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Abstract

I consider a voting model in which voters receive private signals about a
state variable that affects the utility of voters. There is a continuum of sig-
nals, normally distributed conditional on the state variable. I characterize a
sufficient condition under which there does not exist any asymmetric equi-
libria. Therefore, for any plurality rule, the unique responsive equilibrium is
symmetric.

Keywords: Responsive Bayesian-Nash equilibrium, stability, global at-
tractiveness, asymmetric information, strategic voting, pivotal, information
aggregation, collective decision making.
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1 Introduction

There is a large and growing literature on strategic voting by asymmetrically in-

formed voters. This literature revisits the information aggregation problem by com-

mittee/jury voting and elections, first studied by Condorcet (1785). One typical

example is the jury problem. In that setting, there is a jury to decide whether to

convict or acquit a defendant. The two states of the world are “defendant is guilty”

and “defendant is innocent”. The prior probability of one of these states to occur is

common knowledge to all jurors. Before voting, each juror receives a private noisy

signal that is correlated with the state of the world. In traditional models, it is

assumed that each juror votes “naively,” i.e., vote according to his signal.1 However,

Austen-Smith and Banks (1996) argue that it is not rational for a voter to vote

naively. In particular, they show that each voter must condition his decision not

only on his private information but also on what must be true about others’ private

information when his vote affects the outcome. This optimal updating and voting

by voters is called “strategic voting.” Strategic voting by asymmetically informed

decision makers led to a large literature with many applications in economics, po-

litical science and financial economics. Feddersen and Pesendorfer (1996, 1997 and

1998) study large elections and jury voting. Persico (2004) extends this literature by

allowing endogenous information production in committees. Yılmaz (2000) analyzes

role of strategic voting in corporate control contests. Similary, Maug and Yılmaz

(2002) study multi-class voting in Chapter 11 bankruptcy proceedings.

The voting games in general suffer from multiplicity of equilibria due to the

1See, e.g., Young (1988).
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standard problem of collective decision making, i.e., everyone votes for the same

alternative and thus no single voter can affect the outcome, making it a weak best

response to vote for the same alternative. However, the multiplicity problem persists

even if we restrict attention to responsive equilibria in which there is strictly positive

probability of being pivotal.2 In particular, standard models of strategic voting

produce multiple equilibria, usually one symmetric and many asymmetric equilibria.

Overwhelming majority of papers focus on the symmetric equilibrium whereas a

smaller number of papers consider only asymmetric equilibria.3

The aim of this thesis is to establish a set of sufficient conditions for the exis-

tence of a unique responsive equilibrium. We find a set of sufficient conditions over

the information structure so that the standard model produces a unique responsive

equilibrium. The primary example of the setting that produces this result is quite

natural: each voter’s private signal is drawn from a normal distribution and the mean

of the normal distribution depends on the fundamental variable “state” of the econ-

omy. The unique equilibrium is symmetric. Therefore, our results may be viewed

as providing a set of sufficient conditions for ruling out the existence of asymmetric

equilibria.

In terms of contribution, this thesis is most related to Duggan and Martinelli

(2001) who finds sufficient conditions that lead to a unique responsive equilibrium

under unanimity rule. Our results complement theirs by extending their result to

any plurality rule in a setting where signals are normally distributed conditional on

2The term “responsive” is defined earlier by Feddersen and Pesendorfer (1998).
3For example, Feddersen and Pesendorfer (1996, 1997 and 1998), Yılmaz (2000) and Maug and

Yılmaz (2002) restrict attention to symmetric equilibrium. On the other hand, Persico (2004) study
asymmetric equilibria.
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the state. In terms of modeling choices, both papers use an information structure

that involves continuum of signals.4 This is in contrast to the standard information

structure used in earlier models that only allowed discrete signals. The leading exam-

ples of these models are Austen-Smith and Banks (1996), Feddersen and Pesendorfer

(1996, 1997 and 1998), Maug and Yılmaz (2002), and Persico (2004).

Consider the following decision problem of 7 voters who have to choose between

status quo, Q, and the alternative, A, under simple majority rule. There are two

states of the world, ω ∈ {0, 1}, and state ω = 1 occurs with probability 1
5
. Voters

prefer A if the state is 1 and Q otherwise. In particular, the voters’ preference is

given by u(A, ω = 1) = u(Q,ω = 0) > u(A, ω = 0) = u(Q,ω = 1). Each voter

receives a signal s given by a random variable. The possible values of s are h and l.

Each signal is independently drawn with conditional probabilities :

P (s = h|ω = 1) = P (s = l|ω = 0) = 2
3

and P (s = h|ω = 0) = P (s = l|ω = 1) = 1
3
.

Each voter updates his posterior belief: P (ω = 1|s = h) = 1
3

and P (ω = 1|s = l) = 1
9

which can be calculated as follows by Bayes’ formula.

P (ω = 1|s = h) =
P (s = h|ω = 1)P (ω = 1)

P (s = h|ω = 1)P (ω = 1) + P (s = h|ω = 0)P (ω = 0)

=
2
3

1
5

2
3

1
5

+ 1
3

4
5

=
1

3
.

4In this sense, our model is also closely related to Yılmaz (2000)
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Likewise,

P (ω = 1|s = l) =
P (s = l|ω = 1)P (ω = 1)

P (s = l|ω = 1)P (ω = 1) + P (s = l|ω = 0)P (ω = 0)

=
1
3

1
5

1
3

1
5

+ 2
3

4
5

=
1

9
.

All voters vote simultaneously. Let P (ω = 1|ah, bl) be the probability that state of

the world being 1 conditional on the total number of signal h received is a, and the

total number of signal l received is b.

Each voter knows only his signal but can calculate all the probabilities, e.g.,

P (ω = 1|3h, 4l) =
P (3h, 4l|ω = 1)P (ω = 1)

P (3h, 4l|ω = 1)P (ω = 1) + P (3h, 4l|ω = 0)P (ω = 0)

=

(
2
3

)3 (1
3

)4
C(7, 3)1

5(
2
3

)3 (1
3

)4
C(7, 3)1

5
+
(

1
3

)3 (2
3

)4
C(7, 3)4

5

=
1

9
,

P (ω = 1|4h, 3l) =
P (4h, 3l|ω = 1)P (ω = 1)

P (4h, 3l|ω = 1)P (ω = 1) + P (4h, 3l|ω = 0)P (ω = 0)

=

(
2
3

)4 (1
3

)3
C(7, 4)1

5(
2
3

)4 (1
3

)3
C(7, 4)1

5
+
(

1
3

)4 (2
3

)3
C(7, 4)4

5

=
1

3
,

P (ω = 1|5h, 2l) =
P (5h, 2l|ω = 1)P (ω = 1)

P (5h, 2l|ω = 1)P (ω = 1) + P (5h, 2l|ω = 0)P (ω = 0)

=

(
2
3

)5 (1
3

)2
C(7, 5)1

5(
2
3

)5 (1
3

)2
C(7, 5)1

5
+
(

1
3

)5 (2
3

)2
C(7, 5)4

5

=
2

3

and so on. Each voter votes without knowing others’ signals or choices. But each

voter knows that his vote will not affect his expected utility if the outcome is already

certain given the other 6 votes, i.e. if he is not pivotal. Observe that informative

4



voting, i.e., voters with signals h voting for A and others voting for Q, is not an

Bayesian-Nash equilibrium. The voters’ set of strategies is called Bayesian-Nash

equilibrium if, holding all the other voters’ strategies constant, no voter can obtain

higher expected utility by choosing a different strategy. In other words, given others’

strategies, no voter should have a reason to regret his strategy. For contradiction,

let us assume that informative voting is an equilibrium. Consider a voter with signal

h. His vote matters only when he is pivotal. Given the equilibrium behavior he

knows that there must be 3h and 3l signals received by others in the case when he

is pivotal. In that case, there are 4h and 3l signals including his signal. But given

P (ω = 1|4h, 3l) = 1
3

as calculated above, he is better off voting for Q not for A, since

his expected utility would be higher with Q. 5 However, it turns out that the problem

in this situation is that there are too many equilibria. We must note here that the

equilibrium strategy profile at which the voters who receive exactly the same signal

would vote for the same alternative is called symmetric equilibrium. It is called

asymmetric equilibrium otherwise. There is one symmetric equilibrium in which

voters with signal l vote for Q and the others randomize between Q and A. More

importantly, there are 21 asymmetric equilibria with 5 informative votes: 2 voters

vote for Q independent of their signal. The remaining 5 voters vote informatively.

Each voter knows that P (ω = 1|3h, 2l) = 1
3
, P (ω = 1|4h, l) = 2

3
. Each one of the 5

knows that there must be 3 h and 1 l signal received by other 4 voters when he is

pivotal. Therefore, it is optimal (strictly better) for him to vote for A if and only

if his signal is h. Each one of the 2 voters who always vote for Q knows that there

5This point is first made by Austen-Smith and Banks (1996).
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must be 3 h and 2 l signals received by other 5 voters when he is pivotal. If his signal

is l, then P (ω = 1|3h, 3l) = 1
5

so it is optimal to vote for Q. If his signal is h, then

P (ω = 1|4h, 2l) = 1
2

so it is weakly optimal (indifferent between two alternatives,

i.e. expected utilities are equal) to vote for Q. Each of these asymmetric equilibria

aggregates the information of 5 voters but wastes 2 signals.

The standard information structure used in earlier models has been discrete sig-

nals similar to the example above. The leading examples of these models are Austen-

Smith and Banks (1996), Feddersen and Pesendorfer (1996, 1997 and 1998), Maug

and Yılmaz (2002), and Persico (2004). Feddersen and Pesendorfer (1998) character-

ize the unique symmetric equilibrium. The significant difference between our model

and that of Feddersen and Pesendorfer (1998) is that we use a continuum of signals

as opposed to a binary signal structure. In this sense, our model is more closely

related to Duggan and Martinelli (2001) and Yılmaz (2000). Duggan and Martinelli

(2001) show that continuum of signals leads to a unique responsive equilibrium un-

der unanimity rule. Our results complement theirs by extending the result to any

plurality rule in a setting where signals are normally distributed conditional on the

state.

2 Model

Let ω ∈ Ω = {0, 1} be the true state of the world. Let I denote the set of n voters.

We assume n > 2. ω ∈ Ω is unknown to the voters, but there is a common prior

belief. The prior probability of state ω = 1 is denoted by λ ∈ (0, 1). There are two
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candidates, Q and A.

Each voter is privately informed. In particular, conditional on the true state of

the world each voter, i, receives a signal si ∈ Si = R independently drawn from an

identical distribution, with probability density functions f(s) and g(s) for ω = 1 and

ω = 0, respectively. F (s) and G(s) stand for the cumulative distributions. For most

of our results, we assume f and g are normal.

The voters simultaneously vote after they each observe a private signal. Given

that Q and A are two candidates, set of actions for voter i, Ai, is denoted by

{vote for A, vote for Q}, which we simplify as {A,Q}. A (pure) strategy of a player

i, σi : Si → Ai is a measurable function. In particular, σi : R → {A,Q}. The

set of strategies for player i is denoted by Σi. Let strategy profile of all players is

σ = (σ1, . . . , σn).

Let nA stand for the number of votes candidate A receives. The candidate A

needs at least m votes, i.e., nA ≥ m in order to be elected. Otherwise Q is elected.

Given the true state of the world, voters have identical preferences . In particular,

the voters prefer Q if state is ω = 0 and A otherwise. Now that we have defined the

preferences and the voting rule, we can define the payoff function for each player i

as ui where ui : Ω× {A,Q}n → R.

Next, we define our equilibrium concept:

Definition 1 A profile of strategies (σ?1, . . . , σ
?
n) is called a pure strategy (Bayesian)

Nash equilibrium if and only if for each player i and each si ∈ Si, σ?i (si) is a solution

to the maximization problem

max
σi∈Σi

E[ui(ω, σ
?
1(s1), ..., σ?i−1(si−1), σi(si), σ

?
i+1(si+1), ..., σ?n(sn))|si] .
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2.1 Responsive Equilibrium

Let p(ω, σ−i) stand for the probability of i being pivotal given a strategy profile and

a true state, i.e., the outcome would be different if one voter from the winning alter-

native is to vote for the losing alternative. We say strategy profile σ = (σ1, σ2, ..., σn)

is responsive if p(ω, σ−i) > 0, for all i ∈ I. We will analyze the responsive Nash

equilibrium of this game.

3 Analysis

Some notational conventions necessary for following the rest of the thesis are:

1. In general, all vectors have dimension n, the number of voters; and will be

denoted with bold face small case letters.

2. Vectors with dimension n − 1 will be denoted by notation s−i, meaning the

entry i ∈ I not included.

3. Same notational conventions will be used for vector valued functions.

4. Vector functions with arguments of dimension n−1 will sometimes be denoted

as v(s) for notational convenience.

5. Scalar variables will be denoted with regular small case letters.

6. “,” should read “is defined as”.
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Lemma 1 In equilibrium every voter will have a cut-off strategy σ?i (si) such that a

voter with a signal below his cut-off votes for Q, otherwise he votes for A, that is,

σ?i (si) =

 Q if si < s?i

A if si > s?i

.

Proof. Let σ? stand for an equilibrium strategy profile. Recall that in a responsive

equilibrium, p(ω, σ?−i), is always strictly positive for all i. Let Wi(si, σ
?
−i) be the

expected utility difference for a voter with signal si between voting for A and voting

for Q.

Wi(si, σ
?
−i) = E[ui(ω,A, σ

?
−i)|S = si]− E[ui(ω,Q, σ

?
−i)|S = si]

=

∑
ω∈Ω[ui(ω,A, σ

?
−i)− ui(ω,Q, σ?−i)]β(ω|s)p(ω, σ?−i)∑
ω∈Ω β(ω|s)p(ω, σ?−i)

. (1)

Note that there exists an s such that for s ∈ (−∞, s), Wi(s, σ
?
−i) < 0. Similarly,

for sufficiently large s, we have Wi(s, σ
?
−i) > 0. Furthermore, Wi(s, σ

?
−i) is strictly

increasing in s for all s ∈ R given that β(1|s) is strictly increasing and β(0|s) is

strictly decreasing in the same interval. By continuity, there exists a s? such that

Wi(s, σ
?
−i) = 0. For Wi(·) > 0 the voter is better off by voting for A. Similarly, for

Wi(·) < 0 the voter prefers Q. �

Definition 2

v(s−i) =

∑
|M | = m− 1
M ∈ 2I−i

∏
k/∈M G(sk)

∏
k∈M [1−G(sk)]∑

|M | = m− 1
M ∈ 2I−i

∏
k/∈M F (sk)

∏
k∈M [1− F (sk)]

, (2)

9



where s−i is the vector (s1, . . . , si−1, si+1, . . . , sn)′ with dimension n− 1. sj ∈ R ∀j ∈

n, and M = {i1, i2, . . . , im−1} where i1, i2, . . . , im−1 ∈ {1, 2, . . . , i − 1, i + 1, . . . , n}.

Transpose of a vector s is denoted by s′.

Proposition 1 The cut-off strategies of n voters are identified by the solutions to

the system of equations at the equilibrium

f(s?i )

g(s?i )
= v(s?−i) (3)

for i = 1, . . . , n.

Proof.

At the equilibrium, there exists a cut-off strategy by Lemma 1. Suppose, s?i is the

cut-off point for voter i. Hence, expected utility of voting A with signal s?i should

be equal to the expected utility of voting Q with signal s?i .

ui(1, A)p(1, σ?−i)βi(1|s?i ) + ui(0, A)p(0, σ?−i)βi(0|s?i )

= ui(0, Q)p(0, σ?−i)βi(0|s?i ) + ui(1, Q)p(1, σ?−i)βi(1|s?i )

Then,

p(1, σ?−i)β(1|s?i )[ui(1, A) − ui(1, Q)]

= p(0, σ?−i)β(0|s?i )[ui(0, Q)− ui(0, A)].

It is assumed that ui(1, A) > ui(1, Q) and ui(0, Q) > ui(0, A).

10



Hence

ui(1, A)− ui(1, Q)

ui(0, Q)− ui(0, A)

β(1|s?i )
β(0|s?i )

=
p(0, σ?−i)

p(1, σ?−i)
. (4)

By definition,

β(1|s?i ) ≡
λf(s?i )

λf(s?i ) + (1− λ)g(s?i )
,

β(0|s?i ) ≡
(1− λ)g(s?i )

λf(s?i ) + (1− λ)g(s?i )
,

and λ ≡ P (ω = 1) is the unconditional probability that ω = 1 will prevail, which is

known to all voters. We now have

δ
f(s?i )

g(s?i )
=

p(0, σ?−i)

p(1, σ?−i)
, v(s?−i)

where

δ ,
λ

1− λ
ui(1, A)− ui(1, Q)

ui(0, Q)− ui(0, A)
, (5)

∀i ∈ I.

�
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Next the function v will be factorized by first multiplying it by one,

v(s−i) =

∑
|M | = m− 1
M ∈ 2I−i

∏
k/∈M G(sk)

∏
k∈M [1−G(sk)]∑

|M | = m− 1
M ∈ 2I−i

∏
k/∈M F (sk)

∏
k∈M [1− F (sk)]

×
∏

j∈I−i
1

1−G(sj)
[1−G(sj)]∏

j∈I−i
1

F (sj)
F (sj)

,

(6)

and then rearranging terms:

v(s−i) =

∑
|M | = m− 1
M ∈ 2I−i

∏
k∈M

G(sk)
1−G(sk)∑

|M | = m− 1
M ∈ 2I−i

∏
k/∈M

1−F (sk)
F (sk)

×
∏
j∈I−i

1−G(sj)

F (sj)
. (7)

The first factor will be renamed as w(s−i) and the second as k(s−i). Since G(s)
1−G(s)

is increasing and 1−F (s)
F (s)

is decreasing, w is strictly increasing in each of its n − 1

arguments. Also, 1−G(s)
F (s)

is strictly decreasing so k is strictly decreasing in each of its

n− 1 arguments.

For the rest of the thesis, I will concentrate on a specific distribution, namely the

normal distribution: s|(ω = 0) ∼ N(µo, τ
2), s|(ω = 1) ∼ N(µ1, τ

2) with the corre-

sponding densities f(s) = (
√

2πτ)−1 exp
(
−(s−µ1)2

2τ2

)
and g(s) = (

√
2πτ)−1 exp

(
−(s−µo)2

2τ2

)
where µo < µ1. The proof may also be generalized to distributions from the expo-

nential family with density

f(s; θ) = B(s)C(θ) exp

(
k∑
j=1

ω(θ)qi(s)

)
, (8)

12



and with infinite support, s ∈ R, so that the summand on the right hand side of the

equation below is linear:

ln
f(s; θ1)

g(s; θo)
=

k∑
j=1

[ω(θ1)− ω(θo)]qj(s). (9)

Lemma 2 Let f and g be normal density functions. Then f/g is strictly increasing

whenever µo < µ1 where µo and µ1 are the means of f and g respectively.

Proof.

f(s)

g(s)
= exp

(
−(s− µ1)2 + (s− µo)2

2τ 2

)
(10)

= exp

(
µ1 − µo
τ 2

s− µ2
1 − µ2

o

2τ 2

)
.

µ1−µo
τ2 in the above exponential is positive by our hypothesis, so f(s)

g(s)
is increasing

∀s ∈ R. Furthermore, lims→−∞
f(s)
g(s)

= 0 and lims→+∞
f(s)
g(s)

= +∞.

Without loss of generality, for the rest of the thesis, I will assume a strictly

increasing likelihood ratio: µo < µ1.

Theorem 1 Brouwer (1912). Let K ⊂ Rn be nonempty, compact and convex. Then

each continuous map ψ : K → K has at least one fixed point.

Theorem 2 Luce (1991).

If g is a differentiable density function and G is the corresponding cumulative

distribution function, and − d
dt

ln g(t) is strictly increasing, then the hazard function

of g, h−g (t) , g(t)
1−G(t)

is also strictly increasing.
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Proof. Define ψ−(t) , − d
dt

ln g(t) = −g′(t)
g(t)

which is strictly increasing. Observe that

∫∞
t
ψ−(x)g(x)dx∫∞
t
g(x)dx

=
−
∫∞
t

g′(x)
g(x)

g(x)dx∫∞
t
g(x)dx

(11)

=
g(t)

1−G(t)

= h−g (t).

Taking the derivative of the left hand side of (11) yields

g(t)

∫ ∞
t

[ψ−(x)− ψ−(t)]g(x)dx

/[∫ ∞
t

g(x)dx

]2

, (12)

which is strictly positive since ψ− is strictly increasing and so for t < x, ψ−(x)−

ψ−(t) > 0. Thus the hazard function h−g is strictly increasing.

�

Theorem 3 If f is a differentiable density function and F is the corresponding

cumulative distribution function, such that f(t) → 0 as F (t) → 0 and d
dt

ln f(t) is

strictly decreasing, then the function, h+
f (t) , f(t)

F (t)
is also strictly decreasing.

Proof. Define ψ+(t) , d
dt

ln f(t) = f ′(t)
f(t)

which is strictly decreasing. Observe that

∫ t
−∞ ψ

+(x)f(x)dx∫ t
−∞ f(x)dx

=

∫ t
−∞

f ′(x)
f(x)

f(x)dx∫ t
−∞ f(x)dx

(13)

=
f(t)

F (t)

= h+
f (t).
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Taking the derivative of the left hand side of (13) yields

f(t)

∫ t

−∞
[ψ+(t)− ψ+(x)]f(x)dx

/[∫ t

−∞
f(x)dx

]2

, (14)

which is strictly negative since ψ+ is strictly decreasing and so for x < t,

ψ+(t)− ψ+(x) < 0. Thus the function h+
f is strictly decreasing.

�

For the normal densities assumed, h−g is the hazard function, and it is strictly

increasing by Theorem 2 since − d
dt

ln g(t) = (t − µo)/τ
2 is strictly increasing. By

Theorem 3, h+
f (x) , f(x

F (x)
is strictly decreasing for the assumed normal density since

d
dt

ln f(t) = −(t− µ1)/τ 2 is strictly decreasing.

�

Going back to the system (3) we can write it again using our specified normal

densities f and g, and their corresponding cumulative distribution functions F and

G.

wi(s−i)ki(s−i) = δ exp

(
µ1 − µo
τ 2

[
si −

µ1 + µo
2

])
⇒ µ1 + µo

2
− τ 2

µ1 − µo
ln δ +

τ 2

µ1 − µo
lnwi(s−i) +

τ 2

µ1 − µo
ln ki(s−i) = si (15)

I will need new definitions here for simplification purposes:

Definition 3 1. k̄(s) , µ1+µo
2
− τ2

µ1−µo ln δ + τ2

µ1−µo ln k(s)

2. w̄(s) , τ2

µ1−µo ln w(s).
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3. k̂(s) , k̄(s, . . . , s).

For notational convenience let χ(s) , 1/h−g (s) = [1−G(s)]/g(s), κ(s) , 1/h+
f (s) =

F (s)/f(s), and ηξ(s) , − d
ds

ln ξ(s) = − ξ′(s)
ξ(s)

for any density ξ.

Lemma 3 k̂′(s) < −(n− 1), ∀s ∈ R.

Proof. Claim: k̂′(s) = −(n− 1) τ2

µ1−µo [h+
f (s) + h−g (s)] < −(n− 1). ηξ(s) = (s− µ)/τ 2

for the normal distribution where µ and τ are the mean and standard deviation of

the distribution, respectively. By Glaser (1980),

χ′(s)

χ(s)
= − g(s)

G(s)
− g′(s)

g(s)
⇒χ′(s)=

[
− 1

χ(s)
+ ηg(s)

]
χ(s) = −1 + χ(s)ηg(s)<0,(16)

κ′(s)

κ(s)
=
f(s)

F (s)
− f ′(s)

f(s)
⇒κ′(s) =

[
1

κ(s)
+ ηf (s)

]
κ(s) = 1 + κ(s)ηf (s) > 0. (17)

Inequalities (16) and (17) above follow from Theorem 2 that h+
f , and from The-

orem 3 that h−g are strictly monotone, and so are their reciprocals. The inequalities

then take the form

χ(s)(s− µo)/τ 2 < 1 ⇒ (s− µo)/τ 2 < 1/χ(s) ≡ h−g (s), (18)

κ(s)(s− µ1)/τ 2 > −1 ⇒ (µ1 − s)/τ 2 < 1/κ(s) ≡ h+
f (s). (19)

Adding the two inequalities side by side we get,

µ1 − µo
τ 2

< h+
f (s) + h−g (s). (20)
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Rearranging and then multiplying both sides by −(n− 1) we get

−(n− 1) > −(n− 1)
τ 2

µ1 − µo
[h+
f (s) + h−g (s)] ≡ k̂′(s). (21)

�

Definition 4 Let (X, d) be a metric space. A mapping H : X → X is expanding if

there is γ > 1 such that d(H(s), H(t)) ≥ γd(s, t), for all s, t ∈ X, s 6= t.

Lemma 4 ιk̂ is expanding for some finite ι > 1
n−1

.

Proof. By Lemma 3, ιk̂′(s) < −(n − 1)ι. By mean value theorem, for any s, t ∈ R

there is ς ∈ R such that ιk̂′(ς) = ιk̂(s)−ιk̂(t)
s−t < −(n − 1)ι. Without loss of generality,

take s > t. The inequality above implies ιk̂(t) − ιk̂(s) > ι(n − 1)(s − t). Defining

d(a, b) = |a − b| as the Euclidean distance, we have d(ιk̂(s), ιk̂(t)) > ι(n − 1)d(s, t).

Since (n− 1)ι > 1 by definition of ι, ιk̂ is expanding. �

Definition 5 Let (X, d) be a metric space. A mapping H : X → X is a contraction

if there is α < 1 such that d(H(s), H(t)) ≤ αd(s, t), for all s, t ∈ X, s 6= t.

Theorem 4 (Banach contraction theorem) Let (X, d) be a complete metric space

and Φ : X → X is a contraction on X. Then Φ admits one and only one fixed

point x? in X and ΦN(xo) → x? as N → ∞ for any initial xo ∈ X. Particularly,

d(ΦN(x), x?) ≤ αN

1−αd(x,Φ(x)) for all x ∈ X and N ∈ Z+.

Theorem 5 Let (X, d) be a complete metric space and H : X → X continuous and

onto. If H is expanding, then

17



1. H is 1− 1 and onto,

2. H−1 exists and is a contraction,

3. H has a unique fixed point.

Proof.

1. Suppose H is not 1 − 1. Then there should be s, t ∈ X, s 6= t such that

H(s) = H(t) ⇒ d(H(s), H(t)) = 0. This contradicts expanding condition. So

H is 1− 1 and onto.

2. H is 1 − 1 onto and is continuous, so it has an inverse H−1 : X → X. Put

s = H−1(z), t = H−1(r), s, t, r, z ∈ X. The condition for expansion becomes

d(z, r) ≥ γd(H−1(z), H−1(r)) (22)

⇒ 1

γ
d(z, r) ≥ d(H−1(z), H−1(r)). (23)

Since 1/γ < 1, H−1 is a contraction.

3. By Banach’s contraction theorem, H−1 has a unique fixed point. Now suppose

s? is the unique fixed point of H−1: s? = H−1(s?) ⇒ H(s?) = s?. Let s?? be

another fixed point of H: s?? = H(s??) ⇒ s?? = H−1(s??), in turn, implies

s? = s?? by the uniqueness of the fixed point for H−1. So H has a unique fixed

point.

�
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Definition 6 k̄(s) ,



µ1+µo
2

+ τ2

µ1−µo

∑
j 6=1 ln

1−G(sj)

F (sj)

µ1+µo
2

+ τ2

µ1−µo

∑
j 6=2 ln

1−G(sj)

F (sj)

...

µ1+µo
2

+ τ2

µ1−µo

∑
j 6=n ln

1−G(sj)

F (sj)


.

Lemma 5 k̄−1 : Rn → Rn exists.

Proof 6. Claim 1: k̄ is onto. Take any (y1, . . . , yn) ∈ Rn. Then we can find

(z1, . . . , zn) ∈ Rn such that

zi =
yi − µ1+µo

2
τ2

µ1−µ2

, (24)

for all i = 1, . . . , n.

And there also exists (x1, . . . , xn) ∈ Rn such that

xj =
1

n− 1

n∑
i=1

zi − zj, (25)

j = 1, . . . , n.

Let xj = ln
1−G(sj)

F (sj)
. Since ln

1−G(sj)

F (sj)
is onto on R, ∃sj ∈ R such that xj =

ln
1−G(sj)

F (sj)
. Hence k̄ is onto.

Claim 2: k̄ is 1 -1.

Take any s, s′ ∈ R such that

k̄(s) = k̄(s′), (26)

⇒
∑
j 6=i

ln
1−G(sj)

F (sj)
=
∑
j 6=i

ln
1−G(s′j)

F (s′j)

6This proof has been significantly improved by Yaozhong Hu.
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∀i = 1, . . . , n.

Hence

n∑
j=1

ln
1−G(sj)

F (sj)
− ln

1−G(si)

F (si)
=

n∑
j=1

ln
1−G(s′j)

F (s′j)
− ln

1−G(s′i)

F (s′i)
, (27)

∀i = 1, . . . , n.

Subclaim:
∑n

j=1 ln
1−G(sj)

F (sj)
=
∑n

j=1 ln
1−G(s′j)

F (s′j)

n∑
i=1

(
n∑
j=1

ln
1−G(sj)

F (sj)
− ln

1−G(si)

F (si)

)
=

n∑
i=1

(
n∑
j=1

ln
1−G(s′j)

F (s′j)
− ln

1−G(s′i)

F (s′i)

)

⇔ (n− 1)
n∑
j=1

ln
1−G(sj)

F (sj)
= (n− 1)

n∑
j=1

ln
1−G(s′j)

F (s′j)
,

⇔
n∑
j=1

ln
1−G(sj)

F (sj)
=

n∑
j=1

ln
1−G(s′j)

F (s′j)
.

(28)

Thus by (27) and (28), ln 1−G(si)
F (si)

= ln
1−G(s′i)

F (s′i)
, ∀i = 1, . . . , n. Then si = s′i

∀i = 1, . . . , n since ln 1−G(si)
F (si)

is 1− 1. Therefore k̄ is 1− 1.

By Claim 1 and Claim 2, k̄ has an inverse. �

Theorem 6 Meyers (1967). Let X be a complete metric space and φ : X → X be

a map satisfying

1. (Existence) There exists a ξ ∈ X such that φ(ξ) = ξ,

2. (Global attraction) φr(x)→ ξ as r →∞ for all x ∈ X, and
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3. (Stability) There exists an open neighborhood U of ξ such that to each open

neighborhood V of ξ, there corresponds a natural number r′ such that for all

r ≥ r′, φr(U) ⊂ V ,

then for each α ∈ (0, 1) there is an equivalent complete metric ρα on X such that

ρα(φ(x), φ(y)) ≤ αρα(x, y) for all x, y ∈ X.

Lemma 6 For each α ∈ (0, 1) there exists an equivalent metric ρα on Rn such that

ρα(k̄−1(s1/ι), k̄−1(s2/ι)) ≤ αρα(s1, s2).

Proof.

1. By Theorem 1 there exists s? which is a fixed point of ιk̂ : R → R which is

continuous, and of ιk̄ : Rn → Rn which is also continuous.

2. By Lemma 5 k̄−1(s/ι) exists, and by Theorem 5 k̂−1(s/ι) is a contraction since

ιk̂ is expanding. For any vector so ∈ Rn, take somin = argmin{so1− s?, . . . , son−

s?}, and somax = argmax{so1 − s?, . . . , son − s?}. Also, so = (so1, . . . , s
o
n). Since

k̂−1(s/ι) is decreasing in every argument, k̂−1(smax/ι) ≤ k̄−1
i (so/ι) ≤ k̂−1(smin/ι)

for all i ∈ I. When we recursively generate st = k̄−1(st−1/ι) starting from so,

we will get

k̂−1(st−1
max/ι) ≤ k̂−1(stmax/ι) ≤ k̄−1

i (st/ι) ≤ k̂−1(stmin/ι) ≤ k̂−1(st−1
min/ι), (29)

for all i ∈ I. k̂−1(s/ι) is a contraction. By Banach’s contraction theorem,

stmin, s
t
max → s? as t → ∞ which implies, st → s? as t → ∞. k̄−1(s/ι) is

globally attracting.
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3. Let εo > 0 and U = {s| sups∈U ρα(s, k̄−1(s/ι) < εo) ⊂ Rn. Let V = {s|ρα(s?, s) ≤

ε) ⊂ Rn be a ball with center s? and radius ε. By Banach’s contraction theorem,

and by (29) there will be an NV ∈ Z+ such that for all s ∈ U , and N > NV ,

ρα((k̄−1)N(s/ι), s?) ≤ ρα((k̂−1)N(sm/ι), s
?) ≤ αN

1−αρα(sm, k̂
−1(sm/ι)) < ε so

that (k̄−1)N(s/ι) is in V . By sm we mean argmaxi∈I{|si − s?|}. Therefore

k̄−1(s/ι) is stable.

k̄−1(s/ι) is a continuous self mapping of Rn, a metrizable topological space, and

satisfies 1. of Meyers’ converse Banach theorem since it has a fixed point s?. k̄−1(s/ι)

satisfies 2. of the same theorem since the symmetric fixed point s? is globally attract-

ing and 3. since the symmetric fixed point s? is stable. Therefore lemma follows by

Meyers’ converse Banach theorem. �

Definition 7 R is the set {ρα ∈ M|ρα(k̄−1(s1/ι), k̄−1(s2/ι)) ≤ αρα(s1, s2), α ∈

(0, 1)} where M is the set of all metrics.

Lemma 7 ∃γ > 1 such that ρα(ιk̄(s1), ιk̄(s2)) ≥ γρα(s1, s2), ∀s1, s2 ∈ Rn.

Proof. By Lemma 6 we know that ρα(k̄−1(s1/ι), k̄−1(s2/ι)) ≤ αρα(s1, s2). Let

γ = 1/α and t1 = k̄−1(s1/ι) and t2 = k̄−1(s2/ι). The inequality above becomes

γρα(t1, t2) ≤ ρα(ιk̄(t1), ιk̄(t2)), ∀t1, t2 ∈ R. Therefore ιk̄ is expanding since

k̄−1(s/ι) is onto. �

Definition 8 Two metrics | · | and || · || on the same space X are called equivalent

if there are constants a, b ∈ R+ such that a|x| ≤ ||x|| ≤ b|x|, ∀x ∈ X.
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Lemma 8 v̄(s) = k̄(s) + w̄(s) ≡ µ1+µo
2

+ τ2

µ1−µo ln v(s) is also expanding with respect

to sup norm on Rn, where w̄(s) , τ2

µ1−µo ln w(s) provided that n > minρα∈R 1 + b
a
α.

R is the set defined in Definition 7.

Proof. By Lemma 7 there exists a metric ρα where ιk̄ is expanding. Since Eu-

clidean metric and the sup norm on Rn are also equivalent, the sup norm and ρα are

equivalent. By definition of equivalence of metrics, there are a, b ∈ R+ such that

aρα(s, t) ≤ max
1≤i≤n

|si − ti| ≤ bρα(s, t). (30)

I need to show that

c max
1≤i≤n

| ln v(s−i)− ln v(t−i)| ≥ γ′ max
1≤j≤n

|sj − tj|. (31)

where c , τ2

µ1−µo and for some γ′ > 1.

Assume without loss of generality that wi(s−i) ≥ wi(t−i) for the particular i that

maximizes the left hand side of the inequality below. For k̄(s) + w̄(s) we have

ιc max
1≤i≤n

| ln k(s−i)+lnw(s−i)− ln k(t−i)− lnw(t−i)| = ιc max
1≤i≤n

∣∣∣∣ln k(s−i)w(s−i)

k(t−i)w(t−i)

∣∣∣∣ (32)
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But

ιc max
1≤i≤n

∣∣∣∣ln k(s−i)w(s−i)

k(t−i)w(t−i)

∣∣∣∣ ≥ ιc max
1≤i≤n

∣∣∣∣ln k(s−i)w(s−i)

k(t−i)w(s−i)

∣∣∣∣ (33)

≥ ιc max
1≤i≤n

∣∣∣∣ln k(s−i)

k(t−i)

∣∣∣∣ = ιc max
1≤i≤n

| ln k(s−i)− ln k(t−i)|

≥ aρα(ιk̄(s), ιk̄(t)) ≥ aγρα(s, t)

≥ a

b
γ max

1≤j≤n
|sj − tj|.

which implies

c max
1≤i≤n

| ln k(s−i) + lnw(s−i)− ln k(t−i)− lnw(t−i)| ≥
a

bι
γ max

1≤j≤n
|sj − tj|. (34)

v̄ is expanding if aγ
bι
> 1 that is ∃ι > 0 such that b

aγ
< 1

ι
< n− 1.

I complete the proof by hypothesis that n > minρα∈R 1 + b
a
α, which is finite by

the definition of a, b and α = 1/γ. R is the set defined in Definition 7.

�

Lemma 9 s? is the unique solution for the system s = µ1+µo
2
− τ2

µ1−µo ln δ+ τ2

µ1−µo ln v(s).

Proof. µ1+µo
2
− τ2

µ1−µo ln δ+ τ2

µ1−µo ln v(s) is expanding on a complete metric space Rn.

Hence it has a unique fixed point by theorem 5.

�

Lemma 10 s? is a solution of v(s) = f(s)/g(s).
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Proof. The result follows from the previous lemma by taking exponential of both

sides. s? still satisfies the expression mentioned in this lemma.

�

Lemma 11 s? is the unique solution for the system δ exp
(
µ1−µo
τ2 s?i −

µ2
1−µ2

o

2τ2

)
= v(s).

Proof. Suppose s?? 6= s? is another equilibrium. Then s?? satisfies δ exp
(
µ1−µo
τ2 s??i −

µ2
1−µ2

o

2τ2

)
=

v(s??−i), ∀i ∈ I. Therefore µ1+µo
2
− τ2

µ1−µo ln δ+ τ2

µ1−µo ln v(s??−i) = s??i , is satisfied ∀i ∈ I.

Since s? is the only such solution, s?? = s?.

�

Thus, the proof of the main result has been completed by the previous Lemma.

Hence, we can conclude the following theorem.

Theorem 7 The symmetric equilibrium is unique in the class of pure strategies un-

der m,n ∈ Z+ satisfying 0 < m < n and minρα∈R 1 + b
a
α < n <∞.

Proof. This is a direct implication of Lemma 11.

�

The main difficulty throughout the proof is the existence of a measure for v̄ to be

expanding. Meyer’s theorem tells us that for each α (or γ) there exists an equivalent

metric where k̄ is expanding, but we still do not know whether any specific metric,

like the sup norm used above, is included in that particular set of metrics. Since the

sets (0, 1) where α belongs to, or the set (1,∞) where γ belongs to are uncountable,

so is the set of metrics corresponding to these parameters. All these uncountable

number of metrics come with a parameter a
bα

(or a
b
γ) which needs to be greater than

one. Even in an uncountable set R of metrics defined in Definition 7, such a metric

25



may not exist. In order to guarantee the existence of a metric that satisfies a
bα
> 1

(or a
b
γ > 1), an extra parameter ι is introduced, which connects the slope of k̂ to

the expansion parameter a
bι
γ of v̄ with the sup norm. Hence it is possible to reach

the conclusion: when the number of voters n is large enough to make k̂ expand fast

enough, then v̄ is expanding. A more concrete method to prove that v̄ is expanding

is to construct the metric ρα particularly. This is the subject of my future research.

4 Conclusion

In this thesis, we present a set of sufficient conditions that lead to a unique respon-

sive equilibrium in strategic voting models. The sufficient conditions are valid for

any plurality rule. Our results complements those of Duggan and Martinelli (2001)

who find sufficient conditions for a unique equilibrium under unanimity. Further-

more, considering the fact that the unique equilibrium is symmetric, our results

may be viewed as justification of the restriction on symmetric equilibria imposed by

overwhelming majority of the earlier literature on strategic voting. focusing on sym-

metric. Although our current framework does not allow conflict of interests among

the electorate, we conjecture that our result extends to the case with heterogenous

preferences. We leave this for future research.
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My further research continues with another collective decision making mechanism

which shares the similar information aggregation model used above. In particular, I

have been working the optimality of partial (restricted) tender offers in a takeover

contest of a widely held firm. It is well established that a value increasing raider suf-

fers from the free rider problem; each shareholder anticipating a successful takeover

has an incentive to hold out whenever the offer price is below the post takeover value.

Therefore, a raider cannot profitably takeover without a toehold or private benefits

of control as he needs to pay the post takeover value in order to buy the majority

of shares. More recent studies have shown that this problem is further exacerbated

by asymmetrically informed shareholders. In particular, shareholders who are more

pessimistic about the post takeover value are more likely to tender. Consequently, a

raider in addition to the free rider problem suffers from a winners curse and ends up

paying more than the actual post takeover value whenever he ends up taking over.

A takeover may be still profitable due to private benefits of control, but the raider

may want to protect himself from overpayment as this eats into his profits. One

intuitive conclusion may be the optimality of partial offers so that the raider buys

only a fraction of shares that is necessary for control. However, restricted offers are

very infrequent in practice. I will explain the reason of this well known empirical fact

by showing that partial offers are suboptimal. It is correct that partial offers protect

the raider in the sense that he overpays only for a prespecified number of shares as

opposed to all shares. However, shareholders correctly anticipate that their shares

are more likely to be prorated when more shareholders tender. If more sharehold-

ers are tendering, then it must be that more shareholders are pessimistic about the

27



post takeover value. Therefore, they will fail to sell a larger fraction of their shares

precisely when the raider is overpaying and end up selling when he is underpaying.

Consequently, they have less incentive to tender at a price when the raider uses

partial offers. Thus, the raider has to offer a higher price to induce shareholder ten-

dering in a partial tender offer. I characterize the tendering strategies of shareholders

and the raiders profit function and show that the cost of higher price dominates the

benefits restricting number of overpaid shares by using a similar voting model above.
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