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Abstract 

This article discusses arc reversals in hybrid Bayesian networks with deterministic variables. Hybrid 

Bayesian networks contain a mix of discrete and continuous chance variables. In a Bayesian network 

representation, a continuous chance variable is said to be deterministic if its conditional distributions have 

zero variances. Arc reversals are used in making inferences in hybrid Bayesian networks and influence 

diagrams. We describe a framework consisting of potentials and some operations on potentials that allows 

us to describe arc reversals between all possible kinds of pairs of variables. We describe a new type of 

conditional distribution function, called partially deterministic, if some of the conditional distributions 

have zero variances and some have positive variances, and show how it can arise from arc reversals. 

1 Introduction 

Hybrid Bayesian networks are Bayesian networks (BNs) containing a mix of discrete (countable) and 

continuous (real-valued) chance variables. Shenoy [2006] describes a new technique for “exact” inference 

in hybrid BNs using mixture of Gaussians. This technique consists of transforming a general hybrid BN 

to a mixture of Gaussians (MoG) BN. Lauritzen and Jensen [2001] have described a fast algorithm for 

making inferences in MoG BN, and it is implemented in Hugin, a commercial software package. 

 A MoG BN is a hybrid BN such that all continuous variables have conditional linear Gaussian (CLG) 

distributions, and there are no discrete variables with continuous parents. If we have a general hybrid BN 

containing a discrete variable with continuous parents, then one method of transforming such a network to 

a MoG BN is to do arc reversals. If a continuous variable has a non-CLG distribution, then we can 

approximate it with a CLG distribution. In the process of doing so, we may create a discrete variable with 

continuous parents. In this case, arc reversals are again necessary to convert the resulting hybrid BN to a 

MoG BN. 
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 Arc reversals were pioneered by Olmsted [1984] for solving discrete influence diagrams. They were 

further studied by Shachter [1986, 1988, 1990] for solving discrete influence diagrams, finding posterior 

marginals in discrete BNs, and for finding relevant sets of variables for a decision variable in an influence 

diagram. Kenley [1986] generalized arc reversals in influence diagrams with continuous variables having 

conditional linear Gaussian distributions (see also Shachter and Kenley [1989]). Poland [1994] further 

generalized arc reversals in influence diagrams with Gaussian mixture distributions. Recently, Madsen 

[2008] has described solving a class of Gaussian influence diagrams using arc-reversal theory. Although 

there are currently no exact algorithms to solve general hybrid influence diagrams (containing a mix of 

discrete and continuous chance variables), a theory of arc reversals is useful in this endeavor. We believe 

that Olmsted’s arc reversal algorithm for discrete influence diagrams would apply to influence diagrams 

with a mix of discrete, continuous, and deterministic chance variables using the arc reversal theory 

described in this paper. This claim, of course, needs further investigation. 

 Hybrid BNs containing deterministic variables pose a special problem since the joint density for all 

continuous variables does not exist. Thus, a method for propagating density potentials would need to be 

modified to account for the non-existence of the joint density [Cobb and Shenoy 2005a, 2006]. 

 A traditional way of handling continuous chance variables in hybrid BNs is to discretize the 

conditional density functions, and convert continuous nodes to discrete nodes. There are several problems 

with this method. First, to get a decent approximation, we need to use many bins. This increases the 

computational effort for computing marginals. Second, even with many bins, based on what evidence is 

obtained, which may not be easy to forecast, the posterior marginal may result in all mass in one of the 

bins resulting in an unacceptable discrete approximation of the posterior marginal. One way to mitigate 

this problem is to do a dynamic discretization as suggested by Kozlov and Koller [1997], but this is not as 

simple as just dividing the sample space of continuous variables evenly into some number of bins. 

 Another method of handling continuous variables in hybrid BNs is to use mixtures of truncated 

exponentials (MTEs) to approximate probability density functions [Moral et al. 2001]. MTEs are easy to 

integrate in closed form. Since the family of mixtures of truncated exponentials is closed under 

multiplication, addition, and integration, the Shenoy-Shafer architecture [Shenoy and Shafer 1990] can be 

used to find posterior marginals. Cobb et al. [2006] propose using a non-linear optimization technique for 

finding mixtures of truncated exponentials approximation for the many commonly used distributions. 
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Cobb and Shenoy [2005a, b] extend this approach to Bayesian networks with linear and non-linear 

deterministic variables. 

 Arc reversals involve divisions. MTEs are not closed under the division operation. Thus, we don’t see 

much relevance for MTEs for describing the arc-reversal theory. However, making inferences in hybrid 

Bayesian networks with deterministic variables can be described without a division operation, i.e., 

without arc reversals. And in this case, MTEs can be used to ensure that marginalization of density 

functions can be easily done. 

 The main goal of this paper is to describe an arc-reversal theory in hybrid Bayesian networks with 

deterministic variables. While such a theory would be useful in making inferences in hybrid BNs and also 

in solving influence diagrams with a mix of discrete, continuous, and deterministic variables, the scope of 

this paper doesn’t include either inference in hybrid Bayesian networks nor solving influence diagrams. 

 Arc reversal is described in terms of functions called potentials with combination, marginalization, 

and division operations. One advantage of this framework is that it can be easily adapted to make 

inferences in hybrid BNs and to solve hybrid influence diagrams. For example, if we use the Shenoy-

Shafer architecture [Shenoy and Shafer 1990] for making inferences in hybrid Bayesian networks, then 

the potentials that are generated by combination and marginalization operations do not always have 

probabilistic semantics. For example, the combination of a probability density function and a 

deterministic equation (which is represented as a Dirac delta function) does not have probabilistic 

semantics. Nevertheless, as we will show in this paper, the use of potentials is useful for describing arc 

reversals. Furthermore, we believe that this framework can be extended further for computing marginals 

in hybrid Bayesian networks and for solving hybrid influence diagrams. 

 Shachter [1988] describes how the arc-reversal theory for discrete Bayesian networks can be used for 

probabilistic inference. Given that we extend arc-reversal theory for continuous and deterministic 

variables, Shachter’s [1988] framework can thus be used for making inferences in hybrid Bayesian 

networks with deterministic variables. As observed by Madsen [2006], an important advantage of using 

arc-reversal theory for making inferences is that after arc-reversal, the network remains a Bayesian 

network, and we can exploit, e.g., d-separation, for probabilistic inference. 

 An outline of the remainder of this paper is as follows. Section 2 describes the framework of 

potentials used to describe arc reversals. We use Dirac delta functions to represent conditionally 
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deterministic distributions, and we describe some properties of Dirac delta functions in the Appendix. 

Section 3 describes arc reversals for arcs between all kinds of pairs of variables. Section 4 describes 

partially deterministic distributions that arise from arc reversals. Finally, in Section 5, we summarize and 

conclude. 

2 The Framework of Potentials 

In this section we will describe the notation and definitions used in the paper. Also, we will decribe a 

framework consisting of potentials and some operations on potentials that will let us describe the arc 

reversal process in hybrid Bayesian networks with deterministic conditionals. 

 Variables and States. We are concerned with a finite set V of variables. Each variable X  V is 

associated with a set of its possible states denoted by X. If X is a countable set, finite or infinite, we say 

X is discrete, and depict it by a rectangular node in a graph; otherwise X is said to be continuous and is 

depicted by an oval node. 

 In a BN, each variable has a conditional distribution function for each state of its parents. A 

conditional distribution function associated with a continuous variable is said to be deterministic if the 

variances (for each state of its parents) are all zeros. For simplicity, we will refer to continuous variables 

with non-deterministic conditionals as continuous, and continuous variables with deterministic 

conditionals as deterministic. Deterministic variables are represented as oval nodes with a double border 

in a Bayesian network graph. 

 We will assume that the state space of continuous variables is the set of real numbers (or some subset 

of it) and that the states of a discrete variable are symbols. If r  V, then r = { X | X  r}. 

 Discrete Potentials. In a BN, each variable has a conditional probability function given its parents 

and these are represented by functions called potentials. If X is discrete, it has a discrete potential. 

Formally, suppose r is a set of variables that contains a discrete variable. A discrete potential  for r is a 

function : r  [0, 1]. The values of discrete potentials are probabilities. 

 Although the domain of the function  is r, for simplicity, we will refer to r as the domain of . 

Thus the domain of a potential representing the conditional probability mass function associated with 

some discrete variable X in a BN is always the set {X} pa(X), where pa(X) denotes the set of parents of 

X. The set pa(X) may contain continuous variables. 
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 Density Potentials. Continuous non-deterministic variables typically have conditional density 

functions, which are represented by functions called density potentials. Formally, suppose r is a set of 

variables that contains a continuous variable. A density potential  for r is a function : r  R+, where 

R
+ is the set of non-negative real numbers. The values of density potentials are probability densities. 

 Deterministic variables have conditional distributions containing equations. We will represent such 

conditional distributions using Dirac delta functions [Dirac 1927]. First, we will define Dirac delta 

functions. 

 Dirac Delta Functions. : R  [0, 1] is called a Dirac delta function if (x) = 0 if x  0, and  (x) dx 

= 1. Whenever the limits of integration of an integral are not specified, the entire range ( , ) is to be 

understood.  is not a proper function since the value of the function at 0 doesn’t exist (i.e., not finite). It 

can be regarded as a limit of a certain sequence of functions (such as, e.g., the Gaussian density function 

with mean 0 and variance 2 in the limit as   0). However, it can be used as if it were a proper 

function for practically all our purposes without getting incorrect results. It was first defined by Dirac 

[1927]. Some properties of Dirac delta functions are described in the Appendix. 

 Dirac Potentials. Deterministic variables have conditional distributions containing equations. We 

will represent such functions by Dirac potentials. Before we define Dirac potentials formally, we need to 

define projection of states. Suppose y is a state of variables in r, and suppose s  r. Then the projection of 

y to s, denoted by y s is the state of s obtained from y by dropping states of r\s. Thus, (w, x, y, z) {W, X} = 

(w, x), where w  W, and x  X. If s = r, then y s = y. 

 S uppose x = r s is a set of variables containing some discrete variables r and some continuous 

variables s. We assume s  . A Dirac potential  for x is a function : x  [0, 1] such that (r, s) is of 

the form {pr,i (z  gr,i(s {s\{Z})) | i = 1, …, n, and r  r}, where r  r, s  s, Z  s is a continuous 

variable, z  Z, (z  gr,i(s {s\{Z})) are Dirac delta functions, pr,i are probabilities for all i = 1, …, n, and 

n is a positive integer. Here, we are assuming that continuous variable Z is a deterministic function 

gr,i(s {s\{Z}) of the other continuous variables in s, and that the nature of the deterministic function may be 

indexed by the states of the discrete variables r, and/or by some latent index i. 
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 S uppose X is a deterministic variable with continuous parent Z, and suppose that the deterministic 

relationship is X = Z2. This conditional distribution is represented by the Dirac potential (x  z2) for 

{Z, X}. 

 A more general example of a Dirac potential for {Z, X} is (z, x) = ( ) (x  z) + ( ) (x  1). Here, 

X is a continuous variable with continuous parent Z. The conditional distribution of X is as follows: X = Z 

with probability , and X = 1 with probability . Notice that X is not deterministic (since the variances of 

its conditional distributions are not all zeros). Also, notice that strictly speaking, the values of the Dirac 

potential (z, x) are either 0 or undefined (when x = z or x = 1). For interpretation reasons only, we can 

follow the convention that the “values” of (z, x) are  when x = z ,  when x = 1, and 0 otherwise, which 

is consistent with the conditional distribution the potential is representing. Thus, as per this convention, 

the values of Dirac potentials are probabilities in the unit interval [0, 1]. 

 Both density and Dirac potentials are special instances of a broader class of potentials called 

continuous potentials. Suppose x is a set of variables containing a continuous variable. Then a continuous 

potential  for x is a function : x  [0, 1] R+. The values of  can be probabilities (in [0, 1]) or 

densities (in R+). If some of the values of  are probabilities and some are densities, then  is a continuous 

potential that is neither a Dirac potential nor a density potential. For example, consider a continuous 

variable X with a mixed distribution: a probability of 0.5 at X = 1, and a probability density of 0.5 f, where 

f is a PDF. This mixed distribution can be represented by the continuous potential  for {X} as follows: 

(x) = 0.5 (x  1) + 0.5 f(x). Notice that (1) = 0.5 (0) + 0.5 f(1). The first term can be interpreted as 

probability of 0.5 and the second term is a probability density. The distribution (x) is a well-defined 

distribution since  (x) dx = 0.5  (x  1) dx + 0.5  f(x) dx = 0.5 + 0.5 = 1. 

 As we will see shortly, the combination of two density potentials is a density potential, the 

combination of two Dirac potentials is a Dirac potential, and the combination of two continuous 

potentials is a continuous potential. Also, continuous potentials can result from the combination, 

marginalization and division operations. These operations will be defined shortly. 

 Consider the BN given in Figure 1. Let  denote the discrete potential for {A} associated with A. 

Then, (a1) = 0.5 and (a2) = 0.5, Let  be the density potential for {Z} associated with Z. Then, (z) = 

f(z). Let  denote the Dirac potential for {A, Z, X} associated with X. Then, (a1, z, x) = (x  z) and 

(a2, z, x) = (x  1). 
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Figure 1: A BN with a discrete, a continuous and a deterministic variable 

 Next, we define three operations associated with potentials, combination, marginalization, and 

division. 

 Combination. Suppose  is a potential (discrete or continuous) for a, and  is a potential (discrete or 

continuous) for b. Then the combination of  and , denoted by , is the potential for a b obtained 

from  and  by point-wise multiplication, i.e., ( )(x) = (x a) (x b) for all x  a b. If  and  are 

both discrete potentials, then  is a discrete potential. If  and  are both density potentials, then  

is a density potential. If  and  are both Dirac potentials, then  is a Dirac potential. And if  and  

are both continuous potentials, then  is a continuous potential. 

 Combination of potentials (discrete or continuous) is commutative (  = ) and associative 

(( )  = ( )). A potential for r such that its values are identically one is called an identity 

potential, and denoted by r. The identity potential r for r has the property that given any potential  for 

s  r, r = . 

 Marginalization. The definition of marginalization of potentials (discrete or continuous) depends on 

the nature of the variable being marginalized out. Suppose  is a potential (discrete or continuous) for c, 

and suppose A is a discrete variable in c. Then the marginal of  by removing A, denoted by A, is the 

potential for c\{A} obtained from  by addition over the states of A, i.e., A(x) = { (a, x) | a  A} for 

all x  c\{A}. 

 S uppose  is a potential (discrete or continuous) for c and suppose X is a continuous variable in c. 

Then the marginal of  by removing X, denoted by X, is the potential for c\{X} obtained from  by 

integration over the states of X, i.e., X(y) =  (x, y) dx for all y  c\{X}. If  contains no Dirac delta 

functions, then the integral is the usual Riemann integral, and integration is done over X. If  contains a 

Dirac delta function, then the integral has to follow the properties of Dirac delta functions. Some 
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examples of integrals with Dirac delta functions are as follows (these examples follow from properties of 

Dirac delta functions described in the Appendix). 

 (i )  (x  a) dx = 1. 

 ( ii)  (x  a) f(x) dx = f(a), assuming f is continuous in a neighborhood of a. 

 ( iii)  (y  g(x)) (z  h(x)) dx = |(d/dy)(g 1(y))| (z  h(g 1(y)), assuming g is invertible and 

differentiable on X. 

 (i v)  (y  g(x)) f(x) dx = |(d/dy)(g 1(y))| f(g 1(y)), assuming g is invertible and differentiable on X. 

 (v )  (y  g(x)) (z  h(x)) f(x) dx = |(d/dy)(g 1(y))| (z  h(g 1(y))) f(g 1(y)), assuming g is invertible 

and differentiable on X. 

 If  is a conditional associated with A, and its domain is a (i.e., a = {A} pa(A)), then A is an 

identity potential for a\{A} = pa(A), i.e., if  is any potential whose domain contains a\{A}, then A  = 

. 

 To reverse an arc (X, Y) in a BN, we compute the marginal ( ) X, where  is the conditional 

associated with X, and  is the conditional associated with Y. The potential ( ) X represents the 

conditional for Y given pa(X) pa(Y)\{X}, and its nature (discrete or continuous) depends on Y. Thus, if Y 

is discrete, then ( ) X is a discrete potential, and if Y is continuous or deterministic, then ( ) X is a 

continuous potential. 

 Divisions. Arc reversals involve divisions of potentials, and the potential in the denominator is 

always a marginal of the potential in the numerator. Suppose (X, Y) is a reversible arc in a BN, suppose  

is a potential for {X} pa(X) associated with X, and suppose  is a potential for {Y} pa(Y) associated 

with Y. After reversing the arc (X, Y), the revised potential associated with X is ( ) ( ) X. The 

definition of ( ) ( ) X is as follows. ( ) ( ) X is a potential for {Y} pa(X) pa(Y) 

obtained from ( ) and ( ) X by point-wise division, i.e., (( ) ( ) X)(x, y, r, s, t) = 

( )(x, y, r, s, t) / (( ) X)(y, r, s, t) for all x  X, y  Y, r  pa(X)\pa(Y), s  pa(X) pa(Y), 

t  pa(Y)\({X} pa(X)). Notice that if (( ) X)(y, r, s, t) = 0, then ( )(x, y, r, s, t) = 0. In this case, we 

will simply define 0/0 as 0. 

 The quotient ( ) ( ) X represents the conditional for X given pa(X) pa(Y) {Y}, and its 

nature depends on X. Thus, if X is discrete, then ( ) ( ) X is a discrete potential (whose values are 
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probabilities), and if X is continuous, then ( ) ( ) X is a continuous potential (whose values are 

either probability densities or probabilities or both). 

 For an example of division, consider the BN shown in Figure 2 consisting of two continuous 

variables X and Y, where X has PDF f(x), and Y is a deterministic function of X, say Y = g(X), where g is 

invertible and differentiable in x. Let  and  denote the density and Dirac potentials associated with X 

and Y, respectively. Then (x) = f(x), and (x, y) = (y  g(x)). After reversal of the arc (X, Y), the revised 

potential associated with Y is (y) = ( ) X(y) =  f(x) (y  g(x)) dx = |(d/dy)(g 1(y))| f(g 1(y)). After 

arc reversal, the revised potential associated with X is  = ( ) ( ) X. Thus, 

(x, y) = ( )(x, y)/( ) X(y) = f(x) (y  g(x)) / (|(d/dy)(g 1(y))| f(g 1(y))) = (x  g 1(y)), 

which is a Dirac potential. Notice that after arc reversal, X is deterministic. This is a consequence of the 

deterministic function at Y being invertible. As we will show later, if the deterministic function is not 

invertible, then after arc reversal, X may not be a deterministic variable. Notice that  = , i.e., 

f(x) (y  g(x)) = (x  g 1(y)) |(d/dy)(g 1(y))| f(g 1(y)). 

 
Figure 2. Arc reversal between a continuous and a deterministic variable with an invertible and 

differentiable function. 

3 Arc Reversals 

This section describes arc reversals between every possible kinds of pairs of variables. As we mentioned 

in the introduction, arc reversals were pioneered by Olmsted [1984] and studied extensively by Shachter 

[1986, 1988, 1990] for discrete Bayesian networks and influence diagrams. Here we draw on the literature 

and extend the arc-reversal theory to the case where we have continuous and detrministic variables in 

addition to discrete ones. 
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 Given a BN graph, i.e., a directed acyclic graph, there always exists a sequence of variables such that 

whenever there is an arc (X, Y) in the network, X precedes Y in the sequence. An arc (X, Y) can be 

reversed only if there exists a sequence such that X and Y are adjacent in the sequence. 

 In a BN, each variable is associated with a conditional potential representing the conditional 

distribution for it given its parents. A fundamental assumption of the BN theory is that the combination of 

all the conditional potentials is the joint distribution of all variables in the network. Suppose (X, Y) is an 

arc in a BN such that X and Y are adjacent, and suppose  and  are the potentials associated with X and 

Y, respectively. Let pa(X) = r s, and pa(Y) = {X} s t. Since X and Y are adjacent, the variables in 

r s t precede X and Y in a sequence compatible with the arcs. Then  represents the conditional joint 

distributions of {X, Y} given r s t, ( ) X represents the conditional distributions of Y given r s t, 

and ( ) ( ) X represents the conditional distributions of X given r s t {Y}. If the arc (X, Y) is 

reversed, the potentials  and  associated with X and Y are replaced by potentials  = ( ) ( ) X, 

and  = ( ) X, respectively. This general case is illustrated in Figure 3. Although X and Y are shown 

as continuous nodes, they can each be discrete or deterministic. 

 

Figure 3. Reversal of arc (X, Y) 

 Some observations about the arc reversal process are as follows. First, arc reversal is a local operation 

that affects only the potentials associated with the two variables defining the arc. The potentials 

associated with the other variables remain unchanged. 

 Second, notice that  = . Thus, the joint conditional distributions of {X, Y} given r s t 

remain unchanged by arc reversal. Also, since the other potentials for r s t do not change, the joint 

distribution of all variables in a BN remains unchanged. 
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 Third, for any potential , let dom( ) denote the domain of . Notice that the dom( ) = 

dom( ) dom( ) = r s t {X} {Y}, and the dom( ) = dom( ) dom( )\{X} = r s t {Y}. Thus after 

arc reversal, X and Y inherit each other’s parents, Y loses X as a parent, and X gains Y as a parent. As we 

will see, there are exceptions to this general rule when either X or Y (or both) are deterministic. 

 Fourth, suppose we reverse the arc (Y, X) in the revised BN. Let  and  denote the potentials 

associated with X and Y after reversal of arc (Y, X). Then  

 = ( ) Y = (( ) ( ) X ( ) X) Y = ( ) Y = ( Y) = pa(Y), and 

 = ( ) ( ) Y = ( ) ( pa(Y)) = {X} pa(X). 

If we ignore the identity potentials (since these have no effect on the joint distribution),  and  are the 

same as  and , what we started with. 

 In the remainder of this section, we will describe arc reversals between all kinds of pairs of variables. 

For each pair, we will assume that their parents are all continuous and that they have a parent in common. 

Also, we will assume that prior to arc reversal, continuous variables have conditional probability density 

functions represented by density potentials, deterministic variables are associated with equations 

represented by Dirac potentials, and discrete variables have conditional probability mass functions 

represented by discrete potentials. Thus, the nine cases described in this section should be viewed as 

examples rather than an exhaustive list of cases of arc reversals. The framework described in Section 2 

should allow us to describe arc reversals between any pair of variables assuming that a closed form exists 

for describing the results of arc reversals. 

3.1 Two Discrete Variables 

In this section we describe reversal of an arc between two discrete nodes. This is the standard case and we 

discuss it here only for completeness. 

 Consider the BN given on the left-hand side of Figure 4. Let  and  denote the discrete potentials 

associated with variables A and B, respectively, before arc reversal, and  and  after arc reversal. Then, 

for all bj  B, and ai  A, 

 (u, v, ai) =  P(ai|u, v), 

 (v, w, ai, bj) =  P(bj|v, w, ai), 

 (u, v, w, bj) =  ( ) A(u, v, w, bj) = {P(ai|u, v) P(bj|v, w, ai) | ai  A}, and 
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 (u, v, w, ai, bj) =  (( ) ( ) A)(u, v, w, ai, bj)  

  = P(ai|u, v) P(bj|v, w, ai) / {P(ai|u, v) P(bj|v, w, ai) | ai  A}. 

The resulting BN is given on the right-hand side of Figure 4. 

 

Figure 4. Arc reversal between two discrete nodes. 

3.2 Two Continuous Variables 

In this section, we describe arc reversals between two continuous variables. Consider the BN given on the 

left-hand side of Figure 5. In this BN, X has conditional PDF f(x | u, v) and Y has conditional PDF 

g(y | v, w, x). Let  and  denote the continuous potentials at X and Y, respectively, before arc reversal, 

and  and  after arc reversal. Then, 

 (u, v, x) =  f(x | u, v), 

 (v, w, x, y) =  g(y | v, w, x), 

 (u, v, w, y) =  ( ) X(u, v, w, y) =  f(x | u, v) g(y | v, w, x) dx, 

 (u, v, w, x, y) =  (( ) ( ) X)(u, v, w, x, y) = f(x | u, v) g(y | v, w, x) / (  f(x | u, v) g(y | v, w, x) dx). 

The resulting BN is shown on the right-hand side of Figure 5. 

 
Figure 5. Arc reversal between two continuous nodes. 
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3.3 Continuous to Deterministic 

As we have already discussed, the arc reversal between a continuous and a deterministic variable is 

slightly different from the arc reversal between two continuous variables since their joint PDF does not 

exist. After arc reversal, we transfer the density from the continuous node to the deterministic node, 

which results in the deterministic node being continuous and the continuous node having a Dirac 

potential. 

 Consider the situation shown in Figure 6. In this BN, X has continuous parents U and V, and Y has 

continuous parents V and W in addition to X. The density at X is f and the equation at Y is Y = h(V, W, X). 

We assume h is invertible in X and differentiable on X. The potentials before and after arc reversals are 

as follows. 

 
Figure 6. Arc reversal between a continuous and a deterministic variable. 

 (u, v, x) =  f(x | u, v), 

 (v, w, x, y) =  (y  h(v, w, x)), 

 (u, v, w, y) =  ( ) X(u, v, w, y) =  f(x | u, v) (y  h(v, w, x)) dx 

  = |( / y)(h 1(v, w, y))| f(h 1(v, w, y) | u, v), and 

 (u, v, w, x, y) =  (( ) ( ) X)(u, v, w, x, y) 

  = f(x | u, v) (y  h(v, w, x)) / (|( / y)(h 1(v, w, y))| f(h 1(v, w, y) | u, v)) 

  = (x  h 1(v, w, y)). 

 After we reverse the arc (X, Y), both X and Y inherit each other’s parents, but X loses U as a parent. 

Also, Y has a density function and X has a deterministic conditional distribution. The determinism of the 

conditional for X after arc reversal is a consequence of the invertibility of the relationship at Y before arc 

reversal. The resulting BN is given on right-hand side of Figure 6. Also, some of the qualitative 
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conclusions here, namely X loses U as a parent, Y has a density function, and X has a deterministic 

conditional distribution, are based on the assumption that U, V, W are continuous. If any of these are 

discrete, the conclusion can change, as we will demonstrate in Section 4. 

 As an example, consider the BN consisting of two continuous variables and a deterministic variable 

whose function is the sum of its two parents as shown in Figure 7. X ~ f(x), Y|x ~ g(y | x), and Z = X + Y. 

Let , ,  denote the potentials associated with X, Y, and Z, respectively, before arc reversal, and  and 

 denote the revised potentials associated with Y and Z, respectively, after reversal of arc (Y, Z). Then, 

 (x) =  f(x), 

 (x, y) =  g(y | x), 

 (x, y, z) =  (z  x  y), 

 (x, z) =  ( ) Y(x, z) =  g(y | x) (z  x  y) dy =  g(y | x) (y  (z  x)) dy = g(z  x | x), and 

 (x, y, z) =  (( ) ( ) Y)(x, y, z) = g(y | x) (z  x  y) / g(z  x | x) = (y  (z  x)). 

If we reverse the arc (X, Z) in the revised BN, we obtain the marginal distribution of Z, 

(z) = ( ) X(z) =  f(x) g(z  x | x) dx, 

which is the convolution formula for Z. The revised potential at X,  

(x, z) = (( ) ( ) X)(x, z) = f(x) g(z  x | x)/(  f(x) g(z  x | x) dx), 

represents the conditional distribution of X given z. 

 
Figure 7. A continuous BN with a deterministic variable. 

 We have assumed that the function describing the deterministic variable is invertible and 

differentiable. Let us consider the case where the function is not invertible, but has known simple zeros, 

and is differentiable. For example, consider a BN with two continuous variables X and Y, where X has 

PDF f(x) and Y is a deterministic function of X described by the function Y = X2 as shown in Figure 8. 
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Figure 8. Arc reversal between a continuous node and a deterministic node with a non-invertible 

function. 

 This function is not invertible, but y  x2 has two simple zeros at x = ±
 

y . Suppose  and  denote 

the continuous potentials at X and Y, respectively, before arc reversal, and  and  after arc reversal. 

Then 

 (x) =  f(x), 

 (x, y) =  (y  x2) = (x2  y) = ( (x + 
 

y ) + (x  
 

y ))/(2
 

y ) 

 (y) =  ( ) X(y) =  f(x) ( (x + 
 

y ) + (x  
 

y ))/(2
 

y ) dx 

  = (f( y ) + f( y )) / (2 y ), for all y > 0. 

 (x, y) =  f(x) ( (x + 
 

y ) + (x  
 

y )) / (f(
 

y ) + f(
 

y )) 

  = (f(
 

y ) (x + 
 

y ) + f(
 

y ) (x  
 

y ) / (f(
 

y ) + f(
 

y )), for all y > 0. 

Notice that the revised conditional for X is not deterministic if f( y ) > 0 and f( y ) > 0, but it is a 

Dirac potential. The revised potential for Y is a density potential. 

 If the deterministic function is such that it’s zeros are not so easily determined or it is not 

differentiable, then we would not be able to write a closed form expression for the distributions of X and 

Y after arc reversal. 

3.4 Deterministic to Continuous 

In this subsection, we describe arc reversal between a deterministic and a continuous variable. Consider a 

BN as shown on the left-hand side of Figure 9. X is a deterministic variable associated with a function, 

X = h(U, V), and Y is a continuous variable and the conditional distribution of Y|(v, w, x) is distributed as 

g(y |v, w, x). Suppose we wish to reverse the arc (X, Y). Since there is no density potential at X, Shenoy 

[2006] suggests to first reverse arc (U, X) or (V, X) (resulting in a density potential at X), and then reverse 

arc (X, Y) using the rules for arc reversal between two continuous nodes. However, here we show that it is 
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possible to reverse an arc between a deterministic node and a continuous node directly without having to 

reverse other arcs. 

 

Figure 9. Arc reversal between a deterministic and a continuous node. 

 Consider again the BN given on left-hand side of Figure 9. Suppose we wish to reverse the arc (X, Y). 

Let  and  denote the continuous potentials at X and Y, respectively, before arc reversal, and  and  

after arc reversal. Then, 

 (u, v, x) =  (x  h(u, v)), 

 (v, w, x, y) =  g(y | v, w, x), 

 (u, v, w, y) =  (( ) X)(u, v, w, y) =  (x  h(u, v)) g(y | v, w, x) dx = g(y | v, w, h(u, v)), and 

 (u, v, w, x, y) =  ( ) (( ) X)(u, v, w, x, y) = (x  h(u, v)) g(y | v, w, x) / g(y | v, w, h(u, v))  

  = (x  h(u, v)). 

 N otice that  does not depend on either W or Y. Thus, after arc reversal, there is no arc from Y to X, 

i.e., the arc being reversed disappears, and X does not inherit an arc from W. The resulting BN is shown 

on the right-hand side of Figure 9. 

3.5 Deterministic to Deterministic 

In this subsection, we describe arc reversal between two deterministic variables. Consider the BN on the 

left-hand side of Figure 10. X is a deterministic function of its parents {U, V}, and Y is also a 

deterministic function of its parents {X, V, W}. Suppose we wish to reverse the arc (X, Y). Let  and  

denote the potentials associated with X and Y, respectively, before arc reversal, and  and  after arc 

reversal. Then, 
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Figure 10. Arc reversal between two deterministic nodes. 

 (u, v, x) =  (x  h(u, v)), 

 (v, w, x, y) =  (y  g(v, w, x)), 

 (u, v, w, y) =  ( ) X(u, v, w, y) =  (x  h(u, v)) (y  g(v, w, x)) dx  

  = (y  g(v, w, h(u, v))), and 

 (u, v, w, x, y) =  (( ) ( ) X)(u, v, w, x, y)  

  = (x  h(u, v)) (y  g(v, w, x)) / (y  g(v, w, h(u, v))) = (x  h(u, v)). 

 N otice that  does not depend on either Y or W. The arc being reversed disappears, and X does not 

inherit a parent of Y. 

3.6 Continuous to Discrete 

In this section, we will describe arc reversal between a continuous and a discrete node. Consider the BN 

as shown in F igure 11. X is a continuous node with conditional PDF f(x | u, v), and A is a  discrete node  

with c onditional m asses P(ai | v, w, x) fo r each ai  A. Le t  a nd  d enote the  de nsity a nd disc rete 

potentials associated with X and A, respectively, before arc reversal, and  and  after arc reversal. Then 

 (u, v, x) =  f(x | u, v), 

 (v, w, x, ai) =  P(ai | v, w, x), 

 (u, v, w, ai) =  ( ) X(u, v, w, ai) =  f(x | u, v) P(ai | v, w, x) dx, and 

 (u, v, w, x, ai) =  (( ) ( ) X)(u, v, w, x, ai) 

  = f(x | u, v) P(ai | v, w, x) / (  f(x | u, v) P(ai | v, w, x) dx). 

The BN on the RHS of Figure 11 depicts the results after arc reversal. 
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Figure 11. Arc reversal between a continuous and a discrete node. 

 For a concrete example, consider the simpler hybrid BN shown on the LHS of Figure 12. X is a 

continuous variable, distributed as N(0, 1). A is a discrete variable with two states {a1, a2}. The 

conditional probability mass functions of A are as follows: P(a1 | x) = 1/(1 + e 2x) and P(a2 | x) = 

e 2x/(1 + e 2x). Let  and  denote the potentials associated with A and X, respectively, before arc 

reversal, and  and  after arc reversal. Then, 

 (a1, x) = 1/(1 + e 2x),  

 (a2, x) =  e 2x/(1 + e 2x), 

 (x) =  0,1(x), where 0,1(x) is the PDF of the standard normal distribution, 

 (a1) =  ( ) X(a1) =  (1/(1 + e 2x)) 0,1(x) dx = 0.5, 

 (a2) =  ( ) X(a2) =  (e 2x/(1 + e 2x) 0,1(x) dx = 0.5, 

 (a1, x) =  (( ) ( ) X)(a1, x) = (1/(1 + e 2x)) 0,1(x))/0.5 = (2/(1 + e 2x)) 0,1(x), 

 (a2, x) =  ( ) ( ) X(a2, x) = (e 2x/(1 + e 2x)) 0,1(x))/0.5 = (2e 2x/(1 + e 2x)) 0,1(x), 

The resulting BN after the arc reversal is given on the RHS of Figure 12. 

 
Figure 12. Arc reversal between a continuous and a discrete node. 
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3.7 Deterministic to Discrete 

In this subsection, we describe reversal of an arc between a deterministic and a discrete variable. Consider 

the hybrid BN shown on the left-hand side of Figure 13. Let  and  denote the potentials at X and A, 

respectively, before arc reversal, and let  and  denote the potentials after arc reversal. Then, 

 (u, v, x) =  (x  h(u, v)), 

 (v, w, x, ai) =  P(ai | v, w, x), 

 (u, v, w, ai) =   (x  h(u, v)) P(ai | v, w, x) dx = P(ai | v, w, h(u, v)), and 

 (u, v, w, x, ai) =  (x  h(u, v)) P(ai | v, w, x)/P(ai | v, w, h(u, v)) = (x  h(u, v)). 

 

Figure 13. Arc reversal between a deterministic and a discrete variable. 

Notice that  depends on neither A nor W. The illustration of an arc reversal between a deterministic and 

discrete node with parents is given in Figure 13. 

 For a concrete example, consider the BN given on the LHS of Figure 14. The continuous variable 

V ~ U[0, 2], deterministic variable X = V2, and discrete variable A with two states {a1, a2} has the 

conditional distribution P(a1 | v, x) = 1 if v  x, and P(a1 | v, x) = 0 if v > x. Let  and  denote the 

potentials associated with X and A, respectively, before arc reversal, and  and  after arc reversal. Then, 

 (v, x) =  (x  v2) 

 (a1, v, x) =  P(a1 | v, x) = 1 if v  x 
   = 0 if v > x, 

 (a2, v, x) =  P(a2 | v, x)  = 0 if v  x 
   = 1 if v > x, 
 (a1, v) =   (x  v2) (a1, v, x) dx = (a1, v, v2) = P(a1 | v)  = 1 if v  v2, and 

    = 0 if v > v2, 
 (a2, v) =   (x  v2) (a2, v, x) dx = (a2, v, v2) = P(a2 | v)  = 0 if v  v2, and 

    = 1 if v > v2, 
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 (a1, v, x) =  (x  v2) (a1, v, x)/ (a1, v, v2) = (x  v2) 

 (a2, v, x) =  (x  v2) (a2, v, x)/ (a2, v, v2) = (x  v2) 

The situation after arc-reversal is shown in the RHS of Figure 14. 

 
Figure 14. An example of arc-reversal between a deterministic and a discrete variable. 

3.8 Discrete to Continuous 

In this subsection, we describe reversal of an arc from a discrete to a continuous variable. Consider the 

hybrid BN shown on the LHS of Figure 15. Let  and  denote the potentials associated with A and X, 

respectively, before arc reversal, and  and  after arc reversal. Then, 

 (u, v, ai) =  P(ai | u, v), 

 (v, w, x, ai) =  fi(x | v, w), 

 (u, v, w, x) =  ( ) A(u, v, w, x) = {P(ai | u, v) fi(x | v, w) | ai  A}, 

 (u, v, w, x, ai) =  (( ) ( ) A)(u, v, w, x, ai) 

  = P(ai | u, v) fi(x | v, w)/ {P(ai | u, v) fi(x | v, w) | ai  A}. 

The density at X after arc reversal is a mixture density. 

 
Figure 15. Arc reversal between a discrete and a continuous variable. 
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 For a concrete example, consider the BN given on the LHS of Figure 16. The discrete variable A has 

two states {a1, a2} with P(a1) = 0.5 and P(a2) = 0.5. X is a continuous variable whose conditional 

distributions are X|a1 ~ N(0, 1) and X|a2 ~ N(2, 1). Let  and  denote the potentials associated with A and 

X, respectively, before arc reversal, and  and  after arc reversal. Then, 

 (a1) =  0.5,  

 (a2) =  0.5, 

 (a1, x) =  0,1(x), 

 (a2, x) =  2,1(x), 

 (x) =  ( ) A(x) = 0.5 0,1(x) + 0.5 2,1(x), 

 (a1, x) =  (( ) ( ) A)(a1, x) = (0.5 0,1(x))/(0.5 0,1(x) + 0.5 2,1(x)), 

 (a2, x) =  (( ) ( ) A)(a
2
, x) = (0.5 2,1(x))/(0.5 0,1(x) + 0.5 2,1(x)), 

The resulting BN after the arc reversal is given on the RHS of Figure 16.  

 

Figure 16. An example of an arc reversal between a discrete and a continuous variable. 

3.9 Discrete to Deterministic 

In this subsection, we describe reversal of an arc between a discrete and a deterministic variable. Consider 

the hybrid BN as shown on the left-hand side of Figure 17. Suppose that A = {a1, …, ak}. Let  and  

denote the potentials associated with A and X, respectively, before arc reversal, and  and  after arc 

reversal. Then, 
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Figure 17. Arc reversal between a discrete and a deterministic variable. 

 (u, v, ai) =  P(ai | u, v), 

 (v, w, x, ai,) =  (x  hi(v, w)), 

 (u, v, w, x) =  ( ) A(u, v, w, x) = {P(ai | u, v) (x  hi(v, w)) | i = 1, …, k}, 

 (u, v, w, x, ai) =  P(ai | u, v) (x  hi(v, w)) / {P(ai | u, v) (x  hi(v, w)) | i = 1, …, k}. 

The situation after arc reversal is shown on the right-hand side of Figure 17. Notice that after arc reversal, 

X has a weighted sum of Dirac delta functions. Since the variances of the conditional for X after arc 

reversal may not be zeros, X may not be deterministic after arc reversal. 

 For a concrete example, consider the simpler hybrid BN shown on the LHS of Figure 18. V has the 

uniform distribution on (0, 1). A has two states {a1, a2} with P(a1 | v) = 1 if 0 < v  0.5, and = 0 otherwise, 

and P(a2 | v) = 1  P(a1 | v). X is deterministic with equations X = V if A = a1, and X = V if A = a2. After 

arc reversal, the conditional distributions at A and X are as shown in the RHS of Figure 17 (these are 

special cases of the general formulae given in Figure 16). Let  denote the density potential at V. Then 

(v) = 1 if 0 < v < 1. We can find the marginal of X from the BN on the RHS of Figure 17 by reversing 

arc (V, X) as follows. 

 ( ) V(x) =  (v) P(a1 | v) (x  v) dv +  (v) P(a2 | v) (x + v) dv = 1 if 0 < x  0.5 or 1 < x < 0.5. 

Thus, the marginal distribution of X is uniform on the interval ( 1, 0.5) (0, 0.5). 

 

Figure 18. An example of arc reversal between a discrete and deterministic variable. 
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4 Partially Deterministic Distributions 

In this section, we describe a new kind of  conditional distribution called partially deterministic. Partially 

deterministic distributions arise in the process of arc reversals in hybrid BNs. 

 The conditional distributions associated with a deterministic variable have zero variances. If some of 

the conditional distributions have zero variances and some have positive variances, we say that the 

distribution is partially deterministic. 

 We get such distributions during the process of the arc reversals between a continuous node and a 

deterministic node with discrete and continuous parents. Consider the BN shown on the left-hand side of 

Figure 19. Let  and  denote the continuous potentials at X and Z, respectively, before arc reversal, and 

 and  after arc reversal. Then,  

 (x) =  f(x), 

 (x, y, z, a1) =  (z  x) = (x  z), 

 (x, y, z, a2) =  (z  y) = (y  z), 

 (y, z, a1) =  ( ) X(y, z, a1) =  f(x) (x  z) dx = f(z), 

 (y, z, a2) =  ( ) X(y, z, a2) = (y  z)  f(x) dx = (y  z), 

 (x, y, z, a1) =  ( ) ( ) X(x, y, z, a1) = f(x) (x  z) / f(z) = f(z) (x  z) / f(z) = (z  x), 

 (x, y, z, a2) =  ( ) ( ) X(x, y, z, a2) = f(x) (y  z) / (y  z) = f(x). 

Thus, after arc reversal, both X and Z have partially deterministic distributions. 

 

Figure 19. Arc reversal leading to partially deterministic distributions. 

 The significance of partially deterministic distributions is as follows. If we have a Bayesian network 

with all continuous variables such that each continuous variable is associated with a density potential, 

then we can propagate the density potentials similar to discrete potentials in a discrete Bayesian network. 

The only difference is that we use integration for marginalizing continuous variables (instead of 

summation for discrete variables). This assumes that the joint potential obtained by combining all density 
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potentials represents the joint density for all variables in the Bayesian network. However, if even a single 

variable has a deterministic or a partially deterministic conditional, then the joint potential (obtained by 

combining all conditionals associated with the variables) no longer represents the joint density as the joint 

density does not exist. Thus, one cannot assume that in a Bayesian network with no deterministic 

variables (as in the case of RHS of Figure 19), that the joint density exists for all continuous variables in 

the network. It is clear from the Bayesian network in the LHS of Figure 19, that the joint density for 

{X, Y, Z} (conditioned on the states of A) does not exist. And since the joint distributions of the two 

Bayesian networks are the same, the joint density for {X, Y, Z} does not exist also for the Bayesian 

network in the RHS of Figure 19. 

5 Conclusions and Summary 

We have described arc reversals in hybrid BNs with deterministic variables between all possible kinds of 

pairs of variables. In some cases, there is no closed form for the distributions after arc reversals. For 

example, if a deterministic variable has a function that is not differentiable, then we cannot describe the 

distributions after arc reversal in closed form. We do believe, however, that the framework described in 

Section 2 is sufficient to describe arc reversals in those cases where there is a closed form for the revised 

distributions. Also, we have described a new kind of conditional distribution called partially deterministic 

that can arise after arc reversals. 

 The arc-reversal theory facilitates the task of approximating general BNs with mixture of Gaussians 

BNs. Also, the arc-reversal theory is potentially useful in solving hybrid influence diagrams, i.e., 

influence diagrams with discrete, continuous, and deterministic chance variables. We conjecture that 

Olmsted’s arc-reversal algorithm for solving discrete influence diagrams would apply to hybrid influence 

diagrams also. The arc-reversal theory described here would make this possible. Of course, this is a topic 

that needs further investigation. 

References 

Cobb, B. R. and P. P. Shenoy (2005a), “Hybrid Bayesian networks with linear deterministic variables,” in 

F. Bacchus and T. Jaakkola (eds.), Uncertainty in Artificial Intelligence: Proceedings of the Twenty-

First Conference (UAI-05), 136 144, AUAI Press, Corvallis, OR. 



  25 

Cobb, B. R. and P. P. Shenoy (2005b), “Nonlinear deterministic relationships in Bayesian networks,” in 

Symbolic and Quantitative Approaches to Reasoning with Uncertainty (ECSQARU-05), L. Godo 

(ed.), Berlin, Springer-Verlag: 27–38. 

Cobb, B. R. and P. P. Shenoy (2006), “Operations for inference in continuous Bayesian networks with 

linear deterministic variables,” International Journal of Approximate Reasoning, 42(1 2), 21 36. 

Cobb, B. R., P. P. Shenoy, and R. Rumi (2006), “Approximating probability density functions in hybrid 

Bayesian networks with mixtures of truncated exponentials,” Statistics and Computing, 16(3): 

293 308. 

Dirac, P. A. M. (1927), “The physical interpretation of the quantum dynamics,” Proceedings of the Royal 

Society of London, series A, 113(765), 621–641. 

Dirac, P. A. M. (1958), The Principles of Quantum Mechanics, 4th ed., Oxford University Press, London. 

Hoskins, R. F. (1979), Generalised Functions, Ellis Horwood, Chichester. 

Kanwal, R. P. (1998), Generalized Functions: Theory and Technique, 2nd ed., Birkhäuser, Boston. 

Kenley, C. R. (1986), “Influence diagram models with continuous variables,” PhD dissertation, Dept. of 

Engineering-Economic Systems, Stanford University. 

Khuri, A. I. (2004), “Applications of Dirac’s delta function in statistics,” International Journal of 

Mathematical Education in Science and Technology, 32(2), 185–195. 

Kozlov, A. V. and D. Koller (1997), “Nonuniform dynamic discretization in hybrid networks,” in D. 

Geiger and P. P. Shenoy (eds.), Uncertainty in Artificial Intelligence: Proceedings of the Thirteenth 

Conference (UAI-97), 310–318, Morgan Kaufmann, San Francisco. 

Lauritzen, S. L. and F. Jensen (2001), “Stable local computation with conditional Gaussian distributions,” 

Statistics and Computing, 11, 191 203. 

Madsen, A. L. (2006), “Variations Over the Message Computation Algorithm of Lazy Propagation,” 

IEEE Transactions on Systems, Man, and Cybernetics, part B: Cybernetics, 36(3), 636–648. 

Madsen, A. L. (2008), “Solving CLQG Influence Diagrams Using Arc-Reversal Operations in a Strong 

Junction Tree,” in Proceedings of the 4th European Workshop on Probabilistic Graphical Models, 

201–208. 



  26 

Moral, S., R. Rumi, A. Salmeron (2001), “Mixtures of truncated exponentials in hybrid Bayesian 

networks,” in Symbolic and Quantitative Approaches to Reasoning under Uncertainty (ECSQARU-

2001), P. Besnard and S. Benferhat (eds.), Berlin, Springer-Verlag, 2143: 156–167. 

Olmsted, S. O. (1984), “On representing and solving decision problems,” PhD dissertation, Dept. of 

Engineering-Economic Systems, Stanford University. 

Poland III, W. B. (1994), “Decision analysis with continuous and discrete variables: A mixture 

distribution approach,” PhD dissertation, Dept. of Engineering-Economic Systems, Stanford 

University. 

Saichev, A. I. and W. A. Woyczy ski (1997), Distributions in the Physical and Engineering Sciences, 1, 

Birkhäuser, Boston. 

Shachter, R. D. (1986), “Evaluating influence diagrams,” Operations Research, 34, 871 882. 

Shachter, R. D. (1988), “Probabilistic inference and influence diagrams,” Operations Research, 36, 

589 604. 

Shachter, R. D. (1990), “An ordered examination of influence diagrams,” Networks, 20, 535 563. 

Shachter, R. D. and C. R. Kenley (1989), “Gaussian influence diagrams,” Management Science, 35(5), 

527 550. 

Shenoy, P. P. (2006), “Inference in hybrid Bayesian networks using mixture of Gaussians,” in R. Dechter 

and T. Richardson (eds.), Uncertainty in Artificial Intelligence: Proceedings of the Twenty-Second 

Conference (UAI-06), 428 436, AUAI Press, Corvallis, OR. 

Shenoy, P. P. and G. Shafer (1990), “Axioms for Probability and belief-function propagation,” in R. D. 

Shachter, T. S. Levitt, L. N. Kanal and J. F. Lemmer (eds.), Uncertainty in Artificial Intelligence 4, 

169 198, North-Holland, Amsterdam. 



  27 

Appendix: Properties of Dirac Delta Functions 

In this appendix, we describe some basic properties of Dirac delta functions [Dirac 1927, Dirac 1958, 

Hoskins 1979, Kanwal 1998, Saichev and Woyczynski 1997, Khuri 2004]. We attempt to justify most of 

the properties. These justifications should not be viewed as formal mathematical proofs, but rather as 

examples of the use of Dirac delta functions that lead to correct conclusions. 

(i) (Sampling) If f(x) is any function, f(x) (x) = f(0) (x). Thus, if f(x) is continuous in the 

neighborhood of 0, then  f(x) (x) dx = f(0)  (x) dx = f(0). The range of integration need not 

be from –  to , but can cover any domain containing 0. 

(ii) (Change of Origin) If f(x) is any function which is continuous in the neighborhood of a, then 

 f(x) (x – a) dx = f(a). 

(iii)  (x  h(u, v)) (y  g(v, w, x)) dx = (y  g(v, w, h(u, v))). This follows from property (ii) of 

Dirac delta functions. 

(iv) (Rescaling) If g(x) has real (non-complex) zeros at a1, …, an, and is differentiable at these 

points, and g (ai)  0 for i = 1, …, n, then (g(x)) = i (x – ai)/|g (ai)|. In particular, if g(x) 

has only one real zero at a0, and g (a0)  0, then (g(x)) = (x – a0)/|g (a0)|. 

(v) (ax) = (x)/|a| if a  0. (–x) = (x), i.e.,  is symmetric about 0. 

(vi) Suppose Y = g(X), where g is invertible and differentiable on X. Then (y) = (g(x)) = 

(x  a0) / |g (a0)|, where a0 = g 1(0). Also, (y  g(x)) = (g(x)  y) = 

(x  g 1(y)) / |(d/dx)(g(g 1(y)))| = (x  g 1(y)) / |dy/dx| = (x  g 1(y)) |dx/dy| 

= (x  g 1(y)) |(d/dy)(g 1(y))|. 

(vii) Consider the Heaviside function H(x) = 0 if x < 0, H(x) = 1 if x  0. Then, (x) can be 

regarded as the “generalized” derivative of H(x) with respect to x, i.e., (d/dx)H(x) = (x). H(x) 

can be regarded as the limit of certain differentiable functions (such as, e.g., the cumulative 

distribution functions (CDF) of the Gaussian random variable with mean 0 and variance 2 in 

the limit as   0). Then, the generalized derivative of H(x) is the limit of the derivative of 

these functions. 
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(viii) Suppose continuous variable X has probability density function (PDF) fX(x) and Y = g(X). 

Then Y has PDF fY(y) =  fX(x) (y  g(x)) dx. The function g does not have to be invertible. 

To show the validity of this formula, let FY(y) denote the cumulative distribution function of 

Y. Then, FY(y) = P(g(X)  y) =  fX(x) H(y  g(x)) dx, where H( ) is the Heaviside function 

defined in (vii). Then, fY(y) = (d/dy)(FY(y)) =  fX(x) (d/dy)(H(y  g(x))) dx = 

 fX(x) (y  g(x)) dx. 

(ix) Suppose continuous variable X has pdf fX(x) and Y = g(X), where g is invertible and 

differentiable on X. Then the pdf of Y is fY(y) =  fX(x) (y  g(x)) dx = 

|(d/dy)(g 1(y))|  fX(x) (x  g 1(y)) dx = |(d/dy)(g 1(y))| fX(g 1(y)). Also, 

fX(x) (y  g(x)) / (|(d/dy)(g 1(y))| fX(g 1(y))) = (x  g 1(y)). This is because if we consider 

the left-hand side as a function of x, say (x), it is equal to 0 if x  g 1(y), and  (x) dx = 1. 

Therefore, by definition, (x) = (x  g 1(y)). Finally, fX(x) (y  g(x)) = 

(|(d/dy)(g 1(y))| fX(g 1(y))) (x  g 1(y)). 

(x) The definition of  can be extended to Rn, the n-dimensional Euclidean space. Thus, if 

x  Rn, (x) = 0 if x  0, and …  (x) dx = 1, where dx = dx1…dxn. Thus, e.g., 

…  f(x) (x  x0) dx = f(x0). 

(xi) Suppose X1, …, Xn are continuous variables with joint PDF fX(x). Then, the deterministic 

variable Y = g(X1, …, Xn) has PDF fY(y) = …  fX(x) (y  g(x)) dx. The function g does not 

have to be invertible. 

(xii) Suppose X1, …, Xn are continuous variables with joint PDF fX(x). Then the joint PDF of 

deterministic variables Y = g(X1, …, Xn) and Z = h(X1, …, Xn) is given by 

fY,Z(y, z) = …  fX(x) (y  g(x)) (z  h(x)) dx. The functions g and h do not have to be 

invertible. 
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