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ABSTRACT 

Recently, mean and covariance structure (MACS) confirmatory factor analysis (CFA) 

has been widely used to detect items with differential item functioning (DIF). 

Although how we define the scale does not impact overall model fit or tests for 

whether or not a given level of measurement equivalence holds, different scaling 

methods can lead to different conclusions when a researcher locates DIF in a scale. 

This dissertation evaluates the MACS analysis for DIF detection by means of a 

Monte Carlo simulation. The simulation results indicate that three statistically 

equivalent scaling methods provide different outcomes of DIF analysis. In addition, 

Bonferroni-correction improves the accuracy of the analysis, notably when a scale (or 

an anchor) is contaminated by DIF. Based on the previous and current simulation 

studies, this dissertation offers practical guidance for researchers who attempt to 

evaluate measurement equivalence using CFA. 

 

Keyword: DIF, MACS, scaling, biased anchor. 
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CHAPTER I: INTRODUCTION 

This chapter briefly introduces the concept of measurement equivalence. This 

is followed by a description of potential problems of using confirmatory factor 

analysis (CFA) to detect items with differential item functioning (DIF). At the end of 

the chapter, the purpose and structure of this dissertation are presented. 

1. Measurement Equivalence 

Measurement equivalence can be thought of as characteristics of an item or 

items that yield a test1

Applied psychologists have highlighted the importance of measurement 

equivalence as a prerequisite for meaningful group comparisons (e.g., Drasgow, 1984; 

Raju, Laffitte, & Byrne, 2002; Reise, Widaman, & Pugh, 1993; Vandenberg, 2002; 

Vandenberg & Lance, 2000). To the extent that a set of items or a scale does not 

function equivalently across groups, any interpretation of group differences is 

necessarily open to question (Byrne & Stewart, 2006; Raju et al., 2002). For example, 

under ideal circumstances, observed mean differences represent true mean differences 

 of the same attribute under different conditions (Horn & 

McArdle, 1992). These conditions include different groups, administrations, and 

media (e.g., paper-based test versus computer-based test). With more than one group, 

a scale is said to have measurement equivalence when examinees with identical 

scores on the underlying (latent) construct but different group membership have the 

same observed or expected raw scores at the item level, at the scale level, or at both 

(Drasgow & Kanfer, 1985). 

                                                 
1 The terms test and scale are used synonymously in this dissertation. 
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across groups. However, when measurement equivalence is not defendable, they may 

represent true mean differences or differences in the psychometric relation that 

connects the observed responses to the latent construct. As such, a lack of 

measurement equivalence, or equivalently differential functioning, constitutes a 

potential threat to the validity of a scale. Accordingly, both APA (American 

Psychological Association) and ITC (International Test Commission) standards have 

emphasized evaluation of DIF for fair use of a scale (AREA, APA, NCME, 1999). 

2. Potential Problems of Using CFA for DIF Detection 

Recently, CFA has enjoyed increasing attention from DIF researchers. For 

example, a particular form of mean and covariance structure (MACS; Sörbom, 1974) 

CFA has been widely used to test measurement equivalence at item level (e.g., Byrne, 

1998; Chan, 2000; Everson, Millsap, & Rodriguez, 1991; Ferrando, 1996; González-

Romá, Tomás, Ferreres, & Hernández, 2005; Wasti, Bergman, Glomb, & Drasgow, 

2000). Supporting the utility of the CFA approach, previous simulation studies have 

shown that the MACS analysis works fairly well for testing DIF under various 

conditions (e.g., Finch, 2005; González-Romá, Hernández, & Gómez-Benito, 2006; 

Hernández & González-Romá, 2003; Meade & Lautenschlager, 2004; Navas-Arai & 

Gómez-Benito, 2002; Oort, 1998; Stark, Chernyshenko, & Drasgow, 2006; 

Wanichtanom, 2001). 

In any CFA model, the scale for the item or latent construct parameters needs 

to be identified in order to yield unique estimates of the parameters (Jöreskog & 

Sörbom, 1989). In multiple-group cases, the scaling has been achieved conventionally 
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by choosing an anchor item whose parameters are constrained to be equal across 

groups. Unfortunately, such practice implies a tacit assumption of parameter 

invariance, even when the purpose of analysis is to evaluate measurement 

equivalence (Cheung & Rensvold, 1999). If the invariance assumption is not tenable, 

any analysis may not provide a proper solution (Bollen, 1989). This, in turn, may lead 

to inaccurate conclusions about DIF with regard to the other items being tested within 

the scale (Cheung & Rensvold, 1999; Millsap, 2005). Thus, researchers need to 

acknowledge the potential problems of choosing a conventional scaling method, 

especially when they conduct CFA for DIF analysis. 

3. Purpose and Structure of the Dissertation 

The purpose of this dissertation is to examine the statistical properties of the 

MACS analysis for DIF detection. More specifically, this dissertation evaluates the 

Type I error and power of this methodology under a variety of conditions. Based on 

the results from a simulation study, this dissertation proposes an analytic strategy that 

is robust to the misspecification problems as well as theoretically suitable for DIF 

analysis. 

The structure of this dissertation is as follows. Chapter II briefly demonstrates 

basic concepts and terminologies that have been developed in the DIF literature. This 

chapter closes with a detailed description of CFA and its methodologies used for DIF 

detection. Chapter III presents a Monte Carlo study that assesses the Type I error and 

power of the MACS technique. This chapter includes design of the study, discussion 

of the manipulated variables, and procedures used to generate data and run the 
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analyses. The results of the simulation study are presented in Chapter IV. Chapter V 

discusses the simulation results in the context of educational and psychological 

assessment. In addition, limitations of the study are described and future directions 

for research are considered. 
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CHAPTER II: LITERATURE REVIEW 

Among various techniques for testing measurement equivalence, those most 

commonly used are based on item response theory (IRT) or confirmatory factor 

analysis (CFA), or more broadly structural equation modeling (SEM) (Teresi, 2006). 

The formal similarity between IRT and CFA has been introduced repeatedly in the 

literature (e.g., Mellenbergh, 1994; Muthén, 1984, 1989, 1993; Muthén & 

Christoffersson, 1981; Muthén & Lehman, 1985; Takane & de Leeuw, 1987).  That is, 

they are comparable in the sense that both postulate that an unobserved continuous 

variable (i.e., latent construct) influences a set of observed variables. More 

importantly, both provide a statistical framework within which between-group 

equality can be evaluated for the item parameters (see Chan, 2000; Ferrando, 1996; 

Raju et al., 2002; Reise et al., 1993). The most apparent difference is that IRT is often 

applied to observed responses on categorical variables, whereas CFA has traditionally 

been applied to observed covariances among continuous variables.  

This chapter introduces the IRT framework, in which differential item 

functioning (DIF) was originally conceptualized, and then provides a detailed 

description of the CFA framework. 

1. IRT Framework 

1.1. IRT 

IRT models (e.g., Lord & Novick, 1968) have been developed predominantly 

in education and psychology since the late 1960s. Focused on observed responses on 

the binary or ordinal items, these models define probabilistic, nonlinear relations of 
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the responses to latent constructs (i.e., ability, denoted by 𝜃𝜃). The basic assumption in 

IRT is that a set of items assesses a single ability dimension (i.e., unidimensionality) 

but they are pairwise uncorrelated if ability level is held constant (i.e., local 

independence). 

The ability score for a particular examinee is estimated based on his or her 

observed item responses, given a value of each item parameter. For each item, two 

types of item parameters are frequently estimated. The attractiveness or b parameter 

determines the horizontal position of the item trace line, called the item characteristic 

curve (ICC) or item response function (IRF), which depicts the probability of an item 

response along the ability level continuum. The b parameter is typically referred to as 

item difficulty in the cases of binary item (Lord, 1980); the higher the b parameter 

value, the more difficult it is to answer the item correctly. The discrimination or a 

parameter determines the slope of the ICC; the higher the a parameter value, the 

stronger the relationship is between ability level and response on the item. Therefore, 

an item with a substantial a parameter value can powerfully differentiate examinees 

with different ability scores. 

The IRT models were originally developed for responses on the binary items, 

but in practice they also increasingly have been used for responses on polytomously 

ordered items. In fact, one-parameter and two-parameter models (Birnbaum, 1968; 

Hambleton, Swaminathan, & Rogers, 1991) for dichotomous response can be viewed 

as special cases of graded response model (GRM; Samejima, 1969) for polytomous 

responses. Thus, this dissertation uses GRM to illustrate how to assess measurement 
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equivalence in IRT. More details on polytomous models can be found in Bock (1972), 

Masters (1982), Muraki (1990), and Samejima (1969, 1972). 

1.2. GRM 

In GRM, the relationship between ability level and probability of endorsing 

any particular response option is graphically depicted by the category response 

function (CRF). The CRFs for each item are given by 

𝑃𝑃𝑖𝑖𝑖𝑖�𝜃𝜃𝑗𝑗 � = 𝑒𝑒𝑎𝑎𝑖𝑖�𝜃𝜃𝑗𝑗−𝑏𝑏𝑖𝑖𝑖𝑖+1�−𝑒𝑒𝑎𝑎𝑖𝑖�𝜃𝜃𝑗𝑗−𝑏𝑏𝑖𝑖𝑖𝑖 �

�1+𝑒𝑒𝑎𝑎𝑖𝑖�𝜃𝜃𝑗𝑗 −𝑏𝑏𝑖𝑖𝑖𝑖 ���1+𝑒𝑒𝑎𝑎𝑖𝑖�𝜃𝜃𝑗𝑗−𝑏𝑏𝑖𝑖𝑖𝑖−1��
,  (1) 

where 𝑃𝑃𝑖𝑖𝑖𝑖�𝜃𝜃𝑗𝑗 � is a probability that an examinee j with a given value on 𝜃𝜃 will respond 

to an item i with category k. It should be noted that the exponential terms are replaced 

by 1 and 0 for the lowest and highest response options, respectively. Furthermore, the 

relationship between ability level and likelihood of choosing a progressively 

increasing response option is depicted by a series of boundary response functions 

(BRFs). The BRFs for each item are given by 

𝑃𝑃𝑖𝑖𝑖𝑖∗ �𝜃𝜃𝑗𝑗 � = 𝑒𝑒𝑎𝑎𝑖𝑖�𝜃𝜃𝑗𝑗−𝑏𝑏𝑖𝑖𝑖𝑖 �

1+𝑒𝑒𝑎𝑎𝑖𝑖�𝜃𝜃𝑗𝑗−𝑏𝑏𝑖𝑖𝑖𝑖 �
,  (2) 

where 𝑃𝑃𝑖𝑖𝑖𝑖∗ �𝜃𝜃𝑗𝑗 � is the probability that an examinee  j with a given value on 𝜃𝜃 will 

respond to an item i at or above a response option k. The BRFs are simplified to the 

IRF for two-parameter logistic (2-PL) model in the case of binary items (Birnbaum, 

1968). If 𝑎𝑎 = 1, the BRFs become the IRF for one-parameter logistic (1-PL) model or 

Rasch model (Hambleton et al., 1991). 
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As observed in Equation 2, the BRFs depend on 𝜃𝜃 parameter as well as b and 

a parameters. For a particular item with k response options, there will be 𝑖𝑖 − 1 BRFs 

and the a parameter is constrained to be equal across BRFs. Consequently, each item 

is characterized by one discrimination parameter and several (𝑖𝑖 − 1) attractiveness 

parameters in IRT. 

1.3. DIF 

1.3.1. Definition 

In IRT, a lack of measurement equivalence is referred to as differential 

functioning. When the differential functioning occurs at item level, it is called 

differential item functioning (DIF). Specifically, DIF represents between-group 

differences in the probability of an item response when ability scores are on a 

common scale (Mellenberg, 1994). The defining feature of DIF is that the ability 

scores are placed on a common scale or “statistically matched” across groups (Angoff, 

1993; Camilli & Shepard, 1994). One method of statistical matching is to score all 

examinees using the same BRFs. However, the resultant ability estimates can be 

biased unless measurement equivalence has been established in advance.  

An item is said to have measurement equivalence if the item parameters are 

identical across groups (Raju et al., 2002). That is, for group g (g = 1, …, G), 

𝑎𝑎𝑖𝑖1 = 𝑎𝑎𝑖𝑖2 =. . . = 𝑎𝑎𝑖𝑖𝐺𝐺  and 

𝑏𝑏𝑖𝑖11 = 𝑏𝑏𝑖𝑖12 =. . . = 𝑏𝑏𝑖𝑖1𝐺𝐺 ; 𝑏𝑏𝑖𝑖21 = 𝑏𝑏𝑖𝑖22 =. . . = 𝑏𝑏𝑖𝑖2𝐺𝐺 ; …; 𝑏𝑏𝑖𝑖𝑖𝑖1 = 𝑏𝑏𝑖𝑖𝑖𝑖2 =. . . = 𝑏𝑏𝑖𝑖𝑖𝑖𝐺𝐺 .  (3) 

When the item parameters are equal across groups, the CRFs and BRFs are also equal 

for these groups. Thus, it is possible to assess DIF either at the item parameter level 
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or at the IRF level; once a model has been selected for parameter estimation, DIF 

detection is performed by observing the BRFs or by directly comparing the item 

parameters. Either the invariant item parameters or the invariant BRFs suggest that 

true item responses will be identical for different examinees with equal ability scores 

(Raju et al., 2002). 

1.3.2. Types of DIF 

DIF can be either uniform or non-uniform depending on the item parameter 

that differs across groups. Uniform DIF is present when only the b parameters differ 

across groups. Non-uniform DIF exists when the a parameter differs across groups, 

regardless of whether or not the b parameters are different. 

1.3.3. Sources of DIF 

DIF, if present, is indicative of either item bias or item impact. Item bias 

occurs when the source of DIF is irrelevant to the construct being measured (Camilli 

& Shepard, 1994). For example, when different ethnic groups with equal ability 

scores exhibit different probabilities of an item response, item bias is said to occur. 

For item bias to be present, DIF must be apparent. Thus, DIF is a necessary, but not 

sufficient, condition for the item bias (Zumbo, 1999). 

In contrast, item impact occurs when the source of DIF is a relevant 

characteristic of the construct being measured. In other words, item impact is evident 

when groups show different probabilities of an item response because they truly differ 

on the construct. In this case, the item parameter estimates of the test accurately 

reflect group differences in the construct. 
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1.4. IRT Methodologies for DIF Detection 

 Several IRT techniques have been proposed for DIF detection during the last 

two decades: Lord’s (1980) chi-square, Raju’s (1988) area method, and Thissen, 

Steinberg, and Wainer’s (1988, 1993) IRT likelihood ratio (IRTLR). Only the IRTLR 

is illustrated here because it is most closely related to the CFA techniques (Cohen, 

Kim, & Baker, 1993; Cohen, Kim, & Wollack, 1996; Thissen, 1991; Thissen et al., 

1988, 1993). Details for the other IRT techniques can be found in Lord (1980), Raju 

(1988, 1990), and Raju, van der Linden, and Fleer (1992). 

The maximum likelihood (ML) parameter estimation algorithm results in a 

value of model fit. The IRTLR method assesses DIF by comparing the model fit of a 

pair of nested models. This technique starts with fitting the compact (simpler) model 

in which all item parameters are estimated with the constraint that they are equal 

across groups. Next, each item is tested, one at a time, for DIF. The augmented 

(complex) model relaxes the equality constraint for an item being tested. The latter 

model provides a value of the likelihood function, which is associated with estimating 

the parameters of the item being tested separately for each group. This value is 

compared to the value for the compact model by creating the likelihood ratio: 

𝐿𝐿𝐶𝐶
𝐿𝐿𝐴𝐴𝑖𝑖

.  (4) 

Under the null hypothesis that the compact model holds in the population, –2 times 

the natural-log transformation of this ratio, 

−2ln �𝐿𝐿𝐶𝐶
𝐿𝐿𝐴𝐴𝑖𝑖
� = −2(ln 𝐿𝐿𝐶𝐶 − ln 𝐿𝐿𝐴𝐴𝑖𝑖),  (5) 
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yields a test statistic that approximately follows a chi-square distribution, with 

degrees of freedom equal to the difference in the number of estimated parameters 

between the two nested models. A significant chi-square value suggests that the 

compact model fits significantly worse than the augmented model. Equivalently, it is 

considered that the item parameters differ across groups; therefore, the item being 

tested exhibits DIF. 

In a simulation study, Cohen et al. (1996) evaluated the IRTLR technique 

under various conditions. Although simulated responses were dichotomous rather 

than ordinal in nature, they found that, in general, this technique works reasonably 

well; Type I error rates fell within an expected range in most conditions. 

In order to accurately estimate the IRT parameters, it is well known that a 

substantial number of items are required because the ability scores are predicted from 

the joint relationship with other items. In general, more than 30 items are 

recommended for stable parameter estimation in the literature (e.g., Seong, 1990; 

Stone, 1992). 

2. CFA Framework 

2.1. CFA 

CFA models, which comprise the measurement component of the structural 

equation modeling (SEM), were developed in the 1970s mainly by sociologists and 

econometricians (see Jöreskog, 1971a, 1971b, 1973; McArdle & McDonald, 1984). 

The main objectives of CFA are to support hypothesis-driven data analysis as well as 
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to compare and refine theories on the basis of data, especially data obtained from 

non-experimental social research 

Currently, the mean and covariance structure (MACS; Sörbom, 1974) model 

is ideally suited to evaluate measurement equivalence for several reasons (see Little, 

1997). First, a hypothesized factor structure is fitted simultaneously in two or more 

groups. Second, it tests the between-group equality of all reliable measurement 

parameters. Third, it corrects for measurement error whereby estimates of the trait 

parameters are less biased. Finally, “strong” tests for measurement equivalence are 

tenable by evaluating the mean structure invariance of the observed responses. This 

dissertation uses the MACS model to demonstrate how to assess measurement 

equivalence in CFA. Although several CFA programs are now available, LISREL 

(Jöreskog & Sörbom, 1996) notation is used here for convenience. 

2.2. MACS Model 

The CFA models posit a linear, rather than a nonlinear, relation between 

observed responses and latent constructs (i.e., trait, denoted by 𝜉𝜉). In the MACS 

model, the observed response 𝑥𝑥𝑖𝑖  to an item i (i = 1, …, p) is represented as a linear 

function of an intercept 𝜏𝜏𝑖𝑖 , latent trait variables 𝜉𝜉𝑖𝑖  (j = 1, …, m), and a unique factor 

score 𝛿𝛿𝑖𝑖 . More specifically, 

𝑥𝑥𝑖𝑖 = 𝜏𝜏𝑖𝑖 + 𝜆𝜆𝑖𝑖𝑗𝑗 𝜉𝜉𝑖𝑖 + 𝛿𝛿𝑖𝑖 ,  (6) 

where the factor loading 𝜆𝜆𝑖𝑖𝑗𝑗  defines the metric of measurement, as it represents the 

expected change in 𝑥𝑥𝑖𝑖  per unit change in 𝜉𝜉𝑖𝑖 . The intercept 𝜏𝜏𝑖𝑖  represents the expected 

value of 𝑥𝑥𝑖𝑖  when 𝜉𝜉𝑖𝑖 = 0. The unique factor score is further divided into two 
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components; an item-specific factor score and measurement error. The item-specific 

factor score represents systematic differences in an item response after influences of 

the trait variables have been eliminated. In contrast, the measurement error is 

typically conceptualized as random error. The unique factor score, or equivalently the 

sum of the item-specific factor score and the measurement error, is assumed to be 

normally distributed across observations. 

When the same model holds in each group g (g = 1, …, G), Equation 6 is 

extended to 

𝑥𝑥𝑔𝑔 = 𝜏𝜏𝑔𝑔 + Λ𝑔𝑔𝜉𝜉𝑔𝑔 + 𝛿𝛿𝑔𝑔 ,  (7) 

where 𝑥𝑥𝑔𝑔  is a p × 1 vector of observed responses (in group g), 𝜏𝜏𝑔𝑔  is a p × 1 vector of 

intercepts, 𝜉𝜉𝑔𝑔  is an m × 1 vector of latent trait variables, Λ𝑔𝑔  is a p × m matrix of factor 

loadings, and 𝛿𝛿𝑔𝑔  is a p × 1 vector of unique factor scores. 

In general, the MACS model assumes that (a) the unique factor scores are 

independent of the trait variables, (b) the unique factor scores are independent of each 

other, and (c) the expected unique factor scores are equal to zero. Under these 

assumptions, taking the expectation of Equation 7 yields the relation between the 

observed item means and the latent trait means: 

𝜇𝜇𝑔𝑔 = 𝜏𝜏𝑔𝑔 + Λ𝑔𝑔𝜅𝜅𝑔𝑔 ,  (8) 

where 𝜇𝜇𝑔𝑔  is a p × 1 vector of item means and 𝜅𝜅𝑔𝑔  is an m × 1 vector of trait means for 

each group. 

The covariance matrix of x variables is obtained in group g as 

Σ𝑔𝑔 = Λ𝑔𝑔Φ𝑔𝑔Λ𝑔𝑔′ + Θ𝑔𝑔 ,  (9) 
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where Φ𝑔𝑔  is an m × m covariance matrix of latent trait variables and Θ𝑔𝑔  is a p × p 

matrix of unique factor score variances. This structural model is fitted to a sample 

covariance matrix S𝑔𝑔 , yielding 

𝑆𝑆𝑔𝑔 ≈ Λ𝑔𝑔�Φ𝑔𝑔� Λ𝑔𝑔′� + Θ𝑔𝑔� = Σ𝑔𝑔� ,  (10) 

where 𝑆𝑆𝑔𝑔  is a p × p sample covariance matrix of x variables in group g and  Λ𝑔𝑔� , Φ𝑔𝑔� , 

and Θ𝑔𝑔�  matrices contain the estimates of population parameters. The sample 

covariance matrix is approximated by the CFA solution Λ𝑔𝑔�Φ𝑔𝑔� Λ𝑔𝑔′� + Θ𝑔𝑔� . This 

solution, in turn, produces Σ𝑔𝑔� , which contains the estimates of population covariances 

among x variables under the assumption that a hypothesized factor structure holds in 

the population. 

2.3. Estimation 

Assuming that observed responses follow a multivariate normal distribution in 

the population, the ML estimates of the parameters in Equations 9 and 10 are 

obtained by minimizing the discrepancy function 

𝐹𝐹𝑀𝑀𝐿𝐿�𝑆𝑆, Σ�� = −2 ln 𝐿𝐿 = ∑ �𝑁𝑁
𝑔𝑔

𝑁𝑁
�𝐺𝐺

𝑔𝑔=1 𝑓𝑓𝑀𝑀𝐿𝐿�𝑆𝑆, Σ��
𝑔𝑔

,  (11) 

where 𝑁𝑁𝑔𝑔  is the number of observations in group g and N is the number of total 

observations across groups. The function 𝑓𝑓𝑀𝑀𝐿𝐿�𝑆𝑆, Σ��
𝑔𝑔

 is further written as 

𝑓𝑓𝑀𝑀𝐿𝐿�𝑆𝑆, Σ��
𝑔𝑔

= ln�Σ𝑔𝑔�� + 𝑡𝑡𝑡𝑡�𝑆𝑆𝑔𝑔Σ𝑔𝑔�′� − ln|𝑆𝑆𝑔𝑔| − 𝑝𝑝,  (12) 

where 

𝑆𝑆𝑔𝑔 = � 1
𝑁𝑁𝑔𝑔
�∑ (�̅�𝑥𝑔𝑔 − 𝜏𝜏𝑔𝑔 − Λ𝑔𝑔𝜅𝜅𝑔𝑔)(�̅�𝑥𝑔𝑔 − 𝜏𝜏𝑔𝑔 − Λ𝑔𝑔𝜅𝜅𝑔𝑔)′𝑁𝑁𝑔𝑔

𝑔𝑔=1 .  (13) 
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As observed in Equation 11, the ML discrepancy function is inversely related to the 

likelihood function. Given the data, therefore, the parameter estimates are those that 

minimize the discrepancy between S and Σ� (or maximize the likelihood of the data) 

under a hypothesized model. 

2.4. Model Fit 

A critical issue in CFA is how to determine whether a particular model 

adequately fits the data. As Marsh (1994) noted, first of all, researchers need to 

ensure that the (iterative) estimation procedure converges to a proper solution (e.g., 

positively defined matrices, no out-of-range values, reasonable standard errors, etc.) 

and that the parameter estimates are reasonable in relation to a prior model as well as 

to common sense. For simplicity, it is presumed here that these prerequisites have 

been satisfied for a particular MACS model. 

The overall fit of a model is based on the discrepancy between the observed 

covariance matrix and reconstructed population covariance matrix. It is also based on 

the discrepancy between the observed mean vector and reconstructed population 

mean vector (Sörbom, 1974). The null hypothesis (𝐻𝐻0) for testing a particular model 

is that the hypothesized factor structure in the model holds exactly in the population. 

It can be written as   

𝐻𝐻0: Σ = ΛΦΛ′ + Θ, 

𝜇𝜇 = 𝜏𝜏 + Λ𝜅𝜅. 

The alternative hypothesis (𝐻𝐻𝑎𝑎 ) is that Σ has no particular structure. It should 

be noted that the role of null hypothesis is reversed from its usual role in research. 
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Thus, failure to reject 𝐻𝐻0 implies that the hypothesized model is plausible in the 

population. 

The conventional measure of overall model fit is the chi-square statistic 

(Jöreskog, 1971). Under the null hypothesis, the ML discrepancy function (Equation 

11) value yields a test statistic 

(𝑁𝑁 − 1)𝐹𝐹𝑀𝑀𝐿𝐿�𝑆𝑆, Σ��,  (14) 

which follows a chi-square distribution as N becomes large, with degrees of freedom 

𝑑𝑑𝑓𝑓 = 1
2
𝑝𝑝(𝑝𝑝 + 3) − �𝑝𝑝 − 𝑝𝑝𝑝𝑝 − 1

2
𝑝𝑝(𝑝𝑝− 1)�.  (15) 

If the chi-square value is significant, we reject 𝐻𝐻0. Otherwise, we cannot reject 𝐻𝐻0; 

we have failed to show that a hypothesized model does not hold exactly in the 

population, thereby concluding that this model is tenable. 

Although the chi-square statistic is the most commonly used measure of 

overall fit in the literature, many researchers have been concerned about its 

appropriateness (e.g., Bentler, 1990; Bentler & Bonett, 1980; Browne & Cudeck, 

1993; Cudeck & Browne, 1983; Jöreskog & Sörbom, 1989). First, the conclusions 

based on the chi-square test can vary depending on N (see Equation 14); when N is 

sufficiently large, any parsimonious model will be rejected. Second, this test is 

extremely sensitive to (small to moderate) deviation from normality of the data. It is 

presumed that responses are multivariate normally distributed in each group. 

However, a distributional violation can occur when dichotomous or polytomous 

responses are analyzed. In a simulation study, West, Finch, and Curran (1995) 

showed that the chi-square test tends to reject 𝐻𝐻0 for polytomous responses even 
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when their discrepancy function is small. Finally, the null hypothesis of perfect fit is a 

priori false when applied to real data (Marsh, Balla, & McDonald, 1988). Thus, the 

chi-square test essentially tests whether sample size is large enough for the test to tell 

us what we already know. 

Alternatively, a large number of practical goodness-of-fit measures have been 

proposed in the literature. Those most commonly used are the Comparative Fit Index 

(CFI; Bentler, 1990), Non-Normed Fit Index (NNFI; Bentler & Bonett, 1980), and 

Root Mean Squared Error of Approximation (RMSEA; Steiger & Lind, 1980). 

Because most of the measures do not have a known sampling distribution, researchers 

recommend certain criterion values indicative of satisfactory model fit. Thus, it has 

been a common practice to report multiple goodness-of-fit measures when researchers 

evaluate a proposed model (Hu & Bentler, 1999). 

2.5. Measurement Invariance 

In CFA, measurement equivalence is referred to as measurement invariance. 

In his landmark work, Meredith (1993) used Lawley’s (1943-44) selection theorem as 

a theoretical framework for measurement invariance. That is, if a particular factor 

structure holds in a population, the same structure should hold in any samples of the 

population no matter how they are chosen. Nevertheless, selection may introduce 

some dependency among unique factor scores and/or between unique factor scores 

and latent trait scores. Thus, a scale is said to have measurement invariance when 

conditional distributions of item responses are identical across groups, given a value 

on the trait (Meredith & Teresi, 2006). 
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Vandenberg and Lance (2000) extensively reviewed different levels of 

measurement invariance proposed in the literature and recommended a number of 

invariance tests that could be performed in empirical research. Moreover, Vandenberg 

(2002) illustrated how different invariance levels are required to answer different 

research questions (see also Steenkamp & Baumgartner, 1998). 

2.5.1. Full Measurement Invariance 

Configural Invariance 

Configural invariance is based on Thurstone’s (1947) principle of simple 

structure (Horn & McArdle, 1992; Horn, McArdle, & Mason, 1983). That is, items of 

a scale should exhibit the same pattern of salient (non-zero) and non-salient (zero or 

near zero) loadings across groups. Although, in principle, it is not necessary to 

constrain the non-salient loadings to zero, this is commonly done in CFA (Steenkamp 

& Baumgartner, 1998). As such, configural invariance requires only that the same 

number of latent trait variables and the same pattern of zero and salient loadings are 

specified in each group. It should be noted that no equality constraints are imposed on 

the parameters. Configural invariance is established by testing the null hypothesis that 

covariance and mean structures are equal across groups, 

𝐻𝐻0: Σ𝑔𝑔 = Λ𝑔𝑔Φ𝑔𝑔Λ𝑔𝑔′ + Θ𝑔𝑔 , 

𝜇𝜇𝑔𝑔 = 𝜏𝜏𝑔𝑔 + Λ𝑔𝑔𝜅𝜅𝑔𝑔  for all g. 

Metric Invariance 

Metric invariance introduces the concept of equal unit of measurement. If an 

item satisfies metric invariance, observed item responses can be meaningfully 
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compared across groups. Furthermore, comparisons of the latent trait variances and 

covariances become plausible. 

Because the loadings carry information about how changes in the trait scores 

relate to changes in the observed scores, metric invariance is established by testing 

the null hypothesis that loadings are equal across groups, 

𝐻𝐻0:Λ1 = Λ2 = ⋯ = Λ𝐺𝐺 . 

 Metric invariance does not necessarily indicate that the origins of the scale are 

equivalent across groups. Consequently, mean comparisons are not tenable yet, 

thereby leading Meredith (1993) to categorize this level of invariance as weak 

factorial invariance.  

Scalar Invariance 

Scalar invariance addresses the question of whether the latent trait mean 

differences are consistent with the observed mean differences (Steenkamp & 

Baumgartner, 1998). Even if an item satisfies metric invariance, scores on that item 

can still be systematically biased upward or downward (i.e., additive bias; Meredith, 

1995). Given scalar invariance, researchers can ascertain whether the origins of the 

scale, as well as the unit of measurement, are identical across groups. As a 

consequence, either observed mean or trait mean comparisons become meaningful, 

thereby leading Meredith (1993) to term this level of invariance as strong factorial 

invariance. 

If metric invariance has been satisfied, scalar invariance is established by 

testing the null hypothesis that intercepts are equal across groups, 
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𝐻𝐻0: 𝜏𝜏1 = 𝜏𝜏2 = ⋯ = 𝜏𝜏𝐺𝐺 . 

Invariance of Unique Factor Variances 

A final invariance level that may be imposed on the measurement model is 

that the unique factor variances are invariant across groups. If metric and scalar 

invariance have been satisfied, the invariance of unique factor variances is established 

by testing the null hypothesis specifying 

𝐻𝐻0:Θ1 = Θ2 = ⋯ = Θ𝐺𝐺 . 

This level of invariance implies that “all group differences on the measured 

variables are captured by, and attributable to, group differences on the common 

factors” (Widaman & Reise, 1997). Meredith (1993) classified this level of invariance 

as “strict” factorial invariance. 

In reality, the invariance of unique factor variances is extremely difficult to 

achieve. Widaman and Reise (1997) argued that the unique factor variances are not 

necessarily identical in practical applications and only metric and scalar invariance is 

essential for answering most research questions. However, when comparisons of the 

observed associations (e.g., correlation) are the questions of interest, reliability of the 

measure should be about the same in order for measurement artifacts not to bias the 

conclusions (Steenkamp & Baumgartner, 1998). “Reliability equality” is established 

if items of a test satisfy metric invariance, and only if the invariance of unique factor 

variances is defensible (Byrne, 1998).  



 

21 
 

Invariance of Factor Variances/Covariances and Factor Means 

The invariance levels often imposed on the structural model are that the factor 

variances and/or factor means are invariant across groups. These invariance levels are 

evaluated if the previous invariance levels imposed on the measurement model have 

been satisfied. 

The invariance of factor covariances is established by testing the null 

hypothesis that latent trait covariances are equal across groups,  

𝐻𝐻0:Φ𝑗𝑗𝑖𝑖1 = Φ𝑗𝑗𝑖𝑖2 = ⋯ = Φ𝑗𝑗𝑖𝑖𝐺𝐺  (j = 2, …, m; k = 1, …, [j – 1]). 

The invariance of factor variances is supported by testing the null hypothesis that trait 

variances are equal across groups, 

𝐻𝐻0:Φ𝑗𝑗𝑗𝑗1 = Φ𝑗𝑗𝑗𝑗2 = ⋯ = Φ𝑗𝑗𝑗𝑗𝐺𝐺  (j = 1, …, m). 

If the invariance of factor variances and covariances is satisfied, the trait correlations 

are considered to be invariant across groups. 

The invariance of factor means is established by testing the null hypothesis 

that latent trait means are equal across groups, 

𝐻𝐻0: κ1 = 𝜅𝜅2 = ⋯ = 𝜅𝜅𝐺𝐺 . 

The nonequivalence of the trait means is generally referred to as item impact in the 

DIF literature (Raju et al., 2002). 

2.5.2. Partial Measurement Invariance 

The aforementioned invariance tests are omnibus tests in the sense that they 

address the question of whether imposed equality constraints are fully satisfied. For 

example, metric invariance requires that all the loadings to be invariant across groups. 
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Muthén and Christoffersson (1981), however, implied that it is possible to test metric 

invariance when only some of the loadings were invariant. They termed this “partial” 

measurement invariance. 

Byrne et al. (1989) provided a didactic article on how to test the level of 

partial measurement invariance. The basic idea is that full invariance is not necessary 

in order for further invariance tests and substantive analyses to be conducted (see also 

Meredith, 1993). In particular, they proposed that mean comparisons would be 

meaningful if metric and scalar invariance have been satisfied for at least two items 

per latent trait. A test for trait mean differences is supposedly more beneficial than 

one for observed mean differences because measurement error has been partialed out 

from the trait means. Furthermore, the trait mean differences will be estimated more 

accurately with imposed partial invariance constraints because the trait mean 

estimates are adjusted for the fact that only partial, not full, invariance characterizes 

the data (Cheung & Rensvold, 2000). However, one limitation is that the trait being 

compared may have different meanings for different groups under partial 

measurement invariance. 

2.5.3. Testing Procedure 

The procedure for invariance tests starts with an omnibus test that evaluates 

the equality of observed covariance matrices and mean vectors, both separately and 

jointly (Steenkamp & Baumgartner, 1998). In the unlikely cases that observed 

covariances and means are actually invariant across groups, analysis for separate 

groups is no longer necessary (i.e., data can be pooled). However, the omnibus test 
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has undergone some criticism. For example, Muthén (cited in Raju et al., 2002) and 

Rock, Werts, and Flaugher (1978) showed that this test can signify equal covariance 

matrices and mean vectors even when more specific invariance tests find otherwise. 

Furthermore, Byrne (1998) argued that the omnibus test should not be regarded as a 

necessary prerequisite to more specific invariance tests .Thus, regardless of whether 

or not the omnibus test indicates a lack of invariance, subsequent tests are 

recommended in order to pinpoint possible sources of noninvariance (Meade & 

Lautenschlager, 2004). 

Thus, the model of configural invariance serves as a baseline model in the 

invariance tests (Horn & McArdle, 1992). Given that a baseline model represents the 

best model in terms of both parsimony and meaningfulness, it is possible that the 

baseline model may not be completely identical across groups (Byrne et al., 1989). 

Even if this is the case, subsequent invariance tests still continue by implementing a 

condition of partial invariance. For only those latent trait variables that support 

configural invariance, metric invariance is tested. Those loadings that do not conform 

to metric invariance remain unconstrained in the subsequent tests. Next, scalar or 

partial scalar invariance is tested only if at least partial metric invariance has been 

established. Similarly, those intercepts that do not conform to scalar invariance 

remain unconstrained in the subsequent tests. 

The order of the invariance tests for unique factor variances, factor 

covariances, and factor variances is somewhat arbitrary (Bollen, 1989; Jöreskog, 

1971). Ultimately, the order may not be critical in the sense that a particular level of 
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invariance is not required in order for subsequent invariance tests to be conducted. 

Indeed, often the invariance of factor covariances and factor variances is tested 

simultaneously (i.e., Φ1 = Φ2 = ⋯ = Φ𝐺𝐺). When the invariance of unique factor 

variances is examined, the test proceeds only if at least partial metric and scalar 

invariance has been established. At this point, those intercepts that do not conform to 

scalar invariance are unconstrained across groups. 

2.6. Significance Test 

The statistical framework for invariance tests was originally developed by 

Jöreskog (1971). The invariance tests require a series of hierarchically nested models 

to be estimated; a hypothesized model in which parameters of interest are constrained 

to be equal across groups is compared with a competing, less restrictive model in 

which the same parameters are freely estimated in each group. A particular level of 

invariance is satisfied if the model fit is adequate, and if its difference from the 

competing model is minimal (Widaman & Reise, 1997). Likewise, the same criteria 

hold in testing all subsequent invariance levels. 

The standard way to compare the fit of two nested models is the LR test 

(Jöreskog, 1971). Consider two hypotheses that specify increasingly restrictive 

models, 𝐻𝐻𝑎𝑎  and 𝐻𝐻0. Let 𝐹𝐹𝑀𝑀𝐿𝐿𝑎𝑎  and 𝐹𝐹𝑀𝑀𝐿𝐿0 be the minimum values of the ML 

discrepancy function under 𝐻𝐻𝑎𝑎  and 𝐻𝐻0, respectively. Under 𝐻𝐻0, the test statistic 

𝐷𝐷 = 𝑛𝑛(𝐹𝐹𝑀𝑀𝐿𝐿0 − 𝐹𝐹𝑀𝑀𝐿𝐿𝑎𝑎 ),  (16) 

where 𝑛𝑛 = 𝑁𝑁 − 1, follows asymptotically a chi-square distribution, with degrees of 

freedom equal to the difference in the degrees of freedom between the two models. If 
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the chi-square difference value is significant, we reject 𝐻𝐻0; we conclude that the 

constraints specified in the more restrictive model do not hold. Otherwise, we 

conclude that all the equality constraints are tenable. 

Steiger et al. (1985) noted that the LR test is quite flexible; it can test multiple 

constraints simultaneously, and when a series of the LR tests is conducted on a 

sequence of nested models, they are asymptotically independent. In a simulation 

study, Meade and Lautenschlager (2004) examined the power of the LR test in 

multiple-group cases. They showed that this test is fairly effective under optimal 

conditions. Not only was the omnibus test for equal observed covariance matrices 

successful in general, but also the lack of full metric invariance was accurately 

detected in most conditions. 

On the other hand, several researchers (e.g., Cheung & Rensvold, 2002; Little, 

1997; Marsh, Hey, & Roche, 1997; West, Finch, & Curran, 1995) have argued that 

the LR chi-square value is as sensitive to sample size and nonnormality of data. 

Theoretically, this statistic holds whether or not a baseline model is misspecified 

(Steiger et al., 1985). However, Yuan and Bentler (2004) found that it is an unreliable 

measure of relative model fit when a baseline model, in fact, has been misspecified. 

Kaplan (1989) also found that the power of the LR test, under partial metric 

invariance, is dependent on the size of the misspecification as well as on the 

correlation between the misspecified parameter and the remaining parameters in the 

model. 



 

26 
 

Alternatively, Cheung and Rensvold (2002) examined properties of 20 other 

goodness-of-fit measures proposed in the literature. Their simulation results indicated 

that each of ∆CFI, ∆Gamma Hat (Steiger, 1989), and ∆Non-Centrality Index (NCI; 

McDonald, 1989) controlled its Type I error at the nominal alpha level (e.g., .05) 

when used to test (full) invariance. For ∆CFI, they suggested that the null hypothesis 

should not be rejected with a value smaller than or equal to –0.01. For ∆Gamma Hat 

and ∆NCI, the critical values were suggested to be –0.001 and –0.02, respectively. In 

a recent conservative simulation study (i.e., .90 power, .01 Type I error), Meade, 

Johnson, and Braddy (2008) recommended that a change in CFI of more than 0.002 is 

the optimal criterion for rejecting the null hypothesis of invariance. Little (in press) 

suggested that, for most applications, Cheung and Rensvold’s (2002) ∆CFI value of –

0.01 is quite reasonable, but that Meade et al.’s (2008) ∆CFI value 0f –0.002 can be 

used when the question warrants such a restrictive criterion (e.g., high-stake testing 

environments). For example, Byrne and Stewart (2006) evaluated scalar invariance 

for the Beck Depression Inventory II (Beck, Steer, & Brown, 1996) among Hong 

Kong and American adolescents, using the Cheung and Rensvold’s criterion. 

2.7. Scaling 

In any CFA model, indeterminacy exists between the scale of the item 

parameters and the scale of the latent trait variables. That is, if the scale for the item 

parameters should be identified to obtain unique estimates, the scale for the trait 

variables should be specified, or vise versa. The scaling is typically achieved by 

imposing a set of constraints on the parameters (Jöreskog & Sörbom, 1989). 
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Recently, Little, Slegers, and Card (2006) outlined two primary scaling 

methods for both mean (Equation 8) and covariance (Equation 9) structures. They 

also proposed another possible, statistically equivalent scaling method, called the 

effects-coded method. All three of the scaling methods yield identical statistical fit 

values because they are simple reparameterizations of one another (Little et al., 2006). 

When three or more items are used to measure a latent trait variable, each 

method provides the necessary condition for identifying the scale of the trait variable. 

Consequently, they can be used for either single-group cases or multiple-group cases. 

However, having fewer than three items is problematic as a general rule. Thus, our 

discussion will focus on situations when a researcher has three or more items per trait 

variable. 

2.7.1. Marker-Variable Method (Bollen, 1989; Jöreskog & Sörbom, 1993) 

The marker-variable method involves fixing the loading of an item (i.e., 

marker or anchor) to 1 and the intercept of this item to 0 for each latent trait variable. 

Then, trait means and variances are freely estimated in all groups. Consequently, this 

method sets the scales of the trait variables to be equivalent to those of the chosen 

anchor item. 

However, this method has an undesirable property. The estimated trait means 

and variances can vary depending on which item is chosen as an anchor. Nevertheless, 

the choice is somewhat arbitrary because there is no absolute rule yet in the literature 

(Little et al., 2006). 
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2.7.2. Fixed-Factor Method (McArdle & McDonald, 1984) 

The fixed-factor method involves fixing the mean and variance of each latent 

trait variable in the first group. With loadings and intercepts equated across groups, 

the trait means and variances are freely estimated in the subsequent groups. 

Consequently, the trait variables are scaled relative to the fixed trait mean and 

variance in the first group. In general, the trait mean is fixed to 0 (i.e., 𝜅𝜅𝑝𝑝1 = 0) and 

the trait variance is fixed to 1 (i.e., Φ𝑝𝑝𝑝𝑝
1 = 1). This choice results in placing the trait 

variables of the first group in correlation metric (Little et al., 2006).  

The trait means and variances in the subsequent groups are also fixed in the 

model for configural invariance. Unlike other methods, this method needs to 

subsequently free the trait variances and/or means in latter groups when further 

invariance levels are tested. 

2.7.3. Effects-Coded Method (Little et al., 2006) 

The effects-coded method involves, for each latent trait variable, constraining 

the set of intercepts to sum to 0. It also constrains the set of loadings to average to 1, 

which is the same as requiring them to sum to the number of unique items. These 

constraints can be written as 

∑ 𝜏𝜏𝑖𝑖𝑝𝑝
𝑔𝑔𝑃𝑃

𝑖𝑖=1 = 0 and ∑ 𝜆𝜆𝑖𝑖𝑝𝑝
𝑔𝑔𝑃𝑃

𝑖𝑖=1 = 𝑃𝑃,  (17) 

where i = 1 to P refers to summation across the set of P unique items for a given trait 

variable. The intercept parameters are estimated as an optimal balance around 0, but 

no individual intercept needs to be fixed. Similarly, the loading parameters are 
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estimated as an optimal balance around 1, but no particular loading is necessarily 

constrained. 

The trait means and variances reflect the observed metric of the items, 

optimally weighted by the degree to which each item represents the underlying trait 

variable. Consequently, a given trait variable will be on the same scale as the average 

of all the items. This method is desirable in the sense that the average of a set of items 

would be a more accurate estimate of a population value than any one item arbitrarily 

chosen from the set (Little et al., 2006). 

2.8. Applicability of CFA 

CFA involves many practical features with regard to its application. First, 

CFA programs (e.g., AMOS, EQS, LISREL, Mplus) provide a number of “useful” 

measures of model fit, but IRT programs (e.g., BILOG, MULTILOG, PARSCALE) 

yield only the LR test statistic as a standard. Second, CFA allows researchers to work 

with responses on multidimensional questionnaires (see Little, 1997), measured in 

multiple groups. In contrast, many of the IRT programs assess measurement 

equivalence between only two groups and they are confined to unidimensional 

questionnaires. Given the advances by Kim, Cohen, and Park (1995) and Oshima, 

Raju, and Flowers (1997), however, IRT analysis will become possible for cases 

involving multiple ability dimensions measured in more than two groups. 

2.9. CFA Methodologies for DIF Detection 

The relationship between CFA and two-parameter IRT models for 

dichotomous responses was clarified by Takane and de Leeuw (1987) and McDonald 
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(1999). That is, the loading (𝜆𝜆𝑖𝑖) and intercept (𝜏𝜏𝑖𝑖) parameters in CFA are essentially 

equal to the discrimination (𝑎𝑎𝑖𝑖) and attractiveness (𝑏𝑏𝑖𝑖) parameters in IRT, respectively. 

Since then, the concept of item invariance has been integrated into a more general, 

theoretical framework provided by IRT. Consequently, researchers are now able to 

test DIF within CFA, or more broadly within the SEM framework. The CFA- and 

SEM-based techniques for DIF detection employ the MACS model (Chan, 2000; 

Ferrando, 1996) and the multiple indicators multiple causes (MIMIC) model (Muthén, 

1988), respectively. The MIMIC technique is briefly illustrated, followed by a 

detailed discussion of the MACS technique. More details for the MIMIC technique 

can be found in Muthén (1988). 

3. MIMIC Technique 

The MIMIC model (Jöreskog & Goldberger, 1975) regresses the latent trait 

variables on exogenous observed variables (covariates). Muthén (1988) further 

extended this model such that the item responses are also regressed on the covariates. 

Thus, the observed response 𝑥𝑥𝑖𝑖  to an item i (i = 1, …, p)  is represented as a linear 

function of an intercept 𝜏𝜏𝑖𝑖 , trait variables 𝜉𝜉𝑗𝑗  (j = 1, …, m), observed covariates 𝑧𝑧𝑐𝑐  (c = 

1, …, r), and a unique factor score 𝛿𝛿𝑖𝑖 . It can be written as 

𝑥𝑥𝑖𝑖 = 𝜏𝜏𝑖𝑖 + 𝜆𝜆𝑖𝑖𝑗𝑗 𝜉𝜉𝑖𝑖 + 𝛽𝛽𝑖𝑖𝑐𝑐𝑧𝑧𝑐𝑐 + 𝛿𝛿𝑖𝑖 ,  (18) 

where 𝛽𝛽𝑖𝑖𝑐𝑐  is a p × r matrix of regression slopes that represent the effects of the 

covariates on the item responses. Under the usual assumptions, taking the expectation 

of Equation 18 yields the relation between the observed item means and the latent 

trait means: 
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𝜇𝜇 = 𝜏𝜏 + Λ𝜅𝜅 + Β𝑧𝑧,  (19) 

where 𝜇𝜇 is a p × 1 vector of item means, 𝜅𝜅 is an m × 1 vector of trait means, and Β is a 

p × r matrix of regression slopes of the item responses on the covariates. 

The regression slopes in Β are called the direct effects because they influence 

the responses, unmediated by the latent traits. The direct effects indicate whether the 

item responses differ across groups after controlling for any trait mean differences, 

which is the definition of DIF (Fleishman, 2005; Fleishman & Lawrence, 2003; 

Fleishman, Spector, & Altman, 2002; Millsap & Everson, 1993). Accordingly, DIF is 

evident when the direct effects are statistically significant (Grayson, Mackinnon, 

Jorm, Creasey, & Broe, 2000; Jones, 2006). Because the loadings are assumed to be 

equal across groups, the MIMIC technique is limited to tests for uniform DIF. 

4. MACS Technique 

4.1. Specification 

The standard MACS model can be extended for DIF detection by addressing a 

number of additional assumptions. Assuming that only “one” latent trait variable 

accounts for continuous responses on a scale (i.e., congeneric item responses; 

Jöreskog, 1971), observed responses x to an item i (i = 1, …, p) are explained by 

means of linear regression on the trait variable 𝜉𝜉 in this particular MACS model. 

More specifically, 

𝑥𝑥𝑖𝑖 = 𝜏𝜏𝑖𝑖 + 𝜆𝜆𝑖𝑖𝜉𝜉 + 𝛿𝛿𝑖𝑖 .  (20) 

As noted in Equation 6, the intercept 𝜏𝜏𝑖𝑖  represents the expected response to an item i 

for examinees with trait scores of zero. The factor loading 𝜆𝜆𝑖𝑖  refers to the expected 
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change in the item response per unit change in the trait variable. Finally, 𝛿𝛿𝑖𝑖  is the 

unique factor score, which is assumed to be normally distributed. Under the further 

assumption that the covariances among the unique factor scores are zero in the 

population, the mean of 𝑥𝑥𝑖𝑖  is equal to 𝜏𝜏𝑖𝑖  when the trait score is zero and covariances 

between 𝑥𝑥𝑖𝑖  and 𝜉𝜉 are equal to 𝜆𝜆𝑖𝑖  (Jöreskog, 1971). Thus, taking the expectation of 

Equation 20 yields the covariance matrix of x variables in the population 

Σ = ΛΦΛ′ + Θ,  (21) 

where Λ is a p × 1 vector of factor loadings and Θ is a p × p diagonal matrix of unique 

factor score variances. The mean vector of x variables in the population is given by 

𝜇𝜇 = 𝜏𝜏 + Λ𝜅𝜅,  (22) 

where 𝜏𝜏 is a p × 1 vector of intercepts and 𝜅𝜅 is a scalar trait mean. 

The assumptions that (a) a single latent trait underlies the correlations among 

the observed responses and that (b) off-diagonal elements in Θ𝑔𝑔  are zero are the 

analogs of, respectively, the unidimensionality and local independence2

                                                 
2 Note that the local independence assumption can be violated and estimated by 
specifying the correlated true population residuals. 

 assumptions 

in IRT. In the context of IRT, 𝜏𝜏𝑖𝑖  corresponds to the attractiveness parameter (i.e., the 

observed mean for examinees with zero trait score) and 𝜆𝜆𝑖𝑖  the discrimination 

parameter (i.e., the ability of an item to differentiate examinees with different trait 

scores) (Grayson & Marsh, 1994; Mellenbergh, 1994). Under the assumption that the 

same factor structure underlies each group g (g = 1, …, G), Equations 21 and 22 are 

extended to 
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Σ𝑔𝑔 = Λ𝑔𝑔Φ𝑔𝑔Λ𝑔𝑔′ + Θ𝑔𝑔  and 𝜇𝜇𝑔𝑔 = 𝜏𝜏𝑔𝑔 + Λ𝑔𝑔𝜅𝜅𝑔𝑔 ,  (23) 

respectively.  

4.2. Relation to IRT 

The MACS model for congeneric responses and the IRT model for 

dichotomous responses assume different conditional distributions of the responses 

(i.e., normal with homogeneous variance and binomial, respectively). But, 

Mellenbergh (1994) noted that the MACS model has the same structure as the two-

parameter dichotomous IRT model (i.e., Birnbaum, 1968). Thus, they hold two 

invariance properties in common; the invariance of item parameters over population 

samples and the invariance of an examinee’s latent score over measurements (see 

Hambleton & Van der Linden, 1982). 

Although the latent trait variable is believed to have a mean of zero and a 

variance of unity in the population, this property does not necessarily hold in the 

samples from the population. That is, the trait variable will not usually have the zero 

mean and unity variance in samples because the covariances among unique factor 

scores are not expected to be zero (MacCallum & Tucker, 1991; Meredith, 1993). 

Thus, it can be assumed (and tested) that item parameters are invariant but trait means 

and variances can vary from those in the population (Ferrando, 1996). 

The intercepts in MACS analysis correspond to the attractiveness/difficulty 

parameters in IRT; the higher the intercept, the more attractive/difficult the item is 

(i.e., a higher mean response is obtained). Factor loadings correspond to the 

discrimination parameters; the higher the loading, the more discriminating the item is 
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(i.e., examinees of different latent scores are better differentiated; see Ferrando, 1996; 

Grayson & Marsh, 1994; Mellenbergh, 1994). 

The intercept parameter represents differential response level associated with 

an item, whereas the loading parameter represents how concretely the item reflects 

the trait variable being measured (Ferrando, 1996). Thus, the intercept parameter 

corresponds to the attractiveness parameter in IRT; the higher the intercept, the more 

attractive the item is in the sense that a higher mean response is obtained. Similarly, 

the loading parameter corresponds to the discrimination parameter in IRT; the higher 

the loading, the better the item differentiates examinees with different trait scores (see 

Ferrando, 1996; Grayson & Marsh, 1994; Mellenbergh, 1994). 

As noted previously, uniform DIF exists when only the attractiveness 

(intercept) parameter differs across groups. Non-uniform DIF is present when the 

discrimination (loading) parameter differs across groups, regardless of whether or not 

the attractiveness parameter is invariant. Thus, lack of invariance in 𝜏𝜏𝑔𝑔  implies 

uniform DIF, while lack of invariance in Λ𝑔𝑔  implies non-uniform DIF, regardless of 

the invariance in 𝜏𝜏𝑔𝑔  (Chan, 2000). 

The unique factor score provides information about precision in measurement. 

Indeed, the item information function (IIF) in IRT is equal to the ratio of the squared 

loading and unique factor score variance (Mellenbergh, 1994). However, the unique 

factor score is not a parameter of substantive interest in the DIF literature. As such, 

invariance of unique factor variances is not usually of concern in the MACS 

technique for DIF analysis. 
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The illustrated MACS model has been specified only for continuous responses. 

But, it is also applicable to the case of items with dichotomous or ordered response 

options. For these items, it is assumed that the response options correspond to 

segments of a latent continuous response variable (Mellenbergh, 1994) denoted by 𝑥𝑥𝑖𝑖∗. 

Thus, the MACS model for the latent response variable can be written as  

𝑥𝑥𝑖𝑖∗ = 𝜏𝜏𝑖𝑖 + 𝜆𝜆𝑖𝑖𝜉𝜉 + 𝛿𝛿𝑖𝑖 ,  (24) 

Then, the threshold parameter 𝛾𝛾 is introduced to accommodate the discrete nature of 

the observed dichotomous and polytomous (k-category) responses: 

𝑥𝑥𝑖𝑖 = �
1 if 𝑥𝑥𝑖𝑖∗  ≥ 𝛾𝛾𝑖𝑖
0 if 𝑥𝑥𝑖𝑖∗  < 𝛾𝛾𝑖𝑖

� and 𝑥𝑥𝑖𝑖 = 𝑖𝑖 if 𝛾𝛾𝑖𝑖𝑖𝑖 < 𝑥𝑥𝑖𝑖∗  ≤ 𝛾𝛾𝑖𝑖𝑖𝑖+1,  (25) 

respectively. Because the latent continuous responses are assumed to be multivariate 

normally distributed in the population, a polychoric correlation matrix of the observed 

responses is computed (Bollen, 1989) and then the MACS model is fitted to the 

matrix (e.g., Jones, 2004; Stark et al., 2006).  

As mentioned previously, a direct correspondence exists between IRT item 

parameters and CFA item parameters in the case of binary items. Specifically, 

implementing the two-parameter IRT model and the parameter standardization of the 

CFA model using, say, trait mean of zero and variance of unity and unity variance of 

the latent response variables, 

𝑎𝑎𝑖𝑖 = 𝜆𝜆𝑖𝑖 �1 − 𝜆𝜆𝑖𝑖2�  and 𝑏𝑏𝑖𝑖 = 𝛾𝛾𝑖𝑖 �1 − 𝜆𝜆𝑖𝑖2� .  (26) 

The conditional probability of the observed response to an item i then can be obtained 

as 
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𝑃𝑃𝑖𝑖�𝑥𝑥𝑖𝑖 = 1|𝜉𝜉𝑗𝑗 � = 1 −Φ�𝛾𝛾𝑖𝑖 − 𝜆𝜆𝑖𝑖𝜉𝜉𝑗𝑗 �1 − 𝜆𝜆𝑖𝑖2� �,  (27) 

where 𝑃𝑃𝑖𝑖�𝜉𝜉𝑗𝑗 � is the probability that an examinee  j with a given value on 𝜉𝜉 will 

correctly answer an item i and Φ is the cumulative standard normal distribution 

function. A complete explication of these relationships can be found in Kamata and 

Bauer (2008), Lord and Novick (1968), McDonald (1999), Muthén and 

Christoffersson (1981), and Takane and de Leeuw (1987). 

4.3. Strategy 

In the CFA literature, the MACS technique has been applied for testing both 

uniform and non-uniform DIF, using either a “constrained-baseline” strategy or a 

“free-baseline” strategy. Regardless of which strategy is used, tests for uniform DIF 

are typically conducted only for those items that have been found to have no non-

uniform DIF.3

4.3.1. Constrained-Baseline Strategy 

 This two-step procedure is consistent with the fact that metric (loading) 

invariance is cited as a prerequisite for scalar (intercept) invariance (Vandenberg, 

2002; Vandenberg & Lance, 2000). 

The constrained-baseline strategy tests for DIF one item at a time, assuming 

that other items are DIF-free anchors (e.g., Chan, 2000; Chen & Anthony, 2003; 

Finch, 2005; Gelin, 2005; Muthén & Asparouhov, 2002; Oishi, 2006; see Stark, et al., 

2006). This strategy starts with a “fully-constrained” baseline model (Model A), in 

which all the loadings and all the intercepts are constrained to be equal across groups. 

                                                 
3 Non-uniform DIF (loading invariance) and uniform DIF (intercept invariance) for a 
particular item can be tested simultaneously (see Stark et al., 2006). 
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After overall fit of this model is established, it is then statistically compared with each 

of p models (where p = number of items), in which one respective loading is freely 

estimated in each group. Next, a nested baseline model (Model B) is fitted, in which 

the loadings of the (previously identified) non-uniform DIF items are allowed to vary 

across groups. This model is then compared with each of q models (where q = 

number of items with invariant loadings), in which one respective intercept is freely 

estimated in each group. 

The statistical significance of the parameter (i.e., loading, intercept) 

invariance is usually determined by conducting the modification index (MI) test or 

LR test. The MI indicates how much the LR chi-square value is “likely” to reduce if a 

particular fixed parameter is freely estimated. Thus, the MI values associated with the 

loadings and intercepts are obtained from the baseline Models A and B, respectively. 

The critical chi-square value for 1 degree of freedom is used as a MI criterion value 

for flagging DIF. Alternatively, DIF is indicated when the LR test statistic is 

statistically significant in a series of “actual” nested-model comparisons. A 

Bonferroni correction is recommended to set the critical (MI and chi-square) values at 

a reduced alpha level (i.e., p = α / number of invariance tests). 

In a couple of simulation studies (González-Romá, et al., 2006; Hernández & 

González-Romá, 2003), the constrained-baseline strategy was found to perform fairly 

well; it maintained reasonable control for Type I error and satisfactory power in the 

medium to large DIF conditions. 

 



 

38 
 

4.3.2. Free-Baseline Strategy 

The free-baseline strategy tests DIF in each item separately, assuming that 

other items are not free from DIF (e.g., Fleishman et al., 2002; Woods, 2009; Woods, 

Oltmanns, & Turkheimer, 2008; see Stark et al., 2006). This strategy starts with a 

“fully-free” baseline model (Model A; see Figure 1A), in which all parameters are 

freely estimated in each group except those needed for scaling. Once overall model fit 

is established, this model is then statistically compared with each of p models that 

constrain one respective loading to be equal across groups (Model B; see Figure 1B). 

Next, a nested baseline model (Model C) is fitted, in which the (previously identified) 

invariant loadings are constrained to be equal. This model is then compared with each 

of q models (Model D; see Figure 1C), in which one respective intercept is 

constrained to be equal across groups. Non-uniform DIF is indicated if the chi-square 

difference between Models A and B is statistically significant with 1 degree of 

freedom. Similarly, if the chi-square difference between Models C and D is 

significant, this item is considered to exhibit uniform DIF. A Bonferroni correction 

for multiple nested-model comparisons is also recommended for this strategy. 

 

Figure 1 

Free-Baseline Strategy for the MACS Technique for DIF Detection 

Figure 1A to 1C depict three nested MACS models. This example illustrates a simple 

case, in which (a) the scale includes three items, (b) only the second item exhibits 

non-uniform DIF, and (c) the marker-variable scaling method is used. For simplicity, 
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the unique factor variances are omitted. The free parameters are marked by “*” and 

the parameters equated across groups are marked by “=.” 

A. Fully-Free Baseline Model 

 

B. Model of a Single Restrictive Loading 

 

C. Model of a Set of Restrictive Loading and Intercept 
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In a simulation study, Stark et al. (2006) evaluated a variant of the free-

baseline strategy, which tests uniform DIF and non-uniform DIF simultaneously. 

They found that the free-baseline strategy performs reasonably well in all study 

conditions; power was high while Type I error was acceptable at the nominal alpha 

level. When a Bonferroni correction was applied to the large sample, large DIF 

conditions, Type I error was almost eliminated while power remained high. 

4.3.3. Recommended Strategy 

Although previous simulation studies have been supportive, the constrained-

baseline strategy entails apparent problems. First, the use of MI involves the danger 

of capitalizing on chance (Steenkamp & Baumgartner, 1998). That is, idiosyncrasies 

of a particular data set may necessitate revisions of a hypothesized model, which 

cannot be replicated with different data. Such data-driven MI may invalidate the 

probability values (i.e., Type I error rate and power) associated with subsequent LR 

tests (Gregorich, 2006). Indeed, MacCallum (1986) found that MI is particularly 

unsuccessful in uncovering a misspecified parameter (see also Kaplan, 1989; Luijben, 

Boomsma, & Molenaar, 1987). 

Second, and more importantly, the constrained baseline model is not 

theoretically suitable for nested-model comparison. In order for the LR test statistics 

to follow a central chi-square distribution under the null hypothesis, the baseline 

model should fit the data adequately (Maydeu-Olivares & Cai, 2006). As mentioned 

previously, the constrained-baseline model assumes equal loadings and/or equal 

intercepts across groups. In the likely case that a scale includes one or more DIF 
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items, this model may not fit adequately (e.g., Marsh, Balla, & McDonald, 1988). 

Consequently, the MI test will be inaccurate or the LR test will be untenable (Cheung 

& Rensvold, 1999). Evidently, Stark et al. (2006) found that the constrained-baseline 

strategy performs well only when there is no DIF at all in a scale. 

In contrast, the free-baseline strategy is theoretically suitable for DIF analysis 

in the sense that (a) DIF is tested for one item at a time, (b) the parameter estimates 

are not subject to relative size or significance of other parameters in the model, and (c) 

the baseline model reasonably provides a proper fit value, against which DIF is 

examined in the subsequent nested models. Thus, the free-baseline strategy is 

recommended, rather than the constrained-baseline strategy, when testing for DIF. 

Accordingly, the former strategy is followed in the present simulation study, which 

examines the performance of the MACS technique under various conditions.  

5. Misspecification Problems 

5.1. Invariance Assumption in the Conventional Scaling 

The MACS analysis for DIF detection, which is a simple variation of the idea 

of partial measurement invariance (Byrne et al., 2002), involves some methodological 

issues to be resolved in practice. In general, the scaling does not change the 

conclusions about overall model fit or the tests for whether or not a given level of 

invariance holds (González & Griffin, 2001; Little et al., 2006). However, when a 

researcher locates DIF in a scale after metric or scalar invariance has been rejected, a 

potential problem arises. That is, different scaling methods can lead to different 
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outcomes of DIF tests because these post-hoc tests rely on an examination of 

individual parameters. 

As noted previously, a set of constraints are imposed on the parameters for 

scaling. When there is more than one group, the scaling is conventionally achieved by 

constraining an item’s (marker or anchor) parameters to be equal across groups 

(Vandenberg & Lance, 2000). When used for the (free-baseline) MACS analysis, this 

marker-variable scaling method fixes an anchor item’s loading to 1 and intercept to 0 

for all groups. This practice is essentially the same as assuming that the chosen 

anchor is truly invariant (Chan, 2000; see González-Romá et al., 2006). If the 

“biasedness” of the anchor cannot be guaranteed or a researcher chooses an anchor 

arbitrarily, other parameter estimates are placed on different scales across different 

groups (Bollen, 1989). This problem may account for more often reported problems 

of inflated Type I error (Cheung & Rensvold, 1999; see Finch, 2005; Meade & 

Lautenschlager, 2004; Stark et al., 2006; Wang, 2004; Wang & Yeh, 2003). For 

example, Stark et al. (2006) found that a biased anchor set severely inflates Type I 

error of the (constrained-baseline) MACS analysis for DIF detection. The inflation 

was greater as true differences in the anchor set parameters increased between groups. 

Accordingly, González-Romá et al. (2006) called for future research to examine the 

effects of using a DIF item as a single anchor.4

  

  

                                                 
4 More specifically, a single anchor is a sufficient condition for scaling if the 
conventional marker-variable scaling method is used with the free-baseline strategy. 
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5.2. Choice of an Unbiased Anchor 

A designated, invariant anchor set is desirable for any DIF analysis. However, 

the designated anchor set is usually selected based on preliminary analyses of the 

same data that will be used for the main analyses, rather than based on extensive prior 

research (Woods, 2008; see Thissen et al., 1993). To rule out the possibility of bias in 

an anchor set, a variety of empirical solutions have been proposed in the literature. 

For example, Cheung and Rensvold (1999) and Wang (2004) suggested using all 

items once as an anchor. González-Romá et al. (2005) repeated the (free-baseline) 

MACS analysis, while randomly selecting an anchor. Nevertheless, such iterative 

solutions become quite labor intensive for many practitioners as the total number of 

items increases. In addition, Type I error will be severely inflated if no item appears 

to be invariant, even when the alpha level has been adjusted for the increased number 

of nested-model comparisons. 

More recently, Stark et al. (2006) proposed a two-step process. That is, while 

running the constrained-baseline MACS analysis, the first step involves selecting an 

item that has the highest loading and is “(presumably) unbiased” (p. 1304). The 

second step involves conducting the free-baseline analysis, while using the selected 

item as an anchor in the subsequent DIF tests. However, this two-step process 

involves a couple of uncertainties. First, the baseline model used in this step is not 

theoretically reasonable (see 4.3.3. Recommended Strategy in this dissertation) and 

therefore failure at the first step will jeopardize the validity of the second step for DIF 

analysis. Second, although an anchor should be highly related to the latent trait 
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variable because it defines the scale of the trait variable, there is no known 

relationship between the magnitude of the loading and the amount of DIF (Woods, 

2009).  

5.3. Potential Resolutions for Misspecification Problems 

When the (free-baseline) MACS analysis is conducted with more than one 

group, scaling is achieved conventionally by constraining the item parameters of a 

chosen anchor to equality across groups. In contrast, alternative scaling methods do 

not impose a between-group equality constraint on a particular item. In other words, 

they do not require a researcher to have a designated anchor or anchor set. 

Furthermore, the alternative scaling methods provide additional preferable 

features. For example, if the fixed-factor method is used, the latent trait variable is 

standardized so that item parameter estimates are readily convertible to those in the 

two-parameter IRT model (Kamata & Bauer, 2008; see Equations 26 and 27; see also 

McDonald, 1999; Takane & de Leeuw, 1987). Another advantage of using this 

method is that the association estimates among the trait variables have a correlation 

metric when more than one trait variable – each with a unique set of items – is 

modeled simultaneously. If the effects-coded method is used, item parameter 

estimates are optimally balanced so that the trait parameter estimates would be 

weighted, more accurate estimates of population values. The fact that, with either one 

of these alternative methods, all items of a scale can be tested for DIF may lead to 

more accurate conclusions about DIF. After a purification process (e.g., between-

group equality of the trait parameters are evaluated, while imposing the constraints of 
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the supported partial invariance), group comparisons of the trait means and variances 

may become more meaningful. 

6. Research Purpose 

Despite the likely problems of model misspecification in the real world 

(Cheung & Rensvold, 1999), little empirical research has been conducted in the 

literature. Accordingly, the purpose of this dissertation is to present a new study 

which examines the effects of using a biased anchor, or more broadly the effects of 

using different scaling methods in the MACS DIF analysis. 

It is important that a technique control its Type I error to be a valid statistical 

test of the hypothesis. If observed Type I error rates are found to be within reason, the 

power of the test needs to be examined. Accordingly, the Type I error and power of 

the MACS technique is explored by means of a Monte Carlo simulation. 

7. Hypotheses 

As noted previously, different but statistically equivalent scaling methods lead 

to the same conclusions about “omnibus” measurement invariance (González & 

Griffin, 2001; Little et al., 2006). But, they can yield different conclusions when the 

model tests DIF. The hypotheses of the present simulation study are as follows. 

Hypothesis 1: When the item parameters used for scaling are truly invariant 

across groups, the performance of the MACS technique will be equivalent, 

regardless of the scaling method. 

More specifically, three different scaling methods will be comparable in terms of 

Type I error and power if the anchor is neither a uniform nor non-uniform DIF item.  
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Hypothesis 2: When the item parameters used for scaling are not truly 

invariant across groups, the performance of the MACS technique will depend 

on the choice of scaling method. 

More specifically, if the anchor is either a uniform or a non-uniform DIF item, using 

the marker-variable method will inflate Type I error, consequently making the MACS 

technique unsuitable for testing DIF. 
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CHAPTER III: METHODOLOGY 

This chapter discusses the methodology used for the present simulation study. 

A Monte Carlo simulation yielded Type I error and power for the mean and 

covariance structure (MACS) confirmatory factor analysis (CFA) technique to detect 

differential item functioning (DIF) under various conditions. The condition factors 

included those that have been frequently examined in the DIF literature. 

Previous simulation studies have commonly manipulated type and amount of 

DIF, sample size or similarity of the sample sizes between focal and reference groups, 

latent trait distribution, type of item response, total number of items, and bias in the 

anchor set (see Hernández & González-Romá, 2003; González-Romá et al., 2006; 

Meade and Lautenschlager, 2004; Stark et al., 2006).5

                                                 
5 Hernández & González-Romá (2003), González-Romá et al. (2006), and Meade and 
Lautenschlager (2004) used the constrained-baseline strategy, whereas Stark et al. 
(2006) used the free-baseline strategy as well.  

 They found that the sample 

size, trait distribution, bias in an anchor set, and Bonferroni correction for multiple 

nested-model comparisons impact the Type I error in the MACS technique. Stark et al. 

(2006) found that moderate group differences in the latent trait mean (i.e., a 0.5 

standard deviation difference) have little impact, whereas González-Romá et al. (2006) 

observed better control for Type I error when trait means and sample sizes were equal 

between groups. In terms of power, the previous simulation studies found that the 

MACS technique is positively related to the amount of DIF, sample size, and total 

number of items. 
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Unfortunately, to my knowledge, there has been no simulation research 

considering the scaling method, which may affect the performance of the MACS 

technique. Furthermore, empirical evaluations of using different test statistics and 

criterion values are scant. In fact, French and Finch (2006) conducted a simulation 

study, where the conventional LR test and the ∆CFI (value of –0.01) test were 

compared separately for the case of testing omnibus metric invariance of a scale and 

the other case of testing non-uniform DIF in an item. When testing omnibus metric 

invariance with maximum likelihood (ML) estimation and normally distributed 

observed variables, the LR test maintained its Type I error at both .05 and .01 alpha 

levels in nearly all conditions. Under the same circumstance, the ∆CFI test provided 

comparable or less power than the LR test but inflated Type I error for small sample 

sizes. Power of detecting non-uniform DIF was reduced for both tests, but it was 

particularly low for the ∆CFI test. However, this study did not report Type I error for 

detecting non-uniform DIF. Further, this study did not consider locating uniform DIF 

in a scale.  

Taken together, the condition factors manipulated in the present simulation 

study were as follows: type of item response, total number of items (scale size), 

similarity of sample size, similarity of latent trait mean, type of DIF in an anchor, 

type and amount of DIF in a target item, test statistic and criterion value, and scaling 

method. 
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1. Design 

1.1. Type of Item response 

 The item responses were categorical with either two (i.e., dichotomous) or 

five options (i.e., polytomous). These categories are numbers frequently encountered 

in psychological tests and questionnaires, and five categories is the recommended 

minimum that adequately represents examinees’ scores on ordinal items by means of 

the MACS model (Bollen & Barb, 1981; Dolan, 1994). 

The item responses were conceptualized as an observed ordinal response x, 

wherein the underlying response x* was latent and continuous (Mellenbergh, 1994). 

As the normally distributed latent response increases beyond certain threshold values, 

the observed response takes higher scores. Thus, an examinee who chooses one 

response category has more of a characteristic than another who chooses a lower 

category. 

1.2. Scale size 

The scale consisted of 6 or 12 items. The anchor, if required for scaling, was 

always Item 1, whereas Item 2 always served as a target item. When DIF was present, 

it appeared only on the anchor, only on the target item, or both. Consequently, the 

proportion of the DIF items in the scale ranged from 0 to .33. 

 1.3. Similarity of Sample Size 

Three combinations of sample sizes were designed in this study; 𝑁𝑁𝑓𝑓  = 100, 

250, and 500 for a focal group and 𝑁𝑁𝑡𝑡  = 900, 750, and 500 for a reference group. 
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Consequently, total sample sizes were always (𝑁𝑁𝑓𝑓 + 𝑁𝑁𝑡𝑡  =) 1,000, so as not to 

confound differences in the sample size with total sample size. 

1.4. Similarity of Latent Trait Mean 

The latent trait variable always followed a standard normal distribution 

(𝜉𝜉~𝑁𝑁[0,1]) in the reference group. The focal group had the same trait distribution, or 

the trait mean differed by 1 standard deviation so that this group had a smaller trait 

mean (𝜉𝜉~𝑁𝑁[−1,1]) than the reference group. 

1.5. Type of Anchor 

The anchor had no, non-uniform, or uniform DIF.6

1.6. Type of Target Item 

 

Similarly, the target item had no, non-uniform, or uniform DIF. The DIF 

(anchor and target) items were less discriminative (non-uniform DIF) or less 

attractive (more difficult; uniform DIF) for examinees in the focal group. 

1.7. Amount of DIF 

For the target item (Item 2), the amount of non-uniform DIF was 0, 0.2, or 0.4 

for no, small, and large DIF, respectively. Also, the amount of uniform DIF was 0, 

0.3, or 0.8 for no, small, and large DIF, respectively. The amount of DIF in the 

anchor (Item 1), if present, was always large, regardless of whether it was non-

uniform or uniform. 

                                                 
6 It should be noted that both the fixed-factor and the effects-coded scaling methods 
do not require any anchor item. For these methods, the presence of DIF in the anchor 
should be interpreted as having DIF in one item (Item 1) when other, target item is 
being tested. 
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These values are comparable to those used in previous simulation studies; 0.6 

(Finch, 2005), 0.1 and 0.2 (Kaplan & George, 1995), 0.25 (Meade & Lautenschlager, 

2004), 0.75 (Navas-Ara & Gómez-Benito, 2002), 0.15 and 0.4 for non-uniform DIF 

and 0.25 and 0.5 for uniform DIF (Stark et al., 2006), 0.2, 0.5, and 0.8 (Wanichtanom, 

2001), and 0.4 (Wang & Yeh, 2003). 

1.8. Criterion Value 

To determine the presence of DIF, the chi-square change and the CFI change 

were evaluated for each nested-model comparison. The p value for the LR chi-square 

test was uncorrected (p = .05) or Bonferroni-corrected (p = .05 / number of possible 

invariance tests). The critical ∆CFI values were –0.01 and –0.002 as proposed in the 

literature. When the observed test statistic was greater than the critical value, the 

target item was identified as having DIF. 

1.9. Scaling Method 

Three scaling methods were used; (a) the marker-variable method fixed the 

anchor’s loading to 1 and intercept to 0 in each group, (b) the fixed-factor method 

fixed the latent trait mean and variance to 0 and 1 in each group, respectively, and (c) 

the effects-coded method constrained all the intercepts to average to 0 and all the 

loadings to average to 1 in each group. 

All the condition factors were crossed with each other, resulting in a total of 

5,184 conditions (two types of item response × two scale sizes  × three combinations 

of sample sizes × two combinations of latent trait distributions × three types of anchor 

× three types of target item × two amounts of DIF in the target item × four criterion 
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values × three scaling methods). See Appendix A for a visual representation of the 

study design. 

2. Data Generation 

 Both dichotomous and polytomous responses were generated in this study. 

First, population parameter values were specified such that the same factor structure 

underlay each group. The intercept difference of an item between two groups does not 

necessarily represents the mean difference of the item because the latter is influenced 

by loadings and latent trait means as well (Kamata & Bauer, 2008; Stark et al., 2006; 

see also Equation 8). In other words, raising the intercept of a particular item 

increases its attractiveness only when its loadings and the trait means are equal 

between two groups. To isolate the effects of varying item attractiveness and/or latent 

trait distribution on the performance of the MACS technique, therefore, a single 

common factor model was used for the response generation rather than the MACS 

model. The single common factor model can be written as follows: 

𝑥𝑥𝑖𝑖 = 𝜆𝜆𝑖𝑖𝜉𝜉 + 𝛽𝛽𝛿𝛿𝑖𝑖 ,  (28) 

where 𝑥𝑥𝑖𝑖  represents the observed response x to an item i, 𝜆𝜆𝑖𝑖  represents the loading of 

𝑥𝑥𝑖𝑖  on a common factor 𝜉𝜉, and 𝛽𝛽 represents the loading of 𝑥𝑥𝑖𝑖  on a unique factor 𝛿𝛿𝑖𝑖 . 

The common factor loadings were equal between two groups, except those for the 

anchor (Item 1) and the target item (Item 2). The unique factor loadings were given 

by �1 − 𝜆𝜆𝑖𝑖2, thereby yielding a variance of unity in the items. The population 

parameter values are shown in Tables 1 and 2. 
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 The latent trait scores (𝜉𝜉) were sampled from independent normal 

distributions (i.e., 𝜉𝜉~𝑁𝑁[0,1], 𝜉𝜉~𝑁𝑁[−1,1]) and the unique factor scores (𝛿𝛿𝑖𝑖) were 

sampled from a standard normal distribution. They were substituted into Equation 28, 

along with the loadings previously specified, to create continuous item responses.  

 Once the continuous responses were obtained, they were divided into two or 

five ordered categories. For the dichotomous responses, an item threshold 𝛾𝛾𝑖𝑖  was 

chosen in accordance with 50% of the area under the normal curve. If  a continuous 

response was greater than the item threshold 𝛾𝛾𝑖𝑖  = 0, then this response was scored as 

1; Otherwise, it was scored as 0. For the polytomous conditions, four item thresholds 

of equal interval were chosen in accordance with approximately 3.6%, 23.8%, 45.1%, 

23.8%, and 3.6% of the area under the normal curve. For each item, the ordinal 

responses (k) were assigned as such: k = 1 if 𝑥𝑥𝑖𝑖 ≤ −1.8; k = 2 if −1.8 < 𝑥𝑥𝑖𝑖 ≤ −0.6; k 

= 3 if −0.6 < 𝑥𝑥𝑖𝑖 ≤ 0.6; k = 4 if 0.6 < 𝑥𝑥𝑖𝑖 ≤ 1.8; k = 5 if 𝑥𝑥𝑖𝑖 > 1.8. 

If present, DIF was created by varying an item’s loading or threshold 

parameter between two groups. Specifically, the loading parameter for the focal 

group was reduced by a certain amount (i.e., 0.2, 0.4) to create non-uniform DIF. To 

create uniform DIF, the threshold parameter was raised by a certain amount (i.e., 0.3, 

0.8). For polytomous responses, all threshold parameters were shifted by the same 

amount. This corresponds to varying all the attractive parameters obtained from 

graded response model (Samejima, 1979) between two groups. 

Within each study condition, 500 replications were made in each group to 

avoid capitalizing on chance. This resulted in 648,000 data sets for analysis. The 
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same set of the trait scores was used but new values were sampled for the unique 

factor scores in each replication.
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3. Procedure 

In each replication, a baseline model and subsequent nested models were 

fitted to the generated data. Two measures of overall model fit, including Jöreskog’s 

(1971) chi-square and Bentler’s (1990) CFI were obtained in each step. 

The free-baseline MACS technique, described in Chapter II, tested both 

uniform and non-uniform DIF. The steps for testing non-uniform DIF were as follows 

(see Figure 1): 

1. Estimate all parameters within each group, except those needed for scaling. 

This step provided the chi-square and CFI values for the baseline model 

(Model A) 

2. Estimate all parameters as in Model A, except for one change. Specifically, 

a constraint was imposed such that the loadings of Item 2 were equal 

between two groups (Model B). 

3. Compute the chi-square difference and the CFI difference between Model 

A and Model B. If the chi-square difference exceeded a critical value with 

1 degree of freedom, non-uniform DIF was flagged. Similarly, if the CFI 

difference exceeded a critical value, this item was identified as having 

non-uniform DIF. 

Next, Model B was used as a baseline model for testing uniform DIF. The steps were 

as follows (see Figure 1): 

1. Estimate all free parameters in Model B, except for one; the intercepts of 

Item 2 were constrained to be equal between two groups (Model C). 
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2. Compute the chi-square difference and the CFI difference between Model 

B and Model C. If these values exceeded a corresponding critical value, 

uniform DIF was flagged. 

4. Analysis 

The free-baseline MACS analysis was conducted via Mplus 5.0 (Muthén & 

Muthén, 1998-2007), using ML estimation. Mean structure analysis, of course, is also 

possible via LISREL (Jöreskog & Sörbom, 1996) and EQS (Bentler, 2006). The 

didactic expositions of using LISREL and EQS can be found in Jöreskog and Sörbom 

(1996) and Bentler (1989), respectively. 

Type I error rates and power were obtained through a small utility program 

written in FORTRAN. Type I error rate was computed as the proportion of times that 

the invariant target item was incorrectly flagged as having DIF (i.e., false positive). 

The proportion of trials in which the null hypothesis of invariance was rejected was 

counted based on the LR test as well as ∆CFI test. As mentioned previously, both 

uncorrected and Bonferroni-corrected p values were used as a criterion value for the 

LR test. The criterion values of –0.01 and –0.002 were used for the ∆CFI test. An 

empirical Type I error rate greater than the nominal alpha value (.05) was considered 

to be inflated. Power rate was computed as the proportion of times that the non-

invariant target item was correctly identified as having DIF (i.e., true negative). 

Finally, variance components analysis was used to examine which condition 

factors influenced the performance of the MACS technique. The variance 

components analysis is a variant of analysis of variance, which allows for the 
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estimation of the variation in a given dependent variable that is accounted for by a set 

of independent variables. In the current study, the dependent variable was Type I 

error rate and power, whereas the independent variables included the type of item 

response, scale size, similarity of sample size, latent trait distribution, type of DIF in 

an anchor, type of DIF in a target item, and scaling method. All the effects in the 

model, except for the intercept, were considered random and minimum variance 

quadratic unbiased estimation (MIVQUE) was used. This analysis was conducted via 

SAS 9.1 (SAS Institute, 2004). 
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CHAPTER IV: RESULTS 

This chapter presents the results of the current Monte Carlo simulation study, 

which examined the performance of the mean and covariance structure (MACS) 

confirmatory factor analysis (CFA) technique for detecting differential item 

functioning (DIF) under various conditions. The results presented are as follows: (1) 

reliability, (2) model fit, (3) Type I error, and (4) power. 

1. Reliability 

 As described in Chapter II, dichotomous responses and polytomous responses 

were generated for each of three combinations of sample sizes (i.e., 𝑁𝑁𝑓𝑓  = 100, 250, 

500 and 𝑁𝑁𝑡𝑡  = 900, 750, 500 such that 𝑁𝑁𝑓𝑓 + 𝑁𝑁𝑡𝑡  = 1,000), crossed by two combinations 

of latent trait distributions. The focal group had the same trait distribution as the 

reference group (𝜉𝜉~𝑁𝑁[0,1]), or the trait mean differed by 1 standard deviation so that 

the former group had a smaller trait mean (𝜉𝜉~𝑁𝑁[−1,1]). The reliability of the scale 

was supported for both types of response. In the dichotomous cases, Cronbach’s alpha 

ranged from 0.91 to 0.95 7

2. Model Fit 

, and it was a little higher when two groups had equal 

sample sizes or unequal trait means. In the polytomous cases, the alpha was equal to 

0.97, regardless of the similarity of the sample sizes and the trait mean difference. 

Table 3 presents average chi-square and CFI values of a baseline model for 

each combination of four condition factors. These fit values indicated that the 

                                                 
7 Helmstadter (1964) noted that the Cronbach’s alpha of 0.50 is acceptable for 
comparisons of two group means differing by one fourth of a standard deviation. 
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baseline models fit at least adequately when the scale consisted of six items. The CFI 

values were equal to or greater than 0.85 in the dichotomous cases and near 0.90 in 

the polytomous cases (see Bentler & Bonett, 1980). When the scale was longer (i.e., 

12 items), however, the baseline models did not fit adequately; the CFI value ranged 

from .53 to .59. The chi-square value of the baseline models was substantial, rejecting 

the null hypothesis of exact model fit. 

 

Table 3 

Mean Model Fit Values for the Baseline Model 

DIF Tested Item response Scale size Trait Mean Chi-square CFI 
Non-uniform Dichotomous 6 items Equal  1441.89 .85 

   
Unequal 1393.37 .85 

  
12 items Equal  10886.30 .53 

   
Unequal 10377.61 .53 

 
Polytomous 6 items Equal  1384.18 .87 

   
Unequal 1344.03 .87 

  
12 items Equal  11081.77 .58 

   
Unequal 10743.97 .59 

Uniform Dichotomous 6 items Equal  1424.44 .85 

   
Unequal 1403.10 .85 

  
12 items Equal  10852.63 .53 

   
Unequal 10419.15 .53 

 
Polytomous 6 items Equal  1380.72 .87 

   
Unequal 1346.02 .87 

  
12 items Equal  11098.58 .58 

   
Unequal 10758.21 .59 

Note. The degrees of freedom were 18 and 108 in the 6-item and 12-item conditions, 
respectively. 
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3. Type I Error and Power 

The Monte Carlo simulation results are presented separately for Type I error 

and power. Then, they are visually summarized for each of three scaling methods. 

3.1. Type I Error 

Type I error, by all combinations of the condition factors, appears in 

Appendix B. As mentioned in the method chapter, Type I error was obtained 

separately for two test statistics and their different criterion values; uncorrected and 

Bonferroni-corrected p values of the LR test and ∆CFI values of –0.01 and –0.002. 

The results from using the conventional, uncorrected LR test are presented first, 

followed by those from using the three alternative criterion values. 

3.1.1. Uncorrected p Value of the LR Test 

When DIF was not simulated on the scale and the latent trait means were 

equal between groups, both marker-variable and fixed-factor scaling methods 

provided reasonable control for Type I error. Their Type I error rates were below or 

near the nominal alpha value (.05), regardless of the type of DIF being tested. Some 

exceptions occurred for the fixed-factor method: when uniform DIF was located 

among binary items with the group sizes of grater than 100 (.136 - .166). In contrast, 

Type I error for the effects-coded scaling method was generally inflated above the 

nominal alpha value in most conditions. Nevertheless, this method provided 

acceptable Type I error rates when used to locate uniform DIF among six ordinal 

items. 
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When large DIF was simulated on the anchor (or scale), both the marker-

variable and effects-coded methods lost their control for Type I error. The Type I 

error rates largely exceeded the nominal alpha value in most conditions (.050 - 1). In 

general, the presence of DIF in the scale (but not in the target item) also inflated Type 

I error for the fixed-factor method. However, this method still controlled Type I error 

at the nominal alpha level in some conditions; when the scale consisted of six ordinal 

items (0 - .032) and when the scale had 12 ordinal items and one of them was 

contaminated by uniform DIF (.002 - .026). These Type I error results are 

summarized in Table 4. 

 

Table 4 

Type I error of the Uncorrected LR Test in the Equal Latent Trait Mean Condition 

 Tested Scaling method 
Anchor Type DIF type Marker-variable Fixed-factor Effects-coded 
Unbiased Non-uniform O O X 
 Uniform O O X 
DIF Non-uniform X O (6 ordinal items) X 
 Uniform X O (6 ordinal items) X 

Note. The “O” and “X” indicate the conditions where, in general, Type I error was 
controlled or inflated at the nominal alpha level, respectively. 
 

When latent trait means differed by 1 standard deviation between groups, 

Type I error was severely inflated in most conditions, regardless of the scaling 

method. In addition, the inflation was more severe when uniform DIF was tested. For 

example, the rate of falsely identifying the unbiased target item as having uniform 

DIF easily approached 1. Nevertheless, some exceptions to the inflated Type I error 
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occurred when non-uniform DIF was tested with polytomous responses; with an 

unbiased anchor and the marker-variable method (0 - .004); and with an unbiased or 

uniform DIF anchor and the fixed-factor method (0 - .010). 

3.1.2. Alternative Criterion Values 

In general, the use of an alternative criterion value (i.e., Bonferroni-corrected 

p, ∆CFI) decreased Type I error in the MACS technique. 

The overall Type I error reduction due to the Bonferroni correction was the 

greatest in the fixed-factor scaling method (38.1% decreases), followed by the 

effects-coded method (19.4%) and the marker-variable method (8.0%). As a result, 

Type I error for the fixed-factor method was almost eliminated, except for a few 

conditions (e.g., when group sizes were greater than 100; when non-uniform DIF was 

tested in the scale including non-uniform DIF). In contrast, the Type I error rate for 

the marker-factor method was always inflated above the nominal alpha value when 

the anchor was biased. It was difficult to find consistent patterns of when the effects-

coded method provided acceptable Type I error rates. 

The use of ∆CFI markedly decreased Type I error in most conditions. 

Consequently, the Type I error rates were below the nominal alpha value unless the 

focal group had a sample size of 100 (fixed-factor method) and the anchor was biased 

(marker-variable method, effects-coded method). The reduction in Type I error was 

more prominent when the ∆CFI test of –0.01 was used with binary items. Using the 

∆CFI test of –0.002 had positive effects on Type I error, yielding similar Type I error 
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results as using the Bonferroni correction. Table 5 summarizes the Type I error results 

from using an alternative criterion value when the anchor was biased. 

 

Table 5 

Type I error of Using an Alternative Criterion in the Biased-Anchor, Equal Latent 

Trait Mean Condition 

 Tested Scaling method 
Test statistic DIF type Marker-variable Fixed-factor Effects-coded 
Corrected p Non-uniform O (6 ordinal items) O (6 ordinal items) O (6 ordinal items) 
 Uniform X O (𝑁𝑁𝑓𝑓  > 100) X 
∆CFI Non-uniform O (ordinal items) O (𝑁𝑁𝑓𝑓  > 100) O (ordinal items) 
 Uniform X O (𝑁𝑁𝑓𝑓  > 100) X 

 

When the trait means were not equal, Type I error reduction due to the 

Bonferroni correction was relatively small, compared to the case of equal trait means. 

The overall reduction ranged from 2.8% (fixed-factor method) to 15.0% (effects-

coded method). On the other hand, using the ∆CFI test of –0.01 still almost 

eliminated Type I error in some conditions. For example, the Type I error rate was 

below the nominal alpha value when non-uniform DIF was located among ordinal 

items; when non-uniform DIF was located among binary items, the fixed-factor 

method was used, and group sizes were greater than 100; when uniform DIF was 

tested with the marker-variable method and an unbiased or non-uniform DIF anchor; 

when uniform DIF was located among 12 ordinal items using the fixed-factor method; 

and when uniform DIF was located among ordinal items using the effects-coded 

method. Using the ∆CFI test of –0.002 resulted in similar patterns of Type I error 
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reduction, but the reduced amounts were much smaller than using the ∆CFI test of –

0.01. Table 6 summarizes the results from using an alternative criterion value when 

the anchor was biased and the trait means were not equal between groups. 

 

Table 6 

Type I error of Using an Alternative Criterion in the Biased-Anchor, Unequal Latent 

Trait Mean Condition 

 Tested Scaling method 
Test statistic DIF type Marker-variable Fixed-factor Effects-coded 
Corrected p Non-uniform X O (6 ordinal items) X 
 Uniform X X X 
∆CFI Non-uniform O (ordinal items) O (ordinal items) O (ordinal items) 
 Uniform X X X 

 

3.1.3. Results of Variance Components Analysis 

The results of the variance components analysis are presented in Table 7. The 

MIVQUE estimates reported in this table reflect the amounts of variation in Type I 

error that are accounted for by each condition factor. In other words, the higher the 

estimate value, the more the corresponding condition factor contributed to Type I 

error in the MACS technique. 

In general, the results were somewhat similar across four different criterion 

values, which were independently used to obtain the Type I error rate. That is, the 

most influential single factors were commonly similarity of latent trait means, type of 

item response, and type of anchor.  
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When either the uncorrected or Bonferroni-corrected LR test was used, the 

most important factor was the similarity of latent trait means (0.065 and 0.058 for 

uncorrected and corrected p values, respectively). It was followed by the two-way 

interaction between type of DIF and type of item response. The MIVQUE estimates 

were 0.032 and 0.038 for uncorrected and corrected p values, respectively. Type I 

error was also strongly influenced by another two-way interaction between scaling 

method and type of anchor (0.024 and 0.026 for uncorrected and corrected p values, 

respectively). 

When the ∆CFI test of –0.01 was used, the six-way interaction, scaling 

method × similarity of latent trait means × type of DIF × type of item response × scale 

size × type of anchor, contributed the most to the Type I error variance (0.022). For 

the ∆CFI test of –0.002, the highest interaction term (i.e., seven-way) accounted for 

the most variance (0.054). Then, it was followed by the three-way interaction, scaling 

method × latent distribution × type of DIF (0.032), and the two-way interaction 

between scaling method and type of anchor (0.025). 
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Table 7 

Results of the Variance Components Analysis for Type I Error 

 Criterion value 
 LR test ∆CFI test 
Factor Uncorrected p Corrected p –0.01 –0.002 
Scaling method (S) 0 0 0 0 
Latent trait mean (L) 0.065 0.058 0.004 0.015 
Type of DIF (D) 0 0 0 0 
Item response (I) 0.012 0.010 0.002 0.016 
Scale size (T) 0.002 0.001 0 0 
Sample size (N) 0 0 0 0 
Type of Anchor (A) 0.008 0.008 0.002 0.009 
S*L 0.020 0.020 0 0.011 
S*D 0.009 0.004 0 0 
S*I 0.002 0 0.009 0.002 
S*T 0 0 0 0 
S*N 0 0 0.002 0 
S*A 0.024 0.026 0.006 0.025 
L*D 0.031 0.024 0 0 
L*I 0 0 0.002 0 
L*T 0 0 0 0.001 
L*N 0.002 0.005 0 0.001 
L*A 0 0 0.001 0 
D*I 0.032 0.038 0.002 0.019 
D*T 0.002 0.002 0.001 0.001 
D*N 0 0 0.003 0.002 
D*A 0 0 0 0.002 
I*T 0 0 0.001 0 
I*N 0.003 0.005 0.021 0.012 
I*A 0.003 0.004 0.003 0.004 
T*N 0 0 0.001 0.002 
T*A 0.002 0.002 0 0.001 
N*A 0 0.001 0.001 0 
S*L*D 0 0 0 0.032 
S*L*I 0 0.007 0 0.001 
S*L*T 0.001 0.002 0.007 0.007 

Note. The variance components estimates should theoretically be positive because 
they represent the variance of a random variable. Under the assumption that the fitted 
random effects model was appropriate for the data, the negative estimate value, if 
present, was considered as zero following common practice.  
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Table 7 

Results of the Variance Components Analysis for Type I Error (Continued) 

 Criterion value 
 LR test ∆CFI test 
Factor Uncorrected p Corrected p –0.01 –0.002 
S*L*N 0 0 0 0 
S*L*A 0 0.002 0 0.003 
S*D*I 0 0 0 0.001 
S*D*T 0.001 0.001 0 0.003 
S*D*N 0 0 0 0 
S*D*A 0 0 0.001 0.008 
S*I*T 0.001 0.001 0 0.001 
S*I*N 0.006 0.009 0.002 0.012 
S*I*A 0 0.001 0 0 
S*T*N 0 0 0.004 0 
S*T*A 0.003 0.004 0.002 0.004 
S*N*A 0 0 0.002 0.003 
L*D*I 0.007 0.009 0 0.009 
L*D*T 0.002 0.002 0.003 0.001 
L*D*N 0.001 0.001 0.002 0.002 
L*D*A 0.026 0.021 0 0 
L*I*T 0.002 0.003 0 0.001 
L*I*N 0.001 0 0 0 
L*I*A 0 0 0 0 
L*T*N 0 0 0.002 0 
L*T*A 0.002 0.003 0 0 
L*N*A 0 0 0 0.005 
D*I*T 0.001 0.002 0 0.001 
D*I*N 0.001 0 0 0 
D*I*A 0 0 0 0.001 
D*T*N 0 0 0 0 
D*T*A 0.009 0.008 0 0 
D*N*A 0 0 0.001 0 
I*T*N 0.001 0 0 0 
I*T*A 0 0 0 0 
I*N*A 0 0 0 0 
T*N*A 0 0 0 0.001 
S*L*D*I 0.024 0.014 0.005 0 
S*L*D*T 0 0 0.006 0 
S*L*D*N 0.001 0.002 0 0 
S*L*D*A 0.015 0.005 0.001 0 
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Table 7 

Results of Variance Components Analysis for Type I Error (Continued) 

 Criterion value 
 LR test ∆CFI test 
Factor Uncorrected p Corrected p –0.01 –0.002 
S*L*I*T 0 0 0.003 0 
S*L*I*N 0 0.002 0.003 0.004 
S*L*I*A 0 0 0.003 0 
S*L*T*N 0.001 0.001 0 0 
S*L*T*A 0.001 0.001 0.001 0 
S*L*N*A 0 0 0 0 
S*D*I*T 0 0 0.004 0 
S*D*I*N 0.002 0.003 0.001 0.001 
S*D*I*A 0 0 0.010 0.013 
S*D*T*N 0 0.001 0.001 0 
S*D*T*A 0 0 0.005 0 
S*D*N*A 0.003 0.004 0.001 0 
S*I*T*N 0.001 0.003 0.002 0.003 
S*I*T*A 0.001 0 0.006 0.001 
S*I*N*A 0.002 0.002 0 0.002 
S*T*N*A 0 0.002 0 0 
L*D*I*T 0 0 0.002 0 
L*D*I*N 0 0 0.002 0 
L*D*I*A 0.003 0.003 0.003 0.004 
L*D*T*N 0 0 0 0.002 
L*D*T*A 0 0 0.002 0.002 
L*D*N*A 0 0.002 0.001 0 
L*I*T*N 0 0 0.001 0 
L*I*T*A 0 0 0.005 0.004 
L*I*N*A 0.001 0.002 0.003 0 
L*T*N*A 0 0 0 0 
D*I*T*N 0 0 0.003 0.001 
D*I*T*A 0.003 0 0.004 0.001 
D*I*N*A 0 0.001 0 0.001 
D*T*N*A 0.002 0.003 0 0 
I*T*N*A 0.001 0.002 0.004 0.002 
S*L*D*I*T 0.003 0.004 0 0.016 
S*L*D*I*N 0 0 0 0.002 
S*L*D*I*A 0.020 0.022 0 0.014 
S*L*D*T*N 0 0 0.021 0.007 
S*L*D*T*A 0.001 0.001 0 0.004 
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Table 7 

Results of Variance Components Analysis for Type I Error (Continued) 

 Criterion value 
 LR test ∆CFI test 
Factor Uncorrected p Corrected p –0.01 –0.002 
S*L*D*N*A 0.002 0.003 0.001 0.009 
S*L*I*T*N 0 0 0 0 
S*L*I*T*A 0 0 0 0.005 
S*L*I*N*A 0.001 0.002 0.003 0.008 
S*L*T*N*A 0 0 0.004 0.008 
S*D*I*T*N 0 0 0 0.002 
S*D*I*T*A 0.002 0.004 0 0 
S*D*I*N*A 0 0 0.003 0.006 
S*D*T*N*A 0 0 0.001 0.014 
S*I*T*N*A 0 0 0.001 0.002 
L*D*I*T*N 0.002 0.002 0 0.003 
L*D*I*T*A 0.003 0.003 0 0 
L*D*I*N*A 0 0 0 0.003 
L*D*T*N*A 0.001 0 0 0.002 
L*I*T*N*A 0 0 0 0 
D*I*T*N*A 0 0 0 0.002 
S*L*D*I*T*N 0.002 0.004 0 0 
S*L*D*I*T*A 0.002 0.004 0.022 0 
S*L*D*I*N*A 0 0 0 0 
S*L*D*T*N*A 0 0 0 0 
S*L*I*T*N*A 0.003 0.003 0 0 
S*D*I*T*N*A 0.002 0.003 0.002 0 
L*D*I*T*N*A 0.002 0.003 0.002 0 
S*L*D*I*T*N*A 0.006 0.009 0.018 0.054 
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3.2. Power 

Power, by all combinations of the condition factors, appears in Appendix C. 

First of all, descriptive analysis was used to investigate which condition factors 

considerably affected power. The mean power for each of four different criterion 

values is presented in Table 8, crossed by five condition factors. These five condition 

factors were those found the most influential single factors in the previous variance 

components analysis for Type I error. 

On average, power was higher under these conditions; when DIF is large (.537) 

rather than small (.425); when latent trait means were unequal between groups (.531) 

rather than equal (.431); when item responses were dichotomous (.566) rather than 

polytomous (.397); when uniform DIF was tested (.625) rather than non-uniform DIF 

(.337); and the anchor was non-invariant (.499) rather than invariant (.463). In 

addition, using a conventional, uncorrected p value of the LR test provided the 

highest power (.695). Then, this was followed by using Bonferroni correction (.596), 

a ∆CFI value of –0.002 (.383), and a ∆CFI value of –0.01 (.179). The difference in 

average power was negligible between invariant anchor and non-invariant anchor 

across the four different criterion values (.013 - .059).  
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Table 8 

Mean Power Rate by Five Condition Factors.  

     Criterion value 
Factor LR test ∆CFI test 
E L D I A Uncorrected p Corrected p –0.01 –0.002 
E1 L1 D1 I1 A1 .479 .355 .155 .214 
    A2 .594 .531 .251 .445 
   I2 A1 .254 .091 .000 .003 
    A2 .312 .160 .020 .036 
  D2 I1 A1 .796 .677 .112 .264 
    A2 .834 .734 .117 .407 
   I2 A1 .785 .692 .000 .242 
    A2 .838 .729 .048 .352 
 L2 D1 I1 A1 .790 .662 .177 .358 
    A2 .798 .682 .352 .490 
   I2 A1 .273 .114 .000 .002 
    A2 .373 .269 .023 .084 
  D2 I1 A1 .643 .612 .345 .559 
    A2 .933 .901 .428 .740 
   I2 A1 .906 .757 .202 .410 
    A2 .901 .871 .286 .742 
E2 L1 D1 I1 A1 .738 .640 .164 .351 
    A2 .730 .644 .204 .430 
   I2 A1 .596 .446 .060 .149 
    A2 .455 .304 .030 .095 
  D2 I1 A1 .903 .875 .292 .771 
    A2 .800 .747 .317 .650 
   I2 A1 .865 .833 .266 .750 
    A2 .657 .600 .195 .531 
 L2 D1 I1 A1 .680 .615 .189 .454 
    A2 .796 .735 .313 .552 
   I2 A1 .541 .392 .026 .087 
    A2 .441 .288 .016 .085 
  D2 I1 A1 .881 .790 .546 .730 
    A2 .951 .921 .570 .805 
   I2 A1 .993 .981 .339 .781 
    A2 .916 .841 .431 .619 

Note. E1 = small DIF, E2 = large DIF; L1 = equal latent trait means, L2 = unequal 
latent trait means, D1 = non-uniform DIF, D2 = uniform DIF; I1 = dichotomous item 
response, I2 = polytomous item response, A1 = invariant anchor, A2 = non-invariant 
anchor. 
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3.2.1. Uncorrected p Value of the LR Test 

When the latent trait means were equal, power for detecting uniform DIF was 

adequate for both marker-variable and fixed-factor scaling methods. That is, power 

was always greater than .80, regardless of the type of item response and DIF size. 

Only exceptions occurred when large uniform DIF was tested with the marker-

variable method and a uniform DIF anchor (.012 - .557). In contrast, the effects-

coded method provided adequate power in some conditions, but it was difficult to 

find consistent patterns. 

When used to detect large non-uniform DIF under the equal trait means, the 

marker-variable method provided adequate power with the 12-item scale including an 

invariant anchor (.804 - 1). However, with the 6-item scale containing an invariant 

anchor, power was marginal (.167 - .744). Under the equal trait means, power for 

detecting large non-uniform DIF was adequate for the fixed-factor method only in a 

few conditions; when group sizes were greater than 100, the scale consisted of six 

binary items, and this scale included another uniform DIF item or DIF-free items. 

When the item responses were polytomous, however, power for detecting non-

uniform DIF was always less than .80 for this scaling method (.386 - .564), regardless 

of the DIF size. Under the same condition (e.g., equal trait means, testing non-

uniform DIF), the effects-coded method provided adequate power when the scale 

included an invariant anchor (.835 - 1). 

In general, unequal trait means did increase power in the MACS technique. In 

addition, the increase was the greatest when uniform DIF was tested with the effects-
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coded method. Consequently, this scaling method provided adequate power for 

detecting large uniform DIF unless the scale included another uniform DIF item (.800 

- 1). Interestingly, negligible but small decrease in overall power for detecting small 

DIF was observed for the marker-variable method (6.2%).  

3.2.2. Alternative Criterion Values 

Generally, the use of an alternative criterion value reduced power in the 

MACS technique. Nevertheless, for both marker-variable and fixed-factor scaling 

methods, Bonferroni correction did not adversely affect power for detecting large 

uniform DIF. For detecting small uniform DIF, using the Bonferroni-corrected LR 

test provided adequate power when group sizes were greater than 100. 

The ∆CFI test was somewhat stringent in the sense that power for any scaling 

method was not adequate in most conditions. For example, power of the ∆CFI test of 

–0.01 could not reach .80 except for only a few conditions. Nevertheless, power for 

detecting large uniform DIF was greater than .80 when the ∆CFI value of –0.002 was 

used with the fixed-factor scaling method and the group sizes of greater than 100. For 

the marker-variable method, power for detecting large uniform was adequate when 

the ∆CFI value of –0.002 was used, group sizes were greater than 100, and the anchor 

was unbiased or non-uniform DIF item. For the effects-coded method, power was less 

than .80 in nearly all conditions. 

Unequal trait means improved power in the MACS technique especially when 

uniform DIF was tested. Consequently, with the ∆CFI value of –0.002 and the fixed-

factor scaling method, power for detecting uniform DIF approached 1 in almost all 
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conditions. Although power also increased for the other two scaling methods, any 

consistent pattern could not be observed. 

3.2.3. Results of Variance Components Analysis 

Table 9 presents the results of the variance components analysis. In general, 

the most influential single factors were commonly similarity of latent trait means and 

type of item response across four different criterion values. 

For the LR test, the most important factor was the two-way interaction 

between similarity of latent trait means and type of item response (0.024 for 

uncorrected p value) and the type of item response (0.034 for corrected p value). For 

the ∆CFI test of –0.01, the five-way interaction, scaling method × type of DIF × type 

of item response × scale size × type of anchor, contributed the most to the power 

variance (0.018). For the ∆CFI test of –0.002, the two-way interaction between 

sample sizes and type of anchor accounted for the most variance (0.028). 

These results were somewhat different from those obtained for Type I error. 

For example, although the most influential single factors were in common between 

Type I error and power, power was not strongly influenced by the two-way 

interaction between scaling method and type of anchor (0.001 - 0.008). 

The Type I error and power results are visually summarized in Tables 10 

through 13. The shaded areas in these tables indicate the cases where the MACS 

technique performed well to test at least small DIF, in terms of Type I error and 

power. In other words, if the Type I error rate was less than .05 and power was 

greater than .80, the corresponding conditions were shaded in this table.  
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Table 9 

Results of the Variance Components Analysis for Power 

 Criterion value 
 LR test ∆CFI test 
Factor Uncorrected p Corrected p –0.01 –0.002 
Scaling method (S) 0 0 0 0 
Latent trait mean (L) 0.021 0.020 0.004 0.004 
Type of DIF (D) 0.008 0.009 0 0.016 
Item response (I) 0.003 0.001 0 0 
Scale size (T) 0 0 0 0 
Sample size (N) 0 0 0 0 
Type of Anchor (A) 0.002 0 0 0 
S*L 0.021 0.025 0 0.021 
S*D 0.001 0.002 0 0 
S*I 0 0 0 0.003 
S*T 0 0 0.009 0.004 
S*N 0 0 0 0.003 
S*A 0 0 0.002 0 
L*D 0.001 0.004 0.001 0.007 
L*I 0 0 0 0 
L*T 0 0 0 0.001 
L*N 0 0.001 0.002 0.002 
L*A 0 0 0 0.001 
D*I 0.024 0.034 0.002 0.028 
D*T 0 0 0.005 0.009 
D*N 0 0.001 0.008 0.006 
D*A 0.001 0.003 0 0.001 
I*T 0 0 0.001 0 
I*N 0.003 0.004 0.018 0.008 
I*A 0.003 0.005 0.001 0.004 
T*N 0 0 0.003 0.002 
T*A 0 0 0 0.001 
N*A 0 0.001 0 0 
S*L*D 0 0.001 0.011 0.014 
S*L*I 0.008 0.008 0.003 0 
S*L*T 0.002 0.003 0 0 

Note. The dependent variable was power averaged for small and large DIF conditions. 
Under the assumption that the fitted random effects model was appropriate for the 
data, the negative estimate value, if present, was considered as zero following 
common practice.  
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Table 9 

Results of the Variance Components Analysis for Power (Continued) 

 Criterion value 
 LR test ∆CFI test 
Factor Uncorrected p Corrected p –0.01 –0.002 
S*L*N 0 0 0 0 
S*L*A 0.006 0.006 0 0 
S*D*I 0 0 0.003 0.007 
S*D*T 0.004 0.006 0.006 0 
S*D*N 0 0 0 0 
S*D*A 0.001 0 0 0 
S*I*T 0.001 0.001 0 0 
S*I*N 0.005 0.008 0.001 0.013 
S*I*A 0.002 0.002 0.002 0.005 
S*T*N 0 0 0.002 0 
S*T*A 0 0 0 0 
S*N*A 0 0 0 0 
L*D*I 0.005 0.004 0 0 
L*D*T 0.001 0.001 0.001 0 
L*D*N 0 0 0 0 
L*D*A 0 0 0 0 
L*I*T 0.001 0.001 0 0.001 
L*I*N 0 0 0 0 
L*I*A 0 0 0.001 0 
L*T*N 0 0 0 0 
L*T*A 0 0 0 0 
L*N*A 0.001 0 0 0 
D*I*T 0.004 0.004 0 0.001 
D*I*N 0 0 0 0 
D*I*A 0 0 0.001 0 
D*T*N 0 0 0 0 
D*T*A 0.001 0 0 0 
D*N*A 0 0 0.001 0.002 
I*T*N 0 0 0 0 
I*T*A 0 0 0 0 
I*N*A 0 0 0 0.001 
T*N*A 0 0 0 0 
S*L*D*I 0.004 0 0 0 
S*L*D*T 0 0 0 0.005 
S*L*D*N 0 0.003 0.007 0.001 
S*L*D*A 0 0 0 0 
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Table 9 

Results of Variance Components Analysis for Power (Continued) 

 Criterion value 
 LR test ∆CFI test 
Factor Uncorrected p Corrected p –0.01 –0.002 
S*L*I*T 0 0 0 0 
S*L*I*N 0.001 0.001 0.002 0 
S*L*I*A 0 0.001 0 0 
S*L*T*N 0 0 0.002 0.001 
S*L*T*A 0 0 0.001 0 
S*L*N*A 0 0.001 0.005 0.004 
S*D*I*T 0 0 0 0.002 
S*D*I*N 0 0.001 0.002 0.001 
S*D*I*A 0 0.001 0.001 0.001 
S*D*T*N 0 0.001 0 0.001 
S*D*T*A 0 0.001 0.003 0.003 
S*D*N*A 0.001 0.001 0 0.001 
S*I*T*N 0.001 0.001 0 0.001 
S*I*T*A 0.001 0.001 0 0.002 
S*I*N*A 0 0 0.001 0 
S*T*N*A 0 0.001 0.001 0.002 
L*D*I*T 0.005 0.007 0 0.007 
L*D*I*N 0.001 0.001 0 0.002 
L*D*I*A 0 0 0.001 0.002 
L*D*T*N 0 0 0 0.001 
L*D*T*A 0.001 0.001 0.002 0.001 
L*D*N*A 0.001 0.001 0.001 0 
L*I*T*N 0 0.001 0.002 0.001 
L*I*T*A 0 0 0.001 0.002 
L*I*N*A 0.001 0.001 0.001 0.001 
L*T*N*A 0 0 0.002 0 
D*I*T*N 0.001 0.002 0 0 
D*I*T*A 0 0 0 0 
D*I*N*A 0.001 0.002 0.003 0.002 
D*T*N*A 0.004 0.008 0 0.004 
I*T*N*A 0.001 0 0 0 
S*L*D*I*T 0.004 0.005 0.004 0.002 
S*L*D*I*N 0 0 0 0.002 
S*L*D*I*A 0 0 0 0 
S*L*D*T*N 0 0 0 0 
S*L*D*T*A 0.001 0.001 0.002 0 
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Table 9 

Results of Variance Components Analysis for Power (Continued) 

 Criterion value 
 LR test ∆CFI test 
Factor Uncorrected p Corrected p –0.01 –0.002 
S*L*D*N*A 0 0 0 0 
S*L*I*T*N 0 0 0 0 
S*L*I*T*A 0 0 0 0.003 
S*L*I*N*A 0 0 0 0 
S*L*T*N*A 0 0 0 0 
S*D*I*T*N 0 0 0 0 
S*D*I*T*A 0.002 0.001 0 0 
S*D*I*N*A 0 0 0.002 0.001 
S*D*T*N*A 0 0 0 0 
S*I*T*N*A 0 0 0 0 
L*D*I*T*N 0 0 0 0 
L*D*I*T*A 0 0 0 0 
L*D*I*N*A 0 0 0 0 
L*D*T*N*A 0 0 0 0 
L*I*T*N*A 0 0 0 0 
D*I*T*N*A 0 0 0 0.003 
S*L*D*I*T*N 0.001 0.002 0.009 0.003 
S*L*D*I*T*A 0.001 0.001 0.002 0.001 
S*L*D*I*N*A 0.001 0.001 0.001 0.001 
S*L*D*T*N*A 0.001 0 0.001 0.001 
S*L*I*T*N*A 0.003 0.005 0.004 0.006 
S*D*I*T*N*A 0.002 0.002 0.002 0.002 
L*D*I*T*N*A 0.004 0.006 0.003 0.001 
S*L*D*I*T*N*A 0.001 0.002 0.002 0.004 

 

  



 

82 
 

Table 10 

Testing Non-Uniform DIF when Latent Trait Means are Equal 

    Scaling method 
Factor Marker-variable  Fixed-factor  Effects-coded 
I T N A a b c d  a b c d  a b c d 
I1 T1 N1 A1               
   A2               
   A3               
  N2 A1               
   A2               
   A3               
  N3 A1               
   A2               
   A3               
 T2 N1 A1               
   A2               
   A3               
  N2 A1               
   A2               
   A3               
  N3 A1               
   A2               
   A3               
I1 T1 N1 A1               
   A2               
   A3               
  N2 A1               
   A2               
   A3               
  N3 A1               
   A2               
   A3               
 T2 N1 A1               
   A2               
   A3               
  N2 A1               
   A2               
   A3               
  N3 A1               
   A2               
   A3               
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Note. The factor I is defined in Table 5. T1 = 6-item scale, T2 = 12-item scale; N1 = 
100/900 sample sizes, N2 = 250/750 sample sizes, N3 = 500/500 sample sizes; A1 = 
invariant anchor, A2 = non-uniform DIF anchor, A3 = uniform DIF anchor; a = 
uncorrected LR test, b = Bonferroni-corrected LR test, c = ∆CFI test of –0.01, d = 
∆CFI test of –0.002. 
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Table 11 

Testing Uniform DIF when Latent Trait Means are Equal 

    Scaling method 
Factor Marker-variable  Fixed-factor  Effects-coded 
I T N A a b c d  a b c d  a b c d 
I1 T1 N1 A1               
   A2               
   A3               
  N2 A1               
   A2               
   A3               
  N3 A1               
   A2               
   A3               
 T2 N1 A1               
   A2               
   A3               
  N2 A1               
   A2               
   A3               
  N3 A1               
   A2               
   A3               
I1 T1 N1 A1               
   A2               
   A3               
  N2 A1               
   A2               
   A3               
  N3 A1               
   A2               
   A3               
 T2 N1 A1               
   A2               
   A3               
  N2 A1               
   A2               
   A3               
  N3 A1               
   A2               
   A3               
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Table 12 

Testing Non-Uniform DIF when Latent Trait Means are Unequal 

     Scaling method  
Factor Marker-variable  Fixed-factor  Effects-coded 
I T N A a b c d  a b c d  a b c d 
I2 T1 N1 A1               
   A2               
   A3               
  N2 A1               
   A2               
   A3               
  N3 A1               
   A2               
   A3               
 T2 N1 A1               
   A2               
   A3               
  N2 A1               
   A2               
   A3               
  N3 A1               
   A2               
   A3               
I2 T1 N1 A1               
   A2               
   A3               
  N2 A1               
   A2               
   A3               
  N3 A1               
   A2               
   A3               
 T2 N1 A1               
   A2               
   A3               
  N2 A1               
   A2               
   A3               
  N3 A1               
   A2               
   A3               
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Table 13 

Testing Uniform DIF when Latent Trait Means are Unequal 

    Scaling method 
Factor Marker-variable  Fixed-factor  Effects-coded 
I T N A a b c d  a b c d  a b c d 
I2 T1 N1 A1               
   A2               
   A3               
  N2 A1               
   A2               
   A3               
  N3 A1               
   A2               
   A3               
 T2 N1 A1               
   A2               
   A3               
  N2 A1               
   A2               
   A3               
  N3 A1               
   A2               
   A3               
I2 T1 N1 A1               
   A2               
   A3               
  N2 A1               
   A2               
   A3               
  N3 A1               
   A2               
   A3               
 T2 N1 A1               
   A2               
   A3               
  N2 A1               
   A2               
   A3               
  N3 A1               
   A2               
   A3               
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CHAPTER V: SUMMARY AND DISCUSSION 

This chapter discusses the study findings in the context of educational and 

psychological assessment in the following order: (1) summary of the study, (2) 

summary of the study findings, (3) confirmed research hypotheses, (4) discussions 

and implications, (5) limitations and future directions, and (6) novel contribution and 

conclusion. 

1. Summary of the Study 

Given that mean and covariance structure (MACS) confirmatory factor 

analysis (CFA) has enjoyed increasing attention in the differential item functioning 

(DIF) literature, the primary purpose of this dissertation was to evaluate the 

performance of MACS analysis for DIF detection. Although different scaling 

methods can lead to different conclusions about DIF, this issue had not been fully 

examined. 

 Accordingly, this dissertation presents an empirical study that examined the 

Type I error and power of the MACS technique by means of Monte Carlo simulation. 

The manipulated condition factors included type of item response, scale size, 

similarity of sample sizes, type of DIF, amount of DIF, similarity of latent trait 

distributions, type of anchor, test statistic and its criterion value, and scaling method.  

2. Summary of the Study Findings 

2.1. Type I Error 

It appeared that overall, three different scaling methods provide different Type 

I error rates. Specifically, when the scale included only DIF-free items (equivalently 
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when the anchor was invariant), the latent trait means were equal, and the 

conventional, uncorrected LR test was used, both marker-variable and fixed-factor 

scaling methods provided reasonable control for Type I error at the nominal alpha 

level. On the other hand, effects-coded scaling method falsely indicated the presence 

of DIF at the rates well above the nominal alpha value. 

Additionally, the current study found that the MACS technique has inflated 

Type I error associated with the presence of DIF in the scale (or anchor). Indeed, 

when the scale (or anchor) was contaminated by DIF, only the fixed-factor method 

provided reasonable control for Type I error under several conditions. The inflation in 

Type I error was especially severe when non-uniform DIF was located among binary 

items. These findings were supported by the subsequent variance components 

analysis; in cases where the uncorrected LR test was used, the four conditions factors 

including type of anchor, type of scaling method, type of item response, and type of 

DIF, individually and collectively, contributed the most to the variance of Type I 

error. 

In general, the use of an alternative criterion value (i.e., Bonferroni-corrected 

p, ∆CFI) reduces Type I error in the MACS technique. The reduction was pronounced 

when the fixed-factor method was used for scaling. Indeed, when groups had 

comparable large sample sizes (i.e., NF = 250/NR = 750, NF = 500/NR = 500), Type I 

error for the fixed-factor method was almost eliminated, regardless of the type of item 

response, type of DIF, and scale size. On the other hand, Type I error rates for the 
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other scaling methods were still inflated above the nominal alpha value when the 

anchor was biased. 

Finally, it was observed that Type I error in the MACS technique is much 

influenced by group differences in the latent mean. When the latent means differed by 

1 standard deviation, Type I error was severely inflated in most conditions. This 

finding corresponds to the subsequent analysis showing that similarity of latent trait 

distributions was the most influential condition factor for Type I error. Nevertheless, 

the use of an alternative criterion value, especially ∆CFI, positively affected Type I 

error, providing acceptable Type I error rates for locating non-uniform DIF among 

ordinal items.  

2.2. Power  

The current simulation results indicate that, on average, the MACS technique 

provides higher power when large uniform DIF is detected among binary items, the 

anchor was non-invariant, and the latent trait means are unequal between groups. 

In cases where the conventional, uncorrected LR test was used and the trait 

means were equal, power for detecting non-uniform DIF was not adequate for any 

scaling method in most conditions. However, fixed-factor scaling method provided 

adequate power for detecting uniform DIF. The same power for the marker-variable 

method was adequate only when the anchor was unbiased. 

In addition, the use of an alternative criterion value was found to considerably 

reduce power in the MACS technique. The reduction was prominent when the ∆CFI 

test of –0.01 was used; it provided power less than .80 in almost all conditions. In 
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contrast, Bonferroni correction did not adversely affect power when large uniform 

DIF was tested with the group sizes of greater than 100. Finally, it was found that 

unequal trait means generally increase power in the MACS technique. 

3. Supported Study Hypotheses 

3.1. Hypothesis 1 

In terms of Type I error and power, the current study found that statistically 

equivalent scaling methods provide different outcomes when measurement invariance 

is evaluated at the item level. Under favorable circumstances (i.e., comparable large 

group sizes, equal latent trait distributions, Bonferroni-corrected LR test, and no DIF 

items other than the target item), both marker-variable and fixed-factor scaling 

methods tested uniform DIF reasonably well. Under the same circumstances, however, 

effects-coded scaling method performed well only in some conditions. These findings 

partially support Hypothesis 1 of this dissertation; if the item parameters used for 

scaling are truly invariant across groups, the performance of the MACS technique 

will be equivalent, regardless of the scaling method. 

3.2. Hypothesis 2 

Under less than favorable circumstances (e.g., the scale included another DIF 

item or a DIF anchor), Type I error in the MACS technique was inflated above the 

nominal alpha level, most notably when marker-variable or effects-coded method was 

used for scaling. More specifically, the inflation was prominent if the anchor was 

biased by the same type of DIF being tested for the target item. In contrast, the fixed-

factor method effectively tested uniform DIF when group sizes were greater than 100. 
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These findings partially support Hypothesis 2; if the item parameters used for scaling 

are not truly invariant across groups, the performance of the MACS technique will 

depend on the choice of scaling method.  

4. Discussions and Implications 

Measurement equivalence is a critical concern in psychological and 

educational research because it is often required for meaningful group comparisons. 

Although researchers in these fields have applied different methodologies to this issue, 

confirmatory factor analysis (CFA), or more broadly structural equation modeling, 

has offered an integrative framework in which measurement equivalence is evaluated 

at the item level, at the scale level, or at both. Indeed, CFA can reflect the item 

response theory (IRT) concept of differential functioning, while providing a variety of 

options (e.g., multiple latent trait variables, more than two groups, categorical or 

continuous covariates). The empirical results of this study bring up some 

methodological issues and recommendations to be considered when a researcher 

conducts DIF analysis using CFA. 

The current simulation results appear to support the utility of the MACS 

technique in some circumstances and not in others. For example, poor performance 

was uniformly observed when groups had truly different latent trait means. This 

finding is, in part, consistent with the previous simulation study conducted by 

González-Romá et al (2006).8

                                                 
8 They used the constrained-baseline strategy and the modification index test. For 
scaling, they constrained the loading and intercept of an anchor between two groups 
and then also constrained the latent mean only for the reference group. 

 They showed that, if the trait means differ by 1 
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standard deviation, the MACS technique controls its Type I error only when sample 

sizes are equal between groups. It is reasonable to argue that unequal trait means 

should be more concerned for a particular scaling method that constrains the trait 

parameters between groups (i.e., fixed-factor method). Indeed, Cheung and Rensvold 

(1999) noted that if trait parameters are constrained across groups when they are not 

actually equal, biased invariance conclusions can occur. In the current study, however, 

the inflation in Type I error was uniformly observed and its pattern was similar across 

three different scaling methods. Thus, there exists a certain risk of identifying an 

invariant item as a DIF item when the trait means are truly different across groups. 

As mentioned previously, if present, DIF can be either item impact or item 

bias depending on the source of DIF (Camilli & Shepard, 1994; Zumbo, 1999). When 

groups truly differ in the latent trait being measured, different responses on the same 

scale will be observed across the groups. In this situation, item parameter values 

estimated from the observed responses accurately reflect true group differences in the 

trait (i.e., item impact). Thus, even when the population item parameter values were 

set to be invariant by design in the current simulation study, the estimated parameter 

values were very likely non-invariant between groups, (accurately) reflecting the 

simulated group differences in the trait mean. Taken together, the observed inflation 

in Type I error under the unequal latent means, in fact, might indicate high power for 

detecting item impact.9

                                                 
9 If it could be reported, the power for detecting uniform DIF due to item impact 
appears to easily approach 1, with polytomous responses and 1 standard deviation 
difference in the trait mean. 

 From this viewpoint, Type I error can be referred to as the 
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probability of falsely detecting “item bias” if, and only if, the trait means are 

comparable across groups. 

Given the necessity of the equivalent trait means for detecting item bias, a 

circular problem exists; (a) trait means should be comparable across groups, (b) 

similarity of the trait means cannot be confirmed without estimating them, (c) 

estimation of the trait means will be inaccurate with the presence of item bias, (d) 

locating item bias in the scale depends on the equality/inequality of the trait means, 

which brings the process back to the starting point. Accordingly, Zumbo (1999) 

suggests a need for a post-hoc practice, in which the “biasedness” of the flagged DIF 

items is determined through a series of empirical assessments and content analyses. 

Because detecting item impact is beyond the scope of the current study and not of 

general interest in the DIF literature, the following discussions are limited to the cases 

where a researcher wants to locate item bias in the scale.  

An important issue in the measurement literature is the presence of bias in the   

anchor set. It has been repeatedly observed that a biased anchor set adversely affects 

invariance testing (Cheung & Rensvold, 1999; Finch, 2005; Navas-Ara & Gómez-

Benito, 2002; Stark et al., 2006). The current study suggests a possibility that 

ameliorates this problem. That is, when used with the Bonferroni correction and the 

group sizes of greater than 100, the fixed-factor scaling method almost eliminated 

Type I error while maintaining adequate power for detecting (uniform) DIF. Although 

the ∆CFI test of –0.01 also appeared to provide reasonable control for Type I error, 

power was not adequate in most conditions. Similarly, French and Finch (2006) noted 
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that, despite the fact that the ∆CFI test of –0.01 has comparable power to the LR test 

(at .01 alpha level) for testing the scale-level loading invariance (i.e., metric 

invariance) in some conditions, this criterion rarely performs as well for testing a 

single loading. In addition, the ∆CFI test of –0.002 could not provide enough power 

to detect small uniform DIF in most conditions (see also French & Finch, 2006). 

Taken together, the conventional marker-variable scaling method will be suitable for 

testing DIF only if a designated anchor or anchor set is readily available. Otherwise, 

with the Bonferroni-corrected LR test and the comparable large sample sizes, the 

fixed-factor scaling method should be recommended for testing (at least uniform) DIF. 

Combining the previous and current simulation results, a general procedural 

guideline for evaluating measurement invariance is suggested here. This testing 

procedure consists of three stages. In the first stage, omnibus metric invariance of a 

scale (i.e., metric invariance) is tested (see 2.5.3. Testing Procedure in Chapter II). If 

metric invariance holds, then omnibus scalar invariance is evaluated in the next stage. 

The ∆CFI test of –0.01 (or –0.002 for high-stakes testing environments) is 

recommended for testing the scale-level invariance hypotheses. If it is appropriate to 

use maximum likelihood (ML) estimation, the conventional, Bonferroni-corrected LR 

test will be a comparable or better choice (see French & Finch, 2006). Because the 

scaling method generally does not affect the conclusions about omnibus invariance, 

any scaling method is applicable for testing the metric and scalar invariance.  

If metric invariance is rejected, detecting item(s) having non-uniform DIF 

occurs within the first stage. The free-baseline MACS technique is used to examine 
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each item individually, using the fixed-factor scaling method and the Bonferroni-

corrected LR test.10

Last, after locating DIF item(s), further invariance tests (e.g., unique factor 

variance, factor covariance, factor variance) may continue, while using the effects-

coded scaling method. The baseline models should maintain the constraints of the 

supported partial metric and scalar invariance. As noted previously (see also Little et 

al., 2005), the effects-coded method provides a couple of preferable features when 

used to estimate the latent trait parameters in the multiple-group case. For example, 

the trait variable has a scale that is optimally weighted by all of its indicators. Thus, 

this method provides more accurate trait estimates than the fixed-factor method in 

which the scale is defined by a single, arbitrarily chosen anchor. Additionally, when 

invariance constraints are placed on the loadings and the intercepts, the effects-coded 

method provides the scale of the trait variable within each group, which is not the 

 Then, partial scalar invariance is evaluated by implementing a 

condition, in which the loading and intercept parameters are constrained across 

groups only for the loading-invariant items. 

If scalar or partial scalar invariance is rejected, the free-baseline MACS 

technique is used to test uniform DIF within the second stage. It is recommended that 

only the loading-invariant items are evaluated for uniform DIF one at a time. The 

fixed-factor scaling method and the Bonferroni-corrected LR test are also 

recommended. 

                                                 
10 Note that these tests possibly increase Type II error when groups have truly 
different trait means. In other words, there exists a certain risk of falsely identifying a 
non-uniform DIF item as DIF-free. If present, this Type II error may adversely affect 
the subsequent uniform DIF tests. 
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case with the fixed-factor method. 

5. Limitations and Future Directions 

Although a number of important findings emerged in the current study, there 

are several weaknesses that require readers to interpret the results with caution. First, 

one must assess the validity of the current results because variations in conducting the 

MACS analysis, such as estimation method and computer software, may affect the 

trustworthiness of the model estimates. In this study, items were designed to have 

either two (binary) or five (ordinal) response categories, reflecting typical 

psychological or cognitive testing environments. Thus, the current study should have 

taken non-normality of the data into account more appropriately. The ML estimation 

technique, which was used in this study, assumes normality of the observed variables. 

When item responses are categorical, however, ML estimation can lead to erroneous 

invariance detection (Lubke & Muthén, 2004). Nevertheless, the validity of the 

current results is defendable to some extent. That is, even in the worst scenario (e.g., 

NF = 250/NR = 750), the observed polytomous responses were found to approximate a 

normal distribution.11

                                                 
11 The median skewness and kurtosis were 0.06 and -0.08, respectively. But, the 
responses on Item 12 were moderately non-normal for both focal and reference 
groups, with a skewness ranging from -3.42 to -3.07 and a kurtosis ranging from 7.47 
to 9.91. 

 With regard to the highly non-normal (dichotomous) responses, 

the use of a test statistic and/or an estimation method that are robust to the non-

normality problem would have provided more reliable outcomes. For example, the 

Satorra-Bentler chi-square (SB chi-square; Satorra & Bentler, 1988) incorporates a 

scale correction to the chi-square, taking into account hypothesized model and 
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kurtosis of data (Hu, Bentler, & Kano, 1992). Researchers have shown that the SB 

chi-square is a reliable test statistic for MACS analysis under various distributions 

and sample sizes (Curran, et al., 1995; Hu, et al., 1992). Satorra and Bentler (2001) 

further demonstrated how to calculate SB chi-square differences and corresponding 

degrees of freedom that are suitable for nested-model comparisons. An alternative to 

scaling the test statistic is to use a robust estimation method such as weighted least 

square (WLS) and robust WLS (RWLS).12

 Second, the overall model fit was not acceptable in some cases; the CFI values 

were quite low in conditions involving the 12-item scale. Note that the CFI depends 

on the average size of the correlations among observed variables (Bollen & Long, 

1993). That is, if the average correlation is not high, then the CFI value will not be 

very high. In this study, the last six items of the 12-item scale had relatively small 

loadings by design, compared to the first six items of the same scale. Accordingly, the 

average correlation among the items decreased from the 6-item scale (0.57) to the 12-

item scale (0.39). Thus, it appears that the small loadings resulted in the low CFI 

 These methods use the polychoric 

correlations, item means, and weight matrix to produce an asymptotic covariance 

matrix, which in turn is used to estimate the loading and intercept parameters 

(Muthén & Satorra, 1995). 

                                                 
12 In fact, WLS estimation is not recommended for relatively small sample sizes. 
Flora and Curran (2004) noted that the chi-square is inflated, as are the parameter 
estimates, whereas their standard errors are negatively biased. Additionally, French 
and Finch (2006) found that the LR test with RWLS estimation provides very low 
power for testing metric invariance of a scale. 
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values for the 12-item scale.13

Taken together, further simulation work is encouraged to continue to examine 

the MACS technique under various additional conditions, as there are several 

problems that remain to be resolved in practice. These conditions may include 

 In fact, these small loadings are somewhat smaller than 

those used in previous simulation studies (e.g., 0.60 in French & Finch, 2006, 2008; 

0.48 - 0.66 in González-Romá et al., 2006; 0.50 - 0.80 in Kaplan, 1989; 0.58 - 0.90 in 

Stark et al., 2006). 

Third, given that this is a Monte Carlo study, caution should be used in 

generalizing the results and conclusions beyond the conditions investigated. For 

example, the current study assumed no missing values in the item response. The 

conclusions of any DIF analysis likely depend on the amounts and the patterns of 

missing values. In addition, sample sizes were selected in this study so as to represent 

those often seen in the educational and psychological assessment. In some cases, 

however, smaller samples (i.e., less than 100) may be encountered, especially with 

low-incidence populations. Finally, the scales were relatively short, having 6 or 12 

items, and only one or two items included DIF. Previous simulation studies found that 

the MACS technique performs better with larger scales and with smaller proportions 

of biased item in a scale (e.g., Finch, 2005; Meade & Lautenschlager, 2004; Navas-

Ara & Gómez-Benito, 2002; Stark et al., 2006). 

                                                 
13 The covariance/correlation between two measured variables can be obtained by 
𝜆𝜆𝑖𝑖1Ψ𝜆𝜆𝑖𝑖2 in the common factor model. Thus, the magnitude of the 
covariance/correlation depends on the magnitude of the loadings at a given trait 
variance. 
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normality/non-normal of data, estimation method, missing data, small sample size, 

scale size, and degree of contamination.  

The current study found that the proposed ∆CFI criterion values are not 

optimal for testing measurement invariance, at least at the item level (see also French 

& Finch, 2006). As compared to IRT, one of the advantageous features of using CFA 

is to provide a variety of practical fit measures. Thus, future efforts are needed to 

empirically examine various fit indices and then find the criterion values that are 

suitable for DIF analysis. This would increase the utility of the MACS technique and 

expand the area to which the CFA approach for DIF analysis is applied. Following 

Cheung and Rensvold (2002), new criterion values should be independent of the 

overall fit of the baseline model, should not be influenced by model complexity, and 

should not be redundant with other fit indices.  

Although most IRT models are based on the unidimensionality assumption, 

educational and psychological assessment often involves multidimensional surveys. 

For example, a test such as a licensure exam may measure several subsets of a skill. 

Accordingly, Raju and colleagues have proposed procedural guidelins as well as test 

statistics that are useful for assessing DIF in scales developed with multidimensional 

IRT models (e.g., Oshima, et al., 1997; Raju, et al., 1992). To my knowledge, 

however, no comparable DIF analysis has been proposed in the CFA literature. This 

lack of CFA methodology is clearly an area for additional future research. 
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6. Novel Contribution and Conclusion 

This dissertation contributes to the measurement literature by cautioning 

researchers against the use of the conventional scaling method in case of DIF analysis. 

Because extensive prior research needed to establish a designated anchor set is rarely, 

if ever, carried out in the real world (Woods, 2009; see Thissen et al., 1993), it is 

likely that a researcher would innocently choose the conventional, marker-variable 

scaling method without realizing that it may lead to inflated Type I error. 

Consequently, it would be difficult to determine which items function truly 

differently from those that are falsely identified as having DIF.  

Based on a simulation study, this dissertation suggests that, if used with the 

fixed-factor scaling method, Bonferroni-corrected LR test, and comparable large 

groups (e.g., greater than 100), the MACS technique would be a nearly fail-safe 

methodology for testing (at least uniform) DIF, even when a designated anchor set is 

not readily available. If properly followed, the recommended invariance-testing 

procedure provides accurate latent trait estimates for each group, thus making 

meaningful group comparisons tenable. Of course, the choice of which strategy to use 

must remain the prerogative of researchers. Hopefully, they may find the current 

findings and procedural guidance to be helpful in gaining a better understanding of 

invariance testing.  
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Appendix B 

Type I Error 

The uncorrected p values of the LR test were .05 in all conditions. The corrected p 

values were .01 and .005 in the 6-item and 12-item conditions, respectively.
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-u

ni
fo

rm
 

.5
74

 
.5

74
 

.6
72

 
.8

67
 

 
 

 
U

ni
fo

rm
 

.4
13

 
.4

13
 

.6
11

 
.8

02
 

 
 

25
0:

75
0 

D
IF

-f
re

e 
.1

62
 

.0
06

 
0 

0 

 
 

 
N

on
-u

ni
fo

rm
 

.1
10

 
0 

0 
0 

 
 

 
U

ni
fo

rm
 

.1
56

 
.0

06
 

0 
0 

 
 

50
0:

50
0 

D
IF

-f
re

e 
.1

36
 

.0
02

 
0 

0 

 
 

 
N

on
-u

ni
fo

rm
 

.1
14

 
.0

02
 

0 
0 

 
 

 
U

ni
fo

rm
 

.1
32

 
.0

02
 

0 
0 
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Ty
pe

 I 
Er

ro
r o

f U
si

ng
 F

ix
ed

-F
ac

to
r S

ca
lin

g 
M

et
ho

d 
fo

r D
et

ec
tin

g 
U

ni
fo

rm
 D

IF
 in

 th
e 

Eq
ua

l L
at

en
t T

ra
it 

M
ea

n 
C

on
di

tio
n 

(C
on

tin
ue

d)
 

 
 

 
 

C
rit

er
io

n 
va

lu
e 

 
 

 
 

LR
 te

st
 

∆C
FI

 te
st

 
R

es
po

ns
e 

Sc
al

e 
si

ze
 

Sa
m

pl
es

 
Ty

pe
 o

f a
nc

ho
r 

U
nc

or
re

ct
ed

 p
 

C
or

re
ct

ed
 p

 
–0

.0
1 

–0
.0

02
 

Po
ly

to
m

ou
s 

6 
ite

m
s 

10
0:

90
0 

D
IF

-f
re

e 
0 

0 
0 

0 

 
 

 
N

on
-u

ni
fo

rm
 

.0
04

 
.0

04
 

0 
0 

 
 

 
U

ni
fo

rm
 

0 
0 

0 
0 

 
 

25
0:

75
0 

D
IF

-f
re

e 
.0

24
 

.0
02

 
0 

0 

 
 

 
N

on
-u

ni
fo

rm
 

.0
24

 
.0

02
 

0 
0 

 
 

 
U

ni
fo

rm
 

.0
24

 
.0

02
 

0 
0 

 
 

50
0:

50
0 

D
IF

-f
re

e 
.0

06
 

0 
0 

0 

 
 

 
N

on
-u

ni
fo

rm
 

.0
06

 
0 

0 
0 

 
 

 
U

ni
fo

rm
 

.0
06

 
0 

0 
0 

 
12

 it
em

s 
10

0:
90

0 
D

IF
-f

re
e 

0 
0 

0 
0 

 
 

 
N

on
-u

ni
fo

rm
 

.4
05

 
.3

94
 

.5
03

 
.8

48
 

 
 

 
U

ni
fo

rm
 

.0
02

 
.0

02
 

0 
0 

 
 

25
0:

75
0 

D
IF

-f
re

e 
.0

24
 

0 
0 

0 

 
 

 
N

on
-u

ni
fo

rm
 

.0
16

 
.0

06
 

0 
.0

13
 

 
 

 
U

ni
fo

rm
 

.0
26

 
.0

02
 

0 
.0

04
 

 
 

50
0:

50
0 

D
IF

-f
re

e 
.0

06
 

0 
0 

0 

 
 

 
N

on
-u

ni
fo

rm
 

.0
08

 
.0

02
 

0 
0 

 
 

 
U

ni
fo

rm
 

.0
06

 
0 

0 
0 
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Ty
pe

 I 
Er

ro
r o

f U
si

ng
 E

ffe
ct

s-
C

od
ed

 S
ca

lin
g 

M
et

ho
d 

fo
r D

et
ec

tin
g 

N
on

-U
ni

fo
rm

 D
IF

 in
 th

e 
Eq

ua
l L

at
en

t T
ra

it 
M

ea
n 

C
on

di
tio

n 
 

 
 

 
 

C
rit

er
io

n 
va

lu
e 

 
 

 
 

LR
 te

st
 

∆C
FI

 te
st

 
R

es
po

ns
e 

Sc
al

e 
si

ze
 

Sa
m

pl
es

 
Ty

pe
 o

f a
nc

ho
r 

U
nc

or
re

ct
ed

 p
 

C
or

re
ct

ed
 p

 
–0

.0
1 

–0
.0

02
 

D
ic

ho
to

m
ou

s 
6 

ite
m

s 
10

0:
90

0 
D

IF
-f

re
e 

.8
30

 
.7

99
 

.6
60

 
.8

68
 

 
 

 
N

on
-u

ni
fo

rm
 

.9
09

 
.8

74
 

.6
77

 
.8

36
 

 
 

 
U

ni
fo

rm
 

.9
81

 
.9

75
 

.7
01

 
.8

84
 

 
 

25
0:

75
0 

D
IF

-f
re

e 
.2

34
 

.1
22

 
0 

.0
29

 

 
 

 
N

on
-u

ni
fo

rm
 

.6
12

 
.4

94
 

.3
14

 
.4

63
 

 
 

 
U

ni
fo

rm
 

.9
14

 
.8

95
 

.6
26

 
.8

72
 

 
 

50
0:

50
0 

D
IF

-f
re

e 
.2

84
 

.1
37

 
0 

.0
07

 

 
 

 
N

on
-u

ni
fo

rm
 

.3
60

 
.2

32
 

0 
.0

32
 

 
 

 
U

ni
fo

rm
 

.4
65

 
.3

13
 

0 
.0

73
 

 
12

 it
em

s 
10

0:
90

0 
D

IF
-f

re
e 

.9
44

 
.9

34
 

.6
42

 
.8

86
 

 
 

 
N

on
-u

ni
fo

rm
 

.9
41

 
.9

05
 

.5
22

 
.6

54
 

 
 

 
U

ni
fo

rm
 

1 
.9

95
 

.7
01

 
.9

43
 

 
 

25
0:

75
0 

D
IF

-f
re

e 
.4

11
 

.2
32

 
0 

.0
23

 

 
 

 
N

on
-u

ni
fo

rm
 

.9
02

 
.8

63
 

.0
11

 
.0

54
 

 
 

 
U

ni
fo

rm
 

.7
28

 
.6

47
 

.4
51

 
.6

20
 

 
 

50
0:

50
0 

D
IF

-f
re

e 
.4

28
 

.2
54

 
0 

.0
06

 

 
 

 
N

on
-u

ni
fo

rm
 

.9
51

 
.9

22
 

.0
09

 
.3

88
 

 
 

 
U

ni
fo

rm
 

.3
84

 
.2

54
 

0 
.0

12
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Ty
pe

 I 
Er

ro
r o

f U
si

ng
 E

ffe
ct

s-
C

od
ed

 S
ca

lin
g 

M
et

ho
d 

fo
r D

et
ec

tin
g 

N
on

-U
ni

fo
rm

 D
IF

 in
 th

e 
Eq

ua
l L

at
en

t T
ra

it 
M

ea
n 

C
on

di
tio

n 
(C

on
tin

ue
d)

 

 
 

 
 

C
rit

er
io

n 
va

lu
e 

 
 

 
 

LR
 te

st
 

∆C
FI

 te
st

 
R

es
po

ns
e 

Sc
al

e 
si

ze
 

Sa
m

pl
es

 
Ty

pe
 o

f a
nc

ho
r 

U
nc

or
re

ct
ed

 p
 

C
or

re
ct

ed
 p

 
–0

.0
1 

–0
.0

02
 

Po
ly

to
m

ou
s 

6 
ite

m
s 

10
0:

90
0 

D
IF

-f
re

e 
.1

15
 

.0
48

 
0 

0 

 
 

 
N

on
-u

ni
fo

rm
 

.1
35

 
.0

44
 

0 
0 

 
 

 
U

ni
fo

rm
 

.1
05

 
.0

40
 

0 
.0

05
 

 
 

25
0:

75
0 

D
IF

-f
re

e 
.0

92
 

.0
26

 
0 

0 

 
 

 
N

on
-u

ni
fo

rm
 

.1
64

 
.0

50
 

0 
0 

 
 

 
U

ni
fo

rm
 

.0
86

 
.0

28
 

0 
0 

 
 

50
0:

50
0 

D
IF

-f
re

e 
.1

00
 

.0
34

 
0 

0 

 
 

 
N

on
-u

ni
fo

rm
 

.1
60

 
.0

58
 

0 
0 

 
 

 
U

ni
fo

rm
 

.0
84

 
.0

30
 

0 
0 

 
12

 it
em

s 
10

0:
90

0 
D

IF
-f

re
e 

.2
23

 
.0

80
 

0 
.0

04
 

 
 

 
N

on
-u

ni
fo

rm
 

.5
95

 
.2

84
 

0 
.0

12
 

 
 

 
U

ni
fo

rm
 

.1
77

 
.0

48
 

0 
0 

 
 

25
0:

75
0 

D
IF

-f
re

e 
.1

84
 

.0
56

 
0 

0 

 
 

 
N

on
-u

ni
fo

rm
 

.8
56

 
.7

19
 

0 
0 

 
 

 
U

ni
fo

rm
 

.1
48

 
.0

36
 

0 
0 

 
 

50
0:

50
0 

D
IF

-f
re

e 
.1

78
 

.0
54

 
0 

0 

 
 

 
N

on
-u

ni
fo

rm
 

.9
01

 
.8

47
 

0 
.0

09
 

 
 

 
U

ni
fo

rm
 

.1
48

 
.0

26
 

0 
0 
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Ty
pe

 I 
Er

ro
r o

f U
si

ng
 E

ffe
ct

s-
C

od
ed

 S
ca

lin
g 

M
et

ho
d 

fo
r D

et
ec

tin
g 

U
ni

fo
rm

 D
IF

 in
 th

e 
Eq

ua
l L

at
en

t T
ra

it 
M

ea
n 

C
on

di
tio

n 
 

 
 

 
 

C
rit

er
io

n 
va

lu
e 

 
 

 
 

LR
 te

st
 

∆C
FI

 te
st

 
R

es
po

ns
e 

Sc
al

e 
si

ze
 

Sa
m

pl
es

 
Ty

pe
 o

f a
nc

ho
r 

U
nc

or
re

ct
ed

 p
 

C
or

re
ct

ed
 p

 
–0

.0
1 

–0
.0

02
 

D
ic

ho
to

m
ou

s 
6 

ite
m

s 
10

0:
90

0 
D

IF
-f

re
e 

.6
61

 
.6

54
 

.6
18

 
.8

27
 

 
 

 
N

on
-u

ni
fo

rm
 

.7
32

 
.7

11
 

.6
01

 
.8

28
 

 
 

 
U

ni
fo

rm
 

.9
58

 
.9

40
 

.6
45

 
.8

92
 

 
 

25
0:

75
0 

D
IF

-f
re

e 
.0

50
 

.0
08

 
0 

0 

 
 

 
N

on
-u

ni
fo

rm
 

.1
12

 
.0

18
 

0 
0 

 
 

 
U

ni
fo

rm
 

.8
12

 
.6

14
 

.1
48

 
.2

51
 

 
 

50
0:

50
0 

D
IF

-f
re

e 
.0

32
 

.0
08

 
0 

.0
07

 

 
 

 
N

on
-u

ni
fo

rm
 

.0
68

 
.0

10
 

0 
0 

 
 

 
U

ni
fo

rm
 

.9
68

 
.8

50
 

0 
.1

98
 

 
12

 it
em

s 
10

0:
90

0 
D

IF
-f

re
e 

.9
86

 
.9

81
 

.6
26

 
.9

44
 

 
 

 
N

on
-u

ni
fo

rm
 

.8
89

 
.8

76
 

.7
06

 
.9

12
 

 
 

 
U

ni
fo

rm
 

.8
67

 
.8

36
 

.6
70

 
.8

55
 

 
 

25
0:

75
0 

D
IF

-f
re

e 
.0

99
 

.0
18

 
0 

.0
05

 

 
 

 
N

on
-u

ni
fo

rm
 

.0
81

 
.0

40
 

0 
.0

52
 

 
 

 
U

ni
fo

rm
 

.9
65

 
.9

58
 

.6
83

 
.9

29
 

 
 

50
0:

50
0 

D
IF

-f
re

e 
.0

60
 

.0
04

 
0 

0 

 
 

 
N

on
-u

ni
fo

rm
 

.0
71

 
.0

37
 

0 
.0

82
 

 
 

 
U

ni
fo

rm
 

.2
85

 
.0

84
 

0 
0 
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Ty
pe

 I 
Er

ro
r o

f U
si

ng
 E

ffe
ct

s-
C

od
ed

 S
ca

lin
g 

M
et

ho
d 

fo
r D

et
ec

tin
g 

U
ni

fo
rm

 D
IF

 in
 th

e 
Eq

ua
l L

at
en

t T
ra

it 
M

ea
n 

C
on

di
tio

n 

(C
on

tin
ue

d)
 

 
 

 
 

C
rit

er
io

n 
va

lu
e 

 
 

 
 

LR
 te

st
 

∆C
FI

 te
st

 
R

es
po

ns
e 

Sc
al

e 
si

ze
 

Sa
m

pl
es

 
Ty

pe
 o

f a
nc

ho
r 

U
nc

or
re

ct
ed

 p
 

C
or

re
ct

ed
 p

 
–0

.0
1 

–0
.0

02
 

Po
ly

to
m

ou
s 

6 
ite

m
s 

10
0:

90
0 

D
IF

-f
re

e 
.0

30
 

.0
04

 
0 

0 

 
 

 
N

on
-u

ni
fo

rm
 

.0
42

 
.0

10
 

0 
0 

 
 

 
U

ni
fo

rm
 

.9
78

 
.8

98
 

0 
.1

93
 

 
 

25
0:

75
0 

D
IF

-f
re

e 
.0

38
 

.0
10

 
0 

0 

 
 

 
N

on
-u

ni
fo

rm
 

.0
62

 
.0

18
 

0 
0 

 
 

 
U

ni
fo

rm
 

1 
.9

98
 

0 
.7

08
 

 
 

50
0:

50
0 

D
IF

-f
re

e 
.0

40
 

.0
06

 
0 

0 

 
 

 
N

on
-u

ni
fo

rm
 

.0
50

 
.0

04
 

0 
0 

 
 

 
U

ni
fo

rm
 

1 
1 

0 
.9

62
 

 
12

 it
em

s 
10

0:
90

0 
D

IF
-f

re
e 

.0
64

 
.0

08
 

0 
0 

 
 

 
N

on
-u

ni
fo

rm
 

.0
31

 
.0

10
 

0 
.0

18
 

 
 

 
U

ni
fo

rm
 

.4
52

 
.1

71
 

0 
0 

 
 

25
0:

75
0 

D
IF

-f
re

e 
.1

04
 

.0
12

 
0 

0 

 
 

 
N

on
-u

ni
fo

rm
 

.1
33

 
.0

95
 

.1
71

 
.2

56
 

 
 

 
U

ni
fo

rm
 

.5
76

 
.2

42
 

0 
0 

 
 

50
0:

50
0 

D
IF

-f
re

e 
.0

68
 

.0
08

 
0 

0 

 
 

 
N

on
-u

ni
fo

rm
 

.0
32

 
.0

06
 

0 
.0

06
 

 
 

 
U

ni
fo

rm
 

.7
62

 
.3

92
 

0 
0 
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Ty
pe

 I 
Er

ro
r o

f U
si

ng
 M

ar
ke

r-
Va

ri
ab

le
 S

ca
lin

g 
M

et
ho

d 
fo

r D
et

ec
tin

g 
N

on
-U

ni
fo

rm
 D

IF
 in

 th
e 

U
ne

qu
al

 L
at

en
t T

ra
it 

M
ea

n 

C
on

di
tio

n 
 

 
 

 
 

C
rit

er
io

n 
va

lu
e 

 
 

 
 

LR
 te

st
 

∆C
FI

 te
st

 
R

es
po

ns
e 

Sc
al

e 
si

ze
 

Sa
m

pl
es

 
Ty

pe
 o

f a
nc

ho
r 

U
nc

or
re

ct
ed

 p
 

C
or

re
ct

ed
 p

 
–0

.0
1 

–0
.0

02
 

D
ic

ho
to

m
ou

s 
6 

ite
m

s 
10

0:
90

0 
D

IF
-f

re
e 

.1
02

 
.0

36
 

0 
.0

13
 

 
 

 
N

on
-u

ni
fo

rm
 

.5
75

 
.5

09
 

.2
30

 
.3

96
 

 
 

 
U

ni
fo

rm
 

.9
91

 
.9

74
 

.7
14

 
.9

36
 

 
 

25
0:

75
0 

D
IF

-f
re

e 
.0

90
 

.0
31

 
0 

0 

 
 

 
N

on
-u

ni
fo

rm
 

.6
11

 
.4

42
 

0 
.1

49
 

 
 

 
U

ni
fo

rm
 

1 
1 

.8
43

 
1 

 
 

50
0:

50
0 

D
IF

-f
re

e 
.1

02
 

.0
38

 
0 

0 

 
 

 
N

on
-u

ni
fo

rm
 

.7
82

 
.6

40
 

0 
.1

56
 

 
 

 
U

ni
fo

rm
 

1 
1 

1 
1 

 
12

 it
em

s 
10

0:
90

0 
D

IF
-f

re
e 

.6
17

 
.5

65
 

.5
18

 
.6

45
 

 
 

 
N

on
-u

ni
fo

rm
 

.9
84

 
.9

63
 

.5
77

 
.8

69
 

 
 

 
U

ni
fo

rm
 

1 
.9

95
 

.7
26

 
.9

49
 

 
 

25
0:

75
0 

D
IF

-f
re

e 
.1

70
 

.0
76

 
0 

0 

 
 

 
N

on
-u

ni
fo

rm
 

.8
98

 
.8

61
 

.2
36

 
.7

16
 

 
 

 
U

ni
fo

rm
 

.9
90

 
.9

90
 

.3
76

 
.9

70
 

 
 

50
0:

50
0 

D
IF

-f
re

e 
.1

30
 

.0
44

 
0 

0 

 
 

 
N

on
-u

ni
fo

rm
 

.9
22

 
.8

73
 

0 
.6

60
 

 
 

 
U

ni
fo

rm
 

1 
1 

.5
69

 
.9

96
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Ty
pe

 I 
Er

ro
r o

f U
si

ng
 M

ar
ke

r-
Va

ri
ab

le
 S

ca
lin

g 
M

et
ho

d 
fo

r D
et

ec
tin

g 
N

on
-U

ni
fo

rm
 D

IF
 in

 th
e 

U
ne

qu
al

 L
at

en
t T

ra
it 

M
ea

n 

C
on

di
tio

n 
(C

on
tin

ue
d)

 

 
 

 
 

C
rit

er
io

n 
va

lu
e 

 
 

 
 

LR
 te

st
 

∆C
FI

 te
st

 
R

es
po

ns
e 

Sc
al

e 
si

ze
 

Sa
m

pl
es

 
Ty

pe
 o

f a
nc

ho
r 

U
nc

or
re

ct
ed

 p
 

C
or

re
ct

ed
 p

 
–0

.0
1 

–0
.0

02
 

Po
ly

to
m

ou
s 

6 
ite

m
s 

10
0:

90
0 

D
IF

-f
re

e 
0 

0 
0 

0 

 
 

 
N

on
-u

ni
fo

rm
 

.1
13

 
.0

38
 

0 
0 

 
 

 
U

ni
fo

rm
 

.7
95

 
.4

75
 

0 
.0

06
 

 
 

25
0:

75
0 

D
IF

-f
re

e 
0 

0 
0 

0 

 
 

 
N

on
-u

ni
fo

rm
 

.0
92

 
.0

36
 

0 
.0

05
 

 
 

 
U

ni
fo

rm
 

.9
58

 
.8

20
 

0 
.0

20
 

 
 

50
0:

50
0 

D
IF

-f
re

e 
0 

0 
0 

0 

 
 

 
N

on
-u

ni
fo

rm
 

.0
98

 
.0

32
 

0 
0 

 
 

 
U

ni
fo

rm
 

1 
.9

80
 

0 
.1

72
 

 
12

 it
em

s 
10

0:
90

0 
D

IF
-f

re
e 

.0
04

 
0 

0 
0 

 
 

 
N

on
-u

ni
fo

rm
 

.7
46

 
.5

86
 

0 
.0

02
 

 
 

 
U

ni
fo

rm
 

.8
21

 
.4

00
 

0 
0 

 
 

25
0:

75
0 

D
IF

-f
re

e 
0 

0 
0 

0 

 
 

 
N

on
-u

ni
fo

rm
 

.8
21

 
.7

45
 

0 
0 

 
 

 
U

ni
fo

rm
 

.9
82

 
.7

92
 

0 
0 

 
 

50
0:

50
0 

D
IF

-f
re

e 
0 

0 
0 

0 

 
 

 
N

on
-u

ni
fo

rm
 

.9
23

 
.8

99
 

0 
.0

59
 

 
 

 
U

ni
fo

rm
 

1 
.9

74
 

0 
0 
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Ty
pe

 I 
Er

ro
r o

f U
si

ng
 M

ar
ke

r-
Va

ri
ab

le
 S

ca
lin

g 
M

et
ho

d 
fo

r D
et

ec
tin

g 
U

ni
fo

rm
 D

IF
 in

 th
e 

U
ne

qu
al

 L
at

en
t T

ra
it 

M
ea

n 

C
on

di
tio

n 
 

 
 

 
 

C
rit

er
io

n 
va

lu
e 

 
 

 
 

LR
 te

st
 

∆C
FI

 te
st

 
R

es
po

ns
e 

Sc
al

e 
si

ze
 

Sa
m

pl
es

 
Ty

pe
 o

f a
nc

ho
r 

U
nc

or
re

ct
ed

 p
 

C
or

re
ct

ed
 p

 
–0

.0
1 

–0
.0

02
 

D
ic

ho
to

m
ou

s 
6 

ite
m

s 
10

0:
90

0 
D

IF
-f

re
e 

.9
46

 
.9

14
 

.5
98

 
.8

54
 

 
 

 
N

on
-u

ni
fo

rm
 

.4
89

 
.2

08
 

0 
.0

06
 

 
 

 
U

ni
fo

rm
 

.9
97

 
.9

90
 

.3
82

 
.9

45
 

 
 

25
0:

75
0 

D
IF

-f
re

e 
.9

14
 

.7
13

 
0 

.0
59

 

 
 

 
N

on
-u

ni
fo

rm
 

.6
92

 
.4

46
 

0 
.0

32
 

 
 

 
U

ni
fo

rm
 

1 
1 

.3
39

 
1 

 
 

50
0:

50
0 

D
IF

-f
re

e 
.9

90
 

.9
18

 
0 

.1
54

 

 
 

 
N

on
-u

ni
fo

rm
 

.9
10

 
.7

33
 

0 
.1

03
 

 
 

 
U

ni
fo

rm
 

1 
1 

1 
1 

 
12

 it
em

s 
10

0:
90

0 
D

IF
-f

re
e 

.6
39

 
.2

48
 

0 
0 

 
 

 
N

on
-u

ni
fo

rm
 

.6
21

 
.2

18
 

0 
.0

06
 

 
 

 
U

ni
fo

rm
 

.9
92

 
.9

88
 

.6
31

 
.7

52
 

 
 

25
0:

75
0 

D
IF

-f
re

e 
.8

67
 

.5
59

 
0 

.0
02

 

 
 

 
N

on
-u

ni
fo

rm
 

.8
75

 
.6

32
 

0 
0 

 
 

 
U

ni
fo

rm
 

.9
98

 
.9

98
 

.1
28

 
.9

74
 

 
 

50
0:

50
0 

D
IF

-f
re

e 
.9

66
 

.7
78

 
0 

0 

 
 

 
N

on
-u

ni
fo

rm
 

.9
72

 
.8

74
 

0 
.1

42
 

 
 

 
U

ni
fo

rm
 

1 
1 

.4
58

 
1 
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Ty
pe

 I 
Er

ro
r o

f U
si

ng
 M

ar
ke

r-
Va

ri
ab

le
 S

ca
lin

g 
M

et
ho

d 
fo

r D
et

ec
tin

g 
U

ni
fo

rm
 D

IF
 in

 th
e 

U
ne

qu
al

 L
at

en
t T

ra
it 

M
ea

n 

C
on

di
tio

n 
(C

on
tin

ue
d)

 

 
 

 
 

C
rit

er
io

n 
va

lu
e 

 
 

 
 

LR
 te

st
 

∆C
FI

 te
st

 
R

es
po

ns
e 

Sc
al

e 
si

ze
 

Sa
m

pl
es

 
Ty

pe
 o

f a
nc

ho
r 

U
nc

or
re

ct
ed

 p
 

C
or

re
ct

ed
 p

 
–0

.0
1 

–0
.0

02
 

Po
ly

to
m

ou
s 

6 
ite

m
s 

10
0:

90
0 

D
IF

-f
re

e 
.6

08
 

.2
29

 
0 

0 

 
 

 
N

on
-u

ni
fo

rm
 

.9
40

 
.8

33
 

0 
.1

32
 

 
 

 
U

ni
fo

rm
 

1 
1 

.6
06

 
1 

 
 

25
0:

75
0 

D
IF

-f
re

e 
.9

56
 

.7
62

 
0 

.0
04

 

 
 

 
N

on
-u

ni
fo

rm
 

1 
1 

0 
.7

92
 

 
 

 
U

ni
fo

rm
 

1 
1 

1 
1 

 
 

50
0:

50
0 

D
IF

-f
re

e 
.9

92
 

.9
18

 
0 

.0
34

 

 
 

 
N

on
-u

ni
fo

rm
 

1 
1 

0 
.9

26
 

 
 

 
U

ni
fo

rm
 

1 
1 

1 
1 

 
12

 it
em

s 
10

0:
90

0 
D

IF
-f

re
e 

.6
02

 
.1

41
 

0 
0 

 
 

 
N

on
-u

ni
fo

rm
 

.9
64

 
.8

86
 

.3
24

 
.4

85
 

 
 

 
U

ni
fo

rm
 

1 
1 

0 
1 

 
 

25
0:

75
0 

D
IF

-f
re

e 
.9

42
 

.5
96

 
0 

0 

 
 

 
N

on
-u

ni
fo

rm
 

1 
1 

0 
.2

28
 

 
 

 
U

ni
fo

rm
 

1 
1 

.3
14

 
1 

 
 

50
0:

50
0 

D
IF

-f
re

e 
.9

86
 

.8
24

 
0 

0 

 
 

 
N

on
-u

ni
fo

rm
 

1 
1 

0 
.8

08
 

 
 

 
U

ni
fo

rm
 

1 
1 

1 
1 
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Ty
pe

 I 
Er

ro
r o

f U
si

ng
 F

ix
ed

-F
ac

to
r S

ca
lin

g 
M

et
ho

d 
fo

r D
et

ec
tin

g 
N

on
-U

ni
fo

rm
 D

IF
 in

 th
e 

U
ne

qu
al

 L
at

en
t T

ra
it 

M
ea

n 

C
on

di
tio

n 
 

 
 

 
 

C
rit

er
io

n 
va

lu
e 

 
 

 
 

LR
 te

st
 

∆C
FI

 te
st

 
R

es
po

ns
e 

Sc
al

e 
si

ze
 

Sa
m

pl
es

 
Ty

pe
 o

f a
nc

ho
r 

U
nc

or
re

ct
ed

 p
 

C
or

re
ct

ed
 p

 
–0

.0
1 

–0
.0

02
 

D
ic

ho
to

m
ou

s 
6 

ite
m

s 
10

0:
90

0 
D

IF
-f

re
e 

.9
44

 
.9

13
 

.5
42

 
.7

96
 

 
 

 
N

on
-u

ni
fo

rm
 

.9
35

 
.8

48
 

.3
76

 
.5

71
 

 
 

 
U

ni
fo

rm
 

.9
70

 
.9

23
 

.5
25

 
.7

56
 

 
 

25
0:

75
0 

D
IF

-f
re

e 
.9

98
 

.9
84

 
0 

.5
59

 

 
 

 
N

on
-u

ni
fo

rm
 

1 
.9

94
 

0 
.6

95
 

 
 

 
U

ni
fo

rm
 

1 
.9

88
 

.0
04

 
.6

68
 

 
 

50
0:

50
0 

D
IF

-f
re

e 
1 

.9
94

 
0 

.7
52

 

 
 

 
N

on
-u

ni
fo

rm
 

1 
1 

0 
.8

76
 

 
 

 
U

ni
fo

rm
 

1 
1 

0 
.8

88
 

 
12

 it
em

s 
10

0:
90

0 
D

IF
-f

re
e 

.8
85

 
.7

16
 

.2
82

 
.3

69
 

 
 

 
N

on
-u

ni
fo

rm
 

.9
69

 
.9

12
 

.3
74

 
.5

31
 

 
 

 
U

ni
fo

rm
 

.9
66

 
.9

19
 

.4
89

 
.6

92
 

 
 

25
0:

75
0 

D
IF

-f
re

e 
1 

.9
63

 
0 

.0
06

 

 
 

 
N

on
-u

ni
fo

rm
 

1 
.9

84
 

0 
.3

01
 

 
 

 
U

ni
fo

rm
 

1 
.9

74
 

0 
.0

20
 

 
 

50
0:

50
0 

D
IF

-f
re

e 
.9

88
 

.9
54

 
0 

.0
64

 

 
 

 
N

on
-u

ni
fo

rm
 

.9
96

 
.9

92
 

0 
.4

69
 

 
 

 
U

ni
fo

rm
 

.9
90

 
.9

70
 

0 
.1

39
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Ty
pe

 I 
Er

ro
r o

f U
si

ng
 F

ix
ed

-F
ac

to
r S

ca
lin

g 
M

et
ho

d 
fo

r D
et

ec
tin

g 
N

on
-U

ni
fo

rm
 D

IF
 in

 th
e 

U
ne

qu
al

 L
at

en
t T

ra
it 

M
ea

n 

C
on

di
tio

n 
(C

on
tin

ue
d)

 

 
 

 
 

C
rit

er
io

n 
va

lu
e 

 
 

 
 

LR
 te

st
 

∆C
FI

 te
st

 
R

es
po

ns
e 

Sc
al

e 
si

ze
 

Sa
m

pl
es

 
Ty

pe
 o

f a
nc

ho
r 

U
nc

or
re

ct
ed

 p
 

C
or

re
ct

ed
 p

 
–0

.0
1 

–0
.0

02
 

Po
ly

to
m

ou
s 

6 
ite

m
s 

10
0:

90
0 

D
IF

-f
re

e 
0 

0 
0 

0 

 
 

 
N

on
-u

ni
fo

rm
 

.0
04

 
0 

0 
0 

 
 

 
U

ni
fo

rm
 

.0
02

 
.0

02
 

0 
.0

15
 

 
 

25
0:

75
0 

D
IF

-f
re

e 
.0

06
 

0 
0 

0 

 
 

 
N

on
-u

ni
fo

rm
 

.0
14

 
.0

02
 

0 
0 

 
 

 
U

ni
fo

rm
 

.0
04

 
0 

0 
0 

 
 

50
0:

50
0 

D
IF

-f
re

e 
.0

10
 

0 
0 

0 

 
 

 
N

on
-u

ni
fo

rm
 

.0
12

 
0 

0 
0 

 
 

 
U

ni
fo

rm
 

.0
06

 
0 

0 
0 

 
12

 it
em

s 
10

0:
90

0 
D

IF
-f

re
e 

.0
02

 
0 

0 
0 

 
 

 
N

on
-u

ni
fo

rm
 

.2
03

 
.0

33
 

.0
10

 
.0

13
 

 
 

 
U

ni
fo

rm
 

.0
02

 
0 

0 
0 

 
 

25
0:

75
0 

D
IF

-f
re

e 
.0

08
 

0 
0 

0 

 
 

 
N

on
-u

ni
fo

rm
 

.4
78

 
.1

72
 

0 
.0

05
 

 
 

 
U

ni
fo

rm
 

.0
04

 
0 

0 
0 

 
 

50
0:

50
0 

D
IF

-f
re

e 
.0

08
 

0 
0 

0 

 
 

 
N

on
-u

ni
fo

rm
 

.6
43

 
.3

02
 

0 
0 

 
 

 
U

ni
fo

rm
 

.0
02

 
0 

0 
0 
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Ty
pe

 I 
Er

ro
r o

f U
si

ng
 F

ix
ed

-F
ac

to
r S

ca
lin

g 
M

et
ho

d 
fo

r D
et

ec
tin

g 
U

ni
fo

rm
 D

IF
 in

 th
e 

U
ne

qu
al

 L
at

en
t T

ra
it 

M
ea

n 
C

on
di

tio
n 

 

 
 

 
 

C
rit

er
io

n 
va

lu
e 

 
 

 
 

LR
 te

st
 

∆C
FI

 te
st

 
R

es
po

ns
e 

Sc
al

e 
si

ze
 

Sa
m

pl
es

 
Ty

pe
 o

f a
nc

ho
r 

U
nc

or
re

ct
ed

 p
 

C
or

re
ct

ed
 p

 
–0

.0
1 

–0
.0

02
 

D
ic

ho
to

m
ou

s 
6 

ite
m

s 
10

0:
90

0 
D

IF
-f

re
e 

1 
1 

.0
02

 
1 

 
 

 
N

on
-u

ni
fo

rm
 

.9
86

 
.9

73
 

.4
29

 
.9

65
 

 
 

 
U

ni
fo

rm
 

.9
88

 
.9

83
 

.2
26

 
.9

91
 

 
 

25
0:

75
0 

D
IF

-f
re

e 
1 

1 
.6

44
 

1 

 
 

 
N

on
-u

ni
fo

rm
 

1 
1 

.5
16

 
1 

 
 

 
U

ni
fo

rm
 

1 
1 

.6
79

 
1 

 
 

50
0:

50
0 

D
IF

-f
re

e 
1 

1 
1 

1 

 
 

 
N

on
-u

ni
fo

rm
 

1 
1 

.9
98

 
1 

 
 

 
U

ni
fo

rm
 

1 
1 

1 
1 

 
12

 it
em

s 
10

0:
90

0 
D

IF
-f

re
e 

1 
1 

.3
08

 
.4

71
 

 
 

 
N

on
-u

ni
fo

rm
 

.9
96

 
.9

96
 

.5
62

 
.7

48
 

 
 

 
U

ni
fo

rm
 

.9
93

 
.9

90
 

.2
92

 
.4

95
 

 
 

25
0:

75
0 

D
IF

-f
re

e 
1 

1 
0 

1 

 
 

 
N

on
-u

ni
fo

rm
 

.9
98

 
.9

96
 

0 
.9

92
 

 
 

 
U

ni
fo

rm
 

1 
1 

0 
1 

 
 

50
0:

50
0 

D
IF

-f
re

e 
1 

1 
0 

1 

 
 

 
N

on
-u

ni
fo

rm
 

1 
1 

0 
.9

98
 

 
 

 
U

ni
fo

rm
 

1 
1 

0 
1 
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Ty
pe

 I 
Er

ro
r o

f U
si

ng
 F

ix
ed

-F
ac

to
r S

ca
lin

g 
M

et
ho

d 
fo

r D
et

ec
tin

g 
U

ni
fo

rm
 D

IF
 in

 th
e 

U
ne

qu
al

 L
at

en
t T

ra
it 

M
ea

n 
C

on
di

tio
n 

(C
on

tin
ue

d)
 

 
 

 
 

C
rit

er
io

n 
va

lu
e 

 
 

 
 

LR
 te

st
 

∆C
FI

 te
st

 
R

es
po

ns
e 

Sc
al

e 
si

ze
 

Sa
m

pl
es

 
Ty

pe
 o

f a
nc

ho
r 

U
nc

or
re

ct
ed

 p
 

C
or

re
ct

ed
 p

 
–0

.0
1 

–0
.0

02
 

Po
ly

to
m

ou
s 

6 
ite

m
s 

10
0:

90
0 

D
IF

-f
re

e 
1 

1 
0 

1 

 
 

 
N

on
-u

ni
fo

rm
 

1 
1 

0 
1 

 
 

 
U

ni
fo

rm
 

1 
1 

0 
1 

 
 

25
0:

75
0 

D
IF

-f
re

e 
1 

1 
1 

1 

 
 

 
N

on
-u

ni
fo

rm
 

1 
1 

.9
98

 
1 

 
 

 
U

ni
fo

rm
 

1 
1 

1 
1 

 
 

50
0:

50
0 

D
IF

-f
re

e 
1 

1 
1 

1 

 
 

 
N

on
-u

ni
fo

rm
 

1 
1 

1 
1 

 
 

 
U

ni
fo

rm
 

1 
1 

1 
1 

 
12

 it
em

s 
10

0:
90

0 
D

IF
-f

re
e 

1 
1 

0 
.7

51
 

 
 

 
N

on
-u

ni
fo

rm
 

1 
1 

0 
.3

68
 

 
 

 
U

ni
fo

rm
 

1 
1 

0 
.7

28
 

 
 

25
0:

75
0 

D
IF

-f
re

e 
1 

1 
0 

1 

 
 

 
N

on
-u

ni
fo

rm
 

1 
1 

0 
1 

 
 

 
U

ni
fo

rm
 

1 
1 

0 
1 

 
 

50
0:

50
0 

D
IF

-f
re

e 
1 

1 
0 

1 

 
 

 
N

on
-u

ni
fo

rm
 

1 
1 

0 
1 

 
 

 
U

ni
fo

rm
 

1 
1 

0 
1 
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Ty
pe

 I 
Er

ro
r o

f U
si

ng
 E

ffe
ct

s-
C

od
ed

 S
ca

lin
g 

M
et

ho
d 

fo
r D

et
ec

tin
g 

N
on

-U
ni

fo
rm

 D
IF

 in
 th

e 
U

ne
qu

al
 L

at
en

t T
ra

it 
M

ea
n 

C
on

di
tio

n 
 

 
 

 
 

C
rit

er
io

n 
va

lu
e 

 
 

 
 

LR
 te

st
 

∆C
FI

 te
st

 
R

es
po

ns
e 

Sc
al

e 
si

ze
 

Sa
m

pl
es

 
Ty

pe
 o

f a
nc

ho
r 

U
nc

or
re

ct
ed

 p
 

C
or

re
ct

ed
 p

 
–0

.0
1 

–0
.0

02
 

D
ic

ho
to

m
ou

s 
6 

ite
m

s 
10

0:
90

0 
D

IF
-f

re
e 

.9
21

 
.8

82
 

.6
65

 
.8

63
 

 
 

 
N

on
-u

ni
fo

rm
 

.9
87

 
.9

81
 

.7
45

 
.9

68
 

 
 

 
U

ni
fo

rm
 

.9
66

 
.9

59
 

.6
12

 
.9

35
 

 
 

25
0:

75
0 

D
IF

-f
re

e 
.4

00
 

.2
51

 
.0

09
 

.0
31

 

 
 

 
N

on
-u

ni
fo

rm
 

.8
81

 
.8

14
 

.4
95

 
.6

86
 

 
 

 
U

ni
fo

rm
 

.9
80

 
.9

55
 

.6
15

 
.9

02
 

 
 

50
0:

50
0 

D
IF

-f
re

e 
.3

68
 

.2
52

 
.0

06
 

.0
80

 

 
 

 
N

on
-u

ni
fo

rm
 

.7
92

 
.6

60
 

0 
.3

24
 

 
 

 
U

ni
fo

rm
 

.4
64

 
.3

47
 

.0
57

 
.2

16
 

 
12

 it
em

s 
10

0:
90

0 
D

IF
-f

re
e 

1 
.9

86
 

.7
44

 
.9

76
 

 
 

 
N

on
-u

ni
fo

rm
 

1 
.9

95
 

.6
82

 
.9

19
 

 
 

 
U

ni
fo

rm
 

.9
87

 
.9

87
 

.6
83

 
.9

10
 

 
 

25
0:

75
0 

D
IF

-f
re

e 
.9

85
 

.9
81

 
.6

89
 

.9
42

 

 
 

 
N

on
-u

ni
fo

rm
 

.8
50

 
.7

77
 

.0
02

 
.4

46
 

 
 

 
U

ni
fo

rm
 

.8
89

 
.8

54
 

.5
73

 
.8

16
 

 
 

50
0:

50
0 

D
IF

-f
re

e 
.4

74
 

.2
90

 
0 

.0
39

 

 
 

 
N

on
-u

ni
fo

rm
 

.9
08

 
.8

56
 

0 
.6

35
 

 
 

 
U

ni
fo

rm
 

.4
85

 
.3

47
 

.0
85

 
.1

46
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Ty
pe

 I 
Er

ro
r o

f U
si

ng
 E

ffe
ct

s-
C

od
ed

 S
ca

lin
g 

M
et

ho
d 

fo
r D

et
ec

tin
g 

N
on

-U
ni

fo
rm

 D
IF

 in
 th

e 
U

ne
qu

al
 L

at
en

t T
ra

it 
M

ea
n 

C
on

di
tio

n 
(C

on
tin

ue
d)

 

 
 

 
 

C
rit

er
io

n 
va

lu
e 

 
 

 
 

LR
 te

st
 

∆C
FI

 te
st

 
R

es
po

ns
e 

Sc
al

e 
si

ze
 

Sa
m

pl
es

 
Ty

pe
 o

f a
nc

ho
r 

U
nc

or
re

ct
ed

 p
 

C
or

re
ct

ed
 p

 
–0

.0
1 

–0
.0

02
 

Po
ly

to
m

ou
s 

6 
ite

m
s 

10
0:

90
0 

D
IF

-f
re

e 
.1

03
 

.0
30

 
0 

.0
10

 

 
 

 
N

on
-u

ni
fo

rm
 

.1
55

 
.0

63
 

0 
.0

04
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Appendix C 

Power 

Power was not reported in the cases where Type I error was inflated at the nominal 

alpha level (.05). The values in parentheses indicate that they are for the “small DIF” 

conditions; adjacent values are for the “large DIF” conditions.
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