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ABSTRACT
Recently, mean and covariance structure (MACS) confirmatory factor analysis (CFA)
has been widely used to detect items with differential item functioning (DIF).
Although how we define the scale does not impact overall model fit or tests for
whether or not a given level of measurement equivalence holds, different scaling
methods can lead to different conclusions when a researcher locates DIF in a scale.
This dissertation evaluates the MACS analysis for DIF detection by means of a
Monte Carlo simulation. The simulation results indicate that three statistically
equivalent scaling methods provide different outcomes of DIF analysis. In addition,
Bonferroni-correction improves the accuracy of the analysis, notably when a scale (or
an anchor) is contaminated by DIF. Based on the previous and current simulation
studies, this dissertation offers practical guidance for researchers who attempt to

evaluate measurement equivalence using CFA.

Keyword: DIF, MACS, scaling, biased anchor.
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CHAPTER I: INTRODUCTION

This chapter briefly introduces the concept of measurement equivalence. This
is followed by a description of potential problems of using confirmatory factor
analysis (CFA) to detect items with differential item functioning (DIF). At the end of
the chapter, the purpose and structure of this dissertation are presented.

1. Measurement Equivalence

Measurement equivalence can be thought of as characteristics of an item or
items that yield a test® of the same attribute under different conditions (Horn &
McArdle, 1992). These conditions include different groups, administrations, and
media (e.g., paper-based test versus computer-based test). With more than one group,
a scale is said to have measurement equivalence when examinees with identical
scores on the underlying (latent) construct but different group membership have the
same observed or expected raw scores at the item level, at the scale level, or at both
(Drasgow & Kanfer, 1985).

Applied psychologists have highlighted the importance of measurement
equivalence as a prerequisite for meaningful group comparisons (e.g., Drasgow, 1984;
Raju, Laffitte, & Byrne, 2002; Reise, Widaman, & Pugh, 1993; VVandenberg, 2002;
Vandenberg & Lance, 2000). To the extent that a set of items or a scale does not
function equivalently across groups, any interpretation of group differences is
necessarily open to question (Byrne & Stewart, 2006; Raju et al., 2002). For example,

under ideal circumstances, observed mean differences represent true mean differences

! The terms test and scale are used synonymously in this dissertation.



across groups. However, when measurement equivalence is not defendable, they may
represent true mean differences or differences in the psychometric relation that
connects the observed responses to the latent construct. As such, a lack of
measurement equivalence, or equivalently differential functioning, constitutes a
potential threat to the validity of a scale. Accordingly, both APA (American
Psychological Association) and ITC (International Test Commission) standards have
emphasized evaluation of DIF for fair use of a scale (AREA, APA, NCME, 1999).
2. Potential Problems of Using CFA for DIF Detection

Recently, CFA has enjoyed increasing attention from DIF researchers. For
example, a particular form of mean and covariance structure (MACS; S6rbom, 1974)
CFA has been widely used to test measurement equivalence at item level (e.g., Byrne,
1998; Chan, 2000; Everson, Millsap, & Rodriguez, 1991; Ferrando, 1996; Gonzalez-
Romé, Tomas, Ferreres, & Hernandez, 2005; Wasti, Bergman, Glomb, & Drasgow,
2000). Supporting the utility of the CFA approach, previous simulation studies have
shown that the MACS analysis works fairly well for testing DIF under various
conditions (e.g., Finch, 2005; Gonzalez-Rom4, Hernandez, & Gomez-Benito, 2006;
Hernandez & Gonzalez-Roma, 2003; Meade & Lautenschlager, 2004; Navas-Arai &
Gdmez-Benito, 2002; Oort, 1998; Stark, Chernyshenko, & Drasgow, 2006;
Wanichtanom, 2001).

In any CFA model, the scale for the item or latent construct parameters needs
to be identified in order to yield unique estimates of the parameters (Joreskog &

Sorbom, 1989). In multiple-group cases, the scaling has been achieved conventionally



by choosing an anchor item whose parameters are constrained to be equal across
groups. Unfortunately, such practice implies a tacit assumption of parameter
invariance, even when the purpose of analysis is to evaluate measurement
equivalence (Cheung & Rensvold, 1999). If the invariance assumption is not tenable,
any analysis may not provide a proper solution (Bollen, 1989). This, in turn, may lead
to inaccurate conclusions about DIF with regard to the other items being tested within
the scale (Cheung & Rensvold, 1999; Millsap, 2005). Thus, researchers need to
acknowledge the potential problems of choosing a conventional scaling method,
especially when they conduct CFA for DIF analysis.

3. Purpose and Structure of the Dissertation

The purpose of this dissertation is to examine the statistical properties of the
MACS analysis for DIF detection. More specifically, this dissertation evaluates the
Type | error and power of this methodology under a variety of conditions. Based on
the results from a simulation study, this dissertation proposes an analytic strategy that
is robust to the misspecification problems as well as theoretically suitable for DIF
analysis.

The structure of this dissertation is as follows. Chapter Il briefly demonstrates
basic concepts and terminologies that have been developed in the DIF literature. This
chapter closes with a detailed description of CFA and its methodologies used for DIF
detection. Chapter Il presents a Monte Carlo study that assesses the Type | error and
power of the MACS technique. This chapter includes design of the study, discussion

of the manipulated variables, and procedures used to generate data and run the



analyses. The results of the simulation study are presented in Chapter IV. Chapter V
discusses the simulation results in the context of educational and psychological
assessment. In addition, limitations of the study are described and future directions

for research are considered.



CHAPTER II: LITERATURE REVIEW

Among various techniques for testing measurement equivalence, those most
commonly used are based on item response theory (IRT) or confirmatory factor
analysis (CFA), or more broadly structural equation modeling (SEM) (Teresi, 2006).
The formal similarity between IRT and CFA has been introduced repeatedly in the
literature (e.g., Mellenbergh, 1994; Muthén, 1984, 1989, 1993; Muthén &
Christoffersson, 1981; Muthén & Lehman, 1985; Takane & de Leeuw, 1987). That is,
they are comparable in the sense that both postulate that an unobserved continuous
variable (i.e., latent construct) influences a set of observed variables. More
importantly, both provide a statistical framework within which between-group
equality can be evaluated for the item parameters (see Chan, 2000; Ferrando, 1996;
Raju et al., 2002; Reise et al., 1993). The most apparent difference is that IRT is often
applied to observed responses on categorical variables, whereas CFA has traditionally
been applied to observed covariances among continuous variables.

This chapter introduces the IRT framework, in which differential item
functioning (DIF) was originally conceptualized, and then provides a detailed
description of the CFA framework.

1. IRT Framework
1.1 IRT

IRT models (e.g., Lord & Novick, 1968) have been developed predominantly

in education and psychology since the late 1960s. Focused on observed responses on

the binary or ordinal items, these models define probabilistic, nonlinear relations of



the responses to latent constructs (i.e., ability, denoted by 6). The basic assumption in
IRT is that a set of items assesses a single ability dimension (i.e., unidimensionality)
but they are pairwise uncorrelated if ability level is held constant (i.e., local
independence).

The ability score for a particular examinee is estimated based on his or her
observed item responses, given a value of each item parameter. For each item, two
types of item parameters are frequently estimated. The attractiveness or b parameter
determines the horizontal position of the item trace line, called the item characteristic
curve (ICC) or item response function (IRF), which depicts the probability of an item
response along the ability level continuum. The b parameter is typically referred to as
item difficulty in the cases of binary item (Lord, 1980); the higher the b parameter
value, the more difficult it is to answer the item correctly. The discrimination or a
parameter determines the slope of the ICC; the higher the a parameter value, the
stronger the relationship is between ability level and response on the item. Therefore,
an item with a substantial a parameter value can powerfully differentiate examinees
with different ability scores.

The IRT models were originally developed for responses on the binary items,
but in practice they also increasingly have been used for responses on polytomously
ordered items. In fact, one-parameter and two-parameter models (Birnbaum, 1968;
Hambleton, Swaminathan, & Rogers, 1991) for dichotomous response can be viewed
as special cases of graded response model (GRM; Samejima, 1969) for polytomous

responses. Thus, this dissertation uses GRM to illustrate how to assess measurement



equivalence in IRT. More details on polytomous models can be found in Bock (1972),
Masters (1982), Muraki (1990), and Samejima (1969, 1972).
1.2. GRM

In GRM, the relationship between ability level and probability of endorsing
any particular response option is graphically depicted by the category response
function (CRF). The CRFs for each item are given by

o0 =bi+1)_pai(95-bik)

Py (91) = <1+eai(9j‘bik))<1+eai(91—bik—1)>' 1)

where P, (6]) is a probability that an examinee j with a given value on 8 will respond
to an item i with category k. It should be noted that the exponential terms are replaced
by 1 and 0O for the lowest and highest response options, respectively. Furthermore, the
relationship between ability level and likelihood of choosing a progressively
increasing response option is depicted by a series of boundary response functions

(BRFs). The BRFs for each item are given by

ai(sj—bik)

Pil8) = — Gy @
where P;, (6]) is the probability that an examinee j with a given value on 6 will
respond to an item i at or above a response option k. The BRFs are simplified to the
IRF for two-parameter logistic (2-PL) model in the case of binary items (Birnbaum,

1968). If a = 1, the BRFs become the IRF for one-parameter logistic (1-PL) model or

Rasch model (Hambleton et al., 1991).



As observed in Equation 2, the BRFs depend on 6 parameter as well as b and
a parameters. For a particular item with k response options, there will be k — 1 BRFs
and the a parameter is constrained to be equal across BRFs. Consequently, each item
is characterized by one discrimination parameter and several (k — 1) attractiveness
parameters in IRT.
1.3. DIF
1.3.1. Definition

In IRT, a lack of measurement equivalence is referred to as differential
functioning. When the differential functioning occurs at item level, it is called
differential item functioning (DIF). Specifically, DIF represents between-group
differences in the probability of an item response when ability scores are on a
common scale (Mellenberg, 1994). The defining feature of DIF is that the ability
scores are placed on a common scale or “statistically matched” across groups (Angoff,
1993; Camilli & Shepard, 1994). One method of statistical matching is to score all
examinees using the same BRFs. However, the resultant ability estimates can be
biased unless measurement equivalence has been established in advance.

An item is said to have measurement equivalence if the item parameters are

identical across groups (Raju et al., 2002). That is, for groupg (g =1, ..., G),

bl = b} =...= b%; bL, = b% =...=b%; ...;b} = b% =...= b5,.. (3)
When the item parameters are equal across groups, the CRFs and BRFs are also equal

for these groups. Thus, it is possible to assess DIF either at the item parameter level



or at the IRF level; once a model has been selected for parameter estimation, DIF
detection is performed by observing the BRFs or by directly comparing the item
parameters. Either the invariant item parameters or the invariant BRFs suggest that
true item responses will be identical for different examinees with equal ability scores
(Raju et al., 2002).

1.3.2. Types of DIF

DIF can be either uniform or non-uniform depending on the item parameter
that differs across groups. Uniform DIF is present when only the b parameters differ
across groups. Non-uniform DIF exists when the a parameter differs across groups,
regardless of whether or not the b parameters are different.

1.3.3. Sources of DIF

DIF, if present, is indicative of either item bias or item impact. Item bias
occurs when the source of DIF is irrelevant to the construct being measured (Camilli
& Shepard, 1994). For example, when different ethnic groups with equal ability
scores exhibit different probabilities of an item response, item bias is said to occur.
For item bias to be present, DIF must be apparent. Thus, DIF is a necessary, but not
sufficient, condition for the item bias (Zumbo, 1999).

In contrast, item impact occurs when the source of DIF is a relevant
characteristic of the construct being measured. In other words, item impact is evident
when groups show different probabilities of an item response because they truly differ
on the construct. In this case, the item parameter estimates of the test accurately

reflect group differences in the construct.



1.4. IRT Methodologies for DIF Detection

Several IRT techniques have been proposed for DIF detection during the last
two decades: Lord’s (1980) chi-square, Raju’s (1988) area method, and Thissen,
Steinberg, and Wainer’s (1988, 1993) IRT likelihood ratio (IRTLR). Only the IRTLR
is illustrated here because it is most closely related to the CFA techniques (Cohen,
Kim, & Baker, 1993; Cohen, Kim, & Wollack, 1996; Thissen, 1991; Thissen et al.,
1988, 1993). Details for the other IRT techniques can be found in Lord (1980), Raju
(1988, 1990), and Raju, van der Linden, and Fleer (1992).

The maximum likelihood (ML) parameter estimation algorithm results in a
value of model fit. The IRTLR method assesses DIF by comparing the model fit of a
pair of nested models. This technique starts with fitting the compact (simpler) model
in which all item parameters are estimated with the constraint that they are equal
across groups. Next, each item is tested, one at a time, for DIF. The augmented
(complex) model relaxes the equality constraint for an item being tested. The latter
model provides a value of the likelihood function, which is associated with estimating
the parameters of the item being tested separately for each group. This value is

compared to the value for the compact model by creating the likelihood ratio:

= @)

Ly
Under the null hypothesis that the compact model holds in the population, —2 times

the natural-log transformation of this ratio,

L
—2In (i) = —2(nL; —InLy), (5)

10



yields a test statistic that approximately follows a chi-square distribution, with
degrees of freedom equal to the difference in the number of estimated parameters
between the two nested models. A significant chi-square value suggests that the
compact model fits significantly worse than the augmented model. Equivalently, it is
considered that the item parameters differ across groups; therefore, the item being
tested exhibits DIF.

In a simulation study, Cohen et al. (1996) evaluated the IRTLR technique
under various conditions. Although simulated responses were dichotomous rather
than ordinal in nature, they found that, in general, this technique works reasonably
well; Type | error rates fell within an expected range in most conditions.

In order to accurately estimate the IRT parameters, it is well known that a
substantial number of items are required because the ability scores are predicted from
the joint relationship with other items. In general, more than 30 items are
recommended for stable parameter estimation in the literature (e.g., Seong, 1990;
Stone, 1992).

2. CFA Framework
2.1. CFA

CFA models, which comprise the measurement component of the structural
equation modeling (SEM), were developed in the 1970s mainly by sociologists and
econometricians (see Joreskog, 1971a, 1971b, 1973; McArdle & McDonald, 1984).

The main objectives of CFA are to support hypothesis-driven data analysis as well as

11



to compare and refine theories on the basis of data, especially data obtained from
non-experimental social research

Currently, the mean and covariance structure (MACS; S6rbom, 1974) model
is ideally suited to evaluate measurement equivalence for several reasons (see Little,
1997). First, a hypothesized factor structure is fitted simultaneously in two or more
groups. Second, it tests the between-group equality of all reliable measurement
parameters. Third, it corrects for measurement error whereby estimates of the trait
parameters are less biased. Finally, “strong” tests for measurement equivalence are
tenable by evaluating the mean structure invariance of the observed responses. This
dissertation uses the MACS model to demonstrate how to assess measurement
equivalence in CFA. Although several CFA programs are now available, LISREL
(Joreskog & S6rbom, 1996) notation is used here for convenience.
2.2. MACS Model

The CFA models posit a linear, rather than a nonlinear, relation between
observed responses and latent constructs (i.e., trait, denoted by £). In the MACS
model, the observed response x; to an itemi (i=1, ..., p) is represented as a linear
function of an intercept 7;, latent trait variables &; (j =1, ..., m), and a unique factor
score §;. More specifically,

X; =T+ A;& + 6;, (6)

where the factor loading 4;; defines the metric of measurement, as it represents the
expected change in x; per unit change in &;. The intercept t; represents the expected

value of x; when &; = 0. The unique factor score is further divided into two

12



components; an item-specific factor score and measurement error. The item-specific
factor score represents systematic differences in an item response after influences of
the trait variables have been eliminated. In contrast, the measurement error is
typically conceptualized as random error. The unique factor score, or equivalently the
sum of the item-specific factor score and the measurement error, is assumed to be
normally distributed across observations.

When the same model holds in each group g (g =1, ..., G), Equation 6 is
extended to

x9 =19 +ANIEI+ 69, (7)
where x9 isap x 1 vector of observed responses (in group g), t9 isap x 1 vector of
intercepts, {9 is an m x 1 vector of latent trait variables, A9 is a p x m matrix of factor
loadings, and 89 is a p x 1 vector of unique factor scores.

In general, the MACS model assumes that (a) the unique factor scores are
independent of the trait variables, (b) the unique factor scores are independent of each
other, and (c) the expected unique factor scores are equal to zero. Under these
assumptions, taking the expectation of Equation 7 yields the relation between the
observed item means and the latent trait means:

ud =194+ A9k9, (8)
where p9 is a p x 1 vector of item means and k9 is an m x 1 vector of trait means for
each group.

The covariance matrix of x variables is obtained in group g as

29 = AIDINI + 09, (9)

13



where @9 is an m x m covariance matrix of latent trait variables and ®9 isap x p
matrix of unique factor score variances. This structural model is fitted to a sample
covariance matrix S9, yielding
S9 ~ RIPIAI + ©9 = £9, (10)

where 9 is a p x p sample covariance matrix of x variables in group g and A9, &,
and ©9 matrices contain the estimates of population parameters. The sample
covariance matrix is approximated by the CFA solution A9PIAI + @9, This
solution, in turn, produces £9, which contains the estimates of population covariances
among x variables under the assumption that a hypothesized factor structure holds in
the population.
2.3. Estimation

Assuming that observed responses follow a multivariate normal distribution in
the population, the ML estimates of the parameters in Equations 9 and 10 are

obtained by minimizing the discrepancy function
Fu(S,5) = —2inL = %5, () finn (5.5)°, (11)
where N9 is the number of observations in group g and N is the number of total
observations across groups. The function fj,; (S, f)g is further written as
£ (5,8)? = In|$3 + tr($959 ) — In|s9| — p, (12)
where

1 _ _ ’
§9 = (55) ZMLL(EI = 79 = AIKO) (%9 — 19 — AK7). (13)

14



As observed in Equation 11, the ML discrepancy function is inversely related to the
likelihood function. Given the data, therefore, the parameter estimates are those that
minimize the discrepancy between S and £ (or maximize the likelihood of the data)

under a hypothesized model.

2.4. Model Fit

A critical issue in CFA is how to determine whether a particular model
adequately fits the data. As Marsh (1994) noted, first of all, researchers need to
ensure that the (iterative) estimation procedure converges to a proper solution (e.g.,
positively defined matrices, no out-of-range values, reasonable standard errors, etc.)
and that the parameter estimates are reasonable in relation to a prior model as well as
to common sense. For simplicity, it is presumed here that these prerequisites have
been satisfied for a particular MACS model.

The overall fit of a model is based on the discrepancy between the observed
covariance matrix and reconstructed population covariance matrix. It is also based on
the discrepancy between the observed mean vector and reconstructed population
mean vector (Sérbom, 1974). The null hypothesis (H,) for testing a particular model
is that the hypothesized factor structure in the model holds exactly in the population.
It can be written as

Hp: X = A®A + 0,
U =71+ Ax.
The alternative hypothesis (H,) is that £ has no particular structure. It should

be noted that the role of null hypothesis is reversed from its usual role in research.

15



Thus, failure to reject H, implies that the hypothesized model is plausible in the
population.

The conventional measure of overall model fit is the chi-square statistic
(Joreskog, 1971). Under the null hypothesis, the ML discrepancy function (Equation
11) value yields a test statistic

(N —1DFy,(S.2), (14)
which follows a chi-square distribution as N becomes large, with degrees of freedom
df =2p@+3) - {p —pm —3m(m - 1)}. (15)
If the chi-square value is significant, we reject H,. Otherwise, we cannot reject Hy;
we have failed to show that a hypothesized model does not hold exactly in the
population, thereby concluding that this model is tenable.

Although the chi-square statistic is the most commonly used measure of
overall fit in the literature, many researchers have been concerned about its
appropriateness (e.g., Bentler, 1990; Bentler & Bonett, 1980; Browne & Cudeck,
1993; Cudeck & Browne, 1983; Joreskog & Sorbom, 1989). First, the conclusions
based on the chi-square test can vary depending on N (see Equation 14); when N is
sufficiently large, any parsimonious model will be rejected. Second, this test is
extremely sensitive to (small to moderate) deviation from normality of the data. It is
presumed that responses are multivariate normally distributed in each group.
However, a distributional violation can occur when dichotomous or polytomous
responses are analyzed. In a simulation study, West, Finch, and Curran (1995)
showed that the chi-square test tends to reject H, for polytomous responses even
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when their discrepancy function is small. Finally, the null hypothesis of perfect fit is a
priori false when applied to real data (Marsh, Balla, & McDonald, 1988). Thus, the
chi-square test essentially tests whether sample size is large enough for the test to tell
us what we already know.

Alternatively, a large number of practical goodness-of-fit measures have been
proposed in the literature. Those most commonly used are the Comparative Fit Index
(CFI; Bentler, 1990), Non-Normed Fit Index (NNFI; Bentler & Bonett, 1980), and
Root Mean Squared Error of Approximation (RMSEA,; Steiger & Lind, 1980).
Because most of the measures do not have a known sampling distribution, researchers
recommend certain criterion values indicative of satisfactory model fit. Thus, it has
been a common practice to report multiple goodness-of-fit measures when researchers
evaluate a proposed model (Hu & Bentler, 1999).

2.5. Measurement Invariance

In CFA, measurement equivalence is referred to as measurement invariance.
In his landmark work, Meredith (1993) used Lawley’s (1943-44) selection theorem as
a theoretical framework for measurement invariance. That is, if a particular factor
structure holds in a population, the same structure should hold in any samples of the
population no matter how they are chosen. Nevertheless, selection may introduce
some dependency among unique factor scores and/or between unique factor scores
and latent trait scores. Thus, a scale is said to have measurement invariance when
conditional distributions of item responses are identical across groups, given a value

on the trait (Meredith & Teresi, 2006).
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Vandenberg and Lance (2000) extensively reviewed different levels of
measurement invariance proposed in the literature and recommended a number of
invariance tests that could be performed in empirical research. Moreover, Vandenberg
(2002) illustrated how different invariance levels are required to answer different
research questions (see also Steenkamp & Baumgartner, 1998).

2.5.1. Full Measurement Invariance
Configural Invariance

Configural invariance is based on Thurstone’s (1947) principle of simple
structure (Horn & McArdle, 1992; Horn, McArdle, & Mason, 1983). That is, items of
a scale should exhibit the same pattern of salient (non-zero) and non-salient (zero or
near zero) loadings across groups. Although, in principle, it is not necessary to
constrain the non-salient loadings to zero, this is commonly done in CFA (Steenkamp
& Baumgartner, 1998). As such, configural invariance requires only that the same
number of latent trait variables and the same pattern of zero and salient loadings are
specified in each group. It should be noted that no equality constraints are imposed on
the parameters. Configural invariance is established by testing the null hypothesis that
covariance and mean structures are equal across groups,

Hy:Z9 = A9IDINY + @9,
u? =19 + A9k 9 for all g.
Metric Invariance
Metric invariance introduces the concept of equal unit of measurement. If an

item satisfies metric invariance, observed item responses can be meaningfully
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compared across groups. Furthermore, comparisons of the latent trait variances and
covariances become plausible.

Because the loadings carry information about how changes in the trait scores
relate to changes in the observed scores, metric invariance is established by testing
the null hypothesis that loadings are equal across groups,

Hy: Al = A% = ... = AC,

Metric invariance does not necessarily indicate that the origins of the scale are
equivalent across groups. Consequently, mean comparisons are not tenable yet,
thereby leading Meredith (1993) to categorize this level of invariance as weak
factorial invariance.

Scalar Invariance

Scalar invariance addresses the question of whether the latent trait mean
differences are consistent with the observed mean differences (Steenkamp &
Baumgartner, 1998). Even if an item satisfies metric invariance, scores on that item
can still be systematically biased upward or downward (i.e., additive bias; Meredith,
1995). Given scalar invariance, researchers can ascertain whether the origins of the
scale, as well as the unit of measurement, are identical across groups. As a
consequence, either observed mean or trait mean comparisons become meaningful,
thereby leading Meredith (1993) to term this level of invariance as strong factorial
invariance.

If metric invariance has been satisfied, scalar invariance is established by

testing the null hypothesis that intercepts are equal across groups,
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Invariance of Unique Factor Variances

A final invariance level that may be imposed on the measurement model is
that the unique factor variances are invariant across groups. If metric and scalar
invariance have been satisfied, the invariance of unique factor variances is established
by testing the null hypothesis specifying

Hy:0'=0% =... = 0°,

This level of invariance implies that “all group differences on the measured
variables are captured by, and attributable to, group differences on the common
factors” (Widaman & Reise, 1997). Meredith (1993) classified this level of invariance
as “strict” factorial invariance.

In reality, the invariance of unique factor variances is extremely difficult to
achieve. Widaman and Reise (1997) argued that the unique factor variances are not
necessarily identical in practical applications and only metric and scalar invariance is
essential for answering most research questions. However, when comparisons of the
observed associations (e.g., correlation) are the questions of interest, reliability of the
measure should be about the same in order for measurement artifacts not to bias the
conclusions (Steenkamp & Baumgartner, 1998). “Reliability equality” is established
if items of a test satisfy metric invariance, and only if the invariance of unique factor

variances is defensible (Byrne, 1998).
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Invariance of Factor Variances/Covariances and Factor Means

The invariance levels often imposed on the structural model are that the factor
variances and/or factor means are invariant across groups. These invariance levels are
evaluated if the previous invariance levels imposed on the measurement model have
been satisfied.

The invariance of factor covariances is established by testing the null
hypothesis that latent trait covariances are equal across groups,

Hy: @jj = ®f = =@f (=2,...mk=1, .., [j-1]).
The invariance of factor variances is supported by testing the null hypothesis that trait
variances are equal across groups,
Hy:®) =@} = = (j=1,...,m).

If the invariance of factor variances and covariances is satisfied, the trait correlations
are considered to be invariant across groups.

The invariance of factor means is established by testing the null hypothesis

that latent trait means are equal across groups,

2 _ .. G

Hy:x! =k - =K,
The nonequivalence of the trait means is generally referred to as item impact in the
DIF literature (Raju et al., 2002).
2.5.2. Partial Measurement Invariance

The aforementioned invariance tests are omnibus tests in the sense that they

address the question of whether imposed equality constraints are fully satisfied. For

example, metric invariance requires that all the loadings to be invariant across groups.
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Muthén and Christoffersson (1981), however, implied that it is possible to test metric
invariance when only some of the loadings were invariant. They termed this “partial”
measurement invariance.

Byrne et al. (1989) provided a didactic article on how to test the level of
partial measurement invariance. The basic idea is that full invariance is not necessary
in order for further invariance tests and substantive analyses to be conducted (see also
Meredith, 1993). In particular, they proposed that mean comparisons would be
meaningful if metric and scalar invariance have been satisfied for at least two items
per latent trait. A test for trait mean differences is supposedly more beneficial than
one for observed mean differences because measurement error has been partialed out
from the trait means. Furthermore, the trait mean differences will be estimated more
accurately with imposed partial invariance constraints because the trait mean
estimates are adjusted for the fact that only partial, not full, invariance characterizes
the data (Cheung & Rensvold, 2000). However, one limitation is that the trait being
compared may have different meanings for different groups under partial
measurement invariance.

2.5.3. Testing Procedure

The procedure for invariance tests starts with an omnibus test that evaluates
the equality of observed covariance matrices and mean vectors, both separately and
jointly (Steenkamp & Baumgartner, 1998). In the unlikely cases that observed
covariances and means are actually invariant across groups, analysis for separate

groups is no longer necessary (i.e., data can be pooled). However, the omnibus test
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has undergone some criticism. For example, Muthén (cited in Raju et al., 2002) and
Rock, Werts, and Flaugher (1978) showed that this test can signify equal covariance
matrices and mean vectors even when more specific invariance tests find otherwise.
Furthermore, Byrne (1998) argued that the omnibus test should not be regarded as a
necessary prerequisite to more specific invariance tests .Thus, regardless of whether
or not the omnibus test indicates a lack of invariance, subsequent tests are
recommended in order to pinpoint possible sources of noninvariance (Meade &
Lautenschlager, 2004).

Thus, the model of configural invariance serves as a baseline model in the
invariance tests (Horn & McArdle, 1992). Given that a baseline model represents the
best model in terms of both parsimony and meaningfulness, it is possible that the
baseline model may not be completely identical across groups (Byrne et al., 1989).
Even if this is the case, subsequent invariance tests still continue by implementing a
condition of partial invariance. For only those latent trait variables that support
configural invariance, metric invariance is tested. Those loadings that do not conform
to metric invariance remain unconstrained in the subsequent tests. Next, scalar or
partial scalar invariance is tested only if at least partial metric invariance has been
established. Similarly, those intercepts that do not conform to scalar invariance
remain unconstrained in the subsequent tests.

The order of the invariance tests for unique factor variances, factor
covariances, and factor variances is somewhat arbitrary (Bollen, 1989; Joreskog,

1971). Ultimately, the order may not be critical in the sense that a particular level of

23



invariance is not required in order for subsequent invariance tests to be conducted.
Indeed, often the invariance of factor covariances and factor variances is tested
simultaneously (i.e., ®! = ®2 = ... = ®%). When the invariance of unique factor
variances is examined, the test proceeds only if at least partial metric and scalar
invariance has been established. At this point, those intercepts that do not conform to
scalar invariance are unconstrained across groups.

2.6. Significance Test

The statistical framework for invariance tests was originally developed by
Joreskog (1971). The invariance tests require a series of hierarchically nested models
to be estimated; a hypothesized model in which parameters of interest are constrained
to be equal across groups is compared with a competing, less restrictive model in
which the same parameters are freely estimated in each group. A particular level of
invariance is satisfied if the model fit is adequate, and if its difference from the
competing model is minimal (Widaman & Reise, 1997). Likewise, the same criteria
hold in testing all subsequent invariance levels.

The standard way to compare the fit of two nested models is the LR test
(Joreskog, 1971). Consider two hypotheses that specify increasingly restrictive
models, H, and H,. Let Fy;;, and Fy;; o be the minimum values of the ML
discrepancy function under H, and H,, respectively. Under Hy, the test statistic

D =n(Fyro — Fura), (16)
where n = N — 1, follows asymptotically a chi-square distribution, with degrees of

freedom equal to the difference in the degrees of freedom between the two models. If
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the chi-square difference value is significant, we reject Hy; we conclude that the
constraints specified in the more restrictive model do not hold. Otherwise, we
conclude that all the equality constraints are tenable.

Steiger et al. (1985) noted that the LR test is quite flexible; it can test multiple
constraints simultaneously, and when a series of the LR tests is conducted on a
sequence of nested models, they are asymptotically independent. In a simulation
study, Meade and Lautenschlager (2004) examined the power of the LR test in
multiple-group cases. They showed that this test is fairly effective under optimal
conditions. Not only was the omnibus test for equal observed covariance matrices
successful in general, but also the lack of full metric invariance was accurately
detected in most conditions.

On the other hand, several researchers (e.g., Cheung & Rensvold, 2002; Little,
1997; Marsh, Hey, & Roche, 1997; West, Finch, & Curran, 1995) have argued that
the LR chi-square value is as sensitive to sample size and nonnormality of data.
Theoretically, this statistic holds whether or not a baseline model is misspecified
(Steiger et al., 1985). However, Yuan and Bentler (2004) found that it is an unreliable
measure of relative model fit when a baseline model, in fact, has been misspecified.
Kaplan (1989) also found that the power of the LR test, under partial metric
invariance, is dependent on the size of the misspecification as well as on the
correlation between the misspecified parameter and the remaining parameters in the

model.
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Alternatively, Cheung and Rensvold (2002) examined properties of 20 other
goodness-of-fit measures proposed in the literature. Their simulation results indicated
that each of ACFIl, AGamma Hat (Steiger, 1989), and ANon-Centrality Index (NCI,
McDonald, 1989) controlled its Type | error at the nominal alpha level (e.g., .05)
when used to test (full) invariance. For ACFI, they suggested that the null hypothesis
should not be rejected with a value smaller than or equal to —0.01. For AGamma Hat
and ANCI, the critical values were suggested to be —0.001 and —0.02, respectively. In
a recent conservative simulation study (i.e., .90 power, .01 Type | error), Meade,
Johnson, and Braddy (2008) recommended that a change in CFI of more than 0.002 is
the optimal criterion for rejecting the null hypothesis of invariance. Little (in press)
suggested that, for most applications, Cheung and Rensvold’s (2002) ACFI value of —
0.01 is quite reasonable, but that Meade et al.’s (2008) ACFI value 0f —0.002 can be
used when the question warrants such a restrictive criterion (e.g., high-stake testing
environments). For example, Byrne and Stewart (2006) evaluated scalar invariance
for the Beck Depression Inventory Il (Beck, Steer, & Brown, 1996) among Hong
Kong and American adolescents, using the Cheung and Rensvold’s criterion.

2.7. Scaling

In any CFA model, indeterminacy exists between the scale of the item
parameters and the scale of the latent trait variables. That is, if the scale for the item
parameters should be identified to obtain unique estimates, the scale for the trait
variables should be specified, or vise versa. The scaling is typically achieved by

imposing a set of constraints on the parameters (Joreskog & Sérbom, 1989).
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Recently, Little, Slegers, and Card (2006) outlined two primary scaling
methods for both mean (Equation 8) and covariance (Equation 9) structures. They
also proposed another possible, statistically equivalent scaling method, called the
effects-coded method. All three of the scaling methods yield identical statistical fit
values because they are simple reparameterizations of one another (Little et al., 2006).

When three or more items are used to measure a latent trait variable, each
method provides the necessary condition for identifying the scale of the trait variable.
Consequently, they can be used for either single-group cases or multiple-group cases.
However, having fewer than three items is problematic as a general rule. Thus, our
discussion will focus on situations when a researcher has three or more items per trait
variable.

2.7.1. Marker-Variable Method (Bollen, 1989; Joreskog & S6rbom, 1993)

The marker-variable method involves fixing the loading of an item (i.e.,
marker or anchor) to 1 and the intercept of this item to O for each latent trait variable.
Then, trait means and variances are freely estimated in all groups. Consequently, this
method sets the scales of the trait variables to be equivalent to those of the chosen
anchor item.

However, this method has an undesirable property. The estimated trait means
and variances can vary depending on which item is chosen as an anchor. Nevertheless,
the choice is somewhat arbitrary because there is no absolute rule yet in the literature

(Little et al., 2006).
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2.7.2. Fixed-Factor Method (McArdle & McDonald, 1984)

The fixed-factor method involves fixing the mean and variance of each latent
trait variable in the first group. With loadings and intercepts equated across groups,
the trait means and variances are freely estimated in the subsequent groups.
Consequently, the trait variables are scaled relative to the fixed trait mean and
variance in the first group. In general, the trait mean is fixed to 0 (i.e., x}, = 0) and
the trait variance is fixed to 1 (i.e., ®1,,,, = 1). This choice results in placing the trait
variables of the first group in correlation metric (Little et al., 2006).

The trait means and variances in the subsequent groups are also fixed in the
model for configural invariance. Unlike other methods, this method needs to
subsequently free the trait variances and/or means in latter groups when further
invariance levels are tested.

2.7.3. Effects-Coded Method (L.ittle et al., 2006)

The effects-coded method involves, for each latent trait variable, constraining
the set of intercepts to sum to 0. It also constrains the set of loadings to average to 1,
which is the same as requiring them to sum to the number of unique items. These
constraints can be written as

Pt =0andXf A7 =P, (17)
where i = 1 to P refers to summation across the set of P unique items for a given trait
variable. The intercept parameters are estimated as an optimal balance around 0, but

no individual intercept needs to be fixed. Similarly, the loading parameters are

28



estimated as an optimal balance around 1, but no particular loading is necessarily
constrained.

The trait means and variances reflect the observed metric of the items,
optimally weighted by the degree to which each item represents the underlying trait
variable. Consequently, a given trait variable will be on the same scale as the average
of all the items. This method is desirable in the sense that the average of a set of items
would be a more accurate estimate of a population value than any one item arbitrarily
chosen from the set (Little et al., 2006).

2.8. Applicability of CFA

CFA involves many practical features with regard to its application. First,
CFA programs (e.g., AMOS, EQS, LISREL, Mplus) provide a number of “useful”
measures of model fit, but IRT programs (e.g., BILOG, MULTILOG, PARSCALE)
yield only the LR test statistic as a standard. Second, CFA allows researchers to work
with responses on multidimensional questionnaires (see Little, 1997), measured in
multiple groups. In contrast, many of the IRT programs assess measurement
equivalence between only two groups and they are confined to unidimensional
questionnaires. Given the advances by Kim, Cohen, and Park (1995) and Oshima,
Raju, and Flowers (1997), however, IRT analysis will become possible for cases
involving multiple ability dimensions measured in more than two groups.

2.9. CFA Methodologies for DIF Detection
The relationship between CFA and two-parameter IRT models for

dichotomous responses was clarified by Takane and de Leeuw (1987) and McDonald
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(1999). That is, the loading (4;) and intercept (;) parameters in CFA are essentially
equal to the discrimination (a;) and attractiveness (b;) parameters in IRT, respectively.
Since then, the concept of item invariance has been integrated into a more general,
theoretical framework provided by IRT. Consequently, researchers are now able to
test DIF within CFA, or more broadly within the SEM framework. The CFA- and
SEM-based techniques for DIF detection employ the MACS model (Chan, 2000;
Ferrando, 1996) and the multiple indicators multiple causes (MIMIC) model (Mutheén,
1988), respectively. The MIMIC technique is briefly illustrated, followed by a
detailed discussion of the MACS technique. More details for the MIMIC technique
can be found in Muthén (1988).
3. MIMIC Technique

The MIMIC model (Joreskog & Goldberger, 1975) regresses the latent trait
variables on exogenous observed variables (covariates). Muthén (1988) further
extended this model such that the item responses are also regressed on the covariates.
Thus, the observed response x; to anitemi (i=1, ..., p) is represented as a linear
function of an intercept 7;, trait variables ¢; (j =1, ..., m), observed covariates z, (¢ =
1, ..., r), and a unique factor score §;. It can be written as

x;p =T+ ;6 + Bicze + 6;, (18)

where ;. is a p x r matrix of regression slopes that represent the effects of the
covariates on the item responses. Under the usual assumptions, taking the expectation
of Equation 18 yields the relation between the observed item means and the latent

trait means:
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u =1+ Ax+ Bz, (19)
where p is a p x 1 vector of item means, k is an m x 1 vector of trait means, and B is a
p x r matrix of regression slopes of the item responses on the covariates.

The regression slopes in B are called the direct effects because they influence
the responses, unmediated by the latent traits. The direct effects indicate whether the
item responses differ across groups after controlling for any trait mean differences,
which is the definition of DIF (Fleishman, 2005; Fleishman & Lawrence, 2003;
Fleishman, Spector, & Altman, 2002; Millsap & Everson, 1993). Accordingly, DIF is
evident when the direct effects are statistically significant (Grayson, Mackinnon,
Jorm, Creasey, & Broe, 2000; Jones, 2006). Because the loadings are assumed to be
equal across groups, the MIMIC technique is limited to tests for uniform DIF.

4. MACS Technique
4.1. Specification

The standard MACS model can be extended for DIF detection by addressing a
number of additional assumptions. Assuming that only “one” latent trait variable
accounts for continuous responses on a scale (i.e., congeneric item responses;
Joreskog, 1971), observed responses x to an itemi (i =1, ..., p) are explained by
means of linear regression on the trait variable ¢ in this particular MACS model.
More specifically,

x; =71; + 4§+ 6;. (20)
As noted in Equation 6, the intercept t; represents the expected response to an item i

for examinees with trait scores of zero. The factor loading A; refers to the expected
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change in the item response per unit change in the trait variable. Finally, §; is the
unique factor score, which is assumed to be normally distributed. Under the further
assumption that the covariances among the unique factor scores are zero in the
population, the mean of x; is equal to 7; when the trait score is zero and covariances
between x; and & are equal to A; (Joreskog, 1971). Thus, taking the expectation of
Equation 20 yields the covariance matrix of x variables in the population

T =APA + 0, (21)
where A is a p x 1 vector of factor loadings and © is a p x p diagonal matrix of unique
factor score variances. The mean vector of x variables in the population is given by

u=1t+ Ak, (22)

where 7 isa p x 1 vector of intercepts and x is a scalar trait mean.

The assumptions that (a) a single latent trait underlies the correlations among
the observed responses and that (b) off-diagonal elements in ©, are zero are the
analogs of, respectively, the unidimensionality and local independence? assumptions
in IRT. In the context of IRT, t; corresponds to the attractiveness parameter (i.e., the
observed mean for examinees with zero trait score) and A; the discrimination
parameter (i.e., the ability of an item to differentiate examinees with different trait
scores) (Grayson & Marsh, 1994; Mellenbergh, 1994). Under the assumption that the
same factor structure underlies each group g (g = 1, ..., G), Equations 21 and 22 are

extended to

% Note that the local independence assumption can be violated and estimated by
specifying the correlated true population residuals.
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29 = AIDINY + 09 and w9 =19 + AIxY, (23)
respectively.
4.2. Relation to IRT

The MACS model for congeneric responses and the IRT model for
dichotomous responses assume different conditional distributions of the responses
(i.e., normal with homogeneous variance and binomial, respectively). But,
Mellenbergh (1994) noted that the MACS model has the same structure as the two-
parameter dichotomous IRT model (i.e., Birnbaum, 1968). Thus, they hold two
invariance properties in common; the invariance of item parameters over population
samples and the invariance of an examinee’s latent score over measurements (See
Hambleton & Van der Linden, 1982).

Although the latent trait variable is believed to have a mean of zero and a
variance of unity in the population, this property does not necessarily hold in the
samples from the population. That is, the trait variable will not usually have the zero
mean and unity variance in samples because the covariances among unique factor
scores are not expected to be zero (MacCallum & Tucker, 1991; Meredith, 1993).
Thus, it can be assumed (and tested) that item parameters are invariant but trait means
and variances can vary from those in the population (Ferrando, 1996).

The intercepts in MACS analysis correspond to the attractiveness/difficulty
parameters in IRT; the higher the intercept, the more attractive/difficult the item is
(i.e., a higher mean response is obtained). Factor loadings correspond to the

discrimination parameters; the higher the loading, the more discriminating the item is
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(i.e., examinees of different latent scores are better differentiated; see Ferrando, 1996;
Grayson & Marsh, 1994; Mellenbergh, 1994).

The intercept parameter represents differential response level associated with
an item, whereas the loading parameter represents how concretely the item reflects
the trait variable being measured (Ferrando, 1996). Thus, the intercept parameter
corresponds to the attractiveness parameter in IRT; the higher the intercept, the more
attractive the item is in the sense that a higher mean response is obtained. Similarly,
the loading parameter corresponds to the discrimination parameter in IRT; the higher
the loading, the better the item differentiates examinees with different trait scores (see
Ferrando, 1996; Grayson & Marsh, 1994; Mellenbergh, 1994).

As noted previously, uniform DIF exists when only the attractiveness
(intercept) parameter differs across groups. Non-uniform DIF is present when the
discrimination (loading) parameter differs across groups, regardless of whether or not
the attractiveness parameter is invariant. Thus, lack of invariance in 79 implies
uniform DIF, while lack of invariance in A9 implies non-uniform DIF, regardless of
the invariance in 79 (Chan, 2000).

The unique factor score provides information about precision in measurement.
Indeed, the item information function (IIF) in IRT is equal to the ratio of the squared
loading and unique factor score variance (Mellenbergh, 1994). However, the unique
factor score is not a parameter of substantive interest in the DIF literature. As such,
invariance of unique factor variances is not usually of concern in the MACS

technique for DIF analysis.
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The illustrated MACS model has been specified only for continuous responses.
But, it is also applicable to the case of items with dichotomous or ordered response
options. For these items, it is assumed that the response options correspond to
segments of a latent continuous response variable (Mellenbergh, 1994) denoted by x;".
Thus, the MACS model for the latent response variable can be written as
xi =1, +4,E+6;, (24)
Then, the threshold parameter y is introduced to accommodate the discrete nature of

the observed dichotomous and polytomous (k-category) responses:

and x; = kifyy <x; < Vi1, (25)

Xi

_{11fxl* =Y

respectively. Because the latent continuous responses are assumed to be multivariate
normally distributed in the population, a polychoric correlation matrix of the observed
responses is computed (Bollen, 1989) and then the MACS model is fitted to the
matrix (e.g., Jones, 2004; Stark et al., 2006).

As mentioned previously, a direct correspondence exists between IRT item
parameters and CFA item parameters in the case of binary items. Specifically,
implementing the two-parameter IRT model and the parameter standardization of the
CFA model using, say, trait mean of zero and variance of unity and unity variance of

the latent response variables,

The conditional probability of the observed response to an item i then can be obtained

as

35



Pi(xi = 1|§j) =1- q’(]’i _Aifj/ 1 —/112>, (27)

where P, (Ej) is the probability that an examinee j with a given value on & will
correctly answer an item i and & is the cumulative standard normal distribution
function. A complete explication of these relationships can be found in Kamata and
Bauer (2008), Lord and Novick (1968), McDonald (1999), Muthén and
Christoffersson (1981), and Takane and de Leeuw (1987).
4.3. Strategy

In the CFA literature, the MACS technique has been applied for testing both
uniform and non-uniform DIF, using either a “constrained-baseline” strategy or a
“free-baseline” strategy. Regardless of which strategy is used, tests for uniform DIF
are typically conducted only for those items that have been found to have no non-
uniform DIF.? This two-step procedure is consistent with the fact that metric (loading)
invariance is cited as a prerequisite for scalar (intercept) invariance (Vandenberg,
2002; Vandenberg & Lance, 2000).
4.3.1. Constrained-Baseline Strategy

The constrained-baseline strategy tests for DIF one item at a time, assuming
that other items are DIF-free anchors (e.g., Chan, 2000; Chen & Anthony, 2003;
Finch, 2005; Gelin, 2005; Muthén & Asparouhov, 2002; Oishi, 2006; see Stark, et al.,
2006). This strategy starts with a “fully-constrained” baseline model (Model A), in

which all the loadings and all the intercepts are constrained to be equal across groups.

® Non-uniform DIF (loading invariance) and uniform DIF (intercept invariance) for a
particular item can be tested simultaneously (see Stark et al., 2006).
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After overall fit of this model is established, it is then statistically compared with each
of p models (where p = number of items), in which one respective loading is freely
estimated in each group. Next, a nested baseline model (Model B) is fitted, in which
the loadings of the (previously identified) non-uniform DIF items are allowed to vary
across groups. This model is then compared with each of g models (where g =
number of items with invariant loadings), in which one respective intercept is freely
estimated in each group.

The statistical significance of the parameter (i.e., loading, intercept)
invariance is usually determined by conducting the modification index (M) test or
LR test. The MI indicates how much the LR chi-square value is “likely” to reduce if a
particular fixed parameter is freely estimated. Thus, the MI values associated with the
loadings and intercepts are obtained from the baseline Models A and B, respectively.
The critical chi-square value for 1 degree of freedom is used as a Ml criterion value
for flagging DIF. Alternatively, DIF is indicated when the LR test statistic is
statistically significant in a series of “actual” nested-model comparisons. A
Bonferroni correction is recommended to set the critical (MI and chi-square) values at
a reduced alpha level (i.e., p = a/ number of invariance tests).

In a couple of simulation studies (Gonzalez-Roma, et al., 2006; Hernandez &
Gonzalez-Romé4, 2003), the constrained-baseline strategy was found to perform fairly
well; it maintained reasonable control for Type | error and satisfactory power in the

medium to large DIF conditions.
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4.3.2. Free-Baseline Strategy

The free-baseline strategy tests DIF in each item separately, assuming that
other items are not free from DIF (e.g., Fleishman et al., 2002; Woods, 2009; Woods,
Oltmanns, & Turkheimer, 2008; see Stark et al., 2006). This strategy starts with a
“fully-free” baseline model (Model A; see Figure 1A), in which all parameters are
freely estimated in each group except those needed for scaling. Once overall model fit
is established, this model is then statistically compared with each of p models that
constrain one respective loading to be equal across groups (Model B; see Figure 1B).
Next, a nested baseline model (Model C) is fitted, in which the (previously identified)
invariant loadings are constrained to be equal. This model is then compared with each
of g models (Model D; see Figure 1C), in which one respective intercept is
constrained to be equal across groups. Non-uniform DIF is indicated if the chi-square
difference between Models A and B is statistically significant with 1 degree of
freedom. Similarly, if the chi-square difference between Models C and D is
significant, this item is considered to exhibit uniform DIF. A Bonferroni correction

for multiple nested-model comparisons is also recommended for this strategy.

Figure 1

Free-Baseline Strategy for the MACS Technique for DIF Detection

Figure 1A to 1C depict three nested MACS models. This example illustrates a simple
case, in which (a) the scale includes three items, (b) only the second item exhibits

non-uniform DIF, and (c) the marker-variable scaling method is used. For simplicity,
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the unique factor variances are omitted. The free parameters are marked by “*” and
the parameters equated across groups are marked by “=.”

A. Fully-Free Baseline Model

Y1 Y2 Ys Y1 Y2 Ys
AN AL LS

1

B. Model of a Single Restrictive Loading

Y1 Y Ys Y1 Y2 Ys
NANASL S S

1

C. Model of a Set of Restrictive Loading and Intercept




In a simulation study, Stark et al. (2006) evaluated a variant of the free-
baseline strategy, which tests uniform DIF and non-uniform DIF simultaneously.
They found that the free-baseline strategy performs reasonably well in all study
conditions; power was high while Type | error was acceptable at the nominal alpha
level. When a Bonferroni correction was applied to the large sample, large DIF
conditions, Type | error was almost eliminated while power remained high.

4.3.3. Recommended Strategy

Although previous simulation studies have been supportive, the constrained-
baseline strategy entails apparent problems. First, the use of MI involves the danger
of capitalizing on chance (Steenkamp & Baumgartner, 1998). That is, idiosyncrasies
of a particular data set may necessitate revisions of a hypothesized model, which
cannot be replicated with different data. Such data-driven MI may invalidate the
probability values (i.e., Type | error rate and power) associated with subsequent LR
tests (Gregorich, 2006). Indeed, MacCallum (1986) found that Ml is particularly
unsuccessful in uncovering a misspecified parameter (see also Kaplan, 1989; Luijben,
Boomsma, & Molenaar, 1987).

Second, and more importantly, the constrained baseline model is not
theoretically suitable for nested-model comparison. In order for the LR test statistics
to follow a central chi-square distribution under the null hypothesis, the baseline
model should fit the data adequately (Maydeu-Olivares & Cai, 2006). As mentioned
previously, the constrained-baseline model assumes equal loadings and/or equal

intercepts across groups. In the likely case that a scale includes one or more DIF
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items, this model may not fit adequately (e.g., Marsh, Balla, & McDonald, 1988).
Consequently, the M1 test will be inaccurate or the LR test will be untenable (Cheung
& Rensvold, 1999). Evidently, Stark et al. (2006) found that the constrained-baseline
strategy performs well only when there is no DIF at all in a scale.

In contrast, the free-baseline strategy is theoretically suitable for DIF analysis
in the sense that (a) DIF is tested for one item at a time, (b) the parameter estimates
are not subject to relative size or significance of other parameters in the model, and (c)
the baseline model reasonably provides a proper fit value, against which DIF is
examined in the subsequent nested models. Thus, the free-baseline strategy is
recommended, rather than the constrained-baseline strategy, when testing for DIF.
Accordingly, the former strategy is followed in the present simulation study, which
examines the performance of the MACS technique under various conditions.

5. Misspecification Problems
5.1. Invariance Assumption in the Conventional Scaling

The MACS analysis for DIF detection, which is a simple variation of the idea
of partial measurement invariance (Byrne et al., 2002), involves some methodological
issues to be resolved in practice. In general, the scaling does not change the
conclusions about overall model fit or the tests for whether or not a given level of
invariance holds (Gonzélez & Griffin, 2001, Little et al., 2006). However, when a
researcher locates DIF in a scale after metric or scalar invariance has been rejected, a

potential problem arises. That is, different scaling methods can lead to different
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outcomes of DIF tests because these post-hoc tests rely on an examination of
individual parameters.

As noted previously, a set of constraints are imposed on the parameters for
scaling. When there is more than one group, the scaling is conventionally achieved by
constraining an item’s (marker or anchor) parameters to be equal across groups
(Vandenberg & Lance, 2000). When used for the (free-baseline) MACS analysis, this
marker-variable scaling method fixes an anchor item’s loading to 1 and intercept to O
for all groups. This practice is essentially the same as assuming that the chosen
anchor is truly invariant (Chan, 2000; see Gonzalez-Roma et al., 2006). If the
“biasedness” of the anchor cannot be guaranteed or a researcher chooses an anchor
arbitrarily, other parameter estimates are placed on different scales across different
groups (Bollen, 1989). This problem may account for more often reported problems
of inflated Type I error (Cheung & Rensvold, 1999; see Finch, 2005; Meade &
Lautenschlager, 2004; Stark et al., 2006; Wang, 2004; Wang & Yeh, 2003). For
example, Stark et al. (2006) found that a biased anchor set severely inflates Type |
error of the (constrained-baseline) MACS analysis for DIF detection. The inflation
was greater as true differences in the anchor set parameters increased between groups.
Accordingly, Gonzalez-Roma et al. (2006) called for future research to examine the

effects of using a DIF item as a single anchor.”

* More specifically, a single anchor is a sufficient condition for scaling if the
conventional marker-variable scaling method is used with the free-baseline strategy.
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5.2. Choice of an Unbiased Anchor

A designated, invariant anchor set is desirable for any DIF analysis. However,
the designated anchor set is usually selected based on preliminary analyses of the
same data that will be used for the main analyses, rather than based on extensive prior
research (Woods, 2008; see Thissen et al., 1993). To rule out the possibility of bias in
an anchor set, a variety of empirical solutions have been proposed in the literature.
For example, Cheung and Rensvold (1999) and Wang (2004) suggested using all
items once as an anchor. Gonzalez-Roma et al. (2005) repeated the (free-baseline)
MACS analysis, while randomly selecting an anchor. Nevertheless, such iterative
solutions become quite labor intensive for many practitioners as the total number of
items increases. In addition, Type I error will be severely inflated if no item appears
to be invariant, even when the alpha level has been adjusted for the increased number
of nested-model comparisons.

More recently, Stark et al. (2006) proposed a two-step process. That is, while
running the constrained-baseline MACS analysis, the first step involves selecting an
item that has the highest loading and is “(presumably) unbiased” (p. 1304). The
second step involves conducting the free-baseline analysis, while using the selected
item as an anchor in the subsequent DIF tests. However, this two-step process
involves a couple of uncertainties. First, the baseline model used in this step is not
theoretically reasonable (see 4.3.3. Recommended Strategy in this dissertation) and
therefore failure at the first step will jeopardize the validity of the second step for DIF

analysis. Second, although an anchor should be highly related to the latent trait
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variable because it defines the scale of the trait variable, there is no known
relationship between the magnitude of the loading and the amount of DIF (Woods,
2009).
5.3. Potential Resolutions for Misspecification Problems

When the (free-baseline) MACS analysis is conducted with more than one
group, scaling is achieved conventionally by constraining the item parameters of a
chosen anchor to equality across groups. In contrast, alternative scaling methods do
not impose a between-group equality constraint on a particular item. In other words,
they do not require a researcher to have a designated anchor or anchor set.

Furthermore, the alternative scaling methods provide additional preferable
features. For example, if the fixed-factor method is used, the latent trait variable is
standardized so that item parameter estimates are readily convertible to those in the
two-parameter IRT model (Kamata & Bauer, 2008; see Equations 26 and 27; see also
McDonald, 1999; Takane & de Leeuw, 1987). Another advantage of using this
method is that the association estimates among the trait variables have a correlation
metric when more than one trait variable — each with a unique set of items — is
modeled simultaneously. If the effects-coded method is used, item parameter
estimates are optimally balanced so that the trait parameter estimates would be
weighted, more accurate estimates of population values. The fact that, with either one
of these alternative methods, all items of a scale can be tested for DIF may lead to
more accurate conclusions about DIF. After a purification process (e.g., between-

group equality of the trait parameters are evaluated, while imposing the constraints of
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the supported partial invariance), group comparisons of the trait means and variances
may become more meaningful.
6. Research Purpose

Despite the likely problems of model misspecification in the real world
(Cheung & Rensvold, 1999), little empirical research has been conducted in the
literature. Accordingly, the purpose of this dissertation is to present a new study
which examines the effects of using a biased anchor, or more broadly the effects of
using different scaling methods in the MACS DIF analysis.

It is important that a technique control its Type | error to be a valid statistical
test of the hypothesis. If observed Type | error rates are found to be within reason, the
power of the test needs to be examined. Accordingly, the Type I error and power of
the MACS technique is explored by means of a Monte Carlo simulation.

7. Hypotheses

As noted previously, different but statistically equivalent scaling methods lead
to the same conclusions about “omnibus” measurement invariance (Gonzélez &
Griffin, 2001; Little et al., 2006). But, they can yield different conclusions when the
model tests DIF. The hypotheses of the present simulation study are as follows.

Hypothesis 1: When the item parameters used for scaling are truly invariant

across groups, the performance of the MACS technique will be equivalent,

regardless of the scaling method.
More specifically, three different scaling methods will be comparable in terms of

Type | error and power if the anchor is neither a uniform nor non-uniform DIF item.
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Hypothesis 2: When the item parameters used for scaling are not truly
invariant across groups, the performance of the MACS technique will depend
on the choice of scaling method.
More specifically, if the anchor is either a uniform or a non-uniform DIF item, using
the marker-variable method will inflate Type I error, consequently making the MACS

technique unsuitable for testing DIF.

46



CHAPTER I1l: METHODOLOGY

This chapter discusses the methodology used for the present simulation study.
A Monte Carlo simulation yielded Type I error and power for the mean and
covariance structure (MACS) confirmatory factor analysis (CFA) technique to detect
differential item functioning (DIF) under various conditions. The condition factors
included those that have been frequently examined in the DIF literature.

Previous simulation studies have commonly manipulated type and amount of
DIF, sample size or similarity of the sample sizes between focal and reference groups,
latent trait distribution, type of item response, total number of items, and bias in the
anchor set (see Hernandez & Gonzalez-Rom4, 2003; Gonzalez-Roma et al., 2006;
Meade and Lautenschlager, 2004; Stark et al., 2006).° They found that the sample
size, trait distribution, bias in an anchor set, and Bonferroni correction for multiple
nested-model comparisons impact the Type I error in the MACS technique. Stark et al.
(2006) found that moderate group differences in the latent trait mean (i.e., a 0.5
standard deviation difference) have little impact, whereas Gonzalez-Roma et al. (2006)
observed better control for Type I error when trait means and sample sizes were equal
between groups. In terms of power, the previous simulation studies found that the
MACS technique is positively related to the amount of DIF, sample size, and total

number of items.

® Hernandez & Gonzalez-Roma (2003), Gonzélez-Rom4 et al. (2006), and Meade and
Lautenschlager (2004) used the constrained-baseline strategy, whereas Stark et al.
(2006) used the free-baseline strategy as well.
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Unfortunately, to my knowledge, there has been no simulation research
considering the scaling method, which may affect the performance of the MACS
technique. Furthermore, empirical evaluations of using different test statistics and
criterion values are scant. In fact, French and Finch (2006) conducted a simulation
study, where the conventional LR test and the ACFI (value of —0.01) test were
compared separately for the case of testing omnibus metric invariance of a scale and
the other case of testing non-uniform DIF in an item. When testing omnibus metric
invariance with maximum likelihood (ML) estimation and normally distributed
observed variables, the LR test maintained its Type I error at both .05 and .01 alpha
levels in nearly all conditions. Under the same circumstance, the ACFI test provided
comparable or less power than the LR test but inflated Type I error for small sample
sizes. Power of detecting non-uniform DIF was reduced for both tests, but it was
particularly low for the ACFI test. However, this study did not report Type | error for
detecting non-uniform DIF. Further, this study did not consider locating uniform DIF
in a scale.

Taken together, the condition factors manipulated in the present simulation
study were as follows: type of item response, total number of items (scale size),
similarity of sample size, similarity of latent trait mean, type of DIF in an anchor,
type and amount of DIF in a target item, test statistic and criterion value, and scaling

method.
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1. Design
1.1. Type of Item response

The item responses were categorical with either two (i.e., dichotomous) or
five options (i.e., polytomous). These categories are numbers frequently encountered
in psychological tests and questionnaires, and five categories is the recommended
minimum that adequately represents examinees’ scores on ordinal items by means of
the MACS model (Bollen & Barb, 1981; Dolan, 1994).

The item responses were conceptualized as an observed ordinal response X,
wherein the underlying response x* was latent and continuous (Mellenbergh, 1994).
As the normally distributed latent response increases beyond certain threshold values,
the observed response takes higher scores. Thus, an examinee who chooses one
response category has more of a characteristic than another who chooses a lower
category.

1.2. Scale size

The scale consisted of 6 or 12 items. The anchor, if required for scaling, was
always Item 1, whereas Item 2 always served as a target item. When DIF was present,
it appeared only on the anchor, only on the target item, or both. Consequently, the
proportion of the DIF items in the scale ranged from 0 to .33.

1.3. Similarity of Sample Size

Three combinations of sample sizes were designed in this study; Ny = 100,

250, and 500 for a focal group and N, = 900, 750, and 500 for a reference group.
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Consequently, total sample sizes were always (N + N, =) 1,000, so as not to
confound differences in the sample size with total sample size.
1.4. Similarity of Latent Trait Mean

The latent trait variable always followed a standard normal distribution
(§~N7J0,1]) in the reference group. The focal group had the same trait distribution, or
the trait mean differed by 1 standard deviation so that this group had a smaller trait
mean (§~N[—1,1]) than the reference group.
1.5. Type of Anchor

The anchor had no, non-uniform, or uniform DIF.°
1.6. Type of Target Item

Similarly, the target item had no, non-uniform, or uniform DIF. The DIF
(anchor and target) items were less discriminative (non-uniform DIF) or less
attractive (more difficult; uniform DIF) for examinees in the focal group.
1.7. Amount of DIF

For the target item (Item 2), the amount of non-uniform DIF was 0, 0.2, or 0.4
for no, small, and large DIF, respectively. Also, the amount of uniform DIF was 0,
0.3, or 0.8 for no, small, and large DIF, respectively. The amount of DIF in the
anchor (Item 1), if present, was always large, regardless of whether it was non-

uniform or uniform.

® It should be noted that both the fixed-factor and the effects-coded scaling methods
do not require any anchor item. For these methods, the presence of DIF in the anchor
should be interpreted as having DIF in one item (Item 1) when other, target item is
being tested.
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These values are comparable to those used in previous simulation studies; 0.6
(Finch, 2005), 0.1 and 0.2 (Kaplan & George, 1995), 0.25 (Meade & Lautenschlager,
2004), 0.75 (Navas-Ara & Gomez-Benito, 2002), 0.15 and 0.4 for non-uniform DIF
and 0.25 and 0.5 for uniform DIF (Stark et al., 2006), 0.2, 0.5, and 0.8 (Wanichtanom,
2001), and 0.4 (Wang & Yeh, 2003).

1.8. Criterion Value

To determine the presence of DIF, the chi-square change and the CFI change
were evaluated for each nested-model comparison. The p value for the LR chi-square
test was uncorrected (p = .05) or Bonferroni-corrected (p = .05 / number of possible
invariance tests). The critical ACFI values were —0.01 and —0.002 as proposed in the
literature. When the observed test statistic was greater than the critical value, the
target item was identified as having DIF.

1.9. Scaling Method

Three scaling methods were used; (a) the marker-variable method fixed the
anchor’s loading to 1 and intercept to 0 in each group, (b) the fixed-factor method
fixed the latent trait mean and variance to 0 and 1 in each group, respectively, and (c)
the effects-coded method constrained all the intercepts to average to 0 and all the
loadings to average to 1 in each group.

All the condition factors were crossed with each other, resulting in a total of
5,184 conditions (two types of item response x two scale sizes x three combinations

of sample sizes x two combinations of latent trait distributions x three types of anchor

x three types of target item x two amounts of DIF in the target item x four criterion
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values x three scaling methods). See Appendix A for a visual representation of the
study design.
2. Data Generation

Both dichotomous and polytomous responses were generated in this study.
First, population parameter values were specified such that the same factor structure
underlay each group. The intercept difference of an item between two groups does not
necessarily represents the mean difference of the item because the latter is influenced
by loadings and latent trait means as well (Kamata & Bauer, 2008; Stark et al., 2006;
see also Equation 8). In other words, raising the intercept of a particular item
increases its attractiveness only when its loadings and the trait means are equal
between two groups. To isolate the effects of varying item attractiveness and/or latent
trait distribution on the performance of the MACS technique, therefore, a single
common factor model was used for the response generation rather than the MACS
model. The single common factor model can be written as follows:

x; = 4§+ Bé;, (28)

where x; represents the observed response x to an item i, A; represents the loading of
x; on a common factor &, and S represents the loading of x; on a unique factor §;.
The common factor loadings were equal between two groups, except those for the

anchor (Item 1) and the target item (Item 2). The unique factor loadings were given

by /1 — 22, thereby yielding a variance of unity in the items. The population

parameter values are shown in Tables 1 and 2.
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The latent trait scores (¢) were sampled from independent normal
distributions (i.e., ¢~N[0,1], ¢~N[—1,1]) and the unique factor scores (&;) were
sampled from a standard normal distribution. They were substituted into Equation 28,
along with the loadings previously specified, to create continuous item responses.

Once the continuous responses were obtained, they were divided into two or
five ordered categories. For the dichotomous responses, an item threshold y; was
chosen in accordance with 50% of the area under the normal curve. If a continuous
response was greater than the item threshold y; = 0, then this response was scored as
1; Otherwise, it was scored as 0. For the polytomous conditions, four item thresholds
of equal interval were chosen in accordance with approximately 3.6%, 23.8%, 45.1%,
23.8%, and 3.6% of the area under the normal curve. For each item, the ordinal
responses (k) were assigned as such: k=1ifx; < —-1.8;k=2if -1.8 < x; < —0.6; k
=3if—0.6<x; <06, k=4if 0.6 <x; <18 k=5if x; > 1.8.

If present, DIF was created by varying an item’s loading or threshold
parameter between two groups. Specifically, the loading parameter for the focal
group was reduced by a certain amount (i.e., 0.2, 0.4) to create non-uniform DIF. To
create uniform DIF, the threshold parameter was raised by a certain amount (i.e., 0.3,
0.8). For polytomous responses, all threshold parameters were shifted by the same
amount. This corresponds to varying all the attractive parameters obtained from
graded response model (Samejima, 1979) between two groups.

Within each study condition, 500 replications were made in each group to

avoid capitalizing on chance. This resulted in 648,000 data sets for analysis. The
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same set of the trait scores was used but new values were sampled for the unique

factor scores in each replication.
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3. Procedure

In each replication, a baseline model and subsequent nested models were
fitted to the generated data. Two measures of overall model fit, including Joreskog’s
(1971) chi-square and Bentler’s (1990) CFI were obtained in each step.

The free-baseline MACS technique, described in Chapter I, tested both
uniform and non-uniform DIF. The steps for testing non-uniform DIF were as follows
(see Figure 1):

1. Estimate all parameters within each group, except those needed for scaling.

This step provided the chi-square and CFI values for the baseline model
(Model A)
2. Estimate all parameters as in Model A, except for one change. Specifically,
a constraint was imposed such that the loadings of Item 2 were equal
between two groups (Model B).
3. Compute the chi-square difference and the CFI difference between Model
A and Model B. If the chi-square difference exceeded a critical value with
1 degree of freedom, non-uniform DIF was flagged. Similarly, if the CFI
difference exceeded a critical value, this item was identified as having
non-uniform DIF.
Next, Model B was used as a baseline model for testing uniform DIF. The steps were
as follows (see Figure 1):
1. Estimate all free parameters in Model B, except for one; the intercepts of

Item 2 were constrained to be equal between two groups (Model C).
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2. Compute the chi-square difference and the CFI difference between Model
B and Model C. If these values exceeded a corresponding critical value,
uniform DIF was flagged.
4. Analysis

The free-baseline MACS analysis was conducted via Mplus 5.0 (Muthén &
Muthén, 1998-2007), using ML estimation. Mean structure analysis, of course, is also
possible via LISREL (Joreskog & Sorbom, 1996) and EQS (Bentler, 2006). The
didactic expositions of using LISREL and EQS can be found in Jéreskog and Sérbom
(1996) and Bentler (1989), respectively.

Type | error rates and power were obtained through a small utility program
written in FORTRAN. Type | error rate was computed as the proportion of times that
the invariant target item was incorrectly flagged as having DIF (i.e., false positive).
The proportion of trials in which the null hypothesis of invariance was rejected was
counted based on the LR test as well as ACFI test. As mentioned previously, both
uncorrected and Bonferroni-corrected p values were used as a criterion value for the
LR test. The criterion values of —0.01 and —0.002 were used for the ACFI test. An
empirical Type | error rate greater than the nominal alpha value (.05) was considered
to be inflated. Power rate was computed as the proportion of times that the non-
invariant target item was correctly identified as having DIF (i.e., true negative).

Finally, variance components analysis was used to examine which condition
factors influenced the performance of the MACS technique. The variance

components analysis is a variant of analysis of variance, which allows for the
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estimation of the variation in a given dependent variable that is accounted for by a set
of independent variables. In the current study, the dependent variable was Type |
error rate and power, whereas the independent variables included the type of item
response, scale size, similarity of sample size, latent trait distribution, type of DIF in
an anchor, type of DIF in a target item, and scaling method. All the effects in the
model, except for the intercept, were considered random and minimum variance
quadratic unbiased estimation (MIVQUE) was used. This analysis was conducted via

SAS 9.1 (SAS Institute, 2004).
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CHAPTER IV: RESULTS

This chapter presents the results of the current Monte Carlo simulation study,
which examined the performance of the mean and covariance structure (MACYS)
confirmatory factor analysis (CFA) technique for detecting differential item
functioning (DIF) under various conditions. The results presented are as follows: (1)
reliability, (2) model fit, (3) Type | error, and (4) power.
1. Reliability

As described in Chapter Il, dichotomous responses and polytomous responses
were generated for each of three combinations of sample sizes (i.e., N = 100, 250,
500 and N, =900, 750, 500 such that Ny + N,. = 1,000), crossed by two combinations
of latent trait distributions. The focal group had the same trait distribution as the
reference group (§~NJ0,1]), or the trait mean differed by 1 standard deviation so that
the former group had a smaller trait mean (6 ~N[—1,1]). The reliability of the scale
was supported for both types of response. In the dichotomous cases, Cronbach’s alpha
ranged from 0.91 to 0.95 ’, and it was a little higher when two groups had equal
sample sizes or unequal trait means. In the polytomous cases, the alpha was equal to
0.97, regardless of the similarity of the sample sizes and the trait mean difference.
2. Model Fit

Table 3 presents average chi-square and CFI values of a baseline model for

each combination of four condition factors. These fit values indicated that the

" Helmstadter (1964) noted that the Cronbach’s alpha of 0.50 is acceptable for
comparisons of two group means differing by one fourth of a standard deviation.
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baseline models fit at least adequately when the scale consisted of six items. The CFlI

values were equal to or greater than 0.85 in the dichotomous cases and near 0.90 in

the polytomous cases (see Bentler & Bonett, 1980). When the scale was longer (i.e.,

12 items), however, the baseline models did not fit adequately; the CFI value ranged

from .53 to .59. The chi-square value of the baseline models was substantial, rejecting

the null hypothesis of exact model fit.

Table 3

Mean Model Fit Values for the Baseline Model

DIF Tested Item response Scale size  Trait Mean Chi-square CFI
Non-uniform Dichotomous 6 items Equal 1441.89 .85
Unequal 1393.37 .85

12 items Equal 10886.30 .53

Unequal 10377.61 53

Polytomous 6 items Equal 1384.18 87

Unequal 1344.03 87

12 items Equal 11081.77 .58

Unequal 10743.97 .59

Uniform Dichotomous 6 items Equal 1424.44 .85
Unequal 1403.10 .85

12 items Equal 10852.63 .53

Unequal 10419.15 53

Polytomous 6 items Equal 1380.72 87

Unequal 1346.02 87

12 items Equal 11098.58 .58

Unequal 10758.21 .59

Note. The degrees of freedom were 18 and 108 in the 6-item and 12-item conditions,

respectively.
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3. Type | Error and Power

The Monte Carlo simulation results are presented separately for Type | error
and power. Then, they are visually summarized for each of three scaling methods.
3.1. Type | Error

Type | error, by all combinations of the condition factors, appears in
Appendix B. As mentioned in the method chapter, Type | error was obtained
separately for two test statistics and their different criterion values; uncorrected and
Bonferroni-corrected p values of the LR test and ACFI values of —0.01 and —0.002.
The results from using the conventional, uncorrected LR test are presented first,
followed by those from using the three alternative criterion values.
3.1.1. Uncorrected p Value of the LR Test

When DIF was not simulated on the scale and the latent trait means were
equal between groups, both marker-variable and fixed-factor scaling methods
provided reasonable control for Type | error. Their Type | error rates were below or
near the nominal alpha value (.05), regardless of the type of DIF being tested. Some
exceptions occurred for the fixed-factor method: when uniform DIF was located
among binary items with the group sizes of grater than 100 (.136 - .166). In contrast,
Type I error for the effects-coded scaling method was generally inflated above the
nominal alpha value in most conditions. Nevertheless, this method provided
acceptable Type | error rates when used to locate uniform DIF among six ordinal

items.
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When large DIF was simulated on the anchor (or scale), both the marker-
variable and effects-coded methods lost their control for Type I error. The Type I
error rates largely exceeded the nominal alpha value in most conditions (.050 - 1). In
general, the presence of DIF in the scale (but not in the target item) also inflated Type
I error for the fixed-factor method. However, this method still controlled Type | error
at the nominal alpha level in some conditions; when the scale consisted of six ordinal
items (0 - .032) and when the scale had 12 ordinal items and one of them was
contaminated by uniform DIF (.002 - .026). These Type | error results are

summarized in Table 4.

Table 4

Type | error of the Uncorrected LR Test in the Equal Latent Trait Mean Condition

Tested Scaling method

Anchor Type DIF type Marker-variable Fixed-factor Effects-coded

Unbiased Non-uniform @) @) X
Uniform O @) X

DIF Non-uniform X O (6 ordinal items) X
Uniform X O (6 ordinal items) X

Note. The “O” and “X” indicate the conditions where, in general, Type | error was
controlled or inflated at the nominal alpha level, respectively.

When latent trait means differed by 1 standard deviation between groups,
Type | error was severely inflated in most conditions, regardless of the scaling
method. In addition, the inflation was more severe when uniform DIF was tested. For
example, the rate of falsely identifying the unbiased target item as having uniform

DIF easily approached 1. Nevertheless, some exceptions to the inflated Type I error
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occurred when non-uniform DIF was tested with polytomous responses; with an
unbiased anchor and the marker-variable method (0 - .004); and with an unbiased or
uniform DIF anchor and the fixed-factor method (0 - .010).

3.1.2. Alternative Criterion Values

In general, the use of an alternative criterion value (i.e., Bonferroni-corrected
p, ACFI) decreased Type | error in the MACS technique.

The overall Type | error reduction due to the Bonferroni correction was the
greatest in the fixed-factor scaling method (38.1% decreases), followed by the
effects-coded method (19.4%) and the marker-variable method (8.0%). As a result,
Type | error for the fixed-factor method was almost eliminated, except for a few
conditions (e.g., when group sizes were greater than 100; when non-uniform DIF was
tested in the scale including non-uniform DIF). In contrast, the Type | error rate for
the marker-factor method was always inflated above the nominal alpha value when
the anchor was biased. It was difficult to find consistent patterns of when the effects-
coded method provided acceptable Type | error rates.

The use of ACFI markedly decreased Type | error in most conditions.
Consequently, the Type | error rates were below the nominal alpha value unless the
focal group had a sample size of 100 (fixed-factor method) and the anchor was biased
(marker-variable method, effects-coded method). The reduction in Type I error was
more prominent when the ACFI test of —0.01 was used with binary items. Using the

ACFI test of —0.002 had positive effects on Type I error, yielding similar Type | error
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results as using the Bonferroni correction. Table 5 summarizes the Type I error results

from using an alternative criterion value when the anchor was biased.

Table 5
Type | error of Using an Alternative Criterion in the Biased-Anchor, Equal Latent

Trait Mean Condition

Tested Scaling method

Test statistic DIF type Marker-variable Fixed-factor Effects-coded

Corrected p  Non-uniform O (6 ordinal items) O (6 ordinal items) O (6 ordinal items)
Uniform X O (N; > 100) X

ACFI Non-uniform O (ordinal items) O (Nf > 100) O (ordinal items)
Uniform X O (N; > 100) X

When the trait means were not equal, Type | error reduction due to the
Bonferroni correction was relatively small, compared to the case of equal trait means.
The overall reduction ranged from 2.8% (fixed-factor method) to 15.0% (effects-
coded method). On the other hand, using the ACFI test of —0.01 still almost
eliminated Type I error in some conditions. For example, the Type | error rate was
below the nominal alpha value when non-uniform DIF was located among ordinal
items; when non-uniform DIF was located among binary items, the fixed-factor
method was used, and group sizes were greater than 100; when uniform DIF was
tested with the marker-variable method and an unbiased or non-uniform DIF anchor;
when uniform DIF was located among 12 ordinal items using the fixed-factor method;
and when uniform DIF was located among ordinal items using the effects-coded
method. Using the ACFI test of —0.002 resulted in similar patterns of Type | error
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reduction, but the reduced amounts were much smaller than using the ACFI test of —
0.01. Table 6 summarizes the results from using an alternative criterion value when

the anchor was biased and the trait means were not equal between groups.

Table 6
Type | error of Using an Alternative Criterion in the Biased-Anchor, Unequal Latent

Trait Mean Condition

Tested Scaling method

Test statistic DIF type Marker-variable Fixed-factor Effects-coded

Corrected p  Non-uniform X O (6 ordinal items) X
Uniform X X X

ACFI Non-uniform O (ordinal items) O (ordinal items) O (ordinal items)
Uniform X X X

3.1.3. Results of VVariance Components Analysis

The results of the variance components analysis are presented in Table 7. The
MIVQUE estimates reported in this table reflect the amounts of variation in Type |
error that are accounted for by each condition factor. In other words, the higher the
estimate value, the more the corresponding condition factor contributed to Type |
error in the MACS technique.

In general, the results were somewhat similar across four different criterion
values, which were independently used to obtain the Type | error rate. That is, the
most influential single factors were commonly similarity of latent trait means, type of

item response, and type of anchor.
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When either the uncorrected or Bonferroni-corrected LR test was used, the
most important factor was the similarity of latent trait means (0.065 and 0.058 for
uncorrected and corrected p values, respectively). It was followed by the two-way
interaction between type of DIF and type of item response. The MIVQUE estimates
were 0.032 and 0.038 for uncorrected and corrected p values, respectively. Type |
error was also strongly influenced by another two-way interaction between scaling
method and type of anchor (0.024 and 0.026 for uncorrected and corrected p values,
respectively).

When the ACFI test of —0.01 was used, the six-way interaction, scaling
method x similarity of latent trait means x type of DIF x type of item response x scale
size x type of anchor, contributed the most to the Type I error variance (0.022). For
the ACFI test of —0.002, the highest interaction term (i.e., seven-way) accounted for
the most variance (0.054). Then, it was followed by the three-way interaction, scaling
method x latent distribution x type of DIF (0.032), and the two-way interaction

between scaling method and type of anchor (0.025).
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Table 7

Results of the Variance Components Analysis for Type | Error

Criterion value

LR test ACFI test
Factor Uncorrected p  Corrected p -0.01 -0.002
Scaling method (S) 0 0 0 0
Latent trait mean (L) 0.065 0.058 0.004 0.015
Type of DIF (D) 0 0 0 0
Item response (1) 0.012 0.010 0.002 0.016
Scale size (T) 0.002 0.001 0 0
Sample size (N) 0 0 0 0
Type of Anchor (A) 0.008 0.008 0.002 0.009
S*L 0.020 0.020 0 0.011
S*D 0.009 0.004 0 0
S*1 0.002 0 0.009 0.002
S*T 0 0 0 0
S*N 0 0 0.002 0
S*A 0.024 0.026 0.006 0.025
L*D 0.031 0.024 0 0
L*I 0 0 0.002 0
L*T 0 0 0 0.001
L*N 0.002 0.005 0 0.001
L*A 0 0 0.001 0
D*I 0.032 0.038 0.002 0.019
D*T 0.002 0.002 0.001 0.001
D*N 0 0 0.003 0.002
D*A 0 0 0 0.002
*T 0 0 0.001 0
I*N 0.003 0.005 0.021 0.012
I*A 0.003 0.004 0.003 0.004
T*N 0 0 0.001 0.002
T*A 0.002 0.002 0 0.001
N*A 0 0.001 0.001 0
S*L*D 0 0 0 0.032
S*L*I 0 0.007 0 0.001
S*L*T 0.001 0.002 0.007 0.007

Note. The variance components estimates should theoretically be positive because
they represent the variance of a random variable. Under the assumption that the fitted
random effects model was appropriate for the data, the negative estimate value, if
present, was considered as zero following common practice.
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Table 7

Results of the Variance Components Analysis for Type | Error (Continued)

Criterion value

LR test ACFI test
Factor Uncorrected p  Corrected p -0.01 -0.002
S*L*N 0 0 0 0
S*L*A 0 0.002 0 0.003
S*D*| 0 0 0 0.001
S*D*T 0.001 0.001 0 0.003
S*D*N 0 0 0 0
S*D*A 0 0 0.001 0.008
S*I*T 0.001 0.001 0 0.001
S*I*N 0.006 0.009 0.002 0.012
S*I*A 0 0.001 0 0
S*T*N 0 0 0.004 0
S*T*A 0.003 0.004 0.002 0.004
S*N*A 0 0 0.002 0.003
L*D*I 0.007 0.009 0 0.009
L*D*T 0.002 0.002 0.003 0.001
L*D*N 0.001 0.001 0.002 0.002
L*D*A 0.026 0.021 0 0
L*I*T 0.002 0.003 0 0.001
L*I*N 0.001 0 0 0
L*I*A 0 0 0 0
L*T*N 0 0 0.002 0
L*T*A 0.002 0.003 0 0
L*N*A 0 0 0 0.005
D*I*T 0.001 0.002 0 0.001
D*I*N 0.001 0 0 0
D*I*A 0 0 0 0.001
D*T*N 0 0 0 0
D*T*A 0.009 0.008 0 0
D*N*A 0 0 0.001 0
I*T*N 0.001 0 0 0
I*T*A 0 0 0 0
I*N*A 0 0 0 0
T*N*A 0 0 0 0.001
S*L*D*I 0.024 0.014 0.005 0
S*L*D*T 0 0 0.006 0
S*L*D*N 0.001 0.002 0 0
S*L*D*A 0.015 0.005 0.001 0
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Table 7

Results of Variance Components Analysis for Type | Error (Continued)

Criterion value

LR test ACFI test
Factor Uncorrected p  Corrected p -0.01 -0.002
S*L*I*T 0 0 0.003 0
S*L*I*N 0 0.002 0.003 0.004
S*L*I*A 0 0 0.003 0
S*L*T*N 0.001 0.001 0 0
S*L*T*A 0.001 0.001 0.001 0
S*L*N*A 0 0 0 0
S*D*I*T 0 0 0.004 0
S*D*I*N 0.002 0.003 0.001 0.001
S*D*I*A 0 0 0.010 0.013
S*D*T*N 0 0.001 0.001 0
S*D*T*A 0 0 0.005 0
S*D*N*A 0.003 0.004 0.001 0
S*I*T*N 0.001 0.003 0.002 0.003
S*I*T*A 0.001 0 0.006 0.001
S*I*N*A 0.002 0.002 0 0.002
S*T*N*A 0 0.002 0 0
L*D*I*T 0 0 0.002 0
L*D*I*N 0 0 0.002 0
L*D*I*A 0.003 0.003 0.003 0.004
L*D*T*N 0 0 0 0.002
L*D*T*A 0 0 0.002 0.002
L*D*N*A 0 0.002 0.001 0
L*I*T*N 0 0 0.001 0
L*I*T*A 0 0 0.005 0.004
L*I*N*A 0.001 0.002 0.003 0
L*T*N*A 0 0 0 0
D*I*T*N 0 0 0.003 0.001
D*I*T*A 0.003 0 0.004 0.001
D*I*N*A 0 0.001 0 0.001
D*T*N*A 0.002 0.003 0 0
I*T*N*A 0.001 0.002 0.004 0.002
S*L*D*I*T 0.003 0.004 0 0.016
S*L*D*I*N 0 0 0 0.002
S*L*D*I*A 0.020 0.022 0 0.014
S*L*D*T*N 0 0 0.021 0.007

S*L*D*T*A 0.001 0.001 0 0.004




Table 7

Results of Variance Components Analysis for Type | Error (Continued)

Criterion value

LR test ACFI test
Factor Uncorrected p  Corrected p -0.01 -0.002
S*L*D*N*A 0.002 0.003 0.001 0.009
S*L*I*T*N 0 0 0 0
S*L*I*T*A 0 0 0 0.005
S*L*I*N*A 0.001 0.002 0.003 0.008
S*L*T*N*A 0 0 0.004 0.008
S*D*I*T*N 0 0 0 0.002
S*D*I*T*A 0.002 0.004 0 0
S*D*I*N*A 0 0 0.003 0.006
S*D*T*N*A 0 0 0.001 0.014
S*I*T*N*A 0 0 0.001 0.002
L*D*I*T*N 0.002 0.002 0 0.003
L*D*I*T*A 0.003 0.003 0 0
L*D*I*N*A 0 0 0 0.003
L*D*T*N*A 0.001 0 0 0.002
L*I*T*N*A 0 0 0 0
D*I*T*N*A 0 0 0 0.002
S*L*D*I*T*N 0.002 0.004 0 0
S*L*D*I*T*A 0.002 0.004 0.022 0
S*L*D*I*N*A 0 0 0 0
S*L*D*T*N*A 0 0 0 0
S*L*I*T*N*A 0.003 0.003 0 0
S*D*I*T*N*A 0.002 0.003 0.002 0
L*D*I*T*N*A 0.002 0.003 0.002 0
S*L*D*I*T*N*A 0.006 0.009 0.018 0.054




3.2. Power

Power, by all combinations of the condition factors, appears in Appendix C.
First of all, descriptive analysis was used to investigate which condition factors
considerably affected power. The mean power for each of four different criterion
values is presented in Table 8, crossed by five condition factors. These five condition
factors were those found the most influential single factors in the previous variance
components analysis for Type | error.

On average, power was higher under these conditions; when DIF is large (.537)
rather than small (.425); when latent trait means were unequal between groups (.531)
rather than equal (.431); when item responses were dichotomous (.566) rather than
polytomous (.397); when uniform DIF was tested (.625) rather than non-uniform DIF
(.337); and the anchor was non-invariant (.499) rather than invariant (.463). In
addition, using a conventional, uncorrected p value of the LR test provided the
highest power (.695). Then, this was followed by using Bonferroni correction (.596),
a ACFI value of —0.002 (.383), and a ACFI value of —0.01 (.179). The difference in
average power was negligible between invariant anchor and non-invariant anchor

across the four different criterion values (.013 - .059).
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Table 8

Mean Power Rate by Five Condition Factors.

Criterion value

Factor LR test ACFI test
E L D I A Uncorrected p  Corrected p -0.01 -0.002
El L1 D1 11 Al 479 .355 155 214
A2 594 531 251 445
12 Al 254 091 .000 .003
A2 312 .160 .020 .036
D2 11 Al .796 677 112 264
A2 .834 734 117 407
12 Al .785 .692 .000 242
A2 .838 729 .048 352
L2 D1 11 Al .790 .662 177 .358
A2 .798 .682 352 490
12 Al 273 114 .000 .002
A2 373 .269 .023 .084
D2 11 Al .643 612 .345 559
A2 933 901 428 740
12 Al .906 757 202 410
A2 901 871 .286 742
E2 L1 D1 11 Al .738 .640 164 351
A2 .730 .644 204 430
12 Al 596 446 .060 149
A2 455 304 .030 .095
D2 11 Al 903 875 292 771
A2 .800 147 317 .650
12 Al .865 833 .266 750
A2 .657 .600 195 531
L2 D1 11 Al .680 .615 189 454
A2 .796 735 313 552
12 Al 541 392 026 .087
A2 441 .288 016 .085
D2 11 Al .881 .790 546 730
A2 951 921 570 .805
12 Al 993 981 339 781
A2 916 841 431 619

Note. E1 = small DIF, E2 = large DIF; L1 = equal latent trait means, L2 = unequal
latent trait means, D1 = non-uniform DIF, D2 = uniform DIF; 11 = dichotomous item
response, 12 = polytomous item response, Al = invariant anchor, A2 = non-invariant

anchor.
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3.2.1. Uncorrected p Value of the LR Test

When the latent trait means were equal, power for detecting uniform DIF was
adequate for both marker-variable and fixed-factor scaling methods. That is, power
was always greater than .80, regardless of the type of item response and DIF size.
Only exceptions occurred when large uniform DIF was tested with the marker-
variable method and a uniform DIF anchor (.012 - .557). In contrast, the effects-
coded method provided adequate power in some conditions, but it was difficult to
find consistent patterns.

When used to detect large non-uniform DIF under the equal trait means, the
marker-variable method provided adequate power with the 12-item scale including an
invariant anchor (.804 - 1). However, with the 6-item scale containing an invariant
anchor, power was marginal (.167 - .744). Under the equal trait means, power for
detecting large non-uniform DIF was adequate for the fixed-factor method only in a
few conditions; when group sizes were greater than 100, the scale consisted of six
binary items, and this scale included another uniform DIF item or DIF-free items.
When the item responses were polytomous, however, power for detecting non-
uniform DIF was always less than .80 for this scaling method (.386 - .564), regardless
of the DIF size. Under the same condition (e.g., equal trait means, testing non-
uniform DIF), the effects-coded method provided adequate power when the scale
included an invariant anchor (.835 - 1).

In general, unequal trait means did increase power in the MACS technique. In

addition, the increase was the greatest when uniform DIF was tested with the effects-
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coded method. Consequently, this scaling method provided adequate power for
detecting large uniform DIF unless the scale included another uniform DIF item (.800
- 1). Interestingly, negligible but small decrease in overall power for detecting small
DIF was observed for the marker-variable method (6.2%).

3.2.2. Alternative Criterion Values

Generally, the use of an alternative criterion value reduced power in the
MACS technique. Nevertheless, for both marker-variable and fixed-factor scaling
methods, Bonferroni correction did not adversely affect power for detecting large
uniform DIF. For detecting small uniform DIF, using the Bonferroni-corrected LR
test provided adequate power when group sizes were greater than 100.

The ACFI test was somewhat stringent in the sense that power for any scaling
method was not adequate in most conditions. For example, power of the ACFI test of
—0.01 could not reach .80 except for only a few conditions. Nevertheless, power for
detecting large uniform DIF was greater than .80 when the ACFI value of —0.002 was
used with the fixed-factor scaling method and the group sizes of greater than 100. For
the marker-variable method, power for detecting large uniform was adequate when
the ACFI value of —0.002 was used, group sizes were greater than 100, and the anchor
was unbiased or non-uniform DIF item. For the effects-coded method, power was less
than .80 in nearly all conditions.

Unequal trait means improved power in the MACS technique especially when
uniform DIF was tested. Consequently, with the ACFI value of —0.002 and the fixed-

factor scaling method, power for detecting uniform DIF approached 1 in almost all
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conditions. Although power also increased for the other two scaling methods, any
consistent pattern could not be observed.
3.2.3. Results of VVariance Components Analysis

Table 9 presents the results of the variance components analysis. In general,

the most influential single factors were commonly similarity of latent trait means and

type of item response across four different criterion values.
For the LR test, the most important factor was the two-way interaction

between similarity of latent trait means and type of item response (0.024 for

uncorrected p value) and the type of item response (0.034 for corrected p value). For

the ACFI test of —0.01, the five-way interaction, scaling method x type of DIF x type

of item response x scale size x type of anchor, contributed the most to the power
variance (0.018). For the ACFI test of —0.002, the two-way interaction between
sample sizes and type of anchor accounted for the most variance (0.028).

These results were somewhat different from those obtained for Type | error.
For example, although the most influential single factors were in common between
Type | error and power, power was not strongly influenced by the two-way
interaction between scaling method and type of anchor (0.001 - 0.008).

The Type | error and power results are visually summarized in Tables 10
through 13. The shaded areas in these tables indicate the cases where the MACS
technique performed well to test at least small DIF, in terms of Type | error and
power. In other words, if the Type | error rate was less than .05 and power was

greater than .80, the corresponding conditions were shaded in this table.
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Table 9

Results of the Variance Components Analysis for Power

Criterion value

LR test ACFI test
Factor Uncorrected p  Corrected p -0.01 -0.002
Scaling method (S) 0 0 0 0
Latent trait mean (L) 0.021 0.020 0.004 0.004
Type of DIF (D) 0.008 0.009 0 0.016
Item response (1) 0.003 0.001 0 0
Scale size (T) 0 0 0 0
Sample size (N) 0 0 0 0
Type of Anchor (A) 0.002 0 0 0
S*L 0.021 0.025 0 0.021
S*D 0.001 0.002 0 0
S*I 0 0 0 0.003
S*T 0 0 0.009 0.004
S*N 0 0 0 0.003
S*A 0 0 0.002 0
L*D 0.001 0.004 0.001 0.007
L*I 0 0 0 0
L*T 0 0 0 0.001
L*N 0 0.001 0.002 0.002
L*A 0 0 0 0.001
D*I 0.024 0.034 0.002 0.028
D*T 0 0 0.005 0.009
D*N 0 0.001 0.008 0.006
D*A 0.001 0.003 0 0.001
*T 0 0 0.001 0
I*N 0.003 0.004 0.018 0.008
I*A 0.003 0.005 0.001 0.004
T*N 0 0 0.003 0.002
T*A 0 0 0 0.001
N*A 0 0.001 0 0
S*L*D 0 0.001 0.011 0.014
S*L*I 0.008 0.008 0.003 0
S*L*T 0.002 0.003 0 0

Note. The dependent variable was power averaged for small and large DIF conditions.
Under the assumption that the fitted random effects model was appropriate for the
data, the negative estimate value, if present, was considered as zero following
common practice.
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Table 9

Results of the Variance Components Analysis for Power (Continued)

Criterion value

LR test ACFI test
Factor Uncorrected p  Corrected p -0.01 -0.002
S*L*N 0 0 0 0
S*L*A 0.006 0.006 0 0
S*D*| 0 0 0.003 0.007
S*D*T 0.004 0.006 0.006 0
S*D*N 0 0 0 0
S*D*A 0.001 0 0 0
S*I*T 0.001 0.001 0 0
S*I*N 0.005 0.008 0.001 0.013
S*I*A 0.002 0.002 0.002 0.005
S*T*N 0 0 0.002 0
S*T*A 0 0 0 0
S*N*A 0 0 0 0
L*D*I 0.005 0.004 0 0
L*D*T 0.001 0.001 0.001 0
L*D*N 0 0 0 0
L*D*A 0 0 0 0
L*I*T 0.001 0.001 0 0.001
L*I*N 0 0 0 0
L*I*A 0 0 0.001 0
L*T*N 0 0 0 0
L*T*A 0 0 0 0
L*N*A 0.001 0 0 0
D*I*T 0.004 0.004 0 0.001
D*I*N 0 0 0 0
D*I*A 0 0 0.001 0
D*T*N 0 0 0 0
D*T*A 0.001 0 0 0
D*N*A 0 0 0.001 0.002
I*T*N 0 0 0 0
I*T*A 0 0 0 0
I*N*A 0 0 0 0.001
T*N*A 0 0 0 0
S*L*D*I 0.004 0 0 0
S*L*D*T 0 0 0 0.005
S*L*D*N 0 0.003 0.007 0.001
S*L*D*A 0 0 0 0
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Table 9

Results of Variance Components Analysis for Power (Continued)

Criterion value

LR test ACFI test
Factor Uncorrected p  Corrected p -0.01 -0.002
S*L*I*T 0 0 0 0
S*L*I*N 0.001 0.001 0.002 0
S*L*I*A 0 0.001 0 0
S*L*T*N 0 0 0.002 0.001
S*L*T*A 0 0 0.001 0
S*L*N*A 0 0.001 0.005 0.004
S*D*I*T 0 0 0 0.002
S*D*I*N 0 0.001 0.002 0.001
S*D*I*A 0 0.001 0.001 0.001
S*D*T*N 0 0.001 0 0.001
S*D*T*A 0 0.001 0.003 0.003
S*D*N*A 0.001 0.001 0 0.001
S*I*T*N 0.001 0.001 0 0.001
S*I*T*A 0.001 0.001 0 0.002
S*I*N*A 0 0 0.001 0
S*T*N*A 0 0.001 0.001 0.002
L*D*I*T 0.005 0.007 0 0.007
L*D*I*N 0.001 0.001 0 0.002
L*D*I*A 0 0 0.001 0.002
L*D*T*N 0 0 0 0.001
L*D*T*A 0.001 0.001 0.002 0.001
L*D*N*A 0.001 0.001 0.001 0
L*I*T*N 0 0.001 0.002 0.001
L*I*T*A 0 0 0.001 0.002
L*I*N*A 0.001 0.001 0.001 0.001
L*T*N*A 0 0 0.002 0
D*I*T*N 0.001 0.002 0 0
D*I*T*A 0 0 0 0
D*I*N*A 0.001 0.002 0.003 0.002
D*T*N*A 0.004 0.008 0 0.004
I*T*N*A 0.001 0 0 0
S*L*D*I*T 0.004 0.005 0.004 0.002
S*L*D*I*N 0 0 0 0.002
S*L*D*I*A 0 0 0 0
S*L*D*T*N 0 0 0 0

S*L*D*T*A 0.001 0.001 0.002 0




Table 9

Results of Variance Components Analysis for Power (Continued)

Criterion value

LR test ACFI test
Factor Uncorrectedp  Corrected p -0.01 -0.002
S*L*D*N*A 0 0 0 0
S*L*I*T*N 0 0 0 0
S*L*I*T*A 0 0 0 0.003
S*L*I*N*A 0 0 0 0
S*L*T*N*A 0 0 0 0
S*D*I*T*N 0 0 0 0
S*D*I*T*A 0.002 0.001 0 0
S*D*I*N*A 0 0 0.002 0.001
S*D*T*N*A 0 0 0 0
S*I*T*N*A 0 0 0 0
L*D*I*T*N 0 0 0 0
L*D*I*T*A 0 0 0 0
L*D*I*N*A 0 0 0 0
L*D*T*N*A 0 0 0 0
L*I*T*N*A 0 0 0 0
D*I*T*N*A 0 0 0 0.003
S*L*D*I*T*N 0.001 0.002 0.009 0.003
S*L*D*I*T*A 0.001 0.001 0.002 0.001
S*L*D*I*N*A 0.001 0.001 0.001 0.001
S*L*D*T*N*A 0.001 0 0.001 0.001
S*L*I*T*N*A 0.003 0.005 0.004 0.006
S*D*I*T*N*A 0.002 0.002 0.002 0.002
L*D*I*T*N*A 0.004 0.006 0.003 0.001

S*L*D*I*T*N*A 0.001 0.002 0.002 0.004




Table 10

Testing Non-Uniform DIF when Latent Trait Means are Equal

Factor

T

N

A

Scaling method

Marker-variable

Fixed-factor

Effects-coded

a

b

C

d

a

b

C

d

a

b

C

d

11
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Al
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A3
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A2
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N3

Al
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Note. The factor | is defined in Table 5. T1 = 6-item scale, T2 = 12-item scale; N1 =
100/900 sample sizes, N2 = 250/750 sample sizes, N3 = 500/500 sample sizes; Al =
invariant anchor, A2 = non-uniform DIF anchor, A3 = uniform DIF anchor; a =
uncorrected LR test, b = Bonferroni-corrected LR test, c = ACFI test of —0.01, d =

ACFI test of —0.002.
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Table 11

Testing Uniform DIF when Latent Trait Means are Equal

Scaling method
Factor Marker-variable Fixed-factor Effects-coded
I T N A a b ¢ d a b ¢ d a b ¢ d

1 T1 N1 A1. I
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Table 12

Testing Non-Uniform DIF when Latent Trait Means are Unequal

Factor

T

N

A

Scaling method

Marker-variable

Fixed-factor

Effects-coded

a

b

C

d

a

b

C

d

a
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C

d
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Table 13

Testing Uniform DIF when Latent Trait Means are Unequal

Factor

T

N

A

Scaling method

Marker-variable

Fixed-factor

Effects-coded

a

b

C

d

a

b

C

d

a

b

C

d

12
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CHAPTER V: SUMMARY AND DISCUSSION

This chapter discusses the study findings in the context of educational and
psychological assessment in the following order: (1) summary of the study, (2)
summary of the study findings, (3) confirmed research hypotheses, (4) discussions
and implications, (5) limitations and future directions, and (6) novel contribution and
conclusion.
1. Summary of the Study

Given that mean and covariance structure (MACS) confirmatory factor
analysis (CFA) has enjoyed increasing attention in the differential item functioning
(DIF) literature, the primary purpose of this dissertation was to evaluate the
performance of MACS analysis for DIF detection. Although different scaling
methods can lead to different conclusions about DIF, this issue had not been fully
examined.

Accordingly, this dissertation presents an empirical study that examined the
Type | error and power of the MACS technique by means of Monte Carlo simulation.
The manipulated condition factors included type of item response, scale size,
similarity of sample sizes, type of DIF, amount of DIF, similarity of latent trait
distributions, type of anchor, test statistic and its criterion value, and scaling method.
2. Summary of the Study Findings
2.1. Type | Error

It appeared that overall, three different scaling methods provide different Type

I error rates. Specifically, when the scale included only DIF-free items (equivalently
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when the anchor was invariant), the latent trait means were equal, and the
conventional, uncorrected LR test was used, both marker-variable and fixed-factor
scaling methods provided reasonable control for Type | error at the nominal alpha
level. On the other hand, effects-coded scaling method falsely indicated the presence
of DIF at the rates well above the nominal alpha value.

Additionally, the current study found that the MACS technique has inflated
Type | error associated with the presence of DIF in the scale (or anchor). Indeed,
when the scale (or anchor) was contaminated by DIF, only the fixed-factor method
provided reasonable control for Type I error under several conditions. The inflation in
Type | error was especially severe when non-uniform DIF was located among binary
items. These findings were supported by the subsequent variance components
analysis; in cases where the uncorrected LR test was used, the four conditions factors
including type of anchor, type of scaling method, type of item response, and type of
DIF, individually and collectively, contributed the most to the variance of Type |
error.

In general, the use of an alternative criterion value (i.e., Bonferroni-corrected
p, ACFI) reduces Type | error in the MACS technique. The reduction was pronounced
when the fixed-factor method was used for scaling. Indeed, when groups had
comparable large sample sizes (i.e., Ne = 250/Ng = 750, Ng = 500/Ng = 500), Type |
error for the fixed-factor method was almost eliminated, regardless of the type of item

response, type of DIF, and scale size. On the other hand, Type | error rates for the
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other scaling methods were still inflated above the nominal alpha value when the
anchor was biased.

Finally, it was observed that Type | error in the MACS technique is much
influenced by group differences in the latent mean. When the latent means differed by
1 standard deviation, Type | error was severely inflated in most conditions. This
finding corresponds to the subsequent analysis showing that similarity of latent trait
distributions was the most influential condition factor for Type | error. Nevertheless,
the use of an alternative criterion value, especially ACFI, positively affected Type |
error, providing acceptable Type | error rates for locating non-uniform DIF among
ordinal items.

2.2. Power

The current simulation results indicate that, on average, the MACS technique
provides higher power when large uniform DIF is detected among binary items, the
anchor was non-invariant, and the latent trait means are unequal between groups.

In cases where the conventional, uncorrected LR test was used and the trait
means were equal, power for detecting non-uniform DIF was not adequate for any
scaling method in most conditions. However, fixed-factor scaling method provided
adequate power for detecting uniform DIF. The same power for the marker-variable
method was adequate only when the anchor was unbiased.

In addition, the use of an alternative criterion value was found to considerably
reduce power in the MACS technique. The reduction was prominent when the ACFI

test of —0.01 was used; it provided power less than .80 in almost all conditions. In
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contrast, Bonferroni correction did not adversely affect power when large uniform
DIF was tested with the group sizes of greater than 100. Finally, it was found that
unequal trait means generally increase power in the MACS technique.
3. Supported Study Hypotheses
3.1. Hypothesis 1

In terms of Type | error and power, the current study found that statistically
equivalent scaling methods provide different outcomes when measurement invariance
is evaluated at the item level. Under favorable circumstances (i.e., comparable large
group sizes, equal latent trait distributions, Bonferroni-corrected LR test, and no DIF
items other than the target item), both marker-variable and fixed-factor scaling
methods tested uniform DIF reasonably well. Under the same circumstances, however,
effects-coded scaling method performed well only in some conditions. These findings
partially support Hypothesis 1 of this dissertation; if the item parameters used for
scaling are truly invariant across groups, the performance of the MACS technique
will be equivalent, regardless of the scaling method.
3.2. Hypothesis 2

Under less than favorable circumstances (e.g., the scale included another DIF
item or a DIF anchor), Type I error in the MACS technique was inflated above the
nominal alpha level, most notably when marker-variable or effects-coded method was
used for scaling. More specifically, the inflation was prominent if the anchor was
biased by the same type of DIF being tested for the target item. In contrast, the fixed-

factor method effectively tested uniform DIF when group sizes were greater than 100.
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These findings partially support Hypothesis 2; if the item parameters used for scaling
are not truly invariant across groups, the performance of the MACS technique will
depend on the choice of scaling method.

4. Discussions and Implications

Measurement equivalence is a critical concern in psychological and
educational research because it is often required for meaningful group comparisons.
Although researchers in these fields have applied different methodologies to this issue,
confirmatory factor analysis (CFA), or more broadly structural equation modeling,
has offered an integrative framework in which measurement equivalence is evaluated
at the item level, at the scale level, or at both. Indeed, CFA can reflect the item
response theory (IRT) concept of differential functioning, while providing a variety of
options (e.g., multiple latent trait variables, more than two groups, categorical or
continuous covariates). The empirical results of this study bring up some
methodological issues and recommendations to be considered when a researcher
conducts DIF analysis using CFA.

The current simulation results appear to support the utility of the MACS
technique in some circumstances and not in others. For example, poor performance
was uniformly observed when groups had truly different latent trait means. This
finding is, in part, consistent with the previous simulation study conducted by

Gonzélez-Romé et al (2006).% They showed that, if the trait means differ by 1

® They used the constrained-baseline strategy and the modification index test. For
scaling, they constrained the loading and intercept of an anchor between two groups
and then also constrained the latent mean only for the reference group.
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standard deviation, the MACS technique controls its Type | error only when sample
sizes are equal between groups. It is reasonable to argue that unequal trait means
should be more concerned for a particular scaling method that constrains the trait
parameters between groups (i.e., fixed-factor method). Indeed, Cheung and Rensvold
(1999) noted that if trait parameters are constrained across groups when they are not
actually equal, biased invariance conclusions can occur. In the current study, however,
the inflation in Type I error was uniformly observed and its pattern was similar across
three different scaling methods. Thus, there exists a certain risk of identifying an
invariant item as a DIF item when the trait means are truly different across groups.
As mentioned previously, if present, DIF can be either item impact or item
bias depending on the source of DIF (Camilli & Shepard, 1994; Zumbo, 1999). When
groups truly differ in the latent trait being measured, different responses on the same
scale will be observed across the groups. In this situation, item parameter values
estimated from the observed responses accurately reflect true group differences in the
trait (i.e., item impact). Thus, even when the population item parameter values were
set to be invariant by design in the current simulation study, the estimated parameter
values were very likely non-invariant between groups, (accurately) reflecting the
simulated group differences in the trait mean. Taken together, the observed inflation
in Type I error under the unequal latent means, in fact, might indicate high power for

detecting item impact.? From this viewpoint, Type | error can be referred to as the

% If it could be reported, the power for detecting uniform DIF due to item impact
appears to easily approach 1, with polytomous responses and 1 standard deviation
difference in the trait mean.
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probability of falsely detecting “item bias” if, and only if, the trait means are
comparable across groups.

Given the necessity of the equivalent trait means for detecting item bias, a
circular problem exists; (a) trait means should be comparable across groups, (b)
similarity of the trait means cannot be confirmed without estimating them, (c)
estimation of the trait means will be inaccurate with the presence of item bias, (d)
locating item bias in the scale depends on the equality/inequality of the trait means,
which brings the process back to the starting point. Accordingly, Zumbo (1999)
suggests a need for a post-hoc practice, in which the “biasedness” of the flagged DIF
items is determined through a series of empirical assessments and content analyses.
Because detecting item impact is beyond the scope of the current study and not of
general interest in the DIF literature, the following discussions are limited to the cases
where a researcher wants to locate item bias in the scale.

An important issue in the measurement literature is the presence of bias in the
anchor set. It has been repeatedly observed that a biased anchor set adversely affects
invariance testing (Cheung & Rensvold, 1999; Finch, 2005; Navas-Ara & Gomez-
Benito, 2002; Stark et al., 2006). The current study suggests a possibility that
ameliorates this problem. That is, when used with the Bonferroni correction and the
group sizes of greater than 100, the fixed-factor scaling method almost eliminated
Type | error while maintaining adequate power for detecting (uniform) DIF. Although
the ACFI test of —0.01 also appeared to provide reasonable control for Type | error,

power was not adequate in most conditions. Similarly, French and Finch (2006) noted
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that, despite the fact that the ACFI test of —0.01 has comparable power to the LR test
(at .01 alpha level) for testing the scale-level loading invariance (i.e., metric
invariance) in some conditions, this criterion rarely performs as well for testing a
single loading. In addition, the ACFI test of —0.002 could not provide enough power
to detect small uniform DIF in most conditions (see also French & Finch, 2006).
Taken together, the conventional marker-variable scaling method will be suitable for
testing DIF only if a designated anchor or anchor set is readily available. Otherwise,
with the Bonferroni-corrected LR test and the comparable large sample sizes, the
fixed-factor scaling method should be recommended for testing (at least uniform) DIF.

Combining the previous and current simulation results, a general procedural
guideline for evaluating measurement invariance is suggested here. This testing
procedure consists of three stages. In the first stage, omnibus metric invariance of a
scale (i.e., metric invariance) is tested (see 2.5.3. Testing Procedure in Chapter II). If
metric invariance holds, then omnibus scalar invariance is evaluated in the next stage.
The ACFI test of —0.01 (or —0.002 for high-stakes testing environments) is
recommended for testing the scale-level invariance hypotheses. If it is appropriate to
use maximum likelihood (ML) estimation, the conventional, Bonferroni-corrected LR
test will be a comparable or better choice (see French & Finch, 2006). Because the
scaling method generally does not affect the conclusions about omnibus invariance,
any scaling method is applicable for testing the metric and scalar invariance.

If metric invariance is rejected, detecting item(s) having non-uniform DIF

occurs within the first stage. The free-baseline MACS technique is used to examine
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each item individually, using the fixed-factor scaling method and the Bonferroni-
corrected LR test.® Then, partial scalar invariance is evaluated by implementing a
condition, in which the loading and intercept parameters are constrained across
groups only for the loading-invariant items.

If scalar or partial scalar invariance is rejected, the free-baseline MACS
technique is used to test uniform DIF within the second stage. It is recommended that
only the loading-invariant items are evaluated for uniform DIF one at a time. The
fixed-factor scaling method and the Bonferroni-corrected LR test are also
recommended.

Last, after locating DIF item(s), further invariance tests (e.g., unique factor
variance, factor covariance, factor variance) may continue, while using the effects-
coded scaling method. The baseline models should maintain the constraints of the
supported partial metric and scalar invariance. As noted previously (see also Little et
al., 2005), the effects-coded method provides a couple of preferable features when
used to estimate the latent trait parameters in the multiple-group case. For example,
the trait variable has a scale that is optimally weighted by all of its indicators. Thus,
this method provides more accurate trait estimates than the fixed-factor method in
which the scale is defined by a single, arbitrarily chosen anchor. Additionally, when
invariance constraints are placed on the loadings and the intercepts, the effects-coded

method provides the scale of the trait variable within each group, which is not the

19 Note that these tests possibly increase Type Il error when groups have truly
different trait means. In other words, there exists a certain risk of falsely identifying a
non-uniform DIF item as DIF-free. If present, this Type Il error may adversely affect
the subsequent uniform DIF tests.
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case with the fixed-factor method.
5. Limitations and Future Directions

Although a number of important findings emerged in the current study, there
are several weaknesses that require readers to interpret the results with caution. First,
one must assess the validity of the current results because variations in conducting the
MACS analysis, such as estimation method and computer software, may affect the
trustworthiness of the model estimates. In this study, items were designed to have
either two (binary) or five (ordinal) response categories, reflecting typical
psychological or cognitive testing environments. Thus, the current study should have
taken non-normality of the data into account more appropriately. The ML estimation
technique, which was used in this study, assumes normality of the observed variables.
When item responses are categorical, however, ML estimation can lead to erroneous
invariance detection (Lubke & Muthén, 2004). Nevertheless, the validity of the
current results is defendable to some extent. That is, even in the worst scenario (e.g.,
Ng = 250/Ng = 750), the observed polytomous responses were found to approximate a
normal distribution.™* With regard to the highly non-normal (dichotomous) responses,
the use of a test statistic and/or an estimation method that are robust to the non-
normality problem would have provided more reliable outcomes. For example, the
Satorra-Bentler chi-square (SB chi-square; Satorra & Bentler, 1988) incorporates a

scale correction to the chi-square, taking into account hypothesized model and

1 The median skewness and kurtosis were 0.06 and -0.08, respectively. But, the
responses on Item 12 were moderately non-normal for both focal and reference
groups, with a skewness ranging from -3.42 to -3.07 and a kurtosis ranging from 7.47
t0 9.91.
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kurtosis of data (Hu, Bentler, & Kano, 1992). Researchers have shown that the SB
chi-square is a reliable test statistic for MACS analysis under various distributions
and sample sizes (Curran, et al., 1995; Hu, et al., 1992). Satorra and Bentler (2001)
further demonstrated how to calculate SB chi-square differences and corresponding
degrees of freedom that are suitable for nested-model comparisons. An alternative to
scaling the test statistic is to use a robust estimation method such as weighted least
square (WLS) and robust WLS (RWLS).*? These methods use the polychoric
correlations, item means, and weight matrix to produce an asymptotic covariance
matrix, which in turn is used to estimate the loading and intercept parameters
(Muthén & Satorra, 1995).

Second, the overall model fit was not acceptable in some cases; the CFI values
were quite low in conditions involving the 12-item scale. Note that the CFI depends
on the average size of the correlations among observed variables (Bollen & Long,
1993). That is, if the average correlation is not high, then the CFI value will not be
very high. In this study, the last six items of the 12-item scale had relatively small
loadings by design, compared to the first six items of the same scale. Accordingly, the
average correlation among the items decreased from the 6-item scale (0.57) to the 12-

item scale (0.39). Thus, it appears that the small loadings resulted in the low CFI

12 In fact, WLS estimation is not recommended for relatively small sample sizes.
Flora and Curran (2004) noted that the chi-square is inflated, as are the parameter
estimates, whereas their standard errors are negatively biased. Additionally, French
and Finch (2006) found that the LR test with RWLS estimation provides very low
power for testing metric invariance of a scale.
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values for the 12-item scale.™ In fact, these small loadings are somewhat smaller than
those used in previous simulation studies (e.g., 0.60 in French & Finch, 2006, 2008;
0.48 - 0.66 in Gonzalez-Roma et al., 2006; 0.50 - 0.80 in Kaplan, 1989; 0.58 - 0.90 in
Stark et al., 2006).

Third, given that this is a Monte Carlo study, caution should be used in
generalizing the results and conclusions beyond the conditions investigated. For
example, the current study assumed no missing values in the item response. The
conclusions of any DIF analysis likely depend on the amounts and the patterns of
missing values. In addition, sample sizes were selected in this study so as to represent
those often seen in the educational and psychological assessment. In some cases,
however, smaller samples (i.e., less than 100) may be encountered, especially with
low-incidence populations. Finally, the scales were relatively short, having 6 or 12
items, and only one or two items included DIF. Previous simulation studies found that
the MACS technique performs better with larger scales and with smaller proportions
of biased item in a scale (e.g., Finch, 2005; Meade & Lautenschlager, 2004; Navas-
Ara & GOmez-Benito, 2002; Stark et al., 2006).

Taken together, further simulation work is encouraged to continue to examine
the MACS technique under various additional conditions, as there are several

problems that remain to be resolved in practice. These conditions may include

'3 The covariance/correlation between two measured variables can be obtained by
A;1¥PA;, in the common factor model. Thus, the magnitude of the
covariance/correlation depends on the magnitude of the loadings at a given trait
variance.
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normality/non-normal of data, estimation method, missing data, small sample size,
scale size, and degree of contamination.

The current study found that the proposed ACFI criterion values are not
optimal for testing measurement invariance, at least at the item level (see also French
& Finch, 2006). As compared to IRT, one of the advantageous features of using CFA
is to provide a variety of practical fit measures. Thus, future efforts are needed to
empirically examine various fit indices and then find the criterion values that are
suitable for DIF analysis. This would increase the utility of the MACS technique and
expand the area to which the CFA approach for DIF analysis is applied. Following
Cheung and Rensvold (2002), new criterion values should be independent of the
overall fit of the baseline model, should not be influenced by model complexity, and
should not be redundant with other fit indices.

Although most IRT models are based on the unidimensionality assumption,
educational and psychological assessment often involves multidimensional surveys.
For example, a test such as a licensure exam may measure several subsets of a skill.
Accordingly, Raju and colleagues have proposed procedural guidelins as well as test
statistics that are useful for assessing DIF in scales developed with multidimensional
IRT models (e.g., Oshima, et al., 1997; Raju, et al., 1992). To my knowledge,
however, no comparable DIF analysis has been proposed in the CFA literature. This

lack of CFA methodology is clearly an area for additional future research.
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6. Novel Contribution and Conclusion

This dissertation contributes to the measurement literature by cautioning
researchers against the use of the conventional scaling method in case of DIF analysis.
Because extensive prior research needed to establish a designated anchor set is rarely,
if ever, carried out in the real world (Woods, 2009; see Thissen et al., 1993), it is
likely that a researcher would innocently choose the conventional, marker-variable
scaling method without realizing that it may lead to inflated Type I error.
Consequently, it would be difficult to determine which items function truly
differently from those that are falsely identified as having DIF.

Based on a simulation study, this dissertation suggests that, if used with the
fixed-factor scaling method, Bonferroni-corrected LR test, and comparable large
groups (e.g., greater than 100), the MACS technique would be a nearly fail-safe
methodology for testing (at least uniform) DIF, even when a designated anchor set is
not readily available. If properly followed, the recommended invariance-testing
procedure provides accurate latent trait estimates for each group, thus making
meaningful group comparisons tenable. Of course, the choice of which strategy to use
must remain the prerogative of researchers. Hopefully, they may find the current
findings and procedural guidance to be helpful in gaining a better understanding of

invariance testing.
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Appendix B
Type | Error
The uncorrected p values of the LR test were .05 in all conditions. The corrected p

values were .01 and .005 in the 6-item and 12-item conditions, respectively.
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Appendix C
Power
Power was not reported in the cases where Type | error was inflated at the nominal
alpha level (.05). The values in parentheses indicate that they are for the “small DIF”

conditions; adjacent values are for the “large DIF” conditions.
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