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ABSTRACT 
 

Knowledge of glacial ice temperature profiles is important to the study of 

glaciology. Currently, the only method of obtaining ice temperature profiles is by 

drilling ice cores, which is a long and arduous process. Fortunately, ice-penetrating 

radar can be used to obtain temperature profiles without the need of ice cores. A radar 

technique incorporating common mid-point geometries is presented for measuring ice 

temperature. However, in order for this technique to work, accurate estimates of the 

far-zone antenna gain within glacial ice are necessary. Currently, commercial 

electromagnetics software packages utilizing the finite element method (FEM) are 

used by academia and industry to accurately characterize antennas in free space, and 

near finite dielectric and conductive materials. Unfortunately, these commercial 

packages are incapable of accurately determining the far-zone antenna gain near a 

dielectric half-space such as glacial ice. Therefore, to solve this problem, a routine for 

determining the far-zone gain of an antenna located near glacial ice was developed, 

which utilizes an FEM package in conjunction with a near-to-far-field transformation 

(NFFT). Additionally, glacial ice imposes another complication to estimating far-

zone antenna gain: the dielectric constant is a function of depth. Therefore the far-

zone antenna gain within glacial ice changes as a function of depth due to increased 

ray bending resulting from refraction. To solve this problem, the geometric optics 

technique (GO) was used to propagate the far-zone antenna gain determined within 

the relatively shallow upper region of glacial ice, dubbed the quasi-far-zone, to any 

depth within glacial ice. Results are presented showing that this technique is capable 

of accurately determining the far-zone gain at any depth within glacial ice for an 

arbitrary antenna located near glacial ice. Additionally, results are presented showing 

that with the aid of this numerical antenna gain estimation software, ice-penetrating 

radar can be used to determine glacial ice temperature profiles at all depths. 
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CHAPTER 1: Introduction 
 
 

 
Figure 1.1 – Ice-Penetrating Radar System 

 
 

1.1 Motivation  
 

Glaciers play an integral role in the global climate. They hold the majority of 

Earth’s fresh water, have played a key role in shaping much of the Earth’s surface, 

and provide a record of past climate conditions. In addition, glaciers are of ever 

increasing interest due to the onset of global climate change, since scientists consider 

the glacial mass balance to be an indicator of future trends in climate change [31]. 

Additionally, due to the vast amount of fresh water encompassing glacial ice sheets, 

particularly those in Antarctica and Greenland, rapidly melting glaciers could cause 

dramatic increases in sea levels, inundating coastal areas. Scientific models are 

required to fully understand the interaction between glaciers and the global climate. 

However, scientists are currently lacking the accurate data necessary to produce such 

models, and the understanding of many aspects of glaciers remains poor [31].  

One particularly powerful technique for obtaining accurate data pertaining to 

glacial ice is radar remote-sensing, hereafter called ice-penetrating radar (Figure 1.1). 

Currently, ice-penetrating radar is used to map bed conditions, surface conditions, and 
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internal layers of glacial ice, allowing such calculations as ice thickness and annual 

snow accumulation. However, with accurate knowledge of the far-zone antenna 

radiation pattern within glacial ice, the full power of ice-penetrating radar can be 

utilized. With this knowledge, the attenuation as a function of depth can be accurately 

determined. Then, since it is directly related to attenuation, temperature as a function 

of depth can be obtained. 

Glacial ice temperature profiles are invaluable to the study of glaciers and 

climate. In particular, “ice temperature is important for a variety of glacial processes, 

including glacial flow, meltwater drainage, and subglacial erosion and deposition,” 

[31]. Currently however, obtaining ice temperature profiles is a long and difficult 

process, since it requires the drilling of ice cores, a process that can take years to 

complete. The ability to use ice-penetrating radar in obtaining temperature profiles 

would eliminate the need for drilling ice cores to obtain temperature measurements. 

This would make temperature profiles much easier to obtain over much broader areas 

of the Antarctica and Arctic ice sheets, which should greatly improve the science of 

studying glaciers and climate. Next, the proposed radar set-up for measuring ice 

temperature is presented.  

 
 

1.2 Radar Set-Up for Attenuation Profiling  
 

The proposed radar set-up for determining glacial ice attenuation as a function 

of depth involves placement of both transmit and receive antennas directly on the ice-

cap surface in common midpoint (CMP) geometry. Two separate CMP configurations 

are utilized to achieve two separate signals off of each resolution layer [27], as shown 

in Figure 1.2. The resolution layer shown in Figure 1.2 is 100 meters, and indicates 

the depth-range for which a single attenuation value is obtained. Also, the use of two 

separate CMP configurations is desirable since it reduces some of the uncertainties 

associated with attenuation profile extraction [32].  



 - 12 -

           (a)                      (b) 

Figure 1.2 −−−− Bistatic-Radar Common Midpoint Configurations 

(a) Configuration 1 – Fixed Separation (b) Configuration 2 – Fixed Incident Angle 

 

 

In the first CMP configuration shown in Figure 1.2(a), the antennas are set at a 

fixed distance from each other. A 50 m separation was used in this case. Signals are 

returned from each resolution layer at this fixed antenna separation at different 

incident angles. In the second CMP configuration shown in Figure 1.2(b), the antenna 

separation is varied so as to maintain a fixed incident and reflected angle between the 

antennas and the resolution layer of interest.  

Figure 1.2 displays the rays traveling between each antenna as propagating in 

a straight line. In reality, these rays are continuously refracted towards the normal 

direction with increasing depth. Therefore, in order to accurately determine ice 

attenuation as a function of depth, the effect of refraction as a function of depth must 

be incorporated in the estimation of far-zone antenna gain. 

In order to indicate the necessity of accurate far-zone antenna gain estimation 

in accurately determining ice attenuation, the radar range equation in terms of loss 

[32], L (attenuation), and based on CMP geometry is presented below 

 

2 2

2(8 )
t ice

r

PG
L

P R

λ
π

Γ
=       Eq. 1.1 
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The parameters Pr and Pt are the power received and transmitted which are accurately 

known. Also, R is the range to the target which is determined by the round-trip transit 

time of the radar signal. Additionally, iceΓ  is the internal ice specular reflection 

coefficient which can be assumed to be -80 dB. However, any uncertainties 

associated with iceΓ  are eliminated through use of the two combined radar CMP 

configurations (see Chapter 4). Therefore, the only unknown in Equation 1.1 required 

in determining the loss L is the antenna gain G. Equation 1.1 assumes the transmit 

and receive antennas are identical, which is the case for the two proposed CMP 

geometries.  

 One proposed radar system for determining glacial ice attenuation as a 

function of depth is the wideband bi-static ice depth sounder designed by David 

Dunson [12]. The key system parameters associated with this radar are outlined in 

Table 1.1. The parameters shown in Table 1.1 are used in producing the simulated 

attenuation results shown in Chapter 5.  

 

 

Table 1.1 −−−− Radar System Key Parameters 

 

 

 

1.3 The Importance of Predicting Antenna Gain 
 

As shown in Section 1.2, accurate predictions of antenna gain are required in 

order to accurately measure glacial ice attenuation. For most antennas, this is not a 
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simple task. Due to the complexity of most modern antennas (and other electronic 

devices), their analysis does not lead to closed form solutions of Maxwell’s equations. 

Therefore, numerical methods for approximating these solutions while maintaining 

engineering accuracy is required [39]. A number of numerical techniques exist for 

approximating solutions to Maxwell’s equations, each of which differ in the way they 

discretize the problem from the continuous domain. One means of categorizing these 

techniques is to separate them into those based on partial differential equation 

formulations, and those based on integrodifferential equation formulations.  

The two most popular techniques within the partial differential equation 

category are the finite difference (FD) and finite element method (FEM). Either of 

these techniques can be exploited in the time or frequency domain. However, FD is 

usually exploited in the time domain, and called the FDTD (finite-difference time-

domain) technique [26]. Both of these techniques are similar in that they directly 

solve for the near-zone electric and magnetic fields within a finite solution space. 

Also, since both of these techniques solve for fields within a finite space, boundary 

conditions and hybrid methods are required for analyzing open structures to transform 

the infinite region to a finite one [39]. Although both the FDTD and FEM techniques 

are well-suited for arbitrary and versatile materials and geometries, and considered 

computational efficient, the FEM is considered to be slightly superior to the FDTD in 

these categories [39]. In particular, the FEM technique is much better suited for 

arbitrary geometries than the FDTD [7].  

The most popular technique within the integrodifferential equation category is 

the method of moments (MoM) [19]. Rather than solving directly for the fields within 

a finite solution space, as with the FEM and FDTD techniques, the MoM works by 

determining the currents on individual segments of the antenna structure resulting 

from the antenna excitation [19]. Also, unlike the FEM and FDTD techniques, the 

MoM is best suited for open structures [39]. Therefore, the MoM can directly 

determine far-zone patterns in an open region without the requirement of hybrid 

techniques. Two major drawbacks of the MoM however, are its inability to analyze 
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problems of arbitrary materials (i.e. dielectrics) or geometries. But, although the 

MoM is not generally well-suited for antennas that contain dielectrics, some 

formulations, such as the Numerical Electromagnetic Code (NEC) [8] can model wire 

antennas on or near a dielectric half-space, and provide far-zone patterns within that 

half-space using a near-to-far-field transformation. Although glacial ice is a dielectric 

half-space, it presents other difficulties discussed in the next section. 

 

1.4 Complications in Determining Antenna Gain within 
Glacial Ice 
 

Glacial ice significantly alters the gain pattern of antennas relative to their 

free-space counterparts. The alteration is initially caused by the permittivity of ice 

being greater than that of free space, leading to increased radiation in glacial ice 

relative to the free-space pattern. This initial alteration of the gain pattern can be 

determined by modeling the antenna above an infinite dielectric half-space of ice with 

a dielectric constant equal to that at the ice surface. 

In reality, the dielectric constant of glacial ice is not constant, but increases 

with increasing depth to a maximum value, which is that of pure ice. This dielectric 

constant gradient is caused by increasing pressure with depth yielding an increased 

density with depth, which is related to the dielectric constant. Therefore, the energy 

propagating from the antenna within glacial ice is continuously refracted towards the 

normal with increasing depth, which further modifies the far-zone antenna gain.  

West and Demarest [46] handled the problems associated with determining 

far-zone antenna gain within glacial ice for simple wire antennas. They used the NEC 

in conjunction with geometric optics ray tracing (GO) to develop a two-step hybrid 

technique for finding the far-zone gain of wire-type antennas mounted on or near 

glacial ice with depth-dependant density profiles. Due to the depth-dependant density 

profile of glacial ice, the hybrid technique was required. The NEC code was used to 

calculate the electromagnetic fields within the upper-surface of the ice. Then, GO was 



 - 16 -

used to calculate the antenna gain increase over the antenna gain determined in the 

upper-surface of the ice, resulting form the focusing effect of the ice density profile. 

The MoM-GO technique proposed by West and Demarest proved useful for 

wire-type antennas mounted above glacial ice. But, due to the inability of the MoM to 

analyze complex materials and geometries, the MoM is unsuitable for analyzing the 

complex antennas often used in modern ice-penetrating radars. Therefore, a technique 

capable of analyzing modern complex antennas, as well as dealing with the 

complicated material properties of glacial ice is required, which is presented next.  

 

 

1.5 A Solution for Determining Far-Zone Antenna Gain in 
Glacial Ice 

 
Accurate far-zone antenna gain estimations are required in order to accurately 

measure ice attenuation as a function of depth. However, from Section 1.4, it is 

apparent that glacial ice complicates the far-zone gain estimation. With the exception 

of the MoM-GO technique, none of the previously discussed antenna analysis 

techniques are capable of dealing with the far-zone gain altering effects of glacial ice. 

However, the MoM-GO technique is only capable of modeling simple wire-type 

antennas above glacial ice. Therefore, a technique capable of handling both 

complicated antennas and the gain-altering effects of glacial ice is required.  

As discussed in Section 1.3, the FEM technique is the best at handling 

complicated structures, but on its own is incapable of modeling infinite structures 

such as an antenna in the presence of a glacial ice. In order to analyze radiating 

structures in the presence of a very large problem domain using rigorous methods 

such as FEM, it is necessary to use hybrid techniques [13]. In fact even in the 

presence of an infinite homogeneous background, the commercial FEM code HFSS 

requires the combination of FEM and an NFFT (near-to-far-field transformation) 

algorithm to determine far-zone fields. However, electrically large inhomogeneous 
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backgrounds are more difficult and each specific problem requires its own technique 

[9, 13, 24, and 45]. 

 

 

 

Figure 1.3 −−−− The Three Field Regions 

 

 

In this thesis, a solution is presented for determining the far-zone gain of 

antennas mounted at or near the surface of glacial ice. This technique handles the 

difficulties of analyzing complex antennas, as well as the gain-modifying properties 

of glacial ice. The electric and magnetic fields radiated by the antennas are divided 

into three regions: the near-zone, the quasi-far zone, and the far-zone. Shown in 

Figure 1.3 are the three regions, along with the respective technique used to 

determine the fields in that regions. The near-zone fields are determined using the 

FEM code HFSS. A dual-dielectric NFFT algorithm is used to solve the problem of 

the antenna being mounted above a half-space of ice. Then, a GO algorithm [46] is 

used to account for the depth-varying dielectric constant of the ice. Using the 

combined FEM-NFFT-GO algorithm, the far-zone antenna pattern at any depth 

within glacial ice can be determined.  
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1.6 Thesis Organization 
 

The overall goal of this work is to determine the ice attenuation, and thus ice 

temperature, at any depth within glacial ice from radar returns. As stated previously, 

precise knowledge of the far-zone antenna gain is necessary to accurately determine 

the radar signal attenuation at each depth. Therefore, the majority of this work is 

devoted to determination of the far-zone antenna gain. A three-part hybrid technique 

was developed to determine the far-zone antenna gain, involving FEM, a near-to-far-

field transformation (NFFT), and GO. FEM modeling using HFSS is discussed on its 

own in Chapter 2. Next, the FEM-NFFT-GO hybrid technique is discussed in Chapter 

3. Results from both the FEM-NFFT and combined FEM-NFFT-GO technique are 

presented in Chapter 4. The proposed technique for determining temperature from 

radar returns and simulated results are discussed in Chapter 5. Finally, Chapter 6 

discusses conclusions and future work. A full derivation of the dual-dielectric NFFT 

routine is presented in Appendix A. Also, the code used to implement the FEM-

NFFT-GO routine is discussed in Appendix B. The code used for performing ice 

temperature extraction simulations in presented in Appendix C. 
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CHAPTER 2: Antenna Analysis Using HFSS  
 
 

Full characterization of radar systems requires antenna analysis. One of the 

most popular antenna analysis tools is the commercial software Ansoft HFSS. Among 

other things, it is useful for determining input impedance, scattering parameters, and 

both near-zone and far-zone antenna patterns in free space. The code directly solves 

for the electric and magnetic near-zone field values in a solution space surrounding 

the geometry of interest (Figure 2.1) using the finite element method (FEM). The 

FEM is discussed in Section 2.1. Since field values determined within the solution 

space are often still in the near-zone, a near-to-far-field transformation (NFFT), 

performed in post-processing, is necessary to determine the free-space far-zone field 

values. Free-space antenna modeling using HFSS is presented in Section 2.2, and the 

HFSS NFFT for obtaining free-space far-zone field values is presented in Section 2.3.   

With some modeling adjustments, HFSS can also be used to determine near-

zone parameters for antennas located above glacial ice. Unfortunately, for reasons 

discussed in Section 2.4, the HFSS NFFT can not be used to transform these near-

zone field values to the far-zone.  

 

2.1 The Finite Element Method  
 

The finite element method is a useful tool for solving vector electromagnetic 

wave equation boundary problems for complex radiating structures. Within a given 

solution space surrounding the radiating structure of interest, the FEM [39] code 

solves the 3D vector wave equations with given boundary conditions for a finite 

number of 3D elements, often tetrahedrons, which fill the solution space. Due to the 

relative accuracy and speed of the FEM for a variety of radiating structures [40], the 

method has found much commercial success in products such as Ansoft HFSSTM 

(high frequency structure simulator), a product often used by the Center for Remote 
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Sensing of Ice Sheets (CRESIS) for modeling antennas radiating in free space. In free 

space, the software provides accurate values for scattering parameters and input 

impedance. Also, through the use of a near-to-far-field transformation, HFSS is 

capable of generating far-zone radiation patterns in free-space. Additionally, due to 

the software’s ability to model an arbitrary variety of materials, it is capable of 

accurately calculating near-field parameters for radiating structures located above 

glacial ice. However, even with the many post-processing features of HFSS, it is 

incapable of accurately determining far-zone radiation patterns for antennas located 

above a dielectric half-space such as glacial ice.  

Although it is possible to have multiple materials within the software’s finite 

solution space, it is impossible to model multiple materials outside of the solution 

space. When enclosing the solution space with any of the available boundary 

conditions (usually radiating boundary conditions are used), the code assumes the 

medium outside of the solution space is a homogeneous medium of the users choice. 

Therefore, since a dielectric half-space is infinite relative to the antenna, it is 

impossible to determine the far-zone radiation pattern of antennas located near a 

dielectric half-space, such as glacial ice.  

Even though HFSS is incapable of determining far-field radiation patterns for 

antennas located near a dielectric half-space, it is still capable of determining accurate 

electric and magnetic near-field values, provided the modeled dielectric medium 

within the solution space is large enough relative to the antenna. Therefore, HFSS can 

be utilized in determining the electric and magnetic near-field values, a key step in 

solving the overall far-zone antenna gain determination problem. 

 

 

2.2 Free-Space Antenna Modeling  
 

When modeling antennas in free-space (or any homogeneous medium) with 

HFSS, the antenna is embedded in a finite solution space in which the wave equation 
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derived from the differential form of Maxwell’s Equations is solved. In addition to 

other parameters, the size and material properties of the solution space require user 

specification. Other parameters requiring using specification are boundary conditions, 

port excitation, and solution set-up. Each of these specification requirements are 

discussed next.  

 

2.2.1 The Solution Space 
 

 The antenna being modeled is embedded in the solution space and enclosed 

by a solution box as shown in Figure 2.1. The user can specify the solution space to 

have any material properties, including such parameters as permittivity, permeability, 

and loss tangent. Even anisotropic materials can be modeled in HFSS. Also, the 

solution space can be set to any geometry and size, but analysis time is directly linked 

to the size of the solution space. Usually, the solution space is rectangular, with a 

minimum size of a quarter wavelength at the frequency of interest [21].  

 

 

 

Figure 2.1 −−−− Generic HFSS Modeling 
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2.2.2 Boundary Conditions 
 

Due to discontinuities associated with the finite solution space, boundary 

conditions are required. This is because the fields are discontinuous along the 

boundaries, so the spatial derivatives can not be calculated directly. Therefore, user-

specified boundary conditions are used to define the field behavior at the solution 

space boundaries [21]. 

For the case of a structure open to infinite space, two different types of 

boundaries are often utilized: radiation and PML (perfectly matched layer) 

boundaries. Although implemented differently, both radiation and PML boundaries 

achieve the same end result: making a finite solution space behave as if it were 

infinite. However, only radiation boundaries are discussed here, since due to ease of 

implementation, they are used more frequently. Figure 2.1 shows a generic HFSS 

simulation setup, utilizing a radiation boundary.  

Radiation boundary conditions are also referred to as absorbing boundary 

conditions since the “system absorbs the wave at the radiation boundary, essentially 

ballooning the boundary infinitely far away form the structure and into space” [21]. 

Therefore, the radiation boundary is non-reflecting and enables a finite space to be 

treated as an infinite space.  

 

2.2.3 Port Excitation 
 

When using HFSS, antenna feeds are modeled as ports. A port is “a unique 

type of boundary condition that allows energy to flow into and out of a structure” 

[21]. HFSS uses an arbitrary port solver to determine the natural modes that can exist 

inside of a transmission structure having the same cross section as the port. Two types 

of ports are used in HFSS: wave ports and lumped ports.  

With wave ports, the port is assumed to be connected to an infinitely long 

waveguide having the same cross-section and properties as the port. The wave port 
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solver determines the characteristic impedance, complex propagation constant, 

associated s-parameters of the port, and supports multiple modes. By default, the 

outer edge of a wave port is defined to have a “Perfect E boundary,” meaning that the 

port is enclosed inside of a perfect conductor, such as a waveguide. The perfect E 

boundary forces the electric field to be perpendicular to the boundary surface.  

Additionally, wave ports must always be directly connected to the solution box 

boundary, and lie on a planar surface. When specifying a wave port, the port location 

must overlap a 3-dimensional object. Figure 2.2 shows a picture of a waveport 

feeding a coaxial line. Also shown in Figure 2.2 is an integration line, which defines 

the positive direction at each port. 

 

 

 
Figure 2.2 – Waveport Usage in Coax-to-Stripline HFSS Model 

 

 

Lumped ports are used for driving sources internal to the solution box 

boundary. Unlike wave ports, lumped ports only support a single mode (TEM) and 

can be considered to be an ideal current source. Also, lumped ports use a perfect E 

boundary only along port edges that interface with conductors. All other edges of the 

port utilize “Perfect H boundaries,” which force the electric field to be tangential to 
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the port surface. When defining a lumped port, one specifies a 2-dimensional surface 

for the feed input, and defines an integration line, which is simply the direction of the 

current on that surface. Also, the characteristic impedance of the port is specified.  

Figure 2.3 shows a picture of a lumped port for feeding a dipole antenna.  

 

 

 
(a) 

 

 

(b) 

Figure 2.3 – Lumped Port Usage in Dipole HFSS Model 

(a) Entire Dipole (b) Zoomed in on Port (Feed) 

 

 

 



 - 25 -

2.2.4 Solution Set-Up 
 

The last required specification for analyzing structures using HFSS is the 

solution set-up. The minimum items required in the solution set-up are the solution 

frequency, maximum number of adaptive passes, and the parameter Delta S. The 

maximum number of adaptive passes and Delta S are both features of the adaptive 

solution process of HFSS. 

HFSS uses adaptive meshing to analyze structures, where the mesh is a grid of 

tetrahedrons. Adaptive meshing works by searching for the largest gradients in the E-

field throughout a region in the solution box, and adjusting the mesh accordingly with 

each subsequent adaptive pass. With each adaptive pass, HFSS compares the S-

parameters from the current pass to those of the previous pass. If the maximum 

change in the S-parameters has changed by less than the user-defined “Delta S,” or 

the maximum number of adaptive passes has been exceeded, the solution has 

converged. The default Delta S setting is 2%, and is recommended as sufficient by 

HFSS.  

A useful optional input when adding a solution set-up is the frequency sweep, 

which allows for results to be determined for a range of frequencies in addition to the 

solution frequency. The converged mesh at the solution frequency is used to solve for 

the fields at the frequencies specified in the frequency sweep.  

 

 

2.3 Far-Zone Field Calculations Using HFSS 
 

The field values determined within the solution space are typically in the near 

zone, since the solution box is usually too small for fields to reach the far-zone. 

Therefore, HFSS incorporates a NFFT (near-to-far-field transformation) to determine 

far-zone field values. In order for HFSS to calculate meaningful far-zone field values, 

non-reflecting boundaries such as radiation or PML must be specified at the solution 
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box. This allows HFSS to make the finite solution space appear as an infinite one, 

since the non-reflecting boundaries absorb all incident radiation. Otherwise, any 

radiation incident on the boundaries would be reflected back, invalidating the near-

zone field values. With this NFFT algorithm, near-zone field values sampled on the 

solution space boundary are converted to far-zone field values.  

 

 

        

      (a)                 (b) 

Figure 2.4 −−−− Free-Space Equivalence 

(a) Original Problem (b) Equivalent Problem 

 

 

The HFSS NFFT algorithm makes use of the Schelkunoff Equivalence 

Principle [18] to replace the complicated geometry and associated near-zone fields 

inside the solution box with an equivalent structure that radiates the same far-zone 

fields external to the solution box as did the original geometry. Figure 2.4(a) shows 

an antenna residing in free-space. This figure shows the solution box surrounding the 

antenna on which the near-zone fields were calculated by HFSS, along with the (yet 

to be determined) far-zone pattern that the antenna radiates external to the solution 
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box. Figure 2.4(b) shows an electrically equivalent geometry. Here the radiating 

source (antenna) within the sampling surface is removed, and electric and magnetic 

surface currents are placed on the solution box, with values given by: 

 

n̂= ×J H        Eq. 2.1 

n̂= ×M E        Eq. 2.2 

 

where E and H are the electric and magnetic fields originally present on the solution 

box surface, respectively, and the unit vector n̂  is directed outward from the surface. 

According to the Schelkunoff Equivalence Principle [18], these currents generate the 

same fields outside the solution box as did the original radiating structure, and zero 

(null) fields inside the solution box.  

 

 

 
Figure 2.5 – Geometry for a z-Directed Hertzian Dipole 

 

 

HFSS implements the NFFT by first sampling the electric and magnetic near-

zone fields on the solution box boundary. Then, the near-zone fields are converted to 
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equivalent surface currents on a rectangular grid located on the solution box 

boundary. Each electric and magnetic current segment behaves as an infinitesimal 

(Hertzian) electric and magnetic dipole, respectively which radiates into a 

homogeneous environment.  

The fields radiated by the equivalent currents are calculated using the well-

known fields of a Hertzian dipole, such as the z-directed electric Hertzian dipole in 

Figure 2.5. The electric dipole shown in Figure 2.5 radiates the following theta and 

phi components of the electric field in the far-zone [4]  

 

 
sin

( , )
4

J jkrjk Jwl
E eθ

η θ
θ φ

π
−=      Eq. 2.3 

 ( , ) 0JEφ θ φ =        Eq. 2.4 

 

where w and l are the dimensions of the sampled electric current source J, and r is the 

distance from the origin to the point of observation. The observer is assumed to be 

located at coordinates θ and ϕ on a sphere located at infinity, which eliminates the 

range dependence r that would typically be in the denominator of Equation 2.3. Also, 

k is the lossless free-space wavenumber given by 

 

 2 f fk fπ µ ε=       Eq. 2.5 

 

where f  is the frequency in Hz, fµ is the free-space magnetic permeability (4π x 10-7 

H/m), and fε  is the free-space electric permittivity (8.854 x 10-12 F/m). Also, η is the 

lossless free-space intrinsic impedance given by 

 

 f

f

µ
η

ε
=        Eq. 2.6 
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 Similarly, a z-directed magnetic current segment located at the origin radiates 

the following theta and phi components of the electric field in the far-zone [4] 

 

 0MEθ =        Eq. 2.7 

 
sin

4
M jkrjk Mwl

E eφ

η θ
π

−=      Eq. 2.8 

 

where M is the magnetic current source magnitude. 

 

 

 
Figure 2.6 – NFFT Superposition from a Single Surface of Current Segments 

 

 

 Figure 2.6 shows a grid of electric and magnetic surface currents, J and M on 

a single surface. Each current radiates a theta or phi polarized electric field, described 

by Equations 2.3 through 2.8, towards the far-zone observation point at coordinates θ 

and ϕ.  The total far-zone theta and phi components of the electric field are simply the 

superposition of all of the far-zone electric fields radiated by the individual current 
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segments. For a surface such as that shown in Figure 2.6, the total field is calculated 

by 
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where the indexes N and M represent the number of rows and columns for which the 

surface has been discretized into surface currents J and M. 

 

 

2.4 Modeling Antennas above a Half-Space of Glacial Ice 
 

The procedure presented in Sections 2.2 and 2.3 is sufficient to model 

radiating structures in free-space or some other homogeneous medium. However, in 

remote sensing of polar ice sheets, antennas radiate into a half-space of glacial ice. 

This affects all characteristics of the antenna, including its input impedance, near-

zone fields, and far-zone fields. With some modeling adjustments (Section 2.4.1), 

near-zone fields and input impedance can still be obtained. In fact, these HFSS 

modeling adjustments have been routinely performed at CRESIS for obtaining the 

input impedance of ice-mounted antennas. However, true far-zone fields can not be 

obtained using HFSS alone.  

 

2.4.1 HFSS Modeling Adjustments for Antennas Near Glacial Ice 
 

The process of modeling antennas near a dielectric half-space in HFSS is 

similar to the generic modeling described in Sections 2.2. However, now, some of the 

material representing the half-space must be placed within the solution box in order to 
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model the effects of the half-space on near-zone antenna phenomena. Also, additional 

requirements are placed on the size of the solution box, which are listed in Table 2.1. 

When modeling a dielectric half-space in HFSS, the solution box size must be 

increased to at least the minimum size of 2λ, compared with a minimum size of λ/4 

for the homogeneous medium case. Experimental evidence has shown that this 

increase in solution box size is required to obtain accurate near-zone fields. Figure 2.7 

displays a generic antenna modeled near a half-space of ice, incorporating the 

requirements from Table 2.1. Note that when modeling antennas mounted above a 

dielectric half-space, HFSS is capable of determining accurate near-zone fields, but 

not far-zone fields.  

 

 

 

  Figure 2.7 −−−− HFSS Modeling Near a Half-Space 

 

 

Table 2.1 −−−− HFSS Modeling Requirements Near Glacial ice 
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2.4.2 What HFSS Will Let You Do Even Though It Is Incorrect! 
 

 Although it is impossible to obtain correct far-zone antenna patterns for ice-

mounted antennas using HFSS alone, HFSS will not prevent users from trying. As 

discussed in Sections 2.2 and 2.3, HFSS can only correctly perform its NFFT 

algorithm into a homogeneous infinite medium, specified by the global material 

environment (GME). Therefore, the NFFT algorithm used by HFSS is useless for far-

zone radiation into anything other than a homogeneous medium. That being said, 

HFSS will not prevent the user from generating incorrect far-zone field results. 

 A theory proposed by an HFSS employee for possibly obtaining nearly correct 

far-zone fields within air or ice involved adjustment of the GME. He suggested that 

modeling the antenna above glacial ice, but setting the GME to air or ice, depending 

on the observer’s location, would produce nearly correct far-zone fields within air or 

ice, respectively. 

The E-plane far-zone fields resulting from such a procedure are presented in 

Figure 2.8, for an ice-mounted horizontal Hertzian dipole. In Figure 2.8(a), the GME 

is air, and Figure 2.8(b), the GME is ice. Also shown in Figure 2.8 is the exact result 

[40] for a horizontal Hertzian dipole located above a half-space of glacial ice. Both of 

the results obtained from HFSS disagree dramatically with the true result, indicating 

that true far-zone fields for ice-mounted antennas can not be obtained using HFSS 

alone.  
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                     (a)  

     

 

(b) 

Figure 2.8 −−−− Far-Zone E-plane for Horizontal Hertzian Dipole Mounted Above Glacial Ice from 

HFSS (dB) 

(a) GME = Air (b) GME = Ice 
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2.5 HFSS Modeling Summary 
 

In the context of modeling antennas near glacial ice, HFSS is only useful for 

determining near-zone fields and input impedances, and this requires the modeling 

technique discussed in Section 2.4. Also, although HFSS allows the calculation of 

far-zone fields, these results are incorrect for ice-mounted antennas. The inability of 

HFSS to determine far-zone fields for ice-mounted antennas is due to the HFSS 

NFFT only being capable of transforming near-zone fields to a homogeneous far-

zone. In order to determine true far-zone fields, a custom NFFT is required, which is 

discussed in Chapter 3. In this custom NFFT, the near-zone fields calculated in HFSS 

are sampled and exported to memory. These near-zone fields are then converted to a 

series of equivalent radiating current filaments. The NFFT algorithm allows the 

currents to radiate essentially in an infinite half-space, allowing for the determination 

of accurate Green’s functions associated with the current filaments.  
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CHAPTER 3: Far-Zone Field Patterns in Glacial Ice 
 
 

In order to accurately determine glacial ice temperature profiles from radar 

returns, accurate far-zone antenna gain estimation is required. Typically, far-zone 

antenna gain is determined using commercial software such as HFSS. However, due 

to the complicated properties of glacial ice, these commercial software packages are 

incapable of determining the far-zone gain for ice-mounted antennas (see Chapter 2). 

This chapter presents a new hybrid technique for determining the far-zone gain of 

glacial ice-mounted antennas, which addresses the problem by dividing the geometry 

into three regions: the near-zone, the quasi-far-zone, and the far-zone. Fields in the 

near-zone are determined using the finite element method (FEM) via HFSS. In the 

quasi-far-zone, which is the region just below the surface of the ice where the 

wavefronts are planar, the fields are determined using a near-to-far-field 

transformation (NFFT). In the far-zone, which is the region starting just below the 

quasi-far-zone and ending at bedrock, fields are determined using geometric optics 

ray tracing (GO). The combined three-part non-iterative hybrid technique is called the 

FEM-NFFT-GO technique.  

The basic theory of this technique is presented in Section 3.1. Also, the 

practical aspects of the technique, as well as the operation of the FEM-NFFT-GO 

software are presented in Section 3.2.  

 

 

3.1 Background for the FEM-NFFT-GO Technique 
 
 The FEM-NFFT-GO technique involves three steps: the FEM modeling of the 

antenna above the upper layer of glacial ice to obtain electric and magnetic near-zone 

field values, the transformation (NFFT) from the near-zone to the quasi-far-zone (a 

few wavelengths below the air/ice interface), and the projection of the quasi-far-zone 

fields to any depth within the non-uniform glacial ice (GO). The three regions (near-
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zone, quasi-far-zone, and far-zone) are depicted in Figure 3.1, where an antenna is 

mounted near an air/ice interface.  

 

 

 

Figure 3.1 −−−− The Three Field Regions 

 

 

3.1.1 Far-Zone Fields within Uniform Glacial Ice 
 

The quasi-far-zone, shown in Figure 3.1, is assumed to be a relatively uniform 

region that is deep enough (a couple wavelengths from the air/ice interface) for fields 

within the region at VHF frequencies to be considered planar. Far-zone fields in this 

region are determined using the FEM-NFFT routine. Since the FEM was largely 

discussed in Sections 1.3 and Chapter 2, it will not be discussed here. Also, in Section 

2.2, an NFFT for homogeneous backgrounds was discussed. Therefore, this section is 

primarily devoted to discussing a dual-dielectric NFFT algorithm, which is used for 

determining far-zone fields in uniform glacial ice. 

The dual-dielectric NFFT is more complicated than the HFSS NFFT, since in 

addition to utilizing the electromagnetic equivalence theorem; it also utilizes the 

electromagnetic reciprocity theorem [18]. Although equivalence was discussed in 

Section 2.3 for homogeneous backgrounds, it is briefly discussed here in relation to a 
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dielectric half-space. The reciprocity theorem is unique to the dual-dielectric NFFT 

and is discussed in detail. 

  

 

         
            (a)          (b) 

Figure 3.2 −−−− Equivalence for a Half-Space of Glacial Ice 

(a) Original Problem (b) Equivalent Problem 

  

 

Figure 3.2 shows how the equivalence principle is used in the dual-dielectric 

NFFT. An antenna mounted above a homogeneous half-space of ice is shown in 

Figure 3.2(a). This figure shows the sampling surface on which the near-zone fields 

were calculated by HFSS, along with the (yet to be determined) quasi-far-zone 

pattern radiated by the antenna below the air/ice interface. Note that in Figure 3.2(a), 

the near-zone fields are sampled on a sampling surface, rather than the solution box 

as is done by the HFSS NFFT algorithm (shown in Figure 2.2(a)). Thus, one major 

difference between the HFSS NFFT and the dual-dielectric NFFT is the ability to 

sample near-zone field values at an arbitrary sampling location.  

Figure 3.2(b) shows an electrically equivalent geometry to Figure 3.2(a). Here 

the antenna is removed, and electric and magnetic surface currents, with values given 



 - 38 -

by Equations 2.1 and 2.2, are placed on the sampling box. As was shown in Section 

2.3, the superposition of the fields radiated by these currents generates the same total 

electric and magnetic fields outside the sampling box as did the original radiating 

structure, and zero (null) fields inside the sampling box.  

The calculation of the fields radiated by these equivalent electric and magnetic 

surface currents is straightforward when the background medium is free space, but 

the presence of the air/ice boundary presents a more difficult problem. A general 

solution involves the decomposition of the spherical waves emanating from the 

currents into a spectrum of plane waves, whose reflections from and transmission 

through the dielectric interface can be determined from the Fresnel reflection and 

transmission coefficients. However, when the observer is electrically far from the 

boundary (as in the case of the quasi-far-zone), the reciprocity principle can be used 

to simplify the analysis [38]. For this case, only the geometric optics waves – those 

obeying Snell’s law – need be considered.  

 

 

Figure 3.3 −−−− Reciprocity for a Half-Space of Glacial Ice 

 

 

Reciprocity states that the response of a system to a source is unchanged when 

source and observer are interchanged [18]. Figure 3.3 shows this reciprocal 

relationship between a source current sJ  and an observer’s test current oJ , where the 

observer is assumed to be located in the far-zone a couple wavelengths from the 



 - 39 -

air/ice interface. Fields transmitted by the source current are in black, and those fields 

transmitted by the observer’s test current are in red. The field transmitted by the 

observer’s test current is planar within the vicinity of the air/ice interface, whereas the 

field transmitted by the source antenna is not yet planar in the vicinity of the air/ice 

interface. Therefore, reciprocity can be used to describe sE  (electric field due to the 

source current at the point of observation) in terms of the field oE (electric field due to 

the observer test current near the air/ice interface), which is a plane wave. The 

derivation and presentation of these plane wave formulas is presented in Appendix A. 

Also, Appendix A provides a thorough description of all the supplementary formulas 

and variable descriptions necessary for coding the dual-dielectric NFFT routine.   

 The total quasi-far-zone electric field at any pair of observation angles θ and 

ϕ is the superposition of the electric fields radiated by each electric and magnetic 

current source along the sampling box, determined by the formulas presented in 

Appendix A. Recalling that the near-zone field sampling box is rectangular, there are 

six two-dimensional surfaces on which electric and magnetic current sources exist. 

When the source and observer are in different mediums, the sum of total parallel and 

perpendicular polarized electric fields radiated from a surface are found by  
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where i is index representing the surface, M and N are the number of surface currents 

in each of the two dimensions of the surface, and T
SurfEθ  and T

SurfEφ  are the parallel 

and perpendicular components of the transmitted electric field radiated by the surface 

i. When the source and observer are located in the same medium, the sum of total 

parallel and perpendicular polarized electric fields radiated from a surface are  
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          Eq. 3.4 

 

where RI
SurfEθ  and RI

SurfEφ  are the parallel and perpendicular components of the 

combined incident and reflected electric fields radiated by the surface i. Finally, the 

total electric far-fields at each pair of observation angles due to the contribution of all 

sampled surfaces are 
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 Antenna patterns are often presented as gain relative to an isotropic radiator, 

which is given by the following expressions  
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where oη  is the intrinsic impedance of the medium containing the observer. For 

antenna patterns located above the air/ice interface, the intrinsic impedance is that of 

free-space (377 Ω), whereas for antenna patterns located below the air/ice interface, 

the intrinsic impedance is that of the upper-layer of ice (280 Ω). 
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3.1.2 Far-Zone Fields within Non-Uniform Glacial Ice 
 

The non-uniform region of glacial ice, called the far-zone, is shown in Figure 

3.1. This region extends from the quasi-far-zone to bedrock. As shown in Figure 3.1, 

rays propagating toward the bedrock are continuously refracted towards the normal 

direction in this region due to the depth-dependent density of glacial ice. This 

refractive gain must be accounted for if ice attenuation is to be accurately measured 

from radar sounding. Fortunately, the GO (geometric-optics ray tracing) technique 

can be used to determine the refractive gain. But, to be useful, the GO technique 

requires knowledge of the density profile causing the refractive gain. 

Ice core data taken from Greenland and Antarctica have resulted in empirical 

ice density models that agree well with measured results [3, 10, and 43]. Combining 

the empirical ice density model with GO allows for the effect of depth-varying ice 

density on the far-zone antenna gain to be determined. Since the GO technique 

depends on both glacial ice density modeling and geometric optics, both are presented 

in this section.  

 

3.1.2.1 Glacial Ice Empirical Density Model 
 

Generally, ice density (and other constitutive parameters) varies as a function 

of depth only [20]. Near the surface, the ice is intermixed with air bubbles yielding a 

density less than that of pure ice [34], where the density of pure ice P is 0.92 g/cm3. 

As the depth increases, the pressure due to the mass of ice above compresses the ice, 

thus reducing the volume of the air bubbles until the pure ice density is achieved. This 

compression occurs for roughly the first 100 meters of ice. An accurate model for the 

ice density is given by the following relation [37] 

 

 RzP Veρ = −        Eq. 3.9 
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where z is the ice depth, and V and R are empirical constants. The values of V and R 

for Byrd Station in western Antarctica [10] and from the GISP2 [14 and 43] ice core 

from Summit Station, Greenland are shown in Table 3.1.  The empirical relationship 

of Equation 3.9 using the constants shown in Table 3.1 provides a coefficient of 

determination of over 0.99. Also, presented in Figure 3.4 is glacial ice density in 

Antarctica and Greenland using Equation 3.9. Notice that near 100 m in depth, the 

density comes very close to that of pure ice. Also notice the subtle differences in 

density profile between Byrd Station in Antarctica and Summit Station in Greenland. 

This makes it evident that a density profile corresponding to the exact geographic 

location of interest is desirable when using the FEM-NFFT-GO technique to obtain 

the most accurate results. 

 

 

Table 3.1 -- Ice Density Empirical Constants 

 

 

 

Figure 3.4 −−−− Glacial Ice Density vs. Depth: Empirical Models 
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Also introduced by Robin [37] was the following empirical relationship between the 

glacial ice index of refraction and glacial ice density, 

 

 1n aρ= +        Eq. 3.10 

 

where a is equal to 0.854. Recall that for non-magnetic media, the index of refraction 

is related to the dielectric constant via the following 

 

 rn ε=        Eq. 3.11 

 

 

 

Figure 3.5 −−−− Glacial Ice Dielectric Constant vs. Depth: Empirical Models 

 

 

Although the FEM-NFFT portion of the technique (Appendix A) is discussed in terms 

of εr, (dielectric constant) the geometric optics relationships described here are more 

eloquently presented in terms of index of refraction. Also, in general, with high 
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frequency approximations such as geometric optics ray tracing, the index of refraction 

is used. Figure 3.5 shows the relationship between εr and depth using Equation 3.10 

and 3.11. Notice that in both Antarctica and Greenland, the change in εr with depth 

begins to level off near 100 m in depth.  

 

3.1.2.2 Geometric Optics Ray Tracing 
 

Although geometric optics ray-tracing is often thought of at optical 

frequencies, it can also be used at the VHF frequencies used by ice-penetrating 

radars. The key point to consider when applying geometric optics is the relation of 

size and curvature of wavefronts to wavelength [36]. The electromagnetic fields a 

couple wavelengths into the upper-ice region (i.e. the quasi-far-zone) can be 

considered locally as propagating rays with planar wavefronts [46], indicating 

essentially no wavefront curvature, and the size of the wavefront is much larger than 

the wavelength. At greater depths, the ice density increases slowly compared to 

wavelength for VHF radars, so reflections are minimal [25], and the ray paths are 

bent increasingly toward the normal direction. From these ray trajectories the antenna 

gain at any depth can be determined.  

 The geometric depiction of ray bending occurring within the ice is presented 

in Figure 3.6. In Figure 3.6(a), a constant energy ray tube extending from a point 

source is propagating in a continuous medium, where the ray tube energy is focused 

on the area dA, at a distance D from the source. Figure 3.6(b) depicts the case where 

the mediums refractive index increases gradually with depth, and the constant energy 

ray tube is focused on the area dA’, located at the same distance D from the source. 

The area dA’ in Figure 3.6(b) is less than the area dA in Figure 3.6(a). Therefore, the 

energy per unit area is increased for the case of gradually increasing dielectric 

constant, leading to an increased far-zone antenna gain in the medium having the 

dielectric constant-gradient.  
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(a) 

 

 
(b) 

Figure 3.6 −−−− Geometric Optics Ray Tracing – Constant Energy Tubes 

(a) No Ray Bending (b)Ray Bending [45] 

 

 

 West and Demarest [46] reported the following relations for determining the 

far-zone antenna gain ( , ')G z η  as a function of depth and effective look angle 

 

 0 0( , ') ( , ) ( , ')fG z G G zη γ φ η=      Eq. 3.12 
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where Go is the quasi-far-zone gain in the upper region of glacial ice (relative to a 

free-space isotropic radiator), which is the result of the FEM-NFFT technique. Also, 

Gf is the gain factor improvement due to ray bending. The effective look angle 'η  is 

given by  

 

 1 '
' tan

r

z
η −  =  

 
       Eq. 3.13 

 

where r’  is the radial distance traveled by the ray beginning at the surface, as shown 

in Figure 3.6(b) and z is the depth within the ice. From geometric optics [46], the gain 

improvement factor is given by  
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Here, 0γ  is the angle the ray makes with the normal as it is launched at the surface, D 

is the direct distance from the ray location at depth z from the starting location, and 'γ  

is the angle the ray makes with the normal at any depth. The parameters D and 'γ  are 

given by 

 

 2 2( ')D r z= +        Eq. 3.15 
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      Eq. 3.16 

 

Another key parameter found in Equation 3.14 is  
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which is the radial distance traveled by a ray beginning at the surface, where ( )n z  is 

the refractive index as a function of depth, and  

 

 0 0sinc n γ=        Eq. 3.18 

 

As stated in Section 3.1.2.1, glacial ice density profiles are often described by the 

following exponential relationship [37], 

 

 ( ) Rzz P Veρ = −       Eq. 3.19  

 ( ) 1 ( )n z a zρ= +       Eq. 3.20 

where the ice density ρ  is now presented as a function of depth.  

 Making use of the exponential density profile described in Equations 3.19 and 

3.20, and integrating Equation 3.17 yields the following result for the radial distance 

traveled by a ray at any depth 
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   Eq. 3.21 

 

Differentiating Equation 3.21 with respect to 0γ  and then integrating with respect to z 

yields the following result 
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where, 

 

 2 2 21 2W aP a P c= + + −      Eq. 3.23 
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 ( )22 2 RzX a PV aV e= − −      Eq. 3.24 

 2 2 2RzY a V e X W= + +      Eq. 3.25 

 2
0 2 2X a PV aV= − −       Eq. 3.26 

 2 2
0Y a V X W= + +       Eq. 3.27 

 

Although an exponential density profile was assumed in the derivation of Equation 

3.21 and 3.22, any density profile could be used in conjunction with the geometric 

optics ray tracing technique. However, this would require either numerical calculation 

of 'r  and 
0

'dr

dγ
, or another closed form derivation of these parameters.  

 

3.2 Using the FEM-NFFT-GO Technique to Determine Far-
Zone Electric Fields 
 

In this section, the practical aspects of running the FEM-NFFT-GO technique 

are presented, as well as some of the practical aspects used in creating the routine. 

Regarding the FEM-NFFT procedure, these include near-zone-field sampling, 

sampling location, and sampling resolution. Also presented is the procedure for 

actually running the FEM-NFFT-GO routine using the Master.m Matlab script. The 

Matlab script keeps most of the inner-workings of the routine hidden from the user, 

so these inner-workings are left for Appendix B.  

 

3.2.1 Sampling and Exporting Near-Zone Fields 
 

HFSS has a useful built-in feature called the vector field calculator. This 

allows for the performance of mathematical operations, as well as exportation of data, 

on all saved field data in the modeled geometry [22]. It also allows for certain types 

of data to be imported into HFSS. The Fields Calculator is easily accessed from the 
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main HFSS toolbar, by clicking HFSS < Fields < Calculator. Figure 3.7 displays the 

Fields Calculator window for HFSS v. 10.  

 

 

 

Figure 3.7 −−−− HFSS v. 10 Fields Calculator 

 

 

For the purposes of this work, only exportation of the vector Cartesian 

complex electric and magnetic near zone fields is of interest. This is easily 

accomplished by selecting Quantity < E and then Quantity < H in the Fields 

Calculator window shown in Figure 3.7, which also shows the E and H fields added 
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to the display. Once the E and H fields have been added to the Fields Calculator 

display, they are exported by using the Export command displayed in Figure 3.7. 

Once the Export command has been pressed, the window shown in Figure 3.8 is 

displayed. Exportation of field data requires the specification of an output file name 

(shown as dataOut.txt in Figure 3.8), and the input of a .pts file (shown as 

samplingPoints.pts in Figure 3.8), which specifies the three dimensional grid on 

which to sample near-zone field data.  

 
 

 

Figure 3.8 −−−− HFSS v. 10 Fields Calculator Export Solution Window 

 
 

 The output data file contains the vector Cartesian electric or magnetic near-

zone fields sampled on a grid specified by the .pts file. The output ASCII text file is 

in the format specified by Table 3.2, where F represents the field value, either E or H. 

The ASCII text file is then easily imported by Matlab for further processing.  
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Table 3.2 – HFSS Vector Cartesian Field Value Output File Format 

 

 

 The input .pts file contains the list of Cartesian coordinates in three 

dimensions on which the near-zone field values are sampled. The .pts file extension is 

recognized by HFSS as being a “Point File,” which lists points in Cartesian 

coordinates in the following format shown in Table 3.3.  

 
 

Table 3.3 – HFSS Points File Format 

 

 

 
 Fortunately, HFSS also integrates with Microsoft® Visual Basic® Scripting 

Edition (VBScript) [23], which eliminates the tediousness associated with outputting 

data files containing the E and H fields. The VBScript is used to not only automate 

the process of uploading .pts files and outputting data files, but is also used to 

determine the relevant HFSS model parameters and geometry. Therefore, when 

running the FEM-NFFT-GO routine, the near-zone-field sampling is automated and 

transparent to the user.  

 Appendix B describes the Matlab and VBScript code used to automate the 

near-zone field sampling process. This code includes the outputting of the relevant 

HFSS model parameters and geometry, the generation of .pts files, and the outputting 

of the sampled near-zone field values to ASCII text files to be further processed by 

Matlab.  

Two important parameters associated with near-zone field sampling are 

sampling location and sampling resolution. The sampling location is a rectangular 

surface similar to the solution box, and called the sampling box. Through a trial of 

FEM-NFFT processing, a desirable location for the sampling box was determined to 
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be ¼ the size of the solution box. Therefore, if a 2λ solution box is used, a λ/2 

sampling box is used. Results verifying the ideal solution box and sampling box 

dimensions are withheld to the FEM-NFFT results shown in Chapter 4, since the 

complete FEM-NFFT technique should be presented prior to the FEM-NFFT results. 

The sampling resolution is specified in terms of the number of points per wavelength. 

A reasonable sampling resolution used for much of this work is 10 points/λ. 

However, as will be shown later with the null field test, occasionally, higher 

resolution is necessary. The determination of whether or not to use higher resolution 

is application specific.   

 

3.2.2 Running the FEM-NFFT-GO Routine 
 
 This section describes the procedure necessary for running the FEM-NFFT-

GO routine. This involves running a Matlab script in conjunction with HFSS.  

 

3.2.2.1  HFSS Requirements 
  

 
Figure 3.9 – HFSS Half-Space Modeling Convention 
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In order for HFSS to interface properly with the FEM-NFFT-GO routine, 

some modeling and naming conventions are required when modeling antennas in 

HFSS. When modeling ice-mounted antennas in HFSS, the Matlab code assumes that 

the half-space of ice extends from z=0 towards negative values of z, and the half-

space of air extends from z=0 towards positive values of z. This is shown in Figure 

3.9. 

 
 

Table 3.4 −−−− HFSS Model Naming Conventions 

 

 
 

Due to the VBScript used in automatically sampling the near-zone electric and 

magnetic fields, some naming conventions are required for building the HFSS model. 

These naming conventions are outlined in Table 3.4. As discussed previously, the 

“Solution Box” is the box enclosing the solution space, on which radiating boundary 

conditions are specified. The “Solution Setup” was discussed in Section 2.1, and 

“Setup1” is in fact the default name.  

The only other requirement of HFSS when running the FEM-NFFT-GO 

routine is that the desired HFSS model with solved near-zone field values be open 

while running the NFFT portion of the routine, which accomplishes the near-zone 

field sampling. Also, only one HFSS model at a time should be open while running 

the routine.  

  

3.2.2.2 The Master.m Matlab File  
 

 In this section, the operation of the Master.m Matlab script file is discussed, 

which is the only code with which the user is required to interface. The Master.m 

script is divided into three sections: inputs to specify for the FEM-NFFT-GO routine, 
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the FEM-NFFT routine, and the GO routine. The way that the script is divided allows 

for the user to run the FEM-NFFT routine by itself, or in conjunction with the GO 

routine.  

  

 
Table 3.5 −−−− FEM-NFFT-GO Input Parameters 

 

  

  
 There are a total of 15 inputs required for the FEM-NFFT-GO routine, which 

are described in Table 3.5. The input dirIn is the directory which contains all of the 

intermediate text files for communicating with HFSS, which includes among other 

things, the text files containing the near-zone electric and magnetic field values (see 

Section 3.2.1). The input ptsInput is the sampling resolution in terms of points/λ 

described in Section 3.2.1. 
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 Three of the more complicated input parameters are sDecXY, sDecZ_Top, and 

sDecZ_Bot. Each of these inputs are used to specify the sampling box size. The 

sDecXY input specifies the reduction in size of the sampling box relative to the 

solution box in the X and Y dimensions. The sDecZ_Top input specifies the reduction  

in size of the sampling box relative to the solution box in the positive Z dimension. 

Finally, the sDecZ_Bot input specifies the reduction in size of the sampling box 

relative to the solution box in the negative Z dimension. The formulas for determining 

the size of the sampling box from the decrement factors are as follows 

  

 ( ) 2*XYsampBox solution box size sDecXY=   −    Eq. 3.28 

 ( ) _ _ZsampBox solution box size sDecZ Top sDecZ Top=   − −  Eq. 3.29 

 

where sampBoxXY is the size of the sampling box in wavelengths in the X and Y 

dimensions and sampBoxZ is the size of the sampling box in wavelengths in the Z 

dimension.  

The reason for differentiating the sampling box size in the X, Y, and Z 

dimensions has to do with the variability in HFSS antenna modeling. As discussed in 

Section 2.2, waveport excitation requires that the port be connected to the solution 

box boundary. If uniform reduction in the sampling box relative to the solution box 

occurred in each dimension, this could cause overlap of the sampling box and the 

antenna, which may be undesirable. Therefore, the option for non-uniform sampling 

box size allows for the sampling box to be kept from overlapping with the antenna 

location, if desired.  

The observation angles are specified by four variables, thetaMin, thetaMax, 

numTheta, and phi. Therefore, the far-zone fields determined by the FEM-NFFT-GO 

routine are always computed through a range of θ values at a constant value of φ.  

 The material parameters for the dielectric half-space are specified by four 

variables. The relative permittivity and relative permeability of the upper half-space 

(air for purposes of ice-penetrating radar) are specified by e1 and u1, respectively. 
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For the lower half-space (glacial ice for purposes of ice-penetrating radar), the 

relative permittivity and relative permeability are specified by e2 and u2, 

respectively. 

 The final two input variables are only relevant for the GO routine. The input 

location specifies the empirical constants to use for the glacial ice-density model (see 

Section 3.1.2.1). A value of “1” specifies usage of the Antarctic empirical constants, 

and a value of “2” specifies usage of the Greenland empirical constants (see Table 

3.1). The last input zDepth is a one-dimensional Matlab row-vector specifying the 

various depths in meters, within the ice, at which to determine the far-zone electric 

field gain.  

 The FEM-NFFT section of the Matlab.m function contains calls to two sub-

functions, Equivalent_Currents and NFFT. Equivalent_Currents performs the 

sampling of the near-zone electric and magnetic fields and their conversion to 

equivalent surface currents, and basically implements the equivalence theorem. NFFT 

performs the near-to-far-field transformation, and basically implements the 

reciprocity theorem. Since Equivalent_Currents is an intermediate step, its outputs 

are not listed here. However, the separation of the implementation of the equivalence 

and reciprocity theorems eliminates the need for re-sampling the near-zone electric 

and magnetic fields and converting them to equivalent currents unnecessarily. 

Descriptions of the Equivalent_Currents outputs are described in the source code.  

 The outputs from the NFFT sub-function are listed in Table 3.6. These outputs 

include the observation angles, intrinsic impedances of the upper and lower mediums, 

and the theta and phi components of the quasi-far-zone electric field in both complex 

and magnitude format (relative to an isotropic radiator). The variables EthetaIN and 

EphiIN are in magnitude format which is required for input to the sub-function that 

performs the GO routine.   

The GO section of the Matlab.m function contains a call to the  

Gain_Factor sub-routine which implements the geometric-optics ray-tracing 

calculations. The outputs of Gain_Factor are listed in Table 3.7. The primary outputs 
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of concern are GthetaAD and GphiAD which are the theta and phi components of the 

far-zone electric gain. GthetaAD and GphiAD are 2D matrices that are a function of 

the effective look angle aidaPrime in the row dimension, and a function of zDepth in 

the columns dimension. 

 

 

Table 3.6 −−−− FEM-NFFT Output Parameters 

 
 

 

Table 3.7 −−−− GO Output Parameters 
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CHAPTER 4:  Far-Zone Field Results for Ice-Mounted 
Antennas 
 
 

Far-zone field results obtained using the FEM-NFFT-GO techniques are 

presented in this chapter (Section 4.4). But, prior to their presentation, results 

validating the accuracy of the FEM-NFFT routine are presented in Section 4.1. Recall 

that the FEM-NFFT procedure is useful on its own for determining far-zone fields for 

antennas mounted above a homogeneous half-space.  

 
 

4.1 FEM-NFFT Validation Tests 
 

Four tests were performed to validate the FEM-NFFT technique for obtaining 

the far-zone electric fields above a dielectric half-space. The first two of these tests 

check the accuracy of the FEM-NFFT routine by comparing the FEM-NFFT results 

to theoretical predictions. The third test validates the choice of near-zone field 

sampling location when using the FEM-NFFT routine. The fourth test determines 

whether or not similar far-zone field results could have been obtained using HFSS 

alone, by substantially increasing the solution box size to several wavelengths.   

 
 

4.1.1 The Null Field Test 
 

A null field test was the first devised to validate the FEM-NFFT algorithm. In 

this test, a plane wave was incident from a source located far from the sampling box. 

Figure 4.1(a) depicts the original geometry and the equivalent geometry is depicted in 

Figure 4.1(b). Here, the fields located some distance from the air/ice interface are Eb 

and Hb, and those near the air/ice interface are Ea and Ha. In Figure 4.1(b), Ea and Ha 

are sampled and converted to equivalent electric and magnetic source currents using 

Equations 2.1 and 2.2. According to the equivalence principle, the observer senses the 
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same fields Eb and Hb, meaning that Js and Ms radiate null fields external to the 

sampling box, and the negative of Ea and Ha internal to the sampling box. So, the null-

field test involved verifying whether the equivalent currents radiate null-fields 

external to the sampling box. 

 

 

 
                   (a)           (b) 

Figure 4.1 −−−− The Null-Field Test 

(a) Original Situation  (b) Equivalent Situation 

 

Table 4.1 – The Null-Field Test Cases 

 
 

 

 Four test cases involving the null-field test were performed. These test cases, 

outlined in Table 4.1, involve different combinations of plane wave source location 

(either in air or ice), plane wave angle of incidence, and observation or look angle φ. 
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For each test case, the electric far-zone fields radiated by the equivalent surface 

currents produced a noisy response, not at all resembling that of a plane wave. With 

increasing sampling resolution (points/λ, discussed in Section 3.2.1), the magnitude 

of the far-zone radiated fields decreased. In order to better quantify the decreasing 

electric field magnitude with increasing sampling resolution, the sampling box was 

treated as a scatterer with the following radar cross section 

 

 
2

max
2

4

inc

E

E

π
σ =        Eq. 4.1 

 

where maxE  is the maximum value of the electric far-zone field across all values of θ 

for a particular look angle φ. Also, incE  is simply the magnitude of the incident plane 

wave, which was 1 V/m. Next, Equation 4.1 was normalized by dividing by the area 

of the ice interface, and converted to dB using the following 

 

 ( / ) 10 logdBA
A

σ
σ  =  

 
     Eq. 4.2 

 

 The results of the four test cases are shown in Figure 4.2. Note that for test 

case 1, only a φ component  of the electric field was present due to the observation 

angle of φ = 90o, and for test case 2, only a θ  component of the electric field was 

present due to the observation angle of θ = 0o.  In each of these test cases, the amount 

of energy scattered by the ice decreased significantly with increasing sampling 

resolution, reaching nearly -25 dB in each case. Therefore, the FEM-NFFT procedure 

passed the null-field test, generating null fields external to the sampling surface when 

a plane wave is incident on the half-space of ice, as dictated by the electromagnetic 

reciprocity theorem. In each case, a sampling resolution between 10 to 20 pts/λ was 

required to achieve a normalized σ of -10 dB. As will be shown in the Hertzian dipole 
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test, a sampling resolution of only 10 pts/ λ is generally adequate for obtaining far-

zone fields.  

 

 

 
(a) Test 1 

 

 
(b) Test 2 
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(c) Test 3 

 

 

 
(d) Test  4 

Figure 4.2 −−−− The Null-Field Test: Four Test Cases 
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4.1.2 The Hertzian Dipole Test 
 
 
 

 
Figure 4.3 −−−− Horizontal Hertzian Dipole 

 
 

The next test of the FEM-NFFT technique was to determine the far-zone 

fields of a horizontal Hertzian dipole above a half-space of glacial ice, as shown in 

Figure 4.3. The exact result for the far-zone fields of a Hertzian dipole above a 

dielectric half-space are known and are presented in [41]. Due to the simplicity of the 

Hertzian dipole, the Green’s function [44] can be determined exactly when the dipole 

is located above a dielectric half-space. In fact, the equivalent source currents 

presented earlier and used in the NFFT algorithm are nothing but Hertzian dipoles 

themselves. 

In this test, a horizontal Hertizan (y-directed) dipole was modeled above a 

half-space of ice with a dielectric constant equal to that at the ice surface using HFSS. 

Then, the near-zone fields were sampled from HFSS and exported to Matlab for 

NFFT processing. Table 4.2 specifies the parameters for repeating the FEM-NFFT 

procedure, and obtaining the same results as presented here.  
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Table 4.2 −−−− Horizontal Hertizan Dipole Test Parameters 

 
 

 

 The far-zone field patterns obtained from the FEM-NFFT technique for both 

the E-plane and H-plane are shown in Figures 4.4 and Figures 4.5, respectively. Also 

shown in Figures 4.4 and Figures 4.5 are the corresponding “Exact” and “Free-Space” 

results. The exact results were obtained by using the closed form solution for the far-

zone fields of a Hertzian dipole located above a half-space of glacial ice. In both 

Figures 4.4 and 4.5, it is seen that the FEM-NFFT and Exact results are virtually 

identical, indicating the accuracy of the technique. The success of the Hertzian dipole 

test provides confidence in using the FEM-NFFT technique for analyzing other 

antennas.  

Also shown in Figures 4.4 and 4.5 are the free-space far-zone fields of a 

horizontal Hertzian dipole. Comparing the FEM-NFFT (or Exact) results with the 

free-space pattern reveals the effect of the ice has on the far-zone pattern. For the E-

plane pattern shown in Figure 4.4, the gain increases within the ice and decreases 

above the ice by approximately 2 dB. Sidelobes which did not exist in the free-space 

pattern occur within the ice. In Figure 4.5, the H-plane changes from the isotropic 

free-space pattern to a much more directive one with nulls at the air/ice interface. 

Again, the gain within the ice increased by approximately 2 dB.  
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Figure 4.4 −−−− E-Plane of Horizontal Hertizan Dipole Far-Zone Fields (dBi): FEM-NFFT, Exact, 

and Free Space  
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Figure 4.5 −−−− H-Plane of Horizontal Hertzian Dipole Far-Zone Fields (dBi): FEM-NFFT, Exact, 

and Free Space 

 
 

4.1.3 Effects of Sampling Location 
 

The effects of near-zone field sampling location on the resulting far-zone 

fields produced from the FEM-NFFT routine will now be presented. The far-zone 

fields for a vertical Hertzian dipole above a half-space of ice (Figure 4.6) are 

presented here for a range of sampling box sizes. Table 4.3 presents the relevant 

modeling parameters.  
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Figure 4.6 −−−− Vertical Hertzian Dipole 

 

 

Table 4.3 −−−− Vertical Dipole Modeling Parameters 

 

 

 

The E-plane of the far-zone fields using both the “Exact” [41] and FEM-

NFFT solutions for the vertical Hertzian dipole are presented in Figures 4.7, 4.8, and 

4.9. Each figure uses a different near-zone field sampling box size. In Figure 4.7, the 

near-zone fields were sampled on the outer edge of the solution box (the same 

location used by HFSS its own NFFT routine). In this case, the Exact and FEM-NFFT 

results differ significantly. Then, in Figure 4.8, the sampling box size was λ, which is 

half the size of the solution box in this case. Notice that the Exact and FEM-NFFT 

results are more similar in this case, relative to Figure 4.7. Finally, in Figure 4.9, the 
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sampling box size was reduced to λ/2, which is one quarter the size of the solution 

box. Here, the Exact and FEM-NFFT results are nearly identical. Additionally, for all 

orientations and observation angles involving Hertzian dipoles, a sampling box  one 

fourth the size of the solution box yielded results that compared most favorably with 

the Exact result. Therefore, in all future usage of the FEM-NFFT routine, a sampling 

box of one fourth the size of the solution box is recommended.  

 

 

 
 Figure 4.7 −−−− Far-Zone E-Plane of Vertical Hertzian Dipole Above Ice (dBi): Near-Zone Fields 

Sampled at 2λ 
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Figure 4.8 −−−− Far-Zone E-Plane of Vertical Hertzian Dipole Above Ice (dBi): Near-Zone Fields 

Sampled at λ 
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Figure 4.9 −−−− Far-Zone E-Plane of Vertical Hertzian Dipole Above Ice (dBi): Near-Zone Fields 

Sampled at 0.5λ 

 

 

4.1.4 Comparing FEM-NFFT Results with HFSS Near-Zone Results 
 

A question that arises when using HFSS is whether the solution box can be 

made large enough to where the calculated near-zone fields are actually in the far-

zone, thus making them far-zone fields. In order to test this idea, an HFSS simulation 

was performed for a horizontal Hertzian dipole, as shown in Figure 4.2 but using the 

parameters outlined in Table 4.4. The near-zone fields calculated on a sphere with a 

diameter equal to the square solution box width were determined and compared with 

the results obtained from the FEM-NFFT procedure. In this case, the solution box 
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size was 4λ, which is large enough for the outer edge of the solution box to be in the 

far zone [5]. 

 

 

Table 4.4 −−−− HFSS Near-Zone Field Parameters 

 
 

 

 
Figure 4.10 −−−− E-Plane of Horizontal Hertzian Dipole Far-Zone Fields (dBi):  From HFSS Near-

Field Calculator 
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Figure 4.11 −−−− H-Plane of Horizontal Hertzian Dipole Far-Zone Fields (dBi):  From HFSS Near-

Field Calculator 

 
 

The E-plane and H-plane obtained from the HFSS near-zone field calculator 

are shown in Figures 4.10 and 4.11, respectively. Comparing the E-plane obtained 

from HFSS (Figure 4.10) with the E-plane obtained from the FEM-NFFT procedure 

(Figure 4.4), it can be seen that although the two results are somewhat similar in 

shape, the result from HFSS is in fact quite different. Notice the lack sidelobes in 

Figure 4.10 for the pattern directed towards the ice, and that the pattern is extremely 

jagged and asymmetrical. Additionally, the magnitude of the E-plane obtained from 

HFSS is over 10 dB less than that obtained by the FEM-NFFT algorithm. Clearly, the 

HFSS result for the E-plane is incorrect. Similarly, the H-plane obtained from HFSS 

(Figure 4.11) is similar in shape to the correct result obtained from the FEM-NFFT 

algorithm (Figure 4.5). However, as with the E-plane result, the asymmetry, 
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jaggedness, and incorrect magnitude make the H-plane result obtained from HFSS 

incorrect.  

To conclude, HFSS can not be used to determine far-zone field patterns for 

ice-mounted antennas. Even increasing the solution box to the enormous size of 4λ, 

which introduces significant computational consequences, proved unavailing.  

 
 

4.2 Combined FEM-NFFT-GO Results 
 

The far-zone antenna gain at any depth for ice-mounted antennas, obtained via 

the FEM-NFFT-GO technique, is presented in this section. Results for two different 

antennas are shown, including a horizontal Hertzian dipole and a printed-circuit board 

tapered slot antenna (Vivaldi). Also presented are the free-space pattern and FEM-

NFFT result for the Vivaldi antenna, primarily to provide a basis for evaluating the 

FEM-NFFT-GO results. Recall that the free-space pattern and FEM-NFFT result for 

the horizontal Hertzian dipole were previously presented in Section 4.1.2, where it 

was used as a test of the FEM-NFFT routine’s accuracy.  

The Vivaldi antenna, shown in Figure 4.12, is a complex antenna developed at 

CReSIS (Center for Remote Sensing of Ice Sheets) by Ben Panzer [33]. It was 

designed to be lightweight, wideband, and be multipurpose [33]. The lightweight 

constraint arises from its intended usage on an unmanned aerial vehicle (UAV). The 

antenna has a very wide bandwidth, operating from 162 MHz to 1.121 GHz. At the 

lower end of its band (162-250 MHz), it is suitable for ice depth-sounding. Also, from 

600-900 MHz, it will be used for an accumulation radar, which shows the detailed 

year-by-year ice layering up to 200 meters with very fine resolution. At 214 MHz, the 

Vivaldi has a free-space pattern shown in Figure 4.13. The Vivaldi antenna was 

modeled using the parameters outlined in Table 4.5. 
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Figure 4.12 −−−− Tapered Slot Antenna (Vivaldi)  

 

 

 

Figure 4.13 −−−− Vivaldi Free-Space Pattern (dBi) – E-Plane 

(nadir is 0o) 
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Table 4.5 −−−− Vivaldi Modeling Parameters 

 

 

 

Using the FEM-NFFT routine, the far-zone antenna gain shown in Figure 4.14 

was produced for a Vivaldi antenna mounted on glacial ice. Recall that in relation to 

the entire FEM-NFFT-GO technique the FEM-NFFT result is called the quasi-far-

zone field. This is because in the FEM-NFFT-GO technique, the FEM-NFFT result is 

an intermediate step. Comparing the pattern directed towards 0o in Figure 4.14 (ice is 

present) to that in Figure 4.13 (free-space), it is obvious that the ice significantly 

alters the gain pattern. The gain of the main lobe in the presence of the ice has 

increased by nearly 5 dB relative to the free-space pattern. Also, sidelobes are present 

for the pattern in the presence of ice, which were note present in the free-space 

pattern.  
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Figure 4.14 −−−− Vivaldi FEM-NFFT Result – E-Plane Gain (dBi) 

 

  

 Next, using the quasi-far-zone gain (Go from Section 3.1.2) shown in Figure 

4.14, as the “input” to the GO technique, the gain patterns shown in Figure 4.15 were 

produced. Since the GO technique only has relevance for patterns within the ice that 

is all that is presented here. The gain at three separate depths is shown in Figure 4.15 

and antenna gain both narrows and increases in maximum gain as the depth increases.  

 

 



 - 77 -

 

Figure 4.15 −−−− Gain Pattern at Various Depths for Vivaldi Antenna (E-Plane) 

 

 

 Also presented is the far-zone gain versus depth for a horizontal Hertzian 

dipole. This is the same Hertzian dipole presented in Section 4.1.2. Figure 4.16 shows 

the Hertzian dipole gain for three separate depths. The gain pattern narrows and 

increases in maximum gain as the depth increases.  
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Figure 4.16 −−−− Gain Pattern at Various Depths for Hertzian Dipole (E-Plane) 

 

 
 An important fact regarding the GO technique is that the focusing effect of the 

glacial ice density profile is independent of antenna pattern. For a given range of 

angles and range of depths, the same decrease in the angular extent of the gain pattern 

and increase in gain of the gain pattern will occur, regardless of the gain pattern input 

to the GO routine.  
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CHAPTER 5: Glacial Ice Temperature Extraction from 
Attenuation Measurements 
 
 

Ice attenuation can be measured from radar returns using a surface-based 

bistatic radar system, such as that presented in Section 1.2. Two common mid-point 

(CMP) antenna configurations are utilized in the data attainment: one where transmit 

and receive antennas are at a fixed distance from each other, and another where the 

transmit and receive antennas are at a fixed incident and reflected angle with respect 

to each other. Results from these two arrangements are then combined to measure 

attenuation as a function of depth.  

The ultimate goal of obtaining ice attenuation as a function of depth is to 

determine the ice temperature as a function of depth. However, prior to relating 

attenuation to ice temperature, the basic causes of attenuation within glacial ice must 

be considered, which are presented in Sections 5.1 and 5.2. Also, in Section 5.3 

existing temperature profile data is presented for glaciers in Antarctica and 

Greenland. These data reveal the range of temperatures typically encountered in 

glacial ice. Next, in Section 5.4, the relationship between loss mechanisms and the 

attenuation constant is presented. The method for measuring glacial ice attenuation 

from radar echoes is presented in Section 5.5. Then, the algorithm for extracting 

temperature from attenuation measurements is presented in Section 5.6. Finally, in 

Section 5.7, simulated results are presented that highlight the capabilities of the 

technique for extracting glacial ice temperature from radar echoes. 

 
 

5.1 Causes of Attenuation in Glacial Ice 
 

 Two loss (attenuation) mechanisms can occur in glacial ice: conduction loss, 

and polarization loss. Conduction losses occur when the conductivity σ is greater than 

zero, and results in conduction current defined by the following 
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 CJ Eσ=        Eq. 5.1 

 

The conduction current causes some of the energy transmitted from the radar to be 

converted to heat within the ice.  

 Polarization losses are due to displacement current within lossy media. 

Displacement current results within any dielectric exposed to a time-varying electric 

field, and is described by the following 

 

 DJ j Eωε=        Eq. 5.2 

 

where ω  is the frequency in radians per second. For materials with a real permittivity 

(i.e. lossless dielectric), equal amounts of energy are stored and released upon each 

cycle, meaning that DJ  results in no loss. However, when the permittivity is complex, 

as with glacial ice, DJ  causes some of the incident energy to be converted to heat.  

 Therefore, the causes of loss in glacial ice are due to conductivity σ  and a 

complex permittivity. Generally, these two loss mechanisms are combined into a 

single imaginary component of the permittivity, where  

 

 ' ''( )j σε ε ε ω= − +       Eq. 5.3 

 

Equation 5.3 can be simplified to the following  

 

 ' ''( )o r rjε ε ε ε= −       Eq. 5.4 

 

where oε  is the free-space permittivity (8.854 x 10-12 F/m), the real part of the 

permittivity is  
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'

'
r

o

ε
ε

ε
=        Eq. 5.5 

 

and the imaginary part is 

 

 
''

''
r

o

σε ωε
ε

+
=        Eq. 5.6 

 
 

At depth-sounding frequencies in glacial ice, the loss is dominated by σ  [28] and 

therefore, the imaginary part of ε  can be simplified to  

 

 ''
r

o

σ
ωε

ε
=        Eq. 5.7 

 

which neglects contributions to loss arising from ''ε . However, Equation 5.7 is only 

applicable for frequencies below 700 MHz, since above this frequency, ''ε  

(polarization loss term) increases with frequency and becomes very large. Equation 

5.7 allows the conductivity and loss within ice to be entirely described by the 

permittivityε . Since σ  is the primary cause of loss in glacial ice, a further discussion 

of the causes of conductivity is warranted.  

  

5.2 Conductivity in Glacial Ice 
 

Radar signal attenuation within glacial ice is proportional to conductivity, 

which in turn depends on a number of factors, including impurity concentrations as 

well as the ice temperature [28]. Pure ice conductivity is due to the polarization of 

individual water molecules (H2O), hydronium (H3O
+) and hydroxyl (OH-) ionic 

defects, and Bjerrum defects in the presence of high-frequency (0.1 to 300 MHz) 
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electric fields [35], which is the frequency range typically used for ice depth-

sounding [15]. For impure ice, the conductivity also depends on the concentrations of 

acid ([H+]), sea-salt chloride ([ss Cl-]), and ammonium ([NH4
+]). Since glacial ice is 

impure, its conductivity is dependent on each of the contributions mentioned above.  

Each contributor to ice conductivity follows an Arrhenius-type temperature 

dependence. But, NH4
+ can be neglected, since the product of its molar concentration 

(mol L-1) and molar conductivity (S L m-1 mol-1) is over an order of magnitude 

smaller than that for H+ or Cl- [28]. Therefore, the Arrhenius-type conductivity model 

can be represented by the following relation 

 

1 1 1 1 1 1p ClH

B r B r B r

E EE

k T T k T T k T T

p H Cle H e Cl eσ σ σ σ
          

− − −          
+ −                  = + +     Eq. 5.8 

 

where pσ , Hσ , and Clσ  are the molar conductivities of pure water, H+, and Cl-, 

respectively. Also, Ep, EH, and ECl are the activation energies for pure water, H+, and 

Cl-. Also, kB is Boltmann’s constant and Tr is a reference temperature equal to 251 K. 

 

 

 Figure 5.1 −−−− Glacial Ice Conductivity Contributions [28] (For frequencies between 0.1 to 300 

MHz) 
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 Figure 5.1 compares the conductivity contributions from pure ice, H+, and Cl 

for Siple Dome in Antarctica [28], within the frequency range typically used for radar 

depth-sounding (0.1 to 300 MHz). The pure ice component is dominate above -30ο C, 

and dominates more as the temperature is increased. Figure 5.1 assumes impurity 

concentrations of 1.3 µM for H+ and 4.2 µM for Cl-. Higher impurity concentrations 

would increase the temperature at which the pure component dominates conductivity.  

 Recall from earlier that attenuation is proportional to conductivity. Therefore, 

as the glacial ice temperature increases above -30ο C, the assumption that the ice 

attenuation profile is due to temperature changes with depth, and not impurity 

concentrations, becomes more reasonable. Assuming that the ice conductivity (and 

thus attenuation) is due solely to ice temperature leads to the following 

 

 
1 1p

B r

E

k T T

peσ σ
  

−  
   =       Eq. 5.9 

 

One important consideration in validating the assumption that ice attenuation is solely 

a function of temperature is to consider the factors affecting ice temperature, as well 

as known temperature profiles from various glacial ice cores. Thus, it is important to 

determine the likeliness of encountering glacial ice temperatures greater than -30ο C. 

 

5.3 Measured Glacial Temperature Profiles 
 

 Several factors contribute to the glacial ice temperature, including the surface 

temperature, the rate of geothermal heat influx from the base, and the vertical and 

horizontal components of velocity within the glacier [42 and 34]. The surface 

temperature of glacial ice is determined by climate, which includes elevation and 

seasonal effects, in addition to any global climate trends. Also, although glacial 

temperature distributions are not linear with depth, the temperature typically increases 

with increasing depth [31] due to a combination of increasing pressure with depth, 



 - 84 -

friction due to velocity gradients, and geothermal heat influx from the base. The 

degree of non-linearity in the temperature profile increases with increasing vertical 

velocity vectors [34].  

 
 

 

Figure 5.2 −−−− Glacial Ice Temperature at 10 m Depth vs. Elevation [41] 

 
 
 Elevation above sea level has a profound effect on glacial ice temperatures 

[42], which can be attributed to increased ambient air temperature with elevation. The 

usual parameter used for indicating surface temperature is the temperature at a depth 

of 10 m, since it avoids seasonal temperature variations [42] which only immediately 

affect the first 10 m of ice. Figure 5.2 displays the glacial ice temperature as a 

function of elevation above sea level along a flow line in Terre Adelie in Antarctica 

[42]. It can be seen that the surface temperature decreases markedly with increasing 

elevation. Any glacier exceeding roughly 1900 m in elevation seems to have a surface 

temperature beneath the -30ο C mark. Recall that at temperatures above -30ο C, ice 

temperature is the primary contributor to ice conductivity. However, the surface 
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temperature is typically the coldest temperature within the glacier, since the glacier 

temperature increases with depth.  

 
 

 

Figure 5.3 −−−− Measured Temperature Profiles from Antarctica  

The data was taken from accumulation areas. [34] 

 
 
 Figure 5.3 displays temperature profiles measured from ice cores in 

Antarctica. Also, Figure 5.4 displays an ice temperature profile from the GISP2 ice 

core from Summit Station in Greenland [14]. Each of these ice cores were obtained 

from accumulation areas, which are defined as areas with a net gain in ice mass over 

time. Accumulation areas are usually located further inland on an ice sheet [34]. In 

contrast, an ablation area is defined as having a net loss of ice mass over time. 

Ablation areas are usually located closer to the coast on an ice sheet [34].  

 From Figures 5.3 and 5.4, it can be seen that with the exception of Vostok, 

each of the temperature profiles are well above -30ο C. Vostok is the exception since 

it is located near the South Geomagnetic Pole at an elevation above sea level of 3488 

m. Also, with an average winter temperature of -65ο C, the coldest recorded 

temperature on Earth of -89.2ο  C was recorded at Vostok. In contrast, Summit Station 

in Greenland, at an elevation above sea level of 3200 m, is located at the highest point 
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in the Arctic, yet has a significantly warmer temperature profile than Vostok. 

Therefore, with the exception of areas near Vostok and the South Pole, the majority 

of glacial ice temperatures are near or below -30ο C, at least during summer months, 

at which time field research is usually conducted.  

  
 

 

Figure 5.4 −−−− Measured Temperature Profile from Greenland 

The data was taken from the GISP2 ice core from Summit Station [2]  

 
 
 As shown throughout this section, for the majority of cases, the assumption 

that conductivity is temperature driven is reasonable. Conductivity is the primary 

cause of loss within glacial ice, and can be accounted for by the complex permittivity 

ε , as shown in Equation 5.7. Now, it is necessary to present the temperature 

dependence of ε and how it relates to attenuation. 
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5.4 Relation of Attenuation to Ice Permittivity and 
Temperature 

 
The majority of the material in Section 5.4 was originally presented by Li, 

Xie, and Dobbs in [27].  

 The attenuation (loss) within glacial ice can be entirely accounted for by the 

complex permittivity ε  as shown in Equation 5.7. Both the real and imaginary parts 

of ε  exhibit temperature dependence. Based on the work in [29], 

 

 ' ( ) 3.1884 (0.00091)r T Tε = +      Eq. 5.10 

 

where T is the temperature in degrees Celsius. Also, as shown in [1] 

 

 '' 2.02 0.0251
( , ) 10

10
T

r f T
f

ε − +=      Eq. 5.11 

 

where f  is the operating frequency of the radar system in GHz.  

 Generally, for lossy media, the wavenumber is complex and is represented by 

 

 ( )k j jωµ σ ωε= − +       Eq. 5.12 

 

where µ  equals the free-space magnetic permeability (4π  x10-7 H/m), since glacial 

ice is non-magnetic. However, since conductivity was accounted for by ''
rε  in 

Equation 5.7, k can be simplified to 

 

 k ω µε=        Eq. 5.13 

 

The complex propagation constant is related to k via the following 
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 jk jγ α β= = +       Eq. 5.14 

 

where α  is the attenuation constant (Np/m) and β  is the phase constant (rad/m). 

Taking the real and imaginary parts of jk and doing some rearrangement results in 

 

 ( )
1

' 2
22 1 tan 1

2
o o rf

µ ε ε
α π δ

 
= − − 

 
    Eq. 5.15 

 

and 

 

 ( )
1

' 2
22 1 tan 1

2
o o rf

µ ε ε
β π δ

 
= − + 

 
    Eq. 5.16 

 

where tanδ  is the loss tangent described by 

 

 

''

'
tan r

r

ε
δ

ε
=

       Eq. 5.17 

 Equation 5.15 relates the attenuation α  to the complex permittivity ε  of the 

ice, which is itself a function of temperature. Therefore, the ability to measure 

attenuation at each depth within glacial ice should enable the determination of 

temperature at each depth. The measurement of attenuation at each depth using radar 

echoes from the two CMP configurations is discussed next.  
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5.5 Attenuation Extraction from Radar Echoes 
 

The majority of the material in Section 5.5 was originally presented by Li, 

Xie, and Dobbs in [27].  

 

           (a)                      (b) 

Figure 5.5 −−−− Bistatic-Radar Common Midpoint Configurations 

(a) Configuration 1 – Fixed Separation (b) Configuration 2 – Fixed Incident Angle 

 
 

 In order to determine the ice attenuation as a function of depth, two different 

transmit and receive antenna common mid-point radar geometries are used: one 

incorporating a fixed antenna separation at each depth (configuration 1) as shown in 

Figure 5.5(a), and one incorporating a fixed incident angle at each depth 

(configuration 2), as shown in Figure 5.5(b). Figure 5.5 generalizes the two radar 

configurations to N layers, with a fixed layer separation of 100 m in each 

configuration.  

 In order to clarify the radar configurations in deriving the ice attenuation from 

radar returns, Figure 5.6 is used. This figure presents the geometric variables 

associated with extracting attenuation from a single layer.  
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(a) Configuration 1 

 

 
(b) Configuration 2 

Figure 5.6 – Common Mid-Point Radar Set-Ups for Layer 1 

 

 

The radar equations for the common mid-point sounding geometry are 
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where Equation 5.18 is associated with configuration 1 and Equation 5.19 is 

associated with configuration 2. The loss incurred by the received signal in each 

configuration is related to the attenuation ( )zα  by 
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Also, the incident angles and ranges shown in Figure 5.6 are determined by 
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Dividing Equation 5.19 by 5.18, assuming Γice is specular, and doing some 

rearrangement results in  
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Next, dividing Equations 5.20 by 5.21 results in  
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Equation 5.27 can be rearranged to the following 
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Plugging Equation 5.26 into Equation 5.28 yields a relationship between the 

accumulated attenuation over a depth z and the power received from that depth  

 

 
2 2

1 2 1
2 2

2 1 2 1 20

( , ) ( )cos 1
( ') ' ln

( , ) ( )cos 2(sec sec )

z
r

r

G z P z
z dz

G z P z

θ θ
α

θ θ θ θ
   

=    −   
∫  Eq. 5.29 

 

The ice attenuation over a single resolution layer z∆  at a depth zi can be obtained by 

subtracting the contributions from all layers previous to zi from the accumulated 

attenuation 
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Equations 5.30 and 5.29 can be used to determine the attenuation at any depth within 

glacial ice from knowledge of the received power, incident angles, and far-zone 

antenna gain. The next section deals with relating the measured attenuation to 

temperature.  

 

5.6 Temperature Extraction from Measured Attenuation 
 

The majority of the material in Section 5.6 was originally presented by Li, 

Xie, and Dobbs in [27].  

 Extraction of temperature from measured attenuation involves representing 

( )zα  from Equation 5.15 in terms of the temperature-dependent complex 
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permittivityε . However, prior to doing so, for low-loss dielectrics (tan 1δ << ), the 

following simplification can be made for ( )zα [11] 

 

 
' ''
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π ε δ π ε
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ε
= =      Eq. 5.31 

 

To see if the low-loss approximation of Equation 5.31 is acceptable for glacial ice, 

consider σ  of 0.00001 S/m [2] at a frequency f of 200 MHz (frequency used in ice-

penetrating radar), and a dielectric constant '
rε  of 3.2 (that of fully compressed ice). 

Determining ''
rε  using the above information and Equation 5.7 yields a loss 

tangenttanδ  of 0.00028, which is much less than 1.  

 Plugging Equations 5.11 and 5.12 into 5.31 yields 
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    Eq 5.32 

 

Rearranging Equation 5.32 and squaring both sides results in the following 

transcendental equation relating temperature T(z) to attenuation ( )zα  
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T z
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π
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 Eq. 5.33 

 

Equation 5.33 can be solved numerically to determine the temperature as a function 

of depth within glacial ice. The next section presents resulting temperature profiles 

obtained using Equation 5.33 and simulated data.  
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5.7 Simulated Temperature Profile Results 
 

Four sets of simulated results were calculated from using three measured 

temperature profiles [2]. The temperature profiles, shown in Figure 5.7, include one 

from the GRIP [16] ice core, and two hypothetical profiles, called Hypothetical 1 

(Hypo. 1) and Hypothetical 2 (Hypo. 2). From these measured temperature profiles, 

received power was simulated. Then, from the simulated received power, temperature 

profile extraction was simulated. In the first set of simulated results, temperature 

profiles were extracted assuming ideal conditions (no gain estimation error). In the 

second set, temperature was extracted while neglecting the depth-dependent refractive 

properties of glacial ice. The third set involved extracting temperature while assuming 

an error in the ice density profile model. Finally, in the fourth set, temperatures were 

extracted using a Hertzian dipole in free-space for the estimated antenna gain. All of 

the results obtained in this section where produced using the IceTemp.m Matlab 

script, which is shown in Appendix C.  

 
 

 
 Figure 5.7 – Measured Temperature Profiles used for Simulation 
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Each of the three simulated sets of results involved an identical procedure for 

simulating received power. The equations used for simulating received power are 

presented in Section 5.6, but are repeated here for clarity. First, from the measured 

temperature profiles, real and imaginary permittivites were calculated for each depth 

using the following 

 

' ( ) 3.1884 (0.00091) ( )r z T zε = +     Eq. 5.34  

'' 2.02 0.025 ( )1
( ) 10

10
T z

r z
f

ε − +=      Eq. 5.35 

 

Then, from the calculated values of ' ( )r zε  and '' ( )r zε , the attenuation at each depth 

was calculated using 
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The attenuation is related to the total loss incurred by the received power from each 

depth by 
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Knowing the accumulated loss at each depth from Equations 5.37 and 5.38, and using 

the appropriate formulas from Section 5.6 for describing the geometries of radar 

configurations 1 and 2, allows the received power to be simulated using  
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Once the received power is known and the antenna gain at each depth is estimated, 

the attenuation at each depth can be extracted using  
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Note that the Vivaldi antenna (Chapter 4) was used for calculating antenna gain in 

Equations 5.39, 5.40, and 5.41. Once the attenuation at each depth has been extracted, 

the temperature at each depth can be extracted using 
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 Eq. 5.43 

 

The purpose of the simulations in Section 5.7 was to explore the effect of 

antenna-gain estimations on the ability to extract glacial-ice temperature profiles. 

There are other possible sources of error in determining glacial-ice temperature 

profiles that are not investigated in this work. These include possible inaccuracies in 

the temperature extraction algorithm, the possibility of the internal ice reflectivity 

being a function of polarization and incident angle, and the signal to noise ratio. Since 

in these temperature profile extraction simulations, the same algorithm was used to 

simulate received power, as was used to extract temperature, inaccuracies in the 

temperature extraction algorithm could not be explored in this work. The effect of 
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polarization and incident angle could have been explored in this work, but that in of it 

self would involve internal layering assumptions. The effect of noise was explored in 

[27], and is therefore not repeated here.  

 

5.7.1 Simulated Temperature Extraction under Ideal Conditions  
 

The majority of the material in Section 5.7.1 was originally presented by Li, 

Xie, and Dobbs in [27].  

In this idealized simulation, there was no antenna gain estimation error. Also, 

since the same antenna gain was used to simulate values of Pr , as was used to extract 

α(z), the antenna gain had no effect on the results. Table 5.1 lists the parameters used 

to perform this simulation. The fixed value of θI  in Configuration 2 is half the critical 

angle [11] determined using a value of 3.2 for the ice dielectric constant. This 

incident angle insures that the critical angle is never exceeded.  

 
 

Table 5.1 - Ideal Temperature Profile Extraction Simulation Parameters 

 
 

 

Figure 5.8 compares the measured temperature profiles to the simulated 

results obtained assuming ideal conditions. Although the measured and simulated 

results in Figure 5.8 are not identical, they are very similar.  

Figure 5.9 quantifies the error between simulated and measured temperature 

profiles. The hypothetical 2 profile performed the best, with the error being 

constrained to within -0.5o C. The GRIP and hypothetical 1 profiles did not perform 

as well, with the error exceeding -1o C for depths below 2500 m.  
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Figure 5.8 –Measured/Simulated Temperature Profiles (Ideal Case) 

 

 

 
Figure 5.9 – Temperature Extraction Error (Ideal Case) 

 
 

Results comparing the measured and simulated attenuation are also presented. 

Figure 5.10 compares the measured and simulated attenuation profiles, and Figure 
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5.11 displays the error between measured and simulated attenuation profiles. In 

Figure 5.11, there is good agreement between measured and simulated attenuation 

profiles, which mimics the agreement for temperature profiles shown in Figure 5.8. In 

Figure 5.11, the error is constrained between 0 and 1.5 x 10-4 Np/m for most of the 

data points. Only the hypothetical 1 profile has error values significantly exceeding 

this range.  

 
 

 
 

Figure 5.10 – Measured/Simulated Attenuation Profiles (Ideal Case) 
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Figure 5.11 – Attenuation Extraction Error (Ideal Case) 

 
 

5.7.2 Effect of Neglecting Refractive Gain on Temperature Extraction 
 

In this simulation, the ice was treated as a homogeneous half-space in regards 

to extracting ice temperature profiles. Therefore, the refractive gain of the ice was 

neglected. Figure 5.12(a) shows the error between simulated and measured 

temperature profiles. The error is extreme for the first 500 m, with the error 

magnitude exceeding 50oC at one depth. But, the error does become less significant 

below 800 m. Figure 5.12(b) provides a zoomed in version of Figure 5.12(a), and 

only displays depths from 700 m and deeper. From Figure 5.12(b), it can be seen that 

the magnitude of the error is constrained to within 2oC below 900 m. Also, Figure 

5.13 compares the measured and simulated temperature profiles.  
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(a) 

 

 

(b) 

Figure 5.12 – Error between Simulated/Measured Temperature Profiles (Ignoring Refractive 

Gain)  

(a) All Depths (b) Zoomed In  
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Figure 5.13 – Measured/Simulated Temperature Profiles (Ignoring Refractive Gain) 

 

 

From Figures 5.12 and 5.13, it is apparent that neglecting the refractive gain 

of glacial ice when estimating antenna gain severely affects the ability to accurately 

extract temperature profiles using radar, at least at shallower depths. This is because 

the more the density profile changes with depth, the more the antenna gain pattern 

changes spatially with depth. Eventually, a depth is reached (800 m in this case), at 

which the gain estimation error for each radar configuration is essentially constant as 

a function of depth. The usage of 2 radar configurations nearly cancels out the effects 

of any magnitude-only error in antenna gain estimation (see Equation 5.41 and 5.42). 

Only spatial variations in the antenna gain, which occur at shallower depths, 

significantly affect the accurate calculation of ice attenuation via Equation 5.41 and 

5.42, and thus the extraction of temperature as a function of depth. Figure 5.14 plots 

the antenna-gain estimation error as a function of depth in dB. Here the gain error can 

basically be considered as additive noise. The error is less than -25 dB for depths 

greater than 800 m in this case.  
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Figure 5.14 – Antenna-Gain Estimation Error in dB (Ignoring Refractive Gain) 

 

5.7.3 Effect of Ice Density Profile Error on Temperature Extraction 
 

 In this simulation, an incorrect ice density profile was used to estimate 

antenna gain, when extracting ice temperature profiles. The received power is 

simulated using antenna gain obtained from the Greenland density profile model, and 

the glacial ice temperature is extracted using antenna gain obtained from either the 

Profile 1 or Profile 2 density profile models discussed below. 

 

 

Table 5.2 – Density Profile Empirical Constants 
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Figure 5.15 – Density Profiles 

 
 

 Profile 1 and Profile 2 were created using the empirical constants shown in 

Table 5.2. Figure 5.15 compares the two hypothetical density profiles with the 

Antarctic and Greenlandic density profiles discussed in Chapter 3. From Table 5.2 

and Figure 5.15, it can be seen that Profile 1 is similar to the Antarctic density profile, 

but has a slightly increased exponential growth. Also, Profile 2 is similar to the 

Greenlandic density profile, but has a slightly decreased exponential growth.  

 Figure 5.16 shows the temperature extraction error obtained when using the 

Profile 2 density model. The error is large for depths of roughly 250 m and less. 

However, below 250 m, the error is approximately the same as that obtained under 

ideal conditions (Figure 5.9). The error is greatest at shallower depths, because that is 

where the ice density, and thus the antenna gain, varies the most.  
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Figure 5.16 – Temperature Extraction Error (Profile 2 Density Model) 

 

 

 
Figure 5.17 – Measured/Simulated Temperature Profiles (Profile 2 Density Model)  
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 Figure 5.17 compares the measured temperature profiles with those 

temperature profiles obtained using the Profile 2 density model. The simulated 

temperature is underestimated at depths shallower than 250 m. Also, based on 

previously presented temperature profiles (Figures 5.3 and 5.4); the simulated profiles 

in Figure 5.17 seem to have an unnatural slope at depths shallower than 250 m. 

Therefore, it appears that incorrect density profile usage could be predicted if such 

unnatural looking temperature profile results are obtained in practice.  

 Temperature profile results were also simulated using the Profile 1 density 

model. As shown in Figure 5.15, the Profile 1 density profile is drastically different 

than the Greenland profile, so errors should be greater than those shown in Figure 

5.16. Figure 5.18 displays the temperature extraction error obtained when using the 

Profile 1 density profile. The error exceeds 10oC near the ice surface. As the depth 

increases, the error is reduced. Again, this is because the density profile changes the 

most near the surface, and the density becomes nearly constant below 100 m.  

 
 

 
Figure 5.18 - Temperature Extraction Error (Profile 1 Density Model) 
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 Figure 5.19 compares the measured temperature profiles with those 

temperature profiles obtained using the Profile 1 density model. The measured and 

simulated results are significantly different for the first 400 m. But, again the 

simulated results look unnatural at these depths based on known temperature profiles. 

Therefore, the error could be predicted in practice.  

 
 

 
Figure 5.19 – Measured/Simulated Temperature Profiles (Profile 1 Density Model)  

 
 

 From the simulated temperature profile results shown in Figures 5.16 through 

5.19, it can be seen that accurate predictions of density profiles are necessary in order 

to accurately extract temperature profiles. But, the effect of the usage of inaccurate 

density profiles is most pronounced within the first 400 m of ice. This is because the 

more the density profile changes with depth, the more the antenna gain pattern 

changes spatially with depth. At depths greater than 250 m, the antenna gain reaches a 

nearly constant pattern that is roughly the same regardless of the density profile used. 

Therefore, any error in the antenna gain estimation for radar configurations 1 and 2 is 
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an approximately constant value that is essentially eliminated through the 

mathematics of Equation 5.41 and 5.42.  

 Figure 5.20 plots the antenna-gain estimation error as a function of depth, for 

antenna gain obtained using both the Profile 2 and Profile 1 ice-density models. The 

antenna-gain estimation error is smaller for the gain estimated using the Profile 2 

density model, since it is more similar to the Greenland density model (which was 

used to simulate received power) than is Profile 1. 

 
 

 
Figure 5.20 – Antenna-Gain Estimation Error in dB (Incorrect Density Profile) 

 
 

 Even though inaccurate ice density profile usage is not ideal, the usage of a 

reasonable, if not exact density profile, is superior than neglecting the refractive gain 

of ice altogether. The temperature extraction errors shown in Figures 5.16 and 5.18 

(usage of incorrect density profile) are much less than that shown in Figure 5.12(a), 

where the density profile of ice is neglected entirely. Correspondingly, the antenna-
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gain estimation error reaches a value of less than -25 dB at a depth of only 300 m 

when the reasonable Profile 2 and Profile 1 ice-density models were used, whereas an 

error of less than -25 dB was not reached until a depth of 800 m when the ice 

refractive gain was neglected.  

 

5.7.4 Effect of Using a Free-Space Hertzian Dipole as Estimated 
Antenna Gain 

 
In this simulation, the estimated antenna gain used for temperature extraction 

was that from a Hertzian dipole in free-space. As before, the received power was 

simulated using antenna gain obtained from the Vivaldi antenna and using the 

Greenland density profile model. 

 
 

 
Figure 5.21 – Temperature Extraction Error (Free-Space Hertzian Dipole) 

 

 

 Figure 5.21 shows the temperature extraction error obtained when estimating 

antenna gain using a free-space Hertzian dipole. The error is large for depths of 
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roughly 1000 m and less. However, below 1000 m, the error is approximately the 

same as that obtained under ideal conditions (Figure 5.9). Again, the error is greatest 

at shallower depths, because that is where the ice density, and thus the antenna gain, 

varies the most. Also, Figure 5.22 compares the measured and simulated temperature 

profiles. The measured and simulated profiles compare favorably at depths greater 

than 1000 m.  

 
 

 
Figure 5.22 – Measured/Simulated Temperature Profiles (Free-Space Hertzian Dipole) 

 
 

 
 Figure 5.23 plots the antenna-gain estimation error as a function of depth, for 

antenna gain estimated from a Hertzian dipole in free-space. As with the other two 

cases of induced error, the estimation error decreases with increasing depth.  
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Figure 5.23 – Antenna-Gain Estimation Error in dB (Free-Space Hertzian Dipole) 

 
   

5.8 Chapter 5 Results Summary 
 

The effect of antenna-gain estimation error on temperature-extraction 

accuracy was explored in Section 5.7 of this chapter. Four different sources of 

antenna-gain estimation error were used, including: assuming homogeneous ice, 

using two different incorrect glacial-ice density profiles, and using a free-space 

Hertzian dipole as the antenna gain source. Each of these error sources yielded the 

surprising result that antenna-gain estimation has little effect on temperature-

extraction accuracy deep within the ice. This is due to the eventual nearly-constant 

antenna gain patterns occurring within the ice at deep depths, and the mathematics of 

the attenuation extraction algorithm (see Equations 5.41 and 5.42). Usage of the two 

radar configurations provides two independent views at each depth-resolution layer, 

which significantly reduces the effects of any uncertainties in antenna gain. 

Figure 5.24 plots the antenna-gain estimation error as a function of depth for 

each of the four induced-error scenarios. Each of the four curves in Figure 5.24 
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follows the same general trend. But, the curves produced for more accurate antenna-

gain estimations yield the smallest error. The antenna-gain estimation error can be 

considered to be additive noise, affecting the attenuation measurement accuracy, and 

thus the temperature extraction accuracy. 

 
 

 
Figure 5.24 – Antenna-Gain Estimation Error in dB (All Error Sources) 

 

 

Table 5.3 compares the four sources of antenna-gain estimation error, where 

usage of “Density Profile 2” yielded the most accurately-estimated antenna gain, and 

usage of “Free-Space Hertzian Dipole” yielded the least accurately-estimated antenna 

gain. The depth at which the antenna gain error begins to mimic that obtained under 

ideal conditions (Section 5.7.1) is listed. So, the more accurate the estimated antenna 

gain, the shallower is the depth at which extracted temperatures are as accurate as the 

ideal case.  
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Table 5.3 – Gain Estimation Error Comparison  
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CHAPTER 6: Summary/Conclusions/Future Work 

 
 The thesis work began under the assumption that accurate far-zone antenna-

gain estimates are required in order to use ice-penetrating radar to accurately measure 

glacial ice temperature profiles. Therefore, this work set out to determine a method of 

accurately estimating the antenna-gain of ice-mounted antennas. First, the possible 

usage of commercial codes was explored, but it was found that although commercial 

codes are often used to determine far-zone antenna gain in free-space, these codes are 

incapable of doing so for ice-mounted antennas, due to the inhomogeneous dielectric 

constant of glacial ice. So, after some deliberation, a three-part hybrid numerical 

technique, called the FEM-NFFT-GO, was devised for accurately estimating the far-

zone antenna gain within glacial ice. The FEM-NFFT-GO technique uses the FEM 

(finite element method) to calculate near-zone fields of the antenna, a dual-dielectric 

NFFT (near-to-far-field transformation) to determine the far-zone fields in the upper 

region of glacial ice, and the GO (geometric optics ray-tracing) technique to 

determine the far-zone fields at any depth within glacial ice. Results were presented 

that both validate the FEM-NFFT-GO technique, and highlight its ability to determine 

far-zone gain for complex ice-mounted antennas. Then, the glacial-ice temperature 

extraction algorithm was presented, as well as results relating the effects of antenna-

gain estimation error on temperature profile extraction accuracy. Surprisingly, it was 

found that antenna-gain estimation errors only have a significant effect on 

temperature extraction at shallow depths within the ice. Regardless of the necessity of 

accurate antenna-gain estimations to extract glacial-ice temperatures, a powerful 

antenna-gain estimation technique was developed that should prove useful in many 

applications.   

 

 

 



 - 115 -

6.1 Antenna-Gain Estimation Summary 
 

 The FEM-NFFT-GO technique provides an invaluable tool with which to 

estimate far-zone antenna gain for ice-mounted antennas. This ability should prove to 

be a huge benefit to future glaciological research. The technique is easy to use, and is 

essentially a post-processing feature on top of the widely used HFSS antenna-analysis 

software.  

Also, the FEM-NFFT-GO antenna gain estimation technique is useful for 

analyzing radiating structures in general, regardless of whether glacial ice is involved. 

The FEM-NFFT technique can be used alone to analyze radiating structures above an 

arbitrary half-space, which may be useful for ground-penetrating radar. Also, the GO 

portion of the technique can be adjusted to use refractive indexes following any 

mathematical trend. 

The FEM-NFFT-GO technique relies on two assumptions in order to predict 

far-zone antenna gain accurately. First, this technique assumes that far-zone fields 

within the ice are planar prior to the ice dielectric constant changing significantly. 

Although this is a good approximation, it may not be entirely accurate. Field 

experiments will be required to determine the accuracy of this assumption. Second, 

the technique assumes that the glacial ice density profile is known with a high degree 

of accuracy. However, a reasonable approximation will suffice in most cases.  

  

6.2 Effects of Antenna-Gain Estimation on Ice-Temperature 
Extraction Summary 
 

 As shown in Chapter 5, antenna-gain estimation error was shown to only have 

a significant effect on temperature extraction accuracy at shallow depths, where the 

definition of shallow depended upon the accuracy of the antenna-gain estimation. 

When the most accurate antenna-gain estimation error was used (a slight alteration to 

the glacial-ice density profile), the extracted temperatures were found to be nearly as 
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accurate as the ideal case for depths below 250 m. When the least accurate antenna-

gain estimation error was used (gain estimated from free-space Hertzian dipole), the 

extracted temperatures were found to be nearly as accurate as the ideal case for depths 

below 1000 m.  

 The most probable source of error explored in Chapter 5 was the usage of an 

incorrect ice density profile for estimating far-zone antenna. This was found to 

adversely affect the temperature extraction accuracy, but again, only at shallow 

depths. Even when a significantly different density profile was used, the results were 

still favorable, and the extracted temperatures were found to be nearly as accurate as 

the ideal case for depths below 400 m.  

 

6.3  Conclusions 
 

 The combination of the FEM-NFFT-GO antenna gain estimation technique 

along with the bistatic radar configurations discussed in Chapter 5 should enable 

glacial ice temperature profiles to be measured using ice-penetrating radar. 

Depending on the accuracy of the antenna-gain estimation, extracted temperatures 

will be accurate throughout most or all of the ice depth. However, if accurate ice 

temperatures are required only at very deep depths, accurate antenna-gain estimations 

are unnecessary.  

 This ability to measure glacial ice temperature via radar will make obtaining 

these profiles much easier, since ice-core drilling will no longer be required. The 

resulting potential increase in the availability of such data should further the science 

of glaciology, since ice temperature is fundamental in a variety of glacial processes 

[31]. An increased understanding of glacial processes will further science’s 

understanding of how glaciers relate to the global climate.  
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6.4 Future Work 
 

There is some future work to be carried out regarding both antenna-gain 

estimation for ice-mounted antennas and glacial-ice temperature extraction. To verify 

the accuracy of the FEM-NFFT-GO technique, field experiments need to be 

conducted to measure actual antenna patterns within glacial ice. This could be 

accomplished using a bistatic system and a calibration target.  

Regarding temperature extraction, the effect of non-specular reflectivity and 

the accuracy of the temperature-extraction algorithm need to be investigated. As for 

non-specular reflectivity, the use of two independent measurements (combination of 

two radar configurations) at each depth-resolution layer should reduce any errors 

associated with non-specular reflectivity, provided the incident angles at the depth of 

interest are roughly the same for both radar configurations. This error reduction 

associated with non-specular reflectivity would be similar to what occurred with the 

antenna-gain estimation error.  

The accuracy of the temperature-extraction algorithm can only be investigated 

by taking field measurements, using the temperature-extraction radar set-up, in 

regions with known temperature profiles. Then, the extracted temperature profiles 

from radar measurements can be compared with the known temperature profiles to 

investigate the accuracy of the technique.  
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APPENDIX A: Quasi-Far-Zone Field Derivation 
 

In this section, the closed form solutions for far-zone fields radiated by 

electric and magnetic surface currents in the presence of a half-space of glacial ice are 

derived and presented. The derivation of these formulas involves use of the 

electromagnetic reciprocity principle. Also, lossless media is assumed for all of the 

formulas presented in this section.  

 

General Description of Reciprocity in Relation to a Half-Space of Ice 

 

 

Figure A.1 −−−− Reciprocity 

 

 

 Reciprocity states that the response of a system to a source is unchanged when 

source and measurer are interchanged [18]. Figure A.1 describes this reciprocal 

relationship between source and measurer in relation to a half-space of ice. In Figure 

A.1, a source current sJ , located near the air/ice interface, radiates an electric field 

sE  which is sensed by an observer (measurer) located far from the air/ice interface. 
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The observer has a hypothetical test current oJ  that radiates an electric field oE , 

which is planar near the air/ice interface. Since sJ  is located near the air/ice interface, 

sE  is not yet planer near the air/ice interface, and therefore can not be described 

directly in terms of planar transmission and reflection coefficients. However, the 

reciprocal relationship between source and observer will be taken advantage of to 

describe sE  in terms of the planar oE  near the air/ice interface. 

Using the notation in Figure A.1, reciprocity can be stated mathematically for 

electric sources via the following relation.  

 

, ,o s s oE J E J=       Eq. A.1 

 

The brackets in Equation A.1 indicate the inner product, which expands to the 

following 

 

 ( ) ( )o s s o

S S

E J dS E J dS⋅ = ⋅∫∫ ∫∫      Eq. A.2 

 

Equation A.2 directly relates the source and observer in Figure A.1, and shows that 

switching the role of source and observer has no effect on the problem solution. The 

“observer current” oJ  can be considered to be a hypothetical test current. Although 

oJ  is useful in the quasi-far-field formula derivation, it disappears in the final result.  

 

 

The Four Cases to Consider when Deriving Quasi-Far-Zone Field Formulas 

 

 There are four cases to consider when deriving the quasi-far-zone electric 

fields radiated by surface currents in the presence of a half-space of ice. These four 

cases, which involve different combinations of field polarization (parallel or 
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perpendicular) and source and observer location, are outlined in Table A.1. The 

derivation method for each of the four cases is basically the same. Therefore, only the 

electric fields for Case 1 will be derived. The formulas for the other 3 cases will be 

outlined later.   

 

 

Table A.1 – The Four Reciprocity Cases 

 
 

 

Derivation of Electric Fields due to Electric Source Currents for Case 1 

 

 
Figure A.2 -  Case 1 Reciprocity Derivation 
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 Case 1 involves parallel-polarized electric far-zone fields in which source and 

observer are located in the same medium (air or ice). Figure A.2 depicts the reciprocal 

relationship between source and observer for Case 1, and although the source and 

observer are both shown in ice, they could have also both been shown in air. In Case 

1, the far-zone electric field sE  is generated by a source current sJ  which is directed 

in the ˆsa  direction. The ̂ sa  direction can be either ˆxa , ˆya , or ˆza .  Because the 

observer and source are in the same medium,sE will consist of both incident and 

reflected fields. The observer, located far from the air/ice interface “senses” sE  by 

using a theta directed test current oJ θ . oJ θ , which is directed in the ̂aθ  direction, 

generates an electric field oE θ  in the -âθ direction. Rewriting Equation A.1 to 

correspond with Figure A.2 yields 

 

, ,o s s oE J E Jθ θ=       Eq. A.3 

 

Expanding Equation A.3 yields 

 

( ) ( )o s s o

S S

E J dS E J dSθ θ⋅ = ⋅∫∫ ∫∫     Eq. A.4 

 

Next, integrating Equation A.4 produces the following result, 

 

ˆ ˆs s s s o o o o sJ w l a E J w l a Eθ θ θ⋅ = ⋅      Eq. A.5 

 

where w and l denote the dimensions of the surface current. Note that 

 

 ˆ s sa E Eθ θ⋅ =        Eq. A.6 
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indicating that the usage of a theta-directed test current oJ θ  extracts the theta 

component sE θ  of sE . Rearranging Equation A.5 in terms of sE θ  yields 

 

ˆsy s s s o
s

o o o

J w l a E
E

J w l
θ

θ
θ

⋅
=       Eq. A.7 

 

 

 
Figure A.3 – Fields Produced by θ-Directed Observer Electric Test Current 

 

 

 The field oE θ  can be found using the geometry shown in Figure A.3, which 

shows the far-zone electric fields produced by oJ θ , as well as the associated 

variables. Since both the source and observer are located in the same medium, oE θ  

can be described by the following 
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 I R
o o oE E Eθ θ θ= +       Eq. A.8 

 

where I
oE θ  and R

oE θ  are the incident and reflected components of oE θ . The incident 

field I
oE θ  is a plane wave directed in the ̂aθ−  direction described by the following 

well-known formula [11] 

 

 ( )( ) ˆ
4

Ij K RI o o o o o
o

jk J w l
E e aθ

θ θ

η
π

− ⋅= −     Eq. A.9 

 

where ko and ηo indicate the wavenumber and intrinsic impedance of the medium 

containing the observer. Also,  

 

 I oK k R= −        Eq. A.10 

 

is the propagation vector of the incident electric field radiated by the observer test 

current, where the observer position vector is defined by 

 

 ˆ ˆ ˆsin cos sin sin cosx y zR a a aθ φ θ φ θ= + +    Eq. A.11 

 

and θ and φ  are the angular positions of the observer. Also, IK  is related to the unit 

incident propagation vector Îk  via the following 

 

 ( )ˆ ˆ ˆ ˆI o I o Ix x Iy y Iz zK k k k k a k a k a= = + +    Eq. A.12 

 

 The reflected field R
oE θ  is also a plane wave and is described by the following 

well-known formula [11] 
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 ( )( ) ˆ
4

Rj K RR o o o o o
o R

jk J w l
E e aθ

θ θ

η
π

− ⋅= Γ     Eq. A.13 

 

where θΓ  is the parallel-polarized reflection coefficient defined by  

 

 cos cos

cos cos
n T o I

n T o I
θ

η θ η θ
η θ η θ

−
Γ =

+
     Eq. A.14 

 

and nη  is the intrinsic impedance of the medium not containing the observer, which 

may or may not contain the source. The transmitted and incident angles are Tθ  

(determined by Snell’s Law [11]) and Iθ . Also, ˆRa  is the direction of R
oE θ , as shown 

in Figure A.3.  

 Since the direction of propagation, electric field, and magnetic field for a 

plane wave are always mutually orthogonal, the following can be used to determine 

the direction of R
oE θ  

 

 ˆ ˆˆ ˆ ˆR HR R Ra a k a kφ= × = − ×      Eq. A.15 

 

where ˆHRa  is the direction of the reflected magnetic field, which is in the âφ−  in 

Figure A.3. Also, ̂ Rk  is the unit propagation vector of the reflected electromagnetic 

wave and equals the following 

 

 ˆ ˆ ˆ ˆ R
R Ix x Iy y Iz z

o

K
k k a k a k a

k
= + − =     Eq. A.16 

 

indicating that ̂ Rk  propagates in the same ˆxa  and ˆya  direction as ̂ Ik , but in the 

opposite ̂ za  direction.  
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 Equation A.7 can be solved for sE θ , the electric field produced by the source 

current. By inspection of Equation A.7, since oE θ  (defined by Equations A.8, A.9, 

and A.13) consists of incident and reflected fields, so must sE θ . Therefore, the 

parallel-polarized electric field produced by sJ  can be described by 

 

 I R
s s sE E Eθ θ θ= +       Eq. A.17 

 

The incident field is 

 

 
ˆ I
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E
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θ

⋅
=       Eq. A.18 

 

and the reflected field is 

 

 
ˆ R
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θ

θ
θ

⋅
=       Eq. A.19 

 

Substituting Equation A.9 into Equation A.18 results in  

 

 ( ) ˆ ˆ
4

Ij K RI o o s s s
s s

jk J w l
E e a aθ θ

η
π

− ⋅= ⋅−     Eq. A.20 

 

and substituting Equation A.13 into Equation A.19 results in 

 

 ( )( ) ˆˆ ˆ
4

Rj K RR o o s s s
s R s

jk J w l
E e a k aθ θ φ

η
π

− ⋅= Γ − × ⋅    Eq. A.21 
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 Equations A.20 and A.21 are the parallel-polarized electric field formulas due 

to an electric source current current Js, with arbitrary direction ̂ sa , for both source and 

observer located in the same medium. Notice the elimination of oJ θ , ow , and ol , which 

are associated with the observer test current. However, the propagation vectors ˆ
Rk , 

Îk , RK , and IK , are with respect to the observer as shown in Figure A.3. Since there 

is no longer any potential confusion between observer current and source current, it is 

desirable to change the notation of Equations A.20 and A.21 to the following 

 

 ( ) ˆ ˆ
4

Ij K RI o o
J s

jk Jwl
E e a aθ θ

η
π

− ⋅= ⋅−     Eq. A.22 

 ( )( ) ˆˆ ˆ
4

Rj K RR o o
J R s

jk Jwl
E e a k aθ θ φ

η
π

− ⋅= Γ − × ⋅    Eq. A.23 

 

where I
JEθ  and R

JEθ  are the parallel-polarized incident and reflected fields due to an 

electric source current J  with arbitrary direction ̂ sa . The subscript s has been 

removed from J, w, and l, since it is no longer necessary.  

 

 

Electric Fields due to Electric Source Currents for All Cases 

 

 A procedure similar to that used for deriving the Case 1 electric-field formulas 

can be used to derive the electric-field formulas for the other 3 cases listed in Table 

A.1.  Whether or not the observer and source are located in the same or different 

mediums affects whether the total electric field consists of both incident and 

reflected, or only transmitted fields. Also, the electric-field polarization affects the 

direction of the total electric field. The formulas for the electric fields due to electric 

current sources for all 4 cases listed in Table A.1 are presented below.  
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 Far-Zone Electric Fields due to Electric Current Sources 

 Case 1 

 ( )( ) ˆ ˆ
4

Ij K RI o o
J s

jk Jwl
E e a aθ θ

η
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− ⋅= − ⋅     Eq. A.24 
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− ⋅= Γ − × ⋅    Eq. A.25 

 Case 2 

 ( )( ) ˆˆ ˆ
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− ⋅= × ⋅    Eq. A.26 

 Case 3 
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− ⋅= − ⋅     Eq. A.27 
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− ⋅= Γ − ⋅     Eq. A.28 

 Case 4 
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− ⋅= − ⋅     Eq. A.29 

 

 

 Transmission and Reflection Coefficients for Electric Current Sources 

 
2 cos

cos cos
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η θ
η θ η θ
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     Eq. A.30 
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     Eq. A.31 
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     Eq. A.32 
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η θ η θ
η θ η θ

−
Γ =

+
     Eq. A.33 
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 Propagation Vectors, Wavenumbers, and Intrinsic Impedances 

 

 ˆ ˆ ˆ ˆI Ix x Iy y Iz zk R k a k a k a= − = + +      Eq. A.34 

 ˆ ˆ ˆ ˆR Ix x Iy y Iz zk k a k a k a= + −      Eq. A.35 

 2 2 2ˆ ˆ ˆ ( )T Ix x Iy y Iz n Ix Iyk k a k a sign k k k k= + + − −    Eq. A.36 

ˆ ˆ ˆsin cos sin sin cosx y zR a a aθ φ θ φ θ= + +    Eq. A.37 

 ˆ
I o IK k k=        Eq. A.38 

 ˆ
R o RK k k=         Eq. A.39 

 ˆ
T n IK k k=         Eq. A.40 

 2o f o f ok fπ µ µ ε ε=       Eq. A.41 

 2n f n f nk fπ µ µ ε ε=       Eq. A.42 

 f o
o

f o

µ µ
η

ε ε
=        Eq. A.43 

 f n
n

f n

µ µ
η

ε ε
=        Eq. A.44 

 

Note, in Equations A.41 through A.44, fµ  and fε  are the free-space magnetic 

permeability and electric permittivity, respectively. Also, oε  and nε  are the dielectric 

constants of the medium containing and not containing the observer, respectively. 

The relative magnetic permeabilitiesoµ  and nµ  are both equal to 1 for since glacial 

ice and air are both non-magnetic mediums. 
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Required Formula Adjustments for Incident Angles Exceeding the Critical Angle 

 

 For cases involving transmission from a medium with a high dielectric 

constant to one with a lower dielectric constant (i.e. transmission from ice to air), the 

possibility for an evanescent wave exists. An evanescent wave is a surface wave that 

decays exponentially in the ˆza  direction, and is therefore a non-propagating wave. 

This occurs then the incident angle Iθ  is greater than the critical angle cθ , making the 

transmission angle Tθ  imaginary. The critical angle is determined via the following 

 

 1sin n
c

o

ε
θ

ε
−

 
=   

 
      Eq. A.45 

 

For the case of evanescent waves, the following adjustments are required for the 

transmission and reflection coefficients, and transmission vector [11]. 
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     Eq. A.46  
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      Eq. A.47 
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     Eq. A.48 
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η η θ
η η θ

− −
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     Eq. A.49 

2 2 2ˆ ˆ ˆ( )T Ix x Iy y Iz n Ix Iy zK k a k a jsign k k k k a= + − − + +   Eq. A.50 

 

where  
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2sin 1o
I

n

A
ε

θ
ε

 
= − 

 
      Eq. A.51 

 

 

Derivation of Electric Fields due to Magnetic Sources Using Duality 

 

Table A.2 – Duality [18] 

(1)  For Problems in Which Only Electric Sources Exist 

(2)  For Problems in Which Only Magnetic Sources Exist 

 

 

 

 Duality (see Table A.2) [18] is used to determine the electric far-zone fields 

due to magnetic source currents. To provide an example of this procedure, I
MEθ  is 

derived from I
JEφ , which is shown again below 

 

 ( )( ) ˆ ˆ
4

Ij K RI o o
J s

jk Jwl
E e a aφ φ
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− ⋅= − ⋅     Eq. A.52 

 

First, using Table A.2, the necessary replacements are made for changing from an 

electric source current J to a magnetic source current M, resulting in the following: 
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− ⋅= − ⋅     Eq. A.53 
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where ˆsa  is now the direction of M. Notice that whereas a φ-directed electric current 

produces a φ-directed electric field, a φ-directed magnetic current produces a φ-

directed magnetic field. Now, using the following relation, the electric field 

associated with I
MHφ  can be determined 

 

 E Hη=        Eq. A.54 

 

So, the parallel-polarized incident electric field due to a magnetic source current is  

 

 ( )( ) ˆ ˆ
4

Ij K RI o
M s

jk Mwl
E e a aθ φπ

− ⋅= − ⋅     Eq. A.55 

 

 

Electric Fields due to Magnetic Source Currents for All Cases 

 

 Restating Equation A.55 and using duality to derive all of the parallel and 

perpendicular electric field components due to magnetic source currents results in the 

following 

 

 Far-Zone Electric Fields due to Magnetic Current Sources  

 Case 1 

 ( )( ) ˆ ˆ
4

Ij K RI o
M s

jk Mwl
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− ⋅= − ⋅     Eq. A.56  

 ( )( )ˆ ˆ ˆ
4

Rj K RR o
M s

jk Mwl
E e a aθ θ φπ

− ⋅= Γ − ⋅     Eq. A.57 

 Case 2 
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− ⋅= − ⋅     Eq. A.58 
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 Case 3 

 ( )( ) ˆ ˆ
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− ⋅= ⋅     Eq. A.59 
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− ⋅= Γ × ⋅    Eq. A.60 

 Case 4 

 ( )( ) ˆˆ ˆ ˆ
4
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M T s
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− ⋅= − × ⋅     Eq. A.61 

 

Duality also causes a change in the reflection and transmission coefficients for fields 

produced by magnetic source currents resulting in the following formulas. 

 

 

 Transmission and Reflection Coefficients for Magnetic Current Sources 
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T Tθ θ

η
η

 
=  
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       Eq. A.62 

 ˆ o

n

T Tφ φ

η
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 
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       Eq. A.63 

 ˆ
θ θΓ = −Γ        Eq. A.64 

 ˆ
φ φΓ = −Γ        Eq. A.65 



 - 133 -

APPENDIX B: FEM-NFFT-GO Matlab Code Contracts 

 

 There are a total of 25 Matlab and VBS functions used to carry out the FEM-

NFFT-GO routine. Since this is an enormous amount of code, only the contracts 

describing the purpose of each function, the functions assumptions, and its inputs and 

outputs are presented here. The function contracts are presented in alphabetical order. 

 

AnglePos.m 

%%%%%%%%%%%%%%%%%%%%%% ---Purpose---%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%This function creates an angular position matrix from the point of 
%view of the  observer  
%INPUTS: 
% 1. thetaMin,thetaMax; min and max values of theta  look  
% 2. numTheta; the number of theta values to have  
% 3. phi; a specific value of phi  
% The inputs are given in units of degrees and conv erted to radians  
%%OUTPUTS:  
% 1. lookAngles; a matrix containing both theta and  phi values of 
%the  observer 
 
 

AngleVectors.m 

%%%%%%%%%%%%%%%%%%%%%% ---Purpose---%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Converts the angular theta and phi directions int o x,y,z 
%coordinates  
%%INPUTS: 
% 1. lookAngles; the theta and phi angles of the ob server  
%%OUTPUTS:  
% 1. aHatTheta; the theta directed unit vector conv erted to x,y,z  
% 2. aHatPhi; the phi directed unit vector converte d to x,y,z  
 
 
AParameter.m 

%%%%%%%%%%%%%%%%%%%%%% ---Purpose---%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%This function determines the parameter A, as defi ned in 
%Engineering Electromagnetics (Demarest, p. 500). T he A parameter is 
%used within  transmission and reflection coefficient formulas if  the 
%critical angle  has been exceeded. It is necessary to maintain the 
%proper sign and phase  of the coefficients.  
%INPUTS: 
% 1. nA,nB; the indexes of refraction for each medi um, where n1 is % 
% the incident medium, and n2 is the transmission m edium  
% 2. thetai; the incident theta angle  
%%OUTPUTS:  
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% 1. A; the A parameter  
 
 

AutomateFieldCalc.vbs 

'----------------- AutomateFieldCalc.vbs ---------- ----------------'  
' Assumptions:  
' 1. a .pts file containing the points for which E and H are desired 
is available  
' 2. The .pts file contains points in units of mete rs, as required 
by HFSS.  
' 3. The geometry must have one box surrouding the entire geometry  
' 4. The outputs desired are complex E and H in rec tangular 
coordinates  
' 5. OUTPUTS: E_Field_Results.txt and H_Field_Resul ts.txt  
' 6. INPUTS: fieldDataPoints.pts  
' NOTE: This code requires use of dirIN, but must b e manually typed 
into the code  
' ------------------------------------------------- ----------------'  
 
AutomatePropertyOutput.vbs 

'------------------- AutomatePropertyOutput.vbs --- ---------------'  
' Assumptions:  
' 1. The boundary surrounding the geometry is a rec tangular box  
' 2. The boundary box is named exactly "BoundaryBox "  
' 3. The geometry must have one box surrouding the entire geometry  
' 4. The analysis setup is named exactly "Setup1"  
' 5. The geometry is oriented so that the dielectri c (ice) half 
space is pointing in the negative z direction  
' 6. The ice box is assumed to start at the origin and continue in 
the negative z direction until the BoundaryBox is r eached  
' NOTE: This code requires use of dirIN, but must b e manually typed 
into the code  
' ------------------------------------------------- ----------------'  
 
currentDimensions.m 

%%%%%%%%%%%%%%%%%%%%%% ---Purpose---%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%This function determines the length, width, and d irection of a 
%surface current, J or M  
%%INPUTS:  
%  1. faceID; the boundary box face identification  
%  2. stepX,stepY,stepZ; the size of the increments  in x,y,z 
%  dimensions 
%%OUTPUTS:  
%  1. length,width; the dimensions of the current s egment  
%  2. curDir1,curDir2; the direction of the current  segment, either 
%  x,y,z 
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EDifferentMedium_J.m 

%%%%%%%%%%%%%%%%%%%%%% ---Purpose---%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%Determines the theta and phi component of the ele ctric field due 
%to an electric surface current, Js, for the case o f the source and 
%observer  being in different mediums.  
%%INPUTS: 
% 1. Js; electric surface current magnitude  
% 2. pos; position matrix of Js  
% 3. k; the wavenumber  
% 4. kT; the transmitted propagation vector  
% 5. kHatT; the transmitted unit propagation vector  
% 6. length, width; dimensions of Js  
% 7. impdanceA; the impedance of the medium  
% 8. aHatJ; the direction of Js  
% 9. transC; transmission coefficient  
% 10. aHatPhi; the phi unit direction  
%%OUTPUTS: 
% 1. EthetaJ; Etheta due to an electric surface cur rent  
% 2. EphiJ; Ephi due to an electric surface current  
 
 
EDifferentMedium_M.m 

%%%%%%%%%%%%%%%%%%%%%% ---Purpose---%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%Determines the theta and phi component of the ele ctric field due 
%to a  magnetic surface current, Ms, for the case of the s ource and 
%observer  being in different mediums.  
%%INPUTS: 
% 1. Ms; the surface current M  
% 2. pos; the source position vector relative to th e origin  
% 3. k; the incident field wavenumber  
% 4. KT; transmitted propagation vectors  
% 5. kHatT; the transmission unit vector  
% 6. length,width; the surface current step size di mensions  
% 7. impedanceA; the impedance for the incident med iums  
% 8. aHatM; the source unit vector.  
% 9. transC; the transmission coefficient  
% 10. aHatphi; the phi direction unit vector  
%%OUTPUTS:  
% 1. EthetaM; Etheta due to a magnetic surface curr ent  
% 2. EphiM; Ephi due to a magnetic surface current  
 

EfarField.m 

%%%%%%%%%%%%%%%%%%%%%% ---Purpose---%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%This function determines the far field theta and phi components of 
%E based on both the electric surface current Js an d magnetic 
%surface currents Ms. Primarily, this function simp ly determines 
%which situation is in effect based on the source/o bserver 
%locations, polarization, and source type  
%  %%%%%%%% 4 source/observer possibilities:  
%  a. source/observer = top/bottom medium  
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%  b. source/observer = bottom/top medium  
%  c. source/observer = top/top medium  
%  d. source/observer = bottom/bottom medium  
%  %%%%%%%% 2 polarization possibilities:  
%  a. parallel polarization (theta component)  
%  b. perpendicular polarization (phi component)  
%  %%%%%%%% 2 source type possibilities:  
%  a. electric current  
%  b. magnetic current  
%%INPUTS:  
% 1. Js,Ms; matrix of electric surface currents and  magnetic surface  
%    currents respectively  
% 2. pos; matrix of source position vectors  
% 3. k1,k2; wavenumbers for top and bottom media  
% 4. KI; incident propagation vectors  
% 5. KR; reflected propagation vectors  
% 6. KT; transmission propagation vectors  
% 7. kHatR; reflected unit vector  
% 8. kHatT; transmission unit vector  
% 9. length; length of the current segment  
% 10. width;  width of the discrete sampled value  
% 11. curDir1; direction of the 1st current vector on a face  
% 12. curDir2; direction of the 2nd current vector on a face  
% 13. impedance1,impedance2; impedances of top and bottom media  
% 14. lookAngles; the theta and phi angles of the o bserver  
% 15. reflectC; reflection coefficient array  
% 16. transC; transmission coefficient array  
% 17; aHatPhi; phi direction unit vector array  
% 18; aHatTheta; theta direction unit vector array  
%%OUTPUTS:  
% 1. Etheta; the parallel polarized E field  
% 2. Ephi; the perpendicularly polarized E field  
%%Note: postscript 1 on inputs represents medium re siding in 
%positive z  axis (top medium), and postscript 2 represents medi um 
%residing in negative  z axis (bottom medium)  
 

EIncMag.m 

%%%%%%%%%%%%%%%%%%%%%% ---Purpose---%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%This function produces the Ei value which is the E field magnitude 
%value  of the incident field with zero phase.  This function can also 
%be used to determine Hi. However, this requires  dividing the result 
%of this function by the impedance, impedance1, whi ch  is handled in 
%the calling code.  
%%INPUTS: 
% 1. k1; the incident field wavenumber  
% 2. Source; the current segment value (usually den oted J or M)  
% 3. length; the length dimension of the discrete c urrent values  
% 4. width; the width dimension of the discrete cur rent values  
% 5. impedance1; the impedance value of the inciden t medium  
%%OUTPUTS: 
% 1. Ei; the E field magnitude  
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Equivalent_Currents.m 

%%%%%%%%%%%%%%%%%%%%%% ---Purpose---%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Equivalent_Current samples near E and H fields fro m HFSS and then 
%converts those fields to equivalent currents.  
%%INPUTS: 
% 1. dirIn: the input directory of the raw data fil es  
% 2. ptsInput: the near field sampling interval  
% 3. sDecXY: the sampling box decrement factor in t he XY dimensions  
% 4. sDecZ_Top: the sampling box decrment factor in  the upper z  
% plane 
% 5. sDecZ_Bot: the sampling box decrment factor in  the lower z  
% plane  
%%OUTPUTS:  
% 1. Frequncy  
% 2. stepX,stepY,stepZ: the sampling size dimension  
% 3. Js"": the electric current matrix for each fac e 
% 4. Ms"": the magnetic current matrix for each fac e 
% 5. pos"": the current position matrix for each fa ce  
%%NOTE: The faces are divided into left, right, top , bottom, front, 
%and back  
 

ESameMedium_J.m 

%%%%%%%%%%%%%%%%%%%%%% ---Purpose---%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%Determines the theta and phi component of the ele ctric field due 
%to an electric surface current, Js, for the case o f the source and 
%observer  being in the same medium.  
%%INPUTS: 
% 1. Js; the surface current J  
% 2. pos; the source position vector relative to th e origin  
% 3. k; the incident field wavenumber  
% 4. KI; the incident field vector  
% 5. KR; the reflected field vector  
% 6. kHatR; the reflection unit vector  
% 7. length,width; the surface current step size di mensions  
% 8. impedanceA; the impedance for the incident med iums  
% 9. aHatJ; the source unit vector.  
% 10. reflectC; the reflection coefficient  
% 11. aHatphi; the phi direction unit vector  
% 12. aHatTheta; the theta direction unit vector  
%%OUTPUTS:  
% 1. EthetaJ; Etheta due to an electric surface cur rent  
% 2. EphiJ; Ephi due to an electric surface current  
 
 
ESameMedium_M.m 

%%%%%%%%%%%%%%%%%%%%%% ---Purpose---%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%Determines the theta and phi component of the ele ctric field due 
%to a  magnetic surface current, Ms, for the case of the s ource and 
%observer  being in the same medium.  
%%INPUTS: 
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% 1. Ms; the surface current M  
% 2. pos; the source position vector relative to th e origin  
% 3. k; the incident field wavenumber  
% 4. KI; the incident field vector  
% 5. KR; the reflected field vector  
% 6. kHatR; the reflection unit vector  
% 7. length,width; the surface current step size di mensions  
% 8. impedanceA; the impedance for the incident med iums  
% 9. aHatM; the source unit vector.  
% 10. reflectC; the reflection coefficient  
% 11. aHatphi; the phi direction unit vector  
% 12. aHatTheta; the theta direction unit vector  
%%OUTPUTS:  
% 1. EthetaJ; Etheta due to a magnetic surface curr ent  
% 2. EphiJ; Ephi due to a magnetic surface current  
 

GainFactor.m 

%%%%%%%%%%%%%%%%%%%%%% ---Purpose---%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Determines the gain factor improvement in the E fi elds due to the 
%focusing  effect arising from increasing dielectric constant with 
%increasing depthin glacial ice.  
%%INPUTS: 
% 1. EthetaIN; the total theta directed E field, ca lculated from  
%    previous code  
% 2. EphiIN; the total phi directed E field, calcul ated from  
%    previous code  
% 3. lookAngles; the angles associated with EthetaT otal and % 
%    EphiTotal  
% 4. location; 1 = Antarctia, 2 = Greenland  
% 5. z; the depth vector  
%%OUTPUTS:  
% 1. GthetaAD; Etheta as a function of aidaPrime (r ows)  
%    and depth (columns) - in magnitude gain  
% 2. GphiAD; Ephi as a function of aidaPrime (rows)  and  
%    depth (columns) - in magnitude gain  
% 3. g0; The incident angles at the surface directe d towards the  
%    ice, ranging only from 0 to 90 degrees (double  sided).  
% 4. g02; The incident angles at the surface direct ed towards the  
%    ice, ranging only from 90 to 270 degrees.  
% 5. aidaPrime; the effective look angle at each de pth -- 0 degrees  
%    at nadir (goes from 0 to 90 and 0 to -90 degre es)  
% 6. Gf; The gain factor improvement matrix  
 

Generate_PTS_File.m 

%%%%%%%%%%%%%%%%%%%%%% ---Purpose---%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%creates a .pts file for each of the six boundary b ox faces given 
%x,y,z minimum and maxium values  
%%INPUTS: 
% 1. xMin,yMin,zMin; the minimum boundary box dimen sions  
% 2. xMax,yMax,zMax; the maximum boundary box dimen sions  
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% 3. Frequency; the frequency of antenna operation  
% 4. ptsInput; the number of sample points taken pe r wavelength  
% 5. sDecXY; the sample box decrement factor in X a nd Y dimensions  
% 6. sDecZ_TOP; the sample box decrement factor in positive Z  
% 7. sDecZ_Bot; the sampel box decrement facotr in negative Z  
% 8. dirIn; the directory containing the data files  
%INPUT ASSUMPTIONS: Assume that the boundary box is  rectangular; the  
%input dimensions are in units of meters; the frequ ency is in units 
%of Hz; the ptsInput is in units of points/waveleng th  
%NOTE: HFSS requires that the .pts file be in units  of meters.  
%OUTPUTS: outputs 6 .pts files, one for each bounda ry box face;  
% 1. stepX,stepY,stepZ; the x,y,z sample increment values.  
%comments assume positive z pointing upward, positi ve y pointing to 
%the  right, and poitive x pointing out of the screeen  
 
 
KVectors.m 

%%%%%%%%%%%%%%%%%%%%%% ---Purpose---%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%This function produces the K vectors. The K  vectors describe the 
%propagation of incident, reflected, or transmitted  waves  
%%INPUTS:  
% 1. lookAngles; the look angles, theta and phi of the observer  
% 2. k1,k2; the wavenumbers of the top and bottom m edia  
%%OUTPUTS:  
% 1. KI; the incident propagation vectors for media  1 and 2  
% 2. KR; the reflected propagation vectors for medi a 1 and 2  
% 3. KT; the transmitted propagation vectors for me dia 1 and 2  
 

Master.m 

%%%%%%%%%%%%%%%%%%%%%% ---Purpose---%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Master_Output runs either the FEM-NFFT by itself o r in combination 
%with  the GO algorithm. This code is divided into three s ection with 
%necessary comments listed  below  
% 1. INPUTS TO SPECIFY  
% 2. The FEM-NFFT Procedure  
% 3. The GO Procedure 
 

 
NFFT.m 

%%%%%%%%%%%%%%%%%%%%%% ---Purpose---%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%NFFT performs the near to far field transformation s  
%%INPUTS:  
% 1. thetaMin: the minimum desired value of the ang le theta  
% 2. thetaMax: the maximum desired value of the ang le theta  
% 3. numTheta: the number of theta values desired f or angular  
%    resolution  
% 4. phi: the value of phi desired  
% 5. e1,e2: the relative permittivity of the top an d bottom mediums  
% 6. u1,u2: the relative permeability of the top an d bottom mediums  
% 7. Frequncy  
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% 8. stepX,stepY,stepZ: the sampling size dimension  
% 9. Js"": the electric current matrix for each fac e 
% 10.Ms"": the magnetic current matrix for each fac e 
% 11.pos"": the current position matrix for each fa ce  
%%OUTPUTS:  
% 1. EthetaTotal: the total complex E-field in thet a 
% 2. EphiTotal: the total complex E-field in phi  
% 3. lookAngles: the matrix in radians containing t heta and phi  
%    values  
% 4. impedance1: the intrinsic impedance of the top  medium  
% 5. impedance2: the intrinsic impedance of the bot tom medium  
 
 
ObtainHFSS_Properties.m 

%%%%%%%%%%%%%%%%%%%%%% ---Purpose---%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Obtains outer boundary data from HFSS_DataOut.txt  
%Determines box dimensions and frequency and conver t dimensions to 
%meters  
%%%%% -- Assumptions -- %%%%%% 
% 1. Assumes that the boundary is a rectangular box  
% 2. Assumes HFSS units of nm,um,mm,meter,cm,km,ft, in,mil,uin  
% 3. Code converts all units to meters  
%%INPUT ASSUMTIONS: The input file contains text of  the following 
%form:  
%   XSize   10mm  
%   YSize   10mm  
%   ZSize   2.5mm  
%   Position    -5 ,-5 ,0    %position can contain units  
%   Frequency   50000000000  
%%INPUT: 
% 1. HFSSInputFile; a file containing the data show n above  
%%OUTPUT:  
% 1. xMin,yMin,zMin; the minimum dimensions of boun dary box  
% 2. xMax,yMax,zMax; the maximum dimensions of boun dary box  
% 3. Frequency; the frequency of the HFSS simulatio n in Hz  
 
 
reflectCoeff.m 

%%%%%%%%%%%%%%%%%%%%%% ---Purpose---%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%This function produces the reflection coefficient , which is either  
%parallel or perpendicular depending on the polariz ation  
%INPUTS: 
% 1. lookAngles; matrix of theta and phi of the obs erver  
% 2. thetaI; the incident angle  
% 3. thetaT; the transmission angle  
% 4. impedance1; the impedance value of the inciden t medium  
% 5. impedance2; the impedance value of the transmi ssion medium  
% 6. n1,n2; the indexes of refraction for each medi um 
%%OUTPUTS:  
% 1. reflectC; the reflection coefficient  
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SourceVector.m 

%%%%%%%%%%%%%%%%%%%%%% ---Purpose---%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Converts the curDir1 and curDir2 direction indexe s to actual  
% vector direction  
%%NOTES: curDir'' = 1 indicates x directed current  
%        curDir'' = 2 indicates y directed current  
%        curDir'' = 3 indicates z directed current  
%%INPUTS: 
% 1. curDir1, curDir2; the direction of each type o f current on the  
%    data  sample face  
%%OUTPUTS:  
% 1. aHatS1, aHatS2; the unit vector of each type o f current on the  
%    data sample face  
 
 
SurfCurrents.m 

%%%%%%%%%%%%%%%%%%%%%% ---Purpose---%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%This function takes in the E and H field data fro m a face of the  
%boundary box, and computes the electric and magnet ic surface 
%currents Js and  Ms.  
%%INPUTS:  
% 1. Efilename; the data file containing the near-z one electric  
%    field data  for a surface  
% 2. Hfilename; the data file containing the near-z one electric  
%field data  for a surface  
% 3. faceID; a value identifying which face of the sampling box has  
%    been input  
%%OUTPUTS:  
% 1. Js; the electric surface currents on the face  
% 2. Ms; the magnetic surface currents on the face  
% 3. pos; the position of each surface current on t he face  

 

ThetaAngles.m 

%%%%%%%%%%%%%%%%%%%%%% ---Purpose---%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%This function produces a matrix of the incident a nd transmission 
%angles  theta  
%%INPUTS: 
% 1. lookAngles; matrix of theta and phi of the obs erver  
% 2. nA,nB; the refractive indexes of the incident and transmission  
%    media.  
%%OUTPUTS: 
% 1. thetaI; the incident angle  
% 2. thetaT; the transmitted angle  
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transCoeff.m 

%%%%%%%%%%%%%%%%%%%%%% ---Purpose---%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%This function produces the transmission coefficie nt, which is 
%either  parallel or perpendicular depending on the polariza tion  
%%INPUTS: 
% 1. lookAngles; matrix of theta and phi of the obs erver  
% 2. thetaI; the incident angle  
% 3. thetaT; the transmission angle  
% 4. impedance1; the impedance value of the inciden t medium  
% 5. impedance2; the impedance value of the transmi ssion medium  
% 6. n1,n2; the indexes of refraction for each medi um 
%%OUTPUTS:  
% 1. transC; the reflection coefficient 
 
 
 

WaveNumber.m 

%%%%%%%%%%%%%%%%%%%%%% ---Purpose---%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%This function produces the wavenumbers, impedance s, and index of  
%refraction from each medium in the half-space  
%%INPUTS:  
% 1. Frequency; the operating frequency  
% 2. e1,e2; the dielectric constant of top and bott om media  
% 3. u1,u2; the relative permeavility of the top an d bottom media  
%%OUTPUTS:  
% 1. k1,k2; wavenumbers of top and bottom media  
% 2. impedance1,impedance2; impedances of top and b ottom medium  
% 3. n1,n2; indexes of refraction of top and bottom  media  
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APPENDIX C: IceTemp.m Matlab Code 

 

 This section contains the temperature profile extraction code, called 

IceTemp.m, which is a modified version of original code presented by Lie, Xie, and 

Dobbs in [27]. This code was used to perform the temperature profile extraction 

simulations shown in Chapter 5.   

 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%PART 1:  obtain Temperature profiles from the Exce l Spreadsheet 
%Data 
% 1.) Read the temperature vs. depth profile for pu re ice  
% 2.) Enter in constants  
% 3.) Produce layer depth matrix  
% 4.) Load the Antenna Gain Data  
% 2.) Calculate the real and imaginary parts of the  permittivity  
% 3.) Calculate the wavenumber, loss tangent, and a ttenuation  
% 4.) Calculate the Total Attenuation  
  
%%%%%%%%%%%%%%% Read in the Temperature Profiles %% %%%%%%%%%%%%%%%%% 
% GRIP Temperature Profile  
T1 = xlsread ( 'Ice_temp_profile' , 'Hypothetical profiles' , 
'B4:B304' );  
% Hypothetical 1 Profile  
T2 = xlsread ( 'Ice_temp_profile' , 'Hypothetical profiles' , 
'C4:C304' );  
% Hypothetical 2 Profile  
T3 = xlsread ( 'Ice_temp_profile' , 'Hypothetical profiles' , 
'D4:D304' );  
% read the depth profile  
d = xlsread ( 'Ice_temp_profile' , 'Hypothetical profiles' , 
'A4:A304' );  
% plot temperature profiles in terms of depth  
figure (1);  
plot(T1, d, 'r' );hold on 
plot(T2, d, 'b' );hold on 
plot(T3, d, 'm' );hold off  
grid;  
h = gca;  
set (h, 'YDir' , 'reverse' );  
legend ( 'GRIP' , 'Hypothetical_1' , 'Hypothetical_2' , 
'Location' , 'NorthEast' );  
title ( 'Ice Temperature Profiles' );  
xlabel ( 'T (C)' );  
ylabel ( 'Depth (m)' );  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
%%%%%%%%%%%%%%%%%%%%%%% Constants %%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%depth of each layer (depth-resolution)  
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layerDepth = 100;                   %meters  
% number of layers to consider  
numLayers = 3000/layerDepth;  
%bistatic radar separation for Configuration 1  
separation = 50;                    %meters  
halfSep = separation/2;             %meters  
%Configuration 2 parameters are determined from the  calculated 
critical  
%angle  
%radar system bandwidth  
B = 180e6;                          %Hz 
%the transmitted power  
Pt = 800;                           %watts  
%transmitted pulse width  
pulseWidth = 10e-6;                 %seconds  
%center frequency of the chirp range  
f = 210e6;              %Hz 
w = 2*pi*f;             %rad/s  
%the speed of light  
c = 3e8;  
%define free space permeability and permittivity  
E0 = 8.854*10^-12;          %F/m 
u0 = 4*pi*10^-7;            %H/m 
  
%%%%%%%%%%%%%% Produce the layer depth matrix %%%%%%%%%%%%%%%%%%%%% 
%units are in meters  
for  m=1:numLayers  
    zDepth(m) = layerDepth*m;  
end  
  
%%%%%%%%%%%%%%%%%%%%%%%% Load the Gain Data %%%%%%%%%%%%%%%%%%%%%%%% 
Eplane=load( 'VivaldiEPlane.mat' );  
zE = Eplane.zDepth;  
Gtheta = Eplane.GthetaAD;  
% Gphi = Eplane.GphiAD;  
Angles = Eplane.aidaPrime*180/pi;  
s = size(Angles);  
numAngle = s(1);  
midWay = round(numAngle/2);  
%only keep one half of the Gain and angle data, sin ce it is 
symmetrical.  
GthetaHalf = Gtheta(1:midWay,:);  
angleHalf = angles2(1:midWay,:);  
%results from FEM-NFFT-GO  
GainFNG = GthetaHalf;  
angleFNG = angleHalf;  
  
%%%%%%%%%%%%%%%%%%% Calculate the Permittivity %%%%%%%%%%%%%%%%%%%%% 
% calculate the real part of the relative permittiv ity of pure ice  
%using the constant Er method  
Ep1 = 3.1884 + 0.00091.*T1;  
Ep2 = 3.1884 + 0.00091.*T2;  
Ep3 = 3.1884 + 0.00091.*T3;  
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% calculate the imaginary part of the relative perm ittivity  
EDp1 = 10.^(-2.02+0.025.*T1)/(10*f/1e9);  
EDp2 = 10.^(-2.02+0.025.*T2)/(10*f/1e9);  
EDp3 = 10.^(-2.02+0.025.*T3)/(10*f/1e9);  
  
%%%%%%%%%%% Calculate Wavenumber, Loss Tangent, Att enuation %%%%%%%% 
%Loss Tangents  
lossTan1 = EDp1./Ep1;  
lossTan2 = EDp2./Ep2;  
lossTan3 = EDp3./Ep3;  
%Wave Number of the ice  
k1 = w.*sqrt(Ep1)/c;  
k2 = w.*sqrt(Ep2)/c;  
k3 = w.*sqrt(Ep3)/c;  
%Attenuation Profile (exact formulas)  
alpha1 = w.*sqrt(u0.*E0*Ep1./2.*(sqrt(1+(lossTan1). ^2)-1));  
alpha2 = w.*sqrt(u0.*E0*Ep2./2.*(sqrt(1+(lossTan2). ^2)-1));  
alpha3 = w.*sqrt(u0.*E0*Ep3./2.*(sqrt(1+(lossTan3). ^2)-1));  
  
%%%%%%%%%%%%%% Calculate the Overall Attenuation va lue %%%%%%%%%%%% 
format short , alphaAvg1 = mean(alpha1);  
format short , alphaAvg2 = mean(alpha2);  
format short , alphaAvg3 = mean(alpha3);  
% two way attenuation in dB if the depth is 3000 m  
two_way_att_dB_1 = alphaAvg1*8.686*3000*2;  
two_way_att_dB_2 = alphaAvg2*8.686*3000*2;  
two_way_att_dB_3 = alphaAvg3*8.686*3000*2;  
  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Part 2: Power Received Simulation  
% Configuration 1 -- Use a 50 meter separation for all the layers --  
% Predict the received radar power from the derived  attenuation  
% profiles above  
% 1.) Determine the Incident Angle from the radar t o each layer  
% 2.) Determine the Loss and Range for each layer  
% 3.) Calculate the real part of the Relative Permi ttivity from top  
% to bottom and from bottom to top (only useful for  calculating non- 
% specular  reflectivity)  
% 4.) Calculate the specular reflectivity  
% 5.) Calculate the veloctiy and wavelength  
% 6.) Extract Antenna Gain values for given angle a nd depth  
% 7.) Calculate the received power estimated from t he loss, which  
% was estimated from the attenuation, which was est imated from the  
% known  temperature profiles.  
  
%%%%%%%%%%%%%%% Incident Angle to each layer (degre es) %%%%%%%%%%%%% 
for  m = 1:numLayers  
     incidentAngle1_1(m) = atand(halfSep/(zDepth(m) ));  
     incidentAngle2_1(m) = atand(halfSep/(zDepth(m) ));  
     incidentAngle3_1(m) = atand(halfSep/(zDepth(m) ));  
end  
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%%%%%%%%%%%%%%%%%%%% Loss and Range for each layer %%%%%%%%%%%%%%%%% 
for  m = 1:numLayers;  
    if  numLayers < 31  
        R1_1(m) = zDepth(m)/cosd(incidentAngle1_1(m ));  
        L1_1(m) = 
exp(2*secd(incidentAngle1_1(m))*10*sum(alpha1(1:10* m)));  
        R2_1(m) = zDepth(m)/cosd(incidentAngle2_1(m ));  
        L2_1(m) = 
exp(2*secd(incidentAngle2_1(m))*10*sum(alpha2(1:10* m)));  
        R3_1(m) = zDepth(m)/cosd(incidentAngle3_1(m ));  
        L3_1(m) = 
exp(2*secd(incidentAngle3_1(m))*10*sum(alpha3(1:10* m)));  
    else  
        R_1_1(m) =(100*m+1.1)/cosd(incidentAngle1_1 (m));  
        L_1_1(m) = 
exp(2*secd(incidentAngle1_1(m))*1*sum(alpha1(1:m))) ;  
        R_2_1(m) = (100*m+1.1)/cosd(incidentAngle2_ 1(m));  
        L_2_1(m) = 
exp(2*secd(incidentAngle2_1(m))*1*sum(alpha2(1:m))) ;  
        R_3_1(m) = (100*m+1.1)/cosd(incidentAngle3_ 1(m));  
        L_3_1(m) = 
exp(2*secd(incidentAngle3_1(m))*1*sum(alpha3(1:m))) ;  
    end  
end  
  
%%%%%%%%%%% Average Value of the Real Part Permitti vity %%%%%%% 
% from the top to bottom  
for  m = 1:numLayers  
      Ep1_mt(m) = mean(Ep1(1:10*m));  
      Ep2_mt(m) = mean(Ep2(1:10*m));  
      Ep3_mt(m) = mean(Ep3(1:10*m));  
end  
% from bottom to top  
for  m = 1:numLayers-1;  
    Ep1_mb(m) = mean(Ep1(10*m+1:301));  
    Ep2_mb(m) = mean(Ep2(10*m+1:301));  
    Ep3_mb(m) = mean(Ep3(10*m+1:301));  
end  
Ep1_mb(numLayers) = 2.7; % for frozon bedrock, from David's thesis  
Ep2_mb(numLayers) = 2.7;  
Ep3_mb(numLayers) = 2.7;  
  
%%%%%%%%%%%%%%%%%%% The Ice Reflectivity %%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%% Assuming Specular Reflectivity  
% assume it equals -80 dB at all layers except for the bedrock 
interface!!!  
gammaSP = -80;                      %dB 
gammaSPMag = 10^(gammaSP/10);       %unitles  
gammaBedrock = 0.00167;  
for  m = 1:numLayers-1;  
    gamma1_1(m) = gammaSPMag;  
    gamma2_1(m) = gamma1_1(m);  
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    gamma3_1(m) = gamma2_1(m);  
end  
gamma1_1(numLayers) = gammaBedrock;  
gamma2_1(numLayers) = gammaBedrock;  
gamma3_1(numLayers) = gammaBedrock;  
  
%%%%%%%%%%%%%%%%% Velocity and Lambda %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%calculate the velocity for each temp profile  
vp1 = c/sqrt(Ep1_mb(1));                            %m/s 
vp2 = c/sqrt(Ep2_mb(1));                            %m/s 
vp3 = c/sqrt(Ep3_mb(1));                            %m/s 
%calculate the wavelength in ice for each temp prof ile  
lambda1 = vp1/f;                                    %m 
lambda2 = vp2/f;                                    %m 
lambda3 = vp3/f;                                    %m 
  
%%%%%%%%%%%%%%%%%%%%% Antenna Gain %%%%%%%%%%%%%%%%%%%%%%%%%%% 
%determine the gain at each incident angle and each  depth  
%%%% Assuming constant gain, not using Gain from FE M-NFFT-GO %%%%%%% 
% 3 dB gain assumed  
% for m=1:numLayers  
%     for n=1:numLayers  
%          GainMag(m,n)=10^0.3;  
%     end  
% end  
%%%% Extracting Relevant Gain Values form FEM-NFFT- GO Code %%%%%% 
for  m=1:numLayers  
    %the incident angle at z  
    angleInc = incidentAngle1_1(m);      
    %the difference between the incident angle at z and  angles in 
gain  
    %pattern at z  
    diFF = abs(angleFNG(:,m)-angleInc);  
    %the index where the two angles agree most  
    index = find(diFF == min(diFF));  
    GainMag(m) = GainFNG(index,m);                        %dB 
end  
  
%%%%%%%%%%%%%%%%%%%%%%% Received Power %%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%units are in Watts  
for  m=1:numLayers  
    Pr1_1(m) = Pt * 
GainMag(m)^2*lambda1^2*gamma1_1(m)/((8*pi*R1_1(m))^ 2*L1_1(m));  
    Pr2_1(m) = Pt * 
GainMag(m)^2*lambda2^2*gamma2_1(m)/((8*pi*R2_1(m))^ 2*L2_1(m));  
    Pr3_1(m) = Pt * 
GainMag(m)^2*lambda3^2*gamma3_1(m)/((8*pi*R3_1(m))^ 2*L3_1(m));  
end  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Part 2: Power Received Simulation  
% Configuration 2 -- Use a separation defined by th e incident angle  
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% that is  half of the critical angle  
% Predict the received radar power from the derived  attenuation  
% profiles above  
% 1.) Determine the Incident Angle from the radar t o each layer  
% 2.) Determine the Loss and Range for each layer  
% 3.) Calculate the real part of the Relative Permi ttivity from top  
% to  bottom and from bottom to top  
% 4.) Calculate the specular reflectivity  
% 5.) Calculate the received power estimated from t he loss, which  
% was estimated from the attenuation, which was est imated from the  
% known  temperature profiles.  
  
%%%%%%%%%%%%%%%%%%%%%%% Critical Angle %%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%the critical angle only exists for propagation fro m ice to air  
%the index of refraction for air  
nAir = 1;  
%ice dielectric constant for pursposes of calculati ng critical angle  
Eice = 3.2;  
%fixed critical angle and halfSepMax  
cTheta = asind(nAir/sqrt(Eice));  
halfSepMax = zDepth.*tand(cTheta);  
%factor for determing the antenna separation to use  based on the  
%maximum possible antenna separation  
factor = 2;  
halfSep1 = halfSepMax./factor;  
halfSep2 = halfSepMax./factor;  
halfSep3 = halfSepMax./factor;  
  
%%%%%%%%%%%%%%%% Incident Angle, Range, and Depth %%%%%%%%%%%%%%%%% 
for  m=1:numLayers  
   incidentAngle1_2(m) = atand(halfSep1(m)/(zDepth( m)));  
   incidentAngle2_2(m) = atand(halfSep2(m)/(zDepth( m)));  
   incidentAngle3_2(m) = atand(halfSep3(m)/(zDepth( m)));  
   R1_2(m) = zDepth(m)/cosd(incidentAngle1_2(m));  
   R2_2(m) = zDepth(m)/cosd(incidentAngle2_2(m));  
   R3_2(m) = zDepth(m)/cosd(incidentAngle3_2(m));   
   if  numLayers < 31  
        L1_2(m) = 
exp(2*secd(incidentAngle1_2(m))*10*sum(alpha1(1:10* m)));  
        L2_2(m) = 
exp(2*secd(incidentAngle2_2(m))*10*sum(alpha2(1:10* m)));  
        L3_2(m) = 
exp(2*secd(incidentAngle3_2(m))*10*sum(alpha3(1:10* m)));    
   else  
       L1_2(m) = 
exp(2*secd(incidentAngle1_2(m))*1*sum(alpha1(1:1*m) ));  
       L2_2(m) = 
exp(2*secd(incidentAngle2_2(m))*1*sum(alpha2(1:1*m) ));  
       L3_2(m) = 
exp(2*secd(incidentAngle3_2(m))*1*sum(alpha3(1:1*m) ));  
   end  
end  
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%%%%%%%%%%%%%%%%%%%%% The Ice Reflectivity %%%%%%%%%%%%%%%%%%%%%%%% 
% for specular case, use same as Part 1  
gamma1_2 = gamma1_1;  
gamma2_2 = gamma2_1;  
gamma3_2 = gamma3_1;  
  
%%%%%%%%%%%%%%%%%%%%% Antenna Gain %%%%%%%%%%%%%%%%%%%%%%%%%%% 
%determine the gain at each incident angle and each  depth  
%%%% Assuming constant gain, not using Gain from FE M-NFFT-GO %%%%%%% 
%GainMag2 = GainMag;  
%%%% Extracting Relevant Gain Values form FEM-NFFT- GO Code %%%%%% 
for  m=1:numLayers  
    %the incident angle at z  
    angleInc = incidentAngle1_2(m);      
    %the difference between the incident angle at z and  angles in  
    %gain  pattern at z  
    diFF = abs(angleFNG(:,m)-angleInc);  
    %the index where the two angles agree most  
    index = find(diFF == min(diFF));  
    GainMag2(m) = GainFNG(index,m);                        %dB 
end  
  
%%%%%%%%%%%%%%%%%%%% Received Power %%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%These are all basically for a constant incident an gle  
for  m=1:numLayers  
    Pr1_2(m) = 
Pt*GainMag2(m)^2*lambda1^2*gamma1_2(m)/((8*pi*R1_2( m))^2*L1_2(m));  
    Pr2_2(m) = 
Pt*GainMag2(m)^2*lambda2^2*gamma2_2(m)/((8*pi*R2_2( m))^2*L2_2(m));  
    Pr3_2(m) = 
Pt*GainMag2(m)^2*lambda3^2*gamma3_2(m)/((8*pi*R3_2( m))^2*L3_2(m));  
end  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Part 3: Derive Attenuation from Power      %%%%%% %%%%%%%%%%%%%%%%% 
% 1.) Estimate the Antenna Gain for Temperature Ext raction  
% 2.) Calculate total attenuation from z=0 to each depth  
% 3.) Determine the attenuation at each depth  
% 4.) Extract Temperature from Attenuation  
  
%%%%%%%%%%%%%%%%%% Estimated Antenna Gain %%%%%%%%%%%%%%%%%%%%%%%% 
% Normal: Assume estimated gain is the same as that  used for Pr  
% simulations  
GainMag_E = GainMag;  
GainMag2_E = GainMag2;  
% Assume a uniform dB error in the gain estimation  
%error_dB = 30.0;  
%GainMag_EdB = 10*log10(GainMag) - error_dB;  
%GainMag2_Edb = 10*log10(GainMag2) - error_dB;  
%GainMag_E = 10.^(GainMag_EdB/10);  
%GainMag2_E = 10.^(GainMag2_Edb/10);  
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%%%%%%%% Calculate total attenuation from z=0 to ea ch depth %%%%%%%% 
for  m=1:numLayers  
   alphaAccum1(m) = 
log((GainMag_E(m)^2*Pr1_2(m)*cosd(incidentAngle1_1( m))^2)/(GainMag2_
E(m)^2*Pr1_1(m)*cosd(incidentAngle1_2(m))^2))/(2*(s ecd(incidentAngle
1_1(m))-secd(incidentAngle1_2(m))));  
   alphaAccum2(m) = 
log((GainMag_E(m)^2*Pr2_2(m)*cosd(incidentAngle2_1( m))^2)/(GainMag2_
E(m)^2*Pr2_1(m)*cosd(incidentAngle2_2(m))^2))/(2*(s ecd(incidentAngle
2_1(m))-secd(incidentAngle2_2(m))));  
   alphaAccum3(m) = 
log((GainMag_E(m)^2*Pr3_2(m)*cosd(incidentAngle3_1( m))^2)/(GainMag2_
E(m)^2*Pr3_1(m)*cosd(incidentAngle3_2(m))^2))/(2*(s ecd(incidentAngle
3_1(m))-secd(incidentAngle3_2(m))));  
end  
  
%%%%%%%%%%%%%% Determine Attenuation at Each Depth %%%%%%%%%%%%%%%% 
% the incremental z layer  
deltaZ = layerDepth;  
%determine the individual attenuation across each i ndividual layer  
%the sum of the previous attenuations  
sumAlpha1 = 0;  
sumAlpha2 = 0;  
sumAlpha3 = 0;  
for  m=1:numLayers  
    alphaInd1(m) = alphaAccum1(m)/deltaZ - sumAlpha 1;  
    sumAlpha1 = sumAlpha1 + alphaInd1(m);  
    alphaInd2(m) = alphaAccum2(m)/deltaZ - sumAlpha 2;  
    sumAlpha2 = sumAlpha2 + alphaInd2(m);  
    alphaInd3(m) = alphaAccum3(m)/deltaZ - sumAlpha 3;  
    sumAlpha3 = sumAlpha3 + alphaInd3(m);  
end  
  
%%%%%%%%%%%%%%%%%%%%%% Extract Temperature %%%%%%%%%%%%%%%%%%%%%%%% 
for  m = 1:numLayers-1  
    f1 = @(T)(3*alphaInd1(m)/pi)^2*(3.1884+0.00091* T)-10^(-
4.04+0.05*T);  
    T_1(m) = fzero(f1,T1(10*m));  
    dT1(m) = T_1(m) - T1(10*m);  
    f2 = @(T)(3*alphaInd2(m)/pi)^2*(3.1884+0.00091* T)-10^(-
4.04+0.05*T);  
    T_2(m) = fzero(f2,T2(10*m));  
    dT2(m) = T_2(m) - T2(10*m);  
    f3=@(T)(3*alphaInd3(m)/pi)^2*(3.1884+0.00091*T) -10^(-
4.04+0.05*T);  
    T_3(m)=fzero(f3,T3(10*m));  
    dT3(m)=T_3(m)-T3(10*m);  
end  
  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%% Plots %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%plot indexes  
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s1=1;  
s2=290;  
I=10;  
figure(2)  
%compare measured and extracted temperatures  
plot(T1(1:I:290), zDepth(1:numLayers-1), 'r' );hold on 
plot(T_1, zDepth(1:numLayers-1), 'b' )  
plot(T2(1:I:290), zDepth(1:numLayers-1), 'r' );hold on 
plot(T_2, zDepth(1:numLayers-1), 'b' )  
plot(T3(1:I:290), zDepth(1:numLayers-1), 'r' );hold on 
plot(T_3, zDepth(1:numLayers-1), 'b' )  
grid;  
h = gca;  
set (h, 'YDir' , 'reverse' );  
legend ( 'GRIP Measured' , 'GRIP Simulated' , 'Hypo.1 Measured' , 
'Hypo.2 Simulated' , 'Hypo.3 Measured' , 'Hypo.3 Simulated' );  
title ( 'Ice Temperature Profiles' );  
xlabel ( 'T, C' );  
ylabel ( 'Depth, m' );  
  
figure(3)  
%compare measured and extracted temperatures  
plot(dT1, zDepth(1:numLayers-1), 'r' );hold on 
plot(dT2, zDepth(1:numLayers-1), 'r' );hold on 
plot(dT3, zDepth(1:numLayers-1), 'r' );hold on 
grid;  
h = gca;  
set (h, 'YDir' , 'reverse' );  
legend ( 'GRIP' , 'Hypo.1' , 'Hypo.2' );  
title ( 'Temperature Profile Estimation Error' );  
xlabel ( 'T, C' );  
ylabel ( 'Depth, m' );  
  
figure(4)  
%compare measured and extracted attenuation  
plot(alpha1(1:I:290), zDepth(1:numLayers-1), 'r' );hold on 
plot(alphaInd1(1:numLayers-1), zDepth(1:numLayers-1 ), 'b' )  
plot(alpha2(1:I:290), zDepth(1:numLayers-1), 'r' );hold on 
plot(alphaInd2(1:numLayers-1), zDepth(1:numLayers-1 ), 'b' )  
plot(alpha3(1:I:290), zDepth(1:numLayers-1), 'r' );hold on 
plot(alphaInd3(1:numLayers-1), zDepth(1:numLayers-1 ), 'b' )  
grid;  
h = gca;  
set (h, 'YDir' , 'reverse' );  
legend ( 'GRIP Measured' , 'GRIP Simulated' , 'Hypo.1 Measured' , 
'Hypo.2 Simulated' , 'Hypo.3 Measured' , 'Hypo.3 Simulated' );  
title ( 'Ice Attenuation Profiles' );  
xlabel ( 'Attenuation, Np/m' );  
ylabel ( 'Depth, m' );  
  
figure(5)  
%compare measured and extracted temperatures  
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plot(-(alpha1(1:I:290)-transpose(alphaInd1(1:numLay ers-1))), 
zDepth(1:numLayers-1), 'r' );hold on 
plot(-(alpha2(1:I:290)-transpose(alphaInd2(1:numLay ers-1))), 
zDepth(1:numLayers-1), 'r' );hold on 
plot(-(alpha3(1:I:290)-transpose(alphaInd3(1:numLay ers-1))), 
zDepth(1:numLayers-1), 'r' );hold on 
grid;  
h = gca;  
set (h, 'YDir' , 'reverse' );  
legend ( 'GRIP' , 'Hypo.1' , 'Hypo.2' );  
title ( 'Attenuation Profile Error' );  
xlabel ( 'Attenuation, Np/m' );  
ylabel ( 'Depth, m' );  
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