

A STREAMLINED, COST-EFFECTIVE

DATABASE APPROACH TO MANAGING
REQUIREMENTS TRACEABILITY

BY

Andrew Kannenberg

Submitted to the graduate degree program in
Computer Science and the Graduate Faculty of the
University of Kansas in partial fulfillment of the
requirements for the degree of Master of Science.

 Dr. Hossein Saiedian
 Professor and Thesis Adviser

 Committee members: ___________________________
Dr. Gunes Ercal-Ozkaya
Assistant Professor

Dr. Prasad Kulkarni
Assistant Professor

Date defended: ____________________

The Thesis Committee for Andrew Kannenberg certifies
that this is the approved version of the following thesis:

A STREAMLINED, COST-EFFECTIVE
DATABASE APPROACH TO MANAGING

REQUIREMENTS TRACEABILITY

Committee:

 Dr. Hossein Saiedian
 Professor and Thesis Adviser

Dr. Gunes Ercal-Ozkaya
Assistant Professor

Dr. Prasad Kulkarni
Assistant Professor

 Date approved: __________________

i

Abstract

Requirements traceability offers many benefits to software projects, and it has been
identified as critical for successful development. However, numerous challenges face
the implementation of traceability in the software engineering industry. Some of
these challenges can be overcome through organizational policy and procedure
changes, but the lack of cost-effective traceability models and tools remains an open
problem. Many methods of implementing traceability exist, but each implementation
method has its own limitations.

A novel, cost-effective solution for the traceability tool problem is proposed,
prototyped and tested in a case study using an actual aviation software project.
Quantitative metrics from the case study are presented and a qualitative analysis is
performed to demonstrate the viability of the proposed solution for the traceability
tool problem. The results show that the proposed method offers significant
advantages over implementing traceability manually or using existing commercial
traceability approaches.

ii

Contents

1 Introduction.. 1
1.1 Justification.. 2
1.2 The Traceability Problem .. 4
1.3 Significance ... 5
1.4 Expected Contributions ... 6
1.5 Evaluation Criteria... 6
1.6 Thesis Organization ... 7

2 Background .. 9
2.1 Traceability Definitions ... 9

2.1.1 Pre- and Post-Requirements Traceability ... 10
2.1.2 Traceability Practices.. 11
2.1.3 Traceability Users ... 12

2.2 The Importance of Traceability ... 13
2.2.1 Project Management ... 14
2.2.2 Process Visibility .. 15
2.2.3 Verification and Validation... 17
2.2.4 Maintenance.. 19

2.3 Traceability Methods ... 20
2.3.1 Traceability Matrices .. 20
2.3.2 Hyperlinks... 22
2.3.3 Commercial off the Shelf (COTS) Tools.. 23
2.3.4 Proposed Methods... 25
2.3.5 Other Methods .. 27

2.4 Challenges Facing Traceability ... 28
2.4.1 Cost. .. 28
2.4.2 Managing Change ... 29
2.4.3 Different Stakeholder Viewpoints .. 30
2.4.4 Organizational Problems... 31
2.4.5 Poor Tool Support... 33

3 An Investigation of the Traceability Tool Problem .. 35
3.1 Traceability Mandates in the Aviation Software Industry............................. 36
3.2 An Analysis of Current Aviation Software Traceability Methods 38

iii

3.2.1 Manual Traceability Methods ... 39
3.2.2 Telelogic’s DOORS.. 42
3.2.3 Other Methods .. 47

4 A Solution for the Traceability Tool Problem... 49
4.1 A Proposal for a Database-Based Approach to Traceability 49
4.2 Prototyping the Database-Based Approach to Traceability........................... 51

4.2.1 Identifying the Necessary Traceability Data....................................... 52
4.2.2 Designing the Database... 52
4.2.3 Creating the Software Wrapper for the Database 55

5 A Practical Case Study .. 62
5.1 Software Project Background .. 62

5.1.1 Initial Traceability Implementation .. 63
5.2 Database-Based Traceability Tool Case Study.. 65

5.2.1 Preparation for Use of the Database Tool... 65
5.2.2 Using the Database Tool... 66
5.2.3 Reviewing the New Traceability Method ... 68

5.3 Current State of the Database-Based Traceability Tool 69

6 Evaluation and Analysis .. 71
6.1 Quantitative Metrics .. 71

6.1.1 Comparison with Past Project Results Using Manual Methods 71
6.1.2 Cost Comparison with Traceability Alternatives................................ 77

6.2 Qualitative Analysis... 80
6.2.1 Database Tool Strengths ... 80
6.2.2 Potential Areas of Improvement ... 82

7 Conclusions and Future Work.. 85
7.1 Conclusions.. 85
7.2 Summary of Contributions .. 87
7.3 Future Work... 87

Bibliography .. 89

iv

List of Figures

Figure 2-1. Links in Pre- and Post-Requirements Traceability. 11
Figure 3-1. Traceability Data Required by DO-178B. .. 37
Figure 3-2. Traceability Methods Used for Aviation Software Projects. 39
Figure 3-3. Example Traceability Data Generated by DOORS (Telelogic 2007)..... 46
Figure 4-1. Entity-Relationship Diagram for the Database. 53
Figure 4-2. Simplistic Idea for Database Relation... 54
Figure 4-3. Normalized Database Design.. 55
Figure 4-4. Database Tool User Interface.. 59
Figure 6-1. Development Time Required for Traceability Methods. 72
Figure 6-2. Time Spent on Traceability Activities During a Software Release. 73
Figure 6-3. Time Spent on Traceability Activities at the End of a Software Release74
Figure 6-4. Number of Errors Detected in the Traceability Data. 76
Figure 6-5. Start-up Cost Comparison. .. 77
Figure 6-6. Cost Comparison per Software Release.. 78

v

List of Tables

Table 1-1. Comparison of the Standish Group’s 1994 and 2006 Results.................... 3
Table 2-1. Example Traceability Matrix.. 20
Table 5-1. Example Traceability Matrix Output from the Database-Based Tool...... 69
Table 7-1. Comparison of the Database-Based Tool with Manual Methods............. 86
Table 7-2. Comparison of the Database-Based Tool with Telelogic’s DOORS. 86

vi

Chapter 1

Introduction

In modern times, software products have been increasingly deployed in complex and

potentially dangerous products such as weapons systems, aircraft, medical devices,

spacecraft, and satellites. These products can be viewed as critical because failure of

these types of systems could result in loss of life, significant environmental damage,

and major financial loss. This might lead one to believe that care would be taken to

implement these software products using proven, reproducible methods.

Unfortunately, this is not always the case.

 In the past, numerous catastrophic software failures have been documented

including the Therac 25 incidents (Leveson & Turner 1993), the London ambulance

system (Finkelstein & Dowell 1996), and the Ariane 5 launch failure (Nuseibeh

1997). A study performed in 1994 by the Standish Group found that 53% of software

projects failed outright and another 31% were challenged by extreme budget

overruns. The software engineering discipline was clearly in need of a major

overhaul to address these problems.

 Many responses to the high rate of software project failures have been

proposed. Some of the more well-known examples include the Software Engineering

1

Institute’s Capability Maturity Model (Paulk, Curtis, Chrissis & Weber 1993) which

was superseded by the Capability Maturity Model Integration (Chrissis, Konrad &

Shrum 2003), the International Organization for Standardization’s 9001:2000 (2000)

for software development, and the Institute of Electrical and Electronics Engineers’ J-

STD-016 (1995). The United States government has also issued and/or accepted

many standards regulating software development including the DOD-STD-2167A

(U.S. DoD 1988) (superseded in 1994 by MIL-STD-498) standard for government

contractors and the DO-178B (RTCA 1992) standard for aviation products.

1.1 Justification

One feature all of these standards for software development have in common is that

they all impose traceability practices on the software development process (ISO 2000;

Paulk et al. 1993; Chrissis et al. 2003; U.S DoD 1988 and 1994; RTCA 1992).

Specific examples include the Capability Maturity Model Integration (CMMI) which

requires bidirectional traceability of requirements to be implemented for an

organization to achieve CMMI maturity level 2 and the DO-178B standard for

aviation software which requires traceability to be implemented for aviation software

to be certified for use. The fact that traceability is mandated by these standards is not

surprising because the engineering and scientific disciplines have stressed the

importance of being able to reproduce results long before the age of computing, and

traceability provides a technique to do so by mapping the steps taken throughout the

lifecycle of a project (Egyed 2001). If this is done comprehensively, an outline of

2

how a problem is transformed into a solution can be created. This is just as important

in software development as it is in other engineering and scientific disciplines

(Swartout & Balzer 1982).

Several independent researchers have discovered that inadequate traceability

is an important contributing factor to software project failures and budget overruns

(Leffingwell 1997; Domges & Pohl 1998). As a response, there has been a recent

outpouring of research and literature on the subject of traceability (Ramesh & Jarke

2001), and many companies and governmental institutions have been striving to

improve their traceability practices. These efforts have not been in vain. An updated

study by the Standish Group in 2006 showed that only 19% of software projects

failed outright, with another 46% challenged by budget overruns. These results are

compared with the 1994 Standish Group study results in Table 1-1 to show the

improvement that has occurred in the software engineering industry.

Table 1-1. Comparison of the Standish Group’s 1994 and 2006 Results.

Year Failed Projects Challenged
Projects

Successful
Projects

1994 53% 31% 16%
2006 19% 46% 35%

Clearly the software industry has taken great strides since 1994, but there remains

room for improvement.

3

1.2 The Traceability Problem

Although the importance of traceability appears to be well-accepted in the software

engineering industry, research suggests that many organizations still do not

understand the principles of traceability and are struggling with implementing

traceability practices in the software development lifecycle (Jarke 1998; Ramesh

1998; Ramesh & Jarke 2001; Egyed 2002). The United States Department of

Defense serves as an example of this by spending approximately 4 percent of its

information technology budget on traceability activities, often without receiving

much value for its money. This occurs primarily because the traceability standards

are vague, traceability models and mechanisms are not well understood, and the

implementation of traceability is haphazard (Ramesh & Jarke 2001).

 Because of the many standards mandating traceability as an important practice

for software projects, one would expect quality traceability practices to be firmly

ingrained throughout the software engineering industry. Unfortunately, this is not the

case. Many organizations do not even attempt to implement traceability while others

only do so in a haphazard manner.

 Why is this? Perhaps it is because manual methods for implementing

traceability are time-consuming and error-prone. However, this cannot be the only

reason because alternatives to manual traceability methods exist. The International

Council on Systems Engineering (2008) has identified 31 different tools that claim to

provide full traceability support. In spite of the large number of available traceability

tools, the adoption rate throughout industry is surprisingly low. A general study of

4

the software engineering industry performed by Gills (2005) found that

approximately one-third of the organizations studied utilized tools to assist with

traceability. Even an aviation software-specific study, a field where traceability is

mandated by governmental regulations, discovered that only half of the organizations

surveyed use specialized tools to implement traceability (Lempia & Miller 2006).

1.3 Significance

If there truly are 31 tools that provide full support for traceability, then why are they

not widely deployed throughout the industry and why are quality traceability

practices not more prevalent? The author believes this is because the traceability

tools that currently exist are inadequate and provide only simplistic support for

traceability activities. If currently existing tools were adequate for the needs of the

industry, then it would be reasonable to expect that their adoption rate would be much

closer to 100%, especially in the area of aviation software due to its mandates for

traceability practices.

 Ramesh (1998) found that traceability is error-prone, time-consuming, and

impossible to maintain for all but the smallest projects without the use of automated

tools. Therefore, it follows that without feasible automated alternatives to manual

implementations of traceability, traceability practices for all but the smallest software

projects are almost certainly doomed to failure.

5

1.4 Expected Contributions

The goal of this thesis is to promote improvements in traceability practices in the

software engineering industry by studying the feasibility of implementing cost-

effective automated traceability techniques for software projects. Many researchers

have claimed that existing traceability tools are inadequate and have major

shortcomings (Spanoudakis, Zisman, Perez-Minana & Krause 2004; Ramesh and

Jarke 2001; Cleland-Huang, Chang & Christensen 2003; Naslavsky, Alspaugh,

Richardson & Ziv 2005). Therefore, existing traceability methods and tools will be

investigated and evaluated, and their strengths and weaknesses discussed in order to

determine if they are inadequate. In addition, a streamlined, cost-effective database-

based traceability approach intended to address the shortcomings of existing

traceability tools will be proposed, developed, tested, and evaluated. The purpose of

this new approach is to devise a novel traceability method that is capable of

automating traceability practices in a cost-effective manner without the major

shortcomings of existing commercial tools.

1.5 Evaluation Criteria

In order to evaluate the proposed approach to automating traceability activities, the

method will be prototyped and tested in a case study using an actual project in the

software engineering industry. Metrics will be collected and compared to traceability

methods used on the project in the past. These metrics will serve to demonstrate the

viability of the proposed approach to traceability in terms of the overall time required

6

to gather traceability data and generate traceability artifacts as well as the number of

errors detected in the resulting traceability data. Metrics will be presented

graphically, and the strengths and weaknesses of the proposed approach will be

discussed. In addition, a cost analysis will be performed in order to compare the

overall cost of implementing traceability using the proposed method in comparison

with using manual methods and existing commercial tools. A qualitative analysis

will also be performed to further determine the viability of the proposed approach.

1.6 Thesis Organization

This thesis is organized into the following chapters:

• Chapter 1: Introduction – An introduction to the problem, its significance,

justification for this research, expected contributions, and evaluation criteria

for the proposed solution.

• Chapter 2: Background – An introduction to traceability, benefits provided

by traceability, past and present traceability implementation methods, and a

discussion of challenges facing the implementation of traceability.

• Chapter 3: An Investigation of the Traceability Tool Problem – A detailed

investigation of the problems with existing methods of implementing

traceability.

• Chapter 4: A Proposed Solution to the Traceability Tool Problem – A

streamlined, cost-effective database-based traceability approach is proposed in

order to address the problem of the lack of quality traceability tools.

7

• Chapter 5: Case Study – A case study for the proposed solution to the

traceability tool problem is described.

• Chapter 6: Evaluation and Analysis – The experimental results, quantitative

metrics, and qualitative analysis.

• Chapter 7: Conclusions and Future Work – The conclusions and future

work related to this topic.

8

Chapter 2

Background

Before it is possible to understand the reasons for the challenges facing the

implementation of traceability in the software engineering industry today, it is

important to have a good understanding of what traceability is as well as a

background in past and present approaches to implementing traceability. This chapter

provides an introduction to important traceability concepts including the benefits

provided by traceability, traceability implementation methods, and challenges facing

the implementation of traceability.

2.1 Traceability Definitions

An understanding of the basic concepts of software traceability is required before

more advanced topics such as traceability tools can be studied and understood. The

classical definition of traceability was presented in 1994 by Gotel and Finkelstein as

“the ability to describe and follow the life of a requirement, in both a forward and

backward direction.” Although this definition was written a long time ago (at least in

terms of computer science development), it is still accurate today and provides

several discussion points.

9

2.1.1 Pre- and Post-Requirements Traceability

The idea that requirement life needs to be described and followed in both a forward

and backward direction has given rise to two additional terms: pre-requirements

traceability and post-requirements traceability. Pre-requirements traceability

describes the life of a requirement in a backward direction while post-requirements

traceability describes a requirement’s life in a forward direction. Pre-requirements

traceability is used to describe the life of a requirement before it was formally defined

while post-requirements traceability describes the life of a requirement that results

from its formal specification (Li, Vaughn & Saiedian 2002).

 Both pre- and post-requirements traceability includes three elements:

requirements, artifacts, and links. Requirements can be defined as current or future

needs that must be fulfilled (Karlsson 1996); thus, requirements are used to define the

capabilities of a system. Artifacts include information produced or modified as a part

of the engineering process (Ramesh & Jarke 2001). This term is used to characterize

items such as requirements documents, design documents, source code and test cases.

Links describe a distinct relationship between two artifacts (Cleland-Huang et al.

2003).

 Davis (1990) suggests that complete traceability requires four kinds of links:

• Forward from requirements: Indicates links that go from a requirement to an

artifact.

• Backward to requirements: Indicates links that go from an artifact in the

development of the system to a requirement.

10

• Forward to requirements: Indicates links from a source of a requirement to

the requirement itself.

• Backward from requirements: Indicates links that go from a requirement to

the source of a requirement.

This idea fits well with the definitions of pre- and post-requirements traceability

because the first two kinds of links are included in post-requirements traceability and

the latter two are a part of pre-requirements traceability. Figure 2-1 illustrates this

concept graphically.

Figure 2-1. Links in Pre- and Post-Requirements Traceability.

2.1.2 Traceability Practices

Heindl and Biffl (2005) suggested that there are three possible practices for

performing requirements tracing: ad hoc tracing, full tracing and value based

requirements tracing. Each of these methods differs in its level of completeness and

overall value to the organization.

 Ad hoc tracing refers to development where traceability is not maintained, but

is instead created only when it is needed and only for requirements that it is needed

11

for. Although this may sound efficient, there are many hidden costs in terms of

research time and the risk of finding that significant rework is required.

 Full tracing is performed when every existing requirement is traced with the

same amount of effort and precision. Traces are typically maintained during

development. Although there is significantly less risk for rework for full tracing than

ad hoc tracing, Heindl and Biffl (2005) argue that it can be highly inefficient and

expensive. In spite of the cost, certain projects, such as those following governmental

standards, may be required to implement full tracing by the project sponsors.

 Value based requirement tracing prioritizes all requirements in the system,

and the amount of time and effort expended on tracing each requirement depends on

the priority of that requirement. Proper analysis of the importance of each

requirement can be difficult to perform, but if done correctly, value based traceability

offers many of the benefits of full tracing at a significantly reduced cost.

2.1.3 Traceability Users

Although traceability is commonly practiced in the software industry today, there still

remains significant variation in the quality of the practice (Palmer 1997). Because of

this, some researchers have suggested dividing traceability users into two groups:

low-end users and high-end users (Matthias 1998; Ramesh 1998). These types of

users have different viewpoints about the purpose of traceability; therefore, they tend

to approach traceability in different ways.

12

 Low-end users typically express an immature attitude towards traceability.

They view traceability as something forced upon them as a defense against lawsuits

by upper management, project sponsors, or governmental regulation. This is

particularly common in safety-critical industries such as the aviation and medical

industries (Jarke 1998). Low-end users use simple schemes to implement traceability

such as manually created traceability matrices. Many times these traceability

schemes are not well-maintained because they are viewed as expensive overhead

(Zemont 2005).

 High-end users view traceability as an important and cost-effective part of the

software development process. Because of this viewpoint, high-end users utilize

more complex tools for traceability in order to provide a complete view of the system.

Such users are careful to maintain traceability linkages as changes occur throughout

the duration of a project (Zemont 2005). These efforts are not wasted. A study by

Ramesh in 1998 concluded that software systems built by high-end users have a

higher probability of meeting customers’ needs and are easier to maintain than those

built by low-end users.

2.2 The Importance of Traceability

Traceability has been demonstrated to provide many benefits to organizations that

make proper use of traceability techniques. This is why traceability is an important

component of many standards for software development such as the CMMI and ISO

9001:2000 for software development. Important benefits from traceability can be

13

realized in the following areas: project management, process visibility, verification

and validation, and maintenance.

2.2.1 Project Management

The benefits of traceability to project management in the software engineering

industry are numerous. Traceability provides project managers with the tools that

they need to effectively control the development process and manage change, risk,

and project finances (Palmer 1997).

 Perhaps one of the largest benefits that traceability offers is the ability to

manage change. Change in a software project can be very costly, and research has

indicated that it is inevitable in software projects (Harker, Eason & Dobson 1993).

Traceability offers project managers the ability to estimate the impact of a proposed

change by mapping the fan-out impact of the change.

A requirement change proposed by a customer has the potential to impact

other requirements documents, project design, code, test cases, and other artifacts

depending on how far along the project is in the software development cycle. By

following links implemented as a part of traceability, a project manager can quickly

see how many artifacts will be affected by a proposed change, and can make an

informed decision about the costs and risks associated with that change. Because of

this, traceability can act as a bridge between changing customer needs and system

evolution (Jarke 1998).

14

 Traceability also gives project managers important insight into the

development process for a project. A well-defined traceability scheme allows

managers to identify design, code, test plans, and test cases that can be reused within

a project (Compuware 2004). Reuse throughout a software project saves

development time and money. Managers can also utilize traceability links to identify

potential requirements conflicts early in the development process (Heindl & Biffl

2005). These conflicts can be resolved before further development time is spent on

them. Early requirement conflict resolution results in significant financial savings

because it has been proven that fixing problems late in the software development

cycle costs much more than fixing them early (Boehm 2003).

 Project managers can also utilize traceability to assist in measuring project

progress. As requirements are traced to code and later to test cases, management can

estimate the completion status based on how many requirements have been traced to

artifacts created later in the development cycle (Zemont 2005). This information can

be used to estimate the schedule for a project during development and can be used to

assess risk. As an organization’s use of traceability matures, they can even utilize

traceability on historic projects to make estimates for future projects.

2.2.2 Process Visibility

Another area that traceability can assist with is providing process visibility. Insight

into the development process for project managers has already been discussed, but

traceability provides process visibility for more than just managers. In fact,

15

traceability has been found to be important for version control and configuration

management of artifacts produced throughout a project lifecycle (Macfarlane &

Reilly 1995). These activities are essential for providing process visibility for

everyone involved in a software project.

 Improved process visibility from traceability can be used to facilitate team

communication for the duration of a software project (Compuware 2004). Through

traceability, each team member has access to contextual information that can assist

them in determining where a requirement came from, its importance, how it was

implemented, and how it was tested. This information is essential for requirements to

be implemented correctly.

 Traceability can also be viewed as a customer satisfaction issue. If a project is

audited, or in the case of a lawsuit, traceability can be used to prove that particular

requirements were implemented and tested (Watkins & Neal 1994). The availability

of this information also increases customer confidence and satisfaction because it

reassures customers that they will receive the product that they requested.

 Traceability can also be used to comply with standards. Many governmental

standards such as DOD-STD-2167A and DO-178B require traceability to be

implemented. For the government to accept software projects, they must conform to

the traceability requirements imposed by the governing standard under which they

were developed. Similarly, for an organization to be certified to the Software

Engineering Institute’s CMMI level 2, a certain level of traceability must exist.

16

Higher levels of the CMMI model require even more sophisticated forms of

traceability to be implemented (Chrissis et al. 2003).

Another form of process visibility provided by traceability is improved access

to information in large documents. Many sizable software projects produce a

significant amount of documentation, with each document potentially containing

hundreds or thousands of pages. Traceability links can save stakeholders from being

forced to manually search through artifacts for related items (Palmer 1997).

2.2.3 Verification and Validation

The most significant benefits provided by traceability can be realized during the

verification and validation stages of a software project. Traceability offers the ability

to assess the system functionality on a per requirement basis all the way from the

origin of each requirement through the testing of each requirement. Without

traceability, it is impossible to demonstrate that a system has been fully verified and

validated.

 Properly implemented, traceability can be used to prove that the system

complies with the requirements and that the requirements have been implemented

correctly (Ramesh, Stubbs, Powers & Edwards 1995). If a requirement can be traced

forward to a design artifact, it validates that the requirement has been designed into

the system. Likewise, if a requirement can be traced forward to the code, it validates

that the requirement was implemented. Similarly, if a requirement can be traced to a

test case, it demonstrates that the requirement has been verified through testing. Test

17

cases should also trace back to code and code to design to ensure that test cases

completely test the code and that the code originated from the design (Ramesh &

Jarke 2001; Wiegers 2003; Watkins & Neal 1994). If any of these traces are missing,

it means that the design, code, and/or testing needs to be updated in order to complete

the tracing so the system can be demonstrated to be fully verified and validated.

 Traceability is also important for ensuring that the system is not over-designed

or over-implemented. If parts of the design or code cannot be traced back to

requirements, this is evidence of the creation of unspecified features, which is known

as feature creep or gold-plating (Cleland-Huang et al. 2003; Muvuti & Lungu 2004).

Feature creep is a significant drain on both time and resources and should be avoided;

however, its presence can be difficult to detect without traceability.

 Conflicting requirements can also be identified early using traceability. If

conflicting requirements exist, it is impossible to build and successfully verify and

validate a system. If the conflicting requirements are not discovered until late in the

development process, they are more difficult to correct than if they are discovered

early. If requirements trace to each other or trace to the same portion of the design or

code, they should be analyzed to determine if they conflict (Egyed & Grunbacher

2004). If so, the requirements should be corrected as soon as possible in order to

minimize the cost of correcting them.

 Research performed by Gills (2005) indicates that the quality of the testing

process is directly related to the quality of the traceability scheme employed. This is

because quality testing must be based not only on observable functionality, but also

18

on requirements, design, and source code. Only traceability can provide the

necessary linkages between each of these artifacts to allow for high-quality testing.

Without traceability, the system can still be tested to some degree, but systematic

testing is impossible.

2.2.4 Maintenance

Traceability is also a valuable tool during the maintenance phase of a software project

for many of the same reasons that it is valuable for project management. Initially

defined requirements for a software project often change even after the project is

completed (Heindl & Biffl 2005), and it is important to be able to assess the potential

impact of these changes.

Traceability makes it easy to determine what requirements, design, code, and

test cases need to be updated to fulfill a change request made during the maintenance

phase of a software project. This allows for estimates of the time and cost required to

make a change. The chance of inadvertently failing to update one or more artifacts

associated with a change is also lessened when traceability is implemented (Zemont

2005).

In any software project, there is some element of risk that defects will be

discovered that will need to be corrected during the maintenance phase of the project.

Traceability serves as a risk mitigation factor since it can be used to quickly point out

the affected areas of the system (Zemont 2005). This makes defects discovered

during maintenance easier to correct in a timely manner.

19

2.3 Traceability Methods

Now that the importance of traceability has been established, it is important to have

an understanding of the methodologies that can be used to implement traceability.

Throughout industry, many different methods are used and several theoretical models

have been proposed. A complete analysis of all traceability methodologies in

existence is beyond the scope of this thesis; however, a brief introduction to some of

the more commonly used methods and more interesting theoretical models will be

provided.

2.3.1 Traceability Matrices

Traceability matrices are the simplest method that can be used to capture traceability

information. A traceability matrix can be defined as “a table that illustrates logical

links between individual functional requirements and other system artifacts” (Wiegers

2003). Since traceability matrices are in tabular form, they typically are created using

a spreadsheet or a table in a word processor and are independent of the artifacts that

they capture traceability information for. An example of a traceability matrix is

shown in Table 2-1.

Table 2-1. Example Traceability Matrix.

System
Requirement

Software
Requirement

Design
Element

Code Module Test Case

005-00150-
80#00505

005-00150-
85#00112

Airspeed
Calculation

calculate_airspeed() tc_103.doc

005-00150-
80#00506

005-00150-
85#00234

Airspeed
Display

display_airspeed() tc_125.doc

20

 Table 2-1 demonstrates several important traceability matrix concepts.

Requirements are listed using unique identification values. This is done to ensure that

the precise requirement being traced is clear, and it also makes it easier to locate a

particular requirement in a requirements management system. Requirements can

trace to other requirements in a traceability matrix; in this example, high-level system

requirements are traced to lower-level software requirements which are then traced to

design elements, code modules, and test cases. The exact artifacts included in a

traceability matrix may vary on a project-by-project basis, but it is reasonable to

expect at least one set of requirements, design, code, and test cases to appear.

 Traceability matrices offer several advantages. They are simple to implement

and do not require the use of special tools. This is important because a study

performed by Gills (2005) of 32 software projects from information technology

companies that implement traceability found that 53.7% of the projects did not make

use of special tools to assist with traceability practices. For smaller projects,

manually created traceability matrices are ideal since they are simple to create and do

not require specialized tool support. Additionally, traceability matrices show links in

both a forward and backward direction which provides visibility into the overall

structure of the system.

 Unfortunately, there are several disadvantages to traceability matrices.

Because these matrices are created manually, they require a significant amount of

work to create for larger projects. As a software system grows in size and

complexity, the number of links that need to be captured in a traceability matrix

21

grows exponentially (Cleland-Huang et al. 2003). After the traceability matrix is

fully created, it must be maintained whenever changes are made to the system. This

requires discipline and a large amount of manual link checking throughout the

traceability matrix. Because of this, it is easy for a traceability matrix to become out

of sync with the current set of requirements and other system artifacts. Therefore,

traceability matrices are not well-suited for large projects or projects that experience a

significant amount of change.

2.3.2 Hyperlinks

Hyperlinks can be used as an alternative to traceability matrices for implementing

traceability. Many of the same strengths and weaknesses are shared by each of these

methods. Hyperlinks implement traceability by representing traceability relationships

as hyperlinks between elements of the project artifacts. These hyperlinks can be

embedded directly in the artifacts themselves, or they can be stored independently in

a traceability matrix of hyperlinks.

 The main advantage of hyperlinks is that they can be followed to quickly

analyze traceability relationships between artifacts. Certain projects may also benefit

from the ability to embed traceability information within existing artifacts without

needing to create a separate traceability artifact. Hyperlinks can be directional or

non-directional, which allows for forward or backwards traceability or both,

depending on the needs of the project (Munson & Nguyen 2005).

22

 Similar to traceability matrices, hyperlinks provide the advantages of being

simple and not necessarily requiring the use of special tools. However, use of

hyperlinks may require project artifacts to be stored in a hypertext compatible format

such as HTML or XML. Hyperlinks also share the disadvantages of traceability

matrices in that they can be tedious to create and maintain for large projects or

projects that experience a significant amount of change. Therefore, hyperlinks may

be ideal for smaller projects, but other methods may be better for large projects.

2.3.3 Commercial off the Shelf (COTS) Tools

Many commercial off the shelf tools exist that claim to assist with the implementation

of traceability. The International Council on Systems Engineering (2008) has a

survey which lists 31 distinct tools which claim to offer full support for traceability

analysis. Many of these tools are obscure and not widely used while others such as

Telelogic’s DOORS (2007) and IBM Rational Software’s RequisitePro (2007) have

seen wide acceptance in industry.

 Providing a complete overview of all COTS tools for traceability is beyond

the scope of this thesis; therefore, only general statements about the capabilities and

advantages and disadvantages of these types of tools will be presented as background

information. A more detailed study of one of the more popular tools, Telelogic’s

DOORS, is presented in Chapter 3. Each tool has its own strengths and weaknesses,

but all of these types of tools share several key features, benefits, and limitations.

23

 Three common aspects of traceability are supported by the COTS tools

available today: identifying inconsistencies, providing visibility into existing links

from source to implementation, and verification of requirements (Li et al. 2002).

COTS tools allow users to identity inconsistencies such as untraced requirements or

other system elements. The robustness of this feature varies between tools, but all

traceability COTS tools provide at least primitive support for this feature. Such tools

allow users to follow links in both a backward and forward direction in order to see

precisely where each link comes from and goes. Some tools offer graphical support

for this feature which can speed link navigation. Verification that requirements have

been implemented and tested is also supported in COTS tools. The status of

individual requirements can be monitored, and events can be triggered when the

status of specific requirements change.

 COTS tools provide an advantage in that COTS tool users are not responsible

for maintaining a separate method of traceability implementation. Traceability

information is stored inside of the tool, and reports showing the project’s traceability

can be generated on demand. Additionally, these tools can highlight links that have

become suspect due to changes in the system. This reduces the difficulty of

maintaining traceability information when the system undergoes change.

 Unfortunately, there are also many disadvantages to using COTS tools. Cost

is one major disadvantage. Although the licensing fees vary per tool, the price tends

to be thousands of dollars up front per license in addition to yearly maintenance fees.

Because of this, the cost of using COTS tools is often prohibitive, even for fairly

24

small teams. Such tools are also decoupled from the development environment,

meaning that important traceability information such as code modules that implement

requirements may not be available (Naslavsky et al. 2005). For this reason, Ramesh

(1998) has concluded that COTS tools are mostly used by low-end users and have

“very limited utility in capturing dynamic traceability information.”

COTS tools are typically marketed as complete requirements management

packages, which means that traceability is only one added feature (Gills 2005). The

traceability features usually only work if the project methodology is based around the

tool itself. Unless the project is developed from the ground up using a particular tool,

the tool is unable to provide much benefit without significant rework. Support for

heterogeneous computing environments is also lacking (Song, Hasling, Mangla &

Sherman 1998).

2.3.4 Proposed Methods

Several methods for partially automating the implementation of traceability beyond

the simplistic automation present in currently available COTS tools have been

proposed in the literature. Unfortunately, COTS tool support for these methods is not

widely available, which means that an organization would need to develop in-house

tools in order to use them. Because of this, only a brief background description of

these methodologies is provided. Interested readers are encouraged to view the

references provided for each method for a complete overview.

25

 Event-based traceability has been proposed as a method for automating much

of the traceability process based upon change events (Cleland-Huang et al. 2003). In

this method, changes in the system are events which trigger updates to the traceability

data. The authors admit that this methodology has not been previously supported;

therefore, they developed their own proprietary tool in order to test the feasibility of

the system. Initial results appear to demonstrate the feasibility of event-based

traceability, but longer-term studies are currently underway.

 Scenario-based traceability has also been proposed for partially automating

traceability (Egyed 2001). This method generates traceability data based on test

scenarios which are executed on a working system. For this system to function, three

things are required: a working system, a software model of the system, and

executable test cases or scenarios. This means that scenario-based traceability is not

feasible during the early stages of development of a project. Tool support is also

lacking, as various tools can be used to assist with the process, but none are available

that fully implement scenario-based traceability (Zemont 2005).

 Automated information retrieval techniques have also been proposed. These

methods use an indexing process and a querying mechanism to establish links

between artifacts which are returned to the user (Zemont 2005). Unfortunately,

information retrieval is hampered by a significant error rate, where incorrect

traceability links are returned. This means that manual intervention is necessary to

verify that the linkages returned are correct. The speed of information retrieval

mechanisms is typically at odds with the amount of precision returned in the results

26

(Hayes, Dekhtyar, & Osborne 2003). Therefore, not only does information retrieval

require the use of special information retrieval tools designed to return traceability

information, but it also can be a slow process that lacks precise results.

2.3.5 Other Methods

Many additional methods for representing traceability have been proposed, but it is

beyond the scope of this thesis to analyze every method of providing traceability in

existence. Many of these other methods are not widely used but are mentioned here

for completeness. Interested readers are directed to investigate the sources referenced

for each method for further information.

 Additional methodologies for implementing traceability include cross-

referencing schemes (Evans 1989), keyphrase dependencies (Jackson 1991),

templates (Interactive Development Environments 1991), integration documents

(Lefering 1993), assumption-based truth maintenance networks (Smithers, Tang &

Tomes 1991), and constraint networks (Bowen, O’Grady & Smith 1990). Each of

these methods provide unique methodologies for implementing traceability; however,

tools for many of these methods are hard to obtain, and they are not widely utilized in

practice.

It should also be mentioned that in spite of all the benefits provided by

traceability, certain projects may not need it. For example, a project with a very short

development cycle may not need the information provided by traceability (Watkins &

27

Neal 1994). Additionally, some organizations develop their own custom tools and

techniques for implementing traceability.

2.4 Challenges Facing Traceability

In spite of the benefits that traceability offers to the software engineering industry, its

practice faces many challenges. These challenges can be identified under the areas of

cost in terms of time and effort, the difficulty of maintaining traceability through

change, different viewpoints on traceability held by various project stakeholders,

organizational problems and politics, and poor tool support.

2.4.1 Cost

Probably the biggest challenge facing the implementation of traceability is simply the

costs involved. If traceability could be implemented easily and cheaply, every project

would use it. Unfortunately, this is not the case. As a system grows in size and

complexity, capturing the requirement traces quickly becomes complex and

expensive (Heindl & Biffl 2005). Because of this, the initial budget for a project

implementing traceability must be greater than that of a project without it. These

initial costs will be offset later in the development cycle through the benefits that

traceability provides, but the high up-front costs can be a deterrent.

 One method of dealing with the high cost of traceability is to practice value

based requirement tracing instead of full tracing (Heindl & Biffl 2005). Since value

based requirement tracing focuses on the most important requirements instead of

28

tracing all requirements equally, it can save a significant amount of time and effort.

However, for this tracing practice to work, there needs to be a clear understanding of

the importance of each requirement in the system. Additionally, value based

requirement tracing might not be an option if full tracing is a requirement of the

customer or the development process standards used for the project.

 Alternatively, the high costs of traceability can be approached with the

attitude that the initial costs will save much greater costs further along in the

development process due to the benefits that traceability offers in the areas of

management, verification and validation, and maintenance. This method does not

solve the problem of the high up-front costs involved with traceability, but it does

promote a healthy attitude towards managing costs for the entire duration of a project

instead of merely looking at the short-term.

2.4.2 Managing Change

Maintaining traceability through changes to the system is another significant

challenge. Studies have shown that change can be expected throughout the lifecycle

of almost every software project (Wiegers 2003; Boehm 2003). Whenever such

changes occur, it is necessary to update the traceability data to reflect these changes.

This requires discipline on the part of those making the change to update the

traceability data, and it can be costly in terms of time and effort when the changes are

extensive. Unfortunately, strong discipline in maintaining the accuracy of traceability

is uncommon, leading to a practice of disregarding traceability information in many

29

organizations (Clarke, Harrision, Ossher & Tarr 1999). This is unfortunate because

most of the benefits of traceability are lost if this occurs.

 Dealing with change and its impact on traceability is a difficult prospect.

Some COTS tools offer assistance with identifying the impact of change on the

existing traceability data; however, much manual time and effort is still required to

update the traceability data (Cleland-Huang, Chang & Ge 2002). Alternatively,

training can help users understand the importance of discipline in maintaining

traceability data when changes occur. Focusing on the long-term benefits of

traceability instead of the short-term costs can help an organization sustain a healthy

attitude toward the costs of maintaining traceability data amidst change.

2.4.3 Different Stakeholder Viewpoints

A contributing factor to poor support for traceability may be the fact that many

different viewpoints regarding traceability exist, even among different stakeholders

on a project. These different viewpoints exist primarily because current software

engineering standards typically require traceability to be implemented but provide

little guidance as to why and how it should be performed (Ramesh & Jarke 2001).

 Project sponsors and upper management often view traceability as something

that needs to be implemented merely to comply with standards (Ramesh 1998). This

leads to a desire to spend as little time as possible on traceability because the benefits

outside of standards compliance are not well-understood. This viewpoint will likely

30

conflict with that of project engineers familiar with the importance of traceability who

will want to ensure that the traceability performed is complete and correct.

The perceived traceability needs of each project stakeholder can differ based

on their individual goals and priorities (Ramesh & Edwards 1993). This can lead to a

lack of cooperation and coordination between different stakeholders responsible for

maintaining traceability for a project. This makes it difficult to keep traceability data

in sync with the system as it changes which in turn can lead to less reliance on the

traceability data if it is viewed as being inaccurate.

Perhaps the best way to deal with the problem of different stakeholder

viewpoints on traceability is to create an organizational policy on traceability to apply

uniformly to all projects. Because the standards requiring traceability are vague,

organizations have a lot of leeway to set their own procedures in place for

implementing traceability. This can reduce the amount of confusion about

traceability, and leads to more consistent viewpoints among the stakeholders

involved.

2.4.4 Organizational Problems

Organizational problems also provide a significant challenge to the implementation of

traceability. Many organizations that are composed primarily of low-end users view

traceability as a mandate from sponsors or for compliance with standards (Ramesh

1998). Typically these organizations do not have a commitment to comprehensive

31

traceability practices. This leads to an ad-hoc practice of traceability, where

traceability data is created and maintained haphazardly.

Lack of training poses another challenge (Gotel & Finkelstein 1994). Many

organizations do not train their employees about the importance of traceability and

this subject is typically not emphasized in undergraduate education at universities.

This can lead to resentment on the part of those tasked with creating and maintaining

traceability information. They may view the added workload as impacting their

productivity due to a lack of understanding of why traceability is important.

Politics can also play a role. Individuals may be concerned that traceability

data will be used against them in performance reviews or as a threat to their job

security (Jarke 1998). This issue can arise because the individual who captures a

piece of traceability information is usually not the one who makes use of it later.

Those involved with creating and maintaining traceability data may feel that they are

helping others to look good while reducing their own productivity.

The easiest way to correct organizational problems related to traceability is

through use of policy and training. If an organization has clear policies in place about

traceability and provides training on how to comply with these policies, it is likely

that traceability will be implemented in a thorough manner consistent with policy

(Ramesh 1998).

Traceability data should never be used for performance evaluations (Ramesh

1998). Doing so just makes people resentful. Instead, incentives should be offered

32

for those involved with traceability to help ameliorate the fact that the creators and

maintainers of traceability data are often not the ones who benefit from its existence.

2.4.5 Poor Tool Support

Poor tool support is perhaps one of the biggest challenges to the implementation of

traceability. Even though INCOSE (2008) has listed 31 different tools that claim to

provide full traceability support, existing tools provide only simplistic support for

traceability (Ramesh & Jarke 2001). Surprisingly, the tools that are available do not

fully automate the entire traceability process; instead, they require users to manually

update many aspects of the traceability data. This has led some researchers to

conclude that poor tool support is the root cause for the lack of implementation of

traceability (Spanoudakis et al. 2004).

 Although most tools do support the identification of impacted artifacts when

changes occur, they typically do not provide assistance with updating the traceability

links or ensuring that the links and affected artifacts are updated in a timely manner

(Cleland-Huang et al. 2003). This means that even when tools are used, the

traceability information is not always maintained, nor can it always be trusted to be

up to date and accurate. This problem is exacerbated by the fact that tools typically

only allow primitive actions to be taken in regards to traceability.

 Another issue with tools is that they often suffer problems with poor

integration and inflexibility (Gotel & Finkelstein 1994). This has led at least one

researcher to conclude that existing traceability tools have been developed mostly for

33

research purposes, and that many projects are still waiting for tools that do not require

a particular development or testing methodology (Gills 2005).

 Few solutions are available for the problem of poor tool support for

traceability. Many organizations shun COTS tools altogether due to their high cost

and inflexibility and instead make use of manual methods such as traceability

matrices. Another approach common among high-end users is to develop elaborate

in-house tools and utilities to implement traceability (Ramesh & Jarke 2001).

Unfortunately, this approach is not always feasible because many organizations do

not have the manpower or the knowledge necessary to develop such tools. Therefore,

poor tool support for traceability remains an open problem at this time, a problem that

is investigated further in Chapter 3.

34

Chapter 3

An Investigation of the Traceability Tool Problem

The lack of quality traceability tools for automating traceability activities is a serious

problem in the software engineering industry because it is a known fact that as a

system grows in size and complexity, the amount of time and effort required to

manually capture traceability data grows exponentially (Cleland-Huang et al. 2003).

This leads some organizations to discard traceability completely. This is not a good

approach because traceability provides many important benefits to software

engineering projects. Additionally, many software projects are driven by

governmental or customer mandates to implement traceability.

 This chapter performs an investigation into the problem of the lack of quality

traceability tools with a focus on the aviation software sector of the software

engineering industry. Aviation software was chosen for this investigation because

software in this sector is required to implement traceability by the Federal Aviation

Administration (FAA), a branch of the government that oversees and certifies

software intended for use in aviation. Because of this, aviation software developers

have significant motivation to utilize the best available traceability tools since they

are required to implement traceability by the government. This motivation is not

35

necessarily present in the software engineering industry as a whole because software

projects in most other fields are not required to implement traceability.

3.1 Traceability Mandates in the Aviation Software Industry

Many commercial software projects are able to get by without implementing

traceability. It is likely that the quality of the product suffers in these cases, but most

commercial projects do not have regulations governing their development that

mandate traceability to be implemented. This is not the case in the aviation software

industry. Traceability is a non-negotiable software quality attribute in aviation

software due to strict requirements for traceability that are enforced by the FAA. For

aviation software to be certified for use, it must meet criteria imposed by certain

certification specifications such as RTCA’s Software Considerations in Airborne

Systems and Equipment Certification (DO-178B) (1992). Several of these criteria are

related to traceability.

 Specifically, DO-178B mandates the following forms of traceability:

• Between system requirements and software design data

• Between system requirements and software requirements

• Between software requirements and source code

• Between software requirements and test cases

• Between source code and test cases

System requirements are high-level requirements that provide an abstracted

view of the complete software system. The software design flows from the high-level

36

system requirements. Software requirements are detailed requirements about how the

system works. Typically, these requirements are derived from the high-level system

requirements. Source code and test cases are primarily driven by the software

requirements. DO-178B also includes mandates about the amount of code coverage

that must be gathered by test cases based on the criticality of the functions

implemented by the code. Therefore, test cases are also partially driven by the source

code.

In addition, each of the traceability links required by DO-178B must be bi-

directional. However, it is not required that separate traceability artifacts be produced

for each of these traceability mandates. It is acceptable to present a single traceability

artifact that demonstrates how traceability flows throughout the system from system

requirements through test cases. This concept is illustrated graphically in Figure 3-1.

Figure 3-1. Traceability Data Required by DO-178B.

DO-178B’s traceability mandates are similar to recommended traceability

practices throughout the software engineering industry. However, unlike general

software engineering projects, compliance with traceability mandates must be

demonstrated in order for aviation software to be certified for use. Compliance is

shown through the creation and review of traceability artifacts. Reviews are typically

performed by trained designated engineering representatives (DERs) who work at or

37

consult for the company creating the software. When performing reviews, DERs are

considered to be working for the FAA. If an artifact is not accepted by a DER during

a review, it must continue to be revised and re-reviewed until the DER accepts the

artifact before the corresponding software can be certified. Traceability

documentation must also be retained and presented to the FAA for review upon

request or in the case of an audit.

3.2 An Analysis of Current Aviation Software Traceability
Methods

A study by Lempia and Miller (2006) of companies known to be working in the

aviation software industry found that approximately half of these companies use

manual methods of implementing traceability by capturing traceability data in general

purpose office software such as Microsoft Word or Excel. Of the companies that

utilize traceability tools of any kind, nearly all of them use Telelogic’s DOORS. A

few companies developed their own proprietary tools, and a small number use other

tools such as IBM’s Requisite Pro. The full breakdown of traceability methods used

throughout the aviation software industry is shown graphically in Figure 3-2.

38

Traceability Methods in Aviation
Software Manual Methods

DOORS

Requisite Pro

Internally Developed
Tool
Interleaf

RTM

Vbay DCM

Figure 3-2. Traceability Methods Used for Aviation Software Projects.

 There is a nearly even split in the aviation software industry between

companies that use manual traceability methods by capturing traceability data in

general purpose office software and those that use Telelogic’s DOORS to partially

automate the process. Only a small number of companies use other tools. Therefore,

manual traceability methods and DOORS have been selected for further analysis

since they are the most commonly used traceability methods throughout the industry.

3.2.1 Manual Traceability Methods

Manual traceability methods are those which require all traceability information to be

captured manually. Traceability data is typically recorded in general purpose office

39

software such as in a spreadsheet or a word-processor document. Usually the

traceability data is presented in tabular form in what is known as a traceability matrix.

 Manual traceability methods do have some advantages. They do not require

any special tools to create, and they are simple to edit. This makes them ideal for

small projects that do not have a large number of requirements. Traceability matrices

also show links in both a forward and backward direction which meets one of the

DO-178B requirements for traceability artifacts. Because of this, tools that partially

automate the traceability process often present traceability data in the form of

automatically generated traceability matrices.

 Unfortunately, the disadvantages of manual traceability methods far outweigh

the advantages for medium and large software projects. Cleland-Huang et al. (2003)

found that the number of traceability links that need to be captured grows

exponentially with the size and complexity of the software system. This means that

manually capturing traceability data for a large software project requires an extreme

amount of time and effort. In the author’s own experience working on a large

aviation software project, a manually created traceability matrix artifact required

input from 23 software engineers and took five weeks to complete in addition to a full

day spent correcting errors found during a review.

 Manual traceability methods also are very vulnerable to changes in the

system. If changes occur to any elements captured in the traceability data, the

affected portions of the traceability data must be updated manually. This requires

discipline and a significant amount of time and effort spent on link checking

40

throughout the traceability data. Because of this, it is easy for manually created

traceability data to become out of sync with the current set of requirements, design,

code, and test cases. In the author’s own experience, approximately 20% of the

entries in a manually created traceability artifact were found to be at least partially

out-of-date when subjected to review six months after its initial creation.

 Manual traceability methods are also prone to errors which are not easy to

catch. Errors can arise from simple typographic mistakes, from inadvertently

overlooking a portion of the traceability data such as an individual requirement, or

from carelessness by the individual capturing the traceability data. Because

traceability artifacts for large projects are often hundreds or even thousands of pages

in length, such errors are difficult to detect when depending on manual methods for

error checking. In the author’s own experience, over 200 requirements were found to

be missing from a supposedly up-to-date manually created traceability artifact when a

new traceability artifact was generated using an automated traceability method.

 Because of these disadvantages, manual traceability methods are not suitable

for anything other than small software projects. Young (2006) stated “in my

judgment, an automated requirements tool is required for any project except tiny

ones.” Similarly, Ramesh (1998) found that traceability is error-prone, time-

consuming, and impossible to maintain without the use of automated tools.

Therefore, why would nearly 50% of aviation software companies use manual

traceability methods? Is it because they are all developing tiny projects? In the

somewhat humorous words of one DER the author has worked with, “There are no

41

small aviation software projects.” In 1994, Gotel and Finkelstein found that manual

traceability methods were preferred in industry due to shortcomings in available

traceability tools. It is apparent that this problem still exists today because manual

traceability methods are still preferred by a significant percentage of aviation

software organizations.

3.2.2 Telelogic’s DOORS

Telelogic’s DOORS provides a moderately popular alternative to manual traceability

methods in the aviation software industry. DOORS is a requirements management

system sold by Telelogic that claims to provide full support for traceability. The

author was able to obtain a fully-functional trial version of DOORS 8.1 to test with

the aviation software project mentioned in the previous section. The findings of that

test are discussed here.

 The user interface for displaying requirements in DOORS is similar in

appearance to that of a word processor. This makes DOORS ideal for storing

documentation elements such as requirements, design, and verification data. Creation

of new requirements within the DOORS system is a relatively straightforward task. It

is also possible to import existing requirements and other artifacts into the DOORS

system. The importation process can be customized to a degree using the proprietary

DXL scripting language that is supported by DOORS. Traceability links between

elements stored in DOORS are created manually. Link creation is a reasonably

simple, albeit tedious, task.

42

Traceability information in DOORS is more resistant to project changes than

manually created traceability data. If an element in a chain of traceability links

changes, the links to that item will be highlighted as suspect by DOORS. Such links

will remain suspect until a user manually updates them or confirms that they are still

valid. However, there is no mechanism to force users to update or confirm suspect

links to prevent them from appearing in generated traceability matrices. Cleland-

Huang et al. (2003) found this to be a general problem with currently available

traceability tools.

 Errors in traceability data are also less likely in DOORS. Since all of the

project requirements are stored within DOORS, it is not possible for these elements to

be inadvertently missed when traceability data is created. Instead, if a requirement is

missing traceability information, it will appear in the generated traceability data

without any links. In theory, these untraced requirements could slip by, but it is likely

that they would be caught in a review.

 Unfortunately, DOORS is far from ideal as a traceability solution. A major

concern with DOORS is its cost. Upon inquiry to Telelogic, the author was quoted a

price of $4,000.00 per license plus a 20% yearly maintenance fee. Compare this price

to the $299.99 currently charged by Microsoft for the non-upgrade business version

of the Windows Vista operating system (Windows Marketplace 2008). Obviously,

licensing DOORS gets prohibitively expensive very quickly.

 Cost is not the only concern with DOORS. Converting to DOORS from using

manual traceability methods is a daunting task. Although DOORS supports

43

importing requirements from existing documents, there are problems with this

feature. DOORS requires everything it stores to be tagged with a unique requirement

ID. This means that items such as document section headings, notes, and other non-

requirement data all gets treated like a requirement when it is imported into DOORS.

It is possible to filter these noise items out of traceability data generated by DOORS,

but to do so requires a lot of manual effort to identify them and to let DOORS know

that they are not requirements. Even after this is done, the fact that everything must

be tagged with a unique requirements ID can make it difficult to determine what is

actually a requirement.

 Importing existing requirements into DOORS also virtually guarantees that

significant rework on the requirements and traceability information will be required.

Because DOORS uses its own requirements tagging method, all requirements

imported into DOORS automatically are given a unique ID by DOORS. This means

that previous methods of identifying requirements immediately become obsolete. It is

also necessary to recreate any existing traceability data by manually creating links

inside of DOORS.

 It is possible to reduce the amount of manual work required when converting

to DOORS through use of DXL scripts within DOORS. However, any automation

would require a working knowledge of the proprietary DXL scripting language which

would require that time be spent learning it. Even with DXL, it is not possible to

automate everything. Therefore, a conversion to using DOORS would almost

44

certainly require at least one individual with a solid knowledge of the system to be

dedicated to the DOORS conversion process.

 Because of these factors, DOORS is much more appealing when a system is

built from the ground up using DOORS. Even then DOORS has shortcomings. A

major limitation of DOORS is its ability to only store and interact with document-

style artifacts. This is fine for items such as requirements, design, and test cases, but

what about source code? The author was unable to find a feasible way to integrate

source code into the DOORS system. Because of this, traceability data generated by

DOORS lacked source code information. This appears to be an intentional design

decision by Telelogic because even on the DOORS website (Telelogic 2007),

example DOORS traceability data lacks source code information as illustrated in

Figure 3-3.

45

Figure 3-3. Example Traceability Data Generated by DOORS (Telelogic 2007).

The failure of DOORS to include source code in its generated traceability data

means that automatically generated traceability artifacts must be manually updated to

include source code information in order to meet governmental requirements for

aviation software projects. This limitation greatly reduces the utility of having

automatically generated traceability information. Unfortunately, this is a common

problem among commercial traceability tools because they tend to be decoupled from

the development environment (Naslavsky et al. 2005).

 DOORS also has some technical limitations. DOORS was initially developed

in the early 1990s, and its age shows throughout the user interface. Certain common

46

user input methods such as using a mouse wheel for scrolling are not supported.

Many activities are not intuitive and require several more steps than should be

necessary. Even after completing all of the DOORS tutorials, the author still had to

consult the DOORS help system in order to determine how to perform many simple

activities which could easily have been made more intuitive. This makes it clear that

significant training would be required for employees to utilize DOORS effectively.

The author also experienced occasional program crashes while creating traceability

links within DOORS.

 In spite of DOORS’ problems, it is likely that using DOORS for traceability

would save time and effort compared to using manual traceability methods. The

question is, does it save enough time and effort to be worth the high cost? The

answer has to be determined by organizations individually, which probably explains

why there is nearly an even split between aviation software companies that use

DOORS and those that use manual traceability methods.

3.2.3 Other Methods

A small number of aviation software companies use methods other than DOORS or

manual methods to create traceability data. A few companies use IBM’s Requisite

Pro and even fewer use other commercial tools. Because the number of companies

using DOORS vastly outnumbers the companies using other commercial traceability

tools, it is reasonable to assume that DOORS is best suited for use in the aviation

47

software industry. For this reason, in-depth testing of other commercial traceability

tools was not performed.

 It is likely that the reason for the small market penetration of Requisite Pro in

the aviation software industry is due to its focus on object-oriented software

development (IBM Software 2007), which has been historically shunned in the

aviation industry (FAA 2001). The main reason for this is because it is difficult to

meet the demands of DO-178B using an object-oriented software architecture.

 It is also interesting to note that several companies chose to develop their own

proprietary traceability tools. Ramesh and Jarke (2001) discovered that the

development of in-house traceability tools was typically initiated because users were

dissatisfied with currently available tools. This reinforces the premise that quality

traceability tools adequate for the needs of the aviation software industry are not

available. Clearly, there is a need for traceability tools that improve upon the

foundation laid down by DOORS.

48

Chapter 4

A Solution for the Traceability Tool Problem

The lack of quality tools for implementing traceability is not an insurmountable

problem. The solution is simply the creation of traceability tools usable for software

projects that do not share the limitations of currently available tools and that are

available for a reasonable cost. To accomplish this, a proposal for a new traceability

tool that improves upon the capabilities provided by existing traceability tools is

presented in this chapter.

4.1 A Proposal for a Database-Based Approach to Traceability

The DOORS approach to implementing traceability has a lot of merit, but its failure

to integrate source code and its high cost are significant drawbacks. The plan for a

database-based approach for a traceability tool came from the idea of creating a

traceability tool that builds upon the features provided by DOORS without including

its limitations.

 The main idea behind the database-based approach to traceability is to use a

database to store all traceability information and to include a mechanism supporting

the generation of a complete traceability artifact. Identifiers for each traceability

49

element would need to be stored within the database, but the elements themselves

could be maintained outside of the database to reduce the impact on existing project

artifacts.

 Identifiers for requirements and other project artifacts would need to be

imported into the database for it to be used with an already existing project. This

would require special code to be written in order to parse the existing requirements

documents and other project artifacts. After the initial set of records containing

identifiers in the database was created, it could be kept up-to-date by regular usage of

the importation features of the tool. Depending on the needs of the project, this

process could occur automatically at periodic intervals or it could require human

intervention to trigger the updates.

 Traceability would be maintained through the use of link fields for each

requirement record. These fields would specify other requirements, design, source

code modules, and test cases that each requirement traces to. Filling out the link

fields would be where the human interaction in this traceability method would take

place. Depending on the format of the project, portions of the link creation could be

automated. For example, test cases typically identify the requirements and source

code that they test. The database tool could parse this information from test cases and

use it to create links between the test case and the requirements and source code

identified in the test case. The database would then be capable of generating a

complete traceability artifact based on the stored identifiers and the link fields for

each element.

50

 It is expected that the database would make use of referential integrity to

ensure that all links stored within the database are valid. If a requirement or other

data element is deleted, the database would be able to detect and flag any traceability

links that become invalid. Flagged links would need to be corrected to satisfy the

constraints of referential integrity, thereby ensuring that any invalid links are

corrected before the traceability artifact can be generated. Similarly, the database

would be able to detect and prevent any attempts to create links between invalid

project elements using referential integrity.

 The main goal behind the database-based approach for a traceability tool is to

create a traceability method that adds to the traceability feature set of a tool like

DOORS at a fraction of the cost. The tool would run on a common database platform

such as Microsoft Access or MySQL. The cost of these platforms is considerably less

than the cost of a tool such as DOORS. Although this proposed tool would not

include as many requirements management features as DOORS, its focus on

traceability would help ensure that it is a better traceability tool for the price.

4.2 Prototyping the Database-Based Approach to Traceability

Developing a prototype for the proposed database-based traceability approach

required three main activities: identifying the necessary traceability data, designing

the database, and creating a software wrapper around the database to provide the user

interface, automation, and error-checking capabilities.

51

4.2.1 Identifying the Necessary Traceability Data

The first step towards creating an improved traceability tool was to identify the data

that needed to be traced. Because the database-based traceability tool was expected

to be used for a project in the aviation software industry, it needed to be able to meet

the governmental traceability mandates for aviation software projects specified by

DO-178B (RTCA 1992). These mandates include the following:

• Traceability between system requirements and software design data

• Traceability between system requirements and software requirements

• Traceability between software requirements and source code

• Traceability between software requirements and test cases

• Traceability between source code and test cases

To fulfill these requirements, the traceability tool needed to track links for all of the

mandated traceability data.

4.2.2 Designing the Database

The next step was to design a database capable of storing traceability information for

the identified traceability elements. The database design began with an entity-

relationship diagram relating the entities that needed to be traced to fulfill the FAA

traceability mandates. For other applications, the database design could easily be

adapted to include other traceability information by customizing the elements

52

included in the entity-relationship diagram. The resulting entity-relationship diagram

is shown in Figure 4-1.

Traces To

Software
Requirement

Identifier

System
Requirement

Test Case

Source Code

Design
Element

Traces To

Traces To

Traces To

Traces To

Identifier

Identifier

Module
Name

Name

Figure 4-1. Entity-Relationship Diagram for the Database.

The entity-relationship diagram for the database led to the initial simplistic

idea for a database relation shown in Figure 4-2.

53

TRACE

System
Requirement ID

Design
Element

Software
Requirement ID

Source Code
Module

Test Case

Figure 4-2. Simplistic Idea for Database Relation.

 If the database was implemented using the relation shown in Figure 4-2, it

would include a lot of redundant information. Redundancy would be a problem

because multiple design elements can trace to a single system requirement, multiple

software requirements can trace to a single system requirement, multiple source code

modules can trace to a single software requirement, multiple test cases can trace to a

single software requirement, and multiple test cases can trace to a single source code

module. Using the relation shown in Figure 4-2 would result in many tuples being

required to catalogue the traceability data for a single element. Not only would this

database design be wasteful in terms of space, but it also would not be able to make

use of referential integrity to perform integrity checking on the data.

 The initial simplistic database design was normalized into Boyce-Codd

Normal Form (BCNF) to address the problems with the initial design. BCNF

provides protection from redundancy and logical anomalies as well as providing the

opportunity to utilize referential integrity for data integrity checking. The normalized

database design is shown in Figure 4-3.

54

Figure 4-3. Normalized Database Design.

4.2.3 Creating the Software Wrapper for the Database

After the database design was complete, software mechanisms for automatically

populating the database relations needed to be written. Custom code was written to

automatically populate the system requirements, design data, software requirements,

source code, and test cases relations in the database. This was a straight-forward task

55

involving writing code to parse the requirements and design documents for

requirements and design identifiers and to store them in the appropriate relations in

the database. This aspect of the tool was made extensible by allowing the format of

the requirements and design identifiers to be configurable using regular expressions.

For the source code and test cases, the importation software was set-up to simply read

the directories where all of the source code and test cases for the project were stored

and to enter the name of each source code module and test case into the database.

 The next task was to allow for importation of existing traceability links to

populate the traceability link relations in the database. Code was written to parse an

existing traceability artifact to automatically populate the link relations for all existing

traceability information. This was made extensible to a degree by allowing the

format of the traceability artifact to be configurable. However, the traceability

artifact is expected to be in the format of a traceability matrix because it would be

difficult to import traceability data stored using any other method. Although this

could be viewed as a limitation, it is unlikely to be a major issue because most

manually created traceability data is in the form of a traceability matrix, and most

existing traceability tools support the generation of traceability data in the form of a

traceability matrix.

After the initial importation of existing traceability links, new links would

need to be recorded by entering them into the database. This is where the human

interaction in the traceability process occurs. Requiring human interaction to create

traceability links is a reasonable decision because it is impossible to completely

56

remove human interaction from the traceability process (Hayes & Dekhtyar 2005)

and because the reason for adding a traceability element is nearly always known by

the person adding that element.

Test cases are an exception to this procedure because test cases already

typically identify the requirements and source code that they test. Therefore,

traceability links involving test cases can be automatically populated by code written

to parse each test case for the requirement identifiers and source code modules that

they identify. This leaves only the traces between requirements, design elements, and

source code as items requiring human interaction.

Validity of the traceability links is enforced through referential integrity.

Only links between valid elements are allowed because the use of referential integrity

disallows the ability to create links to non-existent items. Each attribute in the link

relations in the database is a foreign key that references the key attribute in the

relation maintaining data for that particular traceability element. This reduces the

potential for human error through typographical mistakes.

 To make the database tool more robust, it was desired to include functionality

to detect any missing traceability data. One way to do this would be to make the

single attribute relations in the database foreign keys referencing the corresponding

attribute(s) in the link relations. The downside to this approach is that every time new

data is imported into the database, all of the traces for the new data would need to be

entered at the same time to satisfy the referential integrity constraints. This is not

necessarily desirable as it may be the case that different people are responsible for

57

importing the data and entering the traceability information. Therefore, instead of

making the single attribute relations foreign keys, a reporting feature was included to

detect and report any missing traceability information to the user.

 It is unlikely that many users would utilize the database tool if it required

them to interact with the database directly using queries, so it was important to

develop a user-friendly front-end for the database. Therefore, a custom menu was

created to appear when the database tool is started. Buttons on the menu make

traceability tasks as simple as possible. There are buttons to update the system

requirements, design data, software requirements, source code, and test cases

relations in the database. There are also buttons to automate the test case traces and

to manually enter traces between requirements, design, and source code elements. A

button for detecting missing traceability links is also included as well as a button for

generating a complete traceability artifact in a traditional traceability matrix format.

Initially a button was available that provided access to a database view presenting a

complete picture of the traceability data for the project. However, after performing a

case study which involved testing the tool with an actual software project (described

in Chapter 5), this view was replaced with the ability to generate a standalone

traceability artifact. This makes viewing the traceability data easy for those who are

unwilling to analyze the data using the tool’s interface. The custom user interface

created for the database tool is shown in Figure 4-4.

58

Figure 4-4. Database Tool User Interface.

 When the user selects the “Enter Traces” option, they are presented with an

interface screen that allows the user to create links between requirements, design

elements, and source code modules. First, the user selects the requirement identifier

of the requirement to create a traceability link for. This can be done by typing the

requirement identifier into a text box, or the requirement can be selected using a drop-

down list that is populated with all of the requirement identifiers stored in the

database. If the user manually types a requirement identifier, the tool will ensure that

the requirement identifier exists in the database. If it does not exist, the user will not

be allowed to create a link. This eliminates the possibility of the user creating a link

to a non-existent requirement.

59

Once the requirement identifier to create a traceability link for is selected, the

user can create a link to another requirement, a design element, or a source code

module by either typing the identifier of the requirement, design element, or source

code module into a text box or by selecting the requirement identifier, design

element, or source code module using drop-down lists for each element type that are

populated with all of the requirement identifiers, design elements, and source code

modules that are stored in the database. If the user manually enters the identifier of a

requirement, design element, or source code module, the tool will ensure that the item

exists in the database. If it does not exist, the user will not be allowed to create a link

to eliminate the possibility of the user creating a link to a non-existent item.

Traceability links are not saved until the user presses the Save button to give the user

the opportunity to verify that the each entered traceability link is correct.

Since the custom front-end user interface for the tool abstracts the database

from the user, it would be possible to use any database to store the traceability data.

The prototype of the database tool was implemented and tested with two different

databases: Microsoft Access and MySQL.

 Both databases prototyped with the tool offer their own advantages and

disadvantages. The Microsoft Access version of the tool uses a database that is

commonly available with other office software products that requires no maintenance

or special expertise to keep up. All database information is stored in a single database

file that could easily be used with a configuration management system for version

60

control. The downside to using a Microsoft Access database is that only one user can

modify the database at a time since it is contained in a single file.

 The MySQL database offers an advantage in that MySQL is freely available

and does not require licenses to use. In addition, MySQL provides support for

multiple users to modify the database at the same time. The disadvantages of using

MySQL are that MySQL is not a commonly-known tool to the average office worker;

therefore, using MySQL potentially introduces the need for a database administrator

to be responsible for database maintenance and backup functionality. Another

disadvantage of MySQL is that it is more difficult to implement version control since

a MySQL database cannot easily be stored within a configuration management

system.

61

Chapter 5

A Practical Case Study

This chapter describes a case study performed using the database-based approach to

implementing traceability that was presented in Chapter 4. Details about the process

of using the prototype of the database-based tool on an actual software project in the

aviation software industry are presented. Metrics and qualitative results from this

case study are presented in Chapter 6.

5.1 Software Project Background

The software project used for the case study described in this chapter is an iterative,

incremental project where versioned builds of the software are delivered periodically.

Each succeeding build of the software is based upon the previous build, but it adds

significant new functionality. All of the waterfall model software lifecycle activities

are repeated for each build. The project is used in the aviation industry and is

therefore subject to the FAA governmental mandates specified by DO-178B. The

initial build of the project took place in 2002, and the project has continued to grow in

size and complexity since that date. Today, the development team for the project

62

includes 45 software engineers, and the project easily meets Bennatan’s (2006)

definition for a large software project.

5.1.1 Initial Traceability Implementation

Little thought was given to traceability prior to the completion of the first build of the

software project. Only after the realization occurred that a traceability artifact was

necessary for the software to obtain approval from the FAA did traceability activities

begin. Unfortunately, the lack of planning for traceability meant that it was difficult

to implement, making it a time-consuming activity that provided little benefit to the

project apart from meeting governmental mandates.

 Traceability information was recorded in a traceability matrix contained in a

single spreadsheet shared among the software engineers working on the project. This

was not a very efficient mechanism because all of the traceability data was gathered

manually, and it needed to be entered into the spreadsheet manually by each software

engineer. Having multiple engineers work in parallel was a challenge because only

one person could enter data into the spreadsheet at a time. Multiple individuals could

work in parallel using a temporary copy of the spreadsheet on their own computer,

but there was no foolproof method to ensure that work was not duplicated, and

merging each person’s changes into the spreadsheet was a time-consuming and

potentially error-prone process.

The information recorded in the spreadsheet traced system requirements to

software design data, system requirements to software requirements, software

63

requirements to source code, software requirements to test cases, and source code to

test cases in order to meet the traceability mandates in DO-178B. The source of this

information was simply special knowledge either recollected or researched by

specific engineers working on the traceability artifact since most of the information

had not been previously documented. This meant that finding traceability data for

items that none of the engineers had a clear recollection of was difficult and time-

consuming.

Overall, the creation of the traceability artifact required input from 23

software engineers and took five weeks to create. When the initial version of the

traceability matrix was subjected to a review, it took another full day to correct all of

the problems found during that review. In the end, the lack of forethought regarding

traceability meant that the initial delivery of the software was delayed by nearly six

weeks after the software build itself was complete.

The significant delays introduced by the creation of the traceability artifact

after the completion of the first software build made it obvious that better methods

were necessary for implementing traceability in the future. However, since the

project already had a foundation in place, it was desired that any changes to the

traceability method have little impact on the already existing project artifacts. Since

all of the project’s documentation, including requirements, design data, and test cases,

was based around Microsoft Word documents, the possibility of converting the

project to using alternative methods of documentation, such as a database or a

commercial tool such as Telelogic’s DOORS was ruled out.

64

5.2 Database-Based Traceability Tool Case Study

5.2.1 Preparation for Use of the Database Tool

Before the database-based traceability tool could be used for the project, a decision

had to be made regarding whether to use Microsoft Access or MySQL as the database

back-end for the tool. Meetings were held with the project stakeholders, and the

strengths and weaknesses of each database were discussed. A prototype of both

versions of the tool was provided to the stakeholders to assist with the decision-

making process.

 The version of the tool based on Microsoft Access was chosen for use with the

project for two reasons. First of all, the engineers working on the project already had

Microsoft Access installed on their computers as part of the standard Microsoft Office

suite used by the team. Secondly, there were concerns about demonstrating

configuration management if a MySQL database was used since the database itself

could not easily be stored within the configuration management system used for the

project. This was not a problem for the Microsoft Access database, as the Access

database file could easily be stored within the existing configuration management

system. The only downside to using Microsoft Access was that it would only allow

one engineer to use the tool at a time since the database would have to be checked out

from the configuration management system and later checked back in when the

modifications were complete. This was not considered to be a major issue for the

project because other project artifacts had the same limitation.

65

 The next step was to configure a few parameters for the software project to

customize the tool for the project. This included specifying the format of the

requirement and design identifiers so the tool could identify them as well as pointing

the tool to the requirements and design documents and the directories containing the

project’s source code, test cases, and previously existing traceability artifact to allow

for importation of data. The format of the existing traceability matrix artifact was

also configured to allow for importation of the previously captured traceability links

for the project. Once this information was configured, it was easy to import the

necessary traceability data for the project using the buttons included in the tool’s user

interface.

5.2.2 Using the Database Tool

After the database tool was configured for the project, the first challenge was getting

the engineers working on the project to use the tool. In spite of the time spent on the

user interface attempting to make it as easy to use as possible, many of the team

members on the project were reluctant to start using the tool initially. This seemed to

be a psychological barrier due to the fact that few of the members of the team were

comfortable working directly with a database.

 Training was scheduled for all of the team members to demonstrate how to

use the tool and to present the perceived benefits offered by the tool, namely, reduced

human interaction in the traceability process resulting in time savings and fewer

66

errors in the traceability data output. After going through training, the engineers

seemed more receptive to using the tool.

 After the database tool was presented to the team, it was introduced as a

replacement to the manually created traceability matrix which had been used to

document traceability information for the project in the past. The conversion

occurred right after the release of a build of the software so that it would not cause a

disruption right in the middle of a software release. From that point on, the engineers

working on the project used the database tool to record traceability information for

the project. Instead of waiting until the end of the software release to document

traceability links, use of the tool to capture traceability links for project elements

when they were created was added to the process of adding new elements to the

project. Because the FAA requirements for aviation software mandated by DO-178B

necessitate reviews for all project elements, this was easily accomplished by

including checks for appropriate traceability in the review forms for each project

element.

 At this point, the database-based traceability tool was fully integrated into the

process of capturing traceability information for the project. However, before the tool

could be used to demonstrate compliance with the FAA requirements for traceability

for aviation software projects, it needed to be reviewed and accepted by the project’s

designated engineering representatives (DERs).

67

5.2.3 Reviewing the New Traceability Method

The next step was to get the new traceability method reviewed and approved by the

project’s DERs. DERs perform review work on aviation projects to ensure that they

are in compliance with FAA standards such as DO-178B. Before the new traceability

method could be used to take credit for compliance with governmental traceability

regulations, it had to be approved by the DERs.

 At first, DER acceptance was a major roadblock. Even though the initial

version of the database tool included a view that provided a complete picture of the

project’s traceability data, the DERs refused to accept the traceability view within the

database as proof of compliance with the required traceability mandates. They were

unwilling to look at data within the tool’s user interface, citing their general

unfamiliarity with databases and calling it a non-standard way to demonstrate

traceability compliance.

 The DERs’ response forced part of the database tool back onto the drawing

board. If it could not be used to demonstrate compliance with traceability mandates,

the tool would lose much of its value for the project. This led to the idea of having

the database tool output traceability data in the form of a traceability matrix because

the DERs had accepted manually created traceability data in the form of a traceability

matrix in the past. An example of the format of the output traceability matrix from

the database-based tool is shown in Table 5-1.

68

Table 5-1. Example Traceability Matrix Output from the Database-Based Tool.

System
Requirement

Design
Element

Software
Requirement

Code Module Test Case

005-00150-
80#00505

005-00150-
60#01225

005-00150-
85#00112

IOP_air_data_intf.c tc_103.doc

005-00150-
80#00506

005-00150-
60#00562

005-00150-
85#00234

cdp_fld_airspeed.c tc_125.doc

 When traceability information was output from the database-based traceability

tool and presented to the DERs in the form of a standalone traceability matrix, they

had no problem with the results. In fact, for the first time in the history of the project,

the DERs did not have any non-compliance comments about the traceability data.

Instead, they focused their comments on the format of the output data, demanding

that the output be presented in nicely formatted tables. This meant that a large

amount of time had to be spent on custom code for outputting the traceability data to

ensure that the output was presented well. This was a tedious task, but once it was

accomplished, the DERs accepted the results. At that point, the database tool

received the DERs’ stamp of approval for use for capturing and reporting traceability

information for the project.

5.3 Current State of the Database-Based Traceability Tool

All subsequent releases of the software for the project that was used for the case study

have continued to utilize the database tool for traceability activities because the tool

was deemed to be a major success. In addition, numerous other projects within the

company have expressed interest in the tool, and several additional projects have

69

begun the process of converting to use the prototyped traceability tool based on the

success of the initial case study. Detailed quantitative metrics from the case study

and qualitative evaluation criteria for the database tool are presented in Chapter 6.

70

Chapter 6

Evaluation and Analysis

This chapter evaluates the results of the case study performed using the prototyped

database-based traceability tool in order to determine if the proposed approach for

implementing traceability is a viable alternative to existing methods. Quantitative

metrics from the case study are presented, and a cost comparison with alternative

traceability methods is provided. A qualitative analysis of the strengths and

weaknesses of the database-based tool for implementing traceability is also

performed.

6.1 Quantitative Metrics

6.1.1 Comparison with Past Project Results Using Manual Methods

This section quantitatively compares the results of using the database-based

traceability tool with the manual traceability methods used on the project in the past.

Bar graphs are used to detail the number of man-hours required for activities such as

preparation for use, time spent while working on a software release, and time spent at

the end of a software release for each method. These results are reasonable to

71

compare because, for each method, the results were collected using software releases

that added similar amounts of functionality to the system. The number of errors

found after the initial release of the traceability data for each method is also

compared.

Figure 6-1 shows the amount of development and preparation time required to

be able to use each traceability method. Figure 6-2 shows the amount of time spent

on traceability activities while working on a software release, and Figure 6-3 shows

the amount of time spent preparing the traceability artifact and going through the

review process at the end of a software release. Figure 6-4 shows the number of

errors that were later detected in the traceability artifact after it had been released.

Development and Preparation Time

0

200

400

600

800

1000

1200

Manual Method Prototyped Database Method

Person-Hours

Figure 6-1. Development Time Required for Traceability Methods.

 As shown in Figure 6-1, the database method of implementing traceability

required significantly more development and preparation time than the manual

72

method. This is because the database tool required a significant amount of complex

custom code to be written for the automation, error-checking, and data output

capabilities.

By comparison, manual traceability methods require very little preparation

time. The creation of a spreadsheet or a word processor document with tables to

record the data is sufficient. However, the extra development time required for the

automated database traceability method pays off later through improved quality of the

results (see Figure 6-4) and time saved later on in the process (see Figure 6-3).

Because the development time is a one-time cost, it can be viewed as an up-front

sacrifice resulting in faster, higher quality results later. In addition, if the tool was

used for other projects, the development time would not need to be repeated for each

project; thereby making it a start-up cost only.

Time Spent During a Software Release

0

5

10

15

20

25

Manual Method Prototyped Database Method

Person-Hours

Figure 6-2. Time Spent on Traceability Activities During a Software Release.

73

As shown by Figure 6-2, the use of the database traceability method did

require more time than manual methods while working on a software release due to

the need to create traceability links as elements were added to the project. However,

the extra amount of time required for the automated database method was a small

price to pay for the time savings later as shown in Figure 6-3 and better quality of the

results as shown in Figure 6-4.

Time Spent at the End of a Software Release

0

50

100

150

200

250

Manual Method Prototyped Database Method

Person-Hours

Figure 6-3. Time Spent on Traceability Activities at the End of a Software
Release.

 Figure 6-3 clearly shows that the payoff for using the automated database

traceability method comes at the end of a software release. Although some time is

still required to generate the data and have the traceability information reviewed, the

total time required is insignificant compared to the amount of time required to gather

traceability data manually. In fact, it would be virtually impossible to reduce the

amount of time required for traceability activities at the end of a software release

74

because of the need for reviews. Nearly all of the time required at the end of the

software release for the database tool was spent on reviews.

 The significant time savings at the end of a software release provided by the

database-based tool is important because it meant that the software could be released

to market approximately 4.5 weeks sooner than it could in the past when manual

traceability methods were used. An earlier time to market results in additional sales

which means higher profits are realized. Pinning an exact dollar figure on the impact

of releasing the software to market 4.5 weeks sooner is nearly impossible due to

differing contractual obligations and other factors which vary per software release.

However, the past history of the software project used for the case study described in

Chapter 5 shows that approximately five new sales occur in the first 4.5 weeks after

each software release for each aircraft program that takes the new software, and on

average ten programs take each software release. The translates into approximately

50 extra sales if the software is released 4.5 weeks earlier, which results in a potential

increase of $4,000,000.00 in gross profits at an average sales price of $80,000.00.

75

Errors Detected After the Release of the Traceability Artifact

0

50

100

150

200

250

Manual Method Prototyped Database Method

Errors

Figure 6-4. Number of Errors Detected in the Traceability Data.

 As shown in Figure 6-4, using the database method of implementing

traceability greatly reduced the number of errors that were later detected in the

released traceability artifact. Due to the robust error-checking features built into the

database tool, only two errors were found after the release of the traceability data

generated by the tool. These errors were human errors where incorrect links between

requirements were manually entered into the database. The reason that so many

errors were detected in the results from the manual method was because many

requirements were overlooked in the manually created traceability matrix due to

human error.

 Fewer errors in the traceability results is significant because not only does it

prevent the possibility of errors propagating later, but it also reduces the potential for

errors to be uncovered during an FAA audit. The last time that errors were uncovered

during an FAA audit on the project used for the case study performed in Chapter 5

76

resulted in two extra months of effort on the next software release to correct the errors

and to put additional processes in place to prevent similar errors in the future. Those

extra two months of effort cost $562,500.00 for staff salaries and resulted in a

potential loss of $8,000,000.00 in gross profit on sales.

6.1.2 Cost Comparison with Traceability Alternatives

This section compares the cost of using the database-based traceability tool with the

cost of using other traceability alternatives including manual methods and Telelogic’s

DOORS. Figure 6-5 compares the start-up costs for each traceability method and

Figure 6-6 compares the cost of using each method for each software release.

Start-up Cost

$0.00

$20,000.00

$40,000.00

$60,000.00

$80,000.00

$100,000.00

$120,000.00

$140,000.00

$160,000.00

$180,000.00

$200,000.00

Manual Method Prototyped Database Method Telelogic's DOORS

Figure 6-5. Start-up Cost Comparison.

The development and other necessary start-up efforts required for using the

prototype for the database-based tool (including DER reviews) required

approximately 995 man-hours of effort. Assuming an average salary of $75,000.00,

77

this translates into a start-up cost of approximately $35,877.40. If Telelogic’s

DOORS had been selected for use on the project, the licensing cost for the 45

software engineers assigned to the project would have been $180,000.00 in addition

to a $36,000.00 yearly maintenance fee. As additional engineers were added to the

project, the cost for licenses and maintenance would only increase as additional

licenses would need to be purchased for each new person added to the team.

Converting to DOORS would also incur a signification start-up cost in addition to the

licensing fees because it would require both time and resources to convert the project

over to the DOORS system. Manual methods require very little in terms of start-up

costs because they can make use of a simple spreadsheet or table in a document.

However, manual methods become more costly after a project is started due to the

amount of time required to use them. This is shown in Figure 6-6.

Cost Per Software Release

$0.00

$1,000.00

$2,000.00

$3,000.00

$4,000.00

$5,000.00

$6,000.00

$7,000.00

$8,000.00

$9,000.00

$10,000.00

Manual Method Prototyped Database Method Telelogic's DOORS

Figure 6-6. Cost Comparison per Software Release.

78

The high cost of using manual traceability methods is clearly shown in Figure

6-6. Due to the large amount of time and effort required to implement traceability

manually for each software release, manual methods incurred a cost of $7,500.00 per

software release. In comparison, the prototyped database method only cost $793.27

because most traceability tasks were automated and did not require significant human

interaction. The cost estimate of $9,000.00 for Telelogic’s DOORS came from

dividing the yearly maintenance fee of $36,000.00 by the average number of software

releases per year (four) for the software project. In practice, the actual costs would be

higher because time would need to be spent on traceability activities within the

DOORS system for each software release.

Overall, use of the database-based tool for traceability is favorable in terms of

cost in comparison to both Telelogic’s DOORS and manual methods. Because

implementing traceability using manual methods required 186 additional man-hours

of work per software release, this translates into an extra cost of approximately

$6,706.73 per software release. At that rate, only six software releases would be

required to completely offset the initial development cost of the database-based tool.

Because the software project used for the case study described in Chapter 5 averages

four software releases per year, the initial cost of development for the database-based

tool would be offset in only 1.5 years. In addition, the estimate of the extra cost for

using manual methods is a very conservative one, as neither the potential for extra

sales resulting from releasing the product to market sooner nor the benefits from the

higher quality results provided by the database-based tool were taken into account. If

79

the tool were used for additional projects, the overall costs would be even lower

because the initial development costs could be spread among multiple projects.

Use of the database-based tool is also favorable in terms of cost when

compared to using Telelogic’s DOORS. The initial costs for developing the

database-based tool were $144,122.60 less than licensing Telelogic’s DOORS, and

the cost per software release was $8,206.73 less because the database tool did not

have yearly maintenance fees. This is a conservative estimate as the cost per software

release for Telelogic’s DOORS does not include the cost of the time that would need

to be spent on traceability activities using the DOORS interface because this data was

not available for the project for which the case study was performed.

6.2 Qualitative Analysis

6.2.1 Database Tool Strengths

The biggest strengths of the database tool are the amount of automation it introduces

to the traceability process and the facilities for preventing and detecting traceability

errors that are included. With the database tool, most of the aspects of generating

traceability information are automated; human interaction is only required for

creating links between requirements, design data, and source code. Everything else

can be automated using the buttons included in the user interface.

 The error checking facilities for traceability links included in the database tool

are a major benefit. The use of referential integrity for the traceability links means

that it is impossible to introduce links to non-existent data. Such incorrect links were

80

a common occurrence with the manual traceability method due to typographical

errors. Similarly, the importation tools for the database prevent the possibility of

failing to include existing items or having non-existent items in the base relations in

the database. Use of the importation tools on a regular basis makes it possible to

prevent stale items from being stored in the database as well as automatically adding

new elements. In addition, the user interface includes an option for checking for

missing traces. This allows for the identification of areas where tracing needs to be

completed as well as making it easy to identify the creation of unspecified features

which are indicated by design elements or source code that do not trace to

requirements. Such features, known as gold-plating or feature creep, are a drain on

both time and resources and should be avoided (Muvuti & Lungu 2004).

The only errors that the database tool cannot account for are manually created

incorrect links between existing project elements. If checking traceability links is

included in the project’s review process, it should be difficult for such links to slip

through. This is demonstrated by the very low number of errors detected in the

traceability data generated from the database tool in the case study. This is not

surprising because it is a well-documented fact that as the amount of human

interaction in the traceability process is reduced, the number of errors in the resulting

traceability data is also reduced (Hayes & Dekhtyar 2005).

 The database tool also had a low impact on existing project artifacts, as it was

capable of importing data from them without requiring changes. This was important

because it allowed other project development activities to continue in parallel with the

81

development of the database-based automated traceability tool. If a major impact on

project documentation had been required, a significant amount of delay would have

been incurred because the project DERs would have needed to review the changes to

the artifacts in addition to the new tool to ensure that they were acceptable. The low

impact on existing project artifacts is a strength that is not shared by commercially

available traceability tools such as Telelogic’s DOORS (2007). Similarly, the ability

of the database-based tool to easily integrate source code into the traceability

information is a major benefit that is not provided by Telelogic’s DOORS (2007).

6.2.2 Potential Areas of Improvement

The database tool for automating traceability does have some room for improvement

in certain areas. Usability is one such area. Although much time and effort was spent

trying to make the database tool as user friendly as possible, many software engineers

who were not experienced with databases were initially reluctant to try it. Similarly,

the tool was initially viewed with suspicion by the DERs who performed reviews for

the project. They refused to use the tool’s interface to view the traceability data and

to check for traceability errors. Instead, they demanded that the tool output

traceability data in a traditional traceability matrix format which required a lot of time

and effort to be spent writing code to allow the database to output nicely formatted

traceability matrices for the DERs to review.

One way to improve the usability of the tool would be to add user

documentation and to include context-sensitive help features. Since the tool was only

82

developed as a prototype, time was not spent developing significant user help features

as these topics were covered in a training session with the expected users of the tool.

However, such features have become more important as additional projects have

expressed interest in the tool. Therefore, the development of user documentation and

help features is considered to be important future work on the tool.

Human error has the potential to introduce incorrect links in the traceability

information when the traceability links between requirements, design data, and source

code are created. It is impossible to completely remove human interaction from the

traceability process (Hayes & Dekhtyar 2005); however, if the links were made even

easier to create, the potential for human error could be reduced. One idea for making

the link creation process easier is to include contextual information along with the

requirement, design, and source code module identifiers that are stored within the

database. This would reduce the potential for human error because it would make the

items being linked more apparent without having to refer to external resources such

as a requirements document.

The reliance of the tool on an underlying database such as Microsoft Access

or MySQL introduces tradeoffs. It is possible that neither database may be

completely ideal for a project. For example, use of an Access database may introduce

complications for allowing multiple simultaneous users. Use of a MySQL database

may complicate configuration management and may require a database administrator.

If the tool did not rely on an external database, it is possible that the best features of

the currently supported external databases could be combined in a database contained

83

within the tool itself. However, development of an internal database for the tool was

considered to be outside the scope of this research.

84

Chapter 7

Conclusions and Future Work

7.1 Conclusions

Traceability offers many benefits to software projects, and it has been identified as

being critical for their success (Young 2006). Unfortunately, many organizations

struggle to understand and implement traceability which means that these benefits can

go unrealized. Many methodologies exist for implementing traceability; however,

each existing methodology has important weaknesses that hinder the implementation

of traceability. Some of these methods require a significant amount of manual work

to create and maintain. Commercial tools exist that attempt to automate some aspects

of the traceability process, but they are expensive and have their own set of

limitations. Methodologies for automating traceability have been proposed in the

academic world, but tool support for these methods is lacking in industry. Because of

this, quality tool support for traceability activities in the software engineering field

has remained an open problem.

For this reason, this thesis has explored a streamlined, cost-effective method

of automating traceability activities using a database-based tool. The proposed

method was described in detail, prototyped, and tested in a case study using an actual

85

software project. The experimental results of the case study were presented in

Chapter 6, and the results serve to demonstrate the viability of the proposed method

for implementing traceability for software projects. Not only did the new method

save time in comparison to manual methods of implementing traceability, but the

resulting output also contained far fewer errors. The new method also did not share

in the usual weaknesses of commercial traceability tools in that it was significantly

lower in cost, and it was able to include important traceability information such as

source code that is lacking from popular commercial tools such as Telelogic’s

DOORS (2007). A comparison of pertinent information for the new tool is provided

for manual methods in Table 7-1 and for Telelogic’s DOORS in Table 7-2.

Table 7-1. Comparison of the Database-Based Tool with Manual Methods.

Method Start-Up Costs Cost Per Software
Release

Number of Errors
Detected in the

Results
Manual Method $36.06 $7,500.00 206
Database Tool $35,877.40 $793.27 2

Table 7-2. Comparison of the Database-Based Tool with Telelogic’s DOORS.

Method Start-Up Costs Yearly
Maintenance Fees

Source Code
Included in

Results?
Telelogic’s DOORS $180,000.00* $36,000.00 No
Database Tool $35,877.40 $0.00 Yes

*This figure only includes licensing fees, and does not take into account the cost of converting the
project over to the DOORS system, which is likely to be significant.

86

7.2 Summary of Contributions

This thesis proposed a streamlined, cost-effective database-based method for

implementing and automating traceability activities for software projects. The

proposed method was described, prototyped, and tested in a case study using an

actual software project. Metrics were collected from the case study, and the results

demonstrated that use of the new traceability approach resulted in time savings as

well as fewer errors in the resulting traceability output in comparison with manual

methods. The proposed traceability tool was considerably more cost-effective to

develop and use than either manual traceability methods or established commercial

traceability tools such as Telelogic’s DOORS. A qualitative analysis of the new

traceability tool was also performed. The strengths and weaknesses of the approach

were described and analyzed. The quantitative and qualitative analysis demonstrated

that the new approach to traceability provides significant improvements over both

manual methods of implementing traceability and existing commercial traceability

tools such as Telelogic’s DOORS.

7.3 Future Work

This research focused on developing a cost-effective alternative method for

implementing and automating traceability activities for software projects. Although

the proposed method was prototyped and tested in a case study, effort was not spent

on developing a viable commercial product that could easily be deployed throughout

the software engineering industry. In the future, it would be beneficial to extend upon

87

the work presented in this thesis to make the proposed traceability method more

easily portable among software projects. This would also facilitate testing of the tool

with other software projects.

Additionally, since the proposed traceability tool was only developed as a

prototype, potential improvements to the user interface were identified and noted as

areas that could be improved in the prototyped version of the tool. It would be useful

to spend time refining the user interface to make the tool easier to use, especially in

the area of link creation. Similarly, it would be helpful to spend time creating user

documentation and context-sensitive online user assistance for the tool to improve its

usability.

It would also be beneficial to consider an internal implementation of the

database used with the tool instead of relying on an external database such as

Microsoft Access or MySQL. Each external database has its own strengths and

weaknesses, and it may be possible to realize the strengths of each external database

in an internal database without incorporating their weaknesses.

88

Bibliography

Bennatan, E. (2006), Catastrophe Disentanglement: Getting Software Projects Back

on Track, Addison Wesley Professional

Boehm, B. (2003). “Value Based Software Engineering”, ACM SIGSOFT Software

Engineering Notes, 28(2).

Bowen, J., O’Grady, P. & Smith L. (1990), “A Constraint Programming Language for

Life-Cycle Engineering”, Artificial Intelligence in Engineering, 5(4), pp. 206-
220.

Chrissis, M., Konrad, M. & Shrum, S. (2003), CMMI : Guidelines for Process

Integration and Product Improvement. Addison-Wesley Professional.

Clarke, S., Harrison, W., Ossher, H. & Tarr, P. (1999), “Subject-Oriented Design:

Towards Improved Alignment of Requirements, Design, and Code”,
Proceedings of the 1999 ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications, pp. 325-329, Dallas,
TX.

Cleland-Huang, J., Chang, C. & Christensen, M. (2003), “Event-Based Traceability

for Managing Evolutionary Change”, IEEE Transactions on Software
Engineering, 29(9), pp. 796-810.

Cleland-Huang, J., Chang, C. & Ge, Y. (2002), “Supporting Event Based Traceability

through High-Level Recognition of Change Events”, Proceedings of the 26th
Annual International Computer Software and Applications Conference on
Prolonging Software Life: Development and Redevelopment, pp. 595-602,
Oxford, England.

Compuware Corporation (2004), “Requirements Traceability for Quality

Management”, Compuware Whitepaper.
http://www.softwarebusinessonline.com/images/WhitePaper_Compuware.pdf.

89

Davis, A. (1990), “The Analysis and Specification of Systems and Software
Requirements”, Systems and Software Engineering, IEEE Computer Society
Press, pp. 119-144.

Domges, R. & Pohl, K. (1998), “Adapting Traceability Environments to Project

Specific Needs,” Communications of the ACM, 41(12), pp. 55-62.

Egyed, A. (2001), “A Scenario-Driven Approach to Traceability,” 23rd International

Conference on Software Engineering, pp. 123-132, Toronto, Ontario, Canada.

Egyed A. & Grunbacher P. (2002), “Automating Requirements Traceability: Beyond

the Record and Replay Paradigm”, Proceedings of the 17th IEEE International
Conference on Automated Software Engineering, pp. 163-171, Edinburgh,
United Kingdom.

Egyed A. & Grunbacher P. (2004), “Identifying Requirements Conflicts and

Cooperation: How Quality Attributes and Automated Traceability Can Help”,
IEEE Software, 21(6), pp. 50-58.

Evans, M. (1989), The Software Factory, John Wiley and Sons.

Federal Aviation Administration (2001), Commercial Off-The-Shelf (COTS) Avionics

Software Study, Report No. DOT/FAA/AR-01/26.

Finkelstein, A. & Dowell, J. (1996), “A Comedy of Errors: The London Ambulance

Service Case Study,” Proceedings of the Eighth International Workshop on
Software Specification and Design, pp. 2-5, Schloss Velen, Germany.

Gills, M. (2005), “Software Testing and Traceability”, University of Latvia.

http://www3.acadlib.lv/greydoc/Gilla_disertacija/MGills_ang.doc.

Gotel, O. & Finkelstein, A. (1994), “An Analysis of the Requirements Traceability

Problem”, Proceedings of the First International Conference on Requirements
Engineering, pp. 94-101, Colorado Springs, CO.

Harker, S., Eason, K. & Dobson, J. (1993), “The Change and Evolution of

Requirements as a Challenge to the Practice of Software Engineering”,
Proceedings of the IEEE International Symposium on Requirements
Engineering, pp. 266-272, San Diego, CA.

Hayes, J. & Dekhtyar A. (2005), “Humans in the Traceability Loop: Can’t Live With

‘Em, Can’t Live Without ‘Em”, Proceedings of the 3 International
Workshop on Traceability in Emerging Forms of Software Engineering, pp.
20-23, Long Beach, CA.

rd

90

Hayes, J., Dekhtyar, A. & Osborne, J. (2003), “Improving Requirements Tracing via
Information Retrieval”, Proceedings of the 11th IEEE International
Requirements Engineering Conference, pp. 138-147, Monterey, CA.

Heindl, M. and Biffl, S. (2005), “A Case Study on Value-Based Requirements

Tracing”, Proceedings of the 10th European Software Engineering
Conference, pp. 60-69, Lisbon, Portugal.

IBM Rational Software (2007), “IBM Rational RequisitePro”,

ftp://ftp.software.ibm.com/software/rational/web/datasheets/version6/reqpro.p
df.

IBM Software (2007), “Rational Requisite Pro”, http://www-

306.ibm.com/software/awdtools/reqpro/

Institute of Electrical and Electronics Engineers (IEEE) (1995), Software

Development, J-STD-016 standard.

Interactive Development Environments (1991), Software Through Pictures: Products

and Services Overview, IDE, Inc.

International Council on Systems Engineering (2008), “INCOSE Requirements

Management Tools Survey”, http://www.paper-
review.com/tools/rms/read.php.

International Organization for Standardization (ISO) (2000), Quality Management

Standard, ISO 9000:2000 standard.

Jarke, M. (1998), “Requirements Tracing”, Communications of the ACM, 41(12), pp.

32-36.

Karlsson, J. (1996), “Software Requirements Prioritizing”, Proceedings of the 2nd

International Conference on Requirements Engineering, pp. 110-116,
Colorado Springs, CO.

Lefering, M. (1993), “An Incremental Integration Tool Between Requirements

Engineering and Programming in the Large”, Proceedings of the IEEE
International Symposium on Requirements Engineering, pp. 273-276, San
Diego, CA.

Leffingwell, D. (1997), “Calculating Your Return on Investment from More Effective

Requirements Management,” American Programmer, 10(4), pp. 13-16.

91

Lempia, D. & Miller, S. (2006), Requirements Engineering Management, presented at
the 2006 National Software and Complex Electronic Hardware
Standardization Conference, Atlanta, GA.

Levelson, L. & Turner, C. (1993), “An Investigation of the Therac-25 Accidents,”

IEEE Computer, 26(7), pp. 18-41.

Li, W., Vaughn, R. & Saiedian, H. (2002), “Pre-Requirements Traceability”,

Encyclopedia of Software Engineering, Marciniak, J. (editor), vol. 61, Wiley,
New York, NY.

Macfarlane, I. & Reilly, I. (1995), “Requirements Traceability in an Integrated

Development Environment”, Proceedings of the Second IEEE International
Symposium on Requirements Engineering, pp. 116-123. York, England.

Matthias, J. (1998), “Requirements Tracing”, Communications of the ACM, 41(12),

pp. 32-26.

Munson, E. & Nguyen, T. (2005), “Concordance, Conformance, Versions, and

Traceability”, Proceedings of the Third International Workshop on
Traceability in Emerging Forms of Software Engineering, pp. 62-66, Long
Beach, CA.

Muvuti, F. & Lungu M. (2004), “Service Oriented Architecture for a Software

Traceability System”, Technical Report CS04-14-00, Department of
Computer Science, University of Cape Town.

Naslavsky, L., Alspaugh, T., Richardson, D. & Ziv, H. (2005), “Using Scenarios to

Support Traceability”, Proceedings of the Third International Workshop on
Traceability in Emerging Forms of Software Engineering, pp. 25-30, Long
Beach, CA.

Nuseibeh, B. (1997), “Ariane 5: Who Dunnit?,” IEEE Computer, 14(3), pp. 15-16.

Palmer, J. (1997), “Traceability”, Software Requirements Engineering, Thayer, H. &

Dorfman, M. (editors), IEEE Computer Society Press, New York, NY.

Paulk, M., Curtis, B., Chrissis, M. & Weber, C., “Capability Maturity Model for

Software”, Version 1.1. Technical Report, Software Engineering Institute,
CMU-SEI-93-TR-024.

Radio Technical Commission for Aeronautics (RTCA) (1992), Software

Considerations in Airborne Systems and Equipment Certification, DO-178B
standard.

92

Ramesh, B. (1998), “Factors Influencing Requirements Traceability Practice”,
Communications of the ACM, 41(12), pp. 37-44.

Ramesh, B. & Edwards, M. (1993), “Issues in the Development of a Model of

Requirements Traceability”, Proceedings of the 1st International Symposium
on Requirements Engineering, pp. 256-259, San Diego, CA.

Ramesh, B. & Jarke, M. (2001), “Toward Reference Models for Requirements

Traceability”, IEEE Transactions on Software Engineering, 27(1), pp. 58-93.

Ramesh, B., Powers, T., Stubbs, C. & Edwards, M. (1995), “Implementing

Requirements Traceability: A Case Study”, Proceedings of the Second IEEE
International Symposium on Requirements Engineering, pp. 89-95. York,
England.

Smithers, T., Tang, M. & Tomes, N. (1991), “The Maintenance of Design History in

AI-Based Design”, Tools and Techniques for Maintaining Traceability
During Design, IEE Colloquium, Computing and Control Division,
Professional Group C1 (Software Engineering), Digest Number: 1991/180,
pp. 8/1-8/3.

Song, X., Hasling, B., Mangla, G. & Sherman, B. (1998), “Lessons Learned from

Building a Web-Based Requirements Tracing System”, Proceedings of the
Third International Conference on Requirements Engineering: Putting
Requirements Engineering to Practice, pp. 41-50, Colorado Springs, CO.

Spanoudakis, G., Zisman, A., Perez-Minana, E. & Krause, P., (2004), “Rule-Based

Generation of Requirements Traceability Relations”, Journal of Systems and
Software, 72(2), pp. 105-127.

The Standish Group (1994 & 2006), The Chaos Report,

http://www1.standishgroup.com/.

Swartout, W. & Balzer, R. (1982), “On the Inevitable Intertwining of Specification

and Implementation,” Communications of the ACM, 25(7), pp. 438-440.

Telelogic (2007), “Telelogic DOORS – Requirements Management for Advanced

Systems and Software Development”,
http://www.telelogic.com/products/doors/doors/index.cfm.

U.S. Department of Defense (U.S. DoD) (1988), Military Standard: Defense System

Software Development, DOD-STD-2167A.

93

U.S. Department of Defense (U.S. DoD) (1994), Military Standard: Software
Development and Documentation, MIL-STD-498.

Watkins, R. & Neal, M. (1994), “Why and How of Requirements Tracing”, IEEE

Software, 11(7), pp. 104-106.

Wiegers, K. (2003), Software Requirements, Second Edition, Microsoft Press,

Redmond, WA.

Windows Marketplace (2008), “Windows Marketplace: Product Details for

Microsoft Windows Vista Business”, http://www.windowsmarketplace.com/

Young, R. (2006), “Twelve Requirement Basics for Project Success”, CrossTalk, The

Journal of Defense Software Engineering, 19(12), pp. 4-8.

Zemont, G. (2005), “Towards Value-Based Requirements Traceability”, DePaul

University. http://facweb.cs.depaul.edu/research/TechReports/TR05-011.pdf.

94

	1 Chapter 1 Introduction
	1.1 Justification
	1.2 The Traceability Problem
	1.3 Significance
	1.4 Expected Contributions
	1.5 Evaluation Criteria
	1.6 Thesis Organization

	2 Chapter 2 Background
	2.1 Traceability Definitions
	2.1.1 Pre- and Post-Requirements Traceability
	2.1.2 Traceability Practices
	2.1.3 Traceability Users

	2.2 The Importance of Traceability
	2.2.1 Project Management
	2.2.2 Process Visibility
	2.2.3 Verification and Validation

	2.3 Traceability Methods
	2.3.1 Traceability Matrices
	2.3.3 Commercial off the Shelf (COTS) Tools
	2.3.4 Proposed Methods
	2.3.5 Other Methods

	2.4 Challenges Facing Traceability
	2.4.1 Cost
	2.4.2 Managing Change
	2.4.3 Different Stakeholder Viewpoints
	2.4.4 Organizational Problems
	2.4.5 Poor Tool Support

	3 Chapter 3 An Investigation of the Traceability Tool Problem
	3.1 Traceability Mandates in the Aviation Software Industry
	3.2 An Analysis of Current Aviation Software Traceability Methods
	3.2.1 Manual Traceability Methods
	3.2.2 Telelogic’s DOORS
	3.2.3 Other Methods

	4 Chapter 4 A Solution for the Traceability Tool Problem
	4.1 A Proposal for a Database-Based Approach to Traceability
	4.2 Prototyping the Database-Based Approach to Traceability
	4.2.1 Identifying the Necessary Traceability Data
	4.2.2 Designing the Database
	4.2.3 Creating the Software Wrapper for the Database

	5 Chapter 5 A Practical Case Study
	5.1 Software Project Background
	5.1.1 Initial Traceability Implementation

	5.2 Database-Based Traceability Tool Case Study
	5.2.1 Preparation for Use of the Database Tool
	5.2.2 Using the Database Tool
	5.2.3 Reviewing the New Traceability Method

	5.3 Current State of the Database-Based Traceability Tool

	6 Chapter 6 Evaluation and Analysis
	6.1 Quantitative Metrics
	6.1.1 Comparison with Past Project Results Using Manual Methods
	6.1.2 Cost Comparison with Traceability Alternatives

	6.2 Qualitative Analysis
	6.2.1 Database Tool Strengths
	6.2.2 Potential Areas of Improvement

	7 Chapter 7 Conclusions and Future Work
	7.1 Conclusions
	7.2 Summary of Contributions
	7.3 Future Work

	
	8 Bibliography

