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Abstract 

 

The primary objective of this dissertation was to develop a systematic method to 

characterize the reservoir with the limited available data. The motivation behind the study was 

characterization of CO2 pilot area in the Hall Gurney Field, Lansing Kansas City Formation. The 

main tool of the study was geostatistics, since only geostatistics can incorporate data from 

variety of sources to estimate reservoir properties. Three different subjects in geostatistical 

methods were studied, analyzed and improved. 

 

The first part investigates the accuracy of different geostatistical methods as a function of 

the available sample data. The effect of number and type of samples on conventional and 

stochastical methods was studied using a synthetic reservoir. The second part of the research 

focuses on developing a systematic geostatistical method to characterize a reservoir in the case of 

very limited sample data. The objective in this part was the use of dynamic data, such as data 

from pressure transient analysis, in geostatistical methods. In the literature review of this part 

emphasis is given to those works involving the incorporation of well-test data and the use of 

simulated annealing to incorporate different type of static and dynamic data. The second part 

outlines a systematic procedure to estimate the reservoir properties for a CO2 pilot area in the 

Lansing Kansas City formation. The third part of the thesis discusses the multiple-point 

geostatistics and presents an improvement in reservoir characterization using training image 

construction. Similarity distance function is used to find the most consistent and similar pattern 

for to the existing data. This part of thesis presents a mathematical improvement to the existing 

similarity functions.  
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Chapter 1- Overview 

 

The primary objective of this study was to develop a systematic method to 

characterize the reservoir with the limited available data. The motivation behind the study 

was characterization of CO2 pilot area in the Hall Gurney Field, Lansing Kansas City 

Formation. The main tool of the study was geostatistics, since only geostatistics can 

incorporate data from variety of sources to estimate reservoir properties. First step of the 

study was to compare the different geostatistical methods and the effect of availability of 

the data on the accuracy of the estimation. The second step was to propose a procedure to 

estimate the reservoir properties for a CO2 pilot area in the Lansing Kansas City 

formation. The proposed procedure incorporates available dynamic data to geostatistical 

analysis to reduce the uncertainty. In final step, the application of multiple-point 

geostatistics was studied and in the process an improvement made to reservoir 

characterization using training image construction.  

 

Reservoir modeling is a crucial step in the development and management of 

petroleum reservoirs. Field development decisions made during the life of a reservoir 

such as depletion strategy, number and location of production/injection wells, reservoir 

pressure maintenance schemes, etc. require an accurate model of reservoir heterogeneities 

and topology. Furthermore, accurate prediction of reservoir performance requires a 

reservoir model that not only honors all available data but also accounts for the scale and 

precision at which they are available. The data available to model a reservoir is scarce 
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due to high acquisition costs; hence the challenge is to extract the maximum possible 

reservoir information from the available data.  

 

The data obtained from the field can be classified as static or dynamic. The static 

data do not vary over time generally and are related to the intrinsic characteristics of the 

rock through simple linear relationships, such as well logs, core measurements and 

seismic amplitude. The dynamic data, on the other hand, do vary with time. Dynamic 

data are related to the intrinsic characteristics of the rock generally through a complex, 

non-linear transfer function. These include field measurements that are made regularly 

throughout the life of the reservoir. Examples of this type are well-bore flowing 

pressures, fluid production rates, pressure transients, fractional flow data and time-lapse 

seismic data.  

 

Geostatistics has been extensively used in reservoir characterization for a variety 

reasons including its ability to successfully analyze and integrate different types of data, 

provide meaningful results for model building, and quantitatively evaluate uncertainty for 

risk management. Geostatistical techniques are statistical methods that develop the spatial 

relationship between the sample data to model the possible values of random variables at 

unsampled locations. Since its introduction to the petroleum industry almost four decades 

ago, geostatistics has been increasingly used for the characterization of reservoir 

properties. The most important advantage of geostatistics, that makes it attractive for 

reservoir characterization, is that geostatistical techniques are numerically based. The 
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final product of a geostatistical method is a volume of key petrophysical properties 

honoring the well and seismic data.  

 

Geostatistical methods are the focus of this thesis. Three different subjects in 

geostatistical methods were studied, analyzed and improved. These subjects, although 

appear unrelated in the first glance, are part of geostatistical application in reservoir 

characterization. Following paragraphs briefly introduce three topic of this thesis. 

 

The first part investigates the accuracy of different geostatistical methods as a 

function of the available sample data. The effect of number and type of samples on 

conventional and stochastical methods was studied using a synthetic reservoir. The topics 

comes in Chapter 2 that also presents a literature review of the basic concepts of 

geostatistics and different geostatistical techniques used in subsurface modeling.  

  

The second part of the research focuses on developing a systematic geostatistical 

method to characterize a reservoir in the case of very limited sample data. The objective 

in this part was the use of dynamic data, such as data from pressure transient analysis, in 

geostatistical methods. In the literature review of this part emphasis is given to those 

works involving the incorporation of well-test data and the use of simulated annealing to 

incorporate different type of static and dynamic data. The second section includes the 

chapter 6 which also outlines a systematic procedure to estimate the reservoir properties 

for a CO2 pilot area in the Lansing Kansas City formation.  
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The third part of the thesis discusses the multiple-point geostatistics and presents 

an improvement in reservoir characterization using training image construction. The 

multiple-point geostatistics use the concept of training image for the purpose of 

subsurface modeling. The image construction, in turn, relies on the concept of similarity 

of available data and the patterns of a training image. Similarity distance function is used 

to find the most consistent and similar pattern to the existing data. This part of thesis 

presents a mathematical improvement to the existing similarity functions. Then using 

examples shows its advantages to the other methods. 
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Chapter 2 

 

Review of the Geostatistical Reservoir Characterization 

 
 

2.1. Introduction 

 

Proper characterization of reservoir heterogeneity is a crucial requirement for 

accurate prediction of reservoir performance. One of the most valuable tools for 

characterization is geostatistics.  Geostatistics applies statistical concepts to geological-

based phenomena and improve the modeling of the reservoir. The basis for all the 

geostatistical prediction is available sample data from the reservoir. Thus it is expected 

that the availability of data have effect on the accuracy of the predictions. For instance,   

permeability is a key parameter to any reservoir study since it defines flow paths within 

the reservoir. In a permeability characterization study, it is vital to characterize and 

preserve in the model the values and their spatial patterns. The available permeability 

data come from core measurements, which always represent a small proportion of the 

total heterogeneity of the reservoir.  Therefore, to build a reservoir geostatistical model 

for permeability, it is necessary to have enough core samples to represent the real 

heterogeneity of the subsurface reservoir.  The objective of this part of dissertation is to 

investigate the effect of the quantity of available sample data on the accuracy of 

conventional and stochastic geostatistical methods in predicting the permeability 

distribution.  

 

In this chapter, a brief review of basic geostatistical concepts and methods is 

presented. The methods is based on all theories, equations and ideas in the existing 
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literature [11,18,34,37]. In chapter three, four geostatistical methods (selected based on 

performance and ease of implementation), were applied to investigate the effect of 

number of the available data on the accuracy of prediction.  

 

2.2. Background 

This section briefly reviews the fundamentals of geostatistics that are essential in 

understanding this study. For the deeper understanding of subject matter and the 

mathematics behind it, however, readers are referred to existing literature[11,18,34,37]. 

 

2.2.1. Random Variables  

A random variable is a variable with values that are randomly generated 

according to a probabilistic mechanism. The throwing of a die, for instance, produces 

random values from the set {1, 2, 3, 4, 5, 6}. 

 

 Random variables are seen in a wide variety of scientific and engineering 

disciplines. In meteorology, for example, temperature and pressure that are collected at 

some stations are used to model the weather pattern. In this case, temperature and 

pressure can be regarded as random variables. In geology and petroleum engineering, the 

estimate of variation of subsurface properties such as formation thickness, permeability, 

and porosity are regarded as random variables.  

 

Mathematically, a numeric sequence is said to be statistically random when it 

contains no recognizable patterns or regularities; sequences such as the results of an ideal 
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die roll. Some, such as the annual amount of rainfall, are time dependent; others, such as 

the thickness of geological formation are invariant at the human scale of the time.  The 

accurate characterization of a random variable is an expensive and time-consuming 

problem. Commonly, random variables are known only through a scattered set of 

observations (table function). In statistical jargon, the selected observation is called 

samples.   

 

Random variables at specific location or time have a degree of uncertainty, even if 

the observations have been carefully taken to minimize measurement error. The value of 

a random variable at unsampled locations is uncertain, and no method has been devised 

yet to yield error-free estimates. Figure 2.1 is a cross-section based on two sample 

elements at locations A and B, where the random variable is known. Here, any surface is 

a possible description of the real random variable at the unsampled locations. The four 

alternatives presented in Figure 2.1 are a small subset of all possible answers. For some 

arbitrary location, such as C, a table can be prepared containing all the estimated values 

at that location. The minimum and maximum values in the table define the interval which 

encloses all likely answers to the value of the parameter at location C. A tabulation of 

events and their associated probability of occurrence corresponds to the statistical 

concept of a probability density function. Figure 2.2 represents a hypothetical probability 

density function for all likely values of spatial function at some arbitrary unsampled 

location. Based on the probability density function at location C, one value of the random 

variable in Figure 2.1 is more probable than the other values.  
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In general, the variation in the outcomes of a random variable is presented by an 

informative short description rather than listing all its possible outcomes. The average of 

all possible outcomes of a random variable weighted by their probability of occurrence is 

the mean of sample. The mean is the central value of all outcomes.  The weighted 

average of the squares of the differences between the outcomes and the mean is the 

variance. The variance becomes larger when the differences increase. The standard 

deviation is the square root of the variance.  Thus, variance and the standard deviation are 

measures of the dispersion of the outcomes relative to the mean value. The standard 

deviation of Figure 2.2 is a measure of the uncertainty as the true value of the random 

variable at point C in Figure 2.1. A small standard deviation indicates the outcomes are 

clustered tightly around the central value (mean) over relatively narrow range of 

possibilities. 

 

Throughout this dissertation, the uppercase letters, such as Z, denote a random 

variable while the lower case letters, such as z, denote the outcome values. Also, the set 

of possible outcomes that a random variable might take is denoted by )(),...,1( nzz  and 

the outcomes that are actually observed are denoted by nzz ,...,1 . 
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Figure 2.1. Cross-sectional view of a random variable. The random variable is known at 

locations A and B, but is not known at other locations, such as C.   
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Figure 2.2 Probability density function of a random variable at a location not considered 

in the sampling process, such as location C in Figure 2.1 

 

2.2.2. The Random Function Concept 

A random function is a function that its independent variables are random 

variables.  In other words a random function performs a set of mathematical operation on 

the random variables. 

 

For instance, in the throwing a single die example, a random function can be 

defined as the set of values generated by throwing a die and doubling the outcomes.  If 

the random variable (RV) at location u is denoted by Z(u), a random function (RF) is a 

set of RV’s defined over some field such as porosity and formation thickness. Just as a 

random variable Z(u) is characterized by its conditional distribution function (cdf), a RF 
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is characterized by the set of all its N-variate cdfs for any number N and any choice of the 

N locations ui, i=1,…,N within the study area A: 

})(,...,)({Prob),...,;,...,( 1111 NNnn zZzZzzF ≤≤= uuuu  (2.1) 

Similar to the univariate cdf of the RV Z(u), that is used to characterize uncertainty about 

the value z(u), the multivariate cdf in Eq.(2.1) is used to characterize joint uncertainty 

about the N values z(u1),…, z(uN).  Particularly, this is important when using the 

bivariate (N=2) cdf of any two RVs Z(u1), Z(u2). In fact, conventional geostatistical 

procedures are restricted to univariate (F(u,z)) and bivariate distributions defined as: 

})(,)({Prob),;,( 22112121 zZzZzzF ≤≤= uuuu  (2.2) 

 

2.2.3. Stationary Constraints 

The assumption of stationarity is an essential assumption in geostatistical 

analysis. Stationarity means that a random function has certain properties such as mean or 

covariance that are constant everywhere in the region of interest. The decision of the 

stationarity, in other words, is the decision of which data should be picked up from region 

of interest for the analysis. Stationarity is divided into categories; the first order and the 

second order. 

Mathematically, the first order of stationarity can be written as 

[ ] [ ])()( LuZfuZf
rrr

+=  (2.3) 

Where []f is any function of a random variable, )(u
r

and )( Lu
rr

+ define the two locations 

of the random variable. The most commonly used random function in Eq.(2.3) is the 

expected value. The expected value of the variable itself is an arithmetic mean. That 
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means that arithmetic means of random variables across the region are the same.  Using 

expected value, Eq.(2.3) is written as: 

[ ] [ ])()( LuZEuZE
rrr

+=  (2.4) 

That is, the expected value of a random variable at )(u
r

is the same as the expected value 

of a random variable L
r

 lag distance away. The value of L
r

 can vary from zero to the 

maximum distance between variables within the region of interest. If the region of 

interest divided into small subregions, and within each subregions the mean or expected 

value of samples are calculated (assuming that adequate numbers of samples are present 

within each subregion), those means should remain fairly close to each other assuming 

first order of stationarity. If the means vary significantly, the assumption of stationarity 

may not hold. Also the first order of stationarity may not hold if the sampled data have a 

strong trend.   

The second order of stationarity can be mathematically defined as: 

[ ] [ ])(),()(),( 2211 LuZuZfLuZuZf
rrrrrr

+=+  (2.5) 

This relationship indicates that any function of two random variables located L distance 

apart is independent of the location and is a function of only the distance and the 

direction between the two locations. The arrows over the u and L indicate that locations 

can be treated in terms of vectors rather than distances. 

 

In practice, covariance can be used as one of the functions that relate two 

variables located a certain distance and direction apart. In other words, 

[ ] [ ])(),()(),( 2211 LuZuZCLuZuZC
rrrrrr

+=+  (2.6) 
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That is, the covariance within the region of stationarity is function of only the vector L, 

not the variable itself. This is an important assumption that implies by knowing the 

distance and direction between any two points, the covariance between the random 

variables at these two points can be estimated without knowing the actual random 

variable at those locations.  

 

2.2.4. Covariance Function 

Computational procedures used to present the statistics of a single random 

variable can be extended to calculate the joint variability of pair random variables. In 

bivariate statistics, the covariance function is a tool that is employed to present the joint 

statistics of two RVs. For two random variables )(),( 21 uu ZZ , the covariance function at 

two locations u1 and u2 is defined as: 

)}]()()}{()([{),( 222 uuuuuu 111 µµ −−= ZZEC  (2.7) 

where E is the expected value or mean of the expression, )()( 21 uu µµ and  are the means 

of Z at u1 and u2 respectively. Assuming first order stationarity that the mean of the 

random variable is constant everywhere, Eq.(2.7) can be rewritten as: 

])}()([{),( 2

22 µ−= uuuu 11 ZZEC  (2.8) 

Experimental covariance can be calculated as: 

2
)(

1

)(

1

)(
1

)()(
)(

1
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    (2.9) 

Where )(Ln
r

is the number of pairs at vector distance L; )( iuz
r

and )( Luz i

rr
+ are values of 

the variable at locations iu
r

and Lu i

rr
+ respectively, and n is the total number of sample 
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points. The second term in Eq.(2.9) represents the arithmetic mean of all the data points. 

As a special case, the definition at 0=L
r

 is 2

1

)()(
1

)0( xuzuz
n

c i

n

i

i −= ∑
=

rr
. This is the 

definition of variance.  The covariance decreases from variance at the origin and often 

reaches zero at a certain distance r termed the range or correlation length. In other words, 

when the covariance is zero, there is no relationship between the two random variables. A 

typical covariance for a random variable is shown in Figure 2.3 in which Co and r 

represents variance and range of the sample data.  

 

 

Figure 2.3. A typical covariance function for a random variable 
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2.2.5. Semivariograms 

The semivariogram is the most commonly used geostatistical technique for 

describing the spatial relationship of random variables.  Mathematically, semivariogram 

is defined as: 

[ ] [ ]{ }( )

[ ]{ }( )2

22

)LZ()Z(E

)LZ()Z( E
2

1
)()(

2

1
)(

r

rrr

+−

−+−=−+=

uu

uuuu ZLZL σγ
 (2.10) 

It is half of the variance of the difference between the two values of a random variable 

located L distance apart.  Assuming the first order stationarity the second term on the 

right side of Eq.(2.10) is equal zero. As a result, the semivariogram is rewritten as: 

])}()([{
2

1
)(

2
uu ZLZEL −+=

rr
γ  (2.11) 

Under the decision of stationarity the covariance and semivariogram functions are related 

tools for characterizing two-point correlation: 

)()0()( LCLC
rr

γ−=  (2.12) 

where C(0) is the covariance function at L=0. Eq.(2.12) indicates that the difference 

between the two function increases as the distance increases. Experimentally, the 

semivariogram for lag distance L
r

 is defined as the average squared difference of values 

separated approximately by L
r

: 

2
)(

1

)]()([
)(

1
)( uu

rrr
r

r
r

zLz
Ln

L
Ln

i

∑
=

−+=γ  (2.13) 

where )(Ln
r

is the number of pairs at vector distance L
r

; )(uz and )( Lz
r

+u are the data 

values for the ith pair located L
r

 lag distance apart. Semivariogram can be calculated for 

several directions in 3D space. The semivariogram increases from zero at the origin and 
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often reaches a plateau at a certain distance, which is termed the range or correlation 

length. The plateau is termed the sill and corresponds to the statistical variance of the 

sample data set. There is no correlation between the random variables beyond the range 

of the semivariogram. Figure 2.4 represents a typical semivariogram for a random 

variable. 

 

 

Figure 2.4. A typical semivariogram function for a random variable 

 

2.2.6. Cross-variograms 

Cross-variogram and the corresponding cross-covariance represent the spatial 

relationship between two random variables located a certain lag distance apart.  

Considering permeability and porosity as two random variables, for instance, a cross 

variogram can be applied to determine whether these two variables are spatially related at 

different lag distances apart. If such a relationship exists, it is possible to improve the 
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estimation of a random variable at the unsampled location. Mathematically, the cross 

variogram is defined as: 

)}]()()}{()([{
2

1
)( 2211 LZZLZZELc

rrr
+−+−= uuuuγ  (2.14) 

where E is the expected value, and Z1, Z2  are RVs representing the permeability and 

porosity respectively. Experimentally, the cross-variogram is estimates as: 

)]()([)]()([
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)( 221
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+−+−= ∑
=

uuuuγ  (2.15) 

Where )(Ln
r

is the number of pairs at vector distance L
r

; and z1, z2 are the values of two 

properties at locations that are L
r

 distance apart.  Obviously, the estimation of cross 

experimental cross variogram requires that both variable values be available at different 

locations. 

 

2.2.7. Mathematical Modeling of a Spatial Function 

The primary purpose in estimating a semivariogram or covariance is to use them 

to estimate values of the random variable at unsampled locations. However, these spatial 

functions are only available at limited lag distances. There are desired lag-distances for 

which the corresponding semivariogram value is not available. Hence, it is necessary to 

develop a mathematical model that could be used for any lag distance in the estimation 

process. Such a mathematical model must match closely with the estimated 

semivariogram at available lag distances. 

 

For the mathematical modeling of an experimental semivariogram, two 

requirements must be considered. The first is to use of the minimum number of 
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parameters in the mathematical model to make it simple. In other words, the most 

important features of an estimated variogram must be captured with as a few parameters 

as possible. That means the model does not need to pass through every estimated 

semivariogram value. The second requirement is the condition of positive definiteness 

[34]. In other words, Any model used to match the experimental semivariogram or 

covariance data should satisfy this requirement which ensures a unique solution for the 

estimation procedure.  

 

There are several models in the literature that satisfy the above requirement. 

Figure 2.5 represents three transitions semivariogram models. The choice of 

mathematical models for a matching process depends on the behavior of the experimental 

data near the origin. For instance, if the underlying phenomenon is continuous, the 

estimated spatial function will likely show a parabolic behavior near the origin, and the 

Gaussian semivariogram model will usually provide the best fit for this case. When there 

is discontinuity among the estimated semivariogram values near the origin, a nugget 

model is considered for matching process. The nugget model indicates total lack of 

information with respect to the spatial relationship.  

 

Nugget signifies the lack of quantitative information about the random variable 

under the study. There are two reasons for observing nugget effect discontinuity. First, 

the shortest distance at which the sample pairs are available may be greater than the range 

of the variogram. The second is the measurement errors that add uncertainty in the 
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estimation process. Figure 2.5 indicates a Nugget model. In the figure, the abrupt increase 

of semivariogram values from 0 to C0 shows the nugget effect.  

 

 

Figure 2.5. Basics semivariogram models with sill 

 

In addition, a linear combination of any of the four semivariogram mathematical 

models described above could be used to match a given experimental semivariogram. 

Mathematically, these combinations are shown as follows: 

∑+=

N

i

ii LaaL )()( 0

rr
γγ  (2.16) 

where 0a represents the nugget effect and sai '  show the contribution of other 

semivariogram model. 
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2.3. Conventional Estimation Techniques 

In principle, all estimation techniques assume that the value at the unsampled 

location is estimated by  

)()(
1

0

* ∑
=

=

n

i

ii uZuZ
rr

λ  (2.17) 

Where )( 0

*
uZ
r

is the estimated value at the unsampled location, )( iuZ
r

is the value at 

neighboring location iu
r

, and iλ  is the weight assigned to any neighboring value )( iuZ
r

. 

That is to say the estimated value is a weighted average of the neighboring values. The 

goal in the estimation procedure is to calculate the weights assigned to the individual 

neighboring points.  

 

Different techniques have been proposed for the estimation based on finding the 

weights to the points in the neighborhood region [17,21,34,35,46]. The neighborhood 

region defines the neighboring sample points used in estimating values at the unsampled 

location.  In the following sections some of these methods will be reviewed. 

 

2.3.1. Cell De-clustering 

In practice, sample data are rarely collected to represent statistical properties. For 

instance, wells are often drilled in areas with greater probability of good reservoir quality 

not with purpose of finding the permeability at the location. This is the same for core 

measurements. In this situation, the sample data are clustered in some area.  
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In the cell de-clustering approach, the entire area is divided into rectangular 

regions called cells. Each sample receives a weight inversely proportional to the number 

of samples that fall within the same cell. As a result, the clustered samples generally 

receive lower weights. This is because the cells in which they are located also contain 

several other samples. Figure 2.6 shows a grid of cells superimposed on a number of 

clustered samples. The dashed lines show the boundaries of cells. The two cells in the 

north contain only one sample; so both of these samples receive a weight of one. On the 

other hand, the southwestern cell contains two samples, both of which receive a weight of 

1/2. Also, the southeastern cell contains eight samples that receive a weight of 1/8. The 

cell de-clustering method can be viewed as a two-step procedure. In the first step, sample 

data are used to calculate the mean value within the cells, and then the mean of these 

samples is used for calculation at unsampled locations. 

 

2.3.2. Inverse Distance Method 

Inverse distance methods estimate the value of the random variable at an 

unsampled location by assigning a larger weight to closest sample and a smaller weight to 

the farthest one.   This is possible by weighting each sample in a data set inversely 

proportional to its distance from unsampled locations.  Mathematically, it is defined as 

follows: 
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where di is the distances from each of the n sample locations to the point being estimated 

and p is an arbitrary constant. Traditionally, the most common choice for p is 2 since it 

results in fewer calculations.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.6. An example of cell declustering 

 

2.3.3. Simple Kriging 

Simple kriging starts with assumption that the value of a random variable at an 

unsampled location could be estimated as follows: 
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rr

λλ  (2.19) 

n=1 n=1 

n=2 n=8 
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The value of λi is estimated by using MUVE (Minimum Variance Unbiased Estimate) 

criterion. An unbiased condition requires that: 

0))()(( 00

*
=− uZuZE

rr
 (2.20) 

Substituting )( 0

*
uZ
r

 from Eq.(2.19),  
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λλ  (2.21) 

By assuming first order stationarity condition, )]([)]([ 0uZEuZE i

rr
=  it can be written 

∑−=

n

im
1

0 )1( λλ  (2.22) 

In addition to unbiased criterion in Eq.(2.20), the condition of minimum variance must 

also be satisfied. Mathematically, weights ( )iλ  are chosen in a manner that 

)]()([ 00

*2
uZuZ
rr

−σ is minimized. The result of this condition is as follows: 
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Where ji uuC
rr

,( ) is the covariance value between points located at iu
r

and ju
r

 respectively, 

and 0,( uuC i

rr
)  is the covariance between the sampled location, iu

r
, and the unsampled 

location 0u
r

. The covariance values are obtained based on the spatial model. In matrix 

form, Eq.(2.23) can be written as 
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Rearranging the above equation in compact matrix, the weight matrix is calculated as 

follows: 

cC
1−

=Λ  (2.25) 

Eq.(2.25) states that the weights assigned to the samples are directly proportional to c  

and inversely proportional to C , where c represents the covariance between the sample 

point and the unsampled location. The stronger the spatial relationship between the 

sample point and the unsampled location, the larger is the value of ),( 0uuC i

rr
. As a result, 

the weight assigned to the sample point at iu
r

 is greater. On the other hand, C represents 

the covariance among the sampled points. If a particular sample point at ui is very close to 

the surrounding sample points (i.e. clustered sampled), C will be large and 
1−

C  will be 

small, and as a result the weight assigned to sample point will be reduced. If sample 

points are clustered together, they do not receive large weights because they do not 

provide independent information on an individual basis.  

 

In summary, the weight assigned to an individual sample is dependent on two 

factors. One is its spatial relationship to the unsampled location. The stronger the 

relationship, the larger is the assigned value. The second factor is the sample point’s 

spatial relationship to other sample point. The stronger the relationship, the less 

independent information that point can provide. In addition to the estimation, error 

variance associated with the estimation can be calculated as follows: 

),(),(ˆ
0

1

00

2
uuCuuC i

n

iE

rrrr
∑−= λσ  (2.26) 
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By examining Eq.(2.26) it is observed that the maximum value of the error variance 

is ),( 00 uuC
rr

(data variance). It means that in the absence of spatial information, uncertainty 

with respect to estimation is represented by the variance of the data. As spatial 

relationship information becomes available, error variance is reduced.  

 

2.3.4. Ordinary Kriging 

In the simple kriging procedure, it is assumed that the mean value m(u) is known. 

In practice, however, the true global mean is rarely known unless it is assumed that the 

sample mean is the same as global mean. Besides, the local mean within the search 

neighborhood may vary over the region of interest. As a result, the assumption of first 

order stationarity may not be strictly valid for the estimation process. The ordinary 

kriging method was developed to overcome this problem by redefining the estimation 

equation.  

 

Considering Eq.(2.20), and )()]([)]([ 00 umuZEuZE i

rrr
== , where )( 0um

r
represents 

the mean within the search neighborhood of location 0u
r

, then  Eq.(2.22) could be written 

in the following form: 
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 It is possible to force 0λ to be zero by assuming, 
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n

i

1

1λ  (2.28) 

Then, the estimation equation is written as: 
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The necessity of having the mean value is also eliminated by forcing 0λ to be zero. 

Furthermore, using this constraint in Eq.(2.28) (the minimum variance criterion) results 

in: 
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Where µ is called a Lagrange parameter, and C represents the covariance. In matrix form, 

Eq.(2.30) is written as:  
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Once λi is calculated, the error variance can be estimated by 

µλσ −−= ∑ ),(),(ˆ
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n
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rrrr
 (2.32) 

 

2.3.5 Indicator Kriging 

The main idea behind the indicator kriging is to code all of the data in a common 

format as probability values. The main advantage of this approach is simplified data 

integration due to the common probability coding. The comparative performance of 

indicator methods has been studied extensively by Goovarets [33]. 
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An indicator variable is essentially a binary variable which takes the values 1 and 

0 only. Typically such variable denotes presence or absence of a property. For a 

continuous variable, the equation for an indicator transform is written as: 
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Where ),( tj zuI
r is the indicator value, )( juZ

r  is the value of the random variable at ju
r

, and 

tz is the threshold value. Depending on the value of )( juZ
r the indicator value could take 

either a value of one or zero. Similar to a continuous variable, an equation for a discrete 

variable is written as: 
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tK  represents a threshold value. Depending on whether the sample value is equal or not 

equal to the threshold value, the indicator variable can take either a value of zero or one. 

 

For both continuous and discrete variables it is helpful to understand the indicator 

variable in terms of the confidence in a sample value. If there is 100% confidence about a 

sample, indicator values are defined in terms of zero or one. On the other hand, a value 

between zero and one represents the uncertainty in the sampled value. This provides 

flexibility in assigning probability values when information about particular sample point 

is incomplete.  

 

The goal of indicator kriging is to directly estimate the distribution of uncertainty 

Fz(u) at unsampled location u. The cumulative distribution function is estimated at a 
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series of threshold values: zk,k=1,…,K. For instance, Figure 2.7 shows probability values 

at five threshold (K=5) values that provide a distribution of uncertainty at unsampled 

location u. The probability values are evaluated by coding the data as indicator value or 

probability values.  The correct selection of the threshold values zk for the indicator 

kriging is important. Selection of too many threshold values makes the inference and 

computation needlessly tedious and expensive. On the other hand, with too few 

thresholds the distribution details are lost. 

  

After selecting the threshold values, the indicator variogram is calculated and 

fitted by a mathematical model for each threshold value. Once the indicator values at 

each threshold are defined, the next step is to estimate the spatial relationships or 

semivariograms. The number of semivariograms depends on the number of thresholds. 

For a continuous variable, such as permeability, if high permeability values exhibit 

different continuity than low permeability values, indicator approach provides the 

flexibility to model different levels of permeability with different semivariograms.  
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Figure 2.7. Schematic illustration of probability distribution F(z) at a series of five 

threshold values, zk, k=1,...,5 [35] 

 

The final step is to estimate an indicator value at unsampled locations. The 

approach is the same as the one for conventional kriging, except the kriging procedure is 

repeated at each threshold. For ordinary kriging the equation is: 
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And for simple kriging the equation is: 
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Because the weights assigned to sample points fall between zero and one, and the 

indicator values are between zero and one, the estimate from both equation fall between 

zero and one. After all unsampled points are visited; the indicator value for each 

threshold at each location is available. The estimate depends on whether indicator kriging 

used for continuous or discrete variables. Figure 2.8 represents possible estimates that 

could be obtained for continuous variables. For example, location (a) for continuous 

variable indicates that there is 20% probability that the value at that location is less than 

the first threshold. 

 

A similar explanation could be given for the other thresholds. By examining the 

probabilities for the location (b) in Figure 2.8, the probability of a sample value occurring 

between the second and third thresholds is 0.9-0.2=0.7. This high probability shows that 

the value falls within that interval.  

 

                            

Figure 2.8. Uncertainty estimation in indicator kriging 
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2.3.6. Co-kriging 

 

The term co-kriging is reserved for linear regression that correlates data that is 

defined with different attributes. Basically, the goal in co-kriging is to improve the 

estimate and reduce the uncertainty in the kriging estimation with the help of spatial 

information available from other variables. The implicit assumption in the process is the 

variable of interest and the other variables are spatially related to each other. For instance, 

to improve reservoir description, permeability can be estimated by using porosity data. 

This could be beneficial to permeability estimation since typically, a few wells are cored 

but almost all wells are logged. By establishing a spatial relationship between porosity 

and permeability data, the estimation of permeability at unsampled location could be 

improved by the surrounding porosity data. 

 

The limitation of co-kriging is that the variables must be linearly related to each 

other. Therefore, it is critical to check the relationship between the variable of interest 

(principle variable) and the supporting variables (covariables). Furthermore, the 

application of co-kriging requires a substantial spatial modeling and additional 

computational effort compared to an ordinary kriging system.  

 

Mathematically, if n and m are the number of samples of the principal variables 

and covariable Y respectively, then 
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Where zm and Ym are the expected values of the Z and Y variables, respectively. 

The following equations are written to satisfy the unbiased condition, 
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Finally, by minimizing the variance, the following equation in matrix form can be solved 

to calculate the weights, iλ  
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Where CZ and CY are the covariance for the Z and Y variables, CC is the cross covariance, 

and µZ and µY are the Lagrange parameters. It is clear that the matrix size in co-kriging 

technique is much bigger than ordinary kriging.  

The expression for error variance, which is an indication of relative sample variogram, is 

as follows: 
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1

00

2 rrrrrr
 (2.41) 

One of the difficulties existed in co-kriging method is that sometimes the estimate of 

principle variable at unsampled location is overwhelmed by the covariable samples in 

search neighborhood. To avoid such conditions, different search neighborhoods are 

defined for principle variables and covariables.   

 

 

2.3.7. Monte-Carlo simulation techniques 

 

An estimation technique such as kriging uses the assumed spatial relationship (the 

geological continuity model) between the data and the unknown to produce a single best 

guess of the unknown. When kriging is applied to a grid of unsampled values, for 

instance Figure 2.9, the resulting estimates shows a clear deviation from actual geological 

phenomena.  
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Figure 2.9. Lack of true geological continuity in kriging estimation [36] 

 

The kriging results cannot be identical to the actual phenomenon simply because 

of limited sample data. It is also important to note that the spatial continuity displayed by 

a map of kriged estimates is smoother than that of the true unknown. This observation is 

true for any other spatial estimation or interpolation technique. The reason is that kriging 

and other interpolation techniques attempt to produce a best estimate at each unsampled 

location. A conservative estimate is required to obtain an estimate that is as close as 

possible to the true value at each location. Eq.(2.27) defines a measure of conservatism. 

Because kriging is inherently conservative and the estimates cannot be too extreme at the 

risk of being too far off the true value. Consequently, estimation models are said to be 

locally accurate in that they seek to minimize local errors independently of what the 

global map of estimates may look like.  

 

Accurate prediction of fluid flow in a subsurface formation depends on how well 

the data reflect the overall geological continuity in terms of permeability. Such an 

accurate prediction requires the use of a model that provides an accurate global 

representation of the subsurface heterogeneity. Stochastic simulation is a geostatistical 
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tool for generating numerical models that aim to honor the more realistic global 

representation of the subsurface heterogeneity. Stochastic simulation (or conditional 

simulation) technique is a procedure that simulates various attributes at unsampled 

locations and is conditioned by prior information. The main idea in simulation techniques 

is that attributes are simulated rather than estimated. In other words, the overall goal of 

simulation techniques is to simulate a reality rather than to obtain a picture of the 

reservoir which minimizes error variance. These techniques constitute a part of a broader 

class of simulation techniques and are called Monte Carlo simulations. In the following, 

some of the more common simulation techniques that are used to generate a stochastic 

random field are reviewed. 

 

2.4. Review of Sequential Simulation 

Sequential Simulation [37], and more specifically sequential Gaussian simulation 

(SGSIM [5]), was introduced as a solution to the smoothing problem of kriging. 

Sequential simulation algorithms are ‘globally’ correct in that they reproduce a global 

structured statistics such as a variogram model, whereas kriging is ‘locally’ accurate in 

that it provides at each location a best estimate in a minimum error variance sense, 

regardless of estimates made at other locations. Since flow in a reservoir is controlled by 

the spatial disposition of permeability values in the reservoir, sequential simulation 

algorithms provide more relevant reservoir models that honor the global structure 

specified by the variogram.  
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The implementation of sequential simulation consists of reproducing the desired 

spatial properties through the sequential use of conditional distributions. Consider a set of 

N random variables NuZ ,...,1),( =α
α

defined at N locations uα. The aim is to generate L 

joint realizations Nuz
l

,...,1),( =α
α

 with l = 1, . . . ,L of the N random variables, 

conditional to n available data and then reproducing the properties of a given multivariate 

distribution. To achieve this goal, the N-point multivariate distribution is decomposed 

into a set of N univariate distributions (conditional cumulative distribution functions or 

ccdfs): 
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where })1()({Pr))1(;( 1 −+≤=−+
−

NnzZobNnzF NNNN uu  is the conditional 

cumulative distribution function (ccdf) of  )( NZ u  given the set of n original data values 

and (N-1) realizations 1,...,1),( −= Nuz
l

α
α

 of the previously simulated values. The 

decomposition allows generating a realization by sequentially visiting each node on the 

simulation grid. In theory, the approach requires a full analytical expression for the ccdf 

at each step.  In the following, the two main variogram-based algorithms, sequential 

Gaussian simulation (SGSIM) and sequential indicator simulation (SISIM), are 

presented. 
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2.4.1. Sequential Gaussian Simulation (SGS) 

 The most straightforward algorithm for generating realizations of a multivariate 

Gaussian field is provided by the sequential principle described above. Each variable is 

simulated sequentially according to its normal ccdf fully characterized through a simple 

kriging system of Eq.(2.28). The conditioning data consist of all original data and all 

previously simulated values found within a neighborhood of the location being simulated. 

The conditional simulation of a continuous variable z(u) modeled by a Gaussian related 

stationary random function (RF) Z(u) proceeds as follows: 

1. Determine the univariate cumulative distribution function (FZ(z)), representative 

of the entire study area and not only the available z-data. The mean and standard 

deviation of FZ(z) is calculated from sample data. Declustering may be needed if 

the z-data are preferentially located [5], [39]. 

2. Perform the normal score transform of the z-data, with the FZ(z), into y-data with 

a standard normal cdf [5], [37]. This step may be skipped for a random variable 

such as porosity showing a normal distribution.  

3. Although not a part of the algorithm, it is good practice to check for bivariate 

normality of the normal score y-data by comparing the experimental indicator 

semivariogram to the ones expected from multi-Gaussian theory [5], [40]. If the 

data do not show a bivariate Gaussian behavior, then alternate models such as an 

indicator-based approach should be considered.  

4. If a multivariate Gaussian RF model is adopted for the y-variable then proceed 

with sequential simulation, i.e. : 
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1) Define a random path that visits each node of the grid once. The path 

should not necessarily be regular. At each node u, retain a specified 

number of the original and the previously simulated y-data. These data are 

called neighboring hard conditioning data. 

2) Use simple kriging estimation to determine the parameters (mean and 

variance) of the ccdf of the random function Y(u) at location u. 

3) Draw a simulated value y
(l)

(u) from that ccdf. y
(l)

(u) is the simulated 

normal score of z(u) for the realization (1). 

4) Add the simulated value y
(l)

(u) to the data set. 

5) Proceed to the next node, and loop until all nodes are simulated. 

6) Back-transform the simulated normal values }),({ )( Ay l
∈uu  into 

simulated values for the original variable })),(()({ )(1)( Ayz ll
∈=

− uuu ϕ . 

Often, it is necessary to perform interpolations and tail extrapolations. See 

Deutsch and Journel[5] for details. 

7) If multiple realizations are desired, the previous algorithm is repeated L 

times with a different random path for each realization. The prior decision 

of stationarity requires that simple kriging (SK) with zero mean (for Y (u)) 

to be used in step 4 of the SGS algorithm. However, if there are enough 

data to indicate that a non-stationary RF model would be more 

appropriate, one may split the area into distinct sub-zones and consider for 

each sub-zone a different RF model. This implies inference of a different 

normal score covariance for each sub-zone. 
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There are a number of implementations of the sequential Gaussian simulation 

(SGS) algorithms presented in literatures. The program gsim3d.c written by Isaaks [41] 

and the sgsim program of GSLIB [5] are two examples. 

 

2.4.2. Sequential Indicator Simulation (SIS) 

It is not always necessary to use a parametrical multi-Gaussian random function. 

Non-parametric indicator Kriging technique can also be implemented in sequential 

Gaussian simulation. In this approach the conditional probability of the data are directly 

estimated, using indicator kriging that is applied to binary indicator transforms of the 

data. If the indicator variable being kriged arises from a categorical variable, i.e., i(u) set 

to 1 if the location u belongs to category k, to zero otherwise, then: 

})()({})(1)({Pr niEniob uu ==  (2.43) 

If the variable z(u) to be simulated is continuous, its ccdf can also be written as an 

indicator conditional expectation: 

})();({})()({Pr nziEnzZob uu =≤  (2.44) 

with 0,)(1);( =≤= zZifzi uu otherwise. 

 

In both cases, the problem of evaluating the conditional probability is converted into that 

of evaluating the conditional expectation of a specific indicator random variable.  The 

evaluation of a conditional expectation calls for well-established regression theory, i.e., 

kriging (see section 1.3.2).The sequential simulation algorithm proceeds somewhat 

differently for categorical and continuous variables: 
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2.4.2.1. Categorical (Discrete) Variables  

1. At each node u along the random path, indicator kriging followed by order 

relation corrections
1
 provides K estimated probabilities (.)(*

ukp . The conditioning 

information (.)  consists of both the original ik-data and the previously simulated 

ik-values for category k. 

2. Define any ordering of the K categories like 1,2,. . . ,K. This ordering defines a 

cdf-type scaling of the probability interval [0, 1] with K intervals.  

3. Draw a random number p that is uniformly distributed in [0, 1]. The interval 

contains p determines the simulated category at location u. 

4.  Update all K indicator data sets with this new simulated information, and proceed 

to the next location u along the random path. The arbitrary ordering of the K 

probabilities (.)(*
ukp does not affect which category is drawn or the spatial 

distribution of categories [42]. 

 

2.4.2.2. Continuous Variables 

 

The continuous variable z(u) discretized into K mutually exclusive  

classes k: Kkzz kk ,...,1].,( 1 =
−

. z(u) can be interpreted and simulated as the spatial 

distribution of K class indicators. One advantage of discretizing the continuous variable 

z(u) into K classes is the flexibility to model the spatial distribution of each class by a 

different indicator semivariograms [5]. 

                                                 
1
 Order relation corrections apply to ensuring that the estimated distribution follows the axioms of a 

probability distribution: a cdf is never less than 0, greater than 1, and must be non-decreasing. The 

probabilities of a pdf must all be greater (or equal to) zero and sum to one. 
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At each node u that is to be simulated along the random path, indicator kriging 

(Simple or Ordinary kriging) provides a ccdf through K probability estimates: 

KknzZobnzF k ,...,1)},()((Pr))(;( **
=≤= uu  (2.45) 

Interpolation provides the continuum for all threshold values ],[( maxmin zzz ∈  [5]. 

Monte-Carlo simulation of a realization z
(l)

(u) is obtained by drawing a uniform  random 

number ]1,0[)(
∈

lp and retrieving the ccdf p
(l)

-quantile ))(;()( )(1*)( npFz ll uu −
= such that 

)()(* ))(;( ll
pnzF =uu . 

 

The indicator data set (for all thresholds zk) is updated with the simulated value 

z
(l)

(u) and indicator kriging is performed at the next location u along the random path. 

Once all locations u have been simulated, a stochastic image }),({ )( Az l
∈uu  is obtained. 

The entire sequential simulation process with a new random path can be repeated to 

obtain another independent realization llAz
l

≠′∈ },),({ )( '

uu .  

 

 Unlike SGSIM, SISIM permits the use of different indicator semivariograms to 

model the relations of each of the K thresholds, i.e. one can account for category-specific 

patterns of spatial continuity. Thus, correlating and connecting the extreme values of a 

reservoir, as different from median values, becomes a possibility. SISIM added more 

variogram flexibility to reservoir modeling but it was quickly recognized that the 

limitation in reproducing curvilinear geological shapes such as meandering channels, is in 

the variogram itself, not in the use of indicators. In general, as a two-point statistics, the 
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semivariogram (no matter how many) cannot capture complex curvilinear shapes [1]. For 

more details and the theoretical development of the sequential indicator simulation 

methodology, see Deutsch and Journel [5]. 
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Chapter 3 

Effect of Quantity of Samples on Geostatistical Methods 

 

3.1. Introduction 

All geostatistical methods require a minimum number of the sample data to build 

a subsurface model. In petroleum engineering, these data are frequently available at the 

production or exploration wells. At times there appears to be a lot of sample data such as 

core, well logs, seismic, and production data. Even in this ideal situation, however, there 

is always uncertainty in the assignment of reservoir properties at unsampled locations.  

 

Permeability is one of the most complex data among the various types of sample 

data to be obtained at wells. It can be obtained from the number of sources such as well 

logs, cores and well testing. Permeability is also a key parameter to any reservoir study 

since it defines the extreme behavior of flow paths. Thus, it is crucial to characterize and 

preserve in a model the extreme values of permeability and their spatial patterns.  The 

range of variability for reservoir permeability is usually higher than the other reservoir 

properties.  

 

Because of the scale of variability for permeability and complexity of porous 

media, the data sets sampled from a hydrocarbon field are often inadequate to represent 

the real heterogeneity of the reservoir. This is especially true for permeability. However, 

collecting more sample data from a reservoir can help in two ways. First, they help 

constraining the geostatistical interpolation methods by providing more points where the 
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parameters are known. Second, the quantity of data sets can improve the inference 

governing spatial correlations between the random variables.  

 

The effect of quantity of sample data on the accuracy of various geostatistical 

methods has not received a deserved attention in petroleum engineering literature. The 

primary objective of this work is to examine the effect of the amount of sample data on 

the estimation of random properties of the reservoir at unsampled locations using 

geostatistics. The accuracy of geostatistical methods is investigated by comparing the 

statistical analysis of the random properties from the obtained realizations to the 

properties of a reference reservoir. The comparison was not limited to the reservoir 

properties, the dynamic data of the realization and the reference reservoir were also 

compared. For comparing the dynamic data, the realizations generated by geostatistical 

methods are considered to represent actual random properties of a reservoir and used as 

an input data in flow simulations. For instance, porosity and permeability are random 

variables whose values are estimated by geostatistics. The results of flow simulation or 

dynamic data are affected directly by the accuracy of the realizations, which in turn could 

be the function of the quantity of data sets. Investigating the effect of quantity of sample 

data on the outcome of flow simulations or dynamic data is another important objective 

of this work. 
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3.2. Case Study 

For the purpose of the study a hypothetical 2D reservoir was put together using 

data that was prepared and provided by Stanford University [5]. The properties of this 

reservoir, that considered ‘true’ or ‘reference’ data, were used to demonstrate and study 

the accuracy of the various geostatistical algorithms. The dimension of this hypothetical 

reservoir is 2500 ft by 2500 ft that is divided into 50 by 50 grids. It has a single layer of 

constant 30ft vertical thickness.  

 

The permeability of the reservoir, reference permeability, was obtained by 

Computer Tomography (CT). CT measurement consists of generating a beam of high 

energy photons through the object and recording them on an array of detectors placed 

diametrically opposite the source. The resultant photon intensity at the detectors is used 

to reconstruct the CT characteristics of the object. The scanned cross section is 

discretized into voxels and a CT number is attributed to each voxel. The CT number is 

proportional to the density of material within the scan plane. For the purpose of this 

research, the CT values were rescaled to obtain the histogram of the actual permeability 

values that derived from well-log of a deep water turbiditic reservoir [43]. The porosity 

map was derived from well-log data. The resultant permeability and porosity maps and 

corresponding histograms are given in Figures 3.1 and 3.2 respectively. The permeability 

distribution of the reservoir results in Dykstra-Parson coefficient of about 0.75 which 

implies that the reservoir is quite heterogeneous. 
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3.3. Sample Data Sets 

In a real reservoir, samples are taken from well locations that are typically drilled 

in patterns. As for the hypothetical reservoir in this study, the sample data are taken in a 

way that replicates the typical well spacing used in the petroleum engineering literature. 

Therefore, two sets of sample were taken from well locations that drilled in two types of 

well spacing: 10 and 40 acre well-spacing. From 10 acre well-spacing forty one samples 

and from 40 acre, sixteen samples were taken. Figures 3.3 and 3.4 display the location of 

the data sets on the reference case study. Throughout this dissertation, the 10 and 40 acre 

well spacing samples are labeled as data sets A (10 Acre) and B (40 Acre).  

 

The accuracy of the dynamic response as a function of the number of samples was 

examined in a five-spot 40-Acre pattern (Figure 3.5). Well I at the center of the five-spot 

is an injection well. There are four production wells at the corners. The wells are drilled 

exactly at the locations where samples have been taken. In other words, the properties of 

the reservoir, permeability and porosity, are only known at the well locations. That is 

because there is no other way to compare the outcomes of flow simulations or dynamic 

data as a function of the number of samples.    

 

3.4. Flow Simulator 

Flow simulations in this research were performed using ECLIPSE100 Black Oil 

simulator (ECLIPSE-100 Reference Manual and Technical description, 2005A, 

Schlumberger [32]). The relative permeabilities used for the oil-water system is given in 
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Figure 3.6. Additional information pertaining to the 2-D reservoir model used for this 

research is given in Table 3.1. 

 

                    Table 3.1. Model specifications for flow simulator 

Reservoir Dimension 50 x 50 

Dimension of each cell 50ft x 50 ft 

Thickness of reservoir 30 ft 

Fluid Viscosities 

Oil( 0.7 cp) 

Water(1 cp) 

Water Density 69.26 lb/ft
3 

Oil Density 51.26 lb/ft
3 

Rock Compressibility 6x10
-6

/psi 

Equilibrium conditions 1000psi@4500 ft 

Constant initial water saturation 0.25 

 

 

 

 

 

 

 

 



49 

 

 

 

               

Figure 3.1. Permeability map of the reference reservoir and the corresponding histogram 
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Figure 3.2. Porosity map of the reference reservoir and the corresponding histogram     
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A five spot pattern, shown in Figure 3.5, is considered to examine the dynamic 

performance of the outcome realizations. The injection well I at the center was shut-in 

and all the production wells P’s at the corner produced at 400 psi which is higher than oil 

bubble point pressure. The reason for constraining the pressure at production well is to 

ensure the elimination of gas in the course of the simulation. Therefore, the oil production 

in this condition is governed by the total compressibility of the reservoir. The simulation 

was terminated after 120 days when the oil production for all wells fell down to almost 

zero after this period.  

 

 

Figure 3.3. Location of sample in 10 Acre well spacing data set. 



52 

 

                 

Figure 3.4. Location of sample in 40 Acre well spacing data set. 

 

           Figure 3.5. Location of a five-spot pattern on the reference reservoir (2500 points) 

 

P1 P2 

P3 P4 

I 



53 

 

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8

Sw

K
r

Krw

Krow

 

Figure 3.6. Oil-water relative permeability data set used in the flow simulator 
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3.5. Methodology 

Four geostatistical techniques were considered to used to assign permeability to 

the grid blocks described in the previous section. The techniques were: 

• Ordinary Kriging (OK) 

• Indicator Kriging (IK) 

•  Sequential Gaussian Simulation (SGS)  

• Sequential Indicator Simulation (SIS)  

The techniques were applied to estimate the properties of the reservoir at unsampled 

locations. The first two methods, ordinary and indicator kriging, are classified as 

conventional estimation techniques. On the other hand, both SGS and SIS are considered 

Monte Carlo simulation routines.   

 

The four methods were used to estimate the permeability at unsampled locations 

using two different data sets explained in the previous section.  The initial step in most 

geostatistical techniques is to estimate the experimental semivariogram using available 

sample data. For the data sets of this study the experimental semivariograms of logarithm 

of permeability (LogPerm) were calculated and are shown in Figure 3.7. In addition, the 

semivariogram for all 2500 exhaustive sample data of the reference reservoir is shown 

the figure. Figure 3.7 indicates the variance of both data sets (sill of the semivariograms) 

is smaller than that of the variance of the reference data set. None of the data sets 

represent the heterogeneity of the reference reservoir.  All adjacent data are beyond the 

range of the reference semivariogram for the two sample data sets (closest distance 
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between wells in 10 acre is 667 ft). Therefore, there appear to be no correlation between 

data for the reduced sample sets. 

 

The reference reservoir is a heterogeneous reservoir (Dykstra-Parson coefficient 

0.75). As a result it is difficult to take samples from the reservoir that could represent 

such heterogeneity. Consequently, it was decided to use the experimental semivariogram 

of 2500 LogPerm of the reference reservoir instead of semivariograms of the two other 

data sets A and B. 
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Figure 3.7. The experimental semivariograms for the two data sets and the reference 

reservoir  
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3.5.1. Semivariogram Modeling 

The semivariogram of the LogPerm of the reference reservoir was estimated in 

different directions in order to investigate anisotropy of permeability. For the purpose of 

orientation, 0° corresponds to the east direction and 90° correspond to the north direction. 

The directional tolerance used is ±30°. All geostatistical routines in this work were 

performed by GSLIB (Geostatistical Software Library) developed at Stanford University. 

 

Figure 3.8 presents the experimental semivariograms in four directions: 0, 45, 90, 

and 135°.  The sill and range of semivariograms are approximately the same in different 

directions.  Thus, there is no clear indication of anisotropy of LogPerm for the reference 

reservoir.  Semivariogram in east direction was assumed to be the reference 

semivariogram of LogPerm for the rest of the study. 

 

 The next step is to fit an analytical model that is defined by a few parameters to 

the experimental semivariograms. This procedure ensures that semivariogram values for 

any possible lag distances used in the kriging matrices can be computed.  The 

experimental semivariogram data were fit to the basic mathematical semivariogram 

models explained in section 1.2.7. The results of the regression showed that a spherical 

semivariogram model with sill of 0.33 and range of 450 ft fit the semivariogram data 

better than other models. Figure 3.9 presents the analytical model fitted to the 

semivariogram of LogPerm for the reference reservoir. This semivariogram model was 

used to calculate the LogPerm at unsampled location in ordinary kriging method.  
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Figure 3.8. Experimental semivariogram of LogPerm in different directions of the 

reference reservoir 

 

Figure 3.9. Experimental and mathematical model of semivariogram for 

LogPerm 
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 For indicator kriging and sequential indicator simulation (SIS) methods, as it was 

explained in section 2.4.2, the first step is to select the number of thresholds used to 

transform the continuous variables to indicator values. First, a sensitivity analysis was 

carried out to select the number of thresholds. Then, the lower and upper quartile and 

median of LogPerm were selected to transform the data into indicator values. For each 

threshold, the estimated semivariogram was calculated for LogPerm and fitted by a basic 

analytical model. A spherical model was used to fit the estimated semivariograms for the 

lower quartile threshold; while an exponential model was used to fit the estimated 

semivariograms for the median and upper thresholds. Figures 3.10 through 3.12 represent 

the estimated and analytical semivariograms of LogPerm indicator values for the three 

thresholds.  

 

In the sequential Gaussian simulation, the data set is transformed with a normal 

score transformation. As for the original LogPerm data, they were first transformed into 

normal score using mean and standard deviation of the exhaustive data set. Then, the 

semivariogram was estimated for the normal score transformation of the original data. 

Similar to the other techniques, the last step is to fit a mathematical model to the 

estimated semivariogram. Examining the fit of the basic model suggested a Gaussian 

semivariogram model with a range of 450 ft to fit the data. Figure 3.13 presents the 

estimated and mathematical semivariogram model for the normal score of LogPerm data.  
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Figure 3.10. Experimental and mathematical semivariogram for lower quartile threshold 
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Figure 3.11. Experimental and mathematical semivariogram for median threshold 
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Figure 3.12. Experimental and mathematical semivariogram for upper quartile threshold 
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Figure 3.13. Experimental and mathematical semivariogram of the LogPerm normal 

score  
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3.5.2 Ordinary Kriging 

Ordinary kriging implemented in the GSLIB program kb2d was employed to 

generate LogPerm values at unsampled locations. This program computes a local 

estimate of the mean of the kriged variable at every grid point. The search radius of 4000 

ft was estimated from the distribution of well locations in the location maps in Figures 

3.3 and 3.4. The radius was chosen in a manner to encompass the minimum number of 

data points (3) at any unsampled grids. Using a smaller radius (smaller than 4000 ft) 

would result in search failures at some of the unsampled grid nodes. This is reasonable 

because it prevents the procedure extrapolating too far from the well control.  The 

minimum and maximum number of points used in the estimation procedure was three and 

eight respectively.  The analytical semivariogram of the exhaustive data set shown in 

Figure 3.9 was used for this technique.  Data sets A and B described in Section 3.3 set 

aside as hard control data for estimation the LogPerm at unsampled grids. After 

calculation at the unsampled grid cells, LogPerm was transformed to permeability using 

antilogarithm transformation. The permeability maps generated with ordinary kriging 

using two data sets A and B are compared against the reference permeability map in 

Figure 3.14.  The maps generated by ordinary kriging are smooth which is typical for the 

kriging estimation. The ordinary kriging variance maps are shown in Figure 3.15 for data 

set B. The figure indicates that the estimation variance is small in grid blocks close to the 

conditioning hard data, and it becomes large in areas far from the hard data. The 

histograms of the permeability data for maps generated by ordinary kriging are shown in 

Figure 3.16. 
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Figure 3.14. Comparison of the permeability maps generated by ordinary kriging 

 and the reference reservoir 
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Figure 3.15. Variance map of ordinary kriging for estimation of the permeability 

 

Figure 3.16 shows that the mean of the kriging estimates are close to that of 

conditioning hard data (224 md and 128 md are the average permeability of two data sets 

A & B, respectively).  Also, the histograms are narrower than the reference data 

histogram. The mean of the permeability data generated by ordinary kriging was 200 and 

115 md respectively, while it was 307 md for the reference data set. In general, Ordinary 

kriging does not reproduce extreme values of permeability which is not observed in the 

conditioning hard data.  

 

 Kriging honors data values at data locations, However, values are assigned the 

mean of the sample data beyond the range of the semivariogram. In other words, beyond 



64 

 

the range of a semivariogram the variance of estimation is maximum value (sill) 

indicating the maximum uncertainty of estimated values at the unsampled locations.  This 

is considered to be a drawback for this type of estimation.  

 

Kriging procedure estimates the permeability of the unsampled locations equal to 

sample mean beyond the range of semivariograms.  Figure 3.17 shows the sample 

locations enclosed by a circle with semivariogram radius (450 ft) for the 40 acre data set.  

Estimated LogPerm using kriging were subtracted from the LogPerm mean of the 40 acre 

data set. Figure 3.18 shows the results of such calculation.  Figure 3.18 indicates the 

difference between the kriged values and the mean of samples is zero beyond the range of 

the semivariogram shown by a circle around each sample.  This shows that the kriged 

estimates becomes smoother and smoother when approaching the semivariogram range. 

The smoothing of kriging is directly proportional to the kriging variance. There is no 

smoothing at data locations where the kriging variance is zero (Figure 3.15). The estimate 

is completely smooth beyond the range where all estimates are equal to the mean and 

kriging variance is the variance of the sample data (sill). 
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Figure 3.16. Histogram of permeability maps generated by ordinary kriging 
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Figure 3.17. Location of sample data in the 40 Acre data set. 
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Figure 3.18. The difference between LogPerm kriged and sample 

 mean of the 40 Acre data  
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3.5.3. Indicator Kriging 

LogPerm values were estimated at all grid blocks were obtained using indicator 

kriging (GSLIB program ik3d). For the purpose of the estimation, the hard control 

permeability data were transformed into indicators with three specified thresholds (first 

and third quartile and median). These thresholds were selected to avoid excessive 

semivariogram modeling and computational effort. Similar to ordinary kriging, the search 

radius was assigned to 4000 ft to assure covering minimum data for the computation 

process. The minimum and maximum numbers of points were also the same as the 

ordinary kriging described in the previous section.  

 

The estimated of semivariogram for three thresholds of the reference permeability 

data set were utilized.  In general, the approach is the same as conventional ordinary 

kriging, except the routine must be repeated at each threshold. Unlike ordinary kriging 

whose outcome is a single map, indicator kriging generates one map for each threshold. 

These maps represent the probability of exceeding threshold values. In addition, at each 

threshold, these maps are used to estimate the local conditional probability distribution.   

 

The indicator maps corresponding to three thresholds are shown in Figure 3.19 for 

the data set A.  The figures show the probability of the event when LogPerm value is less 

than the threshold. For instance, the map for the lower quartile threshold shows that most 

areas have low probabilities of having LogPerm less than 1.94. Similarly, the upper 

quartile map shows the areas of the east part have the highest probability of high 

LogPerm values.  
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Figure 3.19.  Indicator maps of the three thresholds used in IK 
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These indicator values at different thresholds together describe the conditional probability 

distribution at each grid block. 

 

  Histograms of the indicator maps for the 10-Acre spacing data set are shown in 

Figure 3.20. The mean of the estimates increases as thresholds increases, because 

indicator values present cumulative probability. In other words, the shape of histograms 

shifts from values close to zero for the lower threshold to values to close one for the 

upper threshold.  Finally, the E-type estimate and mean value of the conditional 

distribution (that derived from the indicator) were computed by post-processing program 

in GSLIB called postik. Using postik, the permeability for each grid cell was assigned 

based on the mean value of conditional probability at all unsampled locations. Figure 

3.21 illustrates the final permeability distribution generated by indicator kriging that uses 

two data sets for conditioning hard data. Figure 3.22 shows the histogram of the 

permeability data created by indicator krigging. Generally, the permeability maps shown 

in Figure 3.21 have a smooth appearance like ordinary kriging technique. The histogram 

of the permeability values generated by data set A are wider that the one generated by 

data set B. This could be explained by the fact that the range of the samples data in data 

set A is larger than B.  This shows one of the effects of the number of the available 

sample data. 
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Figure 3.20. Histograms of indicator maps for three thresholds 
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         Figure 3.21.  Permeability maps generated by indicator kriging 



72 

 

0 200 400 600 800 1000 1200
0

200

400

600

800

1000

1200

Mean                       176

Standard deviation  82

Lower Quartile        119

Upper Quartile        216

Median                    167

Maximum                 803

Minimum                 13.2

Permeability, md

F
re

q
u

e
n

c
y

Data set A (10 Acre)

 

0 200 400 600 800 1000 1200
0

500

1000

1500

2000

2500

Mean                        128

Standard deviation   27

Lower Quartile         107

Upper Quartile         148

Median                     127

Maximum                  254

Minimum                   27

Permeability, md

F
re

q
u

e
n

c
y

Data set B (40 Acre)

 

0 200 400 600 800 1000 1200
0

100

200

300

400

500

600

700

800

900

1000

Number of Samples 2500

Mean                         307.9

Standard deviation   310.7

Lower Quartile          86.3

Upper Quartile          514

Median                     125.5

Maximum                 1199.8

Minimum                  3.9

Permeability, md

F
re

q
u

e
n

c
y

Reference Reservoir

 

Figure 3.22.  Histogram of permeability maps generated by indicator kriging 
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3.5.4. Sequential Gaussian Simulation  

GSLIB program, sgsim, was used to generate fifty realizations of the permeability 

using sequential Gaussian simulation. In order to generate the realizations, the LogPerm 

values of the two sample data sets were transformed into normal score prior to simulation 

using mean and standard deviation of the samples. Next, the semivariogram for these 

normal scores was computed and fitted to an analytical model as described in detail in the 

previous section. Other parameters such as search radius and minimum and maximum 

data that are required for the simulation are the same as those used in the ordinary kriging 

estimation. It should be noted that simulations included a feature called multiple grid 

search. This feature, first performs the simulation on a fairly coarse grid in order to 

reproduce larger scale structures; then fills in a sequence of finer grids until the grid 

resolution that is specified by the user in the program is reached. 

 

Once the semivariograms of data were estimated and modeled, the realizations of 

normal scores were created for all grid blocks. The normal scores values then were back 

transformed into LogPerm using interpolation models available in GSLIB. Figure 3.23 

shows the estimated semivariograms obtained from the fifty realizations (solid gray line) 

using two data sets A and B. This estimated semivariogram is compared to the estimated 

semivariogram of the reference case (Solid Black Line). Figure 3.23 shows that the 

semivariogram of the reference case lie within the range of all the semivariograms that 

are estimated from realizations generated using data set A. That indicates the acceptable 

accuracy of the results that come from data set A.  Furthermore, the results in Figure 3.23 
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show better precision for data set A, since the estimated semivariogram lie in a narrower 

band. This again reflects the effect of number of available sample data.  

 

Figure 3.24 shows two permeability realizations generated with SGS using 

samples in data set A. The difference between these two realizations generated using the 

same data set, is mostly clear at locations where there is no conditioning data set. This 

validates the claim that the conditional simulation quantifies the uncertainty at locations 

away from the conditioning data set. The difference between the permeability values of 

the reference reservoir and ten realizations generated by SGS using 10 Acre data set was 

calculated. Figures 3.25 and 3.26 shows the difference between the permeability values 

of the reference and four SGS realizations. These figures indicate that SGS provides poor 

estimates for both high and low permeability regions of the reference reservoir. This is 

clearer for the high permeability areas in the reference reservoir where SGS 

underestimate the permeability. From reservoir engineering standpoint, it is crucial to 

characterize and preserve in the model these extreme values of permeability that control 

the fluid flow in the porous media. This is also true for the SGS realization generated by 

40 Acre data set. Figure 3.27 displays the permeability realization generated by the two 

data sets compared against the permeability distribution of the reference case. Figure 3.28 

compares the histogram realizations in Figure 3.27 with the reference data. The mean and 

standard deviation of the realization generated by data set A (303 and 296 md) is very 

close to that of the reference data (308 and 311 md), while this is not true for the 

realization generated by data set B. This once more suggests the effect of quantity of 
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available sample data on the accuracy of stochastic geostatistical methods in predicting 

the permeability distribution.  

 

Sequential Gaussian simulation was introduced as a solution to the smoothing 

problem of kriging for the locations beyond the range. At the unsampled locations, SGS 

honors the spatial relationship between the unsampled locations and the previously 

estimated values are considered during the course of simulation. This is one reason that 

SGS is able to reproduce the input semivariogram and adequate heterogeneity beyond the 

range. The LogPerm values of a realization simulated using the 40 Acre data set were 

subtracted from the LogPerm mean of the 40 Acre data set.  Figure 3.29 shows the results 

of this analysis. This figure indicates the limitations of sequential simulation to estimate 

values different than mean beyond the range of the semivariogram.  
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Figure 3.23. Comparison between semivariograms of the permeability realizations for 

two data sets and the reference reservoir  
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Figure 3.24.  SGS Permeability realizations using data set 10-Acre 
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Figure 3.25. The difference between the permeability values of the reference reservoir 

and four SGS realizations 
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Figure 3.26. The difference between the permeability values of the reference reservoir 

and four SGS realizations 
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Figure 3.27. Comparison of the permeability maps generated by SGS using two data sets 

10-Acre & 40-Acre and the reference reservoir 
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Figure 3.28. Histograms of permeability maps shown in Figure 3.26 
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Figure 3.29. The difference between LogPerm sample mean and SGS 

 simulated values for the 40 Acre data set 
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3.5.5. Sequential Indicator Kriging 

Sequential indicator simulation (SIS) in GSLIB for both continuous and discrete 

variables is implemented in a program called sisim. One of the features of the program is 

the ability of using a combination of simple and ordinary kriging. Fifty realizations of 

permeability (using both data set A and B) were generated by sisim. The first step in 

generating the realizations was to transform the conditioning hard data into indicator 

values by means of a specified number of thresholds. Similar to the indicator kriging 

method described in Section 2.5.3, three thresholds (the lower quartile, median and upper 

quartile) were selected after the sensitivity analysis. All other parameters including the 

search radius, the minimum and maximum number of points and the number of 

previously simulated data is the same as in the indicator kriging provided in Section 

2.5.3.  Furthermore, the analytical models of semivariograms are the same as the one that 

was developed in Section 2.5.1.   

 

sisim program provides local conditional distribution at each unsampled location 

using kriging estimation of indicator values that are resulted from different threshold. 

Once all unsampled locations are visited and values in the transformed domain are 

estimated with their local uncertainties, the simulated values into original domain were 

back transformed by an interpolation routine implemented in sisim.  

 

After permeability realizations generated with sisim, the experimental 

semivariogram was calculated for each realization to examine the capability of sequential 

indicator kriging to reproduce the continuity that exists in the reference data set. Figure 
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3.30 represents the estimated semivariograms of fifty permeability realizations (Solid 

gray line) using data sets A & B compared against the semivariogram of the reference 

permeability data set (Solid black line).  It should be noted that, the semivariograms of 

the realizations in both figures do not include the semivariogram of the reference 

permeability data. This implies the inaccuracy of the sequential indicator simulation in 

generating permeability realizations when using the two sample data sets. Furthermore, 

the semivariograms of the realizations for both sample data sets lie in the same range of 

uncertainty indicating that SIS is not sensitive to the quantity of samples as described 

above. Also, Figure 3.30 shows that the permeability realizations generated with SIS for 

both data sets are less precise in comparison to the realizations created by SGS using data 

set A (Figure 3.23).  

 

Figure 3.31 displays two permeability realizations generated with SIS using 10-

Acre spacing sample data. At each unsampled location, indicator values are randomly 

drawn from local conditional distribution. That is why most dissimilarity occurs at these 

locations. Figure 3.32 compares the permeability realizations created by SIS to the 

permeability of the reference reservoir. Figure 3.33 show the univariate statistics of the 

permeability realizations in Figure 3.32 and the reference case.  The mean and standard 

deviation of the realization generated using hard conditioning data in data set A (352 md, 

330 md) is close to the statistics of the reference data( 308 md and 310 md). However, 

the statistics of the other permeability realization (Data set B) indicate that SIS does not 

reproduce the shape of the reference permeability histogram. In fact, the mean and 

standard deviation of this realization is far from that of the original data.  
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Figure 3.30 Comparison between semivariograms of the permeability realizations 

generated by SIS using two data sets and the reference reservoir  
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Figure 3.31.  SIS Permeability realizations using data set A. 
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Figure 3.32. Comparison of the permeability maps generated by SIS using two data sets 

A & B and the reference reservoir 
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Figure 3.33. Histograms of permeability maps shown in Figure 3.32 
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This statistics indicates that the available samples in this data set do not represent the real 

heterogeneity of the reference field.  

 

3.6. The Effect of Second Variable (Porosity) 

All the estimation methods that are discussed in sections 3.1-3.5 use the sample 

values of one variable which is the permeability in this work. However, a data set often 

contains not only the primary variable of interest, but also one or more secondary 

variables. These secondary variables may be spatially cross-correlated with primary 

variables as discussed in Section 2.3.5. The secondary variable becomes even more 

valuable when the primary variable of interest is under-sampled. For example, in the 

petroleum industry permeability values are available at cored wells; while wells have 

well-log data including porosity values. In such cases, a cross correlation between 

permeability and porosity is one method to estimate permeability at unsampled locations.  

This section presents two methods to consider the effect of porosity on estimation of 

permeability.  

 

3.6.1. Exponential Models (Crossplot) 

Porosity and permeability relationship traditionally have been modeled with 

exponential functions of the form: 

Φ
=

β
αek  (3.1) 

or equivalently, 

Φ+= βα )ln()ln(k  (3.2) 
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where k is the permeability, Φ  is porosity, and α and  β are constants. These models 

offer the advantages of simplicity and convenience since they fit the data into a straight 

line on semi-logarithmic plot. However, they unrealistically predict nonzero 

permeabilities when the porosity is zero. 

 

In one approach, the porosity samples were taken from well locations in the 10 

Acre and 40 Acre patterns (Data sets A and B) of the hypothetical Stanford Reservoir. 

Then the porosity distribution was estimated by ordinary kriging using two data sets A & 

B. Figure 3.34 shows the porosity maps generated by ordinary kriging (sample A and B) 

and the porosity distribution of the real reservoir. Then, the exponential model was 

applied for both data sets to find the relationship between porosity and permeability. 

Figures 3.35 and 3.36 represent the crossplot of permeability-porosity for both cases. The 

R-square indicates the proportion of the variability captured by the model. For both cases, 

R-square is close to one, which indicates a linear relationship between LogPerm and 

porosity samples.  

 

In the next step, the permeability values at all unsampled locations were estimated 

by means of the exponential model and the porosity values. Figure 3.37 compares the 

permeability distributions estimated by this method to the permeability distribution of the 

reference reservoir. The figure shows that the maps generated by this method display 

smooth distribution. This could be explained by the fact that the corresponding porosity 

maps used to generate permeability maps were estimated by ordinary kriging.  The 
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univariate statistics and histogram of both permeability maps are compared to the 

permeability of the reference reservoir and is shown in Figure 3.38. 
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Figure 3.34. Comparison of the porosity maps generated by ordinary kriging using two 

data sets A & B and the reference reservoir 
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Figure 3.35. Crossplot of permeability and porosity for data set A 
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Figure 3.36. Crossplot of permeability and porosity for data set B 
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Figure 3.37. Comparison of the permeability maps generated by exponential 

model using data sets A & B 
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        Figure 3.38. Histograms of permeability maps in Figure 3.37 
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Figure 3.39. Comparison between experimental semivariogram of permeability    

estimated by exponential model and the reference reservoir 

 

 The histogram of permeability map generated using data set A is wider in 

comparison with that of the map generated by the data set B. A wider range of 

permeability values was generated once more sample data were taken from the data set A 

(41 samples). However, the heterogeneity of these maps is not close to the real 

heterogeneity of the reference reservoir.  This is illustrated by Figure 3.39 in which the 

experimental semivariograms of these permeability maps are compared to that of 

reference reservoir. The sill of the LogPerm semivariograms, which shows the variance 

of the data, in both realizations are much smaller than that of the reference reservoir. 

From above   comparisons, one can conclude the method presented here can not capture 

the real heterogeneity of the reservoir. 
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3.6.2. Co-kriging  

GSLIB program cokb3d was used to generate the permeability distribution by co-

kriging method using two sample data sets A and B. The required input parameters such 

as the search radius, the minimum and maximum number of points are the same as 

ordinary kriging. The permeability and porosity data was considered as primary and 

secondary variables respectively.  Porosity values at unsampled locations were estimated 

with ordinary kriging using the hard conditioning data sets. The strong positive 

correlation between porosity and logarithm of permeability (LogPerm) for the samples of 

the two data sets is shown in Figures 3.35 and 3.36. The abundance of porosity data and 

positive correlation with the LogPerm makes porosity a good candidate for a secondary 

variable in co-kriging.  

 

The following steps were taken to estimate the permeability with co-kriging 

method. First, the experimental cross variogram of porosity and LogPerm were estimated 

and matched with a mathematical model (Figure 3.40). Then, the permeability 

distribution was generated using the samples of the two data sets A & B.  Figure 3.41 

indicates the comparison between permeability maps generated by co-kriging and the 

reference permeability distribution. Figure 3.42 shows the histogram of the permeability 

data created by co-kriging. The permeability map generated by the data set A contains a 

larger range of permeability in comparison to the one generated with data set B. This is 

related to difference in the number of available samples in data set A and B. The ability 

of co-kriging to reproduce the heterogeneity of the reference reservoir is illustrated in 

Figure 3.43. In this figure, the experimental semivariograms of the co-kriged 
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permeability maps generated by two data sets are compared to that of the reference 

reservoir.  The variances of the permeability values in both maps are much smaller than 

that of the reference reservoir indicating the smoothing nature of co-kriging technique.  

 

Figure 3.44 compares the permeability values of ordinary kriging and co-kriging 

estimation. The co-kriging and ordinary kriging estimates differ significantly as shown in 

this figure. Figure 3.45 shows that the co-kriging error variance is smaller than the error 

variance estimated with ordinary kriging. This shows that additional information used in 

co-kriging reduces the error variance in estimate.   

 

 

 

Figure 3.40.  Experimental and mathematical cross-variogram of porosity and LogPerm 

for the reference reservoir 
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Figure 3.41. Comparison of the permeability maps generated by co-kriging model   using 

data sets A & B and the reference reservoir 
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Figure 3.42. Histograms of permeability maps in Figure 3.41 
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Figure 3.43. Comparison between experimental semivariogram of permeability 

estimated by co-kriging and the reference reservoir 

 

     

Figure 3.44.  Comparison between ordinary kriging and co-kriging estimation 
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Figure 3.45.  Comparison between ordinary kriging and co-kriging estimation 

error variance 
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3.7. The Effect of Quantity of Sample Data on Dynamic Data 

The effect of quantity of sample data was studied with flow simulations. The 

permeability distribution was estimated from data set A or data set B. As mentioned 

earlier, the difference between the data sets is in the number of sample data in each set. In 

order to estimate the permeability from the data set, geostatistical methods discussed 

earlier in this chapter were employed. 

 

The flow simulator used in the study was ECLIPSE100 Black Oil simulator 

(Section 3.4). The parameters of the simulated reservoir are listed in Table 1. For the base 

case, a simulation was run using these parameters and the base case permeability 

distribution. The results of this simulation in terms of cumulative oil production and oil 

rate for production wells P1, P2, P3, and P4 in Figure 3.5 are regarded as the base case. 

The permeability distribution that was estimated from data set A (10 Acre), and data set 

B (40 Acre) from each of the described geostatistical methods was used as input for the 

simulation, leaving the other parameters unchanged. The results of each of these 

simulations were compared to the base case results in Figures 3.46 through 3.57. It 

should be noted that in case of sequential Gaussian (SGS) and indicator simulation (SIS) 

the permeability realizations generated by the average semivariogram (Figures 3.21 and 

3.25) was taken as the input to simulations. 

 

 For the Monte Carlo techniques such as SIS and SGS, the simulation was carried 

out for all fifty permeability realizations. Figures 3.58 through 3.61 present the 

cumulative oil production of each well for all fifty SGS and SIS stochastic permeability 
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realizations (solid blue line) generated by data sets A and B compared against the base 

case (filled black circle). The cumulative production after fifty days was selected to 

quantify the accuracy and precision of the Monte Carlo techniques (SGS & SIS) for the 

two data sets A and B.  Figures 3.62 through 3.65 show the histogram of cumulative oil 

production for each well after fifty days resulting from SGS and SIS permeability 

realizations generated by data sets A and B respectively. The true values are shown in the 

histograms as black solid circles. The mean of frequency distribution for the histograms 

corresponding to data set A (more available samples) is closer to the true value when 

compared against the mean value of histograms corresponding to data set B. The lower 

standard deviation of the histograms obtained using data set A indicates better precision 

of the corresponding permeability realizations.  

 

In order to quantify the goodness of fit of the simulation results of the realization 

to that of the reference cases an objective function is used. The objective function, f, is a 

modified form of the simple sum of the squares.  This function is defined as follows: 

rrf
T

2

α
=  (3.3) 

where  α  is the overall weight for the production, r is the vector of residuals for the 

observed production data, and T is the transpose of a matrix. Each element, ri, in the 

vector of residuals for the observed production data is the normalized and weighted 

difference between an observed production value and the corresponding simulated value. 

These elements are defined as: 

d

ii

ii

CO
wr

σ

)( −
=  (3.4) 
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where σd is measurement error for any production set, Oi and Ci are observed and 

calculated (simulated) production values, and wi is the overall weighting of a data set 

respectively. Also, 
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Figure 3.46. Comparison of dynamic data for ordinary kriging method using data set A  
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Figure 3.47. Comparison of dynamic data for ordinary kriging method using data set B  
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Figure 3.48. Comparison of dynamic data for indicator kriging method using data set A  
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Figure 3.49. Comparison of dynamic data for indicator kriging method using data set B  
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  Figure 3.50. Comparison of dynamic data for SGS method using data set A  
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Figure 3.51. Comparison of dynamic data for SGS method using data set B 
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 Figure 3.52. Comparison of dynamic data for SIS method using data set A 
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Figure 3.53. Comparison of dynamic data for SIS method using data set B 
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Figure 3.54. Comparison of dynamic data for Crossplot method using data set A 
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Figure 3.55. Comparison of dynamic data for Crossplot method using data set B 
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Figure 3.56. Comparison of dynamic data for co-kriging method using data set A 
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Figure 3.57. Comparison of dynamic data for co-kriging method using data set B 
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Figure 3.58. Cumulative oil production of SGS realizations generated by data set A 

 

Figure 3.59. Cumulative oil production of SGS realizations generated by data set A 
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Figure 3.60. Cumulative oil production of SIS realizations generated by data set A 

 

Figure 3.61. Cumulative oil production of SIS realizations generated by data set B 
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Figure 3.62.  Histogram of cumulative oil production after fifty days for SGS 

realizations generated by data set A 
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Figure 3.63.  Histogram of cumulative oil production after fifty days for SGS 

realizations generated by data set B 
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Figure 3.64.  Histogram of cumulative oil production after fifty days for SIS 

realizations generated by data set A. 
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Figure 3.65.  Histogram of cumulative oil production after fifty days for SIS 

realizations generated by data set B. 
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The overall measure of the goodness of a match is defined by RMS index defied by 

following equation: 

m

f
RMS

2
=  (3.5) 

where m is the total number of observations over which the index is formed, and f is the 

objective function. This RMS index provides an average value of the deviation between 

simulated and observed data.  

 

The RMS index of the simulation results coming from six different geostatistical 

techniques for two data sets A and B were calculated. The oil production rates shown in 

Figures 3.46 through 3.57 were used in the RMS index calculation. The RMS index of 

each well in the five-spot pattern (described in Section 3.4) was calculated. The total 

RMS of the five-spot pattern was also calculated. Table 3.2 summarizes the results of 

these calculations. The results of this analysis reveal that the total RMS index is not 

sensitive to the data sets for the geostatistical methods applied in this research. In other 

words, the total RMS index does not significantly change with the number of samples in 

the data sets. As a result, the simulated dynamic data obtained from the different 

geostatistical realizations in this study is not a function of the quantity of sample data. 

Furthermore, the analysis shows that the total RMS index, except for indicator kriging 

(IK), does not significantly change with all geostatistical techniques. This can be 

explained by heterogeneity of the reference reservoir and the nature of the geostatistical 

methods used in this study. All geostatistical techniques used in this study rely on a 

semivariogram. Semivariograms are based on two-point correlation within the data set. 

However, the level of heterogeneity of the reference reservoir in this study demands a 
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technique that uses multiple-point statistics that correlate more than two points at the 

same time.  It should be noted that the range of semivariograms in this study is almost the 

same for all the geostatistical methods used in this study. Beyond the range of 

semivariogram the results of geostatistical methods would suffer from significant 

uncertainty. 
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Table 3.2 RMS index for each well and the five-spot pattern. 

 

 

 

 

Method Data Set Well P1 Well P2 Well P3 Well P4 Total 

Ordinary 

Kriging 

A 5.6 53.3 42.7 68.1 48.3 

B 5.4 49.1 37.7 69.7 46.7 

Indicator 

Kriging 

A 18.6 89 44 95.6 69.5 

B 18.1 100.5 44.3 87.1 70.7 

Gaussian 

Simulation(SGS) 

A 6.1 58.1 47.6 75.7 53.4 

B 4.9 55.7 39.7 80.0 52.7 

Indicator 

Simulation(SIS) 

A 5.9 55.2 42.6 71.0 49.8 

B 6.0 56.3 42.0 71.9 50.3 

Crossplot 

Log(k) vs. ΦΦΦΦ 

A 7.8 52.1 43.7 70.4 49.1 

B 8.5 55.7 66.6 67.9 55.3 

Co-kriging 

A 4.6 51.4 38.6 79.7 51.2 

B 4.3 52.1 37.7 87.0 54.1 
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Chapter 4 

Conclusions 
 

 

 

1. The permeability distribution estimated by conventional geostatistical techniques 

(Ordinary and Indicator Kriging) using more samples provide wider range of 

permeability at unsampled locations. However, both data sets (A & B) result in a 

smooth permeability map, which is the nature of these types of method. 

 

2. Monte Carlo techniques such as SGS and SIS reproduce the basic univariate 

statistics of the reference reservoir. The result of this study shows the 

permeability realizations generated with SGS using more samples are more 

precise and accurate to capture the semivariogram of the reference reservoir.  

 

3. The SIS permeability realizations generated with two data sets did not reproduce 

the semivariogram of the synthetic reference reservoir in this study.  

 

4. The univariate statistics of the SGS permeability realizations generated with data 

set A (10-Acre) are closer to that of the reference reservoir in comparison to the 

other geostatistical techniques used in this research. 

 

5. The effect of second variable (porosity) on the estimation of permeability 

distribution was investigated using two techniques, exponential model and co-

kriging.  The permeability realizations estimated by these techniques are very 

smooth compared to the permeability of the reference reservoir. However, the 
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results show that co-kriging techniques improve the ordinary kriging estimation 

by lowering the error variance at most of the unsampled locations.   

 

6. The results of this analysis reveal that the total RMS index is not sensitive to the 

data sets for the geostatistical methods applied in this research. In other words, the 

total RMS index does not significantly change with the number of samples in the 

data sets. As a result, the simulated dynamic data obtained from different 

geostatistical realizations in this study is not a function of the quantity of samples. 

 

7. The analysis shows that the total RMS index, except indicator kriging (IK), does 

not significantly change with all geostatistical techniques. This could be explained 

by the fact that the range of semivariograms in this study is almost the same for 

all the geostatistical methods used in this study. Beyond the range of 

semivariogram the results of geostatistical methods would suffer from significant 

uncertainty. 
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Chapter 5 

Introduction 

 

The Hall-Gurney Lansing –Kansas City reservoir has limited geologic data, fluid 

property information, and field pressure information. Fluid production history was 

restricted to oil sales data commingled from various formations on a lease wide basis. 

Individual well oil and water production rates were available only in 1980 near the end of 

waterflood. This lack of data in fact was motivation for the objective of this study: 

characterize a reservoir using limited available geologic and production data.  

 

The main tool of the study was geostatistics. Geostatistics provides a framework 

for integrating diverse types of data in order to generate multiple realizations of the 

reservoir. The data obtained from the field can be classified as static or dynamic. The 

static data do not vary over time generally and are related to the intrinsic characteristics 

of the rock through simple linear relationships, such as well logs, core measurements and 

seismic amplitude. The dynamic data, on the other hand, do vary with time. Dynamic 

data are related to the intrinsic characteristics of the rock generally through a complex, 

non-linear transfer function. These include field measurements that are made regularly 

throughout the life of the reservoir. Examples of this type are well-bore flowing 

pressures, fluid production rates, pressure transients, fractional flow data and time-lapse 

seismic data.  An essential difference among the various forms of dynamic data is that 
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these data are at vastly different scales and it is wrong to ignore the scale difference when 

constructing a geostatistical model. 

Dynamic data contains tremendous amount of information about the reservoir 

connectivity. For example, the wellbore flowing pressure is an indication of the 

connectivity in the near wellbore region at early times and of reservoir scale connectivity 

at later times. The rate of pressure decline provides valuable information regarding the 

extent of communication between the well and the reservoir. This information cannot be 

obtained from the static data alone. 

 

 Since static data such as core and well log data are only representative at a 

specific volume, integration of such data into reservoir models is fairly straightforward 

and several algorithms are available to condition reservoir models to such data. However, 

conditioning the reservoir models to dynamic data is a  complex procedure mainly 

because of the non-linear relationship between the input model parameters (spatially 

varying petrophysical properties) and the output dynamic response of a reservoir (e.g. 

well pressure as a function of time). In addition, fluid flow through porous medium 

depends on other factors such as fluid properties, fluid distribution, boundary conditions 

and rock-fluid interactions which influence relationship between dynamic and static data. 

 

Reservoir models that are only conditioned to static data generally exhibit 

simulated flow response that deviate from the true field response. These models then are 

manually adjusted to reproduce the historic data (history-matched) which is a tedious and 

time-consuming process. In the process of history matching, the spatial covariance model 
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that reflects the geological structure may be lost. As a result, although the adjusted 

reservoir models may match the historical production records, they may yield erroneous 

future prediction of reservoir performance.  

 

The ability to forecast future production scenarios accurately is the ultimate 

objective of any reservoir simulation. Historical dynamic data are integrated into the 

reservoir model construction step such that the final model is conditioned to all the 

available static and dynamic data.  Accurate and efficient reservoir modeling thus 

requires an understanding of the complex relationship between reservoir geology and the 

flow of fluids through the reservoir. This part of the dissertation focuses on complex 

relationship between reservoir geology and the flow of fluids through the reservoir.  The 

main focus of this part of dissertation is to investigate the integration of dynamic data 

such as well test data into reservoir models.  

 

Chapter 6 reviews the relevant literature and discusses the advantages and 

drawbacks of the current methods. Chapter 7 introduces the case study which is a CO2 

Pilot area in Lansing Kansas City formation. Chapter 7, also, presents details of proposed 

methodology to integrate the dynamic well test data into reservoir models using different 

crossplots of permeability-porosity. Chapter 8 demonstrates the results of applications of 

the proposed technique on the CO2 case study. Finally, the last chapter summarizes the 

conclusions of the investigation.  
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Chapter 6 

Literature Review and Background 

 

The objective of this chapter was to develop a methodology to improve the 

reservoir description using well test data. The topic of reservoir characterization 

conditioning to dynamic data was extensively reviewed in the literature. Chapter 6 

summarizes a literature review of the conditioning reservoir models to dynamic data 

 

The subject of conditioning reservoir models to reservoir flow response has been 

actively investigated by numerous researchers [15,17,38,49]. Most of the algorithms for 

conditioning the dynamic data were developed by hydrogeologists to address 

groundwater flow problems [53,55]. The flow of groundwater through an aquifer is 

physically similar to the flow of petroleum fluids through a reservoir. Statistical 

characterization of aquifer heterogeneity is crucial for predicting the aquifer performance 

when subjected to different external stresses such as pumping of water and transport of 

contaminants. In groundwater flow models, transmissivity (which is directly related to 

permeability) is measured at a few locations in a groundwater aquifer [55]. In addition, 

piezometric head measurements are available at numerous boreholes located throughout 

the aquifer. The objective for hydrogeologists is to model the variations in the 

transmissivity field given the hard measurements at a few locations and the more 

prevalent head data. 
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An important difference between a groundwater aquifer and petroleum reservoir 

modeling is the relative availability of flow response data for groundwater aquifers. Well 

test data, in the case of petroleum reservoirs, is available only at a few producers that are 

drilled to take advantage of the oil reserves profitably. In comparison, piezometric data 

are more abundant because the cost of drilling boreholes is much less than that of oil 

reservoirs. This renders many of the algorithms for dynamic data integration proposed in 

ground water literature to be not useful for petroleum reservoir modeling. Nevertheless, 

this section attempts to introduce all the methodologies suggested to solve the problem 

irrespective of the field of application. 

 

The problem of determining permeability fields from dynamic data collected at 

wells is a classical inverse problem and is typically ill-posed.  In the mathematical sense, 

a well-posed problem refers to one that has a unique solution which depends 

continuously on the data. Mathematically, history matching has been posed in an 

optimization context. This means the minimization of a complex least squares objective 

function in a parameter space populated by multiple local minima. The objective of the 

optimization procedure is to update the prior permeability model l  generated by any 

geostatistics method such that application of a flow simulator on the final optimized 

model yields a response ),( td ul
 which is close to the target response ),( td u . The target 

response model is defined the true dynamic reservoir response (field data) at location u 

and time t. Several techniques utilizing this principle are reviewed.  
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The optimization algorithm for iteratively updating a prior permeability model 

using the flow response data typically utilizes a perturbation scheme on the permeability 

field. This perturbation process is guided by the computation of sensitivity coefficients of 

the model parameters on the flow response. The sensitivity coefficients are the gradients 

of the flow response variable taken with respect to the model parameters. If f is defined as 

a reservoir flow simulation response such as flowing wellbore pressure and well water-

cut and the parameter being modeled is permeability k(u); then for every location in the 

reservoir the sensitivity coefficient is defined as 

Reservoir
k

f
∈∀

∂

∂
u

u)(
 (6.1) 

The use of sensitivity coefficients was first proposed by Jacquard et al. [44]. This 

was one of the first attempts to automate the process of history matching within a 

deterministic framework. They developed a methodology to condition a permeability and 

porosity model to pressure data measured at wells in a two-dimensional reservoir. In their 

study, they considered single-phase flow in a reservoir, which was partitioned into 

different permeability zones. The objective function was defined as a squared mismatch 

between well flowing pressures. This objective function measures the proximity of the 

generated model to the target model. The basis of the method was validated using the 

simplistic language of an electric analyzer. The purpose was to minimize the potential 

measurements at points in an electrical circuit with adjustment made to the contained 

resistance. The computed gradients are the change in potential at individual nodes with 

respect to a perturbation at individual resistances. The process of resistance modification 

is continued iteratively until a convergence criterion was met that is when the mean 

square deviation between the model and the actual system becomes negligible. They 
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applied the same principles to history match the reservoir by adjusting the average 

permeability within the multiple reservoir zones (defined by the partitions). The obtained 

results were satisfying mainly due to reduced dimensionality of the problem and 

simplicity of the case studied. The work by Jacquard et al. [44] introduced the concept of 

Automatic History Matching. 

 

 With advancements in computational techniques, the flow simulations became 

more and more complex in order to realistically represent flow processes in the reservoir.  

However, the increased complexities of the reservoir simulations also caused the history 

matching of reservoir models became more and more difficult. Several algorithms were 

introduced to automate the history matching process by intelligently formulating and 

solving a mathematical minimizations problem. These algorithms are described in the 

following sections. 

 

Reservoir history matching problems are generally characterized by a very large 

number of unknown parameters. Consequently the efficiency of the numerical 

minimization algorithm is a key concern. Most of the early history matching algorithms 

were not suitable for applications involving large numbers of unknown parameters. The 

evaluation of the sensitivity coefficients was too expensive due to the large 

dimensionality of the problem. Hence different multivariate optimization techniques were 

introduced to reduce the computational time required for the operation. The following is a 

discussion of these approaches.  
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6.1. Optimization-Based Methods 

 In an automatic history matching, unknown parameters are determined by 

minimizing a performance index J: 

2
*

arg ),(),()(min txftxfxJ ett −=  (6.2) 

where x is the vector of parameters to be estimated, ),(arg txf ett  is the target response 

function and ),(* txf  is the response function corresponding to the current realization 

model. A least squares performance index such as the function given above is usually 

applied in an optimization procedure. Iterative numerical methods are used to solve the 

above minimization problem. This is done by sequentially updating the reservoir 

parameters estimates by the following equation: 

kkkk pα+=
+

xx 1  (6.3) 

The sensitivity coefficient defined in Eq.(6.1) was used to find the search direction pk and 

the step length αk, and continually perturb the vector x such that the performance index is 

minimized. This mathematical formulation leads us to the gradient based optimization 

methods. 

 

 In a gradient method the sensitivity coefficients were computed with respect to 

the model parameters. There are several gradient-based optimization methods discussed 

in literature.  All of these optimization-based methods are reviewed in the following 

paragraphs. 

 

Gill et al. [45] used Taylor Series expansion for the linear approximation of the 

performance index J in Eq.(6.2) as follows: 
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Where J and T are the performance index and transpose of a matrix respectively. The 

necessary condition in Eq.(6.4) to approach toward the minimum is that the directional 

derivative must be negative. That is: 

0<
∂

∂

k

k

T

p
x

J
  (6.5) 

Based on the linear approximation, the search direction that minimizes k

k

T

p
x

J

∂

∂
 is the 

negative gradient, 
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which is called the steepest descent direction. The steepest direction method usually 

works well when the gradient is large, or when the estimation point is far away from the 

minimum. However it progresses very slowly in the vicinity of the minimum. In fact, it 

has been shown that the rate of convergence for the steepest descent method is linear at 

best. A better rate of convergence to the minimum can be obtained by choosing the 

search direction based on the second order approximation to the performance index, 
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where 
2
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∂
 is the Hessian matrix of the performance index.  
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which yield to solve Eq. (6.8) by the Newton’s method. The rate of convergence for 

Newton’s method is quadratic. This means the convergence mimics the steepest gradient   

in regions far from the optimum but close to the minimum the convergence is more 

quadratic in nature.  

 

Anterion et al. [47] introduced one of the earliest methods in petroleum 

engineering field. This method was earlier implemented in groundwater hydrology 

applications [48]. In the model, the sensitivity of pressure and fluid saturations to model 

parameters were computed at the end of each simulator time step by solving a set of 

linear system of equations. The linear equations were obtained by differentiating the 

matrix form of the flow equations with respect to model parameters such as gridblock 

value of porosity and permeability. Once these sensitivity coefficients were calculated, 

the sensitivity of wellbore pressure and water-cut to permeability were derived.  Anterion 

et al. [47] concluded that the rate of convergence can be improved by using the curvature 

information provided by the Hessian matrix. However, computation of the Hessian 

matrix is very expensive for reservoir history matching problems.  

 

Killough et al. [46] proposed a new method to speed up the iterative procedure of 

the gradient simulator. They concluded that the effort required for sensitivity with respect 

to a single parameter is still of the order of 10% of a forward simulation. Landa et al. [49] 

attempted to reduce the runtime simulation of gradient method using some form of 

zonation according to Jacquard et al. [44]. They increased the computational efficiency of 

the gradient simulator method by computing the performance index only at the wells. Wu 
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et al. [50] suggested discrete adjoint methods for calculating the sensitivity coefficient. 

With their procedure they were able to directly generate the sensitivity of well bore 

pressures and water-oil ratios to the model parameters without having to calculate the 

same for all grid blocks in the model. This method requires one basic reservoir simulation 

run to calculate the grid block pressures and saturations and the solution of linear adjoint 

systems backward in time with multiple right-hand side vectors. 

 

The advantage of the gradient simulator method is that sensitivity coefficients are 

computed with the same coefficient matrix used to solve for pressure and saturations in 

the flow simulator. Also the coefficient matrix does not depend on the model parameters. 

This means that only the right hand side of the matrix equation depends on model 

parameters. Thus, the problem reduces to solving a matrix problem with multiple right-

hand side vectors, i.e. one right side vector for each model parameter. This procedure is 

specially difficult and time-consuming when realizations of permeability and porosity are 

constructed at several thousands gridblocks. 

 

In general, the major drawback of all gradient based optimization methods is that they do 

not take into account for a spatial covariance model displayed by permeability values of a 

reservoir. It is crucial that the final reservoir model for any history matching process is 

not only conditioned to the available production data, but at the same time honors the 

spatial semivariogram model γ(h) and the hard data values at their respective locations.  
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6.2. Pilot Point Method 

de Marsily et al. [53] proposed the Pilot Point methodology to reduce the 

computational cost associated with the calculation of the sensitivity coefficients at every 

location in the reservoir. This method was first established in groundwater literature [52-

53] and later was applied to history match petroleum reservoirs by Bissell et al. [54] and 

Xue et al. [51]. The methodology was developed in order to quantify the uncertainty in 

prediction of groundwater flow and contaminant transport through groundwater aquifers. 

The essential objective of the method is to generate a realization of the reservoir 

permeability field that honors dynamic data, a prior structural model γ(h) and the 

conditioning data at known locations within the reservoir. 

 

The first step is to generate a conditional realization of the permeability 

distribution ( Reservoir|,)( ∈∀uuk ) using a specified variogram model γ(h). Then, a 

group of points are selected that are called pilot points. There are arbitrary gridblock at 

which the property value is perturbed within prescribed geostatistical limits to minimize 

the deviation from historic production data. The range of variations permitted at pilot 

points is determined by the uncertainty associated with the property value in a given 

region. The initial value for the property at the pilot points given by the prior 

geostatistical realization conditioned to the variogram and fixed-point values (hard data). 

The next step is to run the flow simulator with initial reservoir model (base model) to 

simulate the production data. In this step, sensitivity coefficients are calculated for all of 

the output variables such as pressures and water-cuts only with respect to the property 

values at the pilot point locations. The reduced number of parameters (pilot point 
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locations) at which the sensitivity coefficients are calculated yields a considerable saving 

of CPU effort. The subsequent step is to calculate the objective function (square deviation 

from historic data) and on that basis, perturb the property values at pilot points using an 

optimization algorithm. The last step is to propagate the perturbation at the pilot point 

gridblocks to all other gridblocks in the reservoir model using a spatial interpolation 

scheme such as kriging. 

  

 Xue et al. [51] provided a discussion of the pilot point methodology when 

implemented for a field permeability inversion. Their method was evaluated on a 25x25 

test case by using 1) full field perturbation inversion; 2) pilot point inversion including   

a)  with 15% of the gridblocks and b) with 7.5% of the gridblocks. The comparison of the 

computational efficiency for the 3 schemes shows that the overall performance for the 

second case (15% grids - pilot points) is about 4.5 times faster in comparison to the full 

perturbation scheme, the first case. This result demonstrates the advantage of the pilot 

point methodology for field scale inversions consisting of large number of gridblocks. 

Xue et al. [51] also showed that computational time for the third case (7.5% gridblocks - 

pilot points) was higher than that for the second case. This indicates that using fewer 

points does not necessarily guarantee better computational efficiency because sometimes 

additional number of iterations is required to reach the acceptable misfit criterion. In 

addition, they investigated the convergence properties of the objective function.  The 

research of Xue et al. [51] concluded that the pilot point scheme can be viewed as a 

subspace optimization procedure. When it is coupled with Kriging updating scheme, the 

pilot point method tends to results in perturbations that are too high compared to full field 
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perturbation schemes. The effect of this over perturbation is visualized as oscillations in 

objective function as the iterations proceed. 

 

The pilot point methodology is highly affected by the number and location of 

pilot points. The selection of these parameters remains inherently empirical. It is 

suggested that the number and locations of these pilot points should be selected based on 

the complexity of the reservoir under study [49]. It is also recommended that the 

correlation length and the sill (variance) of the reservoir could be used as a guide for 

selecting the optimal number of pilot points. Also, they suggested that the sensitivity 

coefficient values could be used as a guideline for locating the pilot points within the 

reservoir under study. However, in general, the lack of specific guidelines for 

determining the number and location of pilot points is one of the major drawbacks of this 

method. 

 

6.3. Sequential Self-Calibration Method   

 Gomez-Hernandez et al. [55] first developed the Sequential Self-Calibration 

(SSC) method for aquifer modeling. This method is similar to the Pilot Point 

methodology. The main difference is that in SSC method, the pilot (master) points are 

located randomly. Hence, the user only has to provide the number of master points to be 

perturbed. The perturbation at the entire master points is initiated jointly using 

optimization technique and the perturbations are then spread to all other reservoir nodes 

by kriging estimation. The optimal perturbation at master points is determined by the 

gradient based optimization method obtained from simulation.  
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The method was first adapted for petroleum engineering application by Wen et al. 

[57]. They used the SSC method to integrate single-phase well transient pressure and rate 

data in a two-stage approach. In their procedure, first, spatial constraints on large-scale 

permeability trends were set up. Then, multiple realizations of the reservoir at a coarse-

scale were generated. The small-scale geostatistical models were generated subject to 

spatial constraints imposed by the simulation results and the available static data. Also, 

the coarse-scaled reservoir models were downscaled using other techniques such as 

Simulated Annealing (SA) and sequential Gaussian simulation incorporating Bayesian 

updating [56].  

 

Wen et al. [58] showed that the SSC procedure could be also applied for 

lithofacies simulation where the permeability distribution controlled by multiple 

lithofacies or channel objects. Tarn et al. [56] proposed a hybrid method using 

streamlines to improve the computational time of the SSC method. In this method, the 

coarse scale inversion was created by a semi-analytic method using streamlines. The 

coarse model is then downscaled by geostatistical procedure. They demonstrated that the 

use of a semi-analytical streamline model instead of numerically derived model for 

calculating the sensitivity coefficient, leads to a substantial saving in CPU time. The 

inverted model is then downscaled to the scale of the hard data using Bayesian updating 

or block kriging. 
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6.4. Markov Chain Monte Carlo Method 

Markov Chain Monte Carlo (MCMC) methods have been applied for construction 

of models in different field of studies such as financial, business and social science 

involving uncertain future events. This method was investigated in earth science by a 

number of people [59] [60] [61]. 

 

 Basically, MCMC is an iterative method in which a Markov chain forward in time 

is generated. The Markov chain eventually converges to the desired stationary probability 

distribution. Each iterative step of this method consists of a proposal and an acceptance 

step. In the context of reservoir characterization, permeability realizations could be 

considered as a Markov chain if the probability of generating a particular realization only 

depends on the preceding realization in the sequence. If a particular stochastic realization 

of permeability is denoted by )(uik , where i  represents the 
th

i step of the Markov chain, 

then each possible permeability realization has an associated probability iπ with )(uik . 

The objective is to proceed with every step in the chain towards a realization that matches 

the dynamic data more closely than the pervious realization. This progression of 

realizations towards a history match goal is accomplished by carefully specifying the 

transition probability from state i  to state j , ijp . Mathematically, the probability 

associated with state )( jj π  is defined as the sum of the products of transition probability 

ijp  and the probability of being in state )( ii π : 

ijij p∑= ππ  (6.9) 
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There are some conditions for determining a permissible transition matrix. These 

conditions must be satisfied to make the Markov chain stationary [62]. The first condition 

is that the transition matrix should satisfy a reversibility condition: 

jij
ij

i pp ππ =  (6.10) 

The second condition is that the transition matrix is written as a product of two 

components: 

ijijij qp α=  (6.11) 

where ijq  is the probability of proposing a transition from sate i  to state j  and ijα is the 

probability of accepting the transition. Hasting [63] proposed that the form of the 

acceptance probability should be given as: 
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Hence, if the proposed transitions are symmetric, then the decision of whether to accept a 

transition or not is based only on the ratio of the probability of being in the two states. If 

the proposed transition is rejected, the old state is repeated in the chain. 

 

Srinivasan [66] implemented MCMC method in his study on reservoir 

characterization as follows: 

• Define the state i  of the model by an array of initial values: 

T

M

i kkkk ))(),...,(),(()( 21 uuuu =  (6.13) 

T is the transpose of a matrix. 
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• Transition to a new state j is proposed, for which every element of the array is re-

sampled from the normal distribution: 

T

M

j kkkk ))('),...,('),('()( 21 uuuu =  (6.14) 

• The probability of transitioning from state i  to state j  is computed by 

perturbation a grid cell at a time. At each step, a single gridblock )(uk is selected 

randomly from n total gridblocks. The probability to pick the grid cell is 
n

1
. Next, 

a new value )(' uk  is proposed for that gridblock by random drawing from a 

univariate normal distribution. This probability is known to be ))('( ukf . Hence, 

the probability of proposal is the product of these two probabilities, 

))('(
1

ukf
n

qij =  (6.15) 

• The acceptance probability is calculated using the Metropolis-Hasting criterion 

as: 
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• The proposal probability is then tested against the acceptance criterion by drawing 

u~ U[0,1]. If iju α< , the perturbation is accepted, otherwise, it is rejected and the 

old value )(uk is retained at the gridblocks. 

 

  The expressions described above are applicable for generating realizations that are 

conditioned to the hard data at their locations and at the same time honor the spatial 

covariance model being used. For conditioning the reservoir model to production data, 
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only the acceptance probability term is rewritten to account for the conditional 

probability based on the production data. The expression for this acceptance probability 

ratio is written using Bayes’ relationship. The expression involves the likelihood function 

that is the probability of observing the dynamic data given a particular permeability field.  

The evaluation of this likelihood term necessitates running a flow simulation after each 

perturbation made in the reservoir model. Srinivasan et al. [66] showed that it is possible 

to reduce these extra computations required for evaluating the likelihood functions using 

a multipoint proxy function. This multipoint proxy captures the underlying non-linear 

relationship between the input permeability field and the output response variables using 

neural network theory. 

 

In summary, the introduction of the multipoint proxy function does significantly 

reduce the computational effort. However the Markov Chain Monte Carlo method itself 

requires large number of iterations to converge to a stationary distribution. This is mainly 

because of low acceptance ratios for transitions to a new state when the number of 

parameters in a model is large. 

 

6.5. Gradual Deformation Method 

 The gradual deformation method was first introduced in reservoir modeling 

applications by Roggero et al. [65]. The method approaches the history matching problem 

from a different prospective in comparison to the other methods described in the previous 

sections. The basic principle of the gradual deformation method is to generate 

realizations that evolve smoothly at each step to honor specific constraints such as prior 
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structural model, seismic and production data. A sequence of realizations of the reservoir 

are generated and combined following a prescribed rule. Consider two random vectors Y1 

and Y2 whose components are standard normal and mutually independent. A new random 

vector from these vectors can be constructed as follows: 

2211 YYY αα +=  (6.17) 

For Y  to also be standard normal, the following condition has to be satisfied: 

1
2

2

2

1 =+ αα  (6.18) 

The parameters αi’s are determined by performing a 1-D optimization for multiple flow 

simulations. The space of possible realizations is controlled by the initial realizations Y1 

and Y2, where α varies between -1 and 1. New realizations evolve as the deformation 

parameter α is continuously changed.  The gradual deformation process can be 

generalized as: 

i

n

i

iYY ∑
=

=

1

α  (6.19) 

where{ }nααα ,...,, 21 are real coefficients between -1 and 1. The multi-Gaussianity 

property of the model is preserved by applying the following constraint: 

1
1

2
=∑

=

n

i

iα  (6.20) 

The additional parameters αi assist in constraining the models to other types of data.  

 

In dealing with large geostatistical models, which may be too expensive to run in 

a flow simulator directly, Mezghani et al. [64] suggested a hybrid method.  In summary, 

the method involves upscaling the geostatistical fine model and then performing a history 
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match on the coarse scale model. The coarse scaled model is then downscaled using a 

traditional geostatistical approach such as block kriging. The major problem with the 

hybrid method is the assumption of a multi-Gaussian permeability field.  

 

Assuming the multi-Gaussian random fields preserves the first and second order 

moments of the resultant reservoir models by placing constraints on the deformation 

parameters 1
1

2
=∑

=

n

i

iα . 

 

6.6. Simulated Annealing 

 Simulated annealing (SA) was established based on the physical process of 

cooling molten metal. In cooling a molten metal, the rate of cooling affects the quality of 

the frozen metal. Slower cooling yields a better quality, while faster cooling process 

results in a more defective quality. The reason for this difference could be explained by 

thermodynamics principles. According to thermodynamics, molten metal tends to achieve 

the most stable state corresponding to the lowest energy.  

 

 Shannon [67] was the first to observe the similarity between annealing and 

optimization problems. However, it took thirty five years before SA to be applied and 

developed in practical problems mainly due to computational limitations. Kirkpatrick et 

al. [70], Siarry et al. [68] proposed an annealing-based procedure with Metropolis 

algorithm [68] to escape from local minima.  The major steps of the SA algorithm are 

briefly described below. 
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  First, a starting guess model { }Nmmm ,...,, 11=m is generated. The model 

parameters mi’s can be randomly generated from a known cumulative density function. 

Then, an initial energy or objective function is calculated as: 

[ ]
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1 1

, )()( jVjVE
ii

actual

M

i

J
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ji −=∑∑
= =

ω  (6.21) 

where M and J are respectively the type and the number of constraints. ji ,ω is the 

weighting factor of the i
th 

constraint with respect the j
th

 constraint type, and )( jV
i

actual and 

)(model jV
i are the actual and model values of the i

th
 constraint related to j

th
 constraint type.  

All variables in Eq.(6.21) are known a priori except for )( jV
i

actual  which is calculated 

using a mathematical function for each constraint type. For instance, if a production 

forecast is the constraint to be satisfied, a flow simulation provides the values 

for )( jV
i

actual . The objective function is analogous to the energy of the system. The 

objective function must be lowered during the annealing process until a minimum energy 

state is reached.  

 

 The next step is to randomly modify the initial model and recalculate Eq. (6.21) 

for the new model. The difference between the energies of the new and old models is 

then given by oldnew EEE −=∆ . If 0<∆E then the new model is accepted and the old one 

is disregarded. If 0>∆E whether the new model is accepted depends on Metropolis 

condition. This condition sets up an acceptance probability based on the Gibbs-

Boltzmann probability distribution function as: 
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 ∆
−=∆

θ

E
EP exp)(  (6.22) 

where θ  is the annealing temperature for the current energy state. A random number R, 

drawn from a uniform distribution between 0 and 1, is compared with ).( EP ∆  

If REP <∆ )( , the new model is rejected; otherwise, the new model is accepted, even 

though the energy of the system is increased. The acceptance of new model in the case of 

higher energy allows the algorithm to escape from local minima.  

 

 Next, the above procedure is repeated for a sequence of decreasing temperatures 

θ  according a cooling schedule given by oldnew αθθ = where α  is a reduction factor 

( 1<α ). The system has to be allowed to reach thermal equilibrium after every 

temperature reduction. Therefore, a certain number of model acceptances (in the order of 

the number of model parameters) should be performed for each temperature. The abrupt 

changes of temperature cause discontinuities in the energy function because the 

acceptable probability is suddenly lowered. The algorithm converges if E∆ is below 

some given tolerance or the energy remains unchanged for a sufficiently large number of 

iterations. Additional examples of this procedure can be found elsewhere [34, 35]. 

 

 Farmer [13] presented the first application of SA in reservoir characterization 

problems. In his study, synthetic fields were generated constrained to two-point 

histograms and correlations. Perez [72] used SA to obtain fields constrained to 

semivariograms. His study showed that the quality of the SA generated descriptions was 

similar or even superior to that of the other conditional simulation methods. However, SA 
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demands, in general, more computational work. Deutsch [38] added well test 

permeability data as one of the constraints. The objective function was given by: 

( )∑∑
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where 1ω and 2ω are the weights used to make the units consistent and to ensure that one 

constraint does not dominate the objective function. )( lactual hγ  and )(model lhγ are 

respectively the actual and the model semivariograms, while wtk and modelk  are the field 

and model well test permeabilities derived from pressure transient analysis. modelk  is 

calculated using power averaging technique [42]. The averaging power exponent and 

averaging volume must be pre-determined. Deutsch [38] suggests these values can be 

obtained from stochastic modeling and forward well test simulations. The major 

drawback of the Deutsch’ annealing method is that it can only be applied for a single 

layer reservoir.  

 

Ouenes [72] developed an SA algorithm to simultaneously estimate relative 

permeability and capillary pressure curves. The experimental data obtained from standard 

drainage and imbibition were automatically history matched. The objective Function in 

this case was: 
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where the terms with superscript c are computed from numerically solving the one-

dimensional diffusivity equation for multiphase flow. The terms with superscript e are the 

experimental values to be matched. R refers to the cumulative recovery for different 



153 

 

times, P∆  is the pressure drop, S is the saturation and BT is the breakthrough time. The 

application of this method is limited to laboratory experiments due to computational 

effort required to solve a reservoir-scale problem. Furthermore, it does not include the 

semivariogram as a constraint. Therefore it can not capture the spatial relation of random 

variable. 

 

Hird et al. [73] developed a conditional simulation method based on SA that 

allows permeability fields constrained to connectivity functions to be generated. Such 

functions are to some extent correlated to production performance parameters and are 

intended to replace numerical simulation. The least resistive paths are determined by 

finding the minimum distance required to move from one surface (defined as a set of 

adjacent blocks) to another. A resistivity index from an injector well to a given gridblock 

(i,k)is defined as: 








 ∆
= ∑

),( 2

)(
min),(

ki

Injector rwa

e
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l
kiRI  (6.25) 

where l∆  and ak  are respectively the distance and the directional absolute permeability 

between the center of two adjacent grid blocks, and )(ikrw is the relative permeability to 

water for the i
th

 column. This algorithm could be used to rank reservoir descriptions from 

the best to the worst according to secondary recovery efficiency, ultimate primary 

recovery, or ultimate secondary recovery. However, it has not been tested against an 

actual reservoir. Since the algorithm is based on a binary indicator approach, it is more 

suitable for discrete variables (facies) with contrasting permeability, such as sand-shale 

sequences. 
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Chapter 7 

Development of a Reservoir Model for the Hall Gurney Field, Lansing 

Kansas City Formation 

 

Chapter 7 provides general information about the Lansing Kansas City formation, 

its initial reservoir model, and the proposed model for estimating the permeability 

distribution. This information comes from variety sources mainly technical reports 

available on Tertiary Oil Recovery Project (TORP) website [74]. 

 

The feasibility of injecting miscible carbon dioxide to recover oil was studied by 

the Tertiary Oil Recovery Project (TORP) in the 1970’s. The study involved a set of 

experiments to determine the minimum miscibility pressure (MMP) of lease crude oil at 

reservoir temperature. These experiments indicated that the MMP was about 1200-1300 

psia, a pressure range that had been maintained during the waterflooding of the Hall-

Gurney field. Due to lack of carbon dioxide supply further study of CO2 flooding was 

discontinued. The possibility of using carbon dioxide to recover oil reinvestigated in the 

mid-1990’s when a pipeline was installed to deliver carbon dioxide to the Postle Field in 

the Oklahoma panhandle, a distance of about 30 miles from the southwest Kansas border. 

The pipeline placed a significant source of carbon dioxide within a reasonable distance to 

the Southwest and Central Kansas oilfields.  

 

At the same time, Shell CO2 Company became interested in developing a market 

for carbon dioxide which was available in excess of demand in West Texas.  A 
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multidisciplinary project involving the Tertiary Oil Recovery Project and Kansas 

Geological Survey at the University of Kansas, Shell CO2 Company and external 

consultants was initiated in 1998 to evaluate the feasibility of developing a pilot test of 

carbon dioxide miscible flooding in Central Kansas.  The Hall Gurney Field, shown in 

Figure 7.2 was selected for detailed study because it was the largest Lansing Kansas City 

reservoir in Kansas with a cumulative production over 75 million barrels, had good 

waterflood performance and results of a pilot project could be expanded field wide if the 

process was successful.   

 

This chapter describes the development of a reservoir model for the Lansing 

Kansas City “C” zone in the Colliver and Carter Leases in the Hall Gurney Field.  This 

zone was selected for the initial evaluation.  The reservoir model was used as the input 

data for a reservoir simulator.  Primary and secondary oil production were simulated 

using this model by history matching the 50 years oil production from the Colliver and 

Carter Leases.  After the history match, the reservoir model was used to simulate the 

possible oil recovery from a pilot carbon dioxide miscible test. These studies led to the 

submission and funding of a 10 acre carbon dioxide pilot test on a portion of the Colliver 

Lease as part of the U.S. Department of Energy’s Class II Revisited Field Demonstration 

Program( DOE-AC26-00BC15124).   

 

At the beginning of this project the reservoir modeling team recognized that 

reservoir and production data were limited, partially because the properties had changed 

hands numerous times from when the field was discovered in the 1930’s.  Data and 
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records which were referred to in some documents and reports were never found although 

extensive inquiries were made of all previous operators and lease holders who could be 

found.  Therefore, the task for the reservoir modeling team was to develop an acceptable 

reservoir model which matched primary and secondary production history with the 

knowledge that limited data and production records were available.   

 

A brief overview of the construction of the initial reservoir model is presented in 

this chapter.  When oil production from the pilot wells did not respond as predicted, the 

construction of the reservoir model was revisited to determine if geostatistics could be 

applied to improve the geologic model of the reservoir.  The challenge that the reservoir 

modeling team faced was how to estimate the permeability and porosity distribution at all 

grid points in the project area using the available, but limited reservoir, production and 

injection data. 

 

7.1. Lansing Kansas City Oil Production  

Lansing Kansas City reservoirs are one of the major producing intervals in the 

State of Kansas. Kansas reservoirs have produced nearly 6 billion barrels of oil to date, 

with much of the production coming from reservoirs in proximity to the Central Kansas 

Uplift (CKU) [75]. Reservoirs in the LKC account for nearly %19 cumulative oil 

production for the state (Figure 7.1). It is estimated that greater than 70% of Lansing 

Kansas City(LKC) production is from oomoldic limestone reservoirs, including those of 

the Hall-Gurney Field in Russell County (Figure 7.2).  
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The Lansing Kansas City (LKC) formation consists of a series of alternating 

deposits of marine limestone and nonmarine shale. The limestone deposits were exposed 

to weathering and erosion with percolating rain water dissolving the ooids. Subsequently, 

recrystallization of dissolved ooids resulted in cementing of the original porosity. The 

limestones of the LKC are oolitic grainstones and serves as the main petroleum reservoir 

in Kansas. The porosity is a mold of the originally present ooids. This oomoldic pore is 

the dominant porosity in the LKC formation deposited during Pennsylvanian series [75].  

There were 11 major marine-nonmarine cycles in the LKC interval in this field, each 

averaging about 30 feet thickness [75].  These distinctive cycles are identified by a set of 

letter designations from A through L (Figure 7.3). The interval C was studied in this 

research.  

 

 The Carter-Colliver lease shows a strong west to east trending with the pay 

exhibiting closure in the southern portion of the lease[74]. The thickness of the gross pay 

interval varies from 10 to 20 feet. The structures with higher locations exhibits thicker 

pay in general. The porosity in the C and D zones is consistently higher than in the other 

zones. Therefore, these zones are considered the best pay at the CO2 Pilot area due to 

both thickness and areal distribution of high porosity.  
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Figure 7.1. Lansing Kansas City reservoirs produced 1150 billion barrels of oil 

representing 19% of total Kansas oil production [74] 

             

 

 

Figure 7.2. The Central Kansas Uplift in Lansing Kansas City [75] 
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Coarse Limestone        (A) 

Stanton Limestone       (B) 

Plattburg Limestone    (C) 

Fariey Limestone        (D) 

Lola Limestone            (F) 

Dewey Limestone        (H) 

Cherryvale Formation  (I) 

Dennis Limestone        (J) 

Swope Limestone        (K) 

Sniabar Limestone       (L) 

 

Figure 7.3. Stratigraphic Formation and latter nomenclature of the LKC Groups [75] 

 

The Hall-Gurney Field was discovered in 1931. However, it did not have 

significant production until the late 1930's when over 300 wells were drilled. Peak 

production was attained in 1943 when nearly 6 million barrels of oil was produced [74]. 

Most early production as well as significant waterflood oil is from the Upper 

Pennsylvanian L-KC Groups. The first waterfloods were accidental "dump" floods 

caused by casing leaks or poor cement jobs [74]. Successful waterflood pilots in the late 

1950's led to widespread L-KC waterfloods in the early 1960's most of which depleted 

the reservoirs by the early 1980's.  Figure 7.4 displays the Hall-Gurney annual cumulative 

oil production. 
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Figure 7.4. The Hall-Gurney annual cumulative oil production [74] 

  

The Hall-Gurney produced first by solution gas and partial water drive. In many 

fields because of low dissolved gas content, primary recovery by solution gas drive is 

often modest with recovery efficiencies of less than 25%. Many of the fields on the L-

KC, including the Hall-Gurney Field, were excellent waterflood candidates, however, a 

significant amount of residual oil remains. This residual oil in the L-KC is considered a 

potential target for CO2 miscible flooding. 

 

The initial pressure of the Colliver-Carter lease was about 1200 psia which 

depleted at the end of primary production down to 50-100 psia [74]. The lease was re-
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pressurized by waterflood to improve oil recovery. There were two phases in waterflood. 

Initially, a single well (Colliver#10) was converted to a water injection well as a pilot 

flood. The pilot flood was successful and the waterflood program was initiated in the 

field scale. An agreement was reached by the owners of surrounding leases to 

cooperatively waterflood in order to prevent oil leak-off from the lease. The cooperative 

waterflood consisted of locating off-set water injectors to prevent oil from moving out of 

the leases [74]. The cooperative waterflood completed by 1987 with only a few wells 

injecting water beyond this date and oil production form the individual wells declined to 

single digits.  

 

7.2. Initial Reservoir Model 

This section describes the development of the initial geological models, 

petrophysical and PVT properties, and also history matching of primary and secondary 

oil recovery in the Colliver-Carter lease of the Hall-Gurney Field. 

 

7.2.1. Geological Model 

The initial geologic model was developed by the Kansas Geological Survey 

(KGS). The formation was characterized by analyzing the many cuttings and wireline 

logs. The wireline log gamma ray and unscaled neutron porosity depth logs indicated that 

the LKC interval in the Colliver-Carter lease basically consists of three stacked beds. 

These beds were later further divided into six zones for greater accuracy during 

numerical simulation. The initial geological model, therefore, consisted of six zones with 

distinct permeability and porosity [75].  
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The porosity around each well was estimated from gamma ray (neutron logs) that 

is available for 41 wells in the pilot area. The logs were unscaled neutron logs but 

accurate enough to give porosity values within +/-2 porosity units. The neutron response 

was calibrated using the linear relationship given in Eq.(7.1): 

BNeutronAinPorosityLog += *%}{10  (7.1) 

where A is the slope of the correlation and B is the intercept. The constants A and B were 

obtained using a log linear straight line relationship between the following two points: 

1% porosity maximum response and 40% porosity minimum response [75]. This 

estimated porosity values for each well in each zone was used to generate field wide 

contours for each zone.  

 

A porosity-permeability transform was used to generate permeability values from 

porosity values. The porosity and permeabilities from cores for this field were estimated 

from one whole core available for Colliver-1 (Phillips Petroleum (1936)) and core chips 

from Colliver-12. The permeability versus porosity for the LKC is plotted in Figure 7.5. 

The full-diameter permeabilities measured for Colliver-1 are the highest measured in the 

LKC interval and are displayed as solid red crossed squares. Figure 7.5 shows two trends, 

with the trend line for the low porosity regime in blue and the trend line for the high 

porosity regime in red leveling off at higher porosity values. The equations that define the 

two trends are defined as follows: 

 




<Φ

>Φ−Φ
=

−Φ %4.2110

%4.214.58478.28

05.321.0
if

if
k  (7.2) 
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Figure 7.5. Crossplot of permeability-porosity for core samples in Hall-Gurney field [75] 

  

where k is permeability in md, and Φ  is porosity. The correlation between permeability 

with depth was not considered in Eq.(7.2). The inter-well permeability values were 

estimated based on the porosity values estimated from well neutron logs.  

 

In addition, the LKC samples were subjected to air-brine pressure measurement to 

obtain a trend of water saturation as a function of permeability and height of oil column 

above free-water level. The LKC structure is about 45-50 feet above free-water level at 

the Colliver-Carter lease [75]. Figure 7.6 shows the variations of initial water saturation 

with permeability and height of oil column above free-water level. The solid trend line 

indicates the variation of the water saturation of the projected site with permeability. The 
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initial water saturation decreases as the permeability increases for the same oil column 

height above oil-water contact [74]. This figure established a methodology to estimate the 

initial water saturation from permeability values for each zone.  
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Figure 7.6.  The initial water saturation decreases as the permeability increases for the 

same oil column height above oil-water contact [74] 

 

 Mercury capillary pressure was measured on a core chip from Colliver-12 and 

eight other samples obtained from other locations in the Central Kansas Uplift.  The 

measured samples showed a wide range of porosity and permeability values that is 

typically common for the reservoirs in the LKC formation. Figure 7.7 displays the 

capillary pressure curves for different core samples. The figure displays a log-linear trend 

between water saturation and reservoir oil-brine capillary pressure for a range of 

permeability values. Comparison between samples of different permeability indicates that 

capillary pressures decrease with increasing permeability at any given saturation.  
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Figure 7.7. Capillary pressure curves for oomoldic limestone [75] 

 

 Analyzing the relationship between the change in capillary pressure and 

permeability, an equation was constructed that provides approximate capillary pressure 

curves for any given permeability: 

)(10
).(

oilwater

B
w

SA

CP ρρ −=
+

 (7.3) 

where Pc is reservoir oil-brine capillary pressure (psia), Sw is water saturation (fraction), 

waterρ and oilρ are water and oil density (g/cc), and A and B are constants that vary with 

permeability. These constants are predicted as follows: 

2476.2)(log*1088.0

5186.1)(log*1663.0

10

10

+=

−−=

kB

kA
 (7.4) 

where k is permeability of the rock (md).These equations provide generalized capillary 

pressure curves that approximate the relationships for the available samples. 



166 

 

Data obtained from McCoy Petroleum were used to determine the imbibition 

water-oil relative permeability curves [74]. These data were measured on oomoldic 

limestone from the Marmaton Formation, Finney County, Kansas [74]. The properties 

exhibited by these limestones are very similar to that of LKC formation. The initial water 

saturation (Siw) was estimated from generalized capillary pressure curves. Single average 

water saturation was assigned to each zone in Colliver-Carter leases to track average fluid 

flow from or into each zone. Table 7.1 summarizes the average properties of each layer in 

the initial geological model.  

 

Since relative permeability end point saturations change with permeability, the 

relative permeability curves also change with absolute permeability. Relative 

permeability curves for each layer were predicted using the Corey-type equations below 

where Siw was obtained from Pc-k relations and the average absolute permeability values 

for each layer. Exponent m and n values were initially obtained from the measured data 

and were modified during simulation to reproduce lease production data. 
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where kro and krw are the relative permeability of oil and water respectively.  
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Table 7.1. The average properties of each layer in the initial geological model [75] 

Layer Thickness (ft) Permeability (md) Porosity (%) Average Siw 

1 1.5 8 21.8 0.24 

2 3.7 150 28.8 0.23 

3 2.4 40 25.0 0.23 

4 2.5 6 22.4 0.25 

5 1.8 2 14.7 0.34 

6 2.3 0.3 12.0 0.44 

 

 

7.2.2. PVT Properties 

There was no information on the composition and other properties of the reservoir 

fluids at the start of this project. Thus, PVT properties required to simulate the primary 

and secondary production were estimated by correlations. However, the oil obtained from 

a nearby lease (Letsch) in 2000 was used to generate PVT properties for the reservoir 

simulator (VIP Black Oil simulator) and compared against the previous correlated 

properties. Furthermore, a sensitivity analysis was performed to estimate the initial 

saturation pressure of the reservoir using the amount of gas produced at the end of 

primary production.  

 

7.2.3. History Matching the Primary and Secondary Oil Production 

The initial pressure of the reservoir was estimated 1200 psia which is consistent 

with other L-KC formation. The pressure dropped to about 50-100 psia at the end of 
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primary before waterflooding of the reservoir.  Since the field had several operators, little 

well information existed about individual well production during primary and secondary 

phases. A lease-based production history data was developed using commingled 

production data. Therefore, history matching process for primary and secondary recovery 

of this field was carried out on a lease data basis. The initial geologic model was used as 

a starting point to history match the primary and secondary oil production in Colliver and 

Carter leases in the Hall-Gurney field. Vector Implicit Program (VIP) reservoir simulator 

from Landmark Graphic Corporation was used for history matching process[74] 

 

Figures 7.8 and 7.9 show the comparison of the true oil production rate and 

cumulative oil production of Colliver and Carter leases and those obtained from reservoir 

simulator for primary and secondary oil production. These figures indicate that the 

cumulative oil production of the Colliver lease is acceptable with the model withdrawing 

the right amount of oil from the lease. However, the cumulative oil production of the 

Carter lease obtained from simulation results does not match with field data. The match 

specially worsened after start waterflooding of the lease.  After reasonable history match 

was obtained and residual oil in place determined, a compositional model was developed 

and used to simulate the performance of carbon miscible flooding.  

 

 

 

 

 



169 

 

 

Figure 7.8. History matching of oil production for Colliver lease [74] 

 

 

        Figure 7.9. History matching of oil production for Carter lease [74] 
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7.3. Updated Geologic Model Based on CO2I-1 Cores 

CO2-I1 was drilled on September 23, 2000 and completed on October 2, 2000 in 

the Hall-Gurney field. Five cores were taken including three conventional cores and two 

high pressure cores. Unfortunately, the high pressure cores obtained from the reservoir 

interval exhibited severe damage and little useful information was obtained at this 

interval. The core permeabilities decreased with increasing depth below the top of the C 

zone. Figure 7.10 shows the variation of permeability with depth for core plugs obtained 

from the new drilled well CO2I-1. There is a general trend, shown as a solid blue line, 

indicating a reduction in permeability as depth increases. This trend is also seen in the 

Colliver#1 well that was used as the basis of the initial model.  

2890289028902890

2892289228922892

2894289428942894

2896289628962896

2898289828982898

2900290029002900

2902290229022902

2904290429042904

0.10.10.10.1 1111 10101010 100100100100 1000100010001000

Air Permeability (md)Air Permeability (md)Air Permeability (md)Air Permeability (md)

D
e
p
th

 (
ft
)

D
e
p
th

 (
ft
)

D
e
p
th

 (
ft
)

D
e
p
th

 (
ft
)

CO2 #1 Whole CoreCO2 #1 Whole CoreCO2 #1 Whole CoreCO2 #1 Whole Core

CO2 #1 PlugCO2 #1 PlugCO2 #1 PlugCO2 #1 Plug

Colliver #1Whole CoreColliver #1Whole CoreColliver #1Whole CoreColliver #1Whole Core

 

Figure 7.10. Permeability versus depth for Murfin Carter-Colliver CO2 I well and 

Colliver#1 well [74] 
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7.4. CO2 Pilot area in the Hall-Gurney Field 

The feasibility of injecting miscible carbon dioxide to recover oil was studied by 

the Tertiary Oil Recovery Project (TORP) in the 1970’s. The study involved a set of 

experiments to determine the minimum miscibility pressure (MMP) of lease crude oil at 

reservoir temperature. These experiments indicated that the MMP was about 1200-1300 

psia, a pressure range that had been maintained during the waterflooding of the Hall-

Gurney field. The project gained attention in 1990’s when a carbon dioxide pipeline in 

Oklahoma was installed [74]. This pipeline delivered carbon dioxide to the Postle Field in 

the panhandle area in Oklahoma. The pipeline placed a significant source of carbon 

dioxide within reasonable access to the Southwest and Central Kansas oilfields. Another 

motivating factor was the availability of excess carbon dioxide with Shell CO2 Company 

and their interest in finding a market for this excess CO2.  

 

In order to study the feasibility of a full scale CO2 flooding, a pilot test was 

planned. The objective of the plan was to demonstrate the viability of carbon dioxide 

miscible flooding in the Lansing-Kansas City formation on the Central Kansas Uplift and 

to obtain data concerning reservoir properties, flood performance, and operating costs 

and methods to aid operators in future floods.  The 10 acre pilot area represented the 

oomoldic limestone reservoir in the Hall-Gurney Field (Figure 7.11). The pilot test 

designed to ensure the development of the miscibility (1200-1300 psi) in the pilot area in 

Figure 7.11. The carbon dioxide and water was injected into CO2I-1 in rate to permit 

completion of the flood in the project time frame. 
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Figure 7.11. The 10-Acre CO2 pilot area in the Hall-Gurney Field [74] 
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Both Colliver-10 and Colliver-18 wells in the pilot injected water to confine the carbon 

dioxide to the pilot area and maintain the pressure. There are also two producing wells 

Colliver-12 and Colliver-13 to the south of CO2I-1 in the pilot area. 

 

7.5. Field Diagnostic Activities 

Before injecting any CO2 into the pilot test area, a series of activities and analysis 

was performed to obtain important information about the well injectivity and connectivity 

between the wells in the pilot area. The most important activities are as follows: 

1. Short-term well injectivity test of the CO2I-1 in February 5-6, 2003 

2. Shut in Colliver-18 in March 7, 2003 

3. Water injection test in CO2I-1 in April 23, 2003 

4. Colliver-12 and Colliver-13 production tests in June 11, 2003 for two 

weeks. 

5. Conductivity test between CO2I-1 and Colliver-13 in August 20, 2003 

6. Start Repressurring of the pilot in September 5, 2003  

7.5.1. Short-term injection test of the CO2I-1 in February 5-6, 2003 

 A short-term injection test was performed in CO2I-1 in February 5, 2003 for two 

days to verify that there is sufficient injectivity for setting up a long-term water supply 

and determine if further stimulation is needed. Extrapolation of the short injection rate to 

long-term rate indicated that the well has sufficient injectivity for the demonstration and 

move forward with the long term injectivity rate without additional stimulation at the 

present time. 
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7.5.2. Shut in Colliver#18 

 Colliver-18 was shut in March 4, 2003 to verify its connectivity with CO2I-1, 

Colliver-10, and Colliver-12. Bottom hole pressure (BHP) for these wells were monitored 

and calculated (Figure 7.12). The pressure decline of these wells indicated that the 

reservoir was stabilizing and all wells were in communication.  

 

 

Figure 7.12.  Bottom hole pressures through time showing decline of reservoir pressures 

following shut in Colliver-18 [74] 

 

 

 

 

7.5.3. Water Injection test in CO2I-1 

 A long-term water injection in CO2 I-1 began on April 23, 2003 to verify 

communication between this well and the other wells in the 10-acre pilot. In addition, the 
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information obtained from this test was used to refine the reservoir model and improve 

prediction of CO2 miscible flood performance. Bottom hole pressures measuered in 

surrounding wells are shown in Figure 7.13.  The data show that there was a strong 

connectivity between CO2I-1 and Colliver-10, Colliver-12, and Colliver-18. However, 

the pressure response in the Colliver-16 did not increase as fast as what was simulated in 

the reservoir model. 

 

Figure 7.13.  The BHP response with respect to commencement of long- term water 

Injection test in CO2I-1 [74] 

 

7.5.4. Colliver-12 and Colliver-13 Production Test in June 2003 

 The production tests of wells Colliver-12 & Colliver 13 were conducted to 

determine if enough fluid could be produced by these wells to obtain sufficient 

displacement in the pilot pattern. The production tests consisted of individually pumping 

the wells in the tanks while maintaining constant injection rate into CO2I-1.  



176 

 

7.5.5. Conductivity test between CO2I-1 and Colliver-13 in August 2003 

A conductivity test was performed in August 20, 2003 to confirm adequate 

conductivity between CO2I-1 and Colliver-13. The CO2I-1 injection rate was decreased 

from 140 BWPD to 70 BWPD in a step change while Colliver-13 was pumped off.  The 

production rate from Colliver-13 decreased consistently with the injection rate change at 

CO2I-1 (Figure 7.14). The result of this test was interpreted as adequate connectivity 

between CO2I-1 and Colliver-13. 

 

Figure 7.14. Conductivity test between CO2I-1 and Colliver-13 [74] 

7.5.6. Start Repressuring of the pilot in September 5, 2003 

Repressuring of the pilot began on September 5, 2003. Repressuring was done 

before starting CO2 injection to make sure reaching the pressure in the pilot could reach 

miscible condition in the reservoir. Water injection rate in CO2I-1 was increased from 70 

BWPD to 150 BWPD. Water injection began in the containment wells, Colliver10 & 

Colliver-18, on September 15, 2003. 
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7.6. CO2 Injection in the Hall-Gurney Field 

 Injection of carbon dioxide began on November 23, 2003. Operational problems 

were encountered on startup that delayed continuous injection until December 2, 2003. In 

the next thirteen months, 11.31 MM lbs of carbon dioxide were injected into CO2I-1. 

Figure 7.15 shows the monthly carbon dioxide injection rate. The injection rate declined 

substantially in May through June due to the excessive vent loss. Project design and 

management is based on controlling carbon dioxide loss to the north by maintaining the 

pressure around Colliver-10. This was done by maintaining adequate water injection rates 

into Colliver-10 & Colliver-18, and controlling the injection/withdrawal ratio in the pilot 

pattern.  

  At the beginning of the project, both production wells Colliver-12 and Colliver-13 

produced 100% water. Figure 7.16 represents the liquid production rate from these 

production wells. By the end of December 2003, oil production averaged 1.6 STB/D, 

primarily from Colliver-12. Oil production averaged 2.5 STB/D for the period from 

March-June.  The average daily oil production rate is shown in Figure 7.17. Carbon 

dioxide arrived at Colliver-12 on May 31, 2003, and arrived at Colliver-13 in August 

2003.  
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  Figure 7.15.  Carbon dioxide injection rate in CO2I-1 [74] 

 

 

 

 

 

 

 



179 

 

 

Figure 7.16. Liquid production rate from Colliver-12 and Colliver-13 [74] 

 

 

Figure 7.17. Average daily oil production rate from pilot area [74] 
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7.7. Modeling of Solvent (CO2) Miscible Flooding 

The Todd-Longstaff  [76] model was used to model CO2 miscible flooding in this 

study. The Todd-Longstaff model is an empirical treatment of the effects of physical 

dispersion between the miscible components in the hydrocarbon phase. The model 

introduces an empirical parameter, ω, whose value lies between 0 and 1, to represent the 

size of the dispersed zone in each grid cell. The value of ω thus controls the degree of 

fluid mixing within each grid cell. A value of ω=1 models the case when the size of the 

dispersed zone is greater than a typical grid cell size and the hydrocarbon components is 

considered to be fully mixed in each cell. In this case the miscible components have the 

same value for the viscosity and density, as given by the appropriate mixing rule. A value 

of ω=0 models the effect of a negligibly thin dispersed zone between the gas and oil 

components, and the miscible components should then have the viscosity and density 

values of the pure components. In practical applications an intermediate value of ω would 

be needed to model incomplete mixing of the miscible components.  

 

Computer Modeling Group (CMG) provides an extension of the Black Oil Model 

to enable modeling of reservoir recovery mechanisms in which injected fluids are 

miscible with the hydrocarbons in the reservoir. This solvent model enables the user to 

model gas injection projects without going through the complexity and expense of using 

an alternative compositional model. A value of ω=1 indicating full miscibility was 

assumed for this study.  The other property of solvent was calculated using slim tube 

experiments and empirical correlations.  
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7.8. New Geological Structure and Petrophysical Properties 

The geological model was provided by Kansas Geological Survey (KGS). The 

physical geologic model was constructed by defining the top of structure of layer 1 and 

then defining the thickness maps for each zone. Layering of the reservoir influences the 

performance of the CO2 miscible flood in which cross-flow enhanced gravity segregation. 

As the number of layers is increased the gravity segregation is more pronounced. The 

primary and secondary oil production history match in the Hall-Gurney field was 

simulated using a 6-layer model. However, the geological model for the history match of 

CO2 miscible flooding was first constructed as a 12-layer model. In fact, the 12 layers 

were determined according to minimum resolution of well-log data (1 ft). Later, the 

geological model was cut into an 8-layer model due to lack of porosity in the last four 

bottom layers.  Figure 7.18 displays a 3-D view of the final geological model used in the 

simulation. 

 

 

Figure 7.18.  A 3D view of the 8-layer geological model used in the simulation 
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7.9. Porosity Distribution of the Geological Model 

 There were no modern or even scaled electric logs available within the field area 

until the Carter-Colliver CO2I-1 well was drilled. The only logs available were Gamma 

Ray-Neutron Logs (unscaled) in the open portion of the wells. The neutron logs were 

calibrated using the only available core petrophysical measurements from the Colliver-1. 

The porosity values of log data were estimated in 25 wells in the C zone of CO2 pilot area 

after calibrating the well log data (Figure 7.19).  Then, the porosity of all wells in each 

layer (one-foot thickness) of the 8-layer model was assigned using well-log data. Table 

7.2 lists the porosity values of the 25 wells in the all eight layers of the geological model.  

 

 

Figure 7.19. Available well Log data in the Hall-Gurney Field [75] 
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Table 7.2.  Porosity values of wells at different layers [37] 

 Well 
Name 

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6 Layer 7 Layer 8 

Carter10 0.26 0.27 0.25 0.25 0.25 0.23 0.22 0.21 

Carter2 0.17 0.25 0.29 0.29 0.29 0.31 0.30 0.29 

Carter5 0.22 0.24 0.26 0.25 0.28 0.28 0.28 0.25 

CO2I1 0.14 0.26 0.28 0.30 0.29 0.29 0.28 0.27 

Colliver1 0.24 0.26 0.26 0.27 0.26 0.24 0.21 0.20 

Colliver10 0.26 0.23 0.26 0.24 0.23 0.22 0.19 0.16 

Colliver12 0.23 0.29 0.30 0.30 0.28 0.27 0.26 0.25 

Colliver13 0.09 0.13 0.24 0.29 0.30 0.29 0.24 0.14 

Colliver16 0.22 0.28 0.28 0.27 0.26 0.25 0.24 0.21 

Colliver18 0.14 0.25 0.30 0.31 0.31 0.32 0.32 0.32 

Colliver6 0.21 0.20 0.19 0.16 0.16 0.18 0.19 0.18 

Carter 11 0.26 0.29 0.28 0.28 0.27 0.26 0.25 0.25 

Carter12 0.17 0.18 0.25 0.25 0.24 0.23 0.23 0.23 

Henry 2 0.06 0.03 0.06 0.12 0.21 0.26 0.28 0.26 

Colliver19 0.17 0.19 0.23 0.29 0.30 0.30 0.29 0.28 

Colliver 2 0.23 0.25 0.25 0.24 0.26 0.26 0.23 0.21 

Henry 1 0.24 0.25 0.27 0.27 0.26 0.27 0.26 0.25 

Colliver 3 0.23 0.21 0.20 0.20 0.16 0.15 0.14 0.13 

Colliver 4 0.19 0.21 0.19 0.16 0.13 0.14 0.14 0.14 

Colliver 5 0.16 0.17 0.17 0.16 0.16 0.15 0.13 0.11 

Colliver 7 0.12 0.10 0.11 0.13 0.15 0.17 0.16 0.15 

Carter1 0.08 0.10 0.15 0.17 0.20 0.23 0.25 0.26 

Colliver 8 0.19 0.18 0.21 0.26 0.29 0.28 0.27 0.25 

Rein 3 0.18 0.16 0.19 0.21 0.22 0.17 0.15 0.17 

Colliver 9 0.32 0.24 0.26 0.26 0.23 0.23 0.23 0.18 

 

 

7.10. Verification of the Reservoir Layering Using Descriptive Statistics 

 The 8-layer geological model was constructed on the basis of the well-log data 

and one-foot thickness. The statistical ANOVA test was used to verify the reservoir 

layering. The ANOVA is used to test for differences among two or more independent 

groups based on their variances. For this study, the ANOVA test was performed for the 

porosity data of the eight layers in order to investigate if these data comes from the same 

population of porosity data. Table 7.3 presents the results of ANOVA test performed 

using the available toolbox in Microsoft Excel. The analysis revealed that the same 
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population hypothesis for the porosity data in the eight layers cannot be accepted because 

F>Fcrit.. In other words, the porosity data in all layers obtained from different population 

which could interpreted as different geological facies. Statistical F-test and t-test analysis 

was applied to check the population similarity analysis for porosity data in each pair of 

layers in the 8-layer model. Tables 7.4 and 7.5 represent the t-test for porosity samples of 

the layers 1 & 2 and 5 & 6 respectively. The analysis indicated that porosity of these two 

layers was not sampled from the same population.  Tables 7.6 and 7.7 show F-test 

analysis for porosity samples of layers 1 & 2 and 5& 6 respectively. This analysis 

rejected that the porosity samples in these layers have the same population.  In general, 

the results of these statistical tests indicated confirm the number of layers in the reservoir. 

However, it is not possible to statistically investigate if the porosity data in a layer 

sampled from the same population. The well-log data must be provided on the basis of 

less than one-foot thickness to perform such analysis. 
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Table 7.3. ANOVA single for all layers of the 8-layer model 

Groups Count Sum Average Variance 

Layer 1 25 4.7678 0.19071 0.0039 

Layer 2 25 5.2389 0.20956 0.00434 

Layer 3 25 5.7204 0.22882 0.00374 

Layer 4 25 5.9092 0.23637 0.0033 

Layer 5 25 5.9925 0.2397 0.00291 

Layer 6 25 5.9766 0.23906 0.00281 

Layer 7 25 5.72 0.2288 0.00292 

Layer 8 25 5.3639 0.21456 0.00304 

 

Source of 
Variation SS df MS F P-value Fcrit 

Between Groups 0.0519 7 0.00741 2.20063 0.035889 2.057533 

Within Groups 0.6469 192 0.00337 NA NA NA 

Total 0.6988 199 NA NA NA NA 

rejectedHypothesisFF crit →>  

 

 

 

Table 7.4. t-test for porosity samples in layers 5 & 6 

Statistics Layer 5 Layer 6 

Mean 0.2397 0.239064 

Variance 0.00290637 0.00280555 

Observations 25 25 

Pearson Correlation 0.99096514 NA 

Hypothesized Mean 
Difference 

0 NA 

df 24 NA 

t Stat 0.43893089 NA 

P(T<=t) two-tail 0.6646379 NA 

t Critical two-tail 0.33621573 NA 

rejectedHypothesistt crit →>  
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Table 7.5. t-test for porosity samples in layers 1 & 2 

Statistics Layer 1 Layer 2 

Mean 0.190712 0.209556 

Variance 0.003896 0.00433891 

Observations 25 25 

Pearson Correlation 0.96974606  

Hypothesized Mean 
Difference 0  

df 24  

t Stat 
-

5.83545348  

P(T<=t) two-tail 5.1135E-06  

t Critical two-tail 2.06389814   

rejectedHypothesistt crit →>  

 

 

 

Table 7.6. F-test for porosity samples in layers 1 & 2 

Statistics Layer 1 Layer 2 

Mean 0.190712 0.209556 

Variance 0.003895998 0.00433891 

Observations 25 25 

df 24 24 

F 0.897920321 NA 

P(F<=f) one-
tail 

0.397064925 NA 

F Critical one-
tail 

0.504092768 NA 

rejectedHypothesisFF crit →>  
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Table 7.7. F-test for porosity samples in layers 5 & 6 

Statistics Layer 1 Layer 2 

Mean 0.2397 0.239064 

Variance 0.002906372 0.00280555 

Observations 25 25 

df 24 24 

F 2.035936236 NA 

P(F<=f) one-
tail 0.465899121 

NA 

F Critical one-
tail 1.983757159 

NA 

rejectedHypothesisFF crit →>  

 

 

7.11. Geostatistical Approach for Porosity Estimation 

The experimental semivariogram of porosity for each layer was calculated using 

the 25 porosity samples. GSLIB program gamv was used to calculate the experimental 

semivariogram for each layer. Then, the experimental semivariogram data for each layer 

were fit to the basic mathematical semivariogram models. Figure 7.20 and Figure 7.21 

present the analytical model fitted to the semivariogram of porosity samples in the layers 

1 and 7 of the 8-layer model. No nugget effect was considered in modeling the 

experimental semivariograms. The range of the semivariograms for layers 1-8 vary in the 

range of 900-1600 ft.  Porosity values at unsampled locations for the eight layers of the 

CO2 pilot area was generated by ordinary kriging implemented in the GSLIB program 

kb2d. The search radius of 5000 ft was estimated from the distribution of well locations 

in the location maps in Figure 7.19. The radius was chosen in a manner to encompass the 

minimum number of data points (3) at any unsampled grids. Using a smaller radius 

(smaller than 5000 ft) would result in search failures at some of the unsampled grid 
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nodes. This is reasonable because it prevents the procedure extrapolating too far from the 

well control.  The minimum and maximum number of points used in the estimation 

procedure was three and ten respectively. Data set in Table 7.2 set aside as hard control 

data for estimating the porosity values at unsampled grids of the eight-layer model.  

Figure 7.22 and Figure 7.23 show the porosity maps for the layers 1 and 7 of the 8-layer 

model.  
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Figure 7.20.  Experimental and Analytical semivariograms of the layer 1 

 

Figure 7.21. Experimental and Analytical semivariograms of the layer 7 
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Figure 7.22.  Porosity distribution of Layer-1 [37] 

 

Figure 7.23. Porosity distribution of Layer-7 [37] 
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7.12. Permeability Distribution 

 The extreme petrophysical heterogeneity found in carbonate reservoirs is clearly 

demonstrated by the wide variability observed in porosity-permeability crossplots of core 

analysis data. In this type of reservoirs, porosity and permeability have little spatial 

correlation and are widely variable at scale of inches and feet within a rock-fabric facies.  

[77]. Permeability, in particular, can vary by a factor of 10 or more at a small scale. The 

Lansing Kansas City (LKC) consisting of a series of alternating deposits of marine 

limestone and non-marine shale is classified as a carbonate reservoir. Figure 7.24 

represents the crossplot of porosity-permeability for all cores in the LKC formation. The 

wide range of variation of the crossplot shown in Figure 7.24 confirms the fact that the 

LKC is a carbonate reservoir. It is not accurate to model this wide crossplot by an 

exponential model described in the previous section, and estimate the permeability at 

unsampled location. An alternative method for the carbonate reservoirs is to use different 

crossplot for different rock-fabric facies to obtain the relationship between porosity and 

permeability [77]. However, it is not possible to apply this method to estimate the 

permeability distribution in the LKC due to lack of information about the available core 

data in this formation. In the following section, a new methodology is proposed to find 

different porosity-permeability crossplots for different regions of the LKC formation, 

specifically, the CO2 pilot area in the Hall-Gurney Field.  
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Figure 7.24. The crossplot of k-Φ  for all cores in the LKC formation [75] 

 

7.12.1. First Hypothesis: Same slope for all crossplots 

 The new methodology was proposed based on two hypotheses. The first 

hypothesis was drawn from permeability-porosity crossplot of the core samples in the 

LKC formation (Figure 7.24). The porosity-permeability crossplot of all core samples, 

shown in Figure 7.24, are bounded between two lines with approximately same slopes. 

However, lines do not have similar (equal) intercepts with the vertical axis. The 

methodology hypothesis predicts that the permeability-porosity crossplots of all core 

samples obtained from different facies or regions in the LKC formation have the same 

slope as the upper and lower boundary lines. The distinction between different crossplots 
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is the intercept with the vertical axis.  The intercept values of crossplots can be calculated 

using the second hypothesis which is described in the following section 

  

7.12.2. Second Hypothesis: Incorporation of well test data   

 The effective permeability calculated by a well-test analysis is based on a 

classical analytical solution to the diffusivity equation. The solution is based on the 

assumption that the reservoir is homogeneous; however, no reservoir is homogeneous. 

For practical purpose, the assumption is the permeability determined by a well-test 

analysis is an effective permeability representing some average within a radius of 

investigation or drainage radius influenced by production or injection well. There are 

some investigators in the literature trying to find an answer for what kind of average 

well-test derived permeability represent and over what region of the reservoir, this 

average is valid [35] [67] [68] [72]. The definition of effective well-test permeability 

becomes more complicated when dealing with multilayer heterogeneous reservoir. 

 

 Under second hypothesis, the effective or average permeability (khave) derived 

from well test analysis is approximated by the average of permeability values (kh) at well 

locations of the different layers. Mathematically, it is defined as: 

∑
=

=

n

i

iave khkh
1

)(  (7.6) 

 where n is the number of layers of the reservoir model.  
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7.12.3. Proposed Methodology  

 A new methodology was proposed to estimate the permeability distribution of the 

CO2 pilot area. This methodology was founded based on the two hypotheses described 

above and porosity values at well location at different depths.  From Φ−k  crossplot, the 

relationship between porosity and permeability can be modeled as: 

φbaek =  (7.7) 

where a and b are the slope and intercept From Φ−k  crossplot respectively. Considering 

the first hypothesis, the slope a is known for all crossplots. Using Eq.(7.7), Eq.(7.6) can 

be written as: 

∑
=

=

n

i

i

b

ave haekh
1

])[(
φ  (7.8) 

Eq.(7.8) can be numerically solved to calculate the unknown intercept b of the Φ−k  

crossplot by knowing the porosity vs. depth at well location and the average permeability 

derived from well-test analysis.  

 

 The porosity data versus depth were obtained from well-log analysis for 11 wells 

in C zone of the CO2 pilot area. Figure 7.25 displays a 3D-view of the location of these 

wells in the pilot area. Also, the well-test average permeability is available for Colliver-

18 and CO2I-1. The average permeability of the other wells of the pilot area was assumed 

to be the average permeability at well locations of the previous geological model. 

Knowing these data and considering the same slope for the Φ−k crossplot for each well, 

Eq.(7.8) was solved for each well to find the unknown intercept b of the Φ−k crossplot. 

Then, the exponential model in Eq.(7.7) was used to estimate the permeability values 
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versus depth (Layer) for each well in the pilot area. The Goal Seek in in Microsoft Excel 

package was used to numerically solve Eq.(7.8). 

 

Figure 7.25. The 3D-view of the location of the wells in the CO2 pilot area 

 

Table 7.8 lists the intercepts of k-Φ  crossplot for the eleven wells in the CO2 pilot area.  

Tables 7.9 and 7.10 present the Microsoft Excel spreadsheet layout used to calculate the 

intercept and permeability versus depth for wells Colliver-18 and CO2I-1.  

         Table 7.8. Intercept of k-Φ  crossplot   

Well Intercept 

Colliver1 -3.4904 

Colliver6 -2.1314 

Colliver10 -3.2497 

Colliver12 -4.0308 

Colliver13 -3.9804 

Coliiver16 -3.7524 

Colliver18 -4.774 

CO2I-1 -4.2596 

Carter10 -3.4686 

Carter5 -3.8221 

Carter2 -4.3809 
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Table 7.9. The Excel Spreadsheet for estimating the intercept of crossplot for Colliver-18 

  

Exponential Form 
φbaek =     

 

Intercept   -4.77405 

 

Slope   0.2222 

 

Ave. kh  995 

 

 

Depth,ft 
(Layer) 

Φ log k k Kh 

1 14 -1.66325 0.021715 0.021715 

2 25 0.780953 6.038829 6.038829 

3 30 1.891953 77.97452 77.97452 

4 31 2.114153 130.0627 130.0627 

5 31 2.114153 130.0627 130.0627 

6 32 2.336353 216.9465 216.9465 

7 32 2.336353 216.9465 216.9465 

8 32 2.336353 216.9465 216.9465 

     995)(
8

1

=∑
=i

ikh  

 

Table 7.10. The Excel Spreadsheet for estimating the intercept of crossplot for CO2I-1 

  

Exponential Form 
φbaek =     

 

Intercept   -4.61202 

 

Slope   0.2222 

 

Ave. kh             442 

 

Depth,ft 
(Layer) 

Φ log k k Kh 

1 14 1.6632473 0.0217146 0.0217146 

2 26 1.0031527 10.072858 10.072858 

3 29 1.6697527 46.746888 46.746888 

4 30 1.8919527 77.974518 77.974518 

5 30 1.8919527 77.974518 77.974518 

6 29 1.6697527 46.746888 46.746888 

7 28 1.4475527 28.025457 28.025457 

8 27 1.2253527 16.80168 16.80168 

     442)(
8

1

=∑
=i

ikh  
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 Then, the experimental semivariogram of the logarithm of permeability for the all 

layers in the C-zone were calculated and fitted with mathematical models. Finally, similar 

to porosity estimation, ordinary kriging technique was used to estimate the permeability 

values of the inter-well grids. Figure 7.26 and Figure 7.27 show the permeability 

distribution of the layers 1 and 7 of the 8-layer models.  

 

 

Figure 7.26. Permeability map for the Layer-1 of the 8-layer model. 
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 Figure 7.27. Permeability map for the Layer-7 of the 8-layer model 

 

7.13. Discriminant Analysis for Permeability and Porosity Distribution 

Discriminant analysis covers a wide range of techniques aimed at the 

classification of unknown samples to one of several possible groups or classes. Classical 

discriminant analysis has the main focus of attempting to develop a linear equation that 

best differentiates between two different classes. The model is established based on a set 

of observations for which the classes are known. These observations are called training 

set.  

 

The 11 porosity and permeability samples of different layers in the CO2 pilot area 

were considered as the training set. The purpose of this analysis is examination of 
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layering the geological model based on the porosity and permeability samples.  In other 

word, the possibility that the different layers originated from different geological facies 

was examined by discriminant function analysis. The discriminant function analysis was 

performed for the adjacent layers (1&2, 3&4, 5&6, 7&8).  

 

The discriminant function analysis was performed for the adjacent layers (1 and 2, 

3 and 4, 5 and 6, 7 and 8) by the available tool implemented in the MATLAB package. 

Table 7.11 represents the results of discriminant function analysis for the layers 1 and 2 

based on the porosity and permeability samples. For each sample in Table 7.11, a 

discriminant score was assigned based on this analysis. Also, the discriminant score index 

was calculated and shown at the bottom of Table 7.11. The discriminant index is a 

number that represent the boundary between two classes or populations.  

 

If the discriminant scores for both classes (layers) were simultaneously plotted, 

the discriminant index will show the border; otherwise, the two groups under study 

cannot be separable. Figure 7.28 show the discriminant function analysis for layers 1&2. 

The blue triangle and gray square legends represent the discriminant scores for samples 

in the layers 1 and 2 respectively. The discriminant index score is shown by a red line. 

The discriminant index score in Figure 7.28 does not represent the border between the 

scores of the samples of the two layers. This indicated that the samples of the two layers 

may not be obtained from two geological facies. The same results were obtained by 

repeating the discriminant analysis for the other adjacent layers described above. More 

geological information is required to improve the accuracy of this type of analysis.  
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Table 7.11. Discriminant function analysis for layers 1&2 

Sample 
No. 

ΦΦΦΦ    k(md) 
Discriminant 

score 
Layer 

1 0.0597 1.5 -0.01635422 

L
e
y
e
r-1

 

2 0.0785 23.1 -0.02152559 

3 0.0874 56.2 -0.02398295 

4 0.1236 44 -0.03411338 

5 0.1435 145 -0.03988534 

6 0.1446 113 -0.04021211 

7 0.155 88 -0.04335893 

8 0.1655 32 -0.04667337 

9 0.1702 42 -0.04821717 

10 0.1748 78 -0.04977348 

11 0.1763 50 -0.05029197 

12 0.0328 2.3 -0.00897971 

L
a
y
e
r-2

 

13 0.0999 5.9 -0.02745023 

14 0.1019 16 -0.02800727 

15 0.1252 38 -0.03456968 

16 0.1606 50 -0.04510606 

17 0.1686 91 -0.04768675 

18 0.1787 58 -0.051134 

19 0.184 83 -0.05305402 

20 0.1881 57 -0.05460506 

21 0.2013 64 -0.06011061 

22 0.2127 95 -0.06575389 

    

   Discriminant Score Index=-0.039651 
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Figure 7.28. Discriminant function analysis for layers 1&2 
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Chapter 8 

The Flow Simulation Results 

 

The permeability and porosity distribution of that estimated in the previous 

sections was used as input for the flow simulation of the 8-layer model.  The simulation 

time started on January 1, 1992 after waterflooding where the reservoir contains residual 

dead oil and water. Flow simulations in this research have been performed using 

Computer Modeling Group (CMG) reservoir simulator. The oil obtained from a nearby 

lease (Letsch) in 2000 was used to generate PVT properties for the reservoir simulator. 

The relative permeability for the oil-water system is given in Figure 8.1. Additional 

information pertaining to the 2-D reservoir model used for this study is given in Table 

8.1. The simulation was terminated on January 31, 2006.  

 

 Figures 8.2 through Figure 8.8 show the comparison of the true bottom hole 

pressure (BHP) of the CO2 pilot and those obtained from reservoir simulator for the field 

activities prior and during CO2 flooding. 

The match between the simulation results and field data is reasonable for Colliver 10, 

Colliver 18, and CO2I-1 because the BHP is constrained in these wells.  Historical 

injection rate data for Colliver 10 were not available.  . The constraint for Colliver 18, 

CO2I-1 in some periods switched from BHP to injection rate constraint. There is not 

enough injection rate data to compare with simulation results. Colliver 12 and Colliver 12  

were constrained to the water production rate in the simulation model. Figure 8-2 shows 

BHP results for Colliver 13. The figure indicates that the simulation model under-
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predicted BHP for Colliver 13 in comparison to the field data. One possible interpretation 

is that the permeability value at well location in the model is lower than the true value. 

Figure 8.3 shows that the model over-predicted BHP for Colliver 12 especially after the 

start of injection in CO2I-1 in 2003. The results indicate that permeability values at grid 

blocks surrounding Colliver 12 is higher than true values.  

 

 The match between the simulation and field data for Cart 2 and Cart 5 is shown in 

Figures 8.7 and 8.8. Cart 2 and Cart 5 were constrained to 10 bbl/day water production 

rate until both wells were shut in on January 1, 2003. Then, Cart 5 was reopened in 

December 28, 2004 and constrained to well BHP.  The match between the simulation and 

field data is not acceptable. The mismatch could be explained by inspecting the 

permeability distribution around these wells. Figure 8.8 shows that the simulated BHP for 

Cart 5 is higher than the true field data indicating that permeability value of the grid 

blocks around this well is high. Figure 8.9 and Figure 8.10 show the comparison of the 

true daily oil production of the wells(Colliver 12 and 13) and those obtained from 

reservoir simulator during CO2 flooding period. Both well were constrained to water 

production rate within this period. Simulation model under-predicted the oil production 

rate for both wells during the course of CO2 flooding. This indicates that connectivity 

between CO2I-1 and the production wells appears to be more tortuous than modeled in 

the simulation. In general, results indicate that the pilot area is more heterogeneous than 

represented in the reservoir model. The reservoir heterogeneity in the CO2 pilot area is 

too high to be modeled by the proposed methodology. 
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Figure 8.1. Oil-water relative permeability data set used in the flow simulator 

 

Table 8.1. Model specifications for flow simulator 

Reservoir Dimension 90 x 82 

Dimension of each cell 55ft x 55 ft 

Number of layers 8 

Thickness of layer 1 ft 

Fluid Viscosities Water(0.7179 cp) 

Water Density 69.26 lb/ft
3 

Oil Density 51.26 lb/ft
3 

Rock Compressibility 3.2E-6 x10
-6

/psi 

Equilibrium conditions 500psi@2900 ft 

Constant initial water saturation 0.3 

Bubble Point Pressure 6 psi 
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Figure 8.2. Comparison of the simulation results and field data for Colliver 13 
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Figure 8.3. Comparison of the simulation results and field data for Colliver 12 
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Figure 8.4. Comparison of the simulation results and field data for Colliver 18 
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Figure 8.5. Comparison of the simulation results and field data for Colliver 10 
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Figure 8.6. Comparison of the simulation results and field data for CO2I-1 
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Figure 8.7. Comparison of the simulation results and field data for Cart 2 
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Figure 8.8. Comparison of the simulation results and field data for Cart 5 

 

Oil Production Rate of Colliver 12Oil Production Rate of Colliver 12Oil Production Rate of Colliver 12Oil Production Rate of Colliver 12

0000

1111

2222

3333

4444

5555

6666

7777

8888

9999

6/28/20036/28/20036/28/20036/28/2003 11/25/200311/25/200311/25/200311/25/2003 4/23/20044/23/20044/23/20044/23/2004 9/20/20049/20/20049/20/20049/20/2004 2/17/20052/17/20052/17/20052/17/2005

Time(Date)Time(Date)Time(Date)Time(Date)

O
il
 P

ro
d
u
ct
io

n
 R

a
te

(S
T
B
/D

)
O
il
 P

ro
d
u
ct
io

n
 R

a
te

(S
T
B
/D

)
O
il
 P

ro
d
u
ct
io

n
 R

a
te

(S
T
B
/D

)
O
il
 P

ro
d
u
ct
io

n
 R

a
te

(S
T
B
/D

)

Simulation ResultsSimulation ResultsSimulation ResultsSimulation Results Field DataField DataField DataField Data
 

Figure 8.9. Comparison of the simulation results and field Oil Production for Colliver 12 
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Figure 8.10. Comparison of the simulation results and field Oil Production for Colliver 

13 
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Chapter 9 

Conclusions 

 

1. The 8-layer geological model was constructed on the basis of the well-log data 

and one-foot thickness for the CO2 pilot area in the Hall-Gurney field. The 

statistical ANOVA, t-test, and F-test were performed for the porosity data of the 

eight layers in order to investigate if these data comes from the same population 

of porosity data.  The results revealed that the porosity data in eight layers 

sampled from different populations. The results of these statistical tests confirmed 

the number of layers in the reservoir. 

 

2. Ordinary kriging was used to estimate the porosity distribution at unsampled 

location in all eight layers of the CO2 pilot area using the 25 porosity samples. 

 

3. The new methodology was proposed for estimation of permeability distribution 

based on two hypotheses. The first methodology hypothesis predicts that the 

permeability-porosity crossplots of all core samples obtained from different facies 

or regions in the LKC formation have the same slope as the upper and lower 

boundary lines. Under second hypothesis, the effective or average permeability 

derived from well test analysis is approximated by the average of permeability 

values at well locations of the different layers. 
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4. Permeability values at well location in each layer of the CO2 pilot area were 

estimated using porosity data versus depth at well location and the well test 

average permeability data. Ordinary kriging was used to calculate the horizontal 

permeability distribution in each layer assuming permeability is log-normally 

distributed.  

 

5. The classical discriminant analysis was performed using porosity and 

permeability samples of each layer to investigate the layering of the geological 

model of the CO2 Pilot area. The result of this analysis indicates that the porosity 

and permeability samples of the two different layers were obtained from the same 

geological population(unit). The result of this confirmed the result of the 

statistical ANOVA test carried out on the samples of the eight layers. 

 

6. The permeability and porosity distribution of that estimated using proposed 

method was used as input for the flow simulation of the 8-layer model. The 

results were compared in terms of the bottom hole pressure of the wells and daily 

oil rate of the production wells in the CO2 pilot area.  The results of this study 

indicate that the pilot area is more heterogeneous than represented in the proposed 

model.  
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Chapter 10 

Introduction 

 

Flow in a reservoir is mostly controlled by the connectivity of extreme 

permeabilities (both high and low values). These extreme values linked with geological 

patterns that create preferential flow paths such as high permeability sand channels. Such 

structures often have a major influence on the flow behavior of a reservoir. The 

traditional geostatistics approach for property modeling is based on sequential simulation 

of facies and petrophysical properties. Practical software implementations of sequential 

Gaussian simulation (SGSIM) and sequential indicator simulation (SISIM) are widely 

used for stochastic reservoir modeling. The aim of sequential simulation, as it was 

originally proposed, is to reproduce the histogram and spatial covariance of the attributes 

being simulated through the sequential drawing from conditional distributions (ccdfs). A 

random path sequentially visits each mode of the model and simulated values are drawn 

from the conditional distribution of the value at that node given the neighboring 

subsurface data and previously simulated values. 

  

 However, these traditional sequential simulation algorithms are limited to 

reproduction of two-point statistics such as a semivariogram model.  These algorithms 

cannot reproduce complex geological structure. Identification of two-point statistics, even 

if possible, is not sufficient to allow characterization and reproduction of complex 

structures such as meandering channels. Consider for example the three images of Figure 

10-1 which may correspond to alternative geological representation of a 2D horizontal 
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section of a fluvial system. These three images have the same proportion of black pixels 

(28 %).  The first image was generated using the two-point indicator simulation algorithm 

(SISIM) which is limited to the sole reproduction of an input covariance model. The 

second and third images were generated using object based algorithms (ellipsim [5] and 

fluvsim [6]). Figures 10-2 and 10-3 show the indicator semivariograms of the black 

facies in the horizontal and vertical directions.  Although these images show completely 

different structures, they have similar indicator semivariograms along the horizontal and 

vertical directions.  Thus, modeling of these complex structures requires multiple-scale, 

multiple-point correlations beyond the reach of the two-point correlation provided by a 

semivariogram model.  

 

 Srivastava [12] and Guardiano and Srivastava [11] introduced the concept of 

training image as a replacement of the variogram within an extended sequential 

simulation framework. This concept of training image led to development of multiple-

point simulation (MPS) and geostatistics. Multiple-point geostatistics considers the 

training image as the random function model directly providing a quantification of the 

heterogeneities that the geologist believes to exist in the reservoir. Training images as 

used by MPS reflect a prior geological concept. They are not required to be conditioned 

to any local data. The introduction of MPS has improved the ability of geostatistical 

modeling to better reproduce the complex heterogeneity of a geological deposition.  

  

 An alternative approach in multiple-point simulation is to redefine the problem as 

a direct image construction. In this approach direct construction of image patterns is used 
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instead of inferred training image conditional probabilities. The image construction relies 

on the concept of similarity of available data and the patterns of a training image. 

Similarity distance function is used to find the most consistent and similar pattern for the 

existing data. This part of the dissertation presents a mathematical improvement to the 

existing similarity function used in a sequential simulation algorithm (SIMPAT, 

SIMulation with PATerns [1]).  

 

Chapter 11 reviews the relevant literature and the original MPS idea. Also, this 

chapter introduces the image construction approach as the basis of the reservoir modeling 

approach proposed in this dissertation.  

 

 Chapter 12 presents the details of the SIMPAT algorithm. First, the single-grid 

unconditional algorithm is reviewed using a simple, binary (sand/non-sand) training 

image. Fundamental concepts such as patterns, data events, and similarity are discussed 

and a formal notation to represent these concepts is introduced. Chapter 13 introduces the 

proposed similarity distance, the Normalized Cross Correlations (NCC), for modification 

of the SIMPAT algorithm. The results of application of the proposed techniques are 

demonstrated by case studies in Chapter 14.  The last chapter covers the conclusion of the 

investigation.  
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Figure 10-1. Stochastic realizations with same proportions of black pixels (28 %) [17] 
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Figure 10-2. Semivariograms in horizontal direction for sisim(dashed line), elipsim(thin 

line), and fluvsim(thick line) realizations [17] 

 

 

 

 

Figure 10-3. Semivariograms in vertical direction for sisim(dashed line), elipsim(thin 

line), and fluvsim(thick line) realizations [17] 
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Chapter 11 

Background on Multiple-point (MP) Geostatistics 

 

11.1. Background 

This section briefly reviews the fundamentals of multi-point geostatistics that are 

essential in understanding this study. For the deeper understanding of subject matter and 

the mathematics behind it, however, readers are referred to the existing literature. 

 

11.1.1. Multi-point (MP) Statistics and Connectivity Function 

 Most practical applications of the theory of random functions do not consider 

multiple-point commutative distribution function (cdf) beyond the two-point cdf. The 

principal reason is that inference of the multiple-point cdfs is usually not practical. 

Random function models have not been developed that explicitly account for multiple-

point (MP) statistics.  Some terminology needs to be introduced in order to define MP 

statistics.  

 

 Consider an attribute S such as permeability taking K possible states 

}.,...,1,{ Kksk = S can be a categorical variable or a continuous variable with its interval 

of variability discretized into K classes by (K-1) threshold values. The indicator transform 

of the categorical variable S at location u is defined as: 
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Similarly, for a continuous variable discretizing into K-1 threshold, indicator transforms 

for each threshold is defined as: 
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The probability that two values separated by a vector h are jointly in the state sk is 

defined as: 

)};().;({);( kIkIEk huuh +=Φ  (11-3) 

);( khΦ  is called a two-point non-centered indicator covariance. This quantity is usually 

modeled to perform traditional indicator kriging/ simulation.  

 

Consider now a data template τn defined by n separation vectors h1,…,hn. Figure 

11-1 shows examples of 1, 2, 3, 4, and 9-point configurations. The probability that the n 

values s(u+h1),…, s(u+hn) are jointly in the state sk is defined as  

});({);,...,(
1

1 ∏
=

+=Φ

n

n kIEk
α

α
huhh  (11-4) 

where );,...,( 1 knhhΦ is the multiple-point non-centered indicator covariance or 

connectivity function defined by n lag separation vectors h1,…,hn. According to this 

definition, MP statistics moment or connectivity function is the mean of product of the n 

indicator variables at different locations of the template τn.  

 

 The probability that the n values s(u+h1),…, s(u+hn) are jointly in the respective 

states 
nkk ss ,...

1
 is called multiple-point non-centered indicator cross-covariance and is 

defined as: 
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The collection of all direct and cross non-centered indicator covariances identifies the MP 

statistics. These statistics could be estimated using training images that will be explained 

in the following section.  

 

 

Figure 11-1. Examples of 1, 2, 3, 4, and 9-point configurations [1] 
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11.1.2. Training Images 

 The multiple-point correlation models required by multiple-point geostatistics 

methods are typically generated using a training image. The training image specially 

refers to images that depict in 3D or in a series of 2D sections and are believed to be the 

geological continuity of the reservoir. Training images depict the type of heterogeneities 

that geologist expect to be present in actual subsurface reservoir. They are required to 

carry any locally accurate information on the actual reservoir. Training images merely are 

based on an assumed realization that reflects prior geological and structural concepts. 

Rewrite-this does not make sense.  Thus, a training image could be an unconditional 

realizations generated by an object-based algorithm, or a simulated realizations of a 

reservoir analogue, or simply a geologist’s sketch processed with CAD algorithms and 

properly digitized. In current practices, training images are almost generated using 

conditional object-based [6] [7] [8] [9] or processed-based simulations [10].Some 

training images examples are shown in Figure 11-2. 
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Figure 11-2. Examples of training images. All images generated using unconditional 

object-based or processed-based modeling tools [1] 
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11.1.3. Literature Review 

Farmer [13] used simulated annealing technique to reproduce a few specific 

multiple-point statistics previously modeled from a training image. In this approach, 

higher order, multiple-point statistics are used as explicit constraints that each realization 

must honor through an objective function. The drawback of simulated annealing is that 

very few statistics can be simultaneously considered as such constraints. Simulated 

annealing, also, suffers from convergence problems due to difficulty of choosing the 

correct set of annealing parameters such as an efficient cooling schedule. 

 

Guardiano and Srinavasa [11]
 
proposed a novel algorithm that uses training 

images for introducing multiple-statistics into stochastic simulation. The approach 

follows the extended sequential simulation framework and has a remarkably simple 

underlying idea. At each unsampled grid, the local conditional probability is inferred by 

scanning the training image for replicates of the data event. The node is then simulated 

using this ccdf and considered as conditioning data for the rest of simulation process. 

Since the conditioning data configuration is allowed to vary, the simulation is direct and 

avoids the convergence issues of iterative algorithms.  

 

Tjelmeland [14] proposed a new method based on Markov random field to obtain 

MP statistics. Although this technique was theoretically established, it is iterative and 

extremely CPU demanding, and may not converge satisfactorily, and, thus far has not 

been proved to be practical for 3D applications. Caers and Journel [15] and Caers et al. 

[16] applied artificial neural networks (ANN) to model multiple-point statistics inferred 
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from a training image. This algorithm produced good results. However, it is iterative in 

nature and CPU-demanding. Furthermore, issues related to the neural network 

architecture make it difficult to tune. 

 

Strebelle [17] proposed Single Normal Equation Simulation (SNESIM). The 

name of this algorithm implies that it utilizes only a single normal equation when 

modeling the probability of a facies at a particular grid node. In fact, the single normal 

equation is the Bayes relation defining a conditional probability. This idea was first 

originated by Journel [18] who showed the connection between multiple-geostatistics and 

the extended evaluation of probabilities an extended system of normal (kriging) 

equations. Strebelle [17] obtained the multiple-point probability using experimental 

proportions read from the training image instead of modeling the multiple-point statistics 

from some lower order statistics. Hence, the method eliminates the need to solve a full 

kriging system; instead, it derives the probability directly from a single normal equation 

equivalent to the identification of the attribute proportion. 

 

SNESIM scans the training image using a pre-defined data template to extract 

training image events. For every data event, SNESIM searches for replicates of that 

event, and then retrieves the corresponding histogram of the central value. For example, 

in a binary (sand/non-sand) training image, if a data event is found 10 times with 3 out of 

these 10 replicates yielding a sand central node, SNESIM evaluates the sand conditional 

probability as 0.3. Once data events and their associated central values are retrieved from 

the training image, SNESIM stores them in a dynamic data structure called a search tree 
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[19]. This is opposite to Srivastava’s original proposal which called for rescanning the 

training image for each new data event that is the set of hard and previously simulated 

values found in the scanning template [12]. The SNESIM algorithm, then, follows the 

flowchart of a typical sequential simulation algorithm, visiting unsampled nodes using a 

random path and simulating these nodes conditional on available original data and 

previously simulated values.  

 

An alternative approach to the sampling strategy of Srivastava [12] and Strebelle 

[17] is to redefine the problem as a direct image construction problem instead of 

construction of higher order statistics. The aim is not to explicitly reproduce MP statistics 

of a training image but to directly reproduce multiple-scale training image patterns in a 

stochastic manner. Such an image construction task was commonly investigated in 

computer vision and image processing especially in the field of texture synthesis [21] 

[22] [23] [24] [25] [4].The image construction approach has one potential advantage. The 

advantage is that it is less limited by the requirement that is common to all probabilistic 

methods. This is achieved by completely abandoning the explicit use of probabilities. 

Image construction algorithms, instead, typically rely on the concept of similarity. Such 

algorithm construct the final image (realization) based on the similarity of individual data 

events to training image patterns rather than building form a probability calculated 

conditional to the data event.  

 

Another advantage of the image construction approach is the ability to capture 

pattern to pattern relations of a training image. This is opposed to variogram-based 
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algorithms that capture only point-point correlations.  Using pattern to pattern relations 

(simulating a whole vector of values at a time instead of a single value) is especially 

important when conditioning to high quality seismic information. Such high quality data 

typically relate best to patterns in realizations, for example, small piece of a meandering 

channel. 

 

Arpat [1] investigated the applicability of the image construction approach to 

reservoir modeling. He developed a practical algorithm (SIMPAT) based on the several 

image processing concepts such as image similarities. The Manhattan similarity distance 

is used in the SIMPAT algorithm to assign the most similar and matched pattern in the 

database to the grid at unsampled location. Modification of the SIMPAT algorithm is the 

main focus of this part of the dissertation. The following chapter introduces step-by-step 

an image construction algorithm (SIMAPT) that uses the similarity concept and pattern to 

pattern relations.  
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Chapter 12 

SIMPAT Algorithm 

 

The SIMPAT algorithm was proposed by Arpat [1]. This algorithm utilizes a 

stochastic simulation framework that reproduces realizations from a training image. The 

realization is generated based on the similarity distance criterion. This chapter presents 

the details of SIMPAT algorithm. 

 

12.1. SIMPAT Algorithm 

The unconditional SIMPAT algorithm is broken down into the following steps as: 

 

1. The training image is scanned using an arbitrary template T to acquire all patterns 

ti in the x and y Cartesian coordinate direction. The template size is smaller than 

the training image size.  

 

2. The patterns are collected and stored in a database. They are denoted as k

TPat , 

where k represents the pattern number, and T represents the pattern size (template 

size), Figure 12-1 represents the preprocessing and scanning of a binary 

(sand/non-sand) training image.  

 

3. For all unknown nodes are visited randomly, a data event )(uTdev  is defined as 

the set of hard and previously simulated values found in the template T. It is 
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centered at visited location u where T is the same size template used to scan the 

training image.  

 

4. The )(uTdev is compared to all available patterns in the database using a 

predefined similarity distance measure criterion.  A simple single-point similarity 

function called Manhattan similarity function is used to find the most similar 

pattern with respect to the data event. Mathematically, it is defined: 

            ∑
=

−+=

Tn
k

TT

k

TT patdevpatdevd
0

)()(),(
α

αα
hhuu  (12-1) 

where hαααα are the vectors defining the geometry of the nT  nodes of the template T 

and yxd , describes similarity through a dissimilarity or distance function. In 

practice, 0, =yxd indicates complete similarity. Figure 12-2 shows the 

application of Manhattan distance when applied to sample binary (sand/non-sand) 

pattern.  
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Figure 12-1. Preprocessing of the training image to obtain the pattern database 

using a 3x3 2D template [1] 

 

 

5. Once the most similar pattern *

TPat  is found in the pattern database, then the data 

event )(uTdev  is replaced by *

TPat  i.e. the values of *

TPat are pasted on to the 

simulation grid at the current node u.  

 

Figure 12-3 and Figure 12-4 represent the steps 1 to 5 of the SIMPAT algorithm 

when it was utilized to generate an unconditional 11x11 realization using the training 

image and pattern database in Figure 12-1. The detail of the SIMPAT algorithm is in the 

Reference 1. This study follows the SIMPAT algorithm terminologies and notations. 
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Figure 12-2. Application of Manhattan distance when applied to sample binary 

(sand/non-sand) pattern [1] 
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Figure 12-3. Internal steps of SIMPAT algorithm when applied to a 11x11 

realization using the training image and pattern database in Figure 12-1 and a 3x3 

template. The Figure continues on the next page as Figure 12-4 [1]. 
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Figure 12.4. Continuation of Figure 12.3 showing different steps of SIMPAT [1]  
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12.2. Limitations of the Manhattan Distance 

 Manhattan distance used in the SIMPAT has some limitations. For example 

Consider the 5x5 binary data event in which a fracture is assigned to five black grid 

blocks (Figure 12-5). Nine patterns shown in Figure 12-5b were extracted from a training 

image depicting slanted fracture. The goal of this simulation is to find the most similar 

and consistent pattern to the data event in Figure 12-5a. Manhattan similarity distance 

was employed for this purpose. The selected pattern by Manhattan distance criteria is 

marked by red in Figure 1b.The selected pattern is geologically inconsistent to the data 

event in Figure 1a because it represents a disconnected fracture piece. As Arpat [1] stated  

“In general, whenever the global proportion of particular category is significantly less 

than that of any other category in the training image, the Manhattan distance is likely to 

prefer patterns containing this low proportion category”. 

 

 Although Arpat [1] utilized specific mechanisms to enforce the global proportions 

of the training image categories on the generated realizations, a better similarity measure 

is needed to generate representative realizations. An alternative similarity distance 

method known as Normalized Cross Correlation (NCC) is introduced in SIMPAT 

algorithm to calculate the similarity between a data event and collected patterns. The 

following section will explain in details the mathematical formulation of NCC. 
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Figure 12.5. Comparison of similarity measure distance by Manhattan and NCC 

techniques for a data event on the left and candidate patterns on the right. d<x,y>  

denotes the Manhattan dissimilarity distance, and γ denotes NCC measure distance [1]  
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Chapter 13 

Modified SIMPAT Algorithm 

 

13.1. Normalized Cross Correlations (NCC) 

 NCC has been extensively used to evaluate the degree of similarity between two 

compared images [26] [27] [28] [29]. NCC originated from the mathematical definition 

of cross correlation [30]. The cross correlation is a squared Euclidian distance that 

measures the similarity distance between two images as follows: 

∑
−

=

+=

1

0

)()(),(
Tn

k

TT

k

TT hPathudevPatudevc
α

αα
 (13.1) 

where k

TT Patudevc ),( represents the cross correlation similarity measure between a data 

event and a training image pattern.  

NCC coefficient is defined to normalize Eq. (13.1). It has a unit length yielding a 

cosine-like correlation coefficient as follows: 
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(13.2) 

where k

TT Patudev ),(γ shows the NCC coefficient which is always between -1 and 1. 

)(
α

hudevT + and )(
α

hPat
k

T represent the mean of the continuous or categorical variable in 

the data event and realization respectively within the template T. In practice, the larger 

NCC shows the more similarity between a data event and a training image 

pattern. 1),( =
k

TT Patudevγ indicates complete similarity.  
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13.2. Modified SIMPAT Algorithm 

 The section introduces a modification of SIMPAT algorithm. This method is 

called Modified SIMPAT which employs the NCC similarity distance instead of 

Manhattan similarity distance. In general using NCC similarity distance in the SIMPAT 

algorithm has clear advantages. First it improves the accuracy of selecting the most 

similar and consistent pattern in the training image pattern database; in situation where 

the Manhattan similarity distance fails. The 5x5 binary data event in Figure 12.5a was 

revisited to show the NCC pattern selection advantage. The NCC similarity distance was 

applied to find the most similar pattern to the data event shown in Figure 12.5a. NCC was 

calculated for each pattern in this Figure. The results of this calculation are denoted by γ 

at the bottom of each pattern in the Figure 12.5b. The pattern with the largest γ is the 

most similar pattern in the Figure 12.5a. This pattern is marked by blue line in Figure 

12.5b. It is geologically consistent with the data event shown in the Figure 12.5a. The 

continuity and direction of the fracture of the selected pattern in Figure 12.5b is identical 

to that of the data event Figure 12.5a. 

 

 For both Manhattan and NCC similarity distances, the difference between the grid 

block values of the data events and patterns is the most important factor in Equations 4 

and 7 in the previous section. However, the small and large value differences between 

data events and patterns in Eq.(12.1) are treated to have the same effect in the similarity 

calculation for Manhattan distance. In other words, large differences have the same 

weight in the calculation as the small differences. It is more appropriate to penalize larger 
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differences with larger weights and smaller differences with smaller weights in the 

similarity calculation. 

 

 One possible solution is to multiply each term in the similarity calculation by 

itself so that small differences have smaller weights and large differences have larger 

weights. This form of penalizing the difference is achieved by squaring the difference 

term in Eq.(13.2) used for NCC calculation. Thus, compared to Manhattan distance, the 

NCC (Euclidean distance) magnifies the larger differences between data events and 

patters and results in a better similarity measure.  

 

13.3. Case Studies 

Three training images were studied to investigate the validity of the Modified 

SIMPAT algorithm. These training images were also used to compare the performance of 

both original and Modified SIMPAT to generate the realizations honoring the same 

patterns and facies distribution observed in a training image. These training images 

(Figures shown in 13.1 through 13-3) represent different types of petroleum reservoir 

showing specific discrete facies distribution. The following section presents the details of 

these case studies. 

 

Case Study 1 represents a horizontal 2D section of a fluvial reservoir.  A fluvial reservoir 

is characterized by the presence of sinuous sand-filled channels with a background of 

mudstone. For this case, three types of facies are considered. Facies 1 is channel sands 

which correspond to the best reservoir rock. Facies 2 displays Levee sand which has 
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intermediate reservoir quality. Facies 3 represents floodplain background which is 

usually considered as non-reservoir rocks. 

 

Case Study 2 has two facies and consists of diagonal elliptical bodies of facies 1 on the 

background facies 2. The elliptical bodies are considered as high permeability zones in a 

real reservoir.  

 

Case Study 3 has four facies in a diagonal direction. Facies 1, 2, and 3 with different 

reservoir qualities are distributed on floodplain background. A Southwest-Northeast trend 

is considered in cases 1 and 3 to investigate the capability of the method to reproduce any 

existing spatial trend in a training image.  

 

The training images shown in Figures 13.1 to 13.3 are 100x100 unconditional 

realizations generated using the object-based program in PETREL [31]. Several features 

of the object-based modeling were utilized to generate these cases with desired facies 

distribution. A computer was written in MATLAB to implement Modified SIMPAT and 

original SIMPAT algorithms.  
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Figure 13-1.  Training image representing a fluvial reservoir 

 

 

   

Figure 13.2. Diagonal elliptical bodies in the training image 
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Figure 13.3  Training image shows four facies in the Southwest-Northeast direction 
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Chapter 14 

Results and Discussion 

 

A predefined 30x30 template was used to scan the training images. Then, 

modified SIMPAT and SIMPAT algorithms were employed to generate fifty 

unconditional realizations for each training image.  Figures 14.1 through 14.3 show the 

comparison between realizations generated by both algorithms and the corresponding 

reference training image. The figures demonstrate that the Modified SIMPAT realizations 

reproduce the available patterns of the training images in comparison to that of SIMPAT 

algorithm.  

 

The performance of stochastic methods to generate realizations can be examined 

by multiple-point connectivity function. The MP connectivity function is a statistical 

function representing the joint variability or connectivity of an object in a realization at 

more that two location at time. The mathematical formulation of this function detailed in 

section 11.1.1. Channels and ellipses in Figure 14.1 & Figure 14.2, and red objects in 

Figure 14.3 are denoted by Facies 1.  The connectivity function was calculated for facies 

1 in the realization shown in Figures 14.1 through 14.3 and the corresponding training 

images.  

 

Figures 14.4 through 14.6 represent the comparison of the connectivity function 

of facies 1 in realization of the Figures 14.1 through 14.3. The results obtained from the 

Modified SIMPAT realization, shown as red circle in these figures, is closer to the 
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training image connectivity function shown as a solid line. This confirms that the 

Modified SIMPAT realizations better capture facies connectivity and direction in 

comparison to the SIMPAT realizations. This advantage is very important in the reservoir 

modeling. The accurate connectivity of high and low permeability zones in a very 

important factor for modeling fluid flow in porous media.  

 

14.1. The Effect of Template Size 

 The CPU time needed for pattern matching process in the SIMPAT algorithm is a 

function of template size. Smaller template size considerably reduces the CPU time. 

When using small template, the algorithm successfully reproduces all the small-scale 

details of the training image. However, the large scale of the training image is not 

replicated. Using larger template size results in better replication of overall structure, but 

increases the total runtime of the algorithm. Original SIMPAT algorithm shows 

sensitivity to the template size. Realizations generated using Modified SIMPAT on the 

other hand is less sensitive to the template size. The sensitivity of both algorithms to the 

template size were compared using four different template sizes to generate realizations. 

The connectivity function for facies 1 in all training images was used for this comparison. 

Figures 14.7 through 14.9 represent that the realizations replicated by both algorithms 

depend on the template size. However, the connectivity of facies 1 in the realization 

generated by the Modified SIMPAT is less variable to the template size. This confirms 

that the Modified SIMPAT algorithm is less dependent on the template size, thus 

indirectly reducing CPU time. 
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Figure 14.1. Comparison between training image 1 and simulated realizations 
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Figure 14.2. Comparison between training image 2 and simulated realizations 



245 

 

 

 

 

Figure 14.3. Comparison between training image 3 and simulated realizations 
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Figure 14.4. Connectivity function of facies 1 of realizations simulated with a 30x30 

template and the training image 1 

 

 

Figure 14.5. Connectivity function of facies 1 of realizations simulated with a 30x30 

template and the training image 2 
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Figure 14.6. Connectivity function of facies 1 of realizations simulated with a 30x30 

template and the training image 3 
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Figure 14.7. Connectivity function of facies 1 when different template sizes used in 

original and Modified SIMPAT algorithms used to generate realizations for case study 1 
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Figure 14.8. Connectivity function of facies 1 when different template sizes used in 

original and Modified SIMPAT algorithms used to generate realizations for case study 2 
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Figure 14.9. Connectivity function of facies 1 when different template sizes used in 

original and Modified SIMPAT algorithms used to generate realizations for case study 3 
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14.2. Application Example for History Matching Process 

 The final outcomes of any stochastic simulation method are realizations that are 

considered to represent the actual variable distribution. In petroleum engineering, these 

realizations are used as input data in flow simulations. For example, porosity and 

permeability are considered random variables whose realizations are reproduced by 

stochastic simulation methods. Therefore, the accuracy of the realizations directly affects 

the results of flow simulations, and the accuracy of the realizations in turn depends on the 

algorithm used to generate those realizations.  The algorithms considered in this study to 

generate realizations are SIMPAT and Modified SIMPAT. The accuracy and precision of 

these two algorithms are compared in terms of results obtained by flow simulator case 

studies. 

 

 A flow simulation was carried out using a reference permeability distribution. 

Then, fifty realizations of permeability distribution were generated using Modified 

SIMPAT and SIMPAT methods, respectively. Flow simulations were performed using 

permeability realizations generated by both methods and the reference permeability 

distribution. The results obtained from these simulations were compared. 

 

The reference permeability distribution for the flow simulation is a synthetic 

reservoir which has 50 grid blocks in X and Y directions (Figure 14.10). The Dykstra-

Parson coefficient was used to represent the felid heterogeneity.  The Dykstra-Parson 

coefficient of 0.75 indicates a heterogeneous permeability distribution.  The petrophysical 

properties and required input parameters were maintained the same for the different 
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simulations. Table 14.1 lists the input parameters except permeability used in flow 

simulations. Figure 14.11 shows oil-water relative permeability data set used in the flow 

simulation. 

 

The flow simulator used in this study was ECLIPSE, a commercial reservoir 

simulator [32]. A black-oil model was applied. The performance of the five-spot pattern 

shown in Figure 14.10 was simulated. Well I in the center of the five-spot injected water 

at a rate of 400 bbl/day. The production wells at the corners produced oil at a rate of 100 

STB/day. The flow simulation was terminated when all production wells reached a water-

cut of 30%. . Results obtained from the simulations for the fifty realizations were 

compared against the reference case in terms of water-cut and bottom-hole pressure 

(BHP) at the four production wells for both methods.  

 

Figures 14.12 and 14.13 show the BHP (solid blue line) obtained using the fifty 

realizations generated by Modified SIMPAT and SIMPAT, respectively, compared 

against the reference case (filled black circle).The BHP’s from the realizations include 

the reference case indicating acceptable accuracy for all the four wells for both methods.  

The results in Figure 14.12 and 14.13 show better precision because the results lie in a 

narrower band indicating Modified SIMPAT is better in comparison to the SIMAPAT 

algorithm. Later in the discussion this precision will be quantified. Figures 14.14 and 

14.15 show the water-cut results generated using the two algorithms compared against 

the reference case (shown as filled black circle) both the cases indicate acceptable 

accuracy. The precision of the Modified SIMPAT algorithm is again evident.  
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        Figure 14.10.  The reference permeability distribution for flow simulations 

 

 

 

                              Table 14.1. List of parameters used in flow simulator 

 

Reservoir Dimensions 

(Number of Grids) 

50x50 

Dimensions of each grid 50 ft x 50 ft 

Reservoir Thickness 10 ft 

Uniform porosity 0.25 

Equilibrium Conditions 2000 psi@ 4500 ft 

Water density 69.3 lb/ft
3
 

Water viscosity 0.74 cp 

Oil formation volume factor 1.2  

Oil density 51.3 lb/ft
3
 

Oil Viscosity 0.7 cp 

Total compressibility 3e-5 1/psi 

Constant initial water saturation 0.2 

Initial Pressure 2000 psi 

Bubble point Pressure 14.7 psi 

P1 P2 

P3 P4 

I 
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Figure 14.11. Oil-water relative permeability data set used in the flow simulator 

 

The time required for injected water to breakthrough at the production wells and 

the time for the water-cut to reach 30% in each well were the two parameters used to 

compare the two methods. Water breakthrough is defined as when the injected water 

reaches the production wells. The following analysis was performed for the production 

wells.  

 

Comparison the simulation results was done by creating histograms of 

breakthrough time and time for 30% water-cut frequency for the fifty realizations 

generated by the two respective methods.  The true values obtained from simulation are 

shown in the histograms as black solid circles. 

 

Figures 14.16 through 14.19 show the histograms of water breakthrough time for 

both methods. The mean of frequency distribution for the Modified SIMPAT method is 

closer to the true value when compared against the mean value obtained using SIMPAT 
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method. The lower standard deviation of the Modified SIMPAT distribution indicates 

better precision. The standard deviation of the distribution generated by the SIMPAT 

method, on the other hand, is higher indicating higher variability. Figure 14.20 represents 

the histograms of time for 30% water-cut for both methods for production well P4. In 

Figure 14.20, again the Modified SIMPAT method exhibits better precision in 

comparison to the SIMPAT method.  This confirms better reliability of the Modified 

SIMPAT over the SIMAPT method to generate random variable realizations. 
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Figure 14.12. BHP’s of the four production wells obtained using fifty realizations generated by 

Modified SIMPAT algorithm and the reference image 
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Figure 14.13. BHP’s of the four production wells obtained using fifty realizations generated by 

SIMPAT algorithm and the reference image. 
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Figure 14.14. Water-cut of the four production wells obtained using fifty realizations generated 

by Modified SIMPAT algorithm and the reference image 
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Figure 14.15. Water-cutof the four production wells obtained using fifty realizations generated 

by SIMPAT algorithm and the reference image 
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Figure 14.16. Histogram of water breakthrough time at production well P1 obtained from 

the flow simulation of fifty realizations using both algorithms 

 

 

 

Figure 14.17. Histogram of water breakthrough time at production well P2 obtained from 

the flow simulation of fifty realizations using both algorithms 
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Figure 14.18. Histogram of water breakthrough time at production well P3 obtained from 

the flow simulation of fifty realizations using both algorithms 

 

 

 

Figure 14.19. Histogram of water breakthrough time at production well P4 obtained from 

the flow simulation of fifty realizations using both algorithms 
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Figure 14.20. Histogram of 30% water-cut time at a production well obtained from the flow 

simulation of fifty realizations using both algorithms 
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Chapter 15 

Conclusions 

 

1. Normalized Cross Correlation (NCC) was introduced as a better technique for 

similarity distance measurement. The results shows that NCC similarity distance 

improves the accuracy of selecting the most similar and consistent pattern in the 

training image pattern database. 

 

2. The stochastic SIMPAT algorithm was modified with introducing the NCC 

similarity distance instead of Manhattan distance. The performance of both 

Modified and original SIMPAT algorithm to generate realizations were 

investigated and compared using three types of training images. The results 

indicate that the Modified SIMPAT algorithm is more robust to replicate the 

patterns of training image. 

 

3. The sensitivity of both Modified and original SIMPAT algorithms with respect to 

template sizes was investigated using connectivity function. The results of this 

study show the connectivity function of facies in the realizations generated with 

Modified SIMPAT is less sensitive to the template size. 

 

4. The performance of both algorithms was compared using BHP and water cut from 

simulation results. Permeability realizations generated with Modified and original 

SIMPAT were used as input data in a flow simulator.  The results of this study 
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indicate acceptable accuracy for both algorithms. However, the Modified 

SIMPAT realizations results more precise dynamic data when used as an input in 

the flow simulation.  
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