy, k) as f is one-to-one, a contradiction.

In fact, [Fle[{y} x &N f{x} x ]| < .

(a)dii) For x € X \ {x,}, there exists fB,, < &k such that
Flel{y} x &]In fl{x} x &] € fl{x} x [0, B]]-
Let B, = SUpycx (n) By For a > B, and f(e(y,@)) € Z, then
fle(r,a)) € f[{xy} x (x + 1)], that is, there exists ¥, < k such that
fle(v,a)) = f(xy, Ya)-

(a) (iv) By the way of contradiction, assume |[{a : f(e(y,@)) = f(x,7)}| = K, for
y € K+ 1. (Note that |A,(x,7)| = k.)
Define Ay(x,7) :={a € k: f(e(y, @) = f(x,7)},
and By := {a € k: f(e(y,a)) = f(xy, V) for some v € k},

and Cy be such that fle[{y} x By]] = f[{x,} x G].
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It is easy to reach a contradiction from (x,y) # (x,, k), in fact e(y, k) has large
neighbourhoods in both sets e[{y} x By] and e[{y} x A,(x,y)] which, by Lemma 71,
means f(xy, k) is the unique complete accumulation point of fle[{y} x By]] = f[{x,} x
¢
and f(x,7) is a complete accumulation point of fle[{y} x Ay(x,7)]]. Therefore, both
f(xy,x) and f(x,7y) are complete accumulation points of the set fe[{y} x k]] which is
a contradiction to uniqueness of complete accumulation point of that set.

To reach a contradiction from the case of (x,y) = (xy, k), we inductively define o,
Be. 6 for & € [X].

Let o € Ay(xy, k) and By € By, N (0, k) be such that & € (o, k), where & is defined
by f( o) = f(xy, 00).
At stage & € |X

T, where & is a limit ordinal, let oz € (sup{a; : ¢ € £},%) and
Be € BN (0, k) such that &g € (ag, k), where & is defined by fle(y, Be)) = f(xy, O).
At stage & = ¢+ 1, let &g € Ay(xy, k) N (max{f;,d;}, k). Define Bz and J as in
the previous case.
Let A :=sup{ag : & € |X[T} =sup{ds: £ € [X[T} < x.
1) By by Corollary 63, e(y,A) has large neighbourhoods in
{e(nBz) & € X", where F(e(y.az)) = f(x,.85). for & # ).
So by Lemma 71 f(e(y,A)) is the complete accumulation point of
(el Be)) = £ (50.52) 1 € € X"} = {(x.85) - & € X]") € (£(x,.8) : 5 € (0.A])
in BZ. Thatis f(e(y,A)) = f(xy, ).
2) On the other hand, by Lemma 72, f(e(y,A)) is the unique point in

{Ffle(vag)) = flx,y : & e |XI*} = {f(x,x)} such  that
IF e, AN} N {e(y Be) : & € [X| T, where fle(y, o)) = f(xy,82)} = X[

So f(e(y,A)) = f(xy, k), a contradiction to the first case.

Let By = sup({y: fle(y, 7)) = f(xy,K)}U {ﬁy/}>
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(X,7)
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Figure 3.9: Image of a final segment of a spine on an element of C; under f.

K—i—l‘ ‘

b) For y € C;:

(b)(i) Since & + fleé) € 2z} = «x and
{& : fle8) € Z} = Uppraper, & = fle(n,8)) = flx,a)}, there exists
f(xy, 0) € Iy such that [{& : f(e(v,&)) = f(xy,04)}| = K.

Now for o < k, let By = {§& > a : feé)) = flx,a)}

By Fact 59, e(y, k) € clgye[{y} x Bq]. So
]_C(e()’a K)) € T[ClﬁYe[{Y} X Ba]] - Clﬁzﬂe[{Y} X Ba]] = Clﬁz{f(xyv O‘y)} = {f(xw O‘y)}

Therefore, f(e(y,k)) = f(xy, &)

Uniqueness again follows from the one-to-one property of f.

(b)(ii) If there exists (x , o) such that [{& : f(e(y,&)) = f (x, o) }| = K, then, by
proof of (b)(i), f(e(y, k) = f(x, ), which implies (x, o) = (xy,0).
(b)(iii) For (xg, o) € Iy \ {(xy,0)}, there exists ﬁ(xgﬂg) < K such that for

o> B(x§7a§)’ lff(e(yaa)) € Z, then 7(6()7,@)) 7& f(x§7a§)' Let

y = Sup{ﬁ(x§7a§) : (.Xé,aé) < Iy\(xway)}
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N

K+1 ‘

Z

Figure 3.10: Image of a final segment of a spine on an element of C, under f

c¢) This follows directly from the definition of C; and C;. O

Note 74. Let x be regular cardinal such that cof(x) > [BX| and let
B* :=max{sup{B,: fory € BX\X},sup{ey:y € C2,0 # Kk and f(e(y, k)) = f (xy, 0) } }.
Forall o« > B*and y € BX \ X,

ify € Cy and f(e(y, o)) € Z, then f(e(y, &) = f(xy, Ya),

ify € C; and f(e(y, o)) € Z, then f(e(y, &) = f(xy, %), and

if y ¢ CiUC,, then f(e(y, o)) ¢ Z.

Note 75. For a regular ordinal x such that cof(x) > |X|T, for & € K, and every y € C;

there exists B, o) such that for & > B o), if fle(,&)) = f(xy,7), theny > a.

Proof. For y € C; and 6 < «, there exists Yos) > By such that for & > Y0,6)s

F(e(y,8)) # f(xy,8). Now let By, o) 1= sup{¥y,s): 6 € ¢+ 1}. O

Let o) = sup{By,q) 1y €C1}. Let & > g, forally € C1, if f(e(,§)) = f(xy,7),
then ¥ > «.

Using the concepts of §* and f3,), we will define an unbounded subset, B, of k, such
that f[X x {&}] has the optimal closure in Z for large £’s, i.e., f[X x {&}] has the coars-

est topology among large &’s, up to an  isomorphism, and
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clzf[X x{&}]\ f[X x {&}] are the same, for all & € B. This will produce enough verti-
cal lines with the same topology but also enables us to predict the closure of particular

triangle shape subset of a bunch of those lines.

Claim 76. There exists an unbounded subset B of k such that
foroo € Bandy € Cy, f(e(y,)) = f(xy, )
and fora € Bandy € C, , f(e(y, ) = f(xy, %)

and 7, ¢ B.

Proof. For the first element of B, we choose any ordinal above 3*.

Assuming that we have found the first Y < k elements of B, we start with an ordinal
above all those elements of B and we follow the process below to find the next element
of B.

Enumerate C; := {y,' : ¢ € N1} and C; := {yo? : @ € M1 }.

(Cy and C;, are defined in Definition 70.)

At every stage & pick }/é o 10 this manner:

For oo = 0, require }/570 > sup{}/é’a 0<tandaemn;,i=1,2}.
For yo' € Cr. F(e(va' 1} o)) = £y 7 0 )-

where yéa > sup{ﬁ( 16 <o}

shomax{1} 51 5 1)
So that

Yéa > Yél,é forall § < «,

7%706 > }/élyglfor all 6 < «,

Y’g’l,a, > }/5175 forall 6 < «,

Yéﬂ/ > }/%’5/ forall 6 < a.

Let }/52’0 > max{sup{yé’a e}, SuP{%?,s L5 < al).
let ’yé o D€ such that

Flelva® %)) = Fx2,%2)-
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Now let 6 := sup{yéa caemn;fori=1,2and £ € |X|"}. We need to show that § € B:
Let yo € C;, by Corollary 63, e(yq,0) has large neighbourhoods in
{e(ya,'yg o) i € €|X|T}. Thus by Lemma 71, f(e(yq,8)) is the complete accumu-

lation point of

{Fleva,12.0)) : & €IX[T} = {f(XYa7Y§a) Ee X[} C{f(xy,,8):E€d+1},

a compact set, and that means f(e(yq,8)) = f(xy,,6).
For ys € C,, again by Corollary 63, e(ys,0) has large neighbourhoods in
{e(ya,}/g o) - & €X|"}. On the other hand,

{Fleba: 2 o)) : & €IXIT} = {F(elvas 1 o)) : & € 1XIT+ 1} = {f(xyg. 00, }-

Therefore, by Lemma 72, f(e(yq,8)) = f(Xyys Oy )- O
Fact 77. For 8, 8 € B, f[X x {6}] = f[X x {8'}].

Proof. Let U be open in f[X x {8}], and let V be an open set in BX such that

e[V x {810 (Floyxucyxtsy) FIX x {81 = Fleqxue) sy [U]-

Then V' = fX x {8} \ fle[(BX \ V) x {8}]] is open in
fIX x{8'}].

We need to show that fle[(VNX) x {8'}]] =
Obviously V' C Fle[lV x {8'}]] because f(x,8) € V', we have
fx,8) ¢ TFlel(BXx \ V) x {8} On the other  hand,
f(x,8) € Fle[BX x {8'}]], s0 f(x,8') € fle[V x {8'}]] and we are done.
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Next we have to prove the reverse inclusion:

!

Let f(x,8) € fl[(Vv N X)x {§}]\V. f(x,8) ¢ V' implies
f(x,8) € Flel(BX\ V) x {8 }]].

For y € BX \'V such that f(e(y,8)) € Fle[(BX \ V) x {8'}] N fIX x {&}]
and f(e(y,8')) = f(x,8), y € C1 because f(e(y,5)) € Z and f(e(y,8)) = f(x,5).
y € Cy implies f(e(y,8)) = f(x,8). Thus x ¢ V, a contradiction.

Therefore, g : f[X x{8}] — f[X x {8'}] defined by g(f(x,8)) = f(nx [/~ (f(x,))],8)
is a homeomorphism. N

Note 78. clg7{f(e(y,8)) :y € C, and 6 € B} N f[X x {y}] =0 for all y € B.

Proof. {f(xy,0t) : y € Co} = {f(e(y.0)) : y € C2,8 € B} € Nyep flelBX x {r}]]

which is a compact set and does not include any of f[X x {y}] for y € B. [
Note 79. For & € B, f[e[C, x {6}]] C f[X x {6}] and clﬁzf[e[Cz X B|N f[X x B]] = 0.

Note 80. fle[(X U C) x {8}]] = fIX x {8}] U (clpzflelC> x {6}]] N Z)

is closed in Z for 6 € B.

3.2.4 Using the Structural Facts about Stone-Cech Compactifica-

tion to Find a Good Subset of B

In this section, we prove that f[X x {8}]U (clgzf[e[C2 x {8}]]NZ) is countably para-
compact but since it also is a good candidate for being paracompact, we keep the pro-
cess so that it works with any cover of any size until very end. Then, since the same
proof does not go through for covers of uncountable size, we prove the countable para-
compact property. We begin with finding collections of subsets of k, of order type n
for every n < |X|, whose closure of image of their product with X under f becomes

predictable for larger ordinals.
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Fact 81. Let x > 22" For every 11 < |X| we can find a collection of sets {H, : a € x}

where
1. H} CB.
2. |H}| =n.
3. supHJ < ianZ;7 if and only if a < .
4. If A C H;] such that |A| < 1 then clzf[X x A]N f[X x (Hg \ (supA+1))] = 0.

5. For every cofinal subset A C Hy, and for y € Cy f(y,supA) = f(xy,7), where

Y > supA.
Proof. For o € K to define H}, we start with B\ (sup(UgeaHg) + 1) and we pick the
first element of B\ (sup(UgeaHg) 4-1) to be the first element of H.
At every successor stage Y+ 1 € 1, if 7 is a successor ordinal let

h;fj:]l = min(B\ (max{h?’n , ﬁ(y)} +1)),

where f3,) is the function described in Note 75.

At every successor stage Y+ 1 € 1, if y is a limit ordinal then let

h;ﬂ =min(B\ (supL+1))

where L := W [f [clzf[X X {hg’n & e\ {x}.
At a limit stage ¥ € 1 + 1 define 7y = sup{hg’n & ey},
Now let HJ = {h?’n :y€mn and y is a successor ordinal }. Then

cle 1 Hy = {hg"” :Een+1}. O
Note 82. ¢l 1H, is homeomorphic to 17 + 1.
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Proof. Define gy : 4+ 1 — clii 1 H) to be the function g4 (&) = hg’n. The function
ga 15 obviously one-to-one and onto.

The function g, is open because: g¢[(&1,&)] = (hg’n , hg;’n) Neles1Hy .

The function g is continuous because: g;[(hgl’n,hgz’n) Neley1Hyl = (€1,E). O

Note 83. X x cle 1 HJ =2 X x czKHH[’g ,for ot and B € k.

Proof. Define g g : clei HY — clHng to be the function g, g (x,&) = (x,gp(gy ()))-

8a,p 1s @ homeomorphism. =

Note 84. Using Fact 68, for a free z—ultrafilter # on X x (n +1), and {F (o) : & € K}
defined on collection {X x H : a € k} as in Fact 68, f(e(y#,)) is the complete

accumulation point of the set {f(.74)) : @ € k}.

Fact 85. There exists a ¥, € k such that for every collection of free z—ultrafilters
{F (@) ¢ €K} on {X x clei1Hy : o € x}, where each F(a) 1s a free z—ultrafilter on

X X cliey1HY, such that for B > Vs iff(ﬂpeg(ﬁ)clﬁyFﬂclﬁy(X ng)) = f(Fpp)€Z

then 7(9(13)) = f(xy, ) for some y € C; or T(ﬁ(ﬁ)) = f(xy,%) for some y € C>.

Proof. There are three cases:

Case D) If [{f(F(q)) €Z: a € K}| =K, thenyz € C:
To prove that y# € Cp, we need to show |{f(e(v#,&)) € Z: & € k}| = k. Now again
since cof (k) > |X

& e x}|=xk. Forany u € x\sup({8*} UE(KH)[?(_ [fle[Ca x B]]]]), let

, there exists xz such that [{§ : f(Fe)) = f(xz,0) for some

Ey:={& e (u,x): f(Fe)=flxz, o)}

Pick |X|* elements of E; and denote them as K, in such a way that at every suc-

cessor ordinal ¢ = p +1, & € (max{&p, a, }, k) NE where 7(9(5p)) = flxz,0,)
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and ag_ € (max{&p, 0, }, k), where f(ff(ég)) = flxz, 0 ). At limit stage ¢, let
éc € EN(sup{&p : p < G}, k). By the same technique as above, e(y,supK) has large
neighbourhoods in {F¢) : & € K}. Therefore, {f(xz,0p) : p € K} converges to
fle(y.#,supK)). Thus f(e(y#,supK)) = f(xz,supK) and this proves that y € C;
and xz = x, .. (Because for all £ > B* and the fact that { > 8 (supry 7 [FlelCaxB])]) @nd
y € BX\X, F(e(s,&)) € Z\ Fle[Ca x B]] implies y € C; and F(e(5,&)) = £(x,,E))
Now since e(y#, k) has large neighbourhoods in the set {74 : @ € K}, for every
X # Xy in X, there exists ¢ 7 ,) such that for all & > ¢ 7 ) f(Z (a)) 7 f(x,8) for any
ek
Using the fact that e(y &, 1) has large neighbourhoods in the set { %) : & € A} for
A > |X|, and by the way of contradiction, if [{o : f(:F(4)) = f(xy,7)}| = K, then for K
many &’s, e(yv#,E) has a large neighbourhoods in a subset of
{Z( : [(Z@) = flxy;,7)} of size |X|* which means for k many &’s
fle(yz,&)) = f(xy,,7), a contradiction to Fact 73(a)(iv).
So {a € k: f(Fa) = f(y,7)} <Kk forall y e x+1.
Therefore, there exists a ¢ i) such that for & € (¢z i), K) ]_”(ﬁ(a)) # f(xy,,K) and
for f(xg, o) € fle[Cy x B]] there exists ¢ & f(xe,¢)) Such that for a € ((b(y’f(xg’ag)), K),
F(P(a) # flxg, ae).
Let

Pz = sup({9(7 1) X € X\ {2y U{O(7 fixea)) 1 [ (xe, ) € Fle[Co x B[} U{9(7 1) })-

Now for & > @ 7 if f(F(¢)) € Z, then f(F¢) = f(xy,7) for some y € K.
Case 2) {f(F () € Z: a € k}| <k but [{§ : f(Fe)) € Z}| = k then we claim

vz € Cy:
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First we need to show [{& : fle(v#,€)) € Z} = x and
{fle(yz.8)): fle(yz.8)) € Z} < k.
Since |[{f(F(&)) : [(F(g)) € Z}| < xbut {& : f(F(¢)) € Z}| = K, there exists f(xz, x7)
such  that  [{§ : f(Fg) = flzaz)} = K For  any
we\sup({B*}Umy 7 [Fle[Ca x BI). let By = {& € (11, ) : F(F (&) = f (7, 05)}-
Denote |X|* elements of E, as subset K in this manner: At every
successor stage ¢ = p + 1, let & = min(({p,x) N Ey). At limit stage ¢, let
& =min(E, N (sup{p : p € 6}, k)). Now e(y#,supK) has large neighbourhoods in
{&: f(F)): & € K}. Therefore, f(e(y.z,supK)) = f(x7,0%) and this shows y € Cy
and (xy,0,,) = (xz,07). (Because for all & > max(f*  Bsup 2y [F~ [Flelco <)) and
forall y € BX \ X, F(e(1,E)) € Fle[C x B]] implies y € C and F(e(y,€)) = £(xy, ).

Now define J := {f(xe, 0) : f(F(e)) = f(xe, 0e)}s [J| < K. Since e(y.7, k) has
large neighbourhoods in {F ¢y : & € k}, for f(xg,ae) € J\{f(xy;, 0 )}, there exists
O(F (xz.0r)) such that for all B > ¢z 7 (xz,0)) ]_‘(ff(ﬁ)) # flxg, o).
Let 07 = sup{@(7 (x;,0,)) [ (xe, 0z) € IN{f (x5, 045) }}.
Now for all B > ¢.7, if f(.F(g)) € Z, then f(Fg)) = f(xy,, 0 ;).

Case 3) [{§ : f(F(¢)) € Z}| < K, then we claim there exists ® 7 € Kk such that
f(F () ¢ Z, forall o > ¢.
Since at every level «, there are at most 22" many z—ultrafilters on X x clyy 1 HJl, we

can say that there exists ¥, = sup{® 5 : F z—ultrafilter on X x (n +1)}. O

3.2.5 Using a Cover to Build Two Disjoint Closed Sets

Now let {Ug : & € n} be any cover of f[X x {8}]U (clgzfle[C2 x {8}]]NZ).
We pick min H;] larger than ¥y to build a family of decreasing closed sets on f [X x HJ]

whose closure is disjoint from closure of f[X x {supHg }].
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Claim 86. Let {U; : & € 11} be an open cover of f[X x {y}] Uclg,fle[Cy x {7}]] for
Y € B. There exists finitely many U that cover clgyf[e[Cy x {}]], denote that finite

union by W, and for o > '}ff] let

Dy := flelx(er) (Ugen (X (mx [f 7 [(UsegUs UW) N FIX < {yH]]) x {hg 1 1))
and D, := f[X x {supHg }. Then clzDy NclzDy = 0.

D,

\Ug x {5}

FIX x {€ ] l t
|

» Z
D

Figure 3.11: An illustration of D and D; in the space.

Proof. Since we used ﬁ(y) in the construction of Hg’s,
clzDy N fIX x [hy™",supHg )] = @ and if we show clzDy C f[X x [hg"",supHg)] we’ll
be done:
By the Lemma 69 if f(x,f) € clzD; \ D; then f(x,) = T(ﬂ(a)) for some free
z—ultrafilter ﬁ(a) on X x clei 1 HY.
Now since & > ¥y, for y = y(F], where {y#} = Nrec.z, clgxTix (F) we have two cases:
Case ) yeCr y€ 7r(XUC2)[]_‘H [W]] so there exists V open in X such that y € V
and VNX = mx[f [W]] thenV Nelgymx[f~[D1 N (X x {h(gn})]] =0 forall £ €mn;

therefore, y ¢ clgxmx[f~[D1]] but f~[D1] € F(4), a contradiction.
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Case 2) y € Cy: Now if F ) is in the closure of less than 1 many X x {hg’n }’s then

by the construction of HJ] and the restriction by ¥y on elements of Cj it stays within the

o

sets above. If .7 ) is not in the closure of less than 1) many of X x {h £ & }’s then notice

that there exists & such thaty € 7y c)) [F~ [Ug]] which implies there exists an open set

V. >y in BX such that V N X = mx[f~[Ue]] Therefore,
V N oelgxmx[f~[D1 N fIX x {h(gn}]]] =0, for §{ € (&,n). Which means
y & cpgxmy[fT[Di] \ U{X x {rZ7} 0 & € [0, + 1)} But
FTID1] \U{X x {hg’n} :£€0,§+1)} € F(q), acontradiction. O
gy
\Ug x {5} |
Clzf[ECQXBH . .. ... t e oo
|
Z

Figure 3.12: Closure of Dy and D; in Z
Now, we apply the normality of Z.

+
Claim 87. Let x > 22" and f:X x (x4 1) — Z be a condensation onto a normal

space Z. Then f[X x {y}|U clﬁzf[e[Cz x {7v}]] is countably paracompact for y € B.

Proof. Let {U;:i € o} be an open cover of the space f[X x {y}]Uclgzf[C2 x {r}],
we enumerate U; such that the first n elements cover clgy f[e[C> x {}]] and denote
UienUi by W. Define D; and D, as in Claim 86 and
Agi= FIX x (Y Flme[F~ [Ugeil UW]) x (A5,

Since clzDy NclzD, = 0, there exists a function g : Z — [0, 1] such that g[D,] = {0}

and g[Dy] = {1}. Then let
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Bij = flmx[f (70,1 = 1/70f1X < {h{"“}] x {v}]] Uclpz (flelC2x {y}])Ng~[0,1-1//]

and define V; = U; for 0 < i < n and Vi, := Ujyn \Uj<;Bji for i > 0. Then {V; : i € o}

is a locally finite refinement of the cover.

Here is how clzD; and clzD; look like for countable cover. OJ
fIXx{&}]
\Ui x (&} |
CZZ‘?[G’[CZ X BH e oo
Z

Figure 3.13: An illustration of cl/zD; and clzD, for a countable cover

By utilizing the next claim we get the final result:

Claim 88. Let Y UC be a normal space where C is compact and YNC =0. If YUC
is countably paracompact, then there exists a coarser topology on Y that is countably

paracompact.

Proof. Define a topology on Y as following: Pick y € Y and let
7:={UNY:yeU € 1(YUC) implies U D C}.
T is obviously a coarser topology on Y. We need to show it’s countably paracompact
and normal.

Define h: Y UC — (Y,7) by h(x) = x if x €Y and h(c) =y if ¢ € C. Note that
h is continuous. Now let {U; : i € @} be an 7—open cover of ¥, such that y € Uj.
{h~[Uj] :i € ®} is an open cover of Y UC and has a locally finite refinement {V;:i € ®}.

Let Wy = VoUUJ 7 where ¥ is a finite collection of V;’s which covers the compact set
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{y}uC. Now {hWoNY]|}U{R[ViNY \{y}] :i € o\ {0}} is the desired locally finite
refinement of the original cover. Note that singletons are obviously closed in 7/ so
to show 7’ is normal, it suffices to show that disjoint closed sets can be separated by
disjoint open sets. Let A and B be closed sets in 7’. We have two cases:

Case 1) y¢ A and y ¢ B. Then A and B are closed in 7. There exists U and V,
disjoint open sets in 7, such that A C U and BC V. ThenA C U\ ({y}UC) € 7’ and
BCV\({ytucC)er.

Case2) y € A. Then AUC and B are closed in 7. Thus there exists U and V, disjoint
open sets in 7, such that AUC CU and BCV. ThenACUNY et andBCV e 7.

]

It is necessary to prove Claim 88 as Weiss [Wei] has constructed a locally compact
Dowker space X , whose one-point compactification is a normal, countably paracom-

pact space but X is not countably paracompact.

Finally, we note that Pavlov [ ] proved that for every compact space K, there
exists a space X such that X x K can not be condensed onto a normal space. In our case,
there exists a space X such that X x I does not have a coarser normal topology. There-
fore, there exists a space X such that X does not have coarser countably paracompact

topology. That is, our conclusion is not vacuous.
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Chapter 4

Questions and Research Possibilities

In this final chapter, we present a few questions the author will continue investigating.
First, in the second chapter, we showed that realcompact right-separated spaces have
realcompact subspaces of size x, where K is a cardinal less than the size of the space
and the continuum and we showed that for a realcompact space X with pseudocharacter
less than or equal to @, X has a realcompact subspace of size ;.

So what is remaining to investigate is:

Question 89. Is it true that any uncountable realcompact space has a realcompact sub-

space of size @;?

If, as we suspect, the answer to Question 89 is negative, we ask again with a stronger

hypothesis

Question 90. Is it true that any uncountable Lindelof space has a realcompact subspace

of size @;?

Since in Chapter 2, we also showed that Continuum Hypothesis implies that every
realcompact space has a realcompact subspace of size @;, a counterexample to either of
the Questions 89 and 90 can be only constructed in a model in which 2% > @ is true.

That is, a negative answer to either of the questions will result in independence of the
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question from ZFC. Also this space, if it existed, will have the following properties: X
is hereditary separable. It is not hereditary Lindelof. Its pseudocharacter exceeds @;.
It has CRV property. It contains no uncountable realcompact right-separated subspace.

In chapter 2, we also showed that a compact space of size larger than continuum

has a realcompact subset of size continuum. The question remains:

Question 91. Is it true that any realcompact space of size larger than continuum has a

realcompact subspace of size continuum?

A counterexample to Question 91 should have the following properties. Every sub-
set of it has a dense subset of size < ¢. Itis < ¢ real-valued. It is not hereditary Lindelof.

It contains no realcompact right-separated subspace of size .

In Chapter 3, we showed for different ordinal less than the size of the space X, there
exists a good subset of kK 4+ 1 which has all the properties needed for Claim 86. We
need to investigate whether there exists a closed such subset or at least such subset with
some convergent property. This investigation can lead us to answering the following

question.

Question 92. Is it true that for k = (22|X‘)+, if X x (k+ 1) condenses onto a normal

space, then X can be condensed onto 1) —paracompact space, where > @?

Of course, if Question 92 was true for all n < |X| and the topology that witnesses
the truth of the statement was the same for all n < |X|, then X can be condense onto a

paracompact space and the following question will be answered.

Question 93. Is it true that for Kk = (22‘)(| )", X x (k+ 1) condenses onto a normal space

iff X condenses onto a paracompact space?

Note that the next example shows we can not achieve much stronger conclusions

than the one proposed in Question 93.
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Example 94. Q x K is a normal space for any compact space K, because Q is para-
compact. But Q does not condense onto any compact, Hausdorff space.

Q C I and the unit interval I is hereditary Lindelof, hence hereditary paracompact.
Thus by Tamano’s theorem Q x K is normal for any compact set K. It suffices to
show that (Q does not condense onto a compact space. By the way of contradiction, let
f:Q — K be a condensation, where K is a compact space. Enumerate K = {g; : i € ®}.
Let Uy be an open set in K such that clgUyN{qo} = 0. At stage i+ 1, let U;;.; C U; be
an open set in K such that clxU; 1 N{gi+1} = 0. Note that an open set U; exists by
the fact that K is Hausdorff and since K has coarser topology than QQ, every open set is

infinite. Now NjcuclxU; = 0, a contradiction to the compactness of K.

On the other hand, Question 92 and/or 93 might be answered in negative by finding

the following counterexamples.

Question 95. Is there a space X, such that X x (k+ 1) condenses onto a normal space

but X does not condense onto a 11 —paracompact space, where Kk = (22lx‘ )T and n <|X|?

Question 96. Is there a space X such that X x (k + 1) condenses onto a normal space

X
but X does not condenses onto a paracompact space, where K = (22‘ ‘)+?

Note that if a space fulfills the requirements of Question 92, then the same space
satisfies the requirements of Question 93 but the other way around is not true.
Finally in the same chapter, one might ask whether it is possible to lower the size

of k. That is:

Question 97. Let X be a Tychonoff space. Is there an ordinal x < (22‘X‘)+ such that
X x (k4 1) has a coarser normal topology implies X has a coarser countably paracom-

pact topology?
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Among all the questions in Chapter 3 Question 93 or its counterexample, Question
96, interests the author the most. For they can settle whether or not the condensation

variation of Tamano’s theorem, without any extra assumption, exists.
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