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Abstract 

 The kinetochore is a complex, multi-protein structure required for proper 

chromosome segregation in all eukaryotes.  The Saccharomyces cerevisiae 

kinetochore consists of over 65 known proteins which work in concert to facilitate 

equal distribution of the replicated genome.  The S. cerevisiae CenH3 histone variant 

Cse4 is an evolutionarily conserved histone H3-like inner kinetochore protein that is 

essential for kinetochore function.  Through immunopurification of Cse4 interacting 

proteins we have identified the previously uncharacterized protein Scm3.  Here we 

report the characterization of S. cerevisiae Scm3, an essential protein with putative 

orthologs in fungi which possess either point or regional centromeres.  We find that 

Scm3 localizes to all budding yeast centromeres.  Construction of a conditional allele 

of SCM3 has allowed us to characterize the phenotype of cells lacking Scm3.  Scm3 

depleted cells fail to properly localize the components of the inner kinetochore, 

including Cse4 and Ndc10, and arrest in metaphase with duplicated spindle poles, 

short spindles, and unequal DNA distribution in the daughter cells.  Our data suggest 

that Scm3 is not an actual component of the centromeric nucleosome, but rather 

intimately associates with it.  Additional in vivo and in vitro analysis of Cse4 reveals 

a single centromeric nucleosome that contains an octamer of Cse4, H2A, H2B, and 

H4.  Based on these findings, we hypothesize that Scm3 is a novel yeast inner 

kinetochore protein that functions in the formation and maintenance of a segregation 

competent kinetochore through recruitment of the Cse4 octameric nucleosome.   
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CHAPTER 1.   

Background and Significance 

 

I.  The Cell- The Functional Unit of all Living Organisms 

 In all living organisms the cell is a self-maintaining unit which carries out a 

number of functions essential for the organism’s survival.  Since the invention of the 

microscope in the 17th century, the structure and function of individual cells has 

fascinated and perplexed generations of scientists.  The term “cell” was coined in 

1865 by British Scientist Robert Hooke [1].  His groundbreaking work on cork cells 

led to the general acceptance of the cell as the smallest individual unit of life. Now, 

almost a century and a half later, scientists are still using the knowledge obtained 

from studying individual cells to further understand the complexities of basic 

biological processes.   

 One of the most important functions of the cell is to replicate and make 

progeny cells.  This process, known as cell division, occurs in all living organisms, 

from the smallest single-celled bacteria to the largest creatures on Earth.  In order for 

the cell to make an exact copy of itself, it must transfer a copy of its genetic material 

into the newly formed daughter cell.  Armed with this genetic blueprint, the daughter 

cell will have the means to grow and function in the manner specific to its cell type. 

 

1.   Budding yeast as a model system 

 Every living organism studied can be classified into either one of two groups- 
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prokaryotes and eukaryotes.  Prokaryotes are the simpler of the two, and consist 

solely of single celled organisms, including all archaea and bacteria.  Prokaryotes 

typically have a circular DNA genome and are devoid of a nucleus or any other 

membrane bound organelles.  Eukaryotes are more complex with the majority of 

species being multi-cellular.  The eukaryotic genome is found within a well-defined, 

membrane-bound nucleus.  In addition, many eukaryotic cells contain other 

membrane-bound organelles such as mitochondria, chloroplasts and Golgi bodies.  Of 

the single-celled eukaryotes, one of the most thoroughly researched is a type of 

fungus named Saccharomyces cerevisiae, or as it is more commonly known, budding 

or baker’s yeast.  S. cerevisiae has been used in baking and fermenting alcoholic 

beverages for thousands of years, and more recently has been utilized as a very robust 

model system for studying the fundamental aspects of molecular and cellular biology.  

The cell cycle of a budding yeast cell is very similar to the cell cycle in humans, and 

therefore the basics of many cellular processes such as DNA replication, 

recombination, cell division and metabolism are very comparable to its human 

counterpart.  Budding yeast can reproduce sexually or asexually and can exist in 

either a haploid or diploid state.  In 1996, S. cerevisiae was the first eukaryote to have 

its entire genome sequenced [2].  The Yeast Genome Project revealed the budding 

yeast genome is composed of about 13,000,000 base pairs of DNA arranged onto 16 

chromosomes, which code for approximately 6000 functional genes.  This is 

compared to the human genome, which is estimated to contain approximately 25,000 

genes, and spans over 3,000,000,000 base pairs of DNA [3].  The simplicity of the 
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yeast genome and the ease of genetic manipulation make it an excellent model system 

to study basic biological processes. 

 

II. The Basics of Chromatin 

 Compared to their prokaryotic counterparts, eukaryotic genomes are very 

large.  In order to accommodate the DNA within the confines of the nucleus, the 

genome is packaged in such a way that achieves a high level of compaction, while 

maintaining transcriptional accessibility.  The cell accomplishes this feat by tightly 

wrapping its DNA around a protein core to form a structure called chromatin.  

Although eukaryotic organisms differ drastically in their appearance and cellular 

function, how they package DNA into chromatin remains relatively well-conserved. 

 

1. Chromatin packaging and the histones 

 In all eukaryotes DNA is packaged into a higher order structure known as 

chromatin.  Chromatin by definition is DNA in a complex with the histone proteins 

which forms a higher order structure.  The histone proteins are an evolutionarily 

conserved group of proteins which interacts with DNA to form chromatin.  There are 

four core or canonical histones:  H2A, H2B, H3, and H4.  Additionally there is a 

linker histone known as H1.  For chromatin to be formed, DNA acts non-specifically 

with an octamer consisting of a heterotetramer of H3-H4 (H32-H42), and two 

heterodimers of H2A-H2B; this forms the core particle or nucleosome.  The 

nucleosome is highly conserved between species and is composed of 146 base pairs 
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Figure 1.  The Nucleosome Core Particle. 
Cartoon representation of the nucleosome core particle crystal structure at 2.8 
angstroms resolution.  The histone proteins are each represented by ribbons and are as 
follows:  H2A (red), H2B (silver), H3 (blue), and H4 (green).  The DNA (147 bp) is 
represented by the light blue ribbon with each nucleotide represented by a stick 
figure.  The image was created from NCBI PDB file 1ID3 [4] using Sirius 1.2 
molecular modeling program. 
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of DNA wrapped 1.7 turns around a protein octamer [4] (Figure 1).  The general 

model for nucleosome assembly is that DNA initially interacts with preassembled 

H32-H42 to form a tetrasome.  After tetrasome formation two heterodimers of H2A-

H2B interact with opposite sides of the tetramer to form the octameric nucleosome.  

There are a number of proteins called histone chaperones which facilitate this 

association of the histones with DNA (see below)  

 Between each nucleosome there is a length of linker DNA (~50 bp), 

connecting long arrays of nucleosomes.  The linker histone H1, which is not well-

conserved between species, functions in spacing adjoining nucleosomes.  H1 helps to 

modulate higher order chromatin packing by providing an interaction region between 

adjacent nucleosomes.  

Depending on the degree of packing, eukaryotic chromatin can be found in two 

structural varieties: euchromatin and heterochromatin.  Euchromatin is the term used 

to describe loosely packed chromatin.  Euchromatic regions of the genome are more 

accessible to the transcriptional machinery, and tend to be rich in actively transcribed 

genes.  Heterochromatin on the other hand is the term used to describe tightly packed 

chromatin.  Due to the tight packing and decreased accessibility to transcription 

factors, genes located in regions of heterochromatin tend to be transcriptionally silent.  

 In general, heterochromatin can be grouped into two types: constitutive and 

facultative.  Constitutive heterochromatin is silenced in all cells, and is found in 

regions of the genome that are usually transcriptionally repressed.  In budding yeast, 

examples of constitutive heterochromatin would be the HML/HMR silent mating type 

 18



locus, the sub-telomeric regions, and the repetitive ribosomal DNA arrays.  

Facultative heterochromatin differs in that it is usually not silenced in all cells at any 

given time.  Genes in regions of facultative heterochromatin are selectively activated 

or silenced based on the need of the cell.  

 

2.  Histone post-translational modifications  

 There are a number of ways in which the transition from transcriptionally 

silenced 

heterochromatin to transcriptionally active euchromatin is achieved.  The histone 

proteins are subjected to a number of post-translational modifications (PTMs), which 

in turn alter the conformation of the modified chromatin.  PTM of the histones 

usually occurs along the amino-terminal tail which protrudes away from the face of 

the core particle, but can also occur at the globular core of the protein.  The most well 

studied PTMs thought to function in the modification of chromatin structure are 

acetylation, methylation, and phosphorylation.  

 The two main PTMs involved in transcriptional activation or repression are 

acetylation and methylation.  A number of protein complexes have been identified 

that have been shown to confer these specific histone PTMs.  The histone 

acetyltranferases (HATs) function to acetylate multiple lysine residues mainly on 

histone H3 and H4, while the histone deacetylases (HDACs) remove acetyl groups 

from the histones.  In budding yeast the main HAT complexes which function in 

chromatin remodeling are NuA4 [5] and SAGA [6], with acetylation being generally 
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linked to euchromatin, or transcriptionally active regions of the genome.  The histone 

methyltranferases can add one (mono-methyl), two (di-methyl), or three (tri-methyl) 

methyl groups onto histones at both lysine and arginine residues.  Methylation occurs 

on histones H3 and H4 and is generally associated with transcriptional repression.  

Members of the jumonji family (jmj) of proteins are the most common histone 

demethylases, and have been identified in many eukaryotes [7]. 

 In addition to the modifications mentioned above, histones can also be 

modified by ubiquitination and sumoylation, both of which can function to facilitate 

further PTM of the histone N-terminal tail.  Modified histone tails are thought to 

affect chromatin structure by two distinct mechanisms.  The first mechanism suggests 

that the modification itself exerts its own electrostatic force upon the nucleosome, and 

in turn directly affects the DNA/histone interaction.  The second mechanism proposes 

that modified histone tails are functional to recruit additional proteins which can 

directly cause a structural change in the histones or alter their interaction with DNA.  

A number of structural protein motifs have been identified which interact with 

modified histone residues, including bromodomains which recognize acetylated 

lysine residues, and chromodomains which recognize methylated lysine residues. 

 

3.  Nucleosome dynamics and chromatin remodeling 

 Eukaryotic chromatin is highly dynamic in regards to where and how 

nucleosomes are positioned on the DNA.  There are a number of mechanisms which 

can affect the structure, positioning, and dynamics of the nucleosome.  These include 
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chromatin remodeling complexes, transcription, and the histone chaperones.   In 

general, how much the actual DNA sequence itself influences nucleosome positioning 

is a point of contention.  In budding yeast some studies have estimated that upwards 

of 50% of the genome is specifically evolved or constrained to aid in positioning of 

individual nucleosomes [8, 9], while another in vitro study suggests that ~95% of 

genomic sequences do not function as a guide for nucleosome positioning [10].  

Nucleosomes are deposited onto DNA in both a S phase dependent and independent 

manner [11].  Deposition or replacement of nucleosomes outside of S phase is usually 

indicative of chromatin remodeling to accommodate changes in the transcriptional 

program [12].  Although it is not known exactly how nucleosomes are positioned, a 

great deal is known about how the positioning of nucleosome can be modified to alter 

the accessibility of the chromatin. 

 One of the major classes of chromatin regulating proteins utilizes the energy 

from ATP hydrolysis to alter DNA/histone interactions, subsequently conferring 

changes in chromatin structure or nucleosome positioning.   These protein complexes 

are known as chromatin remodeling complexes and in budding yeast include 

members of the Swi/Snf protein family [13].  Chromatin remodeling complexes are 

thought to function by two distinct mechanisms, including displacement of bulk 

nucleosomes through transient unwrapping of DNA from the histone octamer and 

translational re-positioning or sliding which changes nucleosome position on the 

DNA template [14]. 

 Transcription is another major factor which influences nucleosome 
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positioning.  Both in vitro and in vivo experiments have demonstrated that it is more 

difficult for RNA polymerase II (Pol II) to transcribe through a nucleosome-

containing template, and doing so can actually displace nucleosomes from the highly 

active regulatory genes in budding yeast [15-17].  Transcription is generally believed 

to create nucleosome-free regions by one of two mechanisms [18].  The first 

mechanism involves the binding of general transcription factors (TFs) during 

transcription initiation.  In vivo studies in yeast have shown that binding of TFs 

destabilizes pre-positioned nucleosomes at regulatory promoters [19, 20].  

Additionally, genome-wide nucleosome mapping studies also reveal a correlation 

between known TF binding sites, and nucleosome-free regions [21].  The second 

mechanism of nucleosome displacement involves Pol II and transcript elongation.  

Several studies in yeast and in higher eukaryotes suggest a mechanism in which the 

elongating Pol II either partially or completely evicts nucleosomal histones [22, 23].  

It is important to note that during elongation not all histones are completely 

disassociated from the DNA and mechanisms do exist which preferentially displace 

either H2A-H2B dimers or H3-H4 tetramers [24]. 

  

4.  Histone chaperones 

 The dynamic properties of nucleosomes are achieved with the help of 

specialized proteins dubbed histone chaperones.   Histone chaperones are a group of 

evolutionarily conserved proteins which facilitate both the deposition and rebuilding 

of nucleosomes during events such as S phase and transcription.  In budding yeast a 
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number of chaperone proteins have been identified and characterized biochemically 

in vitro and functionally in vivo.  The histone H3-H4 chaperones function in either 

one of two pathways, replication-dependent or replication-independent.  The 

chaperone complex CAF1- facilitates loading of H32-H42 onto the DNA in a 

replication-dependent manner.  CAF-1 physically associates with the DNA 

polymerase processivity clamp PCNA and histone H32-H42, allowing nucleosomes to 

be deposited immediately after DNA replication or DNA repair [25, 26].  The HIR 

complex is another evolutionarily conserved H3-H4 chaperone.  HIR has been shown 

to function outside of DNA replication, helping to deposit or reassemble H32-H42 

onto DNA during transcription and embryogenesis [27, 28].  

 The histone H2A-H2B chaperones assist in addition of the H2A-H2B dimer 

onto the pre-formed H32-H42 tetrasome.  The H2A-H2B dimer is not maintained in 

the nucleosome with as high affinity as H32-H42, therefore H2A-H2B dimers are 

more dynamic and removed more readily from the nucleosome during transcription 

[12, 29].  The histone chaperone Nap1 is a major regulator of H2A-H2B dynamics, 

facilitating both the shuttling of H2A-H2B into the nucleus and its deposition into 

nucleosomes during S phase [30].  The FACT complex is a key histone chaperone 

that functions during transcription [31].  It has been observed both in vivo and in vitro 

that Pol II-mediated transcription removes H2A-H2B dimers from nucleosomes [15].  

It is hypothesized that the FACT complex removes H2A-H2B dimers ahead of the 

replicating polymerase, facilitating transcription through nucleosome-dense regions.  

Additionally, FACT has been shown to possess chaperone activity in vitro, leading to 
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the hypothesis that FACT is necessary to re-deposit H2A-H2B dimers after Pol II has 

passed through a region [32]. 

 

5.  Histone variants 

 In most eukaryotes there are multiple copies of each of the core histone genes.  

These genes are generally tightly regulated in a cell cycle manner, and are primarily 

highly expressed during S phase.  The histone genes code for the majority of the 

histones found at nucleosomes throughout the genome.  In addition to the genes that 

code for the core histones, there are genes which code for proteins known as histone 

variants.  The histone variants are a group of proteins which closely resemble the core 

histones but have distinct biochemical properties which are thought to alter the 

characteristics of the nucleosome.  Histone variants have been identified in all 

eukaryotes studies, and with the exception of H4, all core histones have identifiable 

variants [33].  Histone variants are usually coded for by a single gene which is 

expressed throughout the cell cycle, and are thought to replace their core histone 

counterpart to form a specialized nucleosome. 

Histone variants can be species specific, or found ubiquitously in all eukaryotes, and 

have been implicated in regulation of multiple cellular processes including 

transcriptional activation and repression, formation of heterochromatic barriers, 

gametogenesis, and maintenance of genome stability [34-38] (Table 1).  It is also 

important to note that in some species the predominant core histone may actually be a 

histone variant in another species.  For example, the budding yeast core histone H3 is 
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actually the H3 variant H3.3 in higher eukaryotes [33]. 

 
Table 1.  List of known histone variants and their function 
Adapted from Kamakaka et al. [33]. 
 

 

 

A.  The centromeric histone variant 

 The CenH3 histone variant is known as Cse4 in budding yeast and more 

generally as CENP-A in higher eukaryotes.  The CenH3 variant is thought to 

physically replace histone H3 at centromeric nucleosome(s), and is the fundamental 

structural unit of the eukaryotic kinetochore.  CenH3 has been shown to localize to 

centromeres in all eukaryotes studied and is required for proper chromosome 

segregation and mitotic division (for review see [39]).  Structurally, CenH3 orthologs 

have two major domains: an evolutionarily conserved histone fold domain (HFD) and 

a divergent amino-terminal   domain.  The HFD of CenH3 orthologs has a high 

degree of amino acid identity to histone H3, while the amino-terminal portion of the 

protein can vary greatly between species (Figure 2). The N-terminal tail of yeast Cse4 

is much longer than any of its eukaryotic counterparts.  It is essential for Cse4 
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function in vivo, although its exact molecular function is unknown [40].  The function 

of the CenH3 nucleosome is highly conserved, as demonstrated by the functional 

complementation of RNAi-depleted CENP-A in human cells by yeast Cse4 [41].  

 The timing and mechanism of Cse4/CENP-A deposition varies throughout 

eukaryotes.  In budding yeast Cse4 has been shown to be incorporated into the 

centromere during S-phase (see below).  Cse4 bound to DNA after S-phase remains 

very stable throughout the remainder of the cell cycle, with new Cse4 replacing the 

old Cse4 during the subsequent S-phase [42].  The mechanism of targeting and 

incorporation of Cse4 into centromeric nucleosomes is poorly understood.  In humans 

CENP-A is expressed during G2, after S-phase in completed [43].  CENP-A is then 

incorporated at the centromere during late telophase/early G1 [44].  The loading of 

human CENP-A requires the proteins Mis18α-β and KNL2 [45, 46].  Both Mis18α-β 

and KNL2 interact with the histone chaperone CAF-1, but their exact mechanism of 

function is unknown.  The fission yeast Schizosaccharomyces pombe loads CENP-A 

(Cnp1) in two distinct pathways.  The S-phase coupled Cnp1 loading pathway 

requires the proteins Mis6 and Ams2 for proper localization of the CenH3 variant 

[47].  In addition to the S-phase loading pathway, fission yeast can also load Cnp1 in 

a replication-uncoupled pathway during late G2 [48].   

 
III. Mitosis and Chromosome Dynamics 

In order for any cell to replicate, it must make a copy of its genome and faithfully 

deliver a copy of that genome to the newly formed daughter cell.  This complex  
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Figure 2.  Multiple sequence alignment of Cse4 orthologs. 
ClustalW was used to create a multiple sequence alignment of Cse4 (CENP-A) 
orthologs.  Conserved residues which are identical in all species are marked with an 
asterisk.  Conserved residues which exhibit strong similarity in all species are marked 
with a colon.  Conserved residues which exhibit weak similarity in all species are 
marked with a period.  The location of the N-terminal tail and the features of the 
conserved histone fold domain are indicated. 
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Process known as mitosis is essential for survival of any organism and involves a 

myriad of biological components.  Since the first description of mitosis in the late 19th 

century, scientists have studied its complexities to gain understanding into the 

fundamental properties of chromosome dynamics.  The primary goal of mitosis is a 

division of the parental cell and its genome into two daughter cells.  All eukaryotic 

organisms undergo mitosis, and with few exceptions the process is well conserved 

throughout evolution.  Since mitosis is such an important cellular process, it is 

imperative that it is carried out without error.  Defects in the mitotic machinery can 

lead to transmission of the incorrect number of chromosomes into the daughter cell.  

A cell that inherits an improper number of chromosomes is referred to as aneuploid.  

Aneuploidy can be fatal to single-celled eukaryotes, and in humans is thought to be 

one of the key factors in the development of cancer [49] and Downs Syndrome [50].  

 

1. The phases of mitosis 

 Mitotic division is a step-wise process and can be divided into two main 

phases, interphase and M phase.  Interphase is relatively long when compared to M 

phase, and it is during this time that the cell prepares itself for the cell division.  

Interphase is divided into three sub-phases: first gap (G1), synthesis (S phase), and 

second gap (G2) [51].  During G1 the cell grows and prepares for S phase, producing 

the proteins necessary to duplicate its genome.  DNA replication occurs during S 

phase, resulting in the formation of a duplicate chromosome known as a sister 

chromatid.  Concomitant with replication, the sister chromatids are held together via a 
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protein complex called cohesin.  During G2/Early M, the cohered sister chromatids 

are then aligned lengthwise along the metaphase plate in preparation for the 

upcoming mitotic segregation.  The physical separation of the sister chromatids 

occurs late in M phase, during anaphase.  The cell cycle then reaches its end after the 

completion of cytokinesis.  The end product of mitosis will be a newly formed cell 

that is genetically identical to it progenitor.     

  

2. Chromosome segregation 

 The process of physically moving a replicated genome into the daughter cell is 

known as chromosome segregation.  Eukaryotic chromosome segregation is a 

fundamental and well conserved mechanism common to all species studied.  There 

are a number of components essential to properly segregate chromosomes.  The DNA 

component of the segregation machinery is a specialized, non-conserved sequence 

called the centromere.  Directly over the centromere a large proteinaceous structure 

called the kinetochore will form.  Microtubules emanating from oppositely oriented 

spindle poles (centrosomes) physically attach to the kinetochore.  Using the energy 

generated by de-polymerization of the microtubules, the sister chromatids are 

physically separated and pulled in opposite directions.  In budding yeast a single 

microtubule will bind at each kinetochore, while in higher eukaryotes, multiple 

microtubules can attach to a single chromosome.  Once chromosome segregation is 

complete, one copy of the genome will remain in the original cell and the other copy 

will have been transferred into what will become the daughter cell (Figure 3). 
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A. Structure and function of eukaryotic centromeres 

 The centromere is the specialized DNA sequence which is essential for 

chromosome segregation in all eukaryotes.  Although the mechanism of chromosome 

segregation is conserved between species, the actual structure and composition of the 

centromere is not.  Eukaryotic centromeres have divergently evolved over several 

millions of years, and although their respective function remains the same, the actual 

centromeric sequence varies greatly between organisms.  The purpose of the 

centromere is to serve as a guide for the recruitment of the kinetochore proteins to a 

single dedicated site on each chromosome.  In order to avoid chromosome 

transmission defects, only one centromere must function on each chromosome during 

mitosis.  Defects in proper centromere function or mis-localization of the kinetochore 

proteins can lead to aneuploidy and cell death.   

 Centromeres can be categorized into two groups: point centromeres and 

regional centromeres.  In terms of sequence complexity, the point centromeres are the 

simplest of the eukaryotic centromeres.  Point centromeres are found in many fungi, 

including S cerevisiae.  The budding yeast point centromere is a 125bp consensus 

sequence comprised of three centromeric DNA elements (CDE I-II-III) which are 

conserved on each chromosome and are required for full mitotic function [52] (Figure 

4A).  CDEI and CDEIII are short (10-20bp) sequences conserved on each 

chromosome, while CDEII is an A+T rich (>90% A+T) non-conserved sequence 

[52].  Mutational analysis reveals that the majority of nucleotides of the CDE III  
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Figure 3.  Mitosis and chromosome segregation 
The diagram represents the process of chromosome segregation in a diploid 
eukaryotic cell.  DNA replication occurs during S-phase of mitosis.  After completion 
of S-phase, microtubulules attach to chromosomes via the kinetochore.  At the 
completion of mitosis one copy of the genome will remain in the original cell and the 
other copy will have been transferred into what will become the daughter cell. 
(Reprinted with permission from NCBI, 2008). 
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sequence are essential for proper chromosome segregation [53]. CDE I and CDE II 

have less stringent sequence requirements to maintain centromere function.  Single 

base pair deletions or insertion in CDE II are well-tolerated, and complete deletion of 

CDE I does not abolish mitotic segregation [54, 55]. 

 Regional centromeres are found in certain single-celled eukaryotes and in all 

metazoans. Centromeres in higher eukaryotes can vary greatly in sequence 

composition, but all retain some type of repetitive nature.  Centromeres in the fission 

yeast S. pombe are considered to be the simplest of the regional centromeres.  They 

range from 30-110 kilobases (Kb) in length and are composed of a unique core 

sequence (cnt)  that is flanked by a set of inner (inr) and outer (otr) repeats [56, 57] 

(Figure 4B).  In S. pombe both the unique cnt and the repetitive dg elements of the otr 

repeats are essential for centromere function [58].   Centromeres in higher eukaryotes 

such as humans are much larger and more complex.  Some human centromere can 

span megabases (Mb) of DNA [59].  In general, metazoan centromeres possess a 

large central core, comprised primarily of α-satellite repetitive DNA sequences.  

Flanking the core repeats are usually more tandem arrays of both α and γ-satellite 

DNA, as well as repetitive sequences which resemble transposable elements [60, 61] 

(Figure 4C).  These large regions of pericentric DNA are heterochromatic in nature, 

and are essential for maintenance of centromeric identity. They are thought to 

function as a barrier, preventing the core repeats from events that could have a 

deleterious effect on centromere function, including transcription, recombination, and 

transposable element insertion.   
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B. The evolutionarily conserved kinetochore 

 The kinetochore is a large, multi-protein structure with an evolutionarily 

conserved function.  Once recruited to the centromere, kinetochore proteins facilitate 

interaction between the chromosome and the spindle microtubules during mitosis and 

meiosis.  Many eukaryotic kinetochore proteins have been identified to date, and in 

budding yeast >65 different proteins have been implicated as functional kinetochore 

proteins [62] (Table 2) .  The kinetochore proteins are grouped into three functional 

groups: inner, central and outer kinetochore proteins.  Kinetochore assembly is 

thought to be hierarchical in nature, with the initial localization of inner kinetochore 

proteins facilitating the recruitment of additional kinetochore proteins and protein 

complexes.  Localization of the inner kinetochore components to the centromeric 

DNA is the initial step of kinetochore formation.  The inner kinetochore proteins 

function at the interface between the kinetochore and the DNA through either a direct 

interaction with centromeric DNA, or via a direct interaction with other inner 

kinetochore proteins.  In budding yeast a protein complex called CBF3 helps to 

specify the location of the centromere by a direct interaction with CDE II-III, while in 

higher eukaryotes inner kinetochore proteins have been shown to interact with the 

repetitive centromeric elements [63-65].  After localization of the inner kinetochore 

components, the proteins of the central kinetochore are recruited to the centromere 

via interaction with other inner kinetochore proteins.  Most central kinetochore 

proteins are found in discrete complexes which function as a protein scaffold, 

physically linking the inner and outer kinetochore [62, 66, 67].  The outer kinetochore  
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Figure 4.  Eukaryotic centromeres. 
The cartoon schematic represents three examples of centromeres in higher 
eukaryotes.  A)  The budding yeast “point” centromere is a 125 bp consensus 
sequence comprised of three centromeric DNA elements: CDE I, CDE II, and CDE 
III.  B)  Fission yeast possess the simplest of the “regional” centromeres, which range 
from 30-110 kb in length and are composed of a unique core sequence that is flanked 
by a set of inner and outer repeats.  C)  Some human centromeres can span megabases 
of DNA, and are comprised primarily of α-satellite repetitive DNA sequences.   
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Table 2.  The evolutionarily conserved kinetochore. 
Classification of budding yeast kinetochore proteins based on known function and 
interacting proteins.  Proteins essential for viability in yeast are shown in red and 
those that are non-essential are shown in black.  If applicable, the human homolog for 
each protein is listed. Adapted from Cheeseman et al. [62].    
 
 
 
 
 
 
  
 

 

 

 

 

 

 

 

 

contains proteins which interact with microtubules.  These proteins can include motor 

proteins such as kinesin and dynein, and non-motor microtubule associated proteins 

(MAPs) which provide the attachment sites required for chromosome segregation [68, 

69].  In addition to the proteins which physically link the chromosome to the spindle 

microtubule, the outer kinetochore is also comprised of proteins which are 

responsible for the regulation and maintenance of the kinetochore itself.  The mitotic  
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spindle assembly checkpoint is a group of well-conserved proteins which ensure 

segregation fidelity by monitoring the proper formation and attachment of the 

kinetochore.  In the event of a situation where segregation would be impaired, the 

spindle assembly checkpoint will activate, sending a signal to the cell which will halt 

chromosome segregation and the cell cycle.  During this halt in mitotic activity, the 

cell can attempt to correct the defect that caused the checkpoint arrest [68].  

Checkpoint activation can be induced by a number of factors including lack of 

microtubule attachment to the kinetochore, improperly attached microtubules, or a 

defect in biorientation toward opposite spindle poles [70-72]. 

[73] 
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Chapter 2. 

Characterization of the Novel Kinetochore Component Scm3 

 

I.  Abstract 

 The kinetochore is a complex multi-protein structure located at centromeres 

that is essential for proper chromosome segregation.  Budding yeast Cse4 is an 

essential evolutionarily conserved histone H3 variant recruited to the centromere by 

an unknown mechanism.  We have identified Scm3, a new inner kinetochore protein 

that immunopurifies with Cse4.  Scm3 is essential for viability and localizes to all 

centromeres.  Construction of a conditional SCM3 allele reveals that depletion results 

in metaphase arrest, with duplicated spindle poles, short spindles, and unequal DNA 

distribution.  The metaphase arrest is mediated by the mitotic spindle checkpoint, 

being dependent on Mad1 and the Aurora kinase B homolog Ipl1.  Scm3 interacts 

with both Ndc10 and Cse4 and is essential to establish centromeric chromatin 

following DNA replication.  In addition, Scm3 is required to maintain kinetochore 

function throughout the cell cycle.  We propose a model in which Ndc10/Scm3 binds 

to centromeric DNA which is in turn essential for targeting Cse4 to centromeres. 

 
II.  Introduction 

Every time a eukaryotic cell divides, it replicates its genome and delivers a 

complete set of chromosomes to its daughter cell.  Proper chromosome segregation is 

dependent on the formation of a DNA-protein complex known as the kinetochore 
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which attaches to microtubules to mediate the physical separation of sister 

chromatids.  Defects in chromosome segregation can lead to aberrant cell growth, 

aneuploidy, improper development, and cell death.  Faithful transmission of 

eukaryotic chromosomes requires a centromere with its associated kinetochore 

proteins.  In Saccharomyces cerevisiae, the centromere is a small stretch of DNA 

spanning approximately 125 bp that is sufficient to support high fidelity chromosome 

segregation [52].  The “point centromere” of budding yeast is composed of three 

DNA elements (CDE I, CDE II, and CDE III), whereas centromeres of other fungi 

and higher eukaryotes, referred to as regional centromeres, can be comprised of up to 

a megabase of repetitive DNA.  Although eukaryotic centromere sequences are highly 

variable, they are all epigenetically marked by the incorporation of the CenH3 histone 

variant CENP-A, which is known as Cse4 in budding yeast.  This CENP-A-

containing nucleosome is thought to be the chromatin scaffold on which the 

kinetochore is built.  How this histone variant is specifically targeted to centromeres 

remains unclear, but factors have been identified in various higher eukaryotes that 

contribute to CENP-A’s centromere specificity [74, 75]. 

Although the budding yeast centromere is a simple sequence, the kinetochore 

is quite complex.  Through a combination of genetic and biochemical techniques, 

over 65 budding yeast kinetochore proteins have been identified, many of which are 

evolutionarily conserved from yeast to man (for reviews see [69, 76]).  The 

kinetochore can be conceptually divided into three functional parts that are proposed 

to assemble hierarchically: inner, central, and outer.  The inner kinetochore or DNA 
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binding layer is comprised of several proteins including Mif2 (CENP-C), the CBF3 

complex (Ndc10, Cep3, Skp1, and Ctf13) and the CenH3 histone variant Cse4 

(CENP-A), all of which are essential for kinetochore function [63, 77-79].  The 

central or linker kinetochore layer consists of a group of complexes (COMA, MIND, 

NDC80) that functions as a bridge between the outer and the inner kinetochore [66, 

67, 80, 81].  The outer kinetochore is comprised of the proteins that physically bind to 

microtubules during mitosis, and includes 10 members of the DAM/DASH complex 

[82-84].  This outer layer is also associated with many of the regulatory components 

of the kinetochore, including the Ipl1-Sli5 kinase complex, as well as the components 

of the spindle assembly checkpoint which monitors proper bi-orientation and correct 

microtubule attachment [70, 85, 86].   

 In budding yeast, Ndc10 is required for the localization of all other 

kinetochore proteins [84, 87-89].  The binding of Ndc10 to centromeric DNA is 

thought to be the initial step that nucleates kinetochore formation [65].  It has been 

proposed that Ndc10 localizes to the centromere in two distinct modes: first, through 

participation in the CBF3 complex which interacts with CDEIII, and second, Ndc10 

can independently bind CDEII [65, 90].  Both of these interactions are believed to 

occur early in S-phase, immediately following centromere replication, but the exact 

timing has not been determined [65, 79].  Additional loading of the CBF3 protein 

complex occurs throughout the cell cycle and is required for proper kinetochore 

function, independent of its role in recruiting other kinetochore proteins to the 

centromere [63].  While Ndc10 is required to localize Cse4 to centromeres in budding 
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yeast, these two proteins have never been shown to physically interact.  This raises 

the question of how Ndc10 might be involved in the recruitment of Cse4 to 

centromeres. 

 Here we describe the characterization of Scm3 (Suppressor of Chromosome 

Missegregation), originally identified as a high-copy suppressor of a mutation to the 

histone fold domain of Cse4 [40]. This essential protein has putative orthologs in 

fungi which possess either point or regional centromeres.   We find that Scm3 

physically associates with both inner kinetochore components Ndc10 and Cse4, and 

like these proteins, localizes to centromeres.  Construction of a conditional SCM3 

allele reveals that cells depleted for Scm3 fail to properly localize both Cse4 and 

Ndc10 to the kinetochore.  Scm3 depleted cells arrest in metaphase with duplicated 

spindle poles, short spindles, and unequal DNA distribution.  Cell cycle and spindle 

checkpoint experiments reveal Scm3 is essential to both establish and maintain a 

segregation-competent kinetochore.  Based on our findings, we hypothesize that 

Scm3 is a novel inner kinetochore protein that functions in coupling the nucleation of 

the kinetochore by Ndc10 to establishment of Cse4-containing centromeric 

chromatin. 

 

III.  Results 

1. Scm3 physically associates with both Cse4 and Ndc10 

 Based on the observed genetic interaction between Cse4 and Scm3 [40], we 

wanted to test for possible protein-protein interactions between Scm3 and inner  
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Figure 5.  Scm3 interacts with inner kinetochore proteins.  
A)  Peptide coverage of two Cse4-12Myc immunoprecipitations and a Scm3-3FLAG 
immunoprecipitation analyzed by mass spectrometry.  B)  In vivo 
immunoprecipitation of Scm3-3HA pulls down both Cse4 and Ndc10, but fails to pull 
down histone H3.  The αMyc and αH3 antibody hybridizes to a background band 
present in all HA-precipitated samples.  Input controls are 0.05% of total whole cell 
lysate.  C)  Nuclear lysates were made from a strain expressing Scm3-3Flag and 
Cse4-12Myc.  Western blotting was carried out with either αFlag antibody (lanes 1-2) 
or αMyc antibody (lanes 3-4).  The chromatin fraction was pelleted and twice as 
much supernatant (soluble nuclear proteins, “sol nuc”) as lysate was loaded in lanes 2 
and 4.  D)  Equal portions of the chromatin fraction were subjected to washes of 
increasing ionic strength as indicated, then solubilized by treatment with MNase and 
analyzed by Western blotting. 

 41



kinetochore proteins.  Multi Dimensional Protein Information Technology (MudPIT) 

mass spectrometric analysis detected three peptides of Scm3 from two independent 

immunopurified Cse4 preparations and Cse4 was detected in an immunopurified 

Scm3 preparation (Figure 5A.)  Co-immunoprecipitation (co-IP) was performed from 

yeast whole cell extracts probing for interaction between Scm3 and Ndc10, Cse4, and 

histone H3.  We found that Scm3 physically associates with both Ndc10 and Cse4 in 

vivo (Figure 5B).  No interaction between Scm3 and histone H3 was detected (Figure 

5B).  Virtually all of the Scm3 and Cse4 in a nuclear lysate is chromatin associated, 

suggesting that these proteins may form a complex at centromeres (Figure 5C).  

Furthermore, Scm3 and Cse4 are very stably associated with chromatin.  We 

performed a salt challenge experiment in which the chromatin pellet was washed with 

increasing concentrations of salt, solubilized by treatment with MNase, and analyzed 

by Western blotting.  As expected, histone H2B is removed from chromatin by 0.75M 

salt, and histone H3 remains associated up to 1.0 M salt.  Scm3 and Cse4 behave like 

histone H3, demonstrating a very strong association with chromatin (Figure 5D).  

These results suggest that Scm3 is a chromatin bound component of the inner 

kinetochore.  However, the salt challenge experiments do not address whether Scm3 

is an actual component of the centromeric nucleosome, or rather just intimately 

associates with it. 

 

2. Scm3 shut-off is lethal and leads to metaphase arrest and chromosome 

segregation defects 
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 We were interested in studying the effect loss of Scm3 function has on cell 

cycle progression and chromosome segregation.  Based on data from large-scale yeast 

gene deletion studies, the deletion of Scm3 is lethal [91].  In order to study the 

function of Scm3, the endogenous copy of the gene was epitope-tagged and placed 

under the control of a galactose-inducible promoter (pGAL1-10-3HA-Scm3) (Figure 

6A).  Expression of Scm3 from the galactose promoter should be effectively “shut-

off” when cells are grown in media with glucose as the sole carbon source (YPD).  

Remarkably, Scm3 protein levels when expressed from the GAL1-10 promoter are not 

significantly different from endogenous levels of Scm3-3HA (Figure 6B), suggesting 

Scm3 protein levels are tightly regulated post-transcriptionally.  Western blot analysis 

was performed to confirm depletion of Scm3 upon switch to YPD.  One hour after 

switching from galactose to glucose media, Scm3 is not detectable by Western blot 

(Figure 6C).  Thus, we are reasonably certain that depletion of Scm3 has allowed us 

to phenocopy a null mutation.  Additionally, since Scm3 is not overexpressed from 

the GAL1-10 promoter, our observations cannot be attributed to a gross excess of Scm3 

protein.  We also examined Cse4 and Ndc10 expression in the absence of Scm3.   

While Scm3 is not detectable when cells are grown in YPD, levels of both Cse4 and 

Ndc10 remain stable (Figure 6C).  This finding suggests Scm3 is not required for the 

stability of either Cse4 or Ndc10 protein, and any phenotype associated with Scm3 

depletion is not due to lack of Cse4 or Ndc10 protein availability.  Additionally both a 

wild-type strain and a strain containing pGAL1-10-3HA-Scm3 grow similarly when 

maintained in media containing galactose (Scm3on ).  No growth was observed on  
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Figure 6.  The effect of Scm3 shut-off on cell viability.  
A) Scm3on/off construct.  The GAL1-10 promoter was integrated to control the 
expression of endogenous Scm3.  B)  Western analysis showing protein levels of 
pGAL1-10 -3HA-Scm3 as compared to Scm3-3HA expressed from its endogenous 
promoter.  Pgk1 serves as a loading control.  C)  Western analysis showing levels of 
Scm3, Cse4, and Ndc10 in both Scm3on and Scm3off conditions.  Scm3 protein levels 
are undetectable in Scm3off, while Cse4 and Ndc10 levels remain unchanged.  50 
micrograms of total protein were loaded per lane.  Pgk1 serves as a loading control.  
D)  Dilution assay reveals no difference in growth between a wild-type strain, and an 
otherwise isogenic strain containing the pGAL1-10 promoter integrated to control 
Scm3 in galactose-containing media.  However, in Scm3off conditions, the pGAL1-10-
3HA-Scm3 strain does not exhibit any detectable growth, and arrests with large 
budded cells.   
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glucose-containing media (Scm3off ) (Figure 6D), an indication that we are able to 

recapitulate a SCM3 null phenotype.   

 DAPI staining was performed to visualize DNA in Scm3on and Scm3off 

cultures.  In Scm3on we observe that large budded cells contain two DAPI staining 

foci in opposing cell bodies.  This is in contrast to Scm3off cells  in which a single 

DAPI stained body is contained either entirely in one cell body, or extends across the 

mother-daughter neck (59% and 37% respectively) (Figure 7A).  This phenotype 

indicates that accurate segregation of chromosomal DNA to opposite spindle poles 

had not occurred, with cell cycle arrest occurring sometime prior to anaphase.  This 

phenotype is similar to that observed at the non-permissive temperature for strains 

with temperature sensitive mutations in either CSE4 or MIF2 [37, 78]. 

 In order to visualize both spindle poles, and spindle microtubules, in Scm3on 

and Scm3off, indirect immunofluorescence was performed using antibodies against 

Tub1 (microtubules) and Tub4 (spindles pole bodies).  In Scm3on, large budded cells 

have normal elongated spindles of varying length (2-16μm) that span across both the 

mother cell and the bud.  This observation is in contrast to Scm3off, in which the vast 

majority of cells contain short spindles (96%, 1-5 μm) that either span the mother-

daughter neck or reside in one cell body (Figure 7B-C).  There does not appear to be a 

spindle pole duplication defect.  Additionally, in the situation were the spindles 

microtubules are elongated past 5uM, we observe that the majority of cells exhibit 

defects in spindle morphology, including bent, and broken spindles (Figure 7D).  

These defects are reminiscent of those seen in strains harboring mutations in the outer 
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kinetochore protein Dam1, which functions in attachment of the microtubules to the 

kinetochore [83].  

 To analyze DNA content, fluorescence activated cell scanning (FACs) was 

performed on cells either maintained in galactose, or switched to glucose.  Scm3on 

cultures grown in galactose remain asynchronous, while cells transferred to YPD 

arrest within 2-3 hours with a 2N DNA content (>98%) (Figure 7E).  Since the 

phenotypes observed for Scm3off are reminiscent of those exhibited by strains with 

mutations to essential kinetochore proteins, we hypothesized that depletion of Scm3 

was activating the mitotic spindle checkpoint.  In order to verify that the metaphase 

arrest in Scm3off is mediated by the spindle checkpoint, we deleted MAD1, a gene that 

encodes an essential spindle checkpoint component in our Scm3on/off background.  

FACs analysis was performed on cultures with Scm3on-Δmad1 and Scm3off-Δmad1.  

Unlike Scm3off cells, which arrest completely with 2N DNA content, Scm3off-

Δmad1cells do not arrest (Figure 7F).  Instead, the culture with Scm3off-Δmad1 

continues to cycle, with ploidy problems evidenced by a broadening of the 2N peak at 

later time points.  This demonstrates that Scm3 function is required for proper 

chromosome segregation.  Taken together, all of the above results strongly suggest 

that Scm3 is a novel kinetochore protein, without which the kinetochore is not fully 

functional and the spindle checkpoint is activated.  

 

3. Functional Analysis of Scm3 

 Although Scm3 does not contain any predicted protein motifs that would  
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Figure 7.  Phenotypic effects of the Scm3off allele. 
A)  DAPI straining reveals the majority of DNA in Scm3off cells is confined to one 
cell body or extends across the mother-daughter bud neck.  B)  Indirect 
immunofluorescence shows the short metaphase spindle in large budded Scm3off 
cells.  DNA is stained with DAPI (blue), spindle pole bodies are stained with 
antibody to Tub4 (red) and microtubules are visualized with an antibody against Tub1 
(green).  C)  The length between spindle pole bodies (Tub4, red) was measured for 
200 Scm3on and Scm3off cells.  DNA is stained with DAPI (blue).  D)  The majority 
of Scm3off cells whose distance between spindles is longer than 5 microns exhibit 
spindle defects.  White arrows point to bent and broken spindles.  Staining is the same 
as in (B).  E)  FACS analysis of asynchronous cultures switched from Scm3on to 
Scm3off shows complete arrest with 2N DNA content.  F)  FACS analysis shows that 
a strain without a functioning mitotic spindle checkpoint fails to arrest with 2N DNA 
content when Scm3 is shut off.          
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suggest its function, we have identified putative Scm3 orthologs in fungi with both 

point and regional centromeres (Figure 8A).  Phylogenetic alignments of Scm3 reveal 

an evolutionarily conserved core domain (CCD) (Figure 8B).  To assess the 

functional requirement of the Scm3 domains, we have performed domain deletion 

analysis focusing on both the N- and C- terminus of the Scm3 protein.  Full length 

Scm3 protein was cloned into the high copy vector pRS423 (pRS423-Scm3Full).  

From this template, consecutive 25 amino acid deletions from both the N- and C- 

termini were constructed stopping 100 amino acids from each end of the protein.  

These constructs were transformed into pGAL1-10-3HA-Scm3 and tested for growth in 

both Scm3on and Scm3off conditions.  We find that when the endogenous Scm3 

protein is shut off, and the only functional copy of SCM3 is on the plasmid, deletion 

of the first 25 amino acids of the N-terminus of Scm3 (scm3-Δ25N) does not support 

growth. This is opposed to the C-terminus, where deletions of up to 75 amino acids 

are viable (Figure 8C).  To test for essential residues of the Scm3 CCD, site directed 

mutagenesis was performed to selectively mutate conserved SCM3 nucleotides.  

These constructs were transformed into pGAL1-10-3HA-Scm3 and tested for growth in 

both Scm3on and Scm3off conditions. Using this approach, 3 essential residues (I110, 

I111, Y114) of the Scm3 CCD domain were identified (Figure 8D).     

 These results suggest that both the N-terminus and the CCD of Scm3 are 

required for proper protein function.  To look for dominant lethality of any of these 

regions, clones were constructed that expressed small peptides of Scm3.  The 

galactose inducible pESC-HIS plasmid was constructed to contain either: the N- 
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Figure 8.  Phylogenic and functional analysis of Scm3. 
A)  Dendrogram of Scm3 in fourteen fungi which possess either point or regional 
centromeres.  Grey branches represent fungi with regional centromeres and red 
branches those with point centromeres.  B)  Multiple protein sequence alignment of 
the conserved central domain (CCD) of Scm3 in various fungi.  Scm3 exhibits 
conservation of numerous residues in this region, throughout all fungi.  C)  Deletion 
analysis reveals that deletion of the N-terminal 25 amino acids of Scm3 is lethal, 
while deletion of the C-terminal 25 amino acids of Scm3 is not.  D)  Site directed 
mutagenesis of conserved residues in the CCD.  I110, I111, and Y114 are essential 
for Scm3 viability in Scm3off conditions (SD-Trp).  
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terminal 25 amino acids of Scm3, the entire CCD sequence (39 amino acids), the first 

25 amino acids of the CCD, the middle 25 amino acids of the CCD, or the last 25 

amino acids of the CCD.  Along with the pESC empty vector, these clones were 

transformed into a wild type yeast strain and a growth assay was performed to look at 

cell growth in either glucose (peptide not expressed) or galactose (peptide expressed).  

We find no discernable growth defect when the small Scm3 peptides are 

overexpressed in wild type cells (Figure 9A).  To test for complementation of the 

Scm3 lethal mutants scm3-Δ25N and scm3-I110H, both mutants were cloned into 

both pRS423 and pRS425 expression vectors.  Combinations of both plasmids were 

then transformed into a scm3Δ strain rescued by wild type SCM3 on a plasmid 

(pRS314-Scm3).  A plasmid-shuffle assay was then performed to look at viability.  

We find that no combination of the Scm3 lethal mutant proteins can rescue growth 

when co-expressed in the scm3Δ strain (Figure 9B).     

 

4. Scm3 localizes specifically to centromeres in an Ndc10-dependent manner 

 Since Scm3 appears to be an inner kinetochore protein and is chromatin 

associated, we were interested in looking at its localization to DNA.  A strain 

containing Scm3 tagged with 3 HA epitopes was grown to mid-log phase and arrested 

for two hours at metaphase with nocodazole.  Cultures were harvested and genome-

wide localization of Scm3-3HA was analyzed by chromatin immunoprecipitation 

followed by DNA microarray analysis (ChIP-chip).  Scm3-3HA ChIP samples were 

hybridized against a total chromatin control to yeast whole genome microarrays.   
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Figure 9.  Scm3 peptide expression and mutant complementation. 
A)  Small peptide fragments of the Scm3 N-terminus and conserved central domain 
(CCD) amino acids (aa) were cloned into a galactose inducible expression plasmid 
(pESC-HIS) and transformed into wild type yeast.  No difference in growth is 
observed when peptides are expressed (Gal-His) compared to growth when peptide 
are not expressed (SD-His).  B)  Plasmids pRS423 (HIS3) and pRS425 (LEU2) 
expressed wild type Scm3 and lethal mutants scm3-Δ25N and scm3-I110H.  Plasmids 
were co-transformed into the scm3Δ strain covered by a wild type Scm3 expressed 
from pRS314.  Cells were grown on media containing 5FOA to test for viability.  No 
combination of Scm3 mutants can rescue growth on 5FOA. 
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Additionally, a negative (no antibody) control ChIP was performed.  When we used 

αHA or no antibody precipitated samples as templates in semi-quantitative PCR 

reactions with primers that amplify sequence from CEN3, we observed a robust 

product with the αHA sample and no detectable product with the no antibody sample 

(data not shown).  We were unable to amplify enough of the material precipitated in 

the absence of antibody for hybridization to a DNA microarray (data not shown).  On 

microarrays Scm3 shows a strong enrichment exclusively to a region ~ 1.5 kb around 

all sixteen centromeres (Figure 10A).  This result is consistent with a role for Scm3 in 

kinetochore function.   

 Several studies have shown Ndc10 to be the initial component of the 

kinetochore to localize to centromeres.  This localization is necessary to establish 

centromeric chromatin and nucleate kinetochore formation, facilitating subsequent 

recruitment of downstream kinetochore proteins [79, 84, 88].  It has been previously 

shown that Cse4 fails to localize to centromeres in an ndc10-1 [79] mutant at the non-

permissive temperature [87, 92].  We tested whether the localization of Scm3 to 

centromeres requires Ndc10.  We find that the centromeric localization of Scm3 is 

dependent on Ndc10 function.  ChIP followed by quantitative PCR (qPCR) analysis 

reveals that centromeric localization of Scm3-3HA directly at CDE I-II-III is strongly 

reduced (~22 fold) in an ndc10-1 mutant at non-permissive temperature (Figure 10B).  

The enhanced resolution of the qPCR relative to the DNA microarrays also reveals 

that at the permissive temperature Scm3 localizes strongly to ~300 bps, which 

encompass CDE I-II-III.                                                              
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Figure 10.  Scm3 localizes to the centromere and this requires Ndc10.   
A)  Genome-wide microarray analysis reveals Scm3 localizes specifically to 
centromeres.  Cultures expressing Scm3-3HA were grown to mid-log phase and 
arrested in metaphase with nocodazole.  ChIP-chip was performed on two 
independent biological samples and the results were averaged.  The heatmap 
represents the log2

 ratios of Scm3-3HA IP microarray signal divided by a total 
chromatin input control for each microarray feature. Centromeric regions were tiled at 
high resolution.  A region corresponding to 4.5 kb surrounding the centromere is 
shown for all 16 chromosomes, with an asterisk indicating the region of CDE I-II-III.  
B)  ChIP was performed for Scm3-3HA in the ndc10-1 temperature sensitive 
background at permissive temperature (25°C) and after a 4 hour shift to non-
permissive temperature (37°C), followed by qPCR.  Scm3-3HA qPCR signal at CDE 
I-II-III (oval) is greatly reduced at 37°C as compared to 25°C.  Error bars represent 
+/- average deviation of biological replicates. 
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5. Scm3 is essential for proper localization of inner kinetochore proteins to the 

centromere 

 The findings that Scm3 localizes to all sixteen centromeres, and depletion of 

Scm3 results in chromosome segregation defects strongly suggests a role for Scm3 in 

kinetochore function.  Since Scm3 co-purified with Cse4 we decided to quantitatively 

analyze Cse4 localization to the centromere in the context of Scm3 depletion.  Cse4 

was tagged with 12 Myc epitopes in the pGAL1-10-3HA-Scm3 background.  Cultures 

were grown for ChIP, and qPCR was performed to measure Cse4-12Myc localization 

to a 2 kb region surrounding the centromere of chromosome 3 (CEN3) in the presence 

or absence of Scm3.  When cells are grown in galactose, Cse4 exhibits a strong 

localization to CEN3.  When cultures were switched to glucose-containing media for 

three hours, Cse4 levels at CEN3 are markedly decreased (4-fold) (Figure 11A).  

Interestingly, localization of histone H3 to this same site increases 8-fold in the 

absence of Scm3 (Figure 11B).  This finding suggests that in the absence of Scm3, 

Cse4 is replaced with histone H3, effectively altering the specialized chromatin found 

at the centromere.  We can also not rule out the possibility that in the absence of 

Scm3, the increased H3 signal at the centromere is simply due to an overall increase 

in ChIP antibody accessibility to H3-containing nucleosomes surrounding the 

centromere.  Additionally, our ChIP results are consistent with the model that a single 

Cse4-containing nucleosome is positioned within the centromere sequence [77].  In 

addition to Cse4, we analyzed the localization of two other essential inner 

kinetochore proteins in the absence of Scm3.   Utilizing the same ChIP/qPCR 

 54



 

 

 
 
 
 
 
 
 
Figure 11.  Centromeric localization of inner kinetochore proteins in Scm3on/off.   
A-D.  ChIP followed by qPCR was used to analyze the localization of inner 
kinetochore proteins to a 2 kb centromeric region on chromosome III in cultures 
grown with Scm3on (galactose) or Scm3off (glucose).  A depiction of the features 
within the region is shown below each histogram.  Error bar represent +/- the average 
deviation of biological replicates.  A)  Asynchronous Cse4-12Myc cultures switched 
to Scm3off (glucose, 3hr.) exhibit a marked decrease (4-fold) in Cse4 signal at CDE I-
II-III (oval).  B)  Conversely, histone H3 signal at CDE I-II-III increases 8-fold in 
Scm3off (glucose).  The EMP46 gene in this case serves as a positive control region 
for histone H3.  The signal at the GAL2 gene serves as a positive region for histone 
H3 when transcription is off in glucose media and a negative region when 
transcription is on in galactose media.  C)  Asynchronous Mif2-13Myc cultures 
switched to Scm3off (glucose) exhibit a decrease (3.5-fold) in Mif2 qPCR signal at 
CDE I-II-III.  D)  Ndc10 is depleted 2-fold in Scm3off by qPCR. 
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technique from above, Mif2-13Myc shows a 3.5-fold decrease (Figure 11C) and 

Ndc10-13Myc shows a 2-fold decrease (Figure 11D) in CEN3 localization when 

Scm3 is depleted.  Since Mif2 requires Cse4 to localize to the centromere [80], the 

loss of its localization to CEN3 can be attributed to loss of Cse4.  The decrease in 

Ndc10 localization to the centromere is more surprising since Ndc10 is thought to be 

the first component of the kinetochore that localizes to the centromere, and no factors 

that contribute to its centromere-specific localization have been identified.  Based on 

these findings, it appears that Scm3 is essential to initiate formation of a functional 

inner kinetochore. 

 Given the mutual dependence of Scm3 and Ndc10 for efficient localization to 

the centromere, and given the interaction between Scm3 and both Ndc10 and Cse4, 

we decided to examine the centromeric localization and physical interaction between 

Scm3 and Ndc10 in a cse4-1 temperature sensitive mutant.  It has previously been 

demonstrated that Ndc10 localization to CEN3 in a cse4-1 mutant is unaffected at the 

non-permissive temperature [93].  We find that while both Ndc10 and Scm3 can 

localize to CEN3 in a cse4-1 mutant at the non-permissive temperature, they do so 

with reduced efficiency (2-fold and 3.5-fold respectively) (Figure 12A-B).  Ndc10 

and Scm3 are still able to physically associate in a cse4-1 mutant at the non-

permissive temperature by co-immunoprecipitation (Figure 12C).  We conclude that 

while Cse4 may help to stabilize an inner kinetochore complex composed of Cse4, 

Ndc10, and Scm3, it is not essential for Ndc10 and Scm3 interaction or localization to 

centromeres.   
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Figure 12.  Centromeric localization of Scm3 and Ndc10 in the cse4-1 mutant. 
A-B)  ChIP at CEN3 was performed for both Ndc10-13Myc (A) and Scm3-3Flag (B) 
in the cse4-1 background.  Cultures were either maintained at permissive 
temperatures (25°C) or switched to non-permissive temperatures (38°C) in the 
presence of nocodozole for 4 hours.  Error bar represents +/- the average deviation of 
biological replicates.  C)  Co-immunoprecipitation of Scm3-3Flag and Ndc10-13Myc 
in the cse4-1 background at non-permissive temperature.  Scm3 and Ndc10 still 
physically associate in the cse4-1 mutant at non-permissive temperature. 
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 In order to determine whether Scm3 was sufficient to target Ndc10 and Cse4 

to non-centromeric sites in the genome, Scm3 was fused to a Gal4 DNA binding 

domain (Scm3-BD) and expressed from a high copy plasmid.  Using this construct we 

were not able to obtain transformants, an indication that expression of Scm3-BD may 

be toxic to the cells (data not shown).  Subsequently, we constructed a plasmid-based 

galactose inducible Scm3-BD fusion (pESC-Scm3-BD) with two Myc epitope tags, 

and transformed that into strains with either Cse4-3HA or Ndc10-3HA.  When we 

maintained the cells in glucose they grow with no observable defects, but upon switch 

to galactose media, pESC-Scm3-BD-containing cells exhibit poor growth when 

compared to a strain harboring the pESC vector alone (Figure 13A).  To test whether 

the Scm3-Gal4-BD fusion protein was functional, a plasmid shuffle assay was 

performed.  We found that cells expressing pESC-Scm3-BD as the sole copy of Scm3 

in the cell can indeed grow, although their growth is slower than cells expressing 

pESC-Scm3 without the Gal4 DNA binding domain (Figure 13B).  When cultures are 

switched to inducing conditions (Gal-His), ChIP/qPCR analysis reveals the Gal4BD-

Scm3 fusion protein efficiently targets both the endogenous GAL2 promoter and a 

GAL1 upstream activating sequence (UAS) integrated at YOL118c (Figure 13C).  It 

also localizes, albeit to a lesser extent, to CEN3.  Next we checked whether Cse4 

localized to these sites.  We found no significant Cse4-3HA enrichment at the GAL2 

UAS or GAL1 UAS-YOL118c when pESC-Scm3BD was expressed (Figure 13D).  

Additionally, we checked whether Ndc10 could be targeted to these regions.  We 

find, as with Cse4-3HA, Ndc10-3HA was not recruited to a non-centromeric region  
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Figure 13.  A Galactose-inducible Scm3 Gal4 DNA binding domain fusion is not 
able to recruit Cse4 or Ndc10 to the GAL2 UAS.   
A)  A yeast strain harboring the empty plasmid vector pESC or the Scm3-Gal4 
binding domain fusion protein (pESC-Scm3-BD) grows similarly on SD-His media.  
The strain with pESC-Scm3BD grows slower when the fusion protein is induced on 
Gal-His media.  B)  A plasmid shuffle assay was performed using pESC, pESC-Scm3 
and pESC-Scm3-BD.  On media containing 5FOA (Gal-His) we find both pESC-
Scm3 and pESC-Scm3-BD can support growth.  C)  A strain containing pESC-Scm3-
BD was grown under inducing (Gal-His) or non-inducing conditions (SD-His) and 
processed for ChIP/qPCR to monitor the localization of the fusion protein.  Three 
different sites were monitored: CEN3 (light grey), the endogenous GAL2 UAS (dark 
grey), and a GAL1 UAS inserted at YOL118C (black).  D)  Experiment was 
performed as in (B) except that the localization of Cse4-3HA was monitored by 
ChIP/qPCR.  Cse4-3HA localizes very strongly to CEN3 in both Gal-His and SD-His, 
but does not localize to either the GAL2 UAS or GAL1 UAS-YOL118c.  E)  
Experiment was performed as in (B) except that the localization of Ndc10-3HA to the 
GAL2 UAS and CEN3 was monitored via ChIP/qPCR.   
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(Figure 13E).  Thus it appears that the Scm3-BD fusion protein is not sufficient to 

nucleate an inner kinetochore at non-centromeric sites. 

 

6. Scm3 is required to establish and maintain a kinetochore that can activate the 

spindle checkpoint 

 In order to more closely examine the requirement for Scm3 in the assembly of 

the kinetochore, we arrested cells in G1 (with α-factor), depleted Scm3, and released 

them into the cell cycle to monitor DNA content as an indicator of checkpoint 

activation.  In our previous experiments, depleting Scm3 in asynchronous cells 

activates the spindle checkpoint and arrests cells at metaphase.  However, when cells 

are depleted for Scm3 prior to release from G1, they do not arrest with 2N DNA 

content (Figure 14A), an indication that they are not able to activate the spindle 

checkpoint.  Additionally, three hours post-G1 release cells begin to exhibit 

broadening of the 2N peak, an indicator of ploidy problems. This cytometry profile 

closely resembles that of a ndc10-1 temperature-sensitive mutant at non-permissive 

temperature [94].  Since activation of the mitotic spindle checkpoint requires 

functional Ndc10 at the kinetochore [95], the above phenotype may result from the 

failure of Ndc10 to associate with centromeres following their replication. 

 We hypothesized that the failure of cells to achieve metaphase arrest when 

Scm3 was depleted prior to S-phase was due to a failure in loading Ndc10.  In order 

to test this hypothesis, we arrested cells in G1 and released cells into media 

containing hydroxyurea (HU) with either Scm3on or Scm3off.  HU depletes 
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Figure 14.  The effects of Scm3 depletion on checkpoint activity and Ndc10 
association with the centromere.  A)  Cells were arrested in G1, maintained in 
galactose media (Scm3on) or switched to glucose-containing media for 2 hours 
(Scm3off) and released to follow cell cycle progression by FACS.  When Scm3 is 
depleted during G1, cells fail to activate the spindle checkpoint and exhibit ploidy 
problems.  B)  ChIP/qPCR shows a significant decrease (7-fold) in Ndc10 association 
with the CDE I-II-III sequence at the centromere on chromosome III in HU-arrested 
cells when Scm3 is depleted during G1 arrest.  FMP32 is a gene on the arm of 
chromosome VI that serves as a negative control sequence for Ndc10 association.  
Error bars represent +/- the average deviation of biological replicates.  C)  When 
Scm3 is depleted during HU arrest, and the cells are released with Scm3off, cells do 
not regain asynchronous DNA content, an indication that cells do not proceed past 
metaphase and the spindle checkpoint is activated. 
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deoxyribonucleotide pools, causing cell cycle arrest prior to the completion of DNA 

replication, with replication of most centromeres completed due to nearby replication 

origins [96].  Since inner kinetochore proteins are thought to re-load very early in S-

phase, Ndc10 should localize to the centromere in a HU arrest.   We found that when 

centromeres are replicated in the presence of Scm3, the level of Ndc10 at CEN3 is 

significantly higher than in the absence of Scm3.  In the absence of Scm3, Ndc10 

levels fall to levels near those of the negative controls (Figure 14B).  Thus, it appears 

that Scm3 is required to load Ndc10 at centromeres following their replication. 

To further test the contribution of Scm3 to the assembly of a functional 

kinetochore, we depleted Scm3 in cells arrested in HU.  If Scm3 is not required 

following early S phase for kinetochore function, the Scm3off culture should proceed 

through metaphase following release from HU.  Instead, cells released from HU in 

the absence of Scm3 fully arrest with 2N DNA content in the same cell cycle (Figure 

14C) and remain large-budded.  The checkpoint appears to be activated, suggesting 

that Ndc10 is located at centromeres, but the kinetochore is still defective. 

  To test for the requirement of Scm3 at G2/M, we arrested cells in G2/M with 

NZ, depleted Scm3, and then released them and analyzed DNA content (Figure 15A).  

We found that following depletion of Scm3, cells were unable to recover from a 

metaphase arrest.  The cytometry profiles reveal that chromosome segregation does 

not resume normally after release with Scm3off, an indication that Scm3 function is 

required during metaphase to maintain a segregation-competent kinetochore.            

 In order for cells enter anaphase, sister chromatid cohesin must be removed 

 62



 

 

 

Figure 15.  Scm3 depletion in metaphase arrested cells causes sustained 
checkpoint activity following release. 
A)  Cells were arrested in nocodazole (NZ), maintained in galactose media (Scm3on) 
or switched to glucose-containing media for 2 hours (Scm3off) and released to follow 
cell cycle progression by cytometric analysis.  When Scm3 is depleted during a 
nocodazole arrest (metaphase) cells cannot recover, remaining arrested with 2N DNA 
content.  B)  Stability of Pds1-18Myc was monitored by Western blot analysis.  The 
last 5 timepoints on each blot represent minutes after release from nocodazole arrest.  
When cells were released from the nocodazole arrest with Scm3on, Pds1-18Myc was 
degraded in a time dependent manner.  This indicates that the checkpoint arrest was 
removed and cells were entering anaphase.  Conversely, when cells were released 
with Scm3off, levels of Pds1-18myc remained unchanged, an indication that Pds1 was 
not degraded and the chromosomes were held together in a checkpoint arrest.  A Pgk1 
blot serves as a loading control. 
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during metaphase.  The protein Esp1 (Separase) effectively cleaves the cohesin 

holding the sister chromatids together, allowing chromosomes to segregate during 

anaphase.  Esp1 is sequestered in a non-active form by a protein called Pds1 (Securin) 

until it is needed.  Once the signal has been received to enter anaphase Pds1 is 

degraded and Esp1 is released to relieve sister chromatin cohesion.  If the spindle 

checkpoint is activated, Pds1 is not cleaved, Esp1 remains sequestered, and cells to 

not enter anaphase.  To test if the spindle checkpoint remains active after NZ release 

in Scm3on/off, stability of Pds1-18Myc was monitored by Western blot analysis.  

When cells were released from the NZ arrest with Scm3on, Pds1-18Myc was degraded 

in a time dependent manner.  This degradation of Pds1 indicates that the checkpoint 

arrest was removed and cells were entering anaphase.  Conversely, when cells were 

released with Scm3off, levels of Pds1-18Myc remained unchanged, an indication that 

Pds1 was not degraded and the cells maintained the checkpoint arrest (Figure 15B). 

 Based on these results we hypothesize that when Scm3 is shut-off during a 

metaphase arrest, the cells can not re-enter the cell cycle due to the persistence of 

spindle checkpoint activation.  To test if either of the Scm3 lethal mutants were 

capable of undergoing mitosis after a metaphase arrest, we transformed both pRS423-

scm3Δ25N and pRS423-Scm3-I110H into the Scm3 shut-off strain.  Cells were 

arrested in metaphase with nocodazole, Scm3 was depleted by addition of glucose-

containing media, and after Scm3 was depleted, cells were released from the NZ 

arrest with the Scm3 mutant as the only functional copy of the protein in the cell.  We 

find that upon release from the NZ arrest, cells that contain empty vector (pRS423), 
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pRS423-scm3Δ25N or pRS423-Scm3-I110 cannot proceed through metaphase 

(Figure 16).  This result indicates that neither of the Scm3 mutants is functional to 

alleviate the spindle checkpoint arrest. 

 

7.  Ipl1 is required to activate the spindle checkpoint when Scm3 is depleted  

 Ipl1, a homolog of human Aurora kinase B, has been shown to destabilize 

improperly attached kinetochore microtubules, which in turn activates the spindle 

assembly checkpoint [97].  To determine whether the spindle checkpoint activation 

following Scm3 depletion post-G1 is due to Ipl1 detaching improper kinetochore-

microtubule attachments, or due to a failure to attach microtubules altogether, we 

depleted Scm3 in the ipl1-321 background.  Cells were synchronized in HU and 

released with Scm3off at both permissive (25°C) and non-permissive temperatures 

(37°C).  We find that Scm3off cultures released at the permissive temperature arrest 

with 2N DNA content in the same cell cycle as expected, whereas cultures released 

into non-permissive temperatures fail to arrest and exhibit significant segregation 

defects (Figure 17A).  This result indicates the Mad1-mediated metaphase arrest 

observed in Scm3off is due to Ipl1 detaching improper kinetochore-microtubule 

attachments. 

 Direct-immunofluorescence of GFP-marked centromere IV [98] was 

performed to study the behavior of centromeric foci.  Cells released from HU arrest 

with Scm3off at permissive temperatures contain a single centromeric focus near the 

bud neck, indicative of a metaphase arrest, and a lack of kinetochore-microtubule 
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Figure 16.  Scm3 mutants cannot re-enter the cell cycle after a metaphase arrest. 
Yeast containing the Scm3 shut-off allele were transformed with pRS423, pRS423-
Scm3(WT), pRS423-scm3Δ25N, pRS423-Scm3Δ25C, and pRS423-Scm3I110H.  
Cells were arrested in nocodazole (NZ), switched to glucose-containing media for 2 
hours (Scm3off), and subsequently released to follow cell cycle progression by 
cytometric analysis.  When Scm3 is depleted during a nocodazole arrest (metaphase) 
cells containing empty vector, pRS423-scm3Δ25N, or pRS423-Scm3I110H cannot 
recover, remaining arrested with 2N DNA content.  
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mediated chromosome movement (Figure 17B).  In the cultures with Scm3on at the 

non-permissive temperature for Ipl1, we find that the Ipl1 mutation alone results in 

59% of chromosome IV centromeres migrating to a single pole, consistent with 

previous work demonstrating that mutation of Ipl1 results in increased microtubule 

attachments to a single pole (monopolar attachments) and chromosome segregation 

defects [99].  Under double mutant conditions, 93% of chromosome IV centromeres 

move towards a single spindle pole (Figure 17B), suggesting the spindle checkpoint is 

bypassed, spindle microtubules are attached to chromosomes, albeit improperly, and 

chromosome movement does occur.  This movement of the two centromeres to a 

single cell body is suggestive of monopolar kinetochore-microtubules attachments, 

and has been observed in other kinetochore mutants [81, 84].  However, the scm3 

ipl1-321 double mutant phenotype is more severe than the ipl1-321 single mutant 

phenotype.  This result contrasts to what has been observed for a mtw1-1 ipl1-321 

double mutant strain in which the double mutant and single mutants have similar 

phenotypes [97], suggesting that Scm3 plays an additional role in biorientation (see 

Discussion).  Our results suggest Scm3 is not essential for attachment of kinetochores 

to microtubules after the early kinetochore has formed, but is required to achieve 

sister kinetochore biorientation thereafter. 

 The inner kinetochore has been shown to enhance pericentric cohesin 

association and promote high-fidelity chromosome segregation under some 

conditions [100, 101].  One possible explanation for the biorientation defect is that  

Scm3 is needed for maximal pericentric cohesin association following release from 
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Figure 17.  Ipl1 is required to activate the spindle checkpoint in Scm3off.   
A)  FACS analysis was performed on cells synchronized with HU, and then released 
into either ipl1-321 permissive (25°C) or non-permissive (37°C) temperatures with 
either Scm3on or Scm3off.  B) Direct fluorescence of CenIV-GFP loci at 3 hours after 
release from HU in the 4 above mentioned conditions.  CenIV-GFP loci were 
assessed in 200 large budded cells for each condition.  Compared to ipl-321 at 37°C, 
a larger percentage of CenIV foci in Scm3 off ipl1-321 at 37°C migrate to a single 
pole.  C.  Pericentric cohesin association was monitored by ChIP for Mcd1-18Myc 
followed by qPCR at CEN3.  Cultures were arrested with HU and Scm3 was depleted 
from half of the culture by transfer to glucose.  Cultures were released to a G2/M 
arrest mediated either by addition of nocodazole or by temperature sensitive cdc16-1.  
In neither case did we detect a difference in the amount of Mcd1-18Myc following 
depletion of Scm3.  Error bars represent +/- average deviation of biological replicates. 
defects observed in Scm3off (bent and broken microtubules) resemble those of dam1  
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HU arrest.  We tested this by arresting cells in S phase with HU, depleting half of the 

culture for Scm3, and then releasing the culture to a G2/M arrest, mediated either by 

cdc16-1 or nocodazole.  We used ChIP/qPCR to monitor the levels of Mcd1-18Myc.  

We found no difference in the levels of pericentric cohesin association in the presence 

or absence of Scm3, arguing that a lack of cohesin does not explain the biorientation 

defect observed (Figure 17C). 

 

8.  The role of Scm3 localization and regulation of the outer kinetochore  

 As mentioned earlier, when cells are depleted for Scm3 after the kinetochore 

has presumably formed (HU and NZ arrest), they are not able to continue through the 

cell cycle and activate the spindle checkpoint.  This is an indication that Scm3 has a 

function outside of formation of the inner kinetochore.  .  Additionally, some of the 

microtubules defects observed in Scm3off (bent and broken microtubules) resemble 

those of dam1 temperature sensitive mutants at non-permissive temperatures [83].  

Based on these observations, it is hypothesized that Scm3 may be required for the 

proper localization of the outer kinetochore.  To test this, we fused the endogenous 

copy of Dam1 to a green fluorescent protein tag (Dam1-GFP) in the pGAL1-10-HA-

Scm3 background.  Cells were then arrested using HU and subsequently released 

from the HU arrest with either Scm3on or Scm3off.  Samples were collected every 

hour, for three hours and localization of Dam1-GFP was monitored by fluorescence 

microscopy.  At 2 hours post HU release with Scm3on we observe localization of 

Dam1-GFP to kinetochores, with some cells in anaphase and some cells that had 
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not yet begun chromosome segregation (Figure 18A).  With Scm3off, we observed 

only cells which had not entered anaphase, although discrete localization of Dam1-

GFP was still observed (Figure 18A).  This result suggests that depletion of Scm3 

after the inner kinetochore has formed does not preclude the recruitment of Dam1 to 

the kinetochore. 

 Although it appears that the outer kinetochore protein Dam1 properly 

localizes in Scm3off, the spindle checkpoint is still activated, suggesting the 

kinetochore is not functional.  This finding suggests that Scm3 may play a role in the 

checkpoint signaling pathway.  It has previously been shown that di-methylation of 

lysine 233 (K233me2) of Dam1 antagonizes phosphorylation of the 2 serine residues 

flanking K233, and this is required to signal that the kinetochore is attached to 

microtubules and the chromosomes are ready for segregation [102].  To monitor 

whether Dam1 was properly modified in the absence of Scm3, we performed 

immunoprecipitation of Dam1-13Myc in both Scm3on 

and Scm3off.  Immunoprecipitates were then subjected to Western blot analysis and 

probed using an antibody that recognizes Dam1 K233me2.  It was observed that 

Dam1 di-methylation of K233 does incur even in the absence of Scm3 (Figure 18B).  

Taken together these results suggest that the outer kinetochore protein Dam1 does 

indeed localize to kinetochores in the absence of Scm3 and is properly modified. 

 

IV.  Discussion 

 Although many S. cerevisiae kinetochore proteins have been characterized, it 
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Figure 18.  Localization and post-translational modification of Dam1 in cells 
depleted for Scm3. 
A)  Dam1 was fused to a green fluorescent protein tag (Dam1-GFP) in the pGAL1-10-
3HA-Scm3 background.  Cells were then arrested using HU and subsequently 
released from the HU arrest with either Scm3on or Scm3off.  Samples were collected 
every hour, for three hours and localization of Dam1-GFP was monitored by 
fluorescence microscopy.  The 2hr post-release timepoints are shown.  B)  Dam1-
13Myc cultures were arrested with HU and cultures were either maintained with 
Scm3on or switched to Scm3off.  Cells were released from the HU arrest and grown for 
2 hours before they were harvested for anti-Myc immunoprecipitation.  
Immunoprecipitates were subjected to Western blot analysis, and probed with 
antibodies against either the Myc epitope or dimethyl lysine 233 of Dam1.  Dam1 
K233me2 is detected in both Scm3on and Scm3off. 
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remains unclear how kinetochore formation is initiated, and how the essential Cse4-

containing chromatin is established specifically at the centromere.  We have 

identified Scm3, a previously uncharacterized protein essential for viability in 

budding yeast.  We find that Scm3 has homologs in yeast that contain both point and 

regional centromeres. Functional analysis of Scm3 reveals that both the N-terminus 

and the evolutionarily conserved central domain are essential for Scm3 protein 

function.  Scm3 is the first protein shown to physically interact with both inner 

kinetochore proteins Cse4 and Ndc10.  By exploiting a galactose-regulated promoter, 

the phenotype of cells depleted for Scm3 has been characterized.  Experimental 

evidence demonstrates that Scm3 plays an essential role in formation and 

maintenance of a segregation-competent kinetochore.  Specifically, it has been shown 

that Scm3 is necessary for localization of inner kinetochore proteins to the 

centromere, including Ndc10, which has previously been proposed to be the initial 

component of the kinetochore to associate with the centromere.  Without Scm3, Cse4-

containing centromeric chromatin is not efficiently established at the centromere.  

Additionally it has been shown that Scm3 is required for the maintenance of 

kinetochores that are competent to signal the spindle assembly checkpoint, and 

biorient with respect to spindle poles.   

 

1. The role of Scm3 in establishing the inner kinetochore 

 Due to the lack of Cse4 localization to the centromere in an ndc10-1 mutant 

[87, 92], functional Ndc10 appears to be necessary for recruitment of Cse4.  One of 
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the key questions remaining regarding budding yeast inner kinetochore formation is 

which factor, if any, is responsible for facilitating the recruitment of Cse4 to 

centromeres after Ndc10 has found its target. We have shown that in vivo the inner 

kinetochore protein Scm3 interacts with both Ndc10 and Cse4, and is required for 

proper localization of both proteins to the CEN.  Based on these findings we propose 

that Scm3 links kinetochore nucleation by Ndc10 to recruitment of Cse4.  Since Scm3 

and Ndc10 require each other to localize to the CEN, and furthermore Cse4 is 

required to stabilize their association at the CEN, this early step in kinetochore 

formation is not hierarchical, but instead, cooperative.  We have observed that 

purified Scm3 displays non-specific DNA binding in vitro (Li and Workman, 

unpublished results), consistent with Ndc10 imparting centromeric sequence 

specificity to the Scm3/Ndc10 complex.  We propose that Scm3 bound to Ndc10 

interacts with the CEN DNA sequence, and the interaction between Scm3 and Cse4 

helps bring Cse4 to this site, with all three proteins required for stable complex 

formation.  This role in Cse4 recruitment is consistent with the previous finding that 

Scm3 is a high copy suppressor of a Cse4 histone fold domain mutant.  Since the 

histone fold domain of Cse4 is essential to target Cse4 to the CEN [103], 

overexpression of Scm3 may help this mutant protein locate the centromere.   

We have identified putative orthologs of Scm3 in fungi that do not contain 

identifiable Ndc10 homologs, whereas all fungi in which we have identified Scm3 

also contain Cse4/CENP-A.  This is consistent with an Ndc10-independent role for 

Scm3 in recruiting Cse4 to the centromere.  Although we have been unable to identify 
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putative orthologs of Scm3 in higher eukaryotes, it seems likely that higher 

eukaryotes will also contain proteins that specifically function in establishing 

centromeric chromatin. 

 

2. Scm3 is required to maintain kinetochore function throughout the cell cycle 

 When we deplete Scm3 in G1, Ndc10 does not localize to the centromere, and 

the spindle checkpoint is not activated.  This suggests that the kinetochore fails to 

form, precluding spindle microtubule-centromere interaction.  However, even if 

Ndc10 is allowed to load at centromeres and then Scm3 is depleted, the spindle 

checkpoint is activated, indicating at least a partial kinetochore forms, but is 

defective.  This demonstrates that Scm3 continues to function in kinetochore 

maintenance even after the initial loading of Ndc10 and formation of the inner 

kinetochore.  We can imagine three possible functions for Scm3 in the maintenance 

of a segregation-competent kinetochore: 1) recruitment of central or outer kinetochore 

components, 2) loading of additional Ndc10, and 3) signaling the spindle checkpoint 

that the kinetochore is properly formed.  These functions would not necessarily be 

mutually exclusive and are likely interrelated.  Based on the result that Dam1 can still 

localize to kinetochores when Scm3 is depleted, it seems likely that the outer 

kinetochore is able to form properly without Scm3.  Additionally, di-methylation of 

Dam1 K233 occurs in cells that are depleted for Scm3, an indication that Scm3 is not 

required for the PTMs of outer kinetochore proteins.  
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 When we deplete Scm3 after initial kinetochore formation (HU arrest) we 

suggest that the kinetochore is competent to make microtubule attachments to the 

newly formed kinetochore, as evidenced by the movement of both sister chromatids 

in a single cell body (Figure 16B).  We hypothesize that these chromatids may move 

via monopolar lateral attachments.  One possibility is that without Scm3, there is a 

failure to convert lateral attachments to end-on attachments [104], a necessary step 

which imparts tension and facilitates biorientation.  This defect could be due to a 

failure to load components of the central or outer kinetochore, or due to incomplete 

loading of Ndc10. 

Ndc10 continually loads at centromeres during the entire cell cycle, both by 

itself, and in the context of the CBF3 complex [65, 105].  This continual loading is 

required to maintain kinetochore function.  Since Scm3 is essential for loading of 

Ndc10 at centromeres following their replication, and levels of Ndc10 at the 

centromere in asynchronous cultures switched to Scm3off are decreased, it seems 

likely that Scm3 contributes to the loading of additional Ndc10 later in the cell cycle 

(post S-phase).  Since Ndc10/CBF3 complex may be involved in the attachment of 

microtubules to kinetochores [105], a defect in loading might lead to defective 

microtubule-kinetochore attachments.     

Functional Ndc10 is required to establish a large domain of pericentric 

cohesin on each chromosome, which is necessary for accurate sister chromatid 

segregation [101].  Thus, when Scm3 is depleted in G1 and Ndc10 loading is 

diminished, pericentric cohesion may be reduced.  However, reduced cohesin does 
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not appear to explain the chromosome segregation defect when Scm3 is depleted 

following early S phase.  Thus, a defect in pericentric cohesin is an unlikely 

explanation for the increase in chromosome mis-segregation in the Scm3off/ipl1-321 

background as compared to the ipl1-321 background.  It has been observed that 

central (Mtw1 complex) and outer kinetochore (Dam/Duo Complex) mutants fail to 

establish bipolarity and form monopolar attachments to sister chromatids [81, 84].  

However, the frequency of sisters segregating to a single pole in an mtw1-1 ipl1-321 

double mutant is similar to that of either a mtw-1 or ipl1-321 single mutant alone, an 

indication that Mtw1 operates in the same pathway as Ipl1 in establishing 

chromosome biorientation or tension [97].  In contrast, the Scm3off ipl1-321 double 

mutant exacerbates the ipl1-321 biorientation defect, suggesting Scm3 operates in an 

additional (non-Ipl1) pathway to establish sister kinetochore biorientation.  At this 

time we have not yet characterized the molecular role Scm3 plays in establishing 

sister chromatid biorientation. 
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Chapter 3.   

Analysis of the Composition of the Yeast Centromeric Nucleosome 

 

I.  Abstract 

 The budding yeast CenH3 histone variant Cse4 localizes to centromeric 

nucleosomes and is required for kinetochore assembly and chromosome segregation.  

The exact composition of centromeric Cse4–containing nucleosomes is a subject of 

debate.  ChIP-chip experiments and high resolution quantitative PCR confirm that 

there is a single Cse4 nucleosome at each centromere, and additional regions of the 

genome contain Cse4 at low levels.  Using biochemical, cell biological, and genetic 

experiments we have tested the composition of Cse4-containing nucleosomes.  Using 

micrococcal nuclease-treated chromatin from yeast cells, we find that Cse4 is 

associated with the histones H2A, H2B, and H4, but not H3 or the non-histone 

protein Scm3.  Scm3 is an essential protein that has previously been shown to be 

important for centromere specification and has been proposed to be a component of 

Cse4-containing nucleosomes.  Overexpression of Cse4 in budding yeast rescues the 

lethality of a scm3 deletion, indicating Scm3 is not essential for the formation of 

functional centromeric chromatin.  Alanine scanning mutagenesis of Cse4 indicates 

that the Cse4-Cse4 interaction domain is essential for function.  Taken together, our 

experimental evidence supports the model that the Cse4-nucleosome is an octamer, 

containing two copies each of Cse4, H2A, H2B, and H4. 
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II.  Introduction   

 One of the most critical tasks for a dividing cell is to make sure that the two 

new cells each have an accurate and complete copy of the genome.  In all eukaryotes, 

each chromosome contains a specialized DNA sequence that helps to ensure proper 

segregation, known as the centromere.  At each centromere a large proteinaceous 

structure called the kinetochore is formed.  Microtubules attach to the kinetochore 

and pull sister chromatids to opposite spindle poles.  Two types of centromeres have 

been identified; point centromeres and regional centromeres.  Regional centromeres 

are typically found in higher eukaryotes, and are composed of numerous copies of 

repetitive DNA sequences [106].  In humans, some centromeres can be as long as a 

megabase [107].  S. cerevisiae and other hemiascomycetous fungi contain point 

centromeres.  In these organisms the centromere sequence is ~125 base pairs (bp) and 

is comprised of three DNA elements: CDE I, CDE II, and CDE III [52, 108]. 

 Although their DNA sequences are highly variable between species, all 

eukaryotic centromeres are thought to be epigenetically marked by the presence of a 

centromere specific histone variant (CenH3).  This variant, known as Cse4 in budding 

yeast and more generally as CENP-A, is essential for the formation of a kinetochore 

and for proper chromosome segregation [77, 109].  Structurally, CENP-A homologs 

have two major domains: an evolutionarily conserved histone fold domain (HFD) and 

a divergent amino-terminal domain (see Figure 2).  The HFD of CENP-A homologs 

has a high degree of amino acid identity to histone H3, while the amino-terminal 

portion of the protein can vary greatly between species.  The function of the CenH3 
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nucleosome is highly conserved, as demonstrated by the functional complementation 

of RNAi-depleted CENP-A in human cells by yeast Cse4 [41].  In S. cerevisiae, Cse4 

localizes in vivo to a single nucleosome directly at CDE I-II-III, and is thought to 

replace histone H3 at this site [64, 110].  In organisms with regional centromeres, 

CenH3 is found in multiple nucleosomes at or near the centromeric repeats.  In 

human cells, CENP-A localizes to the large arrays of α-satellite DNA, interspersed 

among canonical histone H3-containing nucleosomes [111].  In the case of human 

(CENP-A) or Drosophila melanogaster (CID) CenH3 octamers assembled in vitro, it 

has been shown that CENP-A and CID can substitute for histone H3 [112, 113].   

 Although it is generally accepted that Cse4 is assembled into nucleosomes at 

the budding yeast centromere, the overall composition of this nucleosome is a topic of 

debate.  The most conservative model for the centromeric nucleosome is that CENP-

A simply replaces H3 in an octameric nucleosome which contains Cse4, H2A, H2B, 

and H4 (Figure 19A).  Given the crystal structure of a canonical nucleosome [4], this 

model is based in part on the strong sequence identity between the HFD of the CENP-

A homologues and that of H3.  In addition, octameric nucleosomes containing human 

or Drosophila CenH3 can be reconstituted in vitro [112, 113].  Another more 

provocative model suggested for centromeric nucleosomes is that they contain a 

single molecule of each CenH3, H2A, H2B, and H4, which forms a tetrameric 

structure called a “hemisome” (Figure 19B) [114].  This hemisomal complex was 

purified from interphase Drosophila S2 cells by crosslinking and 

immunoprecipitation of CID.  Hemisomes are predicted to wrap <120bp of DNA, and 
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when analyzed by atomic force microscopy appear to be half the height of canonical 

bulk nucleosomes [115].   

 The final model for centromeric nucleosome composition involves the newly 

identified budding yeast kinetochore protein Scm3.  Scm3 was initially identified as a 

high copy suppressor of a Cse4-HFD mutant [40], and has since been shown to be an 

essential kinetochore protein required for Cse4 localization to the centromere and for 

proper chromosome segregation [116-118].  SCM3 homologs are found in fungi with 

both point and regional centromeres.  Scm3 has been shown to facilitate the exclusion 

of histones H2A and H2B from preassembled Cse4-containing octamers in vitro.  

Additionally, chromatin immunoprecipitation studies (ChIP) suggest that histones 

H2A and H2B are absent from the centromeric nucleosome in vivo in budding yeast 

[117].  Based on these findings it has been proposed that along with Cse4 and H4, 

Scm3 forms a unique hexameric nucleosome specifically at centromeres (Figure 

19C).  Unlike canonical nucleosomes which contain two heterodimers of the histones 

H2A/H2B complexed with a tetramer of the histones H3/H4 [4], this specialized 

centromeric nucleosome is predicted to contain a tetramer of Cse4-H4 and two copies 

of Scm3 [117].    

 To gain a better understanding of the content and structure of Cse4-containing 

chromatin, we mapped the genomic locations of Cse4 in budding yeast using 

chromatin immunoprecipitation followed by hybridization to DNA microarrays 

(ChIP-chip) and high resolution quantitative PCR (qPCR).  As expected, we find 

evidence for localization of Cse4 to a single centromeric nucleosome at every 
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centromere, and also at low-levels at select non-centromeric sites.  Solubilization and 

immunoprecipitation of Cse4-containing mononucleosomes indicate that the Cse4 

nucleosome contains histones H2A and H2B but not Scm3 or H3.  Additionally, we 

find that overexpression of Cse4 can rescue a scm3Δ strain, indicating that a 

specialized Scm3-containing nucleosome is not essential for centromere function.  

Cse4-containing octamers can be assembled in vitro that contain histones H2A, H2B, 

and H4.  These octamers can wrap DNA to form nucleosomes.  Moreover, 

comprehensive mutagenesis of Cse4 indicates that Cse4-Cse4 interactions are 

essential for its function.  Taken together these data support the model that Cse4-

containing nucleosomes have a structure similar to canonical octameric nucleosomes.     

 

III.  Results 

1. Cse4 localization at centromeres and non-centromeric locations  

 Cse4 has been shown to localize to centromeres in budding yeast by both 

ChIP and microscopy [40, 119, 120].  In the case of Cse4 fused to GFP, the only 

signal reported corresponds to centromeres [121].  In the ChIP studies, the presence 

of Cse4 was only tested at a centromere or a select few other non-centromeric loci 

[119, 120].  In order to take an unbiased approach and discover all the locations of 

Cse4 in the genome, we utilized DNA microarrays.  The microarrays we used contain 

approximately 13,000 PCR fragments corresponding to each open reading frame and 

each intergenic region in the yeast genome.   

 We analyzed the location of 1) Cse4 tagged with 12Myc epitopes (Cse4- 
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Figure 19.  Three models of the budding yeast centromeric nucleosome.   
The cartoon schematic represents each of the proposed centromeric nucleosomes 
wrapped by DNA.  The DNA is represented by the blue lines.  Actual 
nucleosome/DNA contact points are unknown for all three models.  A)  The octamer 
model proposes that Cse4 is found in a canonical-like octameric configuration.  B)  
The hemisome model predicts that the centromeric nucleosomes consist of a 
monomer of each Cse4, H2A, H2B, and H4.  The hemisome is predicted to wrap less 
DNA than an octameric or hexameric nucleosome (~120bp).  C)  The hexamer model 
proposes that the centromeric nucleosome is comprised of a tetramer of Cse4-H4 and 
two molecules of Scm3. 
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12Myc), 2) an ectopic copy of Cse4-12Myc overexpressed from the GAL1-10 promoter  

(pGAL1-10-Cse4-12Myc), and 3) the cse4-351 dominant lethal mutant (pGAL1-10-

cse4-351-12Myc).  cse4-351 is an allele of CSE4 that was generated by random 

mutagenesis that contains 14 amino acid changes distributed throughout the protein 

[122].  It is a stable dominant lethal mutant that localizes to euchromatin as shown by 

chromosome spreads and ChIP/PCR to three genomic locations [120].  The lethality 

was attributed to a lack of proteolysis from non-centromeric locations.   

 DNA recovered from ChIPs and “no antibody” controls was tested for 

enrichment of CEN3 sequence by semi-quantitative PCR prior to hybridization to 

microarrays.  For both Cse4-12Myc and pGAL1-10-Cse4-12Myc, the strongest signal 

detected by microarray on each chromosome was at the centromere (Figure 20A) 

(Appendix 3).  As expected from previous published reports that cse4-351 localizes to 

non-centromeric loci [122], we found that pGAL1-10-cse4-351-12Myc localized 

randomly across the entire chromosome, but interestingly, no localization to the 

centromere was observed (Figure 20A) (Appendix 3).  We also observed that a few 

repetitive regions consistently showed a low level of Cse4 enrichment in all three 

samples when compared to background.  These sites include the Ty transposable 

elements, telomeres, and the rDNA repeats.  Stringent statistical analysis of the 

microarray data was performed to confirm the data was statistically significant (see 

Chapter 2-section 7) (Figure 20B-D).   Notably, overexpression of Cse4 does not 

appear to cause a large increase in non-centromeric localization, as has been shown 

for overexpression of CENP-A and CID [123, 124]. 
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 In order to verify the low levels of Cse4 at non-centromeric locations, we 

performed qPCR utilizing primer pairs representing NTS2 (rDNA), and two different 

Ty-1 transposable elements.  As a negative control, we used primers which amplified 

regions of two genes where no detectable Cse4 signal was observed by DNA 

microarray analysis (GAL2, SRL2).  All ChIP intensities are shown relative to the 

signal from total chromatin, so we have controlled for the fact that these sequences 

may be repeated in the genome.  We found that sequences from NTS2 and Ty 

elements were significantly enriched relative 

to a control ChIP performed without antibody, and relative to the negative control 

regions (GAL2, SRL2) (Figure 20E).  We were unable to verify the low level of Cse4 

enrichment observed at telomeres by qPCR. 

 

2.  High resolution mapping of centromeric chromatin 

 In order to define centromeric chromatin, we utilized a high resolution 

ChIP/qPCR approach.  To do this we isolated chromatin from a yeast strain 

expressing Cse4-12Myc.  The culture was arrested with nocodazole, crosslinked with 

formaldehyde, and treated with micrococcal nuclease (MNase) to generate 

mononucleosomes.  We then performed ChIP with an antibody against the Myc 

epitope.  The immunoprecipitated DNA was used as a template for qPCR.  To 

achieve the highest resolution possible we designed tiled qPCR primers for ~0.4 kb 

flanking CDE I-II-III of CEN3.  This primer set generated products that averaged ~95 

bp and overlapped by ~50-60 bp.  Of the 16 primer sets utilized, we found that the  
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Figure 20.  Genome-wide localization of Cse4.  Cultures expressing Cse4-12Myc, 
pGAL1-10-Cse4-12Myc, pGAL1-10-cse4-351-12Myc were grown to mid-log phase and 
arrested in metaphase with nocodazole.  ChIP-chip and qPCR were performed using 
two independent biological samples and the results were averaged. A)  PeakFinder 
display [125] of the pattern of Cse4-12Myc and pGAL1-10-Cse4-12Myc, and pGAL1-

10-cse4-351-12Myc on Chromosome 1 (for all chromosomes see appendix 3).  The 
centromere is indicated by the circle  B-D)  Box plots representing Cse4-12Myc, 
pGAL1-10-Cse4-12Myc, and pGAL1-10-cse4-351-12Myc localization at all 
centromeres (CEN), centromeres along with 3 array spots on both sides (CEN_7pt), 
the sequence at the rDNA locus, Ty elements, the telomeres, 3 array spots proximal to 
all telomeres (Tel_3Pt) and all other array spots (Background).  The span of each box 
represents a range where 95% of the array spots fall.  The line in the box represents 
the median of each sample.  The whiskers represent the 1.5 interquartile range.  E)  
ChIP/qPCR was carried out for several non-centromeric regions.  Cse4-12Myc 
ChIP/total chromatin signal was divided by the no antibody/total chromatin control 
for each region to obtain the fold-enrichment.  Error bars represent +/- the average 
deviation of biological replicates.  
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three PCR primer pairs which directly included sequences of CDE I-II-III had the 

highest signal for Cse4 (Figure 21).  Similar results were observed for CEN1 (Figure 

22).  Based on the observed DNA fragments amplified by these primers and the 

absence of signal directly adjacent, we narrowed down the possible location of Cse4 

to <200bp of DNA, which includes the centromeric DNA elements.  Assuming that a 

Cse4-containing nucleosome is wrapped around a similar amount of DNA as a 

canonical H3-containing nucleosome (~146 bp), this finding is consistent with the 

observation that Cse4 is confined to a single centromeric nucleosome [110].   

 Next, using antibodies against histones H2B, H3, and H4, and epitope-tagged 

3FLAG-H2A we attempted the same high resolution ChIP/qPCR.  We found that we 

could not reproducibly ChIP any core histones to the centromere in MNase-treated 

chromatin (data not shown).  Interestingly, the high resolution Scm3-3HA qPCR 

revealed that the localization pattern of Scm3-3HA differs from that of Cse4-12Myc.  

Scm3-3HA localizes to the centromere with a bias towards the CDE III end of the 

centromeric sequence.  This result is similar to what has been observed for the inner 

kinetochore proteins Ndc10 and Mif2 [126, 127] (Figure 23).  Using sheared 

chromatin as a substrate for ChIP, we also failed to detect any of the core histones at 

the centromere (data not shown).  Based on our inability to ChIP any of the core 

histones to the centromere, including H4, we have concluded that ChIP is not a useful 

tool to elucidate the complete composition of the centromeric nucleosome.  We 

suspect that the formaldehyde may crosslink other kinetochore proteins to the 

centromeric  
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nucleosome, and physically block the histone epitopes located in the underlying  

chromatin. 

 
3.  Cse4 co-immunoprecipitates with H2A, H2B, and H4 in MNase solubilized 

chromatin 

 Using sub-cellular fractionation and salt challenge experiments, we have 

previously shown that Scm3 and Cse4 strongly associate with chromatin [116].  

However, these experiments did not directly address whether these proteins are 

actually components of nucleosomes or just intimately associated with them.  To test 

this, we decided to perform chromatin fractionation followed by co-

immunoprecipitation (co-IP) and Western blot analysis.  Yeast nuclei were isolated 

and the soluble nuclear proteins were separated from the chromatin fraction.  The 

chromatin fraction was then treated with MNase and the solubilized chromatin was 

recovered.  We refer to this fraction as MNase-solubilized chromatin.  Western 

blotting was performed to detect proteins in the nuclear lysate, the MNase solubilized 

chromatin and the insoluble chromatin fraction.  Using antibodies against epitope-

tagged 3FLAG-H2A and Cse4-12Myc, and endogenous H2B, H3, H4, and Scm3 we 

could detect all of the above proteins in the total nuclear lysate (Figure 24A).  

Interestingly, Cse4, H2A, H2B, H3, and H4 were all detected in the MNase- 

solubilized fraction but Scm3 was not (Figure 24A).  Scm3 remained insoluble 

following MNase treatment.  The simplest interpretation of this result is that Scm3 is 

not a component of a nucleosome, although we cannot rule out the possibility a 

Scm3-containing nucleosome species exists that cannot be solubilized by MNase.  
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Figure 21.  Cse4 location at high resolution in vivo at CEN3.   
ChIP/qPCR analysis was performed on MNase treated chromatin from a Cse4-12Myc 
strain using overlapping primers that span ~ 700 bp across the centromere on 
Chromosome 3.  GAL2 is a gene located on the arm of Chromosome 12 and is a 
negative control for Cse4 localization.  MNase-treated input chromatin was visualized 
with ethidium bromide on an agarose gel and is shown below the histogram.  Only 
three primer pairs contained sequences from CDE I-II-III, as indicated.  The size of 
each primer pair product is indicated below its respective bar on the histogram.  
Without antibody, the ChIP/qPCR signal was <10% of the total signal; this has been 
subtracted from the values presented.  The signal from each ChIP has been divided by 
the signal obtained with total chromatin.  Error bars represent +/- the average 
deviation of biological replicates.  
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Figure 22.  Cse4 location at high resolution in vivo at CEN1.   
ChIP/qPCR analysis was performed on MNase treated chromatin from a Cse4-12Myc 
strain using overlapping primers that span ~ 900 bp across the centromere on 
Chromosome 1.  GAL2 is a gene located on the arm of Chromosome 12 and is a 
negative control for Cse4 localization.  Only three primer pairs contained sequences 
from CDE I-II-III, as indicated.  The size of each primer pair product is indicated 
below its respective bar on the histogram.  Without antibody, the ChIP/qPCR signal 
was <10% of the total signal; this has been subtracted from the values presented.  The 
signal from each ChIP has been divided by the signal obtained with total chromatin.  
Error bars represent +/- the average deviation of biological replicates.   
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Figure 23.  Scm3 location at high resolution in vivo at CEN3.   
ChIP/qPCR analysis was performed on MNase treated chromatin from a Scm3-3HA 
strain using overlapping primers that span ~ 700 bp across the centromere on 
Chromosome 3.  GAL2 is a gene located on the arm of Chromosome 12 and is a 
negative control for Cse4 localization.  Only three primer pairs contained sequences 
from CDE I-II-III, as indicated.  The size of each primer pair product is indicated 
below its respective bar on the histogram.  Without antibody, the ChIP/qPCR signal 
was <10% of the total signal; this has been subtracted from the values presented.  The 
signal from each ChIP has been divided by the signal obtained with total chromatin.  
Error bars represent +/- the average deviation of biological replicates.   
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Next we performed co-IP using the MNase-solubilized chromatin.  Pulldowns were 

performed using beads conjugated to αFLAG or αMyc antibodies.  The 

immunoprecipitations were probed for all other core histones.  Immunoprecipitation 

of 3FLAG-H2A pulled down Cse4-12Myc, H3, H2B, and H4 (Figure 23B).  When 

we immunoprecipitated Cse4-12Myc, we were able to detect an interaction with 

H2A, H3, and H4, but not H3 by Western blot (Figure 24C).  In addition, silver-

stained polyacrylamide gels and mass spectrometric analysis confirmed these results 

(data not shown). 

 To alleviate the concern that the MNase-solubilized chromatin fraction did not 

contain centromeric nucleosomes, we performed qPCR using DNA prepared from 

both the 3FLAG-H2A and the Cse4-12Myc immunoprecipitated samples.  Using 

primers that amplify either CEN3, or the region of a positioned canonical nucleosome 

at the PHO5 promoter [128], we observed that the 3FLAG-H2A immunoprecipitation 

was enriched for sequences from both sites, while the Cse4-12Myc 

immunoprecipitation was significantly enriched only for CEN3 DNA (Figure 24D).  

We also performed qPCR to look for enrichment of DNA from either the rDNA or Ty 

elements.  We found only a slight enrichment for rDNA (2-fold over control) and no 

enrichment for Ty elements in the DNA that immunoprecipitated with Cse4-12Myc,  

an indication that the majority of nucleosomes in the Western blot analysis were 

centromeric in origin (Figure 24E).  The differences in the levels of rDNA and Ty 

sequences between Figure 20E and Figure 24E are likely due to the different methods     

used to isolate DNA.  In Figure 20E the samples were crosslinked prior to the  
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Figure 24.  Co-Immunoprecipitation of histones from MNase-solubilized 
chromatin.  Nuclear lysates were made from a strain expressing both 3FLAG-H2A 
and Cse4-12Myc.  The chromatin fraction was pelleted and treated with MNase.  
Western blots were probed with each antibody listed.  For each antibody, the lanes are 
from a single exposure of the same gel.  Vertical lines indicate that intervening lanes 
were cropped.  A)  Both the MNase-solubilized chromatin fraction and the total 
nuclear lysate were loaded for Western blot.  B)  Co-immunoprecipitation was 
performed using the MNase-solubilized chromatin.  αFLAG-conjugated beads were 
used to pulldown 3FLAG-H2A, and the pulldown was probed using the antibodies 
listed.  The control pulldown was performed using chromatin from a strain lacking 
3FLAG-H2A.  C)  αMyc-conjugated beads were used to pulldown Cse4-12Myc from 
chromatin made from, and the pulldown was probed using the antibodies listed.  The 
control pulldown was performed using chromatin from a strain lacking Cse4-12Myc.  
D)  DNA was isolated from both the αFLAG and αMyc pulldowns.  qPCR was then 
performed to look for enrichment of DNA at either CEN3 or at the site of a well-
positioned canonical nucleosome at the PHO5 promoter (prPHO5).  Cse4 is 
significantly enriched at CEN3 when compared to the PHO5 promoter.  Levels of 
3FLAG-H2A are similar at both sites.  E)  qPCR signal from immunoprecipitated 
Cse-12Myc and 3FLAG-H2A compared to an untagged control strain at CEN3, the 
rDNA, Ty elements and the PHO5 promoter.  Fold enrichment was calculated by 
dividing IP/input ratios from the untagged control by the IP/input ratios of the 
epitope-tagged samples. 
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immunoprecipitation, while those in Figure 24E were not.  Taken together, these  

results strongly suggest that in vivo, the centromeric Cse4 nucleosome contains 

histones H2A, H2B, and H4, and excludes H3 and Scm3.       

 

4.  Overexpression of Cse4 can rescue a Scm3 deletion 

 Deletion of SCM3 in budding yeast is lethal [91].  We tested whether 

overexpression of other proteins could rescue the viability of a scm3 strain.  A 

CSE4/cse4 and SCM3/scm3 heterozygous diploid knockout strain (“Magic 

Marker”) were transformed with plasmids from the yeast Harvard Institute of 

Proteomics ORF collection (pHIP), sporulated, and then pinned in quadruplicate to 

medium that allows the recovery of haploid yeast that contain both the GAL1-10 

overexpression plasmid and the scm3 or cse4 deletion.  As expected, overexpression 

of either Cse4 (pHIP-Cse4) or Scm3 (pHIP-Scm3) allows growth in each of their 

respective knock-out strains (Figure 25A).  Surprisingly, we found that 

overexpression of Cse4 could rescue a scm3 strain.  The scm3 strain covered by 

the Cse4 overexpression plasmid grows slightly slower than scm3 covered by a 

plasmid overexpressing Scm3 (Figure 25B).  To confirm this finding we also 

transformed the galactose/glucose regulatable Scm3on/off strain [116] with a plasmid 

containing Cse4 expressed under the control of the CUP1 (copper-inducible, pCUP1-

Cse4) promoter.  We found that with the addition of copper (Cu++) to the growth 

medium, pCUP1-Cse4 can rescue growth on medium containing glucose (Scm3off) 

(Figure 25D).   
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Figure 25.  Suppression of the scm3Δ lethal phenotype.   
The SCM3/scm3Δ or CSE4/cse4Δ heterozygous diploid knockout strain was 
transformed with plasmids from the HIP overexpression library.  A)  Sporulated 
cultures were pinned in quadruplicate onto medium which allowed the recovery of 
haploid yeast containing either scm3Δ or cse4Δ and the plasmid indicated.  B)  
Dilution assay comparing the growth of scm3Δ covered by either pHIP-Scm3 or 
pHIP-Cse4 on Gal-Ura medium.  C)  FACscan analysis and DAPI staining of the 
scm3Δ strain covered by pHIP-Scm3 and scm3Δ covered by pHIP-Cse4.  DAPI 
stained DNA is shown in white.  Arrows indicate cells with abnormal morphology 
(elongated buds).  D)  Overexpression of Cse4 can rescue the Scm3on/off phenotype.  
The Scm3on/off strain was grown with no plasmid, or transformed with the copper 
inducible pCUP1-Cse4 plasmid or pRS423-Scm3.  Yeast were tested for growth on 
galactose, glucose, and glucose plus Cu++.  Scm3on/off can only grow on glucose with 
the addition of Cu++ to the growth medium.   
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 To test for mitotic defects, we performed FACscan analyses (FACs) to look at 

DNA content in scm3Δ cells that are rescued by pHIP-Cse4 (Figure 25C).  We find 

that when we analyze DNA content by FACs, scm3Δ cells covered by pHIP-Cse4 

have a mitotic delay, with a larger proportion of the cells exhibiting 2N DNA content, 

as compared to scm3Δ cells covered by pHIP-SCM3.  Additionally, we have also 

performed DAPI staining to visualize the DNA (Figure 25C).  The DAPI staining 

shows that chromosome segregation is occurring, although the preponderance of the 

cells are large budded, with some exhibiting morphology defects (elongated buds).  

We therefore conclude that the kinetochore is functional for chromosome segregation 

in the absence of Scm3, but there are probable kinetochore defects.  To confirm that 

Cse4 still localized properly to the centromere in the absence of Scm3, we performed 

ChIP using a Myc epitope tagged pHIP-Cse4 (pHIP-Myc-Cse4) in the scm3Δ strain.  

Using ChIP/qPCR and sheared chromatin we find that in the absence of Scm3, Cse4 

localizes to the centromere in a pattern consistent with single nucleosome (Figure 26).  

We also observed that in the absence of Scm3, we still cannot detect histones H2A, 

H2B, or H4 at the centromere by ChIP (data not shown).  Based on these findings, we 

conclude that functional Cse4-containing centromeric chromatin can be formed in the 

absence of Scm3, and when we overexpress Cse4, a specialized Scm3-containing 

nucleosome is not essential for kinetochore function or chromosome segregation in 

budding yeast.   

 

5.  Cse4-containing octameric nucleosomes can be assembled in vitro 
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Figure 26.  Cse4 localization in the scm3Δ strain.   
A wild type strain containing the pHIP-Myc-Cse4 plasmid and a scm3Δ strain 
containing the pHIP-Myc-Cse4 plasmid were grown on SGal-Ura to mid-log phase 
and then arrested with nocodazole.  qPCR analysis of pHIP-Myc-Cse4 localization 
was performed in both strains.  The primers used amplify a +/- 2kb region around 
CEN3.  A depiction of the features within the region is shown below each histogram.  
GAL2 serves as a negative control for Cse4 localization.  Error bars represent +/- the 
average deviation of biological replicates 
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 Our in vivo data suggested that we should be able to reconstitute octameric 

Cse4-containing nucleosomes in vitro.  To this end, we purified recombinant Cse4 

and canonical histones (H2A, H2B, H3, and H4), and reconstituted Cse4-containing 

octamers and canonical octamers (Figure 27A).  Recombinant yeast canonical 

histones were reconstituted into octamers (10% octamer, 20% tetramer; 40% dimer 

with the remainder being aggregates, Figure 27B).  The reconstituted Cse4 octamers 

contained two copies of Cse4, H2A, H2B, H4 and no H3.  By comparison to  

canonical octamers, reconstitution of Cse4-containing octamers is very efficient.  

There is little protein aggregation and >95% of histones are in octamer form (Figure 

27C).  Additionally, we observed that Cse4-H4 tetramer reconstitution is dramatically 

inefficient, with ~.05% of the total input protein actually forming a tetramer (data not 

shown).  

 Using purified Cse4-containing octamers and canonical octamers we 

reconstituted nucleosomes.  We find that Cse4-containing octamers can be 

reconstituted with both a “601” nucleosome positioning sequence [129] as well as a 

random sequence from the arm of chromosome 6 (Figure 28A).  At the higher ratios 

of octamer to DNA, the Cse4 octamers assemble with DNA much more efficiently 

than their canonical counterpart, exhibiting a strong positioning effect on the DNA.  

All attempts to reconstitute Cse4 nucleosomes using a centromeric DNA sequence 

failed (data not shown).  This will be an important goal for future studies.  To 

examine the integrity of Cse4-containing nucleosomes, we performed DNaseI 

accessibility analysis using the mononucleosome bands excised from Figure 28A.   
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Figure 27.  Reconstitution of Cse4 and canonical octamers.   
A)  Individual histones were purified from E. coli inclusion bodies and Cse4 and 
canonical octamers were reconstituted using salt dilution [130].  B)  Canonical 
octamers were assembled by salt dialysis and purified by FPLC.  When gel filtration 
chromatography fractions are collected for canonical octamers, four distinct 
populations are present: octamers, tetramers, dimers, and aggregates.  C)  When Cse4 
octamers are reconstituted, only the octamer population is detected in the gel filtration 
fractions.  The protein composition of all above peaks was verified on a Coomasie-
stained poly-acrylamide gel (data not shown).   
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Figure 28.  Assembly of Cse4 nucleosomes in vitro.   
A)  Cse4 and canonical histone octamers were assembled with either the 601L 
nucleosome positioning sequence or a sequence from the arm of yeast chromosome 6 
(Chr6).  The resulting nucleosomes were resolved on a 5% native poly-acrylamide 
gel.  B)  Mononucleosome species were gel purified, treated with DNaseI, and the 
products were separated on an 8% denaturing poly-acrylamide gel.  DNaseI 
accessibility was mapped for Cse4 and yeast canonical nucleosomes (YCN) 
assembled from recombinant histones and 32P 5’-labelled Chr6 DNA. 
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The DNaseI digestion pattern of Cse4 nucleosomes closely resembles that of 

canonical nucleosomes, an indication that the DNA configuration of a Cse4 

nucleosome in vitro is similar to its canonical counterpart (Figure 28B).  Coupled 

with the in vivo precipitation data, our in vitro data supports the model that Cse4 

forms an octameric nucleosome, whose overall structure resembles that of a canonical 

nucleosome. 

 

6.  Reconstitution of Scm3 hexamers in vitro 

 It was previously reported that when recombinant Scm3 was added to Cse4-

containing octamers, H2A-H2B dimers were evicted, and a hexameric Scm3-Cse4-

H4 complex was formed [117].  To study the properties of this Scm3 hexamer we 

have purified recombinant histidine-tagged Scm3 (6HIS-Scm3) from E. coli (Figure 

29A).  Using 6HIS-Scm3 and pre-assembled Cse4 octamers we have confirmed the 

finding that 6HIS-Scm3 evicts histones H2A and H2B from preassemble Cse4 

octamers (Figure 29B), and we have isolated the 6HIS-Scm3-Cse4-H4 hexamer 

(Figure 29C).  Surprisingly, we also found that when recombinant 6HIS-Scm3 was 

added to canonical octamers, H2A-H2B dimers were evicted and a complex 

consistent with a Scm3-H3-H4 hexamer was isolated by gel filtration chromatography 

(Figure 29D).  This finding indicates a lack of specificity of Scm3 for interaction with 

Cse4 octamers in vitro.  A molecular size standard was run on the same column and 

used it to verify correct molecular weight of the purified hexameric complex (Figure 

29E).  Using purified Scm3-Cse4-H4 hexamers from Figure 29C, we attempted to  
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Figure 29.  Reconstitution of Scm3 hexamers in vitro.   
A)  Recombinant six histidine-tagged Scm3 (6HIS-Scm3) was purified from E. coli.  
B)  6HIS-Scm3 was mixed with Cse4 octamers at a 1:1 ratio in 2 M salt, incubated 
for 2 hours at 30o C, and subjected to gel filtration chromatography.  Fractions 
collected were subjected to PAGE followed by silver staining.  The asterisk indicates 
the fraction used for molecular weight (MW) determination.  C)  Fractions from (B) 
containing Scm3-Cse4-H4 hexamers were pooled.  D)   6HIS-Scm3 was mixed with 
canonical octamers at a 1:1 ratio in 2 M salt, incubated for 2 hours at 30oC, and 
subjected to gel filtration chromatography.  Fractions collected were subjected to 
PAGE followed by silver staining.  6HIS-Scm3 facilitates removal of H2A-H2B 
dimers from canonical octamers and forms a complex consistent with Scm3-H3-H4 
hexamers.  The asterisk indicates the fraction used for MW determination.  E)  A 
molecular size standard was run on the same column used for hexamer 
reconstitutions, and an apparent MW standard curve was created.  Error is estimated 
to be +/- 10 kD.  The MW of a Scm3-Cse4-H4 hexamer is calculated to be ~131 kD 
and the apparent MW of fraction 29 from B is 138 kD.   The MW of a Scm3-H3-H4 
hexamer is ~106 kD and the apparent MW of fraction 28 from D is 104 kD.   

 101



reconstitute a hexameric nucleosome.  Using the same salt dialysis protocol used to 

reconstitute Cse4 octameric nucleosomes, we attempted to reconstitute a hexameric 

Scm3-containing nucleosome using both 601 and CEN3 DNA.  Unfortunately, we 

were unable to reconstitute hexameric nucleosomes in vitro using this method (data 

not shown).   

 

7.  Scm3 chaperone activity in vitro 

 It has been proposed that Scm3 may be a Cse4-specific histone chaperone 

which facilitates the deposition of Cse4-containing nucleosome onto centromeric 

DNA [118].  Previous work on Drosophila CID (CENP-A) has identified RbAp48 as 

a possible CenH3 chaperone protein.  RbAp48 immunopurifies with CID, and was 

shown to possess chaperone activity in vitro using a plasmid supercoiling assay [112].  

Similar to RbAp48, Scm3 is comprised of a large percentage of acidic residues, and 

binds Cse4-H4 in vitro [117].  To test for Scm3 chaperone activity in vitro we 

performed the same plasmid supercoiling assay used for RbAp48.  In this assay, 

Scm3-mediated nucleosome deposition onto a fully relaxed, circular plasmid 

substrate will lead to a positive supercoiling of the plasmid.  Using recombinant 

6HIS-Scm3, recombinant histone chaperone Nap1 (GST-Nap1), and pre-assembled 

canonical and Cse4 octamers we performed the plasmid supercoiling assay.  In the 

control reaction using GST-Nap1 as the chaperone we find that Cse4 octamers readily 

assemble onto the plasmid substrate, with nearly 100% of the plasmid returning to a 

fully supercoiled state (Figure 30A).  With Scm3 as the chaperone, very little  
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Figure 30.  Plasmid supercoiling assay. 
A plasmid supercoiling assay was performed using plasmid pG5E3, which contains 
~25 repeats of the “601” nucleosome positioning sequence.  pG5E3 was fully relaxed 
using recombinant Topoisomerase I (Topo I), and mixed with chaperone incubated 
with increasing amounts of pre-assembled octamers.  A)  Using GST-NapI as the 
chaperone, strong reversion to a supercoiled state is observed when pG5E3 was 
mixed with Cse4 octamers.  Yeast canonical histone octamer (YCH) do not assemble 
onto DNA as efficiently.  B)  Using 6HIS-Scm3 as the chaperone, a slight increase in 
supercoiled species is observed when pG5E3 is incubated with Cse4 octamers at .2, 
.4, an .8 ratios of octamers:DNA (asterisks).  When compared to the reaction where 
6HIS-Scm3 is incubated with canonical octamers, no increase in supercoiled species 
is observed at these same ratios (asterisks). 
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supercoiling was observed when compared to a reaction without Scm3, although there 

was a slight increase when the Histone:DNA ratio was between 0.2-0.8.:1 (Figure 

30B).  Although we do not observe significant chaperone activity using the plasmid 

supercoiling assay, we can not rule out that Scm3 is not a Cse4-specific chaperone.  

The weak chaperone activity seen may be a direct result of improper experimental 

conditions, or Scm3 may require a centromeric DNA sequence on the template 

plasmid for full chaperone activity in vitro.      

 

8.  Dimerization of Cse4 in vivo 

 To determine which individual amino acids are essential for Cse4 function we 

have performed single residue alanine scanning mutagenesis across the entire Cse4 

open reading frame.  Each mutant was tested for its ability rescue growth in a cse4Δ 

strain.  Using this unbiased approach we have identified 6 single amino acid residues 

that are essential for Cse4 function in vivo (Figure 31A).  All 6 lethal mutants are 

located at the C-terminal end of Cse4, in the evolutionarily conserved HFD.  This 

finding is consistent with previous reports that the N-terminus of Cse4 is dispensable 

for Cse4 function [103].  Using the predicted crystal structure of the Cse4-containing 

nucleosome as a guide [131], we have mapped the location of each of the 6 essential 

residues (Figure 31B).  We find that 5 of the 6 essential residues are located in  

close proximity to the Loop II-Helix III transition.  Mutations in this region would be 

predicted to interfere with the structure and folding of Helix III, disrupting the dyad 

axis and subsequently the Cse4-Cse4 dimer interface at the four-helix bundle.   
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Figure 31.  Single residue alanine scanning mutagenesis of Cse4.   
Cse4 was cloned into pRS413 and subjected to site directed mutagenesis which 
mutated each individual amino acid to an alanine.  Each mutated plasmid in the 
collection was transformed into a haploid cse4Δ strain containing another plasmid 
with a wild type copy of Cse4, and a plasmid-shuffle assay was performed.  A)  
Growth on 5-FOA identified six single alanine substitutions that do not support 
growth in the cse4Δ background.  B)  Using the modeled Cse4 crystal structure as a 
guide [131], the location of each of the 6 lethal point mutants was mapped.  One 
molecule of Cse4 histone fold domain from the predicted Cse4 octamer crystal 
structure is shown in color and the essential residues are indicated.  The second 
molecule of Cse4 is shown in grey.  Five of six of the lethal point mutations lie in 
close proximity in either Loop II or Helix III. 
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 Although the results of the alanine scanning mutagenesis strongly suggest that 

Cse4-Cse4 dimers are required for Cse4 function, this experiment did not directly 

address whether multimers of Cse4 are actually found in vivo.  In order to do this, we 

created a yeast strain that co-expressed two differentially epitope-tagged Cse4 

proteins, Cse4-12Myc and FLAG-Cse4.  Using this strain we performed co-

immunoprecipitation to detect an interaction between the two epitope-tagged Cse4 

proteins.  We found that in whole cell extracts we were able to detect a physical 

interaction between Cse4-FLAG and Cse4-12Myc (Figure 32A).  To test whether this 

interaction occurs in the context of the Cse4-containing centromeric nucleosome, we 

performed quantitative sequential chromatin immunoprecipitation (SeqChIP) [132] 

using the differentially-tagged Cse4 strain.  We find that when we ChIP with an 

antibody against the Myc epitope, followed by ChIP using an antibody against the 

FLAG epitope, we see significant enrichment of Cse4 specifically at the centromere 

(CEN3) (Figure 32B).  Coupled with the alanine scanning mutagenesis data, these 

compelling results strongly suggest that Cse4-Cse4 dimers are required for Cse4 

function, and indicate that the centromeric nucleosome contains two copies of Cse4. 

 

IV.  Discussion  

 To address the composition of centromeric chromatin in budding yeast, we 

have performed a number of in vivo and in vitro experiments.  When we treat bulk 

chromatin with MNase in vivo we find that unlike Cse4 and the core histones, Scm3 

is not solubilized.  Co-immunoprecipitation from the MNase-solubilized chromatin  
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Figure 32.  Co-immunoprecipitation and sequential ChIP of differentially tagged 
Cse4 proteins. 
A)  Co-immunoprecipitation was performed using whole cell extracts (WCE) isolated 
from a strain which expresses both Cse4-12Myc and FLAG-Cse4.  αFLAG-
conjugated beads were used to pulldown FLAG-Cse4 from WCE, and the pulldown 
was probed by Western blotting with the αMyc antibody.  The negative control 
pulldown was performed using chromatin from a strain lacking FLAG-Cse4.  B.  
SeqChIP was performed using sheared chromatin isolated from the same strain as in 
(A).  αMyc antibody was used for the 1st round of ChIP, followed by ChIP using 
either the αFLAG antibody or no antibody.  The signal from each ChIP has been 
divided by the signal obtained with total chromatin.  The centromeric primer pair 
spans ~ 350bp across CEN3. The GAL2 gene serves as a negative control for Cse4 
localization.  Error bars represent +/- the average deviation of biological replicates.   
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reveals that Cse4 physically associates with histones H2A, H2B, and H4.  In MNase-

solubilized chromatin we cannot detect an interaction between Cse4 and either H3 or 

Scm3.  These results strongly suggest that the Cse4-containing nucleosome contains 

Cse4, H2A, H2B, and H4, but not H3 or Scm3.  Overexpression of Cse4 can bypass 

the requirement for Scm3 in kinetochore formation.  Furthermore, Cse4 can localize 

properly to the centromere even in the absence of Scm3.  These results are a strong 

indication that a Scm3-containing nucleosome is not essential for chromosome 

segregation in budding yeast. 

 To further study the properties of the Cse4-containing nucleosome we have 

reconstituted Cse4 mononucleosomes in vitro.  We can efficiently reconstitute Cse4 

octamers and nucleosomes.  Using comprehensive alanine scanning mutagenesis we 

have identified a number of Cse4 residues that are essential for protein function in 

vivo.  The large majority of these mutations are located at the Cse4-Cse4 dimer 

interface, underscoring the importance of this domain for Cse4 function in vivo.  

Additionally, using co-expression of differentially epitope-tagged Cse4 proteins and 

sequential ChIP, we have verified the presence of a Cse4 nucleosome at the 

centromere which contains multiple copies of Cse4.   Taken together our results 

suggest that Cse4 is found in an octameric nucleosome in vivo, which also contains 

histones H2A, H2B, and H4. 

 

1.  Putting the hexamer to the test 

 It has been proposed that in budding yeast, Scm3 is a component of a   
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specialized hexameric centromeric nucleosome [117] which lacks histones H2A and 

H2B.  This model is based partly on experiments in vitro in which Scm3 was shown 

to evict H2A and H2B from preassembled Cse4-containing octamers.  Based on our 

experimental evidence we hypothesize that Scm3-Cse4-H4 hexamer may be some 

type of intermediate in the formation of the centromeric nucleosome, but not the 

actual complex that is found in the centromeric nucleosome.  We find that Cse4/H4 

tetramers are poorly reconstituted.  One possibility is that Scm3 may stabilize the 

Cse4/H4 tetramer in vivo but is not maintained as an actual component of the 

centromeric nucleosome.  The hexameric nucleosome model is also difficult to 

reconcile with previous work that shows H2A is required for proper centromere 

function [133], and that the inner kinetochore protein Mif2 physically interacts with 

Cse4, H2A, H2B, and H4, but not H3 [80, 133].  High resolution mononucleosome 

ChIP reveals that the localization pattern of Cse4 differs from that of Scm3.  Cse4 

appears to localize directly over the entire length of the centromeric DNA sequence, 

while Scm3 localizes with a bias towards the CDE III end of the centromere.  This 

result is consistent with the observed interaction between Ndc10 and Scm3 [116], 

given that Ndc10 has been shown to interact directly with CDE II-III [65].   

 Similar to a previous report [117] we were also unable to ChIP H2A and H2B 

to the centromere.  However, we do not think this reflects their absence at this site.  

Reciprocal Co-IP of both Cse4 and H2A from mononucleosomes reveals that these 

proteins physically interact with one another, as well as histones H2B and H4.  Based 

on this result, we hypothesize that the formation of the kinetochore over the 
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centromeric nucleosome precludes antibody accessibility to the histone epitopes for 

ChIP, some of which are buried within the core of the nucleosome. 

 Another compelling result is that Cse4 can rescue a complete deletion of 

SCM3.  Based on this result it seems likely that Scm3 is only required for the 

formation of the centromeric nucleosome when Cse4 protein levels are limited.  We 

were unable to find evidence for a Scm3-containing centromeric nucleosome in vivo.  

Therefore, we favor a model in which Scm3 is not an actual component of the 

centromeric nucleosome, but rather intimately associates with it at the inner 

kinetochore.  This model is consistent with Scm3 being a Cse4-specific chaperone.  

While we did detect slight chaperone activity in the Scm3 plasmid supercoiling assay, 

our data was inconclusive.  It is important to note that in previous supercoiling assays 

done using Drosophila Cid and RbAp48 [112], strong chaperone activity was only 

observed when a plasmid containing large tandem repeats (several kb) of Drosophila 

centromeric DNA was used.  Unfortunately, the budding yeast centromeric sequence 

will only accommodate a single nucleosome, therefore a plasmid containing a single 

yeast centromere would not be feasible to use in a supercoiling assay, when multiple 

nucleosomes must be deposited on a single plasmid template in order to quantify the 

chaperone activity. 

 

2.  Cse4 nucleosomes are likely octamers in vivo 

Another proposed model for centromeric chromatin is that a single molecule of each 

Cse4, H2A, H2B, and H4, form a structure at centromeres called a hemisome [114].  
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Hemisomes were observed in interphase Drosophila cells [115], but have not been 

observed in any other organism.  Unlike both CENP-A and CID [112, 113], Cse4-

containing nucleosomes had not been reconstituted in vitro.  When we reconstituted 

Cse4 complexes in vitro, we find that Cse4 readily forms an octameric complex with 

the core histones.  We did not detect any population by gel-filtration chromatography 

that would be consistent with a hemisome.  We also show that the reconstituted Cse4 

octamer can wrap DNA to form an octameric nucleosome similar in structure to a 

canonical H3-containing nucleosome.  In addition, using comprehensive alanine 

scanning mutagenesis we find that 6 single amino acids are required for Cse4 

function in vivo.  Unlike previous Cse4 mutagenesis studies that identified functional 

regions of the HFD in the context of multiple mutations across the region [40, 134], 

we have identified single residues essential for Cse4 function.  The fact that 5 of 6 

lethal mutants fall either in Loop II or Helix III is indicative of the importance of this 

region in Cse4 function.  By analogy to H3, the Loop II-Helix III transition is the 

location of the dyad axis, which forms the Cse4-Cse4 four-helix bundle.  Mutation in 

this region would be predicted to disrupt two heterodimers of Cse4-H4 coming 

together to form a tetramer, which would occur at the Cse4-Cse4 dimerization 

interface.  If Cse4 was found in a hemisome, one would predict that this dimerization 

event would be unnecessary.  Additionally, the results of sequential ChIP using a 

strain expressing two differentially-tagged Cse4 proteins provides direct in vivo 

evidence that the budding yeast centromeric nucleosome contains more than one copy 

of Cse4.  Therefore, it is hard to reconcile these data with the requirement for a Cse4-
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containing hemisome in vivo.  The sum of all of our experiments strongly suggests 

that the CenH3 variant Cse4 is found at a single octameric nucleosome at the budding 

yeast centromere. 
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Chapter 4. 

  Conclusions and Future Directions 

 

 Although much is understood about the formation of the budding yeast 

kinetochore, little is known about how exactly the inner kinetochore recognizes and 

assembles at centromeric DNA.  Additionally, the exact composition of the 

centromeric nucleosome is a subject of strong debate.  The data presented in this 

dissertation represents a large step forward in understanding when and where this 

nucleosome forms, how it forms, and what additional protein components are 

required.  We have provided evidence that SCM3 encodes a previously 

uncharacterized inner kinetochore protein which functions in localizing both Ndc10 

and Cse4 to the centromere.  Our work demonstrates that Scm3 is vital for formation 

of centromeric chromatin, the inner kinetochore, and subsequent chromosome 

segregation.  Additionally we believe that Scm3 is not an integral component of a 

specialized centromeric nucleosome, but rather intimately associates with it at the 

inner kinetochore.  Based on our findings, we support a model in which a single 

octameric nucleosome forms at budding yeast centromeres.  This nucleosome is 

comprised of Cse4, H2A, H2B, and H4 and forms early in S-phase after centromeres 

are replicated, with Scm3 and Ndc10 acting as a specificity factors for its centromeric 

location (Figure 33).  In addition to its role in the formation of the centromeric 

nucleosome, Scm3 is also required throughout the cell cycle to maintain a 

segregation-competent kinetochore.  Future investigation into the role of Scm3 in  
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Figure 33.  Model for the formation of centromeric chromatin.   
A complex containing Ndc10 and Scm3 localizes to centromeric DNA early in S-
Phase following centromere replication by virtue of the ability of Ndc10 to bind to the 
CDE II-III sequences specifically.  After Ndc10 and Cse4 localize to the centromere, 
a single octameric nucleosome containing Cse4, H2A, H2B, and H4 forms at this site.  
The localization of Ndc10, Scm3 and Cse4 is interdependent and establishes 
functional centromeric chromatin. 
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kinetochore function should aim to further elucidate the molecular mechanism by 

which this protein helps to demarcate the centromere, and to pinpoint its role in 

maintenance of a functional kinetochore. 

 

I.  The mechanism of Scm3 function in formation of the Cse4 nucleosome  

 Previous experiments have suggested that Ndc10 binding to CDE II-III is the 

nucleating step of kinetochore formation [84, 87-89].  This hypothesis is strongly 

based on previous work that shows a lack of localization of several kinetochore 

components in a ndc10-1 temperature sensitive mutant.  Also, no proteins have been 

identified that are required for Ndc10 localization to the centromere.  We have shown 

that Scm3 is required for the localization of Ndc10 to the centromere during S-phase.  

Conversely, Ndc10 is required for proper localization of Scm3 to the centromere.  

These findings strongly suggest a reciprocal relationship between Ndc10 and Scm3 in 

nucleation of the kinetochore.  Future studies should focus on the relationship 

between Ndc10 and Scm3.  It would be helpful to understand which domain of Scm3 

actually interacts with Ndc10.  One would predict that the Ndc10-interacting domain 

would be essential.    Other key experiments could include looking at the relationship 

between Scm3, Ndc10, and centromeric DNA in vitro using purified components.     

 Although we know that Scm3 is required for formation of the Cse4-containing 

centromeric nucleosome, we have not as of yet identified the precise molecular 

mechanism of action of Scm3 at the inner kinetochore.  Future experiments should 

focus on the identification of this mechanism.  We have confirmed that Scm3 can 
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displace H2A and H2B from pre-assembled Cse4 octamers.  However, the relevance 

of this reaction to the formation of the centromeric nucleosome in vivo is not clear.  

Also we observed that Cse4-H4 tetramers do not readily form in vitro.  These 

findings suggest that Scm3 may facilitate formation and maintenance of Cse4-H4 

tetramer pools in vivo, or may be a Cse4-H4 specific histone chaperone, involved in 

nuclear import, chromatin formation, or both.  These hypotheses are consistent with 

the finding that Scm3 can form a stoichiometric complex with Cse4 and H4 [117] and 

that overexpression of Cse4 can rescue a scm3Δ strain, presumably through high 

levels of Cse4 in the cell driving the Cse4-H4 interaction.  Although the result of the 

supercoiling assay using recombinant Scm3 and Cse4 octamers was inconclusive, we 

can not rule out the possibility that Scm3 is indeed a Cse4-specific chaperone.  It is 

possible that Scm3 chaperone activity would only be observed when using a plasmid 

substrate possessing an actual centromeric sequence.  Although technically 

challenging, it would be possible to create a plasmid with multiple copies of a yeast 

centromeric sequence.  This plasmid could then be utilized in the plasmid 

supercoiling assay in conjunction with recombinant Scm3, and pre-assembled Cse4 

octamers.  

 

II.  The role of Scm3 in maintenance of a functional kinetochore. 

 Another function for Scm3 besides initiation of kinetochore formation is 

maintenance of kinetochore function throughout the rest of the cell cycle.  When cells 

are released from a metaphase arrest after Scm3 is depleted, they cannot enter 
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anaphase, and remain arrested at the spindle checkpoint.  Based on the fact that 

Dam1-GFP appears to localize properly when Scm3 is depleted, we do not think this 

failure to rescue chromosome segregation in Scm3 depleted cells is due to a lack of 

localization of the outer kinetochore proteins.  It is possible that Scm3 somehow is 

responsible for signaling to the spindle checkpoint that the kinetochore is formed.  It 

seems unlikely that the same Scm3 molecule which interacts with Ndc10 and Cse4 at 

the inner kinetochore is later responsible for signaling to the spindle checkpoint.  This 

function most likely is independent from its role in kinetochore formation, and would 

suggest dynamic loading/unloading of Scm3 at the centromere during the cell cycle.  

Isolation of Scm3 separation of function mutants would be an important step in 

identifying its role in kinetochore maintenance.  Comprehensive alanine scanning 

mutagenesis, or further large-scale mutagenesis studies would be helpful in 

identifying these mutants. 
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CHAPTER 5.  

Materials and Methods 

 

I.  Bacterial Methodology 

1. Bacteria culturing and strains 

 The Escheria coli strain DH5α was used for all standard cloning and plasmid 

preparation techniques.  One Shot library efficiency chemically competent E. coli 

(Invitrogen) were used for all standard plasmid transformations.  All E. coli strains 

were grown in Luria Bertani (LB) growth media supplemented with appropriate 

antibiotics at 37°C.  Ampicillin and Kanamycin were used at 100 μg/ml and 25 μg/ml 

respectively. 

   

2. Plasmid manipulation 

 Standard restriction digest cloning was performed using techniques found in 

Molecular Cloning: A Laboratory manual [135].  All restriction enzymes, calf 

intestinal phosphatase (CIP) and T4 DNA ligase were obtained from New England 

Biolabs (NEB) and used with supplied buffers at recommended concentrations. 

Constructs for cloning were amplified from genomic or plasmid DNA using standard 

polymerase chain reaction (PCR).  Phusion polymerase (Finnzymes) was used for 

high fidelity PCR as per supplied protocol.  Primers for cloning and sequencing were 

synthesized by Integrated DNA Technologies (IDT).  Plasmid sequencing was 

performed in the Stowers Institute for Medical Research molecular biology facility 
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using ABI 3730 48-capillary DNA analyzers. The reactions were performed by PCR 

according to Applied Biosystems protocols (Big Dye Terminator ver. 3.1). 

Unincorporated nucleotides were removed by exclusion columns from Edge 

Biosystems or by SPRI technology from Agencourt.  Sequencing results were 

analyzed using VectorNTI Contig Express (Invitrogen).  To make the Gal4BD-Scm3 

fusion, SCM3 was cloned into the Gal4BD vector pGBKT7 (Clontech Laboratories).  

Gal4BD-Scm3 was subcloned into pESC-HIS3 (Stratagene). 

 

3. Recombinant protein expression and purification 

 The expression vector pET15-HIS-Scm3 encodes a N-terminal 6-Histidine 

tagged Scm3 protein (6HIS-Scm3), and was a gift of Carl Wu (NIH, Bethesda, MD).  

For expression of recombinant 6-HIS Scm3, pET15-HIS-Scm3 was transformed into 

One Shot  BL21 Codon Plus competent E. coli (Invitrogen).  Recombinant 6HIS-

Scm3 expression was induced by addition of IPTG (0.3 mM final).  Cultures were 

induced at 25°C for 4-6 hours.  Expression of 6HIS-Scm3 was monitored by 

polyacrylamide gel electrophoresis and subsequent Coomasie Brilliant Blue staining 

(Bio-Rad).  6L cultures were used for each round of expression.  E. coli were lysed by 

sonication in the presence of high salt lysis buffer (1X PBS, 500 mM NaCl, 10 mM 

imidazole) supplemented with protease inhibitors (Complete tablets, Roche) and 

lysozyme (1 mg/ml) and Benzonase (25 U/ml, Novagen).  Lysates were cleared via 

ultracentrufigation, and 6HIS-Scm3 was isolated using Talon metal affinity resin (BD 

Biosciences).   After several hours of incubation with the lysate, Talon resin was 
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collected in an disposable chromatography column (Bio-Rad), washed with several 

column volumes (CVs) of wash buffer (1X PBS, 500 mM Nacl, 20 mM imidazole), 

and protein was eluted from the resin with several CVs of elution buffer (1X PBS, 

500 mM NaCl,150 mM imidazole).  Lysate, flow-through, wash, elution and bead-

bound fractions were all subjected to PAGE and Coomasie blue staining.  To further 

polish the 6HIS-Scm3 prep and to remove any contaminating proteins the eluate from 

the talon beads was subjected to fast pressure liquid chromatography (FPLC).  The 

eluate was diluted ten fold with FPLC running buffer (50 mM NaPO4, 10% glycerol) 

and loaded onto a HiTrap MonoQ anion-exchange column (Amersham) using an 

AKTA FPLC system (Amersham).  Bound 6HIS-Scm3 was eluted from the column 

using an increasing gradient of NaCl from 0-500 mM.  6HIS-Scm3 elutes at ~300 

mM NaCl.  All collected fraction were subjected to PAGE and Coomasie blue 

staining.  Yeast recombinant histones (H3, H4, H2A, H2B, Cse4) were individually 

expressed in E. coli and purified from inclusion bodies as previously described and 

were a kind gift from Bing Li (Stowers Institute) [136]. 

 

4. Octamer, hexamer, and nucleosome reconstitutions 

 Assembly of histone octamers was carried out as in [137] and octamers were 

purified on a HiLoad 16/600 Superdex 200 column (Amersham Biosciences) and an 

AKTA FPLC (GE Healthcare).  Assembly of Scm3-Cse4-H4 hexamers was 

performed as previously described [117] by additions of 6HIS-Scm3 to preassembled 

octamers in hexamer reconstitution buffer (2 M NaCl, 10 mM Tris 7.5 pH) and gel 
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filtration was performed using a Superdex 200 PC 3.2/30 gel filtration column 

(Amersham Biosciences) on a SMART system (Pharmacia Biotech).  PCR amplified 

DNA fragments for nucleosome reconstitution were 32P 5’ end-labeled and mixed 

with histone octamers in high salt (2 M) and subsequently subjected to ten dilutions to 

physiological salt concentrations (100 mM) to form mononucleosomes.  

Mononucleosome bands were purified from a 5% non-denaturing poly-acrylamide gel 

and subjected to DNase I digestion.  Digested DNA was separated on an 8% 

denaturing poly-acrylamide gel. 

The plasmid supercoiling assay was performed as previously described [112].  

Recombinant Topoisomerase I was a kind gift from S. Venkatesh, Stowers Institute.  

Plasmid G5E4 used in the supercoiling assay contains 23 repeats of the 601 

nucleosome positioning sequence.   

 

II.  Yeast Methodology 

1. Yeast culturing and strains 

 All strains used were constructed in the W303 background unless otherwise 

noted.  For a complete list of yeast strains used see appendix 1.  In general yeast were 

grown at 30°C for wild type (WT) strains.  For temperature sensitive strains (ts), 

permissive temperature was 25°C and non-permissive temperature was 37°C.  The 

various epitope-tagged and knock-out strains were constructed by homologous 

integration using yeast transformation as previously described [138].  Yeast 

transformation was carried out using the standard LiOac transformation method.  
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Yeast growth on rich media was carried out on either yeast-peptone-dextrose (YPD) 

or YP-Galactose.  When nutritional selection was required, yeast were grown on 

either synthetic dextrose or synthetic galactose (SD or SGal) media supplemented 

with the appropriate amino acid drop-out powder (Clontech).  The antibiotics 

Geneticin (G418) and Hygromycin were used at 200 μg/ml and 300 μg/ml 

respectively.   G1, S-phase and G2/M arrests were achieved using final concentrations 

of 5μM α-factor (Zymo Research), 0.2M Hydroxyurea (Sigma), or 15 μg/ml 

nocodazole (Sigma) respectively.  The yeast HIP overexpression library was obtained 

from Harvard Proteomics and transformed into the “Magic Marker” yeast strain 

(Open Biosystems) as per standard high-throughput 96-well yeast protocols.  

Transformed diploids were selected on synthetic dropout medium lacking uracil (SD-

Ura), sporulated, and then pinned in quadruplicate by hand to medium [139] that 

allowed the recovery of haploid yeast that contain both the GAL1-10 overexpression 

plasmid and the deletion of interest (SGal glutamate, -Leu, -His-,-Ura, -Arg, +G418, 

6 μg/ml +L-Canavanine) [140]. 

 

2. Chromatin immunoprecipitation 

 For chromatin immunoprecipitation (ChIP), 220-500 ml yeast cultures were 

grown to mid-log phase prior to any cell cycle arrest or harvest for ChIP.  Cross-

linking of cultures was done with formaldehyde (1% final) for 10 minutes and 

chromatin was harvested by beatbeating in the presence of lysis buffer (100 mM Tris 

pH 7.5, 150 mM NaCl, 0.1 mM EDTA, 1 mM DTT, 0.1% NP-40, 10% glycerol) plus 
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protease inhibitors (Complete tablets, Roche).  For lower resolution ChIP studies, 

chromatin was sonicated to obtain fragments ~300-500 base pairs (bps) in size.  For 

high-resolution mononucleosome ChIPs, CaCl2 (3 mM final) and micrococcal 

nuclease (MNase) were added (~250-500 units, Worthington) to the chromatin after 

beatbeating and lysates were incubated at 37° for 30 min. in lieu of sonication.  The 

MNase reaction was stopped by addition of EDTA and EGTA to 25 mM each and 

placing lysates at 4°C.  Lysates were then cleared by sonication (15K rpm, 15 min.) 

and diluted 1:10 in IP dilution buffer (0.01% SDS, 1% Triton X-100, 1 mM EDTA, 

20 mM Tris pH 7.5, 150 mM NaCl, protease inhibitors).  Input samples and no 

antibody controls were taken at this time.  Primary antibodies were all used at a 1:500 

dilution unless otherwise noted.  Antibodies used for ChIPs are as follows:  αHA 

(12CA5, Roche), αMyc (Santa Cruz, 9E10), and αFlag M2 (Sigma), αH2B (gift from 

Carl Wu- NIH 1:1000, Lake Placid AR-0264), αH3 (Abcam 1791), αH4 (Abcam 

31287, Millipore 05-858).  Lysates were incubated with primary antibody overnight 

(ON) and harvested by incubation with Protein G sepharose (Amersham) for several 

hours-ON.  Protein/DNA bound beads were extensively washed with TSE-150 

(0.01% SDS, 1% Triton X-100, 1 mM EDTA, 20 mM Tris pH 7.5, 150 mM Nacl), 

LiCl detergent wash (1% NP-40, 1% DOC, 1 mM EDTA, 10 mM Tris, 250 mM 

LiCl) and TE (pH 8).  In the case where cultures were not crosslinked the beads were 

washed several times with lysis buffer and TE.  After the final TE wash ChIP samples 

were eluted with SDS lysis buffer (TE pH 8, 1% SDS) at 42°C for 30 min while 

shaking.  For sequential ChIP, eluates from the 1st ChIP were diluted to .05% SDS 
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with lysis buffer and a 2nd ChIP was performed as above, using a different antibody.  

After elution, the crosslinks are then reversed by addition of NaCl to 300mM and 

incubation at 65ºC ON.  Eluates were treated with RNase and Proteinase K for several 

hours, phenol-chloroform extracted and EtOH precipitated.          

 

3. Immunoprecipitation, Co-Immunoprecipitation, and Western Blotting 

 Whole cell extracts for co-immunoprecipitation (Co-IP) were obtained by 

beadbeating in the presence of lysis buffer (100 mM Tris pH 7.5, 150 mM NaCl, 0.1 

mM EDTA, 1 mM DTT, 0.1% NP-40, 10% glycerol, protease inhibitors).  Chromatin 

fractionation was performed as previously described [141].  Co-IPs were performed 

with αMyc antibody (Santa Cruz, 9E10), αFlag M2 (Sigma) and αH3 (Abcam) and 

were all used at 1:500 dilution.  IPs were harvested on proteinG sepharose beads.  

Beads were washed several times with lysis buffer and eluted in SDS buffer (1% 

SDS, TE).  Denaturing PAGE was performed on the eluates using the Novex 4-12% 

bis-tris pre-cast PAGE gel system (Invitrogen) as per the manufacturer’s protocol.  

Electrophoresed IPs were transferred to a nitrocellulose membrane and Western blots 

were performed using standard molecular biology protocols [135].  Primary 

antibodies for Western blots were as follows: αMyc antibody (Santa Cruz, 9E10, 

1:5000), αFLAG M2 (Sigma, 1:5000), αH2B (Lake Placid Biologicals, 1:5000), αH3 

(Abcam 1791, 1:1000), αH4 (Abcam 31827, 1:1000, Millipore 05-858, 1:1000), α-

PGK (a-6457, Invitrogen), αDam1K233me2 (gift from Sharon Dent, MD Anderson, 

1:1000).  Polyclonal rabbit antibodies against a c-terminal Scm3 peptide (aa210-223) 
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were generated and affinity purified by YenZym Antibodies, and used at 1:5000.  For 

visualization of Western blots, a horseradish-peroxidase (HRP) coupled secondary 

antibody (αMouse-HRP, αRabbit-HRP, GE Healthcare) was used in conjunction with 

an ECL detection kit (Amersham).  Westerns were exposed onto BioMax imaging 

film (Kodak) and developed using an X-O200A processor (Kodak).   

 

4. Immunofluorescence and microscopy 

 For visualization of direct GFP fluorescence, cells were fixed in 4% 

paraformaldehyde/3.4% sucrose for 15 min. and stained with DAPI to visualize DNA 

(1 μg/ml final).  Cultures for indirect immunofluorescence were fixed with 4% 

paraformaldehyde in 0.1 M sucrose for 20 min at room temperature (25°C), 

spheroplasted using zymolyase 100T (50 μg/ml final, Fisher), at 37ºC for 30 min..  

Fixed, spheroplasted cultures are then fixed to poly-lysine coated slide via 

methanol/acetone fixation.  The following primary antibody dilutions were used: for 

microtubules, 1:500 rat anti-tubulin antibody YOL 1/34 (Tub1) (Accurate Chemical 

& Scientific Corp.); for spindle pole bodies (SPBs), 1:500 affinity-purified anti-

Tub4p antibodies (gift from Sue Jaspersen- Stowers Institute).  Secondary antibodies 

included α-rat-FITC (1:500) and α-rabbit–alexa555 (1:20,000).  After incubation with 

primary and secondary antibodies, DNA was visualized by staining with 1 µg/ml 

DAPI for 5 min immediately before mounting with Citifluor (Ted Pella Inc.).  Wide-

field microscopy was performed using the following setup: 63x PlanNeo oil objective 

on Zeiss Z1 fluorescent microscope equipped with filter set 488010 (BP450-490, 510-
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580), DAPI filter, and an ORCA-ER digital camera.  Image acquisition and analysis 

was performed using Axiovision 4.5.  

 

5. Quantitative PCR 

 All Quantitative PCR (pPCR) was performed on an iCycler real-time PCR 

machine using IQ Sybr Green Supermix (Bio-Rad).  Primers sets are listed in 

appendix 2.  Low resolution primer sets span ~ 2 kb across the centromere of 

chromosome 3.  PCR of ChIP DNA was quantified for biological replicates by 

comparing IP and total input samples against a standard curve established with PCRs 

of serial 10-fold dilutions of standard DNA.  Dynamic well factors were used and 

cycling parameters were as follows: 94˚C/30 sec., 50˚C /30 sec., 72˚C /30 sec. 

repeated 40X.  A melt curve analysis was performed starting at 50˚C /10 sec. and 

increasing 0.5˚C /cycle for 80 cycles, with all primers used exhibiting a single melt 

peak.  Occupancy levels were determined by dividing the average of the ChIP DNA 

by the relative abundance of a control total chromatin sample. This ratio represents 

the enrichment of ChIP DNA over the input DNA for a specific target.  All ratios for 

biological replicates routinely fell within 10% of each other for a given experiment.  

No antibody controls were performed for all qPCRs. 

 

6. Flow cytometry 

 Fluorescence activated cell scanning (FACs) was performed to confirm all cell 

cycle arrests.  For FACs analysis, cells were fixed in 70% EtOH followed by a wash 
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in FACS buffer (50 mM Na Citrate).  Fixed cells were then resuspended in FACs 

buffer, treated with RNase (Sigma), stained with 1 μM final Sytox Green (Molecular 

Probes), and analyzed using a Cyan cytometer (Dako Cytomation).  FACs data was 

analyzed using FlowJO cytometry software (Treestar Inc.) 

 

7. DNA microarrays and statistical data analysis 

 Microarrays were printed in house and consist of over 13,000 PCR fragments 

representative of the entire yeast genome.  Probes for high resolution tiling of yeast 

centromeres were designed by C. Seidel (Stowers Institute).  Microarrays were 

competitively hybridized with fluorescently labeled immunoprecipitated and input 

DNA as previously described [125].  Microarray data analysis was carried out in 

Acuity, Microsoft Excel, and PeakFinder.  For statistical analysis we first used 

Levene's test to determine if the variance of centromere or repetitive element probes 

were equal to the background.  From this, no population variances (centromere or 

repetitive elements) tested were equal to the background.  Correspondingly, we 

applied four different statistical tests (student t-test, welch t-test, Wilcox test and 

Kolmogorov-Smirnov test) for each comparison, with or without assuming equal 

variance. The results of the statistical tests are consistent with each other.  Statistical 

analysis was performed by Dongxiao Zhu. 

 

8.  Alanine scanning mutagenesis and crystal structure analysis 
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 Cse4 was cloned into pRS413 and site-directed mutagenesis was performed in 

96-well plates using the QuickChange II Site-Directed Mutagenesis Kit (Stratagene) 

and plasmid manipulation was performed as previously described [142].  All mutants 

were confirmed by sequencing with T7 and T3 sequencing primers.  Yeast were 

transformed using standard yeast protocols in 96-well format.  Transformants were 

selected on SD-His-Ura.  The plasmid shuffle to identify essential residues was 

performed as previously described [142].  5-Fluoroortic Acid (5-FOA) was used at 

500 μg/ml.  Analysis of the predicted Cse4 crystal structure was performed with 

Sirius 1.2 structure visualization software (San Diego Supercomputer Center) and 

PDB 2FSB (Protein Data Bank) [131].       

 

9. Mass Spectrometry 

 Protein samples for multi-dimensional protein identification technology 

(MudPIT) were isolated by affinity purification of 12Myc-Cse4 and Scm3-3FLAG, 

Scm3-13Myc and TAP-Scm3 from either asynchronous, alpha factor arrested, or 

nocodazole-arrested cells (Table 3).  Proteins in the Scm3-3FLAG pull down were 

digested with endoproteinase Lys-C/trypsin, whereas, to improve sequence coverage 

on Cse4, the Myc-Cse4 pull-downs were independently digested with four enzymes 

of different specificities.  To assess non-specific interactions, negative controls 

prepared from cells not expressing the epitope-tagged proteins of interest were 

analyzed in parallel.  All MudPIT mass spectrometry (MS) was performed by the 

Stowers Institute proteomics facility using the following protocol. 
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 First, TCA-precipitated protein samples were solubilized in 30μl of 100 mM 

Tris- HCl, pH 8.5, 8 M urea, reduced with 5 mM TCEP (Tris(2-Carboxylethyl)-

Phosphine Hydrochloride; Pierce), and alkylated with 10 mM IAM (Iodoacetamide; 

Sigma). For the trypsin digestion, endoproteinase Lys-C (Roche) was added to an 

approximate enzyme to protein ratio of 1:100 (wt/wt), for at least 6 hours at 37°C. 

The sample was diluted to 2 M urea with 100 mM Tris-HCl, pH 8.5, and calcium 

chloride was added to 2 mM.Trypsin (Roche or Promega) was added to ca. 1:100 

(wt/wt) and the reaction was let to proceed overnight at 37°C while shaking in an 

Eppendorf Thermomixer.  For the subtilisin A digestion, urea was diluted to 4.8 M 

with 0.1 M Tris-HCl, pH 8.5, subtilisin A (Calbiochem) was added to ca. 1:50 (wt/wt) 

and left to incubate for 2 hours at 37°C. For the chymotrypsin digestion, urea was 

diluted to 2 M with 0.1 M Tris-HCl, pH 8.5, chymotrypsin (Roche) was added to ca. 

1:100 (wt/wt) and left to incubate for 5 hours at 37°C. For the endoproteinase Asp-N 

digestion, urea was diluted to 2M with 0.1 M Tris-HCl, pH 7.5, Asp-N (Roche) was 

added to ca. 1:25 (wt/wt) and left to incubate for 5 hours at 37°C. All digestions were 

quenched by adding formic acid to 5%. 

 Peptide mixtures were loaded onto a 100μm fused silica microcapillary 

columnpacked with 8 cm of reverse phase material (Aqua, Phenomenex), follwed 

with 3 cm of 5-μm Strong Cation Exchange material (Partisphere SCX, Whatman), 

followed by 2cm of 5-μm C18 reverse phase.  The loaded microcapillary columns 

were placed in-line with a Quaternary Agilent 1100 series HPLC pump.  Overflow 

tubing was used to decrease the flow rate from 0.1 ml/min to about 200–300 nl/min.  

 129



Fully automated 7- or 10-step chromatography runs were carried out.  Three different 

elution buffers were used: 5% acetonitrile, 0.1% formic acid (Buffer A); 80% 

acetonitrile, 0.1% formic acid (Buffer B); and 0.5 M ammonium acetate, 5% 

acetonitrile, 0.1% formic acid (Buffer C).  Peptides were sequentially eluted from the 

SCX resin to the reverse phase resin by increasing salt steps, followed by an organic 

gradient.  

 The last two chromatography steps consist of a high salt wash with 100% 

Buffer C followed by the acetonitrile gradient.  The application of a 2.5 kV distal 

voltage electrosprayed the eluting peptides directly into a ion trap mass spectrometers 

(either Deca-XP or LTQ) equipped with a nano-LC electrospray ionization source 

(ThermoFinnigan).  Full MS spectra were recorded on the peptides over a 400 to 

1,600m/z range, followed by five tandem mass (MS/MS) events sequentially 

generated in a data-dependent manner on the first to fifth most intense ions selected 

from the full MS spectrum (at 35% collision energy).  Mass spectrometer scan 

functions and HPLC solvent gradients were controlled by the Xcalibur data system 

(ThermoFinnigan). 

 SEQUEST was used to match MS/MS spectra to peptides in a database of 

12098 amino acid sequences, consisting of 5695 S cerevisiae proteins (NCBI on 

2006-03-06 release), complemented with 177 usual contaminants such as human 

keratins, IgGs, and proteolytic enzymes.  To estimate false discovery rates (FDR), 

each protein sequence was randomized (keeping the same amino acid composition 

and length) and the resulting 6049 "shuffled" sequences were added to the database 
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used for the SEQUEST searches. DTASelect was used to select and sort 

spectrum/peptide matches with cross-correlation scores (XCorr) and normalized 

difference in cross-correlation scores (DeltCn) above cut-off:  matches were only 

retained if they had a DeltCn of at least 0.1, a maximum Sp rank of 10, and a 

minimum XCorr of 1.8 for singly-, 2.0 for doubly-, and 3.0 for triply-charged 

spectra.  In addition, the peptides had to be at least 7 amino acids long and their ends 

had to conform to the enzymatic digestion used.  Finally, combining all runs, proteins 

had to be detected by at least 2 such peptides, leading to an estimated false discovery 

rate of 1.5%.  To estimate relative protein levels, spectral counts were normalized 

such as for each protein k detected in a particular MudPIT analysis.   

 

Table 3.  Mass spectrometry runs 
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Appendix 5.  Collaborator’s Contributions. 

 

I would like to thank and acknowledge the collaborators listed below for their 

contributions to the following figures. 

 

Figure 4 A.  L. Florens, S. Swanson, and M. Washburn performed the mass 

spectrometry.  

Figure 4 B.  J. Gerton performed the chromatin fractionations and the salt challenge 

assay. 

Figure 18 B-D.  D. Zhu performed the statistical analysis and created the box plots. 

Figure 22 A-C.  J. Gerton performed the immunoprecipitations and the Western blots. 

Figure 23 A.  J. Gerton performed the knock-out suppression assay. 

Figure 23 B.  M. Mattingly performed the dilution assay. 

Figure 25 A-C.  B. Li performed the histone preparation and the octamer. 

reconstitutions. 

Figure 26 A-B.  B. Li performed the nucleosome reconstitution and the DnaseI assay. 

Figure 29 A.  The Stowers Institute Molecular Biology Facility performed the alanine 

scanning mutagenesis and S. Nakanishi performed the plasmid shuffle assay. 
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