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ABSTRACT: 

The flowering plant genus Chrysosplenium comprises approximately 57 species of 

herbaceous perennials.  These species are mainly distributed in the Northern 

Hemisphere where they occur in moist habitats.  Though the center of diversity, and 

presumed location of origin, for the genus is east temperate Asia, more recently 

radiating taxa have invaded the arctic of North America and Europe.  There are six 

species of Chrysosplenium in North America and four of them (i.e., C. iowense, C. 

tetrandrum, C. wrightii, and C. rosendahlii) belong to the section Alternifolia.  

Termed the Alternifolium group, this collection of species presents an excellent 

opportunity to study the evolution of variation in arctic and alpine environments.  

Similar to many arctic taxa, these species display very little morphologic or genetic 

variation, but they exhibit diversity in chromosome number, breeding system, 

geographic distribution, and ecology.  Though the Alternifolium group has been the 

subject of numerous taxonomic studies, no thorough investigation of its evolutionary 

history has been conducted.  This study used a combination of genetic and phenotypic 

data (e.g., DNA sequence, Inter-Simple Sequence Repeat, morphology) to determine 

the patterns of variation present within the Alternifolium group and then used these 

patterns to infer historical processes that might have contributed to them.  Through 

the course of the study, however, it also became necessary to investigate the 

applicability of genetic estimates derived from different molecular markers and 

statistical methods.  Appropriate comparisons among genetic estimates are critical to 

accurately interpret results and generate new predictions. 
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CHAPTER ONE:  

INTRODUCTION 

 

From the time of its inception, the field of evolutionary biology has ascribed special 

importance to the study of so-called “natural laboratories”, particularly as they are 

manifest in the environments of oceanic islands (Darwin, 1859; Wallace, 1881; 

MacArthur & Wilson, 1967).  This focus is predicated on the existence of a suite of 

common insular characteristics (e.g., discreteness and isolation, small size, ecological 

diversity, and dynamic geologic history), which simultaneously render a biological 

system unique while also capable of providing insight into the formulation of 

complex and broadly applied evolutionary theory (MacArthur & Wilson, 1967; 

Emerson, 2002).  It is largely this capability, conjoined with an undoubted affinity of 

biologists for the exotic and generally equatorial, that explains why so many of the 

venerable works of evolutionary biology concern the diversification of island lineages 

(e.g., finches, Darwin, 1859; Anolis lizards, Losos et al., 1998; Hawaiian 

silverswords, Baldwin et al., 1991).  However, islands or island-like features are not 

restricted to the world’s oceans, but exist even within the continental expanse in the 

form of caves, gallery forests, tide pools, and arctic and alpine tundra (MacArthur & 

Wilson, 1967).  The Arctic, in particular, presents an intriguing opportunity for 

evolutionary research, as the region exhibits many of the attributes that make oceanic 

islands amenable to such investigations, while maintaining a markedly distinct 

taxonomic, climatic, and geological character (Yurtsev, 1994).  Certainly, the history 
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of the arctic biota is a global history amplified, as its patterns of variation bear, with 

unmatched fidelity, the marks of upheaval inflicted by a geological and climatic 

revolution that even the founders of evolutionary thought considered to be of rare 

importance (Darwin, 1859; Wallace, 1881).  Today, the arctic biota comprises a 

patchwork of individual lineages, each having evolved through the forceful coaction 

of historical, stochastic (e.g., genetic drift), and deterministic (e.g., natural selection) 

processes (Weider & Hobæk, 2000).  It is in regard to the interplay of these processes 

that the role of the arctic as a “natural laboratory” is most powerfully applied, as it 

offers a prospective understanding of the individual and collective influence of 

evolutionary mechanisms operating therein (U.S. Polar Research Board, 1998; 

Weider & Hobæk, 2000).  However, despite all prospects, the arctic biota remains 

relatively unknown with regard to the nature of both evolutionary pattern and process 

(Murray, 1987; Steltzer et al., 2008).  The following studies represent an effort to 

delineate patterns of genetic and morphologic variation within a group of closely 

related arctic and boreal plant species, as well as determine the behavior of molecular 

and analytical methods that might best be applied in the pursuit of such delineation.  

Perhaps, with the future proliferation of similar studies, biologists might more 

extensively exploit the impressive research potential of the arctic biota. 

 

The Arctic and its flora 

 

The Arctic 
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Any discussion of evolution in the arctic flora must begin with a definition of that 

region, especially considering with what difficulty a precise and universally accepted 

circumscription has faced in the past.  The Arctic is a region vast in both size (~2 300 

000 sq. mi.) and complexity, however, delimitation of its boundaries is often made in 

the most simplistic terms (Polunin, 1951; Downes, 1965).  The common biological 

definition of the Arctic, which is by no means wholly uninformative, assigns to it all 

the treeless area beyond the climatic timberline (Billings & Mooney, 1968; Murray, 

1987).  Though this definition is operational and has been employed throughout most 

studies of arctic plants, more detailed descriptions have been proposed (e.g., Polunin, 

1951; Elvebakk et al., 1999).  The more contemporary of these definitions (i.e., 

Elvebakk et al., 1999) equates the Arctic to the Arctic Bioclimatic Zone, which is 

characterized by both arctic tundra vegetation and an arctic climate.  In contrast, 

Polunin’s (1951) description 

 

…I have come to accept as truly arctic only certain areas of land, fresh water, 

and adjacent sea.  These are in general those that lie north of whichever of the 

following is situated farthest north in each sector of the northern hemisphere: 

(1) a line 80 km. (50 miles) north of the northern limit of coniferous forest or 

at least more or less continuous taiga, i.e. terrain with sparsely scattered 

trees; (2) north of the present-day northern limit of at least 

microphanerophytic growth (i.e., of trees 2-8 m. in height but excluding 

straggling bushes in unusually favourable situations), the northern extremities 

of tongues or outliers separated by not more than fifteen degrees of longitude 
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being united across; or (3) north of the northern Nordenskiöld line, which is 

determined by the formula V =9 – 0.1K, where V is the mean of the warmest 

month and K is the mean of the coldest month, both in degrees Centigrade. 

 

places less emphasis on plant community composition.  Both authors, however, 

provide a more nuanced view of arctic boundaries than is traditionally available, 

offering an important basis for the consideration of ecological variation within the 

Arctic. 

 

A popular depiction of the Arctic is that of an area that is uniformly cold and 

desertic (Polunin, 1951).  While true that the Arctic is primarily a peripheral 

environment with very little biologically usable heat and low levels of precipitation 

(additional attributes include: short growing season, strong wind, long photoperiod, 

low light intensity, and low nitrogen supply), such generalizations cannot fully or 

accurately represent this ecologically complex region (Billings & Mooney, 1968; 

Savile, 1972; Murray, 1987).  In fact, efforts to reflect even large-scale differences in 

arctic ecology have produced up to five subdivisions of this biome (Elvebakk et al., 

1999).  Though these subdivisions are primarily defined by plant community 

composition, their differentiation is ultimately the result of variation in physiographic 

conditions, which influence species’ distributions (Hansell et al., 1998).  This 

variation is spatially and temporally structured with factors such as periglacial (e.g. 

formation of ice mounds and frost blisters) and thermokarst (e.g., formation of thaw 

lakes and sinkholes) processes effecting changes in local and regional topography, 
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temperature, moisture, etc. (Murray, 1987; Trenhaile, 2004).  Recognition of arctic 

habitat diversity is a critical component for understanding adaptive evolution and 

phytogeography in arctic plant species. 

 

The arctic flora 

 

An arctic plant species is typically and simply defined as one that has the main part of 

its range in the Arctic (Polunin, 1951).  However, what distinguishes these species 

from all but their alpine relatives is the ability to metabolize, grow, and reproduce at 

low temperatures (Billings & Mooney, 1968).  Few vascular plants have this 

capability, and its rarity is signified by the relatively small size (~1500 species) of the 

Arctic Flora (Murray, 1995).  In contrast, the much smaller Cape Floristic Region 

(~88 000 sq. km.) is home to over 9000 species (Cowling & Heijnis, 2001; Goldblatt 

& Manning, 2002).  Modest as it is, consideration of the Arctic as a floristic region, 

by some (Yurtsev, 1994) emphasizes the unique taxonomic, ecological, and genetic 

qualities of the flora. 

 

As previously alluded to, the arctic flora displays an unusual taxonomic structure 

that has been artfully described by one author (Savile, 1972) as “a depauperate 

miscellany”.  Indeed, the arctic flora consists of relatively few endemic genera and in 

most cases, a small number of arctic species per genus or family are observed 

(Yurtsev, 1994).  Though there are a number of endemic arctic species (> 10% of all 
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arctic species), many more can be described as having arctic-alpine or largely boreal 

distributions (Bliss, 1971).  Consideration of the taxonomic distribution of arctic 

species within prominent arctic genera, such as Carex or Saxifraga, suggests that the 

flora was formed by repeated invasions from multiple geographic origins, rather than 

any in situ radiation of taxa (Savile, 1972).   

 

The perceived lack of diversity in the arctic flora is, perhaps, its most well known 

feature (Willig et al., 2003; Grundt et al., 2006).  This condition has long been 

attributed to aspects of arctic plant biology and environmental history (Steltzer et al., 

2008).  Specifically, substantial range reductions, experienced during periods of 

Pleistocene glaciation, are thought to have reduced variation in arctic species, while 

self-pollination and clonality, modes of reproduction believed common in the arctic, 

combine with severe selection regimes to maintain variation at low levels (Billings & 

Mooney, 1968; Murray, 1987; Hewitt 1996; Pamilo & Savolainen, 1999; Abbott et al. 

2000).  The issue with this entire perception is that is it is based on a number of 

questionable assumptions regarding the arctic flora and its history.  Of these 

assumptions, the following refutations or critiques may be offered: it is well 

established that glacial action was also capable of increasing levels of intra- and inter-

specific variation (Abbott et al., 2000; Alsos et al., 2005; Marr et al., 2008); the 

prominence of inbreeding and asexuality in arctic plants has never been broadly or 

intensively tested and is beginning to prove less frequent than thought (Murray, 1987; 

Gabrielsen & Brochmann, 1998; Steltzer et al., 2008); and, the arctic is a complex 
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environment for which it would be ill-informed to envision a uniform direction and 

strength of selection (Murray 1987; Hansell et al., 1998).  However, beyond the 

problems with its theoretical underpinnings, the view that the arctic flora is wholly 

depauperate has been repeatedly contradicted by empirical study.  This includes 

demonstrations of high polyploid frequency (Packer, 1969; Brochmann et al. 2004), 

high genetic diversity (Bauert, 1996; Gabrielsen & Brochmann, 1998; Abbott & 

Brochmann, 2003), and prolific cryptic species formation in arctic taxa (Grundt et al., 

2006).  The continued discovery of novel variation within and among arctic plant 

species not only revises our view of this flora but also offers biologists intriguing new 

insights into its evolutionary history.  

 

The history of the Arctic and evolution of the arctic flora 

 

If glacial epochs in temperate lands and mild climates near the poles have, as now 

believed by men of eminence, occurred several times over the past history of the 

earth, the effects of such great and repeated changes, both on the migration, 

modification, and extinction of species, must have been of overwhelming 

importanceof more importance, perhaps, than even the geological changes of sea 

and land.  (Wallace, 1881) 

 

  The glacial periods and their climatic consequences have apparently played the most  

prominent part in the development of present arctic and boreal biota, and unless 

these features are studied in parallel to the variation and present area of different 
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species the problems of their origin and evolution will remain unsolved. (Hultén, 

1937). 

 

The importance of the climatic and geologic history of the Arctic cannot be 

understated with regard to the evolution of the arctic flora.  For, it is surely a biota 

that was forged in the freezing crucible of a rapidly changing planet.  The history of 

the modern Arctic begins in the middle Miocene (~15 mya); prior to this, northern 

polar-regions supported a vast, continuous boreal forest that extended across the 

Bering Land Bridge to cover both North America and Asia (Bliss, 1971; Savile, 1972; 

Murray, 1995).  However, at that time a global cooling trend, which continued into 

the Pleistocene, was re-established and thermophilic taxa began to recede from high 

latitude environments (Tiffney & Manchester, 2001).  Contemporaneous orogenic 

processes, which gave rise to the North American Cordillera, the Alps, and other 

mountain ranges, provided routes of migration for alpine plant species to move into 

the newly transformed arctic environments (Savile, 1972; Murray, 1995).  These 

alpine migrants, along with a few cold-tolerant boreal species, formed the precursors 

of the arctic flora and established the first tundra-dominated plant communities 

(Savile, 1972).  Though, the circumpolar tundra belt did not exist until the late 

Pliocene (~3 mya; Bliss, 1971; Murray, 1995). 

 

The Pleistocene (1.8 – 0.01 mya) was a formative event in the history of global 

plant diversity.  Significant changes in climate throughout this period resulted in the 

large-scale redistribution of species and strongly influenced evolutionary process 
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(Hewitt 1996).  Climate change was experienced most severely at the polar-regions, 

where species redistribution was additionally compelled by the movements of 

massive continental ice sheets (Pielou, 1991).  Four major glacial stages mark the 

Pleistocene, each followed by a warmer inter-glacial period.  The most recent of these 

glacial stages, referred to in North America as the Wisconsin, reached its maximum 

approximately 18 000 years ago (Pielou, 1991).  At that time, ice covered much of 

what are now Canada and the northern portion of the United States, and plant 

populations were forced to persist in ice-free areas, mostly located beyond the glacial 

margins (Dahl, 1946; Abbott & Brochmann, 2003).  These ice-free areas are more 

commonly known as glacial refugia and can be classified into two types: open and 

closed (Lindroth, 1969).  The open refugium was located south of the continental ice 

sheets and included the large ‘southern’ North American refugium described by 

Darwin (1859).  This area harbored huge numbers of species and served as a major 

source for the recolonization of previously glaciated landscapes.  Closed refugia were 

located within the margins of the continental glaciers and were either completely or 

partially surrounded by ice (Lindroth, 1969).  These included the areas referred to as 

‘Nunataks’ (Blytt, 1876), or mountain top refugia, and coastal refugia (Hultén, 1937; 

Dahl, 1946; Heusser, 1960).  Perhaps the most important example of a closed 

refugium is Beringia (Hultén, 1937), the region that includes modern day Alaska, 

much of the Yukon Territory, and northeastern Asia.  Beringia is known to have 

remained ice-free throughout the Pleistocene and to have harbored a great number of 

arctic and boreal plant species (Colinvaux, 1967; Hopkins, 1967; Abbott & 



 7 

Brochmann, 2003).  The exchange of arctic species between Asia and North America 

through this region was an important factor in the development of the arctic flora 

(Murray 1987).  Additional examples of North American closed refugia include 

southwestern Kodiak Island (Karlstrom, 1969), the Driftless Area (Baker et al., 1980; 

Pusateri et al., 1993), and ‘Nunatak’ refugia in the southern Canadian Rockies 

(Packer & Vitt, 1974; Loehr et al., 2005; Marr et al., 2008).  In the past it was often 

difficult or impossible to identify the specific refugia that harbored a given species 

(Abbott & Brochmann, 2003).  Today, hypotheses concerning the location of refugia 

and their putative roles in post-glacial recolonization are tested using patterns of 

genetic variation.  These studies serve to reinforce the understanding of the 

Pleistocene as a period fundamental to the evolution of arctic plants. 

 

Taxon 

 

Saxifragales 

 

Saxifragales is a distinctive angiosperm order, consisting of approximately 2470 

species (Jian et al., 2008).  It is confidently placed within the Eudicot clade, though 

its relationship to other Eudicot lineages is largely unresolved (Soltis et al., 2005).  

The latest circumscription of the order (The Angiosperm Phylogeny Group II, 2003) 

ascribes to it 12 families (Altingiaceae, Cercidiphyllaceae, Crassulaceae, 

Daphniphyllaceae, Grossulariaceae, Haloragaceae, Hamamelidaceae, Iteaceae, 
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Paeoniaceae, Peridiscaceae, Pterostemonaceae, and Saxifragaceae), and though this 

composition has been described as surprising, it is well supported by molecular 

phylogenetic analyses (Chase et al., 1993; Soltis et al., 1997a, 1998, 2000; Soltis & 

Soltis, 1997; Hoot et al., 1999).  Despite the success at broad circumscription and 

extensive genetic sampling efforts, relationships within the Saxifragales remain 

difficult to ascertain (Jian et al., 2008).  This condition is primarily attributed to the 

ancient (100-120 mya) but rapid radiation of the order, which may also account for its 

impressive level of morphological diversity (Magallón et al., 1999; Soltis et al., 2005; 

Jian et al., 2008).  Only two groups, commonly resolved as sister taxa, are 

consistently supported by molecular phylogenetic analyses; the Saxifragaceae alliance 

(i.e. Saxifragaceae sensu stricto, Grossulariaceae, Iteaceae, and Pterostemon) and the 

Crassulaceae + Haloragaceae alliance (Fishbein & Soltis, 2004; Soltis et al., 2005; 

Jian et al., 2008).  Phylogenetic analyses conducted within the last year using nearly 

51 000 bp of DNA sequence data failed to improve resolution within the Saxifragales 

(Jian et al., 2008). 

 

Saxifragaceae sensu stricto includes approximately 30 genera of herbaceous 

perennials (Soltis et al., 2001).  The narrow circumscription of the family, supported 

by phylogenetic analyses (Chase et al., 1993; Morgan & Soltis, 1993; Soltis & Soltis, 

1997) and phenotypic characters (e.g., iridioid chemistry, embryology, and serology), 

follows the taxonomic treatments of Takhtajan (1987) and Thorne (1992).   The 

largest genera include Saxifraga (300 spp.), Chrysosplenium (~57 spp.), and 
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Heuchera (~50 spp.; Judd et al., 2002).  This is primarily a northern hemisphere 

family; centers of diversity include western North America as well as alpine regions 

of Europe and Asia (Soltis et al., 2001).  The recent and rapid radiation of the family 

appears to have resulted in a high degree of morphological similarity among the 

genera, which, in turn, has led to difficulty in resolving evolutionary relationships 

(Judd et al., 2002).  The nature of these origins has also been implicated in the 

widespread hybridization known from some Saxifragaceous genera, which may also 

complicate phylogenetic investigation (Soltis et al., 2001).  Analyses of DNA 

sequence data (cpDNA: matK, rbcL, trnL-trnF, and psbA-trnH; rDNA: ITS and 26S) 

have helped greatly in understanding many of the relationships within the family, 

especially those at the deeper-level (Soltis et al., 2001).  

 

The genus Chrysosplenium L. comprises ~ 57 herbaceous perennial species, 

which are native to moist habitats (Hara, 1957).  The genus is a member of the well-

supported Heucheroid clade (Soltis et al., 2001) and has typically been placed as 

sister to Peltoboykinia (Johnson & Soltis, 1994, 1995; Soltis et al., 1993, 1996, 2001).  

Chrysosplenium is distinguished from other Saxifragaceae by their tetramerous, 

apetalous flowers (pentamery is the inferred ancestral state for the family; Ronse 

Decraene et al., 1998), flavonoid chemistry (Collins et al., 1975; Bohm et al., 1977; 

Bohm & Wilkins, 1978), and DNA sequence characters (Nakazawa et al., 1997; 

Soltis et al., 2001). In addition, members of Chrysosplenium utilize a rare (also found 

in Mitella as well as other genera outside of Saxifragaceae) seed dispersal mechanism 
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that is effected when raindrops strike the dehisced fruit (‘splash cup’) containing the 

seed and ejects the seeds up to a meter from the parent plant (Savile, 1953; Nakanishi, 

2002).  The genus is broadly distributed throughout arctic, alpine, and boreal 

environments of the northern hemisphere; two Chilean endemics represent the only 

species to occur in the Southern Hemisphere (Hara, 1957).  Hara (1957) suggested 

that the region of origin for the genus was South America, but evidence from 

molecular phylogenetic analyses (Soltis et al., 2001), as well as consideration of rust 

parasite evolution (Savile, 1975) point to eastern temperate Asia.  The genus has been 

subdivided into two sections (i.e., Alternifolia and Oppositifolia; Franchet, 1890) 

based on phyllotaxis.  Monophyly of the sections is supported by DNA sequence data 

(Nakazawa et al., 1997; Soltis et al., 2001) and flavonoid chemistry (Bohm & Collins, 

1979).  The first large-scale molecular phylogenetic investigation of the genus was 

conducted by Nakazawa et al. (1997) and used the cpDNA regions matK and rbcL to 

determine relationships among the 16 Japanese species.  That study supported the 

monophyly of the genus as its sections.  More recently, Soltis et al. (2001) employed 

cpDNA matK sequence data for an expanded data set comprising 29 members of the 

genus.  That study resolved a number of deeper-level relationships and provided a 

framework for testing a number of theories regarding character evolution and 

biogeography.  Despite these positive attributes, the utility of the Soltis et al. (2001) 

phylogeny is limited, especially with regard to species-level relationships, by 

incomplete taxon sampling and low resolution.  This is particularly true of the North 

American, alternate-leaved species, forming what will hereafter be referred to as the 
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Alternifolium group, for which their relationships among each other as well as to the 

rest of the genus were left largely unresolved. 

 

The Alternifolium group comprises four species (C. wrightii Franch. & Savigny, 

C. iowense Rydb., C. tetrandrum (Lund ex Malmgr.) Th. Fr., and C. rosendahlii 

Packer) that occur in arctic, alpine, and boreal environments in North America, as 

well as in Europe and Asia (Packer, 1963).  With the exception of C. wrightii, the 

group exhibits very little morphological diversity and members are similar in 

appearance to the Old World species, C. alternifolium.  This condition has resulted in 

some taxonomic controversy, each member of the Alternifolium group having been 

included in C. alternifolium by some authors at the ranks of subspecies and variety, 

resulting in great fluctuations in the range of the latter (Rose, 1897; Gray, 1950; 

Packer, 1963).  Despite the close morphological similarity, the group displays 

considerable variation in chromosome number (C. iowense, 2n = c. 120; C. 

tetrandrum, 2n = 24; C. wrightii, 2n = 24; C. rosendahlii, 2n = 96) and geographic 

distribution (Packer, 1963).  There also appears to be some variation in breeding 

system; C. iowense exhibits a mixed mating system and C. tetrandrum is an obligate 

selfer (Warming, 1909; Packer, 1963; Weber, 1979).  Though their North American 

ranges vary greatly in size and location, each has clearly been influenced by 

Pleistocene glaciation, as evidenced by a number of distributional disjunctions 

(Packer, 1963).  The most striking of these disjunctions are exhibited by C. 

tetrandrum and C. iowense.  A few populations of Chrysosplenium tetrandrum occur 
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in the Rocky Mountains of Colorado, Montana, and Idaho, isolated from the species’ 

main circumpolar distribution (Packer, 1963; Weber, 2003).  Chrysosplenium iowense 

is primarily distributed in the southern Canadian boreal forest, however, isolated 

populations persist in the Driftless Area of northeastern Iowa and southeastern 

Minnesota, where they are strongly associated with ice caves (Weber, 1979).  Though 

this group presents great potential for comparative investigations into ice age 

influences on patterns of intra-specific genetic variation, only one previous molecular 

study has been conducted on any species of the Alternifolium group and that was 

quite limited in both its scope and results (Schwartz, 1985).   

 

Molecular and analytical methods 

 

Heritable variation is an integral component of Darwinian evolution and assessing 

levels of this variation is, quite naturally, critical to evolutionary study (Darwin, 

1859; Wright, 1931).  Despite Darwin’s early recognition of their importance, such 

assessments only became possible, almost half a century after the publication of The 

Origin of Species (Darwin, 1859), with the rediscovery of Mendelian genetics 

(Wright, 1931).  For the next 60 years, genetic variation was estimated via analyses of 

phenotypic trait differences in populations.  However, this method was not readily 

informative for genetic investigation, as accurate results required the following 

conditions:  
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(1) Phenotypic differences caused by allelic substitution at single loci must be 

detectable in single individuals.  (2) Allelic substitutions at one locus must be 

distinguishable from substitutions at other loci.  (3) A substantial portion of 

(ideally, all) allelic substitutions must be distinguishable from each other.  (4) 

Loci studied must be an unbiased sample of the genome with respect to 

physiological effects and degree of variation.  (Hubby & Lewontin, 1966). 

 

The situation was greatly improved with the advent of enzyme electrophoresis and the 

birth of molecular genetics (Hunter & Markert, 1957; Harris, 1966; Hubby & 

Lewontin, 1966; Lewontin & Hubby, 1966; Stebbins, 1989).  By visualizing protein 

variation, for the first time researchers were able to assess directly allele frequencies 

at a given locus.  The continued development of molecular approaches has produced 

various DNA-based methods, each with certain advantages and disadvantages.  

Today, a major division of these methods concerns the information content of the data 

(i.e., dominant versus codominant) that each type of approach produces.  The 

differences require important analytical considerations and at present it is not well 

understood how analogous estimates of gene-statistics derived from each of these 

method types might compare (Nybom & Bartish, 2000).  This is problematic, as it is 

often desirable to apply knowledge gained in one study to the interpretation of results 

in another.  Without a proper comparative context, vast reserves of information 

regarding genetic patterns and evolutionary process may become useless.   

 

Codominant markers 
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The use of codominant molecular markers (i.e., marker that allows discrimination of 

heterozygotes) began with the development of enzyme electrophoresis in the 1960s 

(Lewontin and Hubby, 1966; Hubby & Lewontin, 1966).  Since that time, allozyme 

variation has been studied in a number of plant species and the method is still applied, 

in some circumstances to great effect (e.g., Crawford et al., 2005; Crawford et al., 

2006; Grundmann et al., 2007).  The nature of their appeal is that enzyme studies are 

relatively inexpensive and allow a direct estimation of allele frequencies in 

populations (Clegg, 1989).  The latter point is critical, as a direct observation allows 

more accurate calculation of genetic statistics (e.g., FST, FIS, GST, HS, HT; Wright, 

1943; Nei, 1973) and thus, a more informed consideration of evolutionary process.  

Recently, a DNA-based codominant marker, known as a microsatellite, has become 

popular (Powell et al., 1996; Varshney et al., 2005).  This marker is able to overcome 

some of the traditional shortfalls of allozymes, including lack of variation and 

sampling bias, which were largely attributable to the inherent methodological 

requirements of allozyme loci (i.e., coding regions; Clegg, 1989; Hamrick & Godt, 

1989; Wendel & Weeden, 1989).  Codominant markers remain the preferred choice 

for most analyses of genetic variation due to the availability of analytical options.  As 

microsatellites become easier to develop, they are beginning to displace the subject of 

the next section, the dominant marker. 

 

Dominant markers 
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Arbitrarily amplified DNA (AAD) methods (e.g., AFLP, inter-simple sequence 

repeat, randomly amplified polymorphic DNA), to which they are sometimes 

referred, are hyper-variable PCR-based methods that produce dominant data (i.e., 

type of data that does not allow discrimination of heterozygote from dominant 

homozygote; Wolfe & Liston, 1998).  These data are produced in the form of band 

presences or absences, which represent the presence or absence of a single ‘dominant 

allele’ at an anonymously amplified ‘locus’ (Nybom & Bartish, 2000).  Because these 

methods are generally incapable of determining ‘allele’ number at each ‘locus’, one 

cannot determine whether a band phenotype represents a heterozygote or a dominant 

homozygote (Nybom & Bartish, 2000).  Advantages of these methods include: the 

capability to produce large data sets, low expense for development and use, and 

significant levels of variation (Huang & Sun, 2000; Archibald et al., 2006).  However, 

because allele frequencies cannot be directly determined from dominant data, 

analytical approaches have proven challenging (Meudt & Clarke, 2007).  In recent 

years, probabilistic statistical approaches have been developed to infer allele 

frequencies from these data sets based on band frequencies (Zhivotovsky, 1999; 

Holsinger et al., 2002; Vekemans, 2002).  From these inferences it becomes possible 

to calculate analogues of the traditional genetic statistics used for codominant 

markers (Holsinger et al., 2002).  Given their ability to overcome some of the 

disadvantages of dominant data, these methods have become widely used.  However, 

we do not yet understand how statistical estimates derived from different marker 
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and/or analytical types differ.  Once such an understanding can be reached, we can 

reduce the limitations on the application of knowledge, utilizing the full collection of 

the past. 
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CHAPTER TWO: 

PHYLOGENY OF CHRYSOSPLENIUM (SAXIFRAGACEAE) BASED 
ON NUCLEAR AND CHLOROPLAST DNA SEQUENCE DATA 
 

Abstract 

 

Chrysosplenium is a genus of approximately 57 perennial herbaceous species.  These 

species are distributed primarily in arctic, alpine, and boreal environments throughout 

the Northern Hemisphere.  Members of the genus are readily distinguished from other 

Saxifragaceae by their tetramerous, apetalous flowers, however morphological and 

genetic variation within the genus is low and many species relationships remain 

unresolved.  The alternate-leaved species that occur in North America (C. iowense, C. 

tetrandrum, C. wrightii, and C. rosendahlii) represent one group within 

Chrysosplenium that is relatively unknown phylogenetically, though it exhibits 

striking patterns of variation in chromosome number and biogeographic distribution.  

Parsimony and likelihood analyses of a combined data set of chloroplast and nuclear 

DNA sequences provide the first intensive investigation of relationships within the 

group and place it, with strong support, as sister to C. japonicum.  Most relationships 

within the group were poorly supported or unresolved.  A multivariate statistical 

approach to analyzing data from five morphological characters is able to distinguish 

clearly among the three species for which taxonomic identification can be difficult.  
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Introduction 

 

The genus Chrysosplenium L. (Saxifragaceae) comprises approximately 57 species of 

herbaceous perennials that are native to moist habitats (Hara, 1957).  These species 

are distinguished from other Saxifragaceae by their tetramerous, apetalous flowers 

(pentamery is considered ancestral in the Saxifragaceae; Ronse Decraene et al., 1998) 

and their flavonoid chemistry (Bohm & Collins, 1979).  Representatives of the genus 

are found in arctic, alpine, and boreal environments throughout the Northern 

Hemisphere.  Only two species, C. valdivicum Hook. and C. macranthum Hook., 

occur in the Southern Hemisphere, and these are native to extreme southern Chile 

(Hara, 1957).  Hara (1957) suggested that the Chilean range represented the 

geographic origin for the genus, however, species diversity, patterns of rust-parasite 

evolution, and phylogeny-based biogeographic analyses strongly support east 

temperate Asia in this role (Savile, 1975; Soltis et al., 2001).   

 

Aside from leaf arrangement, which was used by Franchet (1890) to subdivide 

the genus into two sections (Alternifolia and Oppositifolia), the high level of 

morphological similarity within Chrysosplenium has made determining relationships 

among taxa difficult.  Nakazawa et al. (1997) were the first to employ a DNA 

sequencing approach to a phylogenetic study within Chrysosplenium.  Using the 

chloroplast genes rbcL and matK, they were able to confirm the monophyly of 

Chrysosplenium as well as begin to determine relationships among Japanese members 
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of the genus.  That study was followed by a genus-wide phylogeny produced by 

Soltis et al. (2001).  Again using matK, the study included 29 species, sampled from 

across the generic distribution.  Soltis et al. (2001) also showed strong support for the 

monophyly of Chrysosplenium as well as for section Oppositifolia.  Though the Soltis 

et al. (2001) phylogenetic analysis was successful in resolving deeper-level 

relationships within the genus and testing theories of character evolution and 

biogeography, its utility is limited by incomplete taxon sampling and low resolution.  

This is especially the case for the North American alternate-leave species of the 

genus, which form what I will refer to as the Alternifolium group. 

 

The Alternifolium group consists of four species (i.e., C. wrightii Franch. & 

Savigny, C. iowense Rydb., C. tetrandrum (Lund ex Malmgr.) Th. Fr., and C. 

rosendahlii Packer) that occur in arctic, alpine, and boreal environments in North 

America as well as in Europe and Asia (Packer, 1963).  Aside from C. wrightii, the 

species are morphologically very similar to each other as well as to C. alternifolium, 

an Old World species (Packer, 1963).  The lack of distinguishing morphological 

characters, despite impressive variation in chromosome number, has caused multiple 

revisions to the taxonomic status of each of these species, particularly with respect to 

C. alternifolium (Gray, 1950; Packer, 1963).  Stamen number is the primary 

morphological character for differentiating among the Alternifolium group species, 

and while seed size and flower shape measurements provide some information, 

variation in these traits results in overlapping value ranges (Packer, 1963).  Soltis et 
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al. (2001) only sampled two species, C. iowense and C. tetrandrum, from the 

Alternifolium group, for which a sister-species relationship was only very weakly 

supported.  Considering the relative attention that has been paid to this group of 

species in the taxonomic literature (e.g., Rose, 1897; Simmons, 1906; 1913; Hara, 

1957; Hultén, 1960; Packer, 1963) it would be of interest to apply a molecular 

phylogenetic approach to test hypotheses of relationships within the Alternifolium 

group, as well as between it and the rest of the genus.  We used DNA sequence data 

from four gene regions (one rDNA, three cpDNA) to address the following questions: 

(1) does the addition of the nuclear ribosomal region increase support for tip groups 

within the genus; (2) what is the position of the Alternifolium group within 

Chrysosplenium; and (3) what are the species-level relationships within the 

Alternifolium group.  In addition, we use a multivariate statistical approach (i.e., 

Principal Components Analysis) of quantitative taxonomic characters to determine if 

a combined analysis of these data might better differentiate C. iowense, C. 

tetrandrum, and C. rosendahlii. 

 

Materials and methods 

 

Phylogenetic taxon sampling 

 

We sampled 34 individual accessions (Table 2.1) representing 21 ingroup taxa and 3 

outgroup taxa.  With a main goal of understanding relationships among members of 
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the Alternifolium group, sampling was concentrated on those species (i.e., C. 

iowense, C. tetrandrum, C. wrightii, and C. rosendahlii) and each is represented by 

three or four individuals.  Plant material was obtained from natural populations or 

herbarium specimens.  The non-Alternifolium group samples (except Mitella spp.) are 

the same as those used in Nakazawa et al. (1997) and Soltis et al. (2001).  Sequences 

for the matK gene were obtained from GenBank (AB003044-AB003060). 

 

DNA extraction and sequencing 

 

Total DNA was extracted either using DNeasy Plant Mini Kits (Qiagen, Valenci, CA) 

or a CTAB protocol (see Nakazawa et al., 1997; Soltis et al., 2001).  Two chloroplast 

loci (trnL-F spacer and rpL16) and nuclear ribosomal ITS (including 5.8s) were PCR 

amplified.  PCR primers used for the trnL-F spacer were “C” and “F” (Taberlet et al., 

1991), for rpL16 they were F71 and REx2 (Shaw et al., 2005), and were NNC-18S10 

and C26A for ITS (Wen & Zimmer, 1996).  PCR reactions included 1X Biomix 

(Midwest Scientific, St. Louis, Missouri) and 0.64 µM forward and reverse primer.  

In ITS amplifications, 0.5% dimethylsulfoxide was included to reduce secondary 

structure.  PCR amplifications were carried out under the following conditions: 2 min 

at 95°C; 30 cycles of 45 s at 95°C, 45 s at 48° C, and 4 min at 72°C; and a final 

extension of 10 min at 72°C.  PCR products were purified and sequenced by 

Macrogen Inc. (Seoul, Korea).  The internal primers, ITS-1 and ITS-4 (White et al., 

1990), were used for sequencing of ITS. 
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Phylogenetic analyses 

 

DNA sequence alignment was accomplished by eye using Se-Al version 1.0 

(Rambaut, 1996); insertion/deletion events were subsequently scored using the 

complex gap coding option in the program SEQSTATE (Müller, 2005).  Parsimony 

analyses were conducted in PAUP* (Swofford, 1998) with all characters equally 

weighted.  Analyses were first performed on individual combined DNA sequence and 

gap character data sets.  Comparison of the resulting topologies revealed no instances 

of well-supported topological differences.  All data were combined into a single data 

matrix for subsequent analyses.  Initial searches were conducted using 1000 replicates 

of RANDOM taxon addition and NNI branch swapping.  Each set of shortest trees 

from these initial searches was used for subsequent analyses employing TBR branch 

swapping.  Relative support for the recovered clades was assessed using jackknife 

analyses with 1,000 replicates, 37% deletion, TBR branch swapping and the “emulate 

Jac” command. 

 

MODELTEST 3.6 (Posada & Crandall, 1998) was used to determine the appropriate 

model for the DNA sequence data set.  Maximum liklihood (ML) analyses were 

performed using GARLI 0.942 (available at 

http://www.bio.utexas.edu/faculty/antisense/garli/Garli.html) employing the model 
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determined by MODELTEST.  To determine node support, we did 100 bootstrap 

replicates in GARLI. 

 

Morphometric sampling and analyses 

 

Population sampling was conducted across the western North American ranges of C. 

tetrandrum, C. iowense, and C. rosendahlii, but primarily in regions where species 

ranges occur in close proximity or are overlapping (e.g., northern Alaska, western 

Alberta).  The total number of sampled individuals included in the morphometric 

study was 294 (C. tetrandrum = 243, C. iowense = 31, and C. rosendahlii = 20).  Six 

quantitative traits were measured on each sampled individual: seed length, seed 

width, sepal length, sepal width, hypanthium length, and hypanthium width.  The 

presence or absence of leaf and sepal maculation was also assessed as a binary 

character.  Floral measurements were taken from one of the central flowers in the 

inflorescence.  Length and width measurements of each sepal and hypanthium 

measured were combined to produce ratio characters, which were used to perform a 

Principal components analyses (PCA; PC-ORD; McCune & Mefford, 1999) .  

Individuals with missing measurement values were excluded from those analyses.   

 

Results 
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The combined ITS-cpDNA data set included 3656 nucleotide characters and 134 

insertion/deletion characters.  Of the 3790 total characters, 500 were parsimony 

informative.  Parsimony analyses recovered six minimum length trees of 1594 steps 

(CI = 0.6953, RI = 0.8318; Fig. 2.1).   

 

Our analyses support the monophyly of Chrysosplenium (100% jackknife; 100% 

likelihood bootstrap) as well as that of section Alternifolia (94% jackknife; 96% 

likelihood bootstrap).  In both analyses, a clade including two opposite-leaved species 

(i.e., C. pseudofauriei H. Lev. and C. grayanum Maxim.) is placed as sister to the 

alternate-leaved clade, making section Oppositifolia paraphyletic.  Relationships 

among the rest of the opposite leaved species were generally well supported.  Among 

the alternate-leaved species, a strongly supported (92% jackknife; 80% likelihood 

bootstrap) clade was recovered including all accessions of the Alternifolium group as 

well as individuals of C. alternifolium.  With the exception of one strongly supported 

group (99% jackknife; 93% likelihood bootstrap) that includes all accessions of C. 

iowense and one weakly (63% likelihood bootstrap) supported group including C. 

wrightii and C. tetandrum, most relationships within this clade are unresolved or 

poorly supported.  The only difference between the likelihood and parsimony 

topologies involved the placement of the Chilean species C. valdivicum.  This taxon 

was placed as sister to the album-rhabdospermum-pilosum clade in the likelihood 

analysis and alternatively, sister to the nesting clade of album-rhabdospermum-
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pilosum.  However, neither of these placements is well supported (51% jackknife and 

bootstrap). 

 

Morphology 

 

Relationships among sampled individuals in the PCA are shown in Fig. 2.2.  The 

results of the analysis show three clearly differentiated clusters of individuals 

corresponding to pre-identified species groups.  The first two axes account for 

70.513% of the variance in the data set.  The eigenvector output shows that 

differentiation along the first axis is largely determined by seed length and seed 

width, while differentiation in the second axis is determined by sepal shape and 

maculation presence/absence. 

 

Discussion 

 

Phylogenetic relationships 

 

The results of our phylogenetic analyses are largely congruent with previous efforts 

by Nakazawa et al. (1997) and Soltis et al. (2001) but do differ rather conspicuously 

with regard to the monophyly of section Oppositifolia.  This difference may be a 

result of taxon sampling or the use of the nuclear ribosomal gene ITS.  One benefit to 

using multiple data partitions in phylogenetic analysis is the ability to identify inter-
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specific gene flow events.  Though there is no direct biological evidence to suggest 

that our topology is the result of chloroplast capture or hybridization, these processes 

are known to be common in some genera of the Saxifragaceae (Soltis et al., 2001). 

 

The likelihood and parsimony topologies were mostly congruent, and both 

analyses showed higher levels of relative support for tip groups than those reported in 

the Soltis et al. (2001) phylogeny.  Both analyses supported a monophyletic section 

Alternifolia, though this taxon was not broadly sampled in these analyses.  The 

Alternifolium group was recovered as paraphyletic in the parsimony analyses with 

regard to C. alternifolium.  This is not surprising given the morphological similarity 

of these elements (Packer, 1963).  The strong support for a C. iowense clade, which is 

sister to the rest of the Alternifolium group and C. alternifolium, provides evidence 

for its status as a distinct species (Hara, 1957; Packer, 1963).  A sister group 

relationship between C. tetrandrum and C. wrightii is intriguing as these are the only 

diploid species in the clade and they share overlapping ranges (Packer, 1963).  

Chrysosplenium wrightii is the most morphologically distinct species of the 

Alternifolium group, and it grows at elevations above 1200 m. in Alaska and Siberia.  

Chrysosplenium tetrandrum is circumpolar and occurs along wet stream margins and 

bogs.  Further phylogenetic studies to demonstrate more conclusively the relationship 

between these two species would provide an evolutionary context for studies of 

adaptive evolution in the arctic.   
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Morphology 

 

With the exception of C. wrightii, members of the Alternifolium group display little 

morphological diversity and species identification often relies on accurate 

assessments of stamen number.  Additional taxonomic characters have been proposed 

(e.g., hypanthium shape, seed length; Packer, 1963); however, because of variation in 

trait values, these do not provide diagnostic tests of identity.  Our morphometric 

analysis used five taxonomic characters (hypanthium shape, sepal shape, seed length, 

seed width, and presence/absence of maculation) of limited utility.  The results of this 

analysis show that these three species can be effectively differentiated from one 

another using a combination of quantitative and qualitative traits. 

 

The lack of morphological and genetic differentiation among the North American 

alternate leaved species may reflect a recent radiation of the genus into the arctic.  

Nonetheless, the variation that is exhibited in this group (e.g., ecological, cytological) 

warrants continued study with the goal of providing a phylogenetic basis for studies 

of arctic and boreal diversification. 
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Table 2.1  Species of Chrysosplenium included in the combined phylogenetic 
analyses. 
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Figure 2.1 A strict consensus of 6 most parsimonious trees on the left and a 
Maximum Likelihood tree on the right.  Numbers above branches on the strict 
consensus tree are jackknife support values ≥ 50% and numbers above branches on 
ML tree are bootstrap values above ≥ 50%.  Taxa in black font are members of the 
Alternifolium group. 
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Figure 2.2  Results from a Principal Components Analysis.  The two axes shown are 
those accounting for greatest variance.  The gray diamond represents C. tetrandrum 
individuals, the open circles are C. iowense, and the dark squares are C. rosendahlii. 
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CHAPTER THREE:  
 
DETERMINING PATTERNS OF GENETIC DIVERSITY AND POST-
GLACIAL RECOLONIZATION OF WESTERN CANADA IN THE 
IOWA GOLDEN SAXIFRAGE, CHRYSOSPLENIUM IOWENSE 
(SAXIFRAGACEAE), USING INTER-SIMPLE SEQUENCE 
REPEATS (ISSR) 
 

Abstract 

 

Chrysosplenium iowense Rydb. (Saxifragaceae) is a southern Canadian boreal forest 

species with a small number of disjunct populations occurring in the Driftless Area of 

northeastern Iowa and southeastern Minnesota.  This disjunction is attributed to the 

actions of glacial movement and climate change during the Pleistocene. Populations 

within each of these distributions may have been isolated for 115 000 years or more 

and though levels of genetic divergence between these regions may be significant, 

there is no morphological or cytological variation associated with this geographic 

break.  We employed inter simple sequence repeat (ISSR) markers to determine 

patterns of genetic diversity within 12 populations (6 Canadian; 6 Iowan) of C. 

iowense and elucidate the routes of post-glacial recolonization for the species.  

Despite finding relatively high levels of genetic divergence (θII = 0.383, θII = 0.299) 

between Driftless Area and Canadian populations, there is no conclusive evidence of 

a speciation event within C, iowense.  Analyses show moderate levels of genetic 

diversity within the species (HT = 0.188), the majority of which is partitioned among 

individuals within populations (68.18%), which were similar across the northern (HT 
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= 0.234, HT = 0.28) and southern (HT = 0.189) ranges.  Finally, the patterns of genetic 

diversity within C. iowense suggest that the Canadian range was established by 

migrants originating in now extinct refugial populations that existed outside the 

Driftless Area. 

 

Introduction 

 

Throughout the Quaternary Period, global climate changes along with cycles of 

glacial advance and retreat repeatedly altered the physical distribution of plant species 

(Abbott et al., 2000).  For many high latitude plant taxa, the recency and magnitude 

of these redistributions have had important effects on their current genetic structure 

(Hewitt, 1996; Hewitt, 2004).  In some cases, range fragmentation and subsequent 

isolation of populations introduced high levels of genetic drift, producing strong 

genetic differentiation without, necessarily, a correlated change in phenotype (Lande, 

1980; Hewitt, 2001; Petit et al., 2003).  At its most pronounced, this process may 

have led to the prolific formation of cryptic species in the arctic and sub-arctic 

(Grundt et al., 2006).  However, few groups of arctic or sub-arctic plants have been 

investigated to corroborate this finding.  We have applied a hyper-variable molecular 

genetic approach to determine whether a Pleistocene-age range disjunction in the 

boreal species Chrysosplenium iowense Rydb. (Saxifragaceae) has resulted in a level 

of genetic divergence between isolated ranges that is indicative of a speciation event. 
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Chrysosplenium iowense is a perennial herb native to the boreal forests of North 

America (Packer, 1963).  Though it is primarily distributed in southwest and central 

Canada, the species is also found in small isolated populations throughout the 

Driftless Area of Iowa and Minnesota (Packer, 1963; Weber, 1979).  This “northern” 

range disjunction is shared by other boreal and arctic plant species (e.g., Mertensia 

paniculata, Ribes hudsonianum, Carex media) and is likely the product of climatic 

and glacial dynamics operating in the late Pleistocene (Pusateri et al., 1993).  Though 

no identified morphological or cytological differences distinguish populations from 

the two ranges of C. iowense (Packer, 1963), prolonged isolation may be presumed to 

have resulted in strong genetic differentiation.   

 

The Driftless Area of the midwestern United States comprises adjacent regions of 

Iowa, Minnesota, Wisconsin, and Illinois (Hartley, 1966).  The name refers to the 

region’s lack of Wisconsin age (115-15 kya) glacial drift, strong evidence that it 

remained ice-free during the most recent glaciation (Hartley, 1966).  In Iowa and 

Minnesota, the limits of the Driftless Area are coincident with those of the Paleozoic 

Plateau, a regionally unique physiographic feature characterized by a rugged, bedrock 

controlled landscape highly dissected by deeply entrenched streams (Hartley, 1966).  

Differential weathering of bedrock has resulted in the widespread development of 

karst features (e.g., caves, sinkholes) throughout the Driftless Area, providing a 

diversity of microhabitats for numerous exotic plant species (Hedges, 1972; Pusateri 

et al., 1993).  Prominent among these features, north-facing algific talus slopes are 
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perforated with “ice caves” and “cold air vents” that maintain the summer 

temperature of nearby soil at close to 15°C (Hedges, 1972; Weber, 1979).  The 

temperature requirements for successful sexual reproduction in C. iowense mean that 

Driftless Area populations of this species occur only within close proximity of these 

slopes (Weber, 1979).  Because of this physiologically imposed range restriction, 

Driftless Area C. iowense constitutes only about 15 small populations and is thus, 

listed as threatened in Iowa and endangered in Minnesota (Weber, 1979; The 

PLANTS Database, 2007).  The limited southern range of C. iowense is in contrast 

with its more extensive northern range (Fig. 3.1), in which populations are patchily 

distributed among wet stream margins and bog habitats of the Canadian boreal forest 

(Packer, 1963).   

 

Aside from simply geographic distance, additional causes of restricted gene flow 

among populations of C. iowense may be aspects of the species’ reproductive 

biology. Though C. iowense exhibits a mixed mating system, the putative insect 

pollinators are collembolans with presumably small (e.g., < 10cm/day; Weber, 1979; 

Bengtsson et al., 1994) dispersal distances.  Seeds are dispersed via a splash cup 

mechanism (Savile, 1953; Nakanishi, 2002) and the maximum, experimentally 

determined dispersal distance is 45cm (Weber, 1979).  Despite potentially larger 

secondary dispersal distances achieved through water transport in streams and rivers, 

the majority of gene flow in C. iowense appears to operate on a relatively small 

spatial scale. 
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To date, there has been only limited investigation into the genetic structure of C. 

iowense.  Using eight isozyme loci, Schwartz (1985) was unable to show any 

variation within or among five Driftless Area populations.  This result is probably less 

a reflection of a complete lack of genetic variation within the species and more a 

demonstration of the need for more variable molecular markers to detect existing 

polymorphism (Clegg, 1989; Coates & Byrne, 2005).  No genetic study has been 

conducted that has included Canadian populations and thus, there is no information as 

to the relationships among populations of the two ranges or relative levels of genetic 

diversity within each range.  The lack of information regarding these points is 

significant when we consider the goal of conserving populations of C. iowense in 

Iowa and Minnesota. 

 

To determine patterns of genetic diversity within C. iowense, across the species’ 

distribution, we employed analyses of hypervariable, PCR-based inter-simple 

sequence repeat (ISSR) markers (Huang & Sun, 2000).  We use these data to address 

the following questions: (1.) what is the level of genetic divergence between 

Canadian and Driftless Area populations of C. iowense; (2.) do patterns of genetic 

diversity differ between the different ranges of this species; (3.) what is the route(s) of 

post-glacial recolonization for Canadian populations of C. iowense? 

 

Materials and methods 
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Population sampling 

 

Twelve populations of C. iowense were sampled for this study, including six from the 

Driftless Area of northeastern Iowa, four from central Alberta, and two from western 

Manitoba (Fig. 3.1; Table 3.1).  Sample sizes varied between 10 and 20 individuals 

per population, depending on total population size.  From each sampled individual, 

leaf material was removed and stored in silica gel. To avoid obtaining multiple 

samples from a single genet, which for C. iowense form discernible clumps typically 

< 1 m in diameter (Weber, 1979), a minimum spacing requirement of 0.5 m between 

sampled clumps was used.   

 

DNA extraction and ISSR survey 

 

Eight individuals per population (96 total) were randomly selected for ISSR 

genotyping.  DNA was extracted using DNeasy Plant Mini Kits (Qiagen, Valencia, 

CA).  Methods for DNA amplification, as well as PCR product electrophoresis, 

visualization and sizing of products, and scoring are discussed in detail by Archibald 

et al. (2006).  All PCR reactions were a total of 25µL, including 0.5µL DNA, 50µM 

dye-labeled primer (D4, WellRED, Proligo, St. Louis, MO), 25mM MgCl2, and 2x 

Bullseye (0.05 units/µL Bullseye Taq polymerase, 150mM Tris-HCl pH 8.5, 40mM 

(NH4)2SO4, 1.5mM MgCl2, 0.2% Tween 20, 0.4mM dNTP’s, and stabilizer; MIDSCI, 



 37 

St. Louis, MO).  The four primers (Table 3.2) chosen for this study demonstrated 

utility during screening.  Each PCR run involved 5 min at 94°C; 40 cycles of 45 s at 

94°C, 45 s at 49-60°C, and 90 s at 72°C; 10 min at 72°C. 

 

ISSR electrophoresis and analysis was performed on a CEQ 8000 Genetic 

Analysis System (Beckman Coulter, Fullerton, CA), using the Fragment Analysis 

Module.  Fluorescently labeled primers allowed detection by the automated sequencer 

and fragment sizes were estimated using a custom 1000 bp size standard (MapMarker 

1000, BioVentures, Murfeesboro, TN); bands of a given size were considered to 

represent a single locus.  Fragment analysis was conducted using the manufacturer’s 

software (Beckman Coulter, Fullerton, CA).  Analysis parameters were set to default 

for minimum acceptable peak height and relative height.  Each reaction was analyzed 

in two separate runs and only those bands that appeared in both were included in the 

final data set. 

 

Data analysis 

 

Numbers of polymorphic loci and private bands for populations and regional groups 

were determined with the program FAMD v1.108 (Schlüter & Harris, 2006).  HICKORY 

v1.1 (Holsinger & Lewis, 2003) analyses produced estimates of expected 

heterozygosity, HS (average panmictic heterozygosity) and HT (total panmictic 

heterozygosity), analogous to those described by Nei (1973).  The Bayesian 
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hierarchical model employed by HICKORY is useful for the analysis of dominant data, 

which do not allow a direct determination of allele frequency or heterozygosity.  

Statistical differences among heterozygosity estimates are determined by comparing 

Bayesian credible intervals.  Significance is assigned when neither 95% credible 

interval includes the other estimate’s mean value. 

 

A distance matrix, derived from the Dice similarity coefficient, was computed in 

FAMD.  Dice’s (1945) coefficient is appropriate for dominant genetic data because it 

excludes “shared-absence” characters, which are less likely to be homologous than 

“shared-presences” (Archibald et al., 2006).  Dice is calculated as 

 

 Sij =
2n

11

2n
11
+ n

01
+ n

10

 

 

where n11 is the number of shared bands between individuals and n01/n10 are the 

number of mismatches between individuals.  The distance transformation is expressed 

as D = 1 – S.  

 

Analyses of molecular variance (AMOVA) were performed, using ARLEQUIN 

v3.1 (Excoffier, 2005), to determine the apportionment of genetic variation within C. 

iowense.  These include one three-level AMOVA and three two-level AMOVAs, one 
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for each geographic region.  The significance of observed variance components was 

determined with 5000 permutations. 

 

A Mantel test was performed in ALLELES IN SPACE v1.0 (Miller, 2005) to 

determine the level of association between genetic and geographic distance in the data 

set.  The analysis used a Dice distance matrix of individuals and geographic 

distances, which were calculated from latitude/longitude coordinates of sample 

locations and then log transformed.  Significance was assessed by 5000 permutations. 

 

To determine the genetic affinities of the 96 individuals involved in this study, a 

principal coordinates analysis (PCoA), based on the Dice distance matrix, was 

performed in FAMD.  Levels of genetic differentiation among populations and regional 

groups were determined by calculating θII, a Bayesian analogue of Wright’s (1951) 

FST (Holsinger, 2002).  Unlike the AMOVA-based measures of differentiation 

produced in ARLEQUIN, which are derived from a matrix of squared Euclidean 

distances among haplotypes generated from ‘multi-locus’ band phenotypes 

(Excoffier, 2005), θII is estimated from the variance in inferred allele frequencies at 

each sampled locus (Holsinger & Lewis, 2003).  The Bayesian hierarchical model 

implemented in HICKORY v1.1 (Holsinger & Lewis, 2003) permits θII to be estimated 

from dominant ISSR data without the need to invoke assumptions regarding the level 

of inbreeding in populations (Holsinger, 2002).  The HICKORY analyses were 

conducted under the ƒ-free model, following the authors’ (Holsinger & Lewis, 2003) 
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suggestion for dominant marker data sets.  MCMC sampling parameters were set to 

default values: burn-in (50,000), sampling (250,000), and thinning (50).  Two runs 

were performed for each analysis to ensure convergence of the MCMC sampling 

algorithm.  Statistical comparisons of θII estimates were performed using the posterior 

comparisons option in HICKORY.  This method approximates the posterior distribution 

of θII
A - θII

B (i.e., the difference between estimates of θII derived from data sets A and 

B) from a sample of θII
Ai - θII

Bi (i.e., the difference between paired random samples 

from the posterior distribution of θII for each data set; Holsinger & Lewis, 2003; 

Holsinger & Wallace, 2004).  If the 95% credible interval of this distribution includes 

zero, then the estimates cannot be considered statistically different (Holsinger & 

Lewis, 2003). 

 

Results 

 

Four ISSR primers produced 1195 scorable loci of which 1165 (97.5%) were 

polymorphic across all samples.  The distribution of polymorphic loci (pl) and private 

bands (pb) for individual populations and groups is summarized in Table 3.1.  When 

the data set is partitioned based on geography, the Driftless Area has the highest 

number of both polymorphic loci (936) and private bands (179).  The Canadian 

regions have comparably smaller counts: Alberta, 857 pl and 84 pb, and Manitoba, 

553 pl and 33 pb.  The number of polymorphic loci and private bands for individual 

populations range from 411 to 595 (mean 501 ± 61.5) and 2 to 18 (mean 8.33 ± 4.75), 
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respectively.  There is no statistical evidence to suggest significant differences among 

these values. 

 

The program HICKORY produced estimates of expected heterozygosity, among 

these the species-wide estimate for the total expected heterozygosity, HT =  0.188 

(Table 3.3).  Additional analyses revealed significant differences among 

heterozygosity estimates for geographic regions.  Comparisons of Bayesian 95% 

credible intervals showed statistically higher values of heterozygosity in Manitoba 

(HS =  0.276; HT = 0.28) as compared to Alberta (HS =  0.219; HT = 0.234) and the 

Driftless Area (HS =  0.18; HT = 0.189), which were different from each other. 

 

A three-level AMOVA (Table 3.4), with all 12 populations grouped into three 

geographic regions, found the majority (68.18%) of genetic variation partitioned 

among individuals within populations.  Differences among regions accounted for 

26.89% of the total variation, while differences among populations within regions 

accounted for 4.93%.  Three two-level AMOVAs were performed to determine the 

apportionment of genetic variation within each geographic region.  In the Driftless 

Area, 92.68% of the genetic variation was partitioned among individuals within 

populations and 7.32% was found among populations.  These percentages were 

comparable to the results found for the Alberta and Manitoba regions.  
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The Mantel test, performed in ALLELES IN SPACE, was significant (r = 0.55, p < 

0.0001) for a correlation between Dice and geographic distance in the data set.  A 

PCoA (Fig. 3.2), based on Dice distances among all 96 individuals, produced three 

discrete clusters of individuals, which were grouped based on geographic affinities.  

The three primary axes explained 30%, 7.15%, and 5.85% of the total genetic 

variance. 

 

Bayesian estimates of genetic differentiation within and among each of the three 

geographic regions are summarized in Table 3.5.  Posterior comparisons of θII show 

statistical differences among values.  The greatest level of inter-regional genetic 

differentiation (θII = 0.383) occurs between the Driftless Area and Manitoba, while 

measures of differentiation between Alberta and Manitoba (θII = 0.259) and the 

Driftless Area and Alberta (θII = 0.299) are statistically indistinguishable.  Within 

region θII estimates suggest low levels of differentiation.  Values for the Driftless 

Area (θII = 0.063) and Alberta (θII = 0.086) are not statistically different, while the 

estimate for Manitoba (θII = 0.028) is smaller. 

 

Discussion 

 

Automated ISSRs present a number of benefits to the study of closely related 

lineages, which include increasing the number of scorable loci per primer, while also 

improving the accuracy of locus size estimation and homology assessment (see 
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Archibald et al., 2006).  These benefits serve to produce larger, more accurate 

datasets than manual ISSR or enzyme studies, with a greater ability to resolve 

relationships among groups, populations, or even individuals (Crawford & Mort, 

2004).  In this investigation, an automated ISSR approach produced many 

polymorphic loci, discounting Schwartz’s (1985) earlier inferences about C. iowense 

biology, which were based on an invariant enzyme dataset. 

 

Patterns of genetic diversity 

 

A cessation or reduction in gene flow among population subdivisions is expected 

to increase differentiation at selectively neutral loci through the enhanced action of 

genetic drift (Epperson, 2003).  Under most circumstances (see Ibrahim, 1996), the 

prolonged isolation of subdivisions will produce relatively high levels of genetic 

structure, while decreasing population-level gene diversity (Epperson, 2003).  This 

pattern of genetic variation is predicted for many high latitude plant taxa, which 

experienced numerous instances of range fragmentation and/or restriction throughout 

the Pleistocene and whose current populations are mutually isolated by factors of 

distance, breeding system, etc. (Hewitt 1996; Hewitt, 2001; Petit et al., 2003).  For 

some, the extent of genetic differentiation, absent concomitant phenotypic change, 

has led to the formation of new cryptic species, a process that may be particularly 

common in the arctic and greatly enhance our view of biodiversity in that region 

(Grundt et al., 2006).  One goal of this study is to determine the levels of divergence 



 44 

among populations of C. iowense and evaluate whether those levels are suggestive of 

a speciation event. 

 

Chrysosplenium iowense, a high latitude species with a significant distributional 

disjunction and a limited dispersal capability, exhibits a pattern of differentiation 

expected among geographically disparate ranges.  Namely, that genetic distance 

among individuals is strongly associated with the geographic distance between them 

(see results of Mantel Test), suggestive of a scenario of “isolation by distance” (IBD; 

Wright, 1943; Epperson, 2003).  A PCoA (Fig. 3.2) grouped individuals into three 

units, which correspond to geographic regions (i.e., Driftless Area, Alberta, 

Manitoba).  According to the results of the PCoA and θII estimation (Table 3.5), the 

greatest level of genetic divergence among these units occurred between the Driftless 

Area and the Canadian regions.  When we compare the θII values among these 

regions, only the estimate of divergence between the Driftless Area and Manitoba (θII 

= 0.383) exceeds the average ΦST value (0.35 ± 0.18) for intra-specific ISSR studies 

reported by Nybom (2004).  However, both the Driftless Area/Manitoba and Driftless 

Area/Alberta (θII = 0.299) divergence estimates show significantly higher values than 

that resulting from a comparison between C. iowense and its sister species, C. 

tetrandrum (θII = 0.238; 95% credible interval, 0.201 – 0.281).  In their study of 

cryptic speciation in arctic Draba, Grundt et al. (2006) describe a correlation between 

genetic distance and the accumulation of hybrid sterility factors, which leads to 

speciation.  While our results show relatively high levels of genetic divergence 
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among the ranges of C. iowense, they are not high enough to clearly indicate a 

speciation event and lack the conclusive evidence of reproduction isolation that could 

be provided by a biosystematic study such as was applied to Draba.   

 

In addition to the development of genetic structure, aspects of life history, 

breeding system, and spatial distribution can affect the levels of genetic diversity 

within a species or population (Hamrick & Godt, 1989; Nybom & Bartish, 2000).  

Considering the physical (e.g., size, location) and ecological (e.g., available 

pollinators, length of growing season, forest community, etc.) differences between the 

two ranges of C. iowense, we compared their respective levels of gene diversity to 

determine any dissimilarity.  The results show that the patterns of genetic diversity do 

differ across the species, but not substantially.  The largest differences were observed 

for levels of panmictic heterozygosity (HS and  HT; Table 3.3), which were highest for 

the Manitoba region and lowest for the Driftless Area.  Due, likely to complex glacial 

population histories, it is difficult to unambiguously place the Driftless Area and 

Manitoba regional groups of C. iowense in categories of geographic range (e.g., 

widespread or narrow distribution) based on heterozygosity values.  However, levels 

of heterozygosity for the Alberta region are consistent with other ISSR-based values 

for widespread species (Sica et al., 2005; Al et al., 2007).  A three-level AMOVA 

(Table 3.4) found that the majority (68.18%) of genetic variability in C. iowense is 

accounted for by differences among individuals within populations.  This result, 

which was confirmed by two-level AMOVAs conducted within each geographic 
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region, is generally reflective of outcrossing species (Chung, 2004) and confirms 

earlier reports of this breeding system for C. iowense (Weber, 1979).  Though the 

Driftless Area had the largest number of private bands, when combined, the Canadian 

regions slightly exceed this value (Table 3.1).  This comparably similar level of 

genetic variation may be attributable to C. iowense’s status in the Driftless Area as a 

putative glacial relict (Schwartz, 1985; Abbott et al., 2000; Petit et al., 2003). 

 

Historical biogeography 

 

The current distribution of C. iowense is most readily attributable to 

environmental forces operating during the last glaciation (115-15 kya), specifically 

the advance and retreat of continental glaciers (Hewitt, 1996; Abbott et al., 2000).  As 

the glaciers scoured much of northern North America, most plant and animal species 

migrated south and persisted in a large southern refugium (Darwin, 1859; Abbott & 

Brochmann, 2003).  Boreal and arctic plants like C. iowense would have persisted 

relatively close to the glacial front in large swaths of tundra and boreal forest 

(Pusateri, 1993; Petit et al., 2001).  When the glaciers receded, these species migrated 

north and recolonized previously ice-covered habitat (Hewitt, 2001).  However, due 

to a lack of palynological and fossil evidence, we are often unsure of the origin of 

these colonists or the routes of their recolonization (Abbott et al., 2000).  In these 

cases, it is necessary to test historical biogeographic scenarios using analyses of 

patterns of genetic diversity (Abbott et al., 2000).  Three potential scenarios of post-
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glacial recolonization for C. iowense include: (1.) a long distance dispersal event 

either from the Driftless Area to Canada or vice versa; (2.) a gradual northern 

migration of populations from the Driftless Area back to Canada; (3.) the 

establishment of Canadian populations by colonists from an alternate source.   

Reid’s paradox states that for many trees and herbs, the observed mean dispersal 

distance of a species cannot explain the extent of its current distribution (Reid, 1899).  

This principle certainly applies to C. iowense and may be solved by invoking the 

occasion of a rare long distance dispersal event.  However, these events often leave 

the signature of a genetic bottleneck, including a loss of genetic diversity, the extent 

of which depends on the length and severity (i.e., reduction in population) of the 

bottleneck (Hewitt, 1996; Ibrahim et al., 1996).  This is not the pattern observed for 

C. iowense.  Instead, levels of genetic diversity are moderate for all regions and even 

comparatively high in Manitoba.   

The second scenario describes a gradual “stepping-stone” dispersal of 

populations from the Driftless Area to the area of the current Canadian distribution.  

Under this scenario, effective population sizes would remain moderately large and the 

ancestors of current Driftless Area and Canadian populations would have been 

exchanging genes until quite recently (9 – 10kya; Pusateri, 1993).  Again, this pattern 

is not entirely supported by the genetic evidence.  The level of divergence and 

respective amounts of accumulated private bands between these distributions is 

suggestive of a longer period of isolation than that allowed under this scenario.   
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While the southern refugium was the primary region for glacial survival of 

species, there is evidence of the existence of other, smaller refuges within the glacial 

margins (Stehlik, 2003).  Nunataks (Blytt, 1876), as these refugia are known, are 

proposed to have existed within the Canadian Rocky Mountains, near the current 

distribution of Alberta populations of C. iowense and may have served as a center of 

recolonization for the species (Packer & Vitt, 1974).  Current Canadian populations 

may also have been established by migrants from relict populations existing in the 

southern refugium, isolated from those that established the Drifltess Area distribution.  

Though this hypothesis is extremely difficult to demonstrate with confidence, given 

the current nonexistence of these alternative populations, our genetic data is most 

supportive of this scenario.  The level of divergence between the two distributions, as 

well as the relative levels of genetic diversity within each suggests that Canadian 

populations were established by migrants, separate from the ancestors of current 

Driftless Area populations. 

 

Conservation 

 

In both Iowa and Minnesota, C. iowense is restricted to the Driftless Area where 

it occurs in approximately 15 populations and is legally protected from extirpation 

(Weber, 1979; The PLANTS Database, 2007).  The species is not known from any 

other locality within the United States.  An extensive study of the species’ biology of 

Driftless Area C. iowense was produced by Weber (1979) and reported that the 
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southern distribution of this species was not limited by “its functioning biology”, but 

rather the small amount of available habitat.  From this we may conclude that the 

restricted condition of its Driftless Area range has probably existed for thousands of 

years, since the retreat of the Wisconsin glaciers.  However, the rarity of this species 

in Iowa and Minnesota combined with its environmental sensitivity and the prospect 

of imminent climate change should warrant concern for its long-term viability.  This 

case is strengthened by the potential that prolonged isolation has rendered this 

southern element a new cryptic species, truly endemic to the Driftless Area.  Our 

study is the first informative genetic survey of C. iowense and provides some of the 

first (see Chung, 2004) estimates of patterns of genetic diversity for northern species 

occurring in the Driftless Area.  Though the observed levels of genetic divergence 

between the Driftless Area and Canadian populations cannot substantively determine 

whether the relict populations represent a novel species, they do indicate that Driftless 

Area C. iowense is a unique genetic element within the species.  Clearly, further study 

of morphology, cytology, biosystematics, and genetics are required to understand the 

taxonomic status and future viability of C. iowense.  
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Table 3.1 The numbers of private bands and polymorphic loci found for regions and 
populations of C. iowense.  Values in parentheses indicate percentage of polymorphic 
loci. 
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Table 3.2 Four dye-labeled ISSR primers used to genotype C. iowense. 
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Table 3.3 Estimates of average panmictic heterozygosity (HS) and total pooled 
heterozygosity (HT) for regional groups of C. iowense.  Values in parentheses show 
the lower and upper bounds of a 95% Bayesian credible interval.  Asterisks indicate 
values that are statistically different from others within the same column. 
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Table 3.4  Results of a three-level AMOVA performed on ISSR data from C. 
iowense. 
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Table 3.5 Pairwise  θII comparisons among geographic regions of C. iowense.  Values 
in parentheses show the lower and upper bounds of a 95% Bayesian credible interval.  
Asterisks indicate a value that is statistically different. 
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Figure 3.1 Map shows the species distribution of C. iowense, as well as sampling 
locations for the 12 populations analyzed in this study.  The location of the Driftless 
Area is indicated in gray in the inset map. 
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Figure 3.2 Results of principal coordinates analysis (PCoA).  The first three axes are 
represented in two 2-dimensional graphs.  Individuals are coded by shape and color 
according to geographic origin (light gray triangle = Manitoba, dark gray square = 
Alberta, black circle = Driftless Area).



 57 

CHAPTER FOUR: 
THE GENETIC STRUCTURE AND GLACIAL HISTORY OF 
CHRYSOSPLENIUM TETRANDRUM, DETERMINED WITH INTER-
SIMPLE SEQUENCE REPEATS 
 

Abstract 

 

The herbaceous perennial Chrysosplenium tetrandrum (Lund ex Malmgr.) Th. Fr. 

(Saxifragaceae) is a self-pollinating, circumpolar species with a broad latitudinal 

distribution and significant North American range disjunction.  The southernmost 

populations are isolated in the Colorado and Montana Rocky Mountains, distantly 

separated from elements of the main range, which is largely coincident with known 

glacial refugia (e.g., Beringia and Canadian Arctic Archipelago) as well as recently 

deglaciated areas.  We employed analyses of inter-simple sequence repeats (ISSRs) 

and morphology to determine patterns of variation within the western North 

American range of C. tetrandrum and test hypotheses of glacial population history 

and reproductive strategy.  We found very low levels (θII = 0.085) of range-wide 

genetic differentiation and genetic diversity (HS = 0.077, HT = 0.084), which are 

consistent with findings in other arctic species and attributed to recent population 

establishment and clonality.  Low levels of genetic differentiation within the Alaska 

range (θII = 0.072), which might signify a recent bottleneck or range expansion into 

the region.  Both the Colorado and Alaska regions showed strong differentiation 

between themselves and other geographic groups, suggesting long-term isolation.  

The findings generally demonstrate a complex glacial history for the species. 



 58 

Introduction  

 

Factors that influence patterns of genetic variation within plant species are myriad.  

They include contemporary as well as historical attributes of an organisms’ biology 

(e.g., life history, physiology) and environment (e.g., physiography), which serve to 

shape networks of gene flow within and among populations and determine the local 

effects of genetic drift and natural selection (Stebbins, 1950; Silvertown, 2001).  To 

date, studies have revealed the genetic structure of hundreds of plant species, while 

extensive reviews have detailed the specific roles of physical and biological attributes 

in determining that structure (e.g., Hamrick et al., 1979; Loveless & Hamrick, 1984; 

Hamrick & Godt 1989; Nybom & Bartish, 2000; Nybom, 2004).  Despite the wealth 

of genetic data available for many plant species, there still exist taxa for which, the 

patterns of genetic variation and their causes remain largely unknown.  Notable 

among these groups is the arctic flora, which is thought to be lacking in biodiversity 

at all levels but has been largely unexamined (Murray, 1987; Steltzer et al., 2008).  

 

Throughout the late Tertiary and Quaternary periods, polar and sub-polar regions 

of the world experienced substantial alterations to their physical environment.  Cycles 

of global climate change together with repeated periods of glacial advance and retreat 

redistributed species across the landscape and established harsh new ecological 

regimes at high latitude (Ewing & Donn, 1956; Billings & Mooney, 1968; Pielou, 

1991).  These events are believed to have had significant effects on the genetic 
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structure of arctic and boreal plant species (Hewitt, 1996; Hewitt, 2004).  The actions 

of glacial expansion, particularly regarding the extirpation of populations and the 

reduction of species’ ranges, are credited with establishing a general state of low 

intra-specific genetic diversity within the arctic flora (Pamilo & Savolainen, 1999).  

The maintenance of this condition is largely attributed to the assumed frequency of 

self-pollination in many arctic species, but may also stem from the influence of 

powerful selective forces operating in stressful polar environments (Billings and 

Mooney, 1968; Bliss, 1971).  It is important to note, however, that these hypothesized 

patterns of variation have not been widely confirmed (Murray, 1987; Steltzer et al., 

2008).  To date, only a few arctic species (e.g., Saxifraga oppositifolia L. and Dryas 

integrifolia Vahl.) have been the subject of intensive genetic study and, for these, 

levels of genetic variation are often higher than traditional assumptions suggest 

(Tremblay & Schoen, 1999; Abbott et al., 2000).  Such findings have emphasized 

additional aspects of arctic plant biology and glacial history, including the persistence 

of populations in glacial refugia and higher-than-expected levels of outcrossing, 

which contribute to the generation or maintenance of intra-specific genetic variation 

(Hewitt, 1996; Gabrielsen & Brochmann, 1998; Hewitt, 2000; Abbott & Brochmann, 

2003).  Discordance between expected and observed results serves to underscore the 

difficulty in establishing generalized theory to explain or predict patterns of variation 

in a complex flora. An improved understanding of the evolution of the arctic flora 

will require a consideration of this complexity, certainly as it relates to species’ 

glacial history, ecology, breeding system, and phylogenetic affinity.  In the present 
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study, we investigate patterns of variation within the western North American range 

of the arctic species Chrysosplenium tetrandrum (Lund ex Malmgr.) Th. Fr. 

(Saxifragaceae) to elucidate further, arctic plant diversity. 

 

Chrysosplenium tetrandrum is a widespread, circumpolar species with a complex 

glacial and pre-glacial history (Fig. 4.1; Packer, 1963).  The species range reaches as 

far north as Murchisonfjord, North-East Land, Spitsbergen Archipelago (80° 3’ N; 

Aiken et al., 1999) and is largely continuous throughout the arctic, but at its southern 

extent, high elevation populations in Colorado remain strongly disjunct from the 

central distribution (Packer, 1963).  Weber (2003) suggested that these disjunct 

elements may be late Tertiary-age relicts of a once prominent Oroboreal flora.  These 

populations, he contended, survived the Pleistocene glaciations in situ, persisting in 

isolated Nunatak (i.e., high mountain) refugia (Blytt, 1876; Weber, 2003).  Additional 

ice-free regions existed in North America during the Pleistocene glaciations, 

including the area to the south of the major ice-sheets (Darwin, 1859), Beringia (i.e., 

Alaska, Yukon Territory, and parts of Siberia; Hultén, 1937), coastal areas of western 

British Columbia and southeastern Alaska (Heusser, 1960), and the Canadian Arctic 

Archipelago (Hultén, 1937).  The current distribution of C. tetrandrum (Fig. 4.1) 

includes portions of each of these regions and it is possible that all of them played a 

role in the glacial survival of the species.  The long-term isolation and range 

reduction associated with glaciation and refugial survival would have had significant 

effects on patterns of genetic variation within species such as C. tetrandrum. 
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While glacial history has an important effect on levels of intra-specific genetic 

diversity, so too do contemporary patterns of gene flow within species.  However, at 

present, these patterns are completely unknown within C. tetrandrum.  The mode of 

reproduction and breeding system of the species, which represent important 

determinants in these patterns, are not confirmed, but preliminary evidence suggests 

that C. tetrandrum is obligately self-pollinating and capable of vegetative 

reproduction via stoloniferous growth (Warming, 1909; Packer, 1963; Weber, 1979).  

These characteristics, combined with a short dispersal distance (< 0.5 m; Weber, 

1979; Nakanishi, 2002), implies that intra-specific gene flow in C. tetrandrum is quite 

localized and significantly limited.   

 

As with many arctic plants species, the morphology of C. tetrandrum is highly 

reduced and largely uniform across its range (Savile, 1972; Billings, 1987).  Though 

knowledge of the cause of taxonomically significant morphological variation in C. 

tetrandrum is desirable, the relationship between genetic and morphological variation 

in the species is unclear.  Phenotypic plasticity is viewed as an important contributor 

to phenotypic variation in arctic species and may account for the relatively high 

degree of variation observed in traits of C. tetrandrum (Savile, 1972; Stenström et al., 

2002).   
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Instances of inter-specific gene flow can also have important consequences for 

the evolution of a species.  Such exchanges can produce novel genetic variation and 

ultimately result in rapid speciation (Rieseberg, 1997; Rieseberg & Willis, 2007).  In 

the arctic, hybridization is thought to be quite common and consequently, important 

to the evolution of the flora (Brochmann et al., 2004).  In the case of C. tetrandrum, 

the species is sympatric with a closely related species at two separate points in its 

North American range (arctic coast, C. rosendahlii Packer; Alberta, C. iowense 

Rydb.; Table 4.1).   Within the sympatric zones, species have been found growing in 

close proximity and exhibiting approximately identical phenology (Packer, 1963).  

Despite this, there exists no evidence of hybridization between these taxa in either 

region (Packer, 1963).  A lack of gene flow may be attributable to biological barriers, 

such as self-pollination and differences in chromosome number among species (i.e., 

C. tetrandrum 2n = 24, C. iowense 2n = c. 120, C. rosendahlii 2n = 96; Packer, 1963).  

While hybridization between C. tetrandrum and either C. iowense or C. rosendahlli 

appears unlikely, the prospect has not been thoroughly investigated.  Both the 

frequency of hybridization in other members of Saxifragaceae (e.g., Heuchera L., 

Mitella L.; Soltis et al., 2001) and the moderate levels of outcrossing described in C. 

iowense suggest the possibility of even limited inter-specific gene flow. 

 

The goal of this study was to determine patterns of genetic diversity within the 

western North American range of C. tetrandrum.  To achieve this, we employed inter-

simple sequence repeat (ISSR) markers (Huang & Sun, 2000) and used these data to 
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address the following questions: (1) what do contemporary levels of genetic diversity 

indicate about patterns of gene flow within western North American C. tetrandrum; 

(2) what is the level of genetic divergence between the Colorado and Montana 

distribution of C. tetrandrum and its main Canadian and Alaskan distribution; (3) are 

patterns of morphological variation correlated with those of genetic variation; and (4) 

is there evidence of inter-specific gene flow between C. tetrandrum and C. iowense 

and/or C. rosendahlii? 

 

Materials and methods 

 

Population sampling 

 

Forty populations of C. tetrandrum were sampled from across the species’ western 

North American range (Fig. 4.1; Table 4.1).  These include two Alaskan populations 

from which C. rosendahlii individuals were also collected and one Albertan 

population from which C. iowense individuals were also collected (mixed populations 

were not included in species-wide analyses).  Whole flowering shoots were collected 

from between 3 and 20 individuals per population, depending on total population size. 

To avoid obtaining multiple samples from a single genet, a minimum spacing 

requirement of 1 m between sampled clumps was used.  The shoots were pressed and 

stored in coin envelopes.  Leaf material was removed from each shoot and dried in 
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silica gel for DNA extraction.  For ten random individuals, duplicate DNA collections 

were made to determine the reproducibility of the ISSR analyses (Bonin et al., 2004). 

 

DNA extraction and ISSR survey 

 

Between 3 and 16 individuals per population (402 total) were randomly selected 

(when possible) for ISSR genotyping.  DNA was extracted using DNeasy Plant Mini 

Kits (Qiagen, Valencia, CA).  Methods for DNA amplification, as well as PCR 

product electrophoresis, visualization and sizing of products, and scoring are 

discussed in detail by Archibald et al. (2006).  All PCR reactions were a total of 

25µL, including 0.5µL DNA, 50µM dye-labeled primer (D4, WellRED, Proligo, St. 

Louis, MO), 25mM MgCl2, and 2x Bullseye (0.05 units/µL Bullseye Taq polymerase, 

150mM Tris-HCl pH 8.5, 40mM (NH4)2SO4, 1.5mM MgCl2, 0.2% Tween 20, 0.4mM 

dNTP’s, and stabilizer; MIDSCI, St. Louis, MO).  The four primers (Table 4.2) 

chosen for this study demonstrated utility during screening.  Each PCR run involved 5 

min at 94°C; 40 cycles of 45 s at 94°C, 45 s at 49-60°C, and 90 s at 72°C; 10 min at 

72°C.  ISSR electrophoresis and analysis was performed on a CEQ 8000 Genetic 

Analysis System (Beckman Coulter, Fullerton, CA), using the Fragment Analysis 

Module.  Fluorescently labeled primers allowed detection by the automated sequencer 

and fragment sizes were estimated using a custom 1000 bp size standard (MapMarker 

1000, BioVentures, Murfeesboro, TN); bands of a given size were considered to 

represent a single ‘locus’.  Fragment analysis was conducted using the manufacturer’s 
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software (Beckman Coulter, Fullerton, CA).  Analysis parameters were set to default 

for minimum acceptable peak height and relative height.   

 

Morphological measurement 

 

Six quantitative traits were measured on each sampled individual: seed length, seed 

width, sepal length, sepal width, hypanthium length, and hypanthium width.  The 

presence or absence of leaf and sepal maculation was also assessed as a binary 

character.  Floral measurements were taken from one of the central flowers in the 

inflorescence.  Length and width measurements of each sepal and hypanthium 

measured were combined to produce ratio characters, which were used for 

morphometric analyses.  Individuals with missing measurement values were excluded 

from those analyses. 

 

Data analysis 

 

The ISSR band profiles for duplicate samples were compared, and those loci that 

exhibited a high frequency (≥ 40%) of mismatch across duplicate comparisons were 

removed from the dataset.  ISSR reproducibility was assessed, using the edited 

dataset, as one minus the average frequency of mismatch for all duplicate 

comparisons (Bonin et al., 2004).   
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We calculated the percentage of polymorphic loci (FAMD v1.108; Schlüter and 

Harris 2006) and the number of private bands (i.e., a band that is present only in a 

specific group and occurs in ≥ 4 individuals within that group) for each population 

and regional group.  To determine levels of genetic diversity within and among 

populations, estimates of Nei’s (1973) average panmictic heterozygosity (HS) and 

total panmictic heterozygosity (HT) were calculated using a Bayesian hierarchical 

model (HICKORY v1.1; Holsinger & Lewis, 2003).  Morphological diversity within 

populations was measured by calculating average pair-wise morphometric (i.e., 

squared Euclidean distance) distances (APD) among individuals (PC-ORD; McCune & 

Mefford, 1999).  Levels of statistical significance among estimates of HS and HT were 

determined by comparing 95% Bayesian credible intervals.  Significance is assigned 

when neither 95% credible interval includes the other estimate’s mean value.  

Significant differences among APD estimates were determined with a permutation 

analysis of variance (ANOVA; PERMDISP2; Anderson, 2004).  A nonparametric 

permutation approach was necessary given the non-independence of pair-wise 

distance values. 

 

Distance matrices were calculated for both the ISSR (FAMD v1.108; Schlüter & 

Harris, 2006) and morphological (PC-ORD; McCune & Mefford, 1999) datasets.  The 

ISSR distance matrix was computed using the Dice similarity coefficient (Dice, 

1945), which is desirable for use with dominant genetic data like ISSRs because it 

excludes ‘shared absence’ characters (Archibald et al., 2006).  Dice is calculated as  
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where n11 is the number of shared bands between individuals and n01/n10 are the 

number of mismatches between individuals.  The distance transformation is expressed 

as D = 1 – S.  The morphological distance matrix is based on the squared Euclidean 

distance measure, which was calculated from five morphological traits (i.e., seed 

length, seed width, sepal length/width, hypanthium length/width, and 

presence/absence maculation).  A matrix of geographic distances (kilometers) among 

sampled populations was also calculated (GEOGRAPHIC DISTANCE MATRIX GENERATOR 

v1.2.2; Ersts, 2008).   

 

Three Mantel tests were conducted to identify correlations between distance 

matrices.  The first test, ISSR distance versus geographic distance, was computed 

using the software program ALLELES IN SPACE v1.0 (Miller, 2005), while the other 

two, morphological distance versus geographic distance and morphological distance 

versus ISSR distance, were computed using the program zt (Bonnet & Van de Peer, 

2002).  In each test, statistical significance was assessed by 10 000 permutations. 

 

To analyze relationships among individuals, we performed a principal 

coordinates analysis (PCoA; FAMD v1.108; Schlüter & Harris, 2006) using the Dice 

distance matrix.  
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Levels of genetic differentiation among populations and regional groups were 

estimated by calculating θII (HICKORY v1.1; Holsinger & Lewis, 2003), a Bayesian 

analogue of Wright’s (1951) FST.  The Bayesian approach is popular for producing 

estimates of genetic differentiation from dominant data sets.  This is because the 

method permits θII to be estimated from the variance in inferred allele frequencies, 

which cannot be directly observed from dominant data, without the need to invoke 

assumptions regarding the level of inbreeding in populations (Holsinger et al. 2002).  

HICKORY v1.1 (Holsinger & Lewis, 2003) analyses were conducted under the ƒ-free 

model, following the authors’ (Holsinger & Lewis, 2003) suggestion for dominant 

marker data sets.  MCMC sampling parameters were set to default values: burn-in (50 

000), sampling (250 000), and thinning (50).  Two runs were performed for each 

analysis to ensure convergence of the MCMC sampling algorithm.  Statistical 

comparisons of θII estimates were performed using the posterior comparisons option 

in HICKORY.  This method approximates the posterior distribution of θII
A - θII

B (i.e., 

the difference between estimates of θII derived from data sets A and B) from a sample 

of θII
Ai - θII

Bi (i.e., the difference between paired random samples from the posterior 

distribution of θII for each data set; Holsinger & Lewis, 2003; Holsinger & Wallace, 

2004).  If the 95% credible interval of this distribution includes zero, then the 

estimates cannot be considered statistically different (Holsinger & Lewis, 2003). 

 

A locus-by-locus analysis of molecular variance (AMOVA) was performed 

(ARLEQUIN v3.1; Excoffier et al., 2005) to determine the apportionment of genetic 
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variation within C. tetrandrum.  Unlike the standard AMOVA computed in 

ARLEQUIN, the locus-by-locus AMOVA treats each marker in a multi-locus genotype 

as unlinked (Excoffier et al., 2005).  Significance of observed variance components 

was determined with 5000 permutations.   

 

Analysis of mixed populations 

 

To investigate the possibility of inter-specific gene flow between C. tetrandrum and 

either C. iowense or C. rosendahlii, we constructed new, smaller genetic and 

morphological data sets for each case.  For C. tetrandrum - C. iowense, the data sets 

consisted of five populations, including: two of C. tetrandrum (i.e., BD and CM), two 

Alberta populations of C. iowense and one mixed population (i.e., BC; Table 4.1).  

For C. tetrandrum – C. rosendahlii, the data sets consisted of six populations, 

including: two of C. tetrandrum (i.e., BX and CE), two Northern Alaskan populations 

of C. rosendahlii, and two mixed populations (i.e., BZ and CC; Table 4.1).  Principal 

components analyses (PCA) were performed (PC-ORD; McCune & Mefford, 1999) on 

the two morphological data sets to identify intermediate phenotypes.  Locus-by-locus 

AMOVAs (ARLEQUIN v3.1; Excoffier et al., 2005) were performed on each of the 

genetic data sets to identify loci that exhibit high (≥ 0.5) levels of differentiation, φST, 

between species.  These, highly differentiated loci, composed new genetic data sets 

that were analyzed in NEWHYBRIDS v1.1 (Anderson, 2003), which implements a 

Bayesian approach to testing hypotheses of hybrid ancestry.  The program computes 
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the posterior probability that individuals belong to different hybrid categories: pure C. 

tetrandrum, pure C. iowense or C. rosendahlii, F1, F2, backcross with C. tetrandrum, 

and backcross with C. iowense or C. rosendahlii.  Two replicate runs of each analysis 

were performed to ensure consistency among results. 

 

Results 

 

Genetic and morphological variation 

 

ISSR analyses produced 701 loci, of which, 659 (94%) were polymorphic across all 

samples.  Repeatability of ISSR markers was 95%.  Table 4.1 summarizes the 

distribution of private bands (PB) and polymorphic loci (PL) among populations and 

regions.  The percentage of polymorphic bands varied among populations (range, 10 - 

50%; mean, 24% ± 11) and regions (range, 29 – 76%; mean, 55% ± 18).  The most 

polymorphic region was Alaska/Yukon (76%) followed closely by Washington 

(70%).  Private bands (PB) were found in only two populations, population H (five 

bands) and population U (one band), and three regions, Washington (eight), British 

Columbia (three), and Alaska/Yukon (nine). 

 

Range-wide estimates of average panmictic heterozygosity and total panmictic 

heterozygosity were 0.077 (± 0.004) and 0.084 (± 0.005), respectively.  

Heterozygosity estimates were statistically invariant across populations, but did differ 
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among regions, with values for Alaska/Yukon (HS = 0.085; HT = 0.092) significantly 

lower than those of other groups (Table 4.1).  The average pair-wise distance (APD) 

measure, which indicates levels of morphological variation within groups, was found 

to be statistically invariant among populations and regions (Table 4.1). 

 

Three Mantel tests produced the following estimates of association between sets 

of distance matrices: ISSR versus geographic (r = 0.015, P = 0.238), morphological 

versus geographic (r = -0.104, P = 0.086), and ISSR versus morphological (r = -

0.013, P = 0.433).  In all three tests, we found no significant correlation between 

matrices. 

 

The first three plotted axes of the PCoA (Fig. 4.2) accounted for 18.43% of the 

total variation at the molecular level.  The analysis did not indicate clear genetic 

structure within C. tetrandrum.  This finding is consistent with the range-wide 

Bayesian estimate of genetic differentiation (θII = 0.085 ± 0.004).  Pair-wise estimates 

of genetic differentiation within and among regions are summarized in Table 4.3.  

The highest intra-regional θII values were found in Alberta (0.173) and Colorado 

(0.214).  Inter-regional FST values were highest in comparisons made to 

Alaska/Yukon, Colorado, and Montana. 

 

A locus-by-locus AMOVA (Table 4.4) reported that the greatest percentage of 

genetic variation (84.59%) in the data set was accounted for by differences among 
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individuals within populations.  In contrast, very little variation was accounted for by 

differences among populations (11.9%) or regions (3.52%). 

 

Inter-specific gene flow 

 

Principal components analyses 

 

In the case of each species-to-species comparison, a PCA (Fig. 4.3) of morphological 

data clearly grouped all individuals into one of two species groups and did not 

indicate any individuals with intermediate phenotypes that might suggest mixed 

ancestry.   

 

Genetic analyses 

 

To identify genetic evidence of gene flow between C. tetrandrum and C. iowense, a 

reduced ISSR data set was constructed and consisted of 33 loci, which were found to 

be highly differentiated (φST ≥ 0.5) between species.  Genetic analyses placed 38 out 

of 50 individuals into pure species categories with a posterior probability greater than 

0.8.  One individual, belonging to the mixed population and indicated in Fig. 4.3 by 

an arrow, was placed with high posterior probability (0.933) in the C. tetrandrum 

backcross category. 
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The data set for the C. tetrandrum-C. rosendahlii comparison consisted of six 

highly differentiated loci.  Nineteen of seventy-two individuals were placed within a 

pure species category with a posterior probability above 0.8 and no individuals were 

placed within a hybrid category with a probability higher than 0.3. 

 

Discussion 

 

Genetic diversity and breeding system in C. tetrandrum 

 

Reproductive strategy is one of the most important factors to influence patterns of 

genetic diversity within plant species (Loveless & Hamrick, 1984; Nybom & Bartish, 

2000).  Components of reproductive strategy (e.g., mode of reproduction and 

breeding system) dictate a fundamental level of gene flow within and among 

populations, which can then be modified by additional aspects of a species’ biology 

and ecology (Hamrick & Godt, 1989).  Asexual modes of reproduction eliminate 

chromosomal recombination and gene flow among individuals, though multiclonal 

populations are often as genetically diverse as their sexual counterparts (Ellstrand & 

Roose, 1987; Hamrick & Godt, 1989; Coates & Byrne, 2005).  Alternatively, sexual 

reproduction allows for recombination and gene flow, though the rates of these 

processes are determined by breeding system.  Predominant outcrossing systems, 

characterized by gene flow among unrelated individuals, are associated with high 

levels of intra-populational diversity.  Predominant self-pollinating systems result in 
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reduced rates of recombination and lower levels of diversity within populations (Jain, 

1976; Hamrick & Loveless, 1984). 

 

Chrysosplenium tetrandrum has been described (Warming,1909) as a purely 

selfing species.  The results of this study are mixed in their support for this assertion.  

Analyses of ISSR markers yielded very low range-wide estimates of expected 

heterozygosity (HS = 0.077, HT = 0.084) and similarly low values for individual 

populations and regions (Table 1).  These results are consistent with an autogamous 

C. tetrandrum.  Alternatively, low range-wide estimates of genetic differentiation (θII 

= 0.085) contradict this hypothesis.  Predominant selfing species lack gene flow 

among individuals and populations, leading to high levels of genetic differentiation, 

which were not observed in this study (Hamrick & Godt, 1989).  We consider two 

factors to be central to reconciling this contradiction; the first is the importance of 

asexual reproduction suggested for C. tetrandrum and the second is the recent (8 -10 

kya) establishment of many populations in the western range of this species as a result 

of glacial dynamics.  Balloux et al. (2003) demonstrated that, by effectively fixing 

heterozygotes, asexual reproduction in diploid species increases gene diversity at 

individual loci and decreases population differentiation.  The authors also suggested 

that with predominant asexual reproduction there is an expected decrease in 

genotypic diversity (e.g., HS, HT), as we see with our results (Balloux et al., 2003).  

However, despite its explanatory ability, we cannot conclusively identify asexuality 

as a main cause of the observed genetic patterns given that evidence of its effect (e.g., 
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heterozygote excess at single loci) is not available to investigations using dominant 

molecular markers (Balloux et al., 2003).  Short evolutionary history can also explain 

low levels of species-wide differentiation at high latitudes (Odasz & Savolainen, 

1996; Max et al., 1999; Pamilo & Savolainen, 1999).  For many high latitude 

populations, the period since glacial retreat may have been too short for many 

population processes to have reached equilibrium (Varvio et al., 1986; Pamilo & 

Savolainen, 1999).  With the presumed frequency of clonality in arctic plants, both of 

these processes may be operating interactively to reduce levels of genetic 

differentiation within some high latitude species. 

 

Genetic structure 

 

As previously mentioned, the overall measure of genetic differentiation was low (θII = 

0.085), particularly when compared to the φST value (0.35 ± 0.18) reported by Nybom 

(2004) as an average for intra-specific ISSR studies.  However, our result is 

comparable to the average species-wide FST estimate from other high latitude species 

(0.036; Hamrick & Godt, 1989).  The θII estimates are consistent with the results of 

an AMOVA (Table 4.4) and a PCoA (Fig. 4.3), which report that most of the 

variation in the data set is accounted for by differences among individuals within 

populations.  There is no statistical support (see results of ISSR v geographic distance 

Mantel test) for the hypothesis that levels of genetic differentiation were the result of 

isolation-by-distance (Wright, 1943).  Again, we attribute this pattern largely to 
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recent population establishment and, perhaps also, the fixation of ancestral allele 

frequencies by of asexual reproduction. 

 

Glacial refugia and post-glacial migration 

 

The Pleistocene history of glaciation in northwestern North America is complex 

(Heusser, 1960).  Over a period of two million years this region experienced four 

major glacial stages (i.e., Nebraskan, Kansan, Illinoian, Wisconsin), the most recent 

of which, Wisconsin, reached its maximum extent about 18 kya (Trenhaile, 2004).  

Throughout each of these stages large ice-sheets covered much of northern North 

America (Pielou, 1991).  The arctic, boreal, and north temperate plant species that 

occur in high latitude environments today are descendants of ancestors that survived 

these glaciations in ice-free areas, known as glacial refugia (Pielou, 1991).  Two of 

the largest and most important refugia in western North America were the Southern 

refugium (Darwin, 1859), which consisted of the entire region south of the Laurentide 

and Cordilleran glaciers, and Beringia (Hultén, 1937), which includes large tracts of 

what is today Alaska and the Yukon Territory.  Additional, smaller refugia existed 

along the coasts of British Columbia and southern Alaska, as well as possibly in the 

southern Canadian Rocky Mountains (Heusser, 1960; Loehr et al., 2005).  The use of 

molecular data to determine the role of these North American refugia has become 

commonplace (e.g., Tremblay & Schoen, 1999; Eidesen et al., 2007; Marr et al., 

2008) and this accumulating information provides the basis for further formulation of 
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genetic predictions given specific historical scenarios.  In the following, we discuss 

the putative roles (i.e., glacial refuge or area of recolonization) of sampled geographic 

regions as determined by patterns of genetic variation. 

 

Alaska/Yukon 

 

Alaska and the Yukon Territory form the western portion of the Beringia refugium 

(Hultén, 1937).  Paleontological and molecular evidence (Hopkins, 1967; Abbott et 

al., 2000; Abbott & Brochmann, 2003) confirm both the existence of arctic plant 

species in the area throughout the Wisconsin glaciation (115-15 kya) and the region’s 

role as a center for post-glacial recolonization.  Thus, we expected Alaska/Yukon 

populations of C. tetrandrum to exhibit comparatively high levels of genetic diversity 

(Table 4.1) and differentiation among populations (Table 4.3), reflecting long-term 

persistence and large population sizes (Hewitt, 2004).  The results, however, show 

very low levels of genetic diversity (Table 4.1) and differentiation within the region 

(Table 4.3), patterns that are more consistent with scenarios of rapid range expansion 

or recent bottleneck events, or both (Ibrahim et al., 1995; Hewitt, 1996).  Given then, 

a scenario of recent range expansion, it is difficult to determine if contemporary 

Alaska/Yukon populations are derived from Beringian ancestors or non-Beringian 

migrants that moved into Alaska following glacial retreat.  If the former is correct, the 

high levels of genetic differentiation between this region and others, evidenced by θII 

estimates and private band numbers, strongly suggest that those resident Beringian 
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populations did not serve as important sources of post-glacial recolonization for this 

species.  

 

Washington 

 

Sampled Washington populations occur at the northern edge of the southern refugium 

and perhaps also served as a source of post-glacial recolonization (Heusser, 1960; 

Soltis et al., 1996).  While genetic diversity estimates (Table 4.1) provide 

inconclusive evidence of a refugial history for this region, low levels of genetic 

differentiation between these populations and the Canadian ranges suggest recent 

connections or the presence of recurrent gene flow (Cruzan & Templeton, 2000).   

 

British Columbia and Alberta 

 

Most of British Columbia and Alberta were completely glaciated as late as 10 kya 

(Heusser, 1960; Trenhaile, 2004) and the contemporary C. tetrandrum range in these 

regions is expected to have been established during a period of post-glacial 

recolonization.  Generally, low levels of genetic diversity and differentiation would 

characterize a scenario of recent range expansion, however, if populations in these 

areas are derived from separate refugia they may exhibit comparatively high levels of 

differentiation (Hewitt, 1996; Marr et al., 2008).  In fact, the results are consistent 

with both explanations.  British Columbia populations maintain low levels of genetic 
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diversity and differentiation, while Albertan populations show much higher levels of 

intra-regional divergence.  The relatively low levels of differentiation between 

Alberta and both British Columbia and Washington suggest that either of the latter 

regions served as one source of migrants during the recolonization process.  The other 

putative refugial source is not known, though it may be the unglaciated portion of the 

southern Canadian Rockies that occurred between the Laurentide and Cordilleran 

glaciers (Packer & Vitt, 1974; Loehr et al., 2005). 

 

Colorado and Montana 

 

According to Weber (2003), Colorado and possibly Montana populations of C. 

tetrandrum may be oroboreal relicts from the late Tertiary (2-3 mya).  This suggests a 

considerable period of isolation for these populations and would require high levels of 

differentiation from the main distribution (Hewitt, 1996).  While the levels of 

divergence are higher than most in the data set, they do not demonstrate conclusively 

a long period of isolation, certainly no more in some cases than that experienced by 

the Alaskan populations.  The high levels of differentiation and genetic diversity are 

consistent with long-term persistence in this region (Hewitt, 2004; Abbott et al., 

2000). 

 

Morphological variation 
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In predominant self-pollinating species, recombination rates are decreased and the 

persistence of linkage disequilibrium is increased (Jain, 1976; Flint-Garcia et al., 

2003).  Thus, compared to predominant outcrossing species, self-pollinators are 

expected to exhibit stronger associations between neutral genetic and morphological 

variation (Price et al., 1984).  However, we find that ISSR variation is not correlated 

with morphological variation in C. tetrandrum.  This non-association may be 

attributed to the independent segregation of genetic and quantitative trait loci, perhaps 

due to some sexual reproduction in populations, or the highly plastic nature of 

measured morphological traits. 

 

Mixed populations 

 

The North American range of C. tetrandrum becomes sympatric with those of its 

sister species, C. iowense (in western Alberta) and C. rosendahlii (on arctic coast).  

Packer (1963) posited that habitat differences between these species were not 

substantial and that, while they had not yet been found, there was no reason that 

mixed populations could not occur.  In this study, we identified mixed populations 

between C. tetrandrum and C. iowense and C. tetrandrum and C. rosendahlii.  

However, despite the spatial proximity of these conspecific individuals, there exist 

some compelling barriers to inter-specific gene flow.  These barriers include different 

chromosome numbers for each species and predominantly selfing mode of 

reproduction (Warming, 1909; Packer, 1963).  We found no evidence of 
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morphological intermediates in any of the mixed populations that might suggest 

hybrid ancestry.  Likewise, genetic analyses were largely unable to exhibit evidence 

of gene flow.  One individual in the C. tetrandrum-C. iowense mixed population was 

identified with high confidence as a backcross.  This result is not compelling evidence 

of widespread gene flow, but should promote further investigation of these mixed 

populations, especially with regard to chromosome numbers.   
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Table 4.1 Population sampling information of Chrysosplenium tetrandrum including 
population sample sizes for morphological and genetic analyses, numbers of private 
bands (PB), percentage of polymorphic loci (PL), average pair-wise morphometric 
distance (APD), average panmictic heterozygosity (HS), and total panmictic 
heterozygosity (HT).  Ninety-five percent Bayesian credible intervals are indicated in 
parentheses following heterozygosity values.  Significance of heterozygosity 
estimates are indicated by an asterisk. 
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Table 4.2 Four dye-labeled ISSR primers used to genotype Chrysosplenium 
tetrandrum. 
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Figure 4.3 Symmetrical matrix of pairwise θII comparisons among geographic 
regions of the western North American range of Chrysosplenium tetrandrum.  Values 
in boxes are within region comparisons.  Significant differences among within-region 
comparisons are indicated by superscript letters A and B and differences among 
between region comparisons within columns are indicated by superscript letters W, 
X, Y, and Z. 
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Table 4.4 Results of a locus-by-locus AMOVA performed on populations of the 
western North American range of Chrysosplenium tetrandrum. 
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Figure 4.1 Map shows the species distribution of Chrysosplenium tetrandrum, as 
well as sampling locations for 40 populations analyzed in this study. 
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Figure 4.2 Principal coordinates analysis (PCoA) of ISSR profiles.  The first three 
axes are represented in two 2-dimensional graphs.  Chrysosplenium tetrandrum 
individuals are coded by shape and color according to geographic origin. 
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Figure 4.3 Principal components analyses (PCA) of morphological data.  The result 
on the left is from analysis between Chrysosplenium tetrandrum and C. rosendahlii 
and the result on the right is from a C. tetrandrum and C. iowense comparison.  The 
arrow indicates the individual, which was recovered with high probability as a C. 
tetrandrum backcross. 
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CHAPTER FIVE: 

NEI’S TO BAYES’: COMPARING COMPUTATIONAL METHODS 
AND GENETIC MARKERS FOR ESTIMATING PATTERNS OF 
GENETIC VARIATION IN TOLPIS (ASTERACEAE) 
 

Abstract 

 

Accurate determination of patterns of genetic variation provides a powerful 

inferential tool for studies of evolution and conservation.  For more than 30 years, 

enzyme electrophoresis was the preferred method for elucidating these patterns.  As a 

result, evolutionary geneticists have acquired considerable understanding of the 

relationship between patterns of allozyme variation and aspects of evolutionary 

process.  Myriad molecular markers and statistical analyses have since emerged, 

enabling improved estimates of patterns of genetic diversity.  With these advances, 

there is a need to evaluate results obtained with different markers and analytical 

methods.  We present a comparative study of gene statistic estimates (FST, GST, FIS, 

HS, and HT) calculated from an ISSR and an allozyme data set derived from the same 

populations using both standard and Bayesian statistical approaches.  Significant 

differences were found between estimates, owing to the effects of marker and 

analysis type.  Most notably, FST estimates for codominant data differ between 

Bayesian and standard approaches.  Levels of statistical significance are greatly 

affected by methodology and, in some cases are not associated with similar levels of 
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biological significance.  Our results suggest that caution should be used in equating or 

comparing results obtained using different markers and/or methods of analysis.    

 

Introduction 

 

The patterns of genetic variation within and among populations are of interest to 

diverse fields in plant biology including population genetics, systematics, and 

conservation.  For the past four decades, following the demonstration of the utility of 

enzyme electrophoresis (Harris, 1966; Hubby & Lewontin, 1966; Lewontin & Hubby, 

1966), there has been an ever-increasing use of various types of molecular markers to 

assess genetic variation.  The basic rationale for molecular markers replacing earlier 

approaches such as quantitative characters as a means of assessing genetic variation is 

the more direct equation between genotype and phenotype obtained with molecular 

methods (Lewontin & Hubby, 1966; Schulman, 2007).  However, as the science has 

progressed, considerations of improved efficiency and sensitivity have promoted the 

development of new molecular markers, many of which present significant analytical 

challenges to accurately assessing genetic variation (Sunnucks, 2000).  Although 

ongoing developments in statistical analyses offer the potential to overcome these 

challenges, there is still a general inability to knowledgeably compare analogous 

estimates derived from different marker classes and/or statistical methods (Bonin et 

al., 2007). 

 



 91 

For more than four decades, allozyme markers have been an invaluable tool for 

studies of evolutionary genetics, providing plant biologists with a straightforward, 

low cost means of estimating levels of intra-specific genetic variation (Cruzan, 1998).  

Allozymes produce codominant data, which permit direct observation of allele 

frequencies at allozyme loci and can be used rather simply to calculate various gene 

statistics (Hubby & Lewontin, 1966; Lewontin & Hubby, 1966; Hamrick, 1989; 

Weeden & Wendel, 1989).  In addition, because of the highly conserved nature of 

allozyme loci in flowering plants (Gottlieb, 1982) homologous loci can be compared 

between closely related species.  Practical advantages of allozymes include the 

relative procedural simplicity and low cost of the method (Clegg, 1989).  Because of 

the large database that has accrued for allozymes, their estimated patterns of variation 

can be compared among plants with different ecological and life history traits (e.g., 

Hamrick & Godt, 1989).  One of the major criticisms of allozyme data concerns the 

level of genome sampling; allozyme variation can only be determined for protein-

coding genes (many of the assays are for enzymes of glycolysis and the citric acid 

cycle) of which, in plants, there is a rather small (~ 40) potential pool of useful 

candidates (Clegg, 1989; Wendel & Weeden, 1989).  This number is further reduced 

for within-species studies where often only about 50% of the loci are polymorphic 

(Hamrick & Godt, 1989).  In addition, variation at each of these loci may only be 

detected if it affects the electrophoretic mobility of the enzyme with the standard 

conditions employed (Lewontin & Hubby, 1966; Clegg, 1989).  As much as 20% of 

the base substitutions may go undetected (Coates & Byrne, 2005).  Allozyme 
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variation is often absent in groups of recently radiated taxa for which allozymes 

frequently provide limited and/or imprecise estimates of population genetic structure 

(e.g., Schwartz, 1985; Crawford et al., 1987). 

 

In contrast to allozymes, arbitrarily amplified DNA (AAD) methods (e.g., AFLP, 

inter-simple sequence repeat, and random amplified polymorphic DNA) are able to 

produce large data sets, especially when loci are visualized using polyacrylamide 

gels.  These loci presumably represent neutral, rapidly evolving regions from across 

the genome (Clegg, 1989; Huang & Sun, 2000; Krauss, 2000; Archibald et al., 2006).  

Very small amounts of plant material are needed for these markers, making them 

ideal for use with rare species.  Utilizing PCR, AAD methods amplify a specific 

region of DNA or ‘allele’, which is visualized on an electrophoretic gel as a band 

presence or absence.  Because band presence can indicate either the dominant 

homozygote or heterozygote, genotype and allele frequencies cannot be directly 

determined and estimation of gene statistics can be problematic (Meudt & Clarke, 

2007).  This represents a significant disadvantage compared to allozymes.  However, 

the increased level of variation often seen with AAD markers and the increased ease 

of obtaining the required amount of plant material has led to these markers being 

preferred over allozymes in many studies; particularly in cases where genetic 

variation within and among populations and/or species is low (Crawford et al., 1994; 

Crawford et al., 2001). 
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Although codominant markers like allozymes are preferred for most genetic 

studies, especially those that calculate statistics requiring knowledge of allele 

frequencies, recently developed analytical techniques have allowed researchers to 

take greater advantage of the benefits of dominant markers (Krauss, 2000; Bonin et 

al., 2007).  The traditional approach to estimating levels of population structure with 

allele frequency data has typically involved the use of F-statistics (i.e., FIT, FIS, FST).  

These were originally defined by Wright (1943; 1951) and based on correlations 

between uniting gametes at different hierarchical levels, total population (T) and 

population subdivision (S).  Nei (1973; 1977), seeking to expand the use of Wright’s 

F-statistics beyond a single locus two allele system, redefined them as functions of 

partitioned gene diversity and calculated levels of inbreeding (FIS and FIT) and 

genetic differentiation (GST) using measures of observed (HO) and expected (HS and 

HT) heterozygosity.  Nei’s (1973) coefficient of gene differentiation, GST, is a multi-

locus, multi-allele equivalent of Wright’s FST.   

 

Though F-statistics have been used extensively with codominant data, the 

methodological requirement of allele frequency estimates has made their application 

to dominant data problematic.  Bayesian statistical analysis is an approach that is 

increasingly applied to evolutionary genetic studies because it ostensibly offers 

investigators the ability to overcome some of the analytical shortfalls of dominant 

data sets (Zhivotovsky, 1999; Holsinger et al., 2002).  One of the more prominent 

implementations of Bayesian statistics to the analysis of dominant data is the method 
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described by Holsinger et al. (2002).  The method is based on a Bayesian hierarchical 

model and directly estimates an FST analogue (θB) from dominant or codominant data, 

while incorporating the effect of uncertainty in inbreeding (FIS) on this estimate 

(Holsinger et al., 2002).  Holsinger et al. (2002) has demonstrated that this method 

produces reliable estimates of FST (although see Bonin et al., 2007) and allele 

frequencies without the assumption of a known inbreeding coefficient, which is 

required by other approaches (Lynch & Milligan, 1994; Zhivotovsky, 1999).  By 

using the Bayesian estimate of mean allele frequency to calculate expected panmictic 

heterozygosities (HS and HT), the method is also able to produce an estimate of Nei’s 

GST, known as GST
B.  Under this framework, θB corresponds to a random-effects 

model of population sampling, which produces estimates from all potentially sampled 

populations and presumably reduces sampling error (Weir, 1996, p. 162; Holsinger, 

1999).  Alternatively, the GST
 B estimate corresponds to a fixed-effects model and is 

derived from all actually sampled populations (Weir, 1996, p. 162; Holsinger, 1999).  

Unlike standard implementations of the random-effects model (i.e., Weir and 

Cockerham, 1984), the Bayesian method is able to use it without a specified model of 

population divergence (Holsinger, 1999). 

 

Despite their respective limitations, both allozyme and dominant data offer 

viable, low cost alternatives to more resource intensive methods (e.g., microsatellites; 

Schulman, 2007; Agarwal et al., 2008).  At present, the greatly increased use of 

dominant markers over allozymes and the aforementioned large database available for 
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allozymes provides the potential to compare results from the two types of markers 

and relate them to many traits of plant ecology and life history.  However, the 

relationships among analogous gene statistics derived from different marker classes 

and statistical methods are not well known.  A better understanding of the 

comparability of gene statistic estimates derived from different methods will allow a 

more complete synthesis of the knowledge accumulated throughout more than 40 

years of molecular genetic research.  The opportunity for researchers to employ the 

full body of this knowledge will benefit a broad range of studies across the fields of 

plant genetics, systematics, and conservation, placing in a larger biological context 

the results of newer methods of data production and analysis.   

 

For insight into the relationships among gene statistic estimates, comparisons of 

these estimates should be conducted across a broad range of biological conditions 

(i.e., patterns of genetic variation) and include empirical data for both codominant 

and dominant markers from the same populations.  The purpose of this study was to 

respond to this need for comparative data among different commonly used markers 

and methods of analysis.  We present a comparison of analogous estimates of FST, 

GST, FIS, and expected heterozygosity derived from dominant (inter-simple sequence 

repeat, ISSR) and codominant (allozyme) data sets for the angiosperm genus Tolpis 

(Asteraceae) using the Holsinger et al. (2002) Bayesian method, as well as standard 

approaches to codominant and dominant data.  Tolpis represents a recent radiation for 

which both dominant and codominant data have been used to assess genetic 
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relationships among taxa, as well as other aspects of species biology (Crawford et al., 

2006; Archibald et al., 2006).  By comparing specific estimates (Table 5.1), our goal 

was to determine patterns of relationships among analogous gene statistics and 

provide additional information as to the operation of Bayesian analysis when applied 

to individual empirical studies. 

 

Materials and methods 

 

Data 

 

Tolpis (Asteraceae) is a Macaronesian and Mediterranean angiosperm genus, of 

which the majority of species represent a recent radiation within the Canary Island 

archipelago (Park et al., 2001; Crawford et al., 2006).  From this Canarian radiation, 

we sampled 15 populations across five species (Table 5.2), constituting the bulk of 

the so-called T. laciniata-T. lagopoda complex (Archibald et al., 2006; Crawford et 

al., 2006).  This complex comprises a high level of morphological and ecological 

variation, though all species share a perennial habit and are highly self-incompatible 

(Crawford et al., 2008).  Tolpis laciniata and T. lagopoda, in particular, form large 

outcrossing populations (Crawford et al., 2006). 

 

Individuals from each of the 15 populations sampled were genotyped at 10 

polymorphic allozyme loci (GPI-2, PGM-1, TPI-1, TPI-2, PGD-1, PGD-2, GDH, 
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AAT-2, AAT-3, MDH-3) and at 1510 polymorphic ISSR loci.  Protocols for enzyme 

electrophoresis and ISSR amplification and scoring are described in Crawford et al. 

(2006) and Archibald et al. (2006), respectively.  Population sample sizes varied 

between marker classes.  The allozyme data set averaged 17 individuals per 

population (range, 6-29), while the ISSR data set averaged almost eight individuals 

per population (range, 3-14).  All 10 allozyme loci had three or more alleles (seven 

maximum) at a locus.   

 

Analyses 

 

Allozyme data were analyzed using both the Bayesian approach implemented in the 

program HICKORY v1.1 (Holsinger & Lewis, 2003) and the standard methods 

described by Nei and Chesser (1983), which were manually calculated.  HICKORY 

estimates the Bayesian analogue of Weir and Cockerham’s (1984) FST and Wright’s 

FIS (1951), designated in the program as θII and ƒ, respectively (Holsinger, 1999; 

Holsinger et al., 2002; Holsinger & Lewis 2003).  It also provides estimates of Nei’s 

(1973) average expected panmictic heterozygosity (HS), total expected panmictic 

heterozygosity (HT), and coefficient of gene differentiation (GST), denoted by GST
B.  

Bayesian analyses of the codominant allozyme data set in HICKORY were performed 

with default parameter settings (burn-in = 50 000, sampling = 250 000, thinning = 50) 

under the full model analysis, which provides estimates of both θII and ƒ.  Nei and 

Chesser’s (1983) methods produce unbiased estimates of GST, FIS, HS, and HT.  The 
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GST statistic is a multi-locus, multi-allele estimate of Wright’s FST (Nei, 1973) and is 

often (as in the cases of Hall et al., 1994; Yeh et al., 1997) designated as the latter for 

ease of discussion.  For this reason, we too refer to this estimate as FST.  However, 

considering its statistical affinity we compared it to both θII and GST
B. 

 

The ISSR data set was analyzed using HICKORY, under both the ƒ-free and full 

model options and with ARLEQUIN v3.1 (Excoffier et al., 2005).  Under HICKORY’s 

full model, estimates of ƒ influence those of θII and vice versa (Holsinger et al., 

2002).  Because estimates of ƒ have been shown to be unreliable when calculated 

from dominant data sets, especially with small population sample sizes, Holsinger 

and Lewis (2003) suggest that under these conditions the ƒ-free model, which 

removes the constraints of ƒ on θII estimation, may be more appropriate.  Both of 

these analyses were performed under the default parameter settings described above.  

Two replicate runs of each HICKORY analysis, for both marker classes, were produced 

to ensure convergence of the Markov chain Monte Carlo (MCMC) sampler. 

 

In ARLEQUIN, a locus-by-locus analysis of molecular variance (AMOVA) 

produced locus-specific estimates of φST, which is an FST analogue based on pair-wise 

squared Euclidean distances (Excoffier et al., 1992; Excoffier et al., 2005).  The 

average of these individual values was calculated to produce the multi-locus estimate 

reported in the results.  The AMOVA is a commonly used method for producing 

estimates of genetic differentiation from dominant data. 
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Statistical comparisons among estimates were conducted using 95% Bayesian 

credible intervals and confidence intervals for individual estimates.  In HICKORY, the 

production of a sample log file during analysis allowed a statistical comparison of θII 

and ƒ estimates (described in Holsinger & Wallace, 2004) using the posterior 

comparison option.  Pairwise comparisons involving non-Bayesian estimates required 

the calculation of a 95% confidence interval (Zar, 1999), which could be compared to 

a similar Bayesian credible interval.  Estimates were considered statistically different 

if each confidence/credible interval did not overlap the other estimate’s mean value.   

 

The following comparisons (summarized in Table 5.1) were considered for 

statistical analysis and discussion: i. comparison between Bayesian and standard 

analyses of an allozyme data set; ii. comparison between models of Bayesian analysis 

applied to an ISSR data set; iii. comparison between Bayesian and AMOVA 

estimates applied to an ISSR data set; iv. comparison between ISSR and allozyme 

estimates produced by Bayesian analyses.  

 

Sample size differences 

 

Population sample size is an important factor in gene statistic estimation and 

differential sampling of a given population or set of subpopulations may yield 

disparate estimates of genetic structure (Bonin et al., 2007).  In this study, differences 
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in population sample sizes between marker classes could potentially account for 

differences in estimates of population parameters between those classes.  To 

determine if, and in what way, the differences in sample size between the ISSR and 

allozyme data sets have influenced estimates of genetic differentiation in this study, 

the following analyses were conducted: 1.) populations with ISSR sample sizes of 

three individuals (i.e., 17 and 1869; Table 5.2) were removed from the allozyme and 

ISSR data sets and FST and/or θII were recalculated for both; 2.) population sample 

sizes in the allozyme data set were reduced, randomly, to equal the corresponding 

sample sizes in the ISSR data set, then FST and θII estimates were recalculated. 

 

Data simulation and analysis 

 

Two data simulation studies were conducted to address aspects of Bayesian gene 

statistic estimation that surfaced in the results of our analyses of the empirical data 

sets.  Simulation study 1 was designed to investigate divergent allozyme FST 

estimates for standard and Bayesian methods, while simulation study 2 addressed the 

effects of sample size on accurate ƒ estimation with dominant data. 

 

Simulation study 1 

 

The program EASYPOP v1.7 (Balloux, 2001), a forward-time simulator employing an 

individual based model of evolution, was used to produce 110 codominant data sets.  
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Evolution was simulated at 15 multiallelic loci (i.e., with five alleles each) for four 

populations of 100 diploid individuals each and 20 individuals per population were 

randomly subsampled for analysis.  There was no migration, mutation, or selfing, and 

mating was random.  Simulation durations (i.e., number of generations) were varied 

to produce different final FST values.  Each of the data sets was analyzed using a 

standard approach in the program POPGENE v1.32 (Yeh and Boyle, 1997; Yeh et al., 

1997) and the Bayesian full model from HICKORY.  The differences between the 

FST/GST estimates produced by these methods were plotted against the simulated FST. 

 

Simulation study 2 

 

Using the program EASYPOP v1.7 (Balloux, 2001), we simulated five data sets at each 

of five FST value ranges (0.01-0.1, 0.275-0.325, 0.4-0.45, 0.55-0.6, 0.8-0.85) for four 

different sample sizes (20, 50, 100, and 200 individuals).  Data sets consisted of 10 

populations of 500 individuals each.  Each population was randomly subsampled to 

produce the sample sizes listed above.  Individuals’ genotypes comprised 100 

biallelic loci, which were converted to dominant data.  Simulated FIS values ranged 

between 0.13 and 0.15.  Evolution input parameters for simulations included: no 

migration, no mutation, and a 0.25 selfing value.  Simulated data sets were analyzed 

in HICKORY under the full model. 

 

Results 
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FST and GST 

 

Our estimates of FST differed according to analytical method (Fig. 5.1).  The standard 

method (AS; see Table 5.1 for designation of methods) estimate for allozymes (0.388 

± 0.22) exceeded all three of the Bayesian θII values, including that produced (0.172 ± 

0.017) for the same allozyme data set (AB).  Different model analyses of ISSR data in 

HICKORY produced significantly different results for θII (IB, 0.165 ± 0.003; IBf, 0.147 

± 0.007), though neither could be distinguished statistically from the AB estimate.  

The AMOVA-based φST estimate (IS, 0.137 ± 0.151) was statistically different from 

the IB estimate, but not from that of IBf. 

 

Only one of the listed methods (IBf) produced statistically overlapping estimates 

of GST and FST, and comparisons among GST estimates gave slightly different results 

than those with FST (Fig. 5.1).  Most notable among these results, the GST
B estimate 

for AB (0.258 ± 0.018) was not found to be different from the AS estimate reported 

above.  The IBf (0.138 ± 0.008) and IB (0.157 ± 0.003) methods produced 

significantly different estimates of GST
B and each differed from the AB estimate. 

 

The effect of sample size differences between data sets was investigated by 

altering, either through the removal of whole populations or individuals within 

populations, the sample design of the full data analysis and recalculating FST and θII 
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values. The removal of populations 17 and 1869, each with an ISSR sample size of 

three, produced estimates for AS, AB, and IBf that were not significantly different from 

the corresponding values in the full data analysis.  Reducing population sample sizes 

in the allozyme data set did not significantly change the AS FST estimate (0.439), but 

did lower the AB θII estimate (0.129) as compared to the full data analysis. 

 

In simulation study 1, we found a strong positive linear relationship (Fig. 5.2) 

between the difference in FST estimates and the simulated FST.  We observe the same 

positive relationship for Bayesian GST
B estimates (Fig. 5.3), though the increase in the 

difference between estimates over the span of FST values is of a much smaller 

magnitude. 

 

FIS 

 

Mean estimates of inbreeding based on allozymes (AS, 0.317 ± 0.339; AB, 0.28 ± 

0.037) are not statistically distinguishable (Fig. 5.4).  The ISSR-based Bayesian 

estimate (IB, 0.999 ± 0.0009) produced by the full model analysis is extremely high 

and is not corroborated by any other biological data.  

 

From simulation study 2, we report the average difference between ƒ and the 

simulated FIS for each FST value and sample size (Fig. 5.5).  We found that increasing 

sample size up to 200 individuals per population had little effect on the accuracy of ƒ 
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estimation.  While changing FST values did affect the relationship of simulated and 

estimated FIS values, it, likewise, did not result in a change in the accuracy of the 

Bayesian ƒ estimate.   

 

Expected heterozygosity 

 

Average expected panmictic heterozygosity (HS) estimates differ between model runs 

(IB, 0.173 ± 0.0008; IBf, 0.147 ± 0.007) conducted on ISSR data (Fig. 5.6).  Both of 

these values also differ from the AB estimate (0.228 ± 0.007).  The large degree of 

error surrounding the AS estimate (0.194 ± 0.175) does not allow it to be 

distinguished from the other estimates, despite, in some cases, large differences in 

mean value.  This is also the issue when considering individual population HiS 

estimates (Fig. 5.7), where the AS estimate is almost never statistically different from 

the AB value, except in the case of populations 6 and 1883.  Comparisons made 

among HICKORY-based heterozygosity estimates for individual populations show 

consistently that there are differences between model runs and data sets.  The 

Bayesian total pooled expected heterozygosity (HT) estimates differed between 

models and data sets (IB, 0.2047 ± 0.001; IBf, 0.1707 ± 0.009; AB, 0.307 ± 0.008; Fig. 

5.8).  While the AS estimate of HT (0.316 ± 0.229) is most similar to that of the AB 

method, it cannot be distinguished from any of the three Bayesian HT estimates. 

 

Discussion 
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The increasing use of recently developed molecular genetic markers and their 

concomitant statistical analyses necessitates an improved understanding of the 

comparability of genetic estimates across various methodological approaches.  Such 

an understanding is especially important given the wealth of genetic and life history 

information that is restricted to interpretations of allozyme data sets, now that 

allozymes are being increasingly supplanted by AAD and other markers.  However, 

despite a number of comparative reviews of molecular markers (e.g., Nybom & 

Bartish, 2000; Nybom, 2004; Coates & Byrne, 2005), there are few (e.g., Virk et al., 

2000) that conduct exhaustive comparisons of alternative marker data sets produced 

from identical populations and under similar analytical conditions.  Even more rare 

are studies in which both different markers and different methods of analysis have 

been compared (Holsinger & Wallace, 2004).  In order to contribute to the overall 

understanding of relationships among analogous gene statistic estimates, we 

conducted a narrowly focused, comparative study of a set of gene statistics calculated 

in three different analytical environments from empirically derived dominant and 

codominant data.  The study shows that estimates differ between analytical method 

and marker type, though not always in the manner suggested by the literature.  

 

Consider first the confidence with which estimates of population differentiation 

obtained by different markers and analyses can be compared.  The apportionment of 

genetic diversity within and among populations is one of the most important measures 
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for biologists because it is broadly informative.  For example, it is often employed in 

conservation strategies aimed at preserving maximum genetic diversity in a species, 

specifically as an aid to identifying genetically distinct (e.g., highly differentiated) 

elements within a species.  Estimates of genetic differentiation among populations 

based on allozymes are available for a multitude of taxa, and the level and pattern of 

differentiation are often associated with a variety of life history attributes, especially 

breeding system (Hamrick & Godt, 1989).  However, the lack of variation at 

allozyme loci, particularly in rare species, may preclude calculations of genetic 

differentiation.  In these cases it would be advantageous to determine whether 

estimates of differentiation from AADs are comparable to estimates from allozymes 

for species with similar life history and ecological attributes. 

 

FST and GST 

 

The FST statistic estimates the level of population differentiation based on the degree 

of fixation of alleles among populations, and is subject to the effects of selection, 

drift, and mutation.  The influence of these processes is an important consideration in 

comparing statistical estimates produced by different molecular markers.  The 

expected differences in the detectable rate of mutation and level of selective control 

operating at allozyme and AAD loci may contribute to divergence in FST estimates 

between these marker classes.  In fact, under a broad range of conditions, mutation 

rate appears to be the prime factor in determining the degree of genetic differentiation 
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among populations, with higher mutation rates corresponding to lower FST values 

(Hedrick, 1999; Fu et al., 2003; Holsinger & Wallace, 2004).  Despite the presumably 

higher mutation rates in AAD markers than in allozyme markers, we did not find that 

the ISSR data set produced a comparably lower θII estimate than the allozymes (Fig. 

5.1).  Although not consistent with the expected result, this finding does not appear to 

be uncommon in genetic studies employing both allozymes and AAD markers and 

may reflect the influence of other evolutionary processes (e.g., natural selection or 

genetic drift; Zeng et al., 2003; Volis et al., 2005).   

 

However, when we consider estimates of GST
B, we find that the amount of 

genetic differentiation in the ISSR data set is significantly lower than it is in the 

allozyme data set (Fig. 1).  A similar relationship is revealed when comparing the AS 

estimate to the IBf or IB θII estimates, and both of these findings reflect the expected 

pattern of genetic differentiation under the assumption that a differential mutation rate 

between marker types is a strong determining force.  In addition, the non-significant 

difference between allozyme and ISSR θII estimates, which contradicts the expected 

result, seems to be more a product of the Bayesian method employed, than an 

indication of biological reality.  This explanation is supported by the results of our 

simulated data study, which demonstrate that as “true” FST values become larger in a 

codominant data set HICKORY will underestimate levels of genetic differentiation to an 

increasingly greater degree (Figs. 5.2 and 5.3).  We are unsure of the reason for the 

underestimation by θII, but suggest that it may be caused by the random-effects 
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sampling model implemented in HICKORY.  Random-effects estimates of θII are 

calculated from Bayesian estimates of allele frequency in all potentially sampled 

populations (Holsinger, 1999).  In a standard analysis of variance approach, the 

random-effect model is expected to produce smaller test statistics relative to the 

fixed-effect model by increasing mean square values (Weir, 1996, p. 162).  This 

expectation is supported by the findings of simulated data study 1, which generally 

produced larger estimates of GST
B (i.e., fixed-effect estimate) when compared to θII 

(Figs. 5.2 and 5.3). 

 

Statistically significant differences observed between full and ƒ-free model 

ISSR-based estimates of θII and GST
B may be due to the confounding effects of 

erroneous ƒ estimates under the full model (Holsinger & Lewis, 2003).  However, 

despite statistical significance the respective mean estimates of these models do not 

differ substantially.  In fact, the statistically significant finding is almost definitely 

due to the large number of ISSR loci used in these analyses, illustrating the 

occasional discordance between statistical and biological significance (Hedrick, 

1999). 

 

Our manipulation of population and individual sampling produced only slight, 

and mostly nonsignificant, changes in FST estimates for both allozymes and ISSRs, 

and in no circumstance did it change relationships among estimates.  Given this, we 

conclude that differences in sample size between data sets seem to have played little 
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role in producing the divergent estimates of FST in allozymes and ISSRs that were 

observed.   

 

While our results for the Tolpis data sets cannot be viewed as generally 

applicable guidelines for estimating population differentiation, several comments are 

warranted.  The most significant finding is the difference between Bayesian and 

standard estimates of FST for codominant markers.  While the underlying statistical 

affinities of these procedures do differ, it appears more likely that the influence of 

some component(s) of the HICKORY implementation (e.g., the random-effects 

sampling design) is primarily responsible for the significant differentiation between 

these estimates.  Alternatively, the close approximation of the Bayesian GST
B estimate 

to the standard FST (Fig. 5.3), both of which are based on the unbiased GST statistic of 

Nei and Chesser’s (1983), suggests that these are much more comparable values.  

Thus we caution against comparing allozyme-based FST values estimated from a 

standard method to those from the Bayesian procedure implemented in HICKORY.  

With regard to estimates of population differentiation (θII and GST
B) from ISSR 

markers, significantly different, but very similar values were obtained with the full 

and ƒ-free models.  Given the possible confounding effects of erroneous ƒ estimates 

under the full model (Holsinger & Lewis, 2003), in view of our results, we 

recommend using the ƒ-free model.  Or, if both models are used and substantially 

different results are obtained, more confidence should be placed in results from the ƒ-

free model.  Comparison of population differentiation estimates between codominant 
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and dominant markers is not straightforward because of the aforementioned issues 

with both the methods and markers. However, given that our simulation study 

suggests that, with codominant data, GST
B is a better approximation of Nei and 

Chesser’s (1983) unbiased FST than is θII, it may be more meaningful to use this 

statistic for comparison with dominant data as well.  Finally, considering our results 

as well as those of a more extensive review conducted by Bonin et al. (2007), we find 

that the AMOVA-based φST estimate, a commonly used approach for dominant data, 

is generally quite similar to the θII value estimated under the ƒ-free model of 

HICKORY.  Nevertheless, we believe it is prudent, given the limited investigation into 

the comparability of these statistics and the ease of formatting for their respective 

analyses, for one to calculate both estimates for dominant data sets and compare only 

like statistics. 

 

FIS 

 

Our results for inbreeding are quite clear in demonstrating that the co-dominant 

allozyme markers, whether using standard or Bayesian analyses, are to be preferred 

over AAD markers.  These results are not surprising as Holsinger and Lewis (2003) 

cautioned that dominant data might not be appropriate for estimating ƒ, at least under 

the tested Bayesian framework.  Though Holsinger and Lewis (2003) did suggest that 

a large sample size might overcome these issues, our own simulations show no 

evidence of this.  Even at sample sizes of 200 individuals per population, we found 
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significant differences between estimated ƒ and the expected (i.e., simulated) value 

(Fig. 5.5).  This result suggests that estimating ƒ in HICKORY with dominant data is 

largely uninformative. 

 

Expected heterozygosity 

 

Although the large confidence intervals for heterozygosity estimates of HS and HT 

using standard analyses of allozymes result in no statistical difference between them 

and all other analyses, a few comments can be proffered about the results.  The 

Bayesian estimates for allozymes are substantially higher than those for ISSR 

markers.  Nybom and Bartish (2000) and Coates and Byrne (2005) reviewed 

estimates of diversity from allozyme and AAD (mostly RAPD) markers.  Because 

data in those reviews are from standard analyses of both types of markers and there is 

variation in the method used to produce their estimates, such as whether to include 

monomorphic loci (excluded in our study), they are of limited value for our purposes.  

However, with these caveats in mind, higher diversity estimates with AAD markers 

appear to be more common than those with allozymes.  By contrast, our results 

suggest higher estimates for allozymes.  Neither published data nor results of the 

present study provide compelling reasons for predicting a priori the relative levels of 

diversity estimates provided by the two markers.  Additional studies are needed 

before a more definitive assessment can be made. 
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Biological vs. statistical significance 

 

Earlier in the discussion we alluded to the difference between statistical and 

biological significance (Hedrick, 1999), and several additional comments are in order 

because the significance issue is important to the interpretation of our analyses.  In 

particular, the relatively small number of loci sampled in the standard allozyme 

approach resulted in a large degree of error in estimation and made it difficult to find 

this estimate significantly different from those of other methods, though, in 

comparison, its mean value was often quite divergent.  In contrast, significant 

differences in estimation between the two Bayesian models (full and ƒ-free) with 

ISSRs were common, despite very similar mean estimates.  These findings can be 

attributed to two effects, that of the large number of ISSR loci analyzed and the 

statistical sampling procedure of the Bayesian method, which also greatly decreased 

error for the analysis of the 10-locus allozyme data set.  Certainly, the differences 

presented between θII and FST, given the large error surrounding the mean, may be 

interpreted as more substantial than those between the two Bayesian models, 

especially considering that the former influences interpretations of method 

comparisons much more meaningfully than the latter. 
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Table 5.1 The five combinations of molecular marker and statistical method 
considered in this study are shown along with their respective abbreviations.  The far 
right column lists the four methodological comparisons described in this study of 
gene statistic estimates from the genus Tolpis. 
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Table 5.2 Population sampling information detailing Tolpis taxonomic affinities, 
sample size for the respective markers, and geographic origin within the Canarian 
Archipelago. 
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Figure 5.1 Mean values for FST among Tolpis populations, including θII and φST, 
(diamond) and GST

B (square) estimates across five analysis categories (AS, AB, IBf, IB, 
and IS).  Bars indicate 95% credible/confidence interval.  The table in the upper right 
shows comparisons among statistically different (indicated with an X) estimates of 
genetic differentiation produced by the different methods. 
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Figure 5.2 Correlation between the difference in standard and Bayesian estimates of 
FST and the simulated FST. 
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Figure 5.3 Correlation between the difference in standard FST and Bayesian GST 
estimates and the simulated FST. 
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Figure 5.4 Mean values for FIS and ƒ estimates for Tolpis populations across three 
analysis categories (no estimate produced in ƒ-free Bayesian model; AS, AB, and IB).  
Bars indicate 95% credible/confidence interval. 
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Figure 5.5 Average difference between ƒ estimation and simulated FIS for data sets at 
four sample sizes (20, 50, 100, and 200 individuals per population).  Bars show the 
negative or positive aspect of the 95% confidence interval.  Intervals that do not 
intersect the zero line (broken) indicate statistically significant differences between 
the estimated and simulated FIS. 
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Figure 5.6 Mean values for HS estimates for Tolpis populations across four analysis 
categories (AS, AB, IBf, and IB).  Bars indicate 95% credible/confidence interval. 
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Figure 5.7  Mean values for within population expected panmictic heterozygosity 
(HiS) estimates for Tolpis populations across four analysis categories (AS = diamond; 
AB = square; IBf = circle; IB = triangle).  Shared colors indicate a lack of significance 
among estimates.  Standard allozyme (AS) estimates did not differ statistically from 
any of the other three estimates in any population other than 6 and 1883. 
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Figure 5.8 Mean values for HT estimates for Tolpis populations across four analysis 
categories (AS, AB, IBf, and IB).  Bars indicate 95% credible/confidence interval. 
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APPENDIX:  SPECIMEN LIST 

Taxon, Herbarium, Accession #, Collection #, Location 
* represented in morphological data sets  
† represented in molecular data sets 

Chrysosplenium alternifolium, UTRECHT, U 0248432, Iltis 15, Russia 

Chrysosplenium alternifolium, UTRECHT, U 0248388, Russia 

Chrysosplenium alternifolium, UTRECHT, U 0248398, Scotland 

Chrysosplenium alternifolium, UTRECHT, U 0248431, Mennega 145, Greece 

Chrysosplenium alternifolium, UTRECHT, U 0248423, Mennega 85, Belgium 

Chrysosplenium alternifolium, UTRECHT, U 0248397, Burg H, Belgium 

Chrysosplenium alternifolium, UTRECHT, U 0248430, Hekking 3545, Belgium 

Chrysosplenium alternifolium, UTRECHT, U 0248390, Belgium 

Chrysosplenium alternifolium, UTRECHT, U 0248399, 185, Yugoslavia  

Chrysosplenium alternifolium, UTRECHT, U 0248412, 68-1959, Yugoslavia 

Chrysosplenium alternifolium, UTRECHT, U 0248387, Lampinen 11494, Finland 

Chrysosplenium alternifolium, UTRECHT, U 0248405, Moldavia 

Chrysosplenium alternifolium, UTRECHT, U 0248429, Rentrop 70-1082, Norway 

Chrysosplenium alternifolium, UTRECHT, U 0248416, 101, Luxemburg 

Chrysosplenium alternifolium, UTRECHT, U 0248419, 43, France 

Chrysosplenium alternifolium, UTRECHT, U 0248420, 185, Italy 

Chrysosplenium alternifolium, UTRECHT, U 0248409, Bulgaria 

Chrysosplenium alternifolium, UTRECHT, U 0248410, Czech Republic 

Chrysosplenium alternifolium, UTRECHT, U 0248425, Groet 27, Duitsland 
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Chrysosplenium alternifolium, UTRECHT, U 0248402, Western Europe 

Chrysosplenium alternifolium, UTRECHT, U 0248401, Florschuetz, Duitsland 

Chrysosplenium alternifolium, UTRECHT, U 0248415, Willems 414, Germany 

Chrysosplenium alternifolium, UTRECHT, U 0248392, Western Europe 

Chrysosplenium alternifolium, UTRECHT, U 0248391, Kooper, Western Europe 

Chrysosplenium alternifolium, UTRECHT, U 0248389, Western Europe 

Chrysosplenium alternifolium, UTRECHT, U 0248386, Germany 

Chrysosplenium alternifolium, UTRECHT, U 0248433, Western Europe 

Chrysosplenium alternifolium, UTRECHT, U 0248385, Western Europe 

Chrysosplenium alternifolium, UTRECHT, U 0248417, 168, Germany 

Chrysosplenium alternifolium, UTRECHT, U 0248427, 67-586, Austria 

Chrysosplenium alternifolium, UTRECHT, U 0248428, 67-619, Austria 

Chrysosplenium alternifolium, UTRECHT, U 0248426, Kramer 1130, Austria 

Chrysosplenium alternifolium, UTRECHT, U 0248396, Nigg., Western Europe 

Chrysosplenium alternifolium, UTRECHT, U 0248404, Kramer 4133, Austria 

Chrysosplenium alternifolium, UTRECHT, U 0248403, 65-1383, Switzerland 

Chrysosplenium alternifolium, UTRECHT, U 0248400, Kramer 1330, Austria 

Chrysosplenium alternifolium, UTRECHT, U 0248435, 8084, Western Europe 

Chrysosplenium alternifolium, UTRECHT, U 0248422, Kramer 7313, Switzerland 

Chrysosplenium alternifolium, UTRECHT, U 0248418, 289, Switzerland 

Chrysosplenium alternifolium, UTRECHT, U 0248421, 65-1352, Switzerland 

Chrysosplenium alternifolium, UTRECHT, U 0248411, Kramer 3, Switzerland 
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Chrysosplenium alternifolium, UTRECHT, U 0248394, Switzerland 

Chrysosplenium alternifolium, UTRECHT, U 0248393, Western Europe 

Chrysosplenium alternifolium, UTRECHT, U 0248395, Swart, Western Europe 

Chrysosplenium alternifolium, UTRECHT, U 0248408, Switzerland 

Chrysosplenium alternifolium, UTRECHT, U 0248407, Palkowa, Poland 

Chrysosplenium alternifolium, UTRECHT, U 0248424, Frey, Poland 

Chrysosplenium alternifolium, UTRECHT, U 0248406, Frey, Poland 

Chrysosplenium alternifolium, UTRECHT, U 0248444, Groet 26, Netherlands 

Chrysosplenium alternifolium, UTRECHT, U 0248443, Willemsen, Netherlands 

Chrysosplenium alternifolium, UTRECHT, U 0248442, Jonker,  Netherlands 

Chrysosplenium alternifolium, UTRECHT, U 0248441, de Viries, Netherlands 

Chrysosplenium alternifolium, UTRECHT, U 0248440, Arnolds 1279, Netherlands 

Chrysosplenium alternifolium, UTRECHT, U 0248439, Jonker, Netherlands 

Chrysosplenium alternifolium, UTRECHT, U 0248438, Rubers, Netherlands 

Chrysosplenium alternifolium, UTRECHT, U 0248445, Oudemans 403, Netherlands 

Chrysosplenium alternifolium, UTRECHT, U 0248446, van Steenis, Western Europe 

Chrysosplenium alternifolium, UTRECHT, U 0248413, van Royen 623, Netherlands 

Chrysosplenium alternifolium, UTRECHT, U 0248448, Dijkstra 3119, Netherlands 

Chrysosplenium alternifolium, UTRECHT, U 0248437, Wttewaal, Netherlands 

Chrysosplenium alternifolium, UTRECHT, U 0248436, Mennega 8124, Western 

Europe 

Chrysosplenium alternifolium, UTRECHT, U 0248434, 71-114, Western Europe 
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Chrysosplenium alternifolium, UTRECHT, U 0248447, Gadella, Netherlands 

Chrysosplenium alternifolium, LEIDEN, 951,239-305, Jacobs, Western Europe 

Chrysosplenium alternifolium, LEIDEN, 908,234-1437, Western Europe 

Chrysosplenium alternifolium, LEIDEN, 908,234-1438, Baenitz, Western Europe 

Chrysosplenium alternifolium, LEIDEN, 908,234-1431, Meissner, Western Europe 

Chrysosplenium alternifolium, LEIDEN, 908,234-1432, Western Europe 

Chrysosplenium alternifolium, LEIDEN, 908,234-1422, Western Europe 

Chrysosplenium alternifolium, LEIDEN, 910,130-351, Suringar, Switzerland 

Chrysosplenium alternifolium, LEIDEN, 910,130-369, Germany 

Chrysosplenium alternifolium, LEIDEN, 910,130-356, Suringar, Switzerland 

Chrysosplenium alternifolium, LEIDEN, 984,166-325, Western Europe 

Chrysosplenium alternifolium, LEIDEN, 933, 54 72, Western Europe 

Chrysosplenium alternifolium, LEIDEN, 908,234-1364, Western Europe 

Chrysosplenium alternifolium, LEIDEN, 908,234-1436, Western Europe 

Chrysosplenium alternifolium, LEIDEN, 972,050-271, Mennema 1747, Duitsland 

Chrysosplenium alternifolium, LEIDEN, 972,050-270, Mennema 1748, Duitsland 

Chrysosplenium alternifolium, LEIDEN, 908,234-1363, Western Europe 

Chrysosplenium alternifolium, LEIDEN, 984.  7 924, Renaud-nooy, Duitsland 

Chrysosplenium alternifolium, LEIDEN, 5955, Rh lep, Western Europe 

Chrysosplenium alternifolium, LEIDEN, 908,234-597, Western Europe 

Chrysosplenium alternifolium, LEIDEN, 937  19  223, Germany 

Chrysosplenium alternifolium, LEIDEN, 10017, Groeplep, Western Europe 
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Chrysosplenium alternifolium, LEIDEN, 936,184  194, Western Europe 

Chrysosplenium alternifolium, LEIDEN, 944,280-122, Bayer, Western Europe 

Chrysosplenium alternifolium, LEIDEN, 987,251-785, 11281, Germany 

Chrysosplenium alternifolium, LEIDEN, 936,160-122, Weber, Germany 

Chrysosplenium alternifolium, LEIDEN, 949,180-150, Western Europe 

Chrysosplenium alternifolium, LEIDEN, 951,255-965, de Wit 4533, Western Europe 

Chrysosplenium alternifolium, LEIDEN, 951,256-320, Western Europe 

Chrysosplenium alternifolium, LEIDEN, 466107, Timmermans, Germany 

Chrysosplenium alternifolium, LEIDEN, 908,234-1440, Hartsen, Western Europe 

Chrysosplenium alternifolium, LEIDEN, 957.  72  922, Germany 

Chrysosplenium alternifolium, LEIDEN, 954,354-119, Summerhayes 2344, England 

Chrysosplenium alternifolium, LEIDEN, 956,245-480, Sandwith, England 

Chrysosplenium alternifolium, LEIDEN, 972,090-400, Sprague, England 

Chrysosplenium alternifolium, LEIDEN, 297008, Sandwith, England 

Chrysosplenium alternifolium, LEIDEN, 297007, Sandwith, England 

Chrysosplenium alternifolium, LEIDEN, 511408, Anoniem,  Poland 

Chrysosplenium alternifolium, LEIDEN, 224005, Frey, Poland 

Chrysosplenium alternifolium, LEIDEN, 937,217-305, Pawlowska, Poland 

Chrysosplenium alternifolium, LEIDEN, 979,280-530, Gugnacka, Poland 

Chrysosplenium alternifolium, LEIDEN, 979,284-528, Nikolov, Bulgaria 

Chrysosplenium alternifolium, LEIDEN, 908,234-1428, Pristan, Germany 

Chrysosplenium alternifolium, LEIDEN, 983,209-720, Russia 
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Chrysosplenium alternifolium, LEIDEN, 224027, Madalski, Russia 

Chrysosplenium alternifolium, LEIDEN, 979,290-079, Dadakova, Czech Republic 

Chrysosplenium alternifolium, LEIDEN, 191202, Olaru, Romania 

Chrysosplenium alternifolium, LEIDEN, 909,234-1429, Western Europe 

Chrysosplenium alternifolium, LEIDEN, 984.  86  645, , France 

Chrysosplenium alternifolium, LEIDEN, 957.  72  217, Pucktler, Germany 

Chrysosplenium alternifolium, LEIDEN, 159, Nooteboom, France 

Chrysosplenium alternifolium, LEIDEN, 908,234-1435, France 

Chrysosplenium alternifolium, LEIDEN, 964,41-611, Jansoncius, France 

Chrysosplenium alternifolium, LEIDEN, 964,41-612, Louis, France 

Chrysosplenium alternifolium, LEIDEN, 908,235-311, France 

Chrysosplenium alternifolium, LEIDEN, 908,275-689, Gerard, France 

Chrysosplenium alternifolium, LEIDEN, 908,280-494, Western Europe 

Chrysosplenium alternifolium, LEIDEN, 908,280-60, France 

Chrysosplenium alternifolium, LEIDEN, 908,238-60, France 

Chrysosplenium alternifolium, LEIDEN, 908,234-1433, Western Europe 

Chrysosplenium alternifolium, LEIDEN, 953,5-919, Koster 3820, France 

Chrysosplenium alternifolium, LEIDEN, 50401, Verbiest 835, Luxemburg  

Chrysosplenium alternifolium, LEIDEN, 965,350-348, Luxemburg 

Chrysosplenium alternifolium, LEIDEN, 92891, Balgooy 1162, Luxemburg 

Chrysosplenium alternifolium, LEIDEN, 959,115-536, Luxemburg 

Chrysosplenium alternifolium, LEIDEN, 953,5-933, Koster 3819, Luxemburg 
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Chrysosplenium alternifolium, LEIDEN, 951,98-646, Hiusman, Belgium 

Chrysosplenium alternifolium, LEIDEN, 979,280-700, Van der Veken 9611, Belgium 

Chrysosplenium alternifolium, LEIDEN, 12327, Belgium 

Chrysosplenium alternifolium, LEIDEN, 466108, Timmermans, Switzerland 

Chrysosplenium alternifolium, LEIDEN, Wieffering 6302, Switzerland 

Chrysosplenium alternifolium, LEIDEN, Wieffering 6208, Switzerland 

Chrysosplenium alternifolium, LEIDEN, Wieffering 6126, Switzerland 

Chrysosplenium alternifolium, LEIDEN, 15873, Mennema 553, Switzerland 

Chrysosplenium alternifolium, LEIDEN, 211015, Van der Land, Switzerland 

Chrysosplenium alternifolium, LEIDEN, 952,304-501, Gattiker-Horgen, Switzerland 

Chrysosplenium alternifolium, LEIDEN, Groep I00I7, Switzerland 

Chrysosplenium alternifolium, LEIDEN, 953,5-932, Koster 3822, Switzerland 

Chrysosplenium alternifolium, LEIDEN, 953,346-532, van Royen 1723, Switzerland 

Chrysosplenium alternifolium, LEIDEN, 954,183-968, Western Europe 

Chrysosplenium alternifolium, LEIDEN, 952,100-420, Becking, Switzerland 

Chrysosplenium alternifolium, LEIDEN, 959,288-250, Switzerland 

Chrysosplenium alternifolium, LEIDEN, 959,169-063, Barkman 1952, Switzerland 

Chrysosplenium alternifolium, LEIDEN, Zw.69, Switzerland 

Chrysosplenium alternifolium, LEIDEN, 947,143-826, Switzerland 

Chrysosplenium alternifolium, LEIDEN, 953,5-924, Koster 3821, Switzerland 

Chrysosplenium alternifolium, LEIDEN, Austria 

Chrysosplenium alternifolium, LEIDEN, Austria 
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Chrysosplenium alternifolium, LEIDEN, Groep 10097, Western Europe 

Chrysosplenium alternifolium, LEIDEN, H.N. 5608, Austria 

Chrysosplenium alternifolium, LEIDEN, 953,132-251, Barkman 3562, Austria 

Chrysosplenium alternifolium, LEIDEN, 936,184-42, Austria 

Chrysosplenium alternifolium, LEIDEN, 466106, Timmermans, Austria 

Chrysosplenium alternifolium, LEIDEN, 958,137-778, Stam, Austria 

Chrysosplenium alternifolium, LEIDEN, 958,137-771, Stam, Austria 

Chrysosplenium alternifolium, LEIDEN, 955,141-228, Stam, Austria 

Chrysosplenium alternifolium, LEIDEN, 908,234-1424, Austria 

Chrysosplenium alternifolium, LEIDEN, 959,115-582, D.D., Austria 

Chrysosplenium alternifolium, LEIDEN, 950,124-70, Alm 1048, Sweden 

Chrysosplenium alternifolium, LEIDEN, 959,351-934, Sweden 

Chrysosplenium alternifolium, LEIDEN, 948,146-243, Sweden 

Chrysosplenium alternifolium, LEIDEN, 18, Sweden 

Chrysosplenium alternifolium, LEIDEN, 512845, Huttunen, Finland 

Chrysosplenium alternifolium, LEIDEN, 224007, Jokela, Finland 

Chrysosplenium alternifolium, LEIDEN, 224014, Larjomaa, Finland 

Chrysosplenium alternifolium, LEIDEN, 908, 235-408   

Chrysosplenium alternifolium, LEIDEN, 908,234-1426, Western Europe 

Chrysosplenium alternifolium, LEIDEN, 204243, Denmark 

Chrysosplenium alternifolium, LEIDEN, 956,062-710, Italy 

Chrysosplenium alternifolium, LEIDEN, 908,234-1427, Italy 
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Chrysosplenium alternifolium, LEIDEN, 150291, Schabel, Western Europe 

Chrysosplenium alternifolium, LEIDEN, 908,234-1368, Western Europe 

Chrysosplenium alternifolium, LEIDEN, 959,115-580, D.D., Western Europe 

Chrysosplenium alternifolium, LEIDEN, 926,236-74, Western Europe 

Chrysosplenium alternifolium, LEIDEN, 908,234-1425, Western Europe 

Chrysosplenium alternifolium, LEIDEN, 104183, Western Europe 

Chrysosplenium alternifolium, LEIDEN, Groep 19616, Western Europe 

Chrysosplenium alternifolium, LEIDEN, 947,143-888, Western Europe 

Chrysosplenium alternifolium, LEIDEN, 947,143-889, Western Europe 

Chrysosplenium alternifolium, LEIDEN, 947,143-890, Western Europe 

Chrysosplenium alternifolium, LEIDEN, 908,234-1430, Western Europe 

Chrysosplenium alternifolium, LEIDEN, 948,115-7, van Steenis, Western Europe 

Chrysosplenium alternifolium, ALA, V079760, Elias 7715, Russia 

Chrysosplenium alternifolium, ALA, V94624, Murray 634, Russia 

Chrysosplenium alternifolium, ALA, V90907, Petrovsky 77-19P, Russia 

Chrysosplenium alternifolium, ALA, V115127, Russia 

Chrysosplenium alternifolium, ALA, V083300, Petrovsky, Russia 

Chrysosplenium alternifolium, ALA, V90906, Petrovsy 77-104P, Russia † 

Chrysosplenium alternifolium ssp. Arctomontanum, ALA, V88610, Petrovsky, Russia  

Chrysosplenium alternifolium ssp. sibiricum, ALA, V154523, Solstad 04/1026, 

Russia † 
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Chrysosplenium alternifolium ssp. Sibiricum, ALA, V154470, Solstad 04/0343, 

Russia  

Chrysosplenium alternifolium ssp. Sibiricum, ALA, V129008, Kharkevick, Russia 

Chrysosplenium iowense, KANU, Levsen NL061704-29, Iowa *† 

Chrysosplenium iowense, KANU, Levsen NL061704-06, Iowa *† 

Chrysosplenium iowense, KANU, Levsen NL061704-59, Iowa *† 

Chrysosplenium iowense, KANU, Levsen NL061704-13, Iowa *† 

Chrysosplenium iowense, KANU, Levsen NL061904-83, Iowa *† 

Chrysosplenium iowense, KANU, Levsen NL061704-19, Iowa *† 

Chrysosplenium iowense, KANU, Levsen NL061704-07, Iowa *† 

Chrysosplenium iowense, KANU, Levsen NL061704-76, Iowa *† 

Chrysosplenium iowense, KANU, Levsen NL061704-24, Iowa *† 

Chrysosplenium iowense, KANU, Levsen NL062506-457, Canada *† 

Chrysosplenium iowense, KANU, Levsen NL062506-471, Canada *† 

Chrysosplenium iowense, KANU, Levsen NL063005-347, Canada *† 

Chrysosplenium iowense, KANU, Levsen NL062906-489, Canada *† 

Chrysosplenium iowense, LEIDEN, 168590, Thorne 12450, Iowa 

Chrysosplenium oppositifolium, UTRECHT, U 0248414, van Groyen 623, 

Netherlands 

Chrysosplenium oppositifolium, LEIDEN, 959,228-759, Switzerland 

Chrysosplenium rosendahlii, ALA, V129262, Eriksen, Canada 

Chrysosplenium rosendahlii, ALA, V95055, Edlund 12619, Canada 
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Chrysosplenium rosendahlii, ALA, V105136, Murray 3182, Alaska 

Chrysosplenium rosendahlii, ALA, V105214, Murray 4588, Alaska 

Chrysosplenium rosendahlii, ALA, 75102, Murray 4525, Alaska 

Chrysosplenium rosendahlii, ALA, V105111, Murray 3511, Alaska 

Chrysosplenium rosendahlii, KANU, Foote NL0705-379, Canada *† 

Chrysosplenium rosendahlii, KANU, Foote NL0705-383, Canada * 

Chrysosplenium rosendahlii, KANU, Foote NL0705-386, Canada * 

Chrysosplenium rosendahlii, KANU, Levsen NL080306-824 Alaska *† 

Chrysosplenium tetrandrum, KANU, Levsen NL062105-167, Washington *† 

Chrysosplenium tetrandrum, KANU, Levsen NL062105-180, Washington *† 

Chrysosplenium tetrandrum, KANU, Levsen NL062205-216, Washington *† 

Chrysosplenium tetrandrum, KANU, Levsen NL062205-198, Washington *† 

Chrysosplenium tetrandrum, KANU, Levsen NL062205-232, Washington *† 

Chrysosplenium tetrandrum, KANU, Levsen NL062405-245, Canada *† 

Chrysosplenium tetrandrum, KANU, Levsen NL062405-258, Canada *† 

Chrysosplenium tetrandrum, KANU, Levsen NL062705-276, Canada *† 

Chrysosplenium tetrandrum, KANU, Levsen NL062805-296, Canada *† 

Chrysosplenium tetrandrum, KANU, Levsen NL062805-314, Canada *† 

Chrysosplenium tetrandrum, KANU, Levsen NL062905-331, Canada *† 

Chrysosplenium tetrandrum, KANU, Levsen NL070305-396, Montana *† 

Chrysosplenium tetrandrum, KANU, Levsen NL070305-407, Montana *† 

Chrysosplenium tetrandrum, KANU, Levsen NL062906-499, Canada *† 
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Chrysosplenium tetrandrum, KANU, Levsen NL070106-512, Canada *† 

Chrysosplenium tetrandrum, KANU, Levsen NL070406-514, Canada *† 

Chrysosplenium tetrandrum, KANU, Levsen NL070606-519, Canada *† 

Chrysosplenium tetrandrum, KANU, Levsen NL070606-530, Canada *† 

Chrysosplenium tetrandrum, KANU, Levsen NL070906-544, Canada *† 

Chrysosplenium tetrandrum, KANU, Levsen NL071506-568, Alaska *† 

Chrysosplenium tetrandrum, KANU, Levsen NL071506-578, Alaska *† 

Chrysosplenium tetrandrum, KANU, Levsen NL071606-590, Alaska *† 

Chrysosplenium tetrandrum, KANU, Levsen NL071306-557, Alaska *† 

Chrysosplenium tetrandrum, KANU, Levsen NL071606-616, Alaska *† 

Chrysosplenium tetrandrum, KANU, Levsen NL071606-617, Alaska *† 

Chrysosplenium tetrandrum, KANU, Levsen NL071606-630, Alaska *† 

Chrysosplenium tetrandrum, KANU, Levsen NL071606-622, Alaska *† 

Chrysosplenium tetrandrum, KANU, Levsen NL071906-647, Alaska *† 

Chrysosplenium tetrandrum, KANU, Levsen NL071906-662, Alaska *† 

Chrysosplenium tetrandrum, KANU, Levsen NL072106-684, Alaska *† 

Chrysosplenium tetrandrum, KANU, Levsen NL072106-711, Alaska *† 

Chrysosplenium tetrandrum, KANU, Levsen NL072706-739, Alaska *† 

Chrysosplenium tetrandrum, KANU, Levsen NL080106-757, Alaska *† 

Chrysosplenium tetrandrum, KANU, Levsen NL080106-761, Alaska *† 

Chrysosplenium tetrandrum, KANU, Levsen NL080306-781, Alaska *† 

Chrysosplenium tetrandrum, KANU, Levsen NL080106-757, Alaska *† 
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Chrysosplenium tetrandrum, KANU, Levsen NL080306-785, Alaska *† 

Chrysosplenium tetrandrum, KANU, Levsen NL080306-805, Alaska *† 

Chrysosplenium tetrandrum, KANU, Levsen NL080306-825, Alaska *† 

Chrysosplenium tetrandrum, KANU, Levsen NL080306-844, Alaska *† 

Chrysosplenium tetrandrum, KANU, Levsen NL080606-856, Alaska *† 

Chrysosplenium tetrandrum, KANU, Levsen NL080806-885, Canada *† 

Chrysosplenium tetrandrum, KANU, Levsen NL072707-910, Canada *† 

Chrysosplenium tetrandrum, KANU, Levsen NL072707-916, Canada *† 

Chrysosplenium tetrandrum, KANU, Levsen NL081807-927, Canada *† 

Chrysosplenium tetrandrum, KANU, Levsen NL081807-928, Canada *† 

Chrysosplenium tetrandrum, LEIDEN, 961,40-242, Canada 

Chrysosplenium tetrandrum, LEIDEN, 951,241-225, Calder 3379, Canada 

Chrysosplenium tetrandrum, LEIDEN, 529463, Collet 1537, Alaska 

Chrysosplenium tetrandrum, LEIDEN, 525477, Collet 1591, Alaska 

Chrysosplenium tetrandrum, LEIDEN, Sweden 

Chrysosplenium tetrandrum, LEIDEN, 912,250-38, Montell, Finland 

Chrysosplenium tetrandrum, LEIDEN, 921,6-150, Montell, Finland 

Chrysosplenium tetrandrum, LEIDEN, 921,6-152, Mentell, Finland 

Chrysosplenium tetrandrum, LEIDEN, 908,234-1421 

Chrysosplenium tetrandrum, LEIDEN, 122649,30, Svalbard 

Chrysosplenium tetrandrum, LEIDEN, 957,72-218, Schaefer, Svalbard 

Chrysosplenium tetrandrum, ALA, 32284, Bos, Alaska 
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Chrysosplenium tetrandrum, ALA, V151589, Cook 02-418B, Alaska 

Chrysosplenium tetrandrum, ALA, V141230, Roland 4721, Alaska 

Chrysosplenium tetrandrum, ALA, V96919, Zabel 43, Alaska 

Chrysosplenium tetrandrum, ALA, V139801, Parker 12055, Alaska 

Chrysosplenium tetrandrum, ALA, 96524, Hutson, Alaska 

Chrysosplenium tetrandrum, ALA, 76651, Wright 85, Alaska 

Chrysosplenium tetrandrum, ALA, 9501, Clein 76, Alaska 

Chrysosplenium tetrandrum, ALA, 96510, Hutson, Alaska 

Chrysosplenium tetrandrum, ALA, 48721, Roberson 658, Alaska 

Chrysosplenium tetrandrum, ALA, 17486, 694, Alaska 

Chrysosplenium tetrandrum, ALA, 37509, Welsh 7360, Canada 

Chrysosplenium tetrandrum, ALA, V134129, Parker 10342, Alaska 

Chrysosplenium tetrandrum, ALA, V135000, Parker 11126, Alaska 

Chrysosplenium tetrandrum, ALA, V112297, Murray 10928, Alaska 

Chrysosplenium tetrandrum, ALA, 50445, Laursen, Alaska 

Chrysosplenium tetrandrum, ALA, V112852, Caswell 92-226, Alaska 

Chrysosplenium tetrandrum, ALA, V122064, Parker 6277, Alaska 

Chrysosplenium tetrandrum, ALA, V111382, 70-505, Canada 

Chrysosplenium tetrandrum, ALA, V129316, Simpson, Alaska 

Chrysosplenium tetrandrum, ALA, V129315, Simpson, Alaska 

Chrysosplenium tetrandrum, ALA, V119515, Parker 5580, Alaska 

Chrysosplenium tetrandrum, ALA, V122031, Parker 6625, Alaska 
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Chrysosplenium tetrandrum, ALA, V122208, Parker 6584, Alaska 

Chrysosplenium tetrandrum, ALA, V117976, Parker 5259, Alaska 

Chrysosplenium tetrandrum, ALA, V120369, Duffy 95-249, Alaska 

Chrysosplenium tetrandrum, ALA, 12960, Viereck, Alaska 

Chrysosplenium tetrandrum, ALA, 93624, Thompson 1378, Alaska 

Chrysosplenium tetrandrum, ALA, V132473, Elven, Canada 

Chrysosplenium tetrandrum, ALA, V131183, Duffy 98-297, Alaska 

Chrysosplenium tetrandrum, ALA, V81119, Parker 1542, Alaska 

Chrysosplenium tetrandrum,  ALA, V124249, Caswell 96357, Alaska 

Chrysosplenium tetrandrum, ALA, 78811, Murray 798, Canada 

Chrysosplenium tetrandrum, ALA, 78812, Murray 1266, Canada 

Chrysosplenium tetrandrum, ALA, 16220, Raup 9241, Canada 

Chrysosplenium tetrandrum, ALA, 41163, Porsild 6, Canada 

Chrysosplenium tetrandrum, ALA, 41173, Porsild, Canada 

Chrysosplenium tetrandrum, ALA, V96461, Keller 1347, Alaska 

Chrysosplenium tetrandrum, ALA, V084383, Marvin 651, Alaska 

Chrysosplenium tetrandrum, ALA, 77553, Correll 45710, Alaska 

Chrysosplenium tetrandrum, ALA, 76342, Murray 6542, Alaska 

Chrysosplenium tetrandrum, ALA, 93627, Stone 21, Alaska 

Chrysosplenium tetrandrum, ALA, V75742, Meyers 80-139, Alaska 

Chrysosplenium tetrandrum, ALA, 86172, Batten 75-19, Alaska 

Chrysosplenium tetrandrum, ALA, 2158, Rynning 981, Alaska 
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Chrysosplenium tetrandrum, ALA, 69018, Komarkova 273, Alaska 

Chrysosplenium tetrandrum, ALA, V101053, Durst 161, Alaska 

Chrysosplenium tetrandrum, ALA, V071748, Helmstetter 80-27, Alaska 

Chrysosplenium tetrandrum, ALA, V126176, Talbot 304, Alaska 

Chrysosplenium tetrandrum, ALA, 6475, Palmer, Alaska 

Chrysosplenium tetrandrum, ALA, 936, Alaska 

Chrysosplenium tetrandrum, ALA, V101138, Durst 145, Alaska 

Chrysosplenium tetrandrum, ALA, 92824, Siplivinsky 392, Alaska 

Chrysosplenium tetrandrum, ALA, V96982, Rutledge, Alaska 

Chrysosplenium tetrandrum, ALA, 53136, Batten 469, Alaska 

Chrysosplenium tetrandrum, ALA, V96585, Wright 85, Alaska 

Chrysosplenium tetrandrum, ALA, 91842, Mason 227, Alaska 

Chrysosplenium tetrandrum, ALA, V100275, Lewis, Alaska 

Chrysosplenium tetrandrum, ALA, V70674, Kelso 232, Alaska 

Chrysosplenium tetrandrum, ALA, V69826, Khokhryakov 6926, Alaska 

Chrysosplenium tetrandrum, ALA, V105958, Grant 90-1300, Alaska 

Chrysosplenium tetrandrum, ALA, V118694, Duffy 124, Alaska 

Chrysosplenium tetrandrum, ALA, V104777, DeLapp 598, Alaska 

Chrysosplenium tetrandrum, ALA, V104802, DeLapp 664, Alaska 

Chrysosplenium tetrandrum, ALA, V104518, Sattler 47, Alaska 

Chrysosplenium tetrandrum, ALA, V108339, Caswell, Alaska 

Chrysosplenium tetrandrum, ALA, V110501, Parker 2866, Alaska 
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Chrysosplenium tetrandrum, ALA, 38483, Roberson 412, Alaska 

Chrysosplenium tetrandrum, ALA, 4101, Shetler 678, Alaska 

Chrysosplenium tetrandrum, ALA, 10868, Smith 2079, Alaska 

Chrysosplenium tetrandrum, ALA, 934, Clark, Alaska 

Chrysosplenium tetrandrum, ALA, V139532, Parker 13146, Alaska 

Chrysosplenium tetrandrum, ALA, 20546, Raup 10045, Alaska 

Chrysosplenium tetrandrum, ALA, V143086, Jansen 02-355, Alaska 

Chrysosplenium tetrandrum, ALA, V142096, Batten 02-483, Alaska 

Chrysosplenium tetrandrum, ALA, V143704, Sturdy 10-49, Alaska 

Chrysosplenium tetrandrum, ALA, V143879, Parker 14031, Alaska 

Chrysosplenium tetrandrum, ALA, V144206, Parker 14367, Alaska 

Chrysosplenium tetrandrum, ALA, V146809, Larsen 02-1802, Alaska 

Chrysosplenium tetrandrum, ALA, V146810, Larsen 02-2005, Alaska 

Chrysosplenium tetrandrum, ALA, V146811, Larsen 02-2592, Alaska 

Chrysosplenium tetrandrum, ALA, V141229, Roland 4732, Alaska 

Chrysosplenium tetrandrum, ALA, V78021, Murray 3537, Alaska 

Chrysosplenium tetrandrum, ALA, V70437, Ebersole 393, Alaska 

Chrysosplenium tetrandrum, ALA, 93629, Thomas, Alaska 

Chrysosplenium tetrandrum, ALA, 86283, Batten 11, Alaska 

Chrysosplenium tetrandrum, ALA, 93625, Spetzman, Alaska 

Chrysosplenium tetrandrum, ALA, V70767, Hultén, Alaska 

Chrysosplenium tetrandrum, ALA, V69193, Khokhryakov 6574, Alaska 
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Chrysosplenium tetrandrum, ALA, 91703, Mason 41, Alaska 

Chrysosplenium tetrandrum, ALA, 68099, Young 4359, Alaska 

Chrysosplenium tetrandrum, ALA, V128063, Parker 8767, Alaska 

Chrysosplenium tetrandrum, ALA, 41672, Porsild, Canada 

Chrysosplenium tetrandrum, ALA, 41637, Porsild 17044, Canada 

Chrysosplenium tetrandrum, ALA, V122777, Talbot 355, Alaska 

Chrysosplenium tetrandrum, ALA, V124776, Parker 7823, Alaska 

Chrysosplenium tetrandrum, ALA, V127951, Parker 8650, Alaska 

Chrysosplenium tetrandrum, ALA, V081920, Coghill, Alaska 

Chrysosplenium tetrandrum, ALA, V78914, Kelso 84193, Alaska 

Chrysosplenium tetrandrum, ALA, V084738, Foote 3892, Alaska 

Chrysosplenium tetrandrum, ALA, V96648, Sherburne 11, Alaska 

Chrysosplenium tetrandrum, ALA, V97454, Kildaw, Alaska 

Chrysosplenium tetrandrum, ALA, V99714, Walker 84-213, Alaska 

Chrysosplenium tetrandrum, ALA, 37722, Etaender 26, Alaska 

Chrysosplenium tetrandrum, ALA, V113521, Murray 11185, Alaska 

Chrysosplenium tetrandrum, ALA, V150033, Parker 15599, Alaska 

Chrysosplenium tetrandrum, ALA, V151314, Roland 5842A, Alaska 

Chrysosplenium tetrandrum, ALA, 47939, Keeley 1925, Alaska 

Chrysosplenium tetrandrum, ALA, 35001, Staender 60, Alaska 

Chrysosplenium tetrandrum, ALA, 52959, Batten 425, Alaska 

Chrysosplenium tetrandrum, ALA, 9329, Johnson, Alaska 
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Chrysosplenium tetrandrum, ALA, 22502, Johnson, Alaska 

Chrysosplenium tetrandrum, ALA, V151585, Cook 02-334, Alaska 

Chrysosplenium tetrandrum, ALA, V151584, Cook 02-074, Alaska 

Chrysosplenium tetrandrum, ALA, V151586, Cook 02-418A, Alaska 

Chrysosplenium tetrandrum, ALA, V151587, Cook 02-647, Alaska 

Chrysosplenium tetrandrum, ALA, V151588, Cook 02-705, Alaska 

Chrysosplenium tetrandrum, ALA, V138786, Larsen 01-0076A, Alaska 

Chrysosplenium tetrandrum, ALA, V138787, Cook 01-0349, Alaska 

Chrysosplenium tetrandrum, ALA, V138788, Larsen 01-0712, Alaska 

Chrysosplenium tetrandrum, ALA, V138789, Larsen 01-0867, Alaska 

Chrysosplenium tetrandrum, ALA, V084516, Marvin 1770, Alaska 

Chrysosplenium tetrandrum, ALA, 23801, Frohne 49-115, Alaska 

Chrysosplenium tetrandrum, ALA, 30639, Trent, Alaska 

Chrysosplenium tetrandrum, ALA, 23767, Frohne 54-152, Alaska 

Chrysosplenium tetrandrum, ALA, V134783, Parker 10836, Alaska 

Chrysosplenium tetrandrum, ALA, V133669, Roland 3707, Alaska 

Chrysosplenium tetrandrum, ALA, V083590, Marvin 1491, Alaska 

Chrysosplenium tetrandrum, ALA, V084027, Ware 8480, Alaska 

Chrysosplenium tetrandrum, ALA, V137716, Parker 11837, Alaska 

Chrysosplenium tetrandrum, ALA, V153951, Calhoun 113, Alaska 

Chrysosplenium tetrandrum, ALA, V144929, Parker 14999, Alaska 

Chrysosplenium tetrandrum, ALA, 4590, Argus 702, Alaska 
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Chrysosplenium tetrandrum, ALA, 63070, Raceine 84, Alaska 

Chrysosplenium tetrandrum, ALA, 48568, Roberson 252, Alaska 

Chrysosplenium tetrandrum, ALA, 72015, Drury 2058, Alaska 

Chrysosplenium tetrandrum, ALA, 5609, Palmer, Alaska 

Chrysosplenium tetrandrum, ALA, 75242, Metzner 72, Alaska 

Chrysosplenium tetrandrum, ALA, 72036, Drury 1601, Alaska 

Chrysosplenium tetrandrum, ALA, 3494, Viereck, Alaska 

Chrysosplenium tetrandrum, ALA, 10095, Anderson 7532, Alaska 

Chrysosplenium tetrandrum, ALA, 10094, Anderson 7217, Alaska 

Chrysosplenium tetrandrum, ALA, 55878, Murray 3984, Alaska 

Chrysosplenium tetrandrum, ALA, V072276, Anderson 0061, Alaska 

Chrysosplenium tetrandrum, ALA, 10872, Smith 1824, Alaska 

Chrysosplenium tetrandrum, ALA, V072151, Parker 111, Alaska 

Chrysosplenium tetrandrum, ALA, 37721, Staender 26-B, Alaska 

Chrysosplenium tetrandrum, ALA, V79494, Keller 1173, Alaska 

Chrysosplenium tetrandrum, ALA, V79568, Keller 1248, Alaska 

Chrysosplenium tetrandrum, ALA, V82625, Batten 85-471, Alaska 

Chrysosplenium tetrandrum, ALA, 54039, Packer 72-117, Alaska 

Chrysosplenium tetrandrum, ALA, 52991, Batten 431, Alaska 

Chrysosplenium tetrandrum, ALA, 93628, Lindsay, Alaska 

Chrysosplenium tetrandrum, ALA, 55876, Murray 4368, Alaska 

Chrysosplenium tetrandrum, ALA, V138337, Parker 13984, Alaska 
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Chrysosplenium tetrandrum, ALA, 86665, Helmstetter 94-79, Alaska 

Chrysosplenium tetrandrum, ALA, V123466, Parker 7469, Alaska 

Chrysosplenium tetrandrum, ALA, V73597, Boise 6-61, Alaska 

Chrysosplenium tetrandrum, ALA, 82445, Viereck 5819, Alaska 

Chrysosplenium tetrandrum, ALA, 83953, Boise 75-170, Alaska 

Chrysosplenium tetrandrum, ALA, 2104, Miller 305, Alaska 

Chrysosplenium tetrandrum, ALA, 17700, Johnson, Alaska 

Chrysosplenium tetrandrum, ALA, 79349, Murray 6028, Alaska 

Chrysosplenium tetrandrum, ALA, 23806, Frohne 49-140, Alaska 

Chrysosplenium tetrandrum, ALA, V96726, Grant 88-2, Alaska 

Chrysosplenium tetrandrum, ALA, 4622, Argus 732, Alaska 

Chrysosplenium tetrandrum, ALA, V100021, Lewis, Alaska 

Chrysosplenium tetrandrum, ALA, 93626, Wiggins 12580-A, Alaska 

Chrysosplenium tetrandrum, ALA, V109310, Talbot 99-X-3, Alaska 

Chrysosplenium tetrandrum, ALA, V79589, Keller 1269, Alaska 

Chrysosplenium tetrandrum, ALA, V118591, Foote 4649, Alaska 

Chrysosplenium tetrandrum, ALA, V123486, Parker 7489, Alaska 

Chrysosplenium tetrandrum, ALA, V123822, Morane 151, Alaska 

Chrysosplenium tetrandrum, ALA, V125262, Sigafoos 5943, Alaska 

Chrysosplenium tetrandrum, ALA, V76529, Parker 505, Alaska 

Chrysosplenium tetrandrum, ALA, 87854, Rice 206, Alaska 

Chrysosplenium tetrandrum, ALA, 59187, Viereck 7283, Alaska 
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Chrysosplenium tetrandrum, ALA, 48643, Roberson 333, Alaska 

Chrysosplenium tetrandrum, ALA, 87711, Ward 72, Alaska 

Chrysosplenium tetrandrum, ALA, 933, Nelson 3518, Alaska 

Chrysosplenium tetrandrum, ALA, V111549, Parker 3457, Alaska 

Chrysosplenium tetrandrum, ALA, 72030, Drury 2990, Alaska 

Chrysosplenium tetrandrum, ALA, 3683, Cessel, Alaska 

Chrysosplenium tetrandrum, ALA, 935, Nelson 4066, Alaska 

Chrysosplenium tetrandrum, ALA, 67041,Wiliams 3443, Alaska 

Chrysosplenium tetrandrum, ALA, 4269, Shetler 869-AF, Alaska 

Chrysosplenium tetrandrum, ALA, 4221, Shetler 886-AF, Alaska 

Chrysosplenium tetrandrum, ALA, 32773, Pegau 176, Alaska 

Chrysosplenium tetrandrum, ALA, V150358, Parker 15848, Alaska 

Chrysosplenium tetrandrum, ALA, V149323, Roland 5669, Alaska 

Chrysosplenium tetrandrum, ALA, 91978, McNulty 46, Alaska 

Chrysosplenium tetrandrum, ALA, 92926, Siplivinsky 125, Alaska 

Chrysosplenium tetrandrum, ALA, 8819, Clemson, Alaska 

Chrysosplenium tetrandrum, ALA, 40010, Welsh 7977, Alaska 

Chrysosplenium tetrandrum, ALA, V113852, Parker 3956, Alaska 

Chrysosplenium tetrandrum, ALA, 51607, Robuck 1321, Alaska 

Chrysosplenium tetrandrum, ALA, V85821, Parker 1914, Alaska 

Chrysosplenium tetrandrum, ALA, V98691, Dick, Alaska 

Chrysosplenium tetrandrum, ALA, V69677, Russia 
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Chrysosplenium tetrandrum, ALA, V86626, Russia 

Chrysosplenium tetrandrum, ALA, V115451, Parker 4453, Russia 

Chrysosplenium tetrandrum, ALA, V119879, Parker 5957, Russia 

Chrysosplenium tetrandrum, ALA, V129016, Kharkevick, Russia 

Chrysosplenium tetrandrum, ALA, V154533, Solstad 04/1180, Russia 

Chrysosplenium tetrandrum, ALA, 23155, Finland 

Chrysosplenium tetrandrum, ALA, V144657, Elven, Svalbard 

Chrysosplenium tetrandrum, ALA, 17028, Dahl, Svalbard 

Chrysosplenium tetrandrum, ALA, 8044, Norway 

Chrysosplenium wrightii, ALA, 83922, Weiler, Alaska 

Chrysosplenium wrightii, ALA, V73720, Murray 6242, Alaska 

Chrysosplenium wrightii, ALA, V75788, Wetzel 15, Alaska 

Chrysosplenium wrightii, ALA, V131184, Duffy 98-327, Alaska 

Chrysosplenium wrightii, ALA, V116526, Barker 15, Alaska 

Chrysosplenium wrightii, ALA, V75233, Friedman 80-71, Alaska 

Chrysosplenium wrightii, ALA, V79373, Parker 1159, Canada 

Chrysosplenium wrightii, ALA, 78827, Murray 1807, Canada 

Chrysosplenium wrightii, ALA, 78955, Murray 1370, Canada 

Chrysosplenium wrightii, ALA, 78954, Murray 512, Canada 

Chrysosplenium wrightii, ALA, 55879, Murray 3882, Alaska 

Chrysosplenium wrightii, ALA, V133670, Roland 4000, Alaska 

Chrysosplenium wrightii, ALA, 932, Nelson 4120, Alaska 
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Chrysosplenium wrightii, ALA, 5848, Palmer 643, Alaska 

Chrysosplenium wrightii, ALA, 9334, Johnson, Alaska 

Chrysosplenium wrightii, ALA, 10093, Mexia 2143, Alaska 

Chrysosplenium wrightii, ALA, V138790, Larsen 10-0822, Alaska † 

Chrysosplenium wrightii, ALA, V138791, Larsen 01-1165, Alaska 

Chrysosplenium wrightii, ALA, V78913, Kelso 84-75, Alaska 

Chrysosplenium wrightii, ALA, V125081, Parker 8059, Alaska 

Chrysosplenium wrightii, ALA, V126177, Talbot 368, Alaska 

Chrysosplenium wrightii, ALA, V124171, Phillips 96356, Alaska 

Chrysosplenium wrightii, ALA, V146813, Larsen 02-1686, Alaska † 

Chrysosplenium wrightii, ALA, 84923, Murray 6877, Alaska 

Chrysosplenium wrightii, ALA, V146812, Larsen 02-1585, Alaska 

Chrysosplenium wrightii, ALA, V146335, Lipkin 205, Alaska 

Chrysosplenium wrightii, ALA, V115969, Kildaw, Alaska 

Chrysosplenium wrightii, ALA, 82262, Viereck 6053, Alaska 

Chrysosplenium wrightii, ALA, 24768, Harbo 26, Alaska 

Chrysosplenium wrightii, ALA, 25271, Schene, Alaska 

Chrysosplenium wrightii, ALA, 83921, Weiler 5, Alaska 

Chrysosplenium wrightii, ALA, V081545, Parker 1255, Alaska 

Chrysosplenium wrightii, ALA, V140022, Parker 12379, Alaska 

Chrysosplenium wrightii, ALA, 86174, Batten 75-443A, Alaska 

Chrysosplenium wrightii, ALA, 84921, Murray 6874, Alaska 
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Chrysosplenium wrightii, ALA, 79960, Murray 6245, Alaska 

Chrysosplenium wrightii, ALA, 93630, Shetler 3342, Alaska 

Chrysosplenium wrightii, ALA, 12969, Viereck, Alaska 

Chrysosplenium wrightii, ALA, V140111, Parker 12438, Alaska 

Chrysosplenium wrightii, ALA, V128126, Parker 8833, Alaska 

Chrysosplenium wrightii, ALA, V127481, Roland 3332, Alaska 

Chrysosplenium wrightii, ALA, V120105, Caswell 331-95, Alaska 

Chrysosplenium wrightii, ALA, V122884, Parker 7601, Alaska 

Chrysosplenium wrightii, ALA, V123255, Parker 7254, Alaska 

Chrysosplenium wrightii, ALA, V123725, Moran 84A, Alaska 

Chrysosplenium wrightii, ALA, V123782, Moran 50, Alaska 

Chrysosplenium wrightii, ALA, V143357, Jansen 02-224, Alaska † 

Chrysosplenium wrightii, ALA, 68653, Viereck 5165, Alaska 

Chrysosplenium wrightii, ALA, 78828, Murray 2029, Alaska 

Chrysosplenium wrightii, ALA, 82261, Viereck 5621, Alaska 

Chrysosplenium wrightii, ALA, 84142, Winters 229, Alaska 

Chrysosplenium wrightii, ALA, V119902, Parker 6007, Russia 

Chrysosplenium wrightii, ALA, 78484, Murray 3026, Canada 

Chrysosplenium wrightii, ALA, V97953, Bosworth, Alaska 

Chrysosplenium wrightii, ALA, V86346, Murie, Alaska 

Chrysosplenium wrightii, ALA, V103991, Murie, Alaska 

Chrysosplenium wrightii, ALA, V98483, Kildaw, Alaska 
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Chrysosplenium wrightii, ALA, 47723, Reich 777, Alaska 

Chrysosplenium wrightii, ALA, 47722, Reich 784, Alaska 

Chrysosplenium wrightii, ALA, 24807, Harbo 3, Alaska 

Chrysosplenium wrightii, ALA, 28774, Belson, Alaska 

Chrysosplenium wrightii, ALA, V072192, Parker 216, Alaska 

Chrysosplenium wrightii, ALA, 86173, Batten 75-8, Alaska 

Chrysosplenium wrightii, ALA, 25752, Hamilton 2, Alaska 

Chrysosplenium wrightii, ALA, 52117, Batten 45, Alaska 

Chrysosplenium wrightii, ALA, 21748, Flock 32, Alaska 

Chrysosplenium wrightii, ALA, 52137, Batten 23, Alaska 

Chrysosplenium wrightii, ALA, 52133, Batten 27, Alaska 

Chrysosplenium wrightii, ALA, 55877, Murray 4029, Alaska 

Chrysosplenium wrightii, ALA, 51914, Batten 862, Alaska 

Chrysosplenium wrightii, ALA, V109835, Caswell, Alaska 

Chrysosplenium wrightii, ALA, 76494, Densmore 267, Alaska 

Chrysosplenium wrightii, ALA, 78829, Murray 2246, Alaska 

Chrysosplenium wrightii, ALA, V127275, Batten 96-112, Alaska 

Chrysosplenium wrightii, ALA, 67301, Halliday A497/75, Alaska 

Chrysosplenium wrightii, ALA, V148764, Lipkin 34B, Alaska 

Chrysosplenium wrightii, ALA, V141251, Roland 4331, Alaska 

Chrysosplenium wrightii, ALA, V151164, Cook 4824, Alaska 

Chrysosplenium wrightii, ALA, V153170, Loomis 2452, Alaska 
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Chrysosplenium wrightii, ALA, V77057, Murray 7337, Alaska 

Chrysosplenium wrightii, ALA, V139627, Parker 13291, Alaska 

Chrysosplenium wrightii, ALA, 92381, Mason 76-94, Alaska 

Chrysosplenium wrightii, ALA, V70122, Levkovsky, Russia 

Chrysosplenium wrightii, ALA, 24814, Harbo 32, Alaska 

Chrysosplenium wrightii, ALA, 78464, Murray 2195, Alaska 

Chrysosplenium wrightii, ALA, V70673, Kelso 231, Alaska 

Chrysosplenium wrightii, ALA, V76362, Parker 625, Alaska 

Chrysosplenium wrightii, ALA, V76731, Parker 670, Alaska 

Chrysosplenium wrightii, ALA, V73747, Strickland, Alaska 

Chrysosplenium wrightii, ALA, 6317, Palmer, Alaska 

Chrysosplenium wrightii, ALA, 48028, McCartney, Alaska 

Chrysosplenium wrightii, ALA, V76735, Parker 872, Alaska 

Chrysosplenium wrightii, ALA, V90908, Andreev 77-49P, Russia 

Chrysosplenium wrightii, ALA, V133953, Kharkevick, Russia 

Chrysosplenium wrightii, ALA, V119944, Parker 6076, Russia 

 


