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Abstract:

Occupational whole body vibration has long been associated with low back injuries.  

However, the mechanism of these injuries is not well understood.  In this paper, the effect 

of whole body vibration on proprioception and dynamic stability was examined.  Subjects 

exposed to 20 minutes of vertical, seated, whole body vibration were found to have a 1.58 

fold increase in position sense errors after vibration relative to controls exposed to 20 

minutes of the same seated posture without vibration exposure.  To understand the 

potential effect of a sensory loss on dynamic low back stability a lumped parameter 

model of the trunk and neuromotor response was created.  Using this model, an increase 

in the threshold of the sensory system was predicted to increase trunk flexion and delay 

neuromotor response with a sudden, unexpected perturbation.  These predictions were 

demonstrated in a second experiment where subjects exhibited both an 11.9% increase in

trunk flexion and an 11.2% increase in time to peak paraspinal muscle response

(measured using integrated electromyographic activity) after exposure to 20 minutes of 

vertical, seated, whole body vibration.    

Keywords: Vibration, Proprioception, Lumbar Spine, Stability

Relevance to Industry:

For workers exposed to WBV, this research suggests a loss in the ability to sense and 

control lumbar posture may occur.  After exposure, unexpected perturbations during 

manual materials handling could lead to injury.  Reducing vibration exposure or a break 

between exposure and manual materials handling could be used to reduce this risk.
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Introduction

Whole body vibration (WBV) exposure has long been identified as an important 

risk factor for musculoskeletal injuries in industrial workers (Frymoyer et al., 1983).  

WBV has been associated with a higher incidence of low back disorders in a number of 

occupations including pilot, truck driver, and heavy equipment operator (Bongers et al., 

1990, Fishbein and Salter, 1950, Magnusson et al., 1996, Mansfield and Marshall, 2001, 

Pope and Hansson, 1992). Exposure to WBV has been demonstrated to increase risk of 

low back disorders by a factor of 1.2 to 39.5 (Bernard, 1997).  

The transmissibility of WBV has been studied by a number of investigators 

(Griffin and Brett, 1997, Kitazaki and Griffin, 1998, Mansfield and Griffin, 2000, Pope et 

al., 1998, Pope et al., 1999).  These studies have demonstrated a resonance of the seated 

person to axial seat pan vibrations of 4-6 Hz.  While transmissibility has been studied 

thoroughly, the mechanism by which such vibration leads to low back injury has yet to be 

identified.  Cyclic muscular activity in the muscles of the low back has been observed 

during exposure to 3-10 Hz vertical, seat pan vibrations (Bluthner et al., 2001, Bluthner et 

al., 2002, Pope et al., 1998, Seroussi et al., 1989, Wilder et al., 1996).  Investigators have 

suggested that such muscular activity is the result of activation of reflex mechanisms 

(Bluthner et al., 2001, Bluthner et al., 2002).  Such stimulation of sensory and 

neuromotor systems in WBV may contribute to possible injury mechanisms.

Direct muscle vibration has been shown to have a number of interesting effects on 

the proprioceptive system.  Muscle and tendon vibration in the extremities has been 

shown to result in altered proprioception and kinesthetic illusions (Cordo et al., 1995, 

Roll and Vedel, 1982).  Brumagne et al. (2000) demonstrated vibration-induced changes 
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in proprioception in the low back during exposure to direct paraspinal muscle vibration.  

It has also been shown, in experiments with a variety of muscles in the extremities, that 

increased errors in proprioception due to muscle vibration can remain after the vibration 

exposure, possibly due to neuromotor habituation or adaptation (Feldman and Latash, 

1982, Shinohara, 2005, Wierzbicka et al., 1998).  Both of these effects have been 

attributed to muscle spindle organ sensitivity to vibration (Cordo et al., 1995, Feldman 

and Latash, 1982, Roll and Vedel, 1982, Shinohara, 2005, Wierzbicka et al., 1998).  

Although such effects have been demonstrated for vibration applied directly to the 

muscle or its associated tendon, the effects of WBV on proprioception have not been 

examined.

Based on these findings for direct muscle vibration, it is possible that WBV could 

stimulate the proprioceptive system leading to increased errors in proprioception.  Such a 

change in the neuromotor system could alter dynamic spine stabilization.  In this current 

study, the theory that WBV alters proprioception and dynamic stabilization was 

examined.  The primary hypothesis was that WBV would increase errors in the ability of 

a subject to sense low back posture relative to unexposed control subjects.  Using a 

lumped parameter model of the trunk and neuromotor system, the effect of such an 

increased error on the dynamic stabilization of the trunk was examined.  From this model, 

it was hypothesized that conditions such as WBV that increase errors in the ability to 

sense low back posture would correspond to increases in neuromotor response delay and 

trunk flexion in response to a sudden load.
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Experiment 1 - Methods

Participants:

Seventeen healthy subjects (10 female, 7 male, aged 22-33 [27.55.5] years, 

1688 m, 6413 kg) participated in the study as exposure subjects and sixteen healthy 

subjects (6 female, 10 male, aged 21-36 [25.33.9] years, 1717 m, 7113 kg)

participated as control subjects.  This study was approved by the Human Subjects 

Committee of the University of Kansas.  Before participation, informed consent was 

obtained from all participants.  All of the participants reported no instance of low back 

pain or musculoskeletal disorder limiting normal torso flexion within the last year.  

Instrumentation:

A 3-D electromagnetic motion analysis system (Motion Star, Ascension 

Technology, Burlington, VT) was used to assess torso motion.  This system measures 

both position and orientation of each sensor with a resolution of 0.08 cm and 0.1 degrees 

and an RMS accuracy of 0.76 cm and 0.5 degrees.  Three electromagnetic sensors were 

placed on the skin over the manubrium and the T-10 and S1 spinous processes using 

double-sided tape.  Data from these sensors were collected at 40 Hz.  Using the position 

of the T10 and S1 sensors, trunk flexion angle was determined as the angle between a 

line connecting these sensors and vertical (defined as the z-axis of the leveled transmitter 

of the electromagnetic system).  The difference in angular orientation between the T10 

and S1 sensors in the anterior-posterior plane was defined as the lumbar curvature.  The 

manubrium marker allowed detection of trunk rotation and asymmetry of motion.  This 

configuration is consistent with previous literature on lumbar position sense and lumbar-
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pelvic coordination (Gade and Wilson, 2003, Granata and Sanford, 2000, Wilson and 

Granata, 2003).

Procedure:

The experiment consisted of subjects performing position sense measures before 

and after either exposure to WBV for 20 minutes (exposure subjects) or quiet sitting in a 

similar posture for 20 minutes (control subjects).  The position sense measures collected 

were based on a previously described position sense protocol (Wilson and Granata, 

2003).  The position sense protocol used an active-active paradigm and consisted of 3 

training trials followed by alternation of assessment and training trials for a total of 3 

assessment trials.  Before starting the first training trial, the target lumbar curvature was 

determined as an average value of the maximum and minimum possible lumbar 

curvatures a subject could obtain while maintaining an upright (0 degree) trunk flexion.  

During training trials, the subjects were first instructed to assume 0 degrees of torso 

flexion and then match his/her target lumbar curvature while both the torso flexion and 

the lumbar curvature were displayed on a computer screen.  During assessment trials, the 

biofeedback of the lumbar curvature was removed and the subjects were asked to 

reproduce the target curvature from memory.  In between trials, the subjects were asked 

to flex their trunk to approximately 30 degrees to prevent holding of a lumbar posture.  

For each trial, once the subject thought he or she had obtained the target lumbar 

curvature, data were collected for 5 seconds. The absolute position sense error was 

calculated as the absolute value of the difference between the lumbar curvature the 
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subject assumed in assessment trials and the corresponding target curvature used in 

training.  This measure allows assessment of the magnitude of error.  

The position sense protocol was performed at two different time points: at the 

beginning of the experiment and after either exposure to 20 minutes of WBV or quiet 

sitting for 20 minutes.  During the vibration exposure, subjects were asked to sit on an 

unpadded seat without a backrest.  A shaker table (Ling, Anaheim, CA) applied a 5 Hz, 

0.223 m/s2 RMS WBV to an unpadded seat in the vertical (z-axis) direction for 20 

minutes.  Throughout the WBV period, subjects placed their hands and feet on stable 

platforms adjusted to the subject’s height.  Subjects were told to assume a comfortable 

and relaxed sitting posture.

Data Analysis:

To normalize the position sense error for each subject, absolute position sense 

error after exposure was divided by the average absolute position sense error before 

exposure to get the position sense error ratio for each subject.  A two-tailed, student t-test 

was performed on the position sense error ratio between the two populations with 

significance set at p=0.05.  

Experiment 1 - Results

For the control population, the position sense error ratio was 1.000.63 (deg/deg)

with no significant difference observed between genders (Figure 1).  A position sense 

error ratio of one suggests that on average, the position sense error after quiet sitting for 

20 minutes was equal to that prior to quiet sitting.  For the vibration exposure population, 
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the position sense error ratio was 1.580.92 (deg/deg) with no significant difference 

observed between genders.  This position sense error ratio suggests that the average 

subject increased their position sense error 1.58 fold after exposure to 5 Hz, vertical 

WBV for 20 minutes.  Comparing these two populations, a two-tailed student t-test 

determined that this increase in position sense error ratio after exposure was statistically 

significant (p<0.05).  

Model

Observing the increase in position sense error with exposure to WBV, one might 

ask how such an increase in this static measure might lead to low back injury.  Position 

sense error is an indirect measure of the sense of lumbar posture or lumbar 

proprioception.  This sense of lumbar posture can arise from a number of sensory 

elements including the muscle spindle organs of the trunk musculature, sensory elements 

in the passive soft tissues (such as the ligaments of the spine), and other sensory

structures such as the vestibular system (Brumagne et al., 1999, Latash, 1998, 

Solomonow, 2004).  The ability to sense joint motion is a critical element in a number of 

reflex and voluntary responses to joint perturbations such as the stretch reflex.  In the 

stretch reflex, activation of the Ia afferents from the muscle spindle organs can induce 

contraction of the same muscle (Latash, 1998, Shinohara, 2005).  Such reflex and 

voluntary response loops are critical to the response to sudden, unexpected perturbations.  

The ability to respond to sudden perturbations, therefore, could be modulated by changes 

in sensory ability.
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To examine the potential effect of sensory deficits on low back stability, a model 

of trunk dynamics was created (Figure 2).  In this model, the trunk was modeled as a 

simple inverted pendulum:

pMmglKBI   sin      eq.1

This model was linearized to create the transfer function:
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Torso inertia and torso geometry were estimated using anthropometric data from Winter 

(1990).  For this analysis, a 78 kg, 1.755 m male was used.  The rotational inertia of the 

head, arms and trunk (HAT) (I) was estimated as 12.47 kgm2, the HAT mass (m) as 52.9 

kg, and the height of the center of mass (l) as 0.381 m.  The damping constant (B) was 

calculated based on maintaining a damping ratio () of approximately 0.2 for the 

combined intrinsic trunk stiffness and neuromotor response gain:

 IGmglKB  2 eq. 3

Similar simple models of trunk dynamics have been shown to be effective in modeling 

sudden loading dynamics in the trunk (Cholewicki et al., 1999, Cholewicki et al., 2000). 

The neuromotor response to sudden loading was lumped into one proportional 

response modulated by three components: neuromotor gain, time delay and detection 

threshold.  A time delay (Td) of 70 ms was included to account for conduction delays in 

the neuromotor system.  The detection threshold (Th) was varied from 0 to 5 degrees to 

model increases in position sense error and losses in sensory ability.

The total trunk stiffness could be estimated as the sum of the intrinsic trunk 

stiffness due to passive tissue stiffness and preparatory muscle activation and neuromotor 
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gain. Cholewicki et al. (2000) reported trunk stiffnesses of 1253  760 Nm/rad (21.88 

13.26 Nm/deg).  Moorhouse and Granata (2006) reported that 42% of the effective trunk 

stiffness comes from neuromotor gain.  Therefore, the intrinsic trunk stiffness (K) was set 

at 727 Nm/rad (12.7 Nm/deg) and the neuromotor gain (G) was set at 526 Nm/rad (9.2 

Nm/deg).

This lumped parameter model was created in Simulink (MATLAB, Natick MA) 

using variable step, Runge-Kutta differential equation solver.  To simulate a sudden 

unexpected load, 100 Nm was applied to the system for 0.10 seconds.  This pattern is 

similar to load cell patterns observed in experiment two.  The model was initially run 

with the neuromotor gain constant at 526 Nm/rad and the detection threshold increasing 

from 0 to 5 degrees.  A second run was also performed with the model, increasing the 

detection threshold from 0 to 5 degrees, but adjusting the gain to maintain a constant 

magnitude of neuromotor response.

Model Results

The detection threshold of the neuromotor response was increased from 0 to 5 

degrees to model the decreased sensory ability (increased position sense errors) observed 

experimentally while maintaining the neuromotor gain at 526 Nm/rad.  As this detection 

threshold increases, a greater deflection is needed to activate the neuromotor response 

resulting in a delay in the neuromotor response (Figure 3).  Both the initiation and the 

time to peak neuromotor response were observed to increase with increasing detection 

threshold.  In addition, with neuromotor gain held as a constant linear value, the 

magnitude of the neuromotor response decreased with increasing detection threshold.  
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The overall trunk dynamics were also affected by the increase in detection 

threshold.  With increasing detection threshold, the magnitude of the trunk flexion 

increased and the time to peak trunk flexion increased.  Cholewicki et al. (2000) related 

such a change in overall trunk dynamics to a decrease in the stabilization of the trunk.  

What is not known from this initial analysis is whether the changes in trunk flexion are 

due to the increased detection threshold solely or the decrease in neuromotor response 

magnitude.  A second analysis was, therefore, performed in which neuromotor gain was 

increased to maintain the magnitude of the neuromotor response with increasing 

detection threshold.  In this second analysis, the neuromotor gain increased from 526 

Nm/rad with a detection threshold of 0 degrees to 1132 Nm/rad with a detection threshold 

of 5 degrees.  While the magnitude of the neuromotor response remained constant in 

these trials, the magnitude and time to peak of the trunk flexion, as well as the time to 

initiation and peak neuromotor response still increased with increasing detection 

threshold (Figure 4).  From the model it can be predicted that if sensory ability changes, 

one should observe changes in the timing of the neuromotor response as well as changes 

in trunk flexion in response to an unexpected perturbation.  

Experiment 2

Participants:

For the second experiment, a sudden trunk loading protocol was performed before 

and after exposure to WBV on the same exposure population as experiment one (10 

female, 7 male, aged 22-33 [27.55.5] years, 1688 m, 6413 kg).  Vibration exposure 
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consisted of 5 Hz, 0.223 m/s2 RMS WBV to an unpadded seat in the vertical (z-axis) 

direction for 20 minutes.  

Instrumentation:

The 3-D electromagnetic motion analysis system (Motion Star, Ascension 

Technology, Burlington, VT) was again collected at 40 Hz to assess torso motion. Torso

flexion was again defined as the angle between a line connecting the sensors over the T10 

and S1 spinous processes and vertical.

Surface electromyographic electrodes (Delsys, Boston, MA) were attached to the 

skin over the right and left erector spinae muscle groups at L2/L3 level of the spine with 

4 cm inter-electrode spacing.  The electromyographic (EMG) data were collected at 1500 

Hz.  Raw EMG data were band-pass filtered between 20 and 500 Hz with several notch 

filters (40, 60, 80, 120, 180 and 240 Hz) to remove electrical and electromagnetic noise.  

The EMG data were rectified and integrated using a 100-point Hanning window.  Prior to 

the experiment, isometric, maximum, voluntary exertions were performed.  The subjects 

were instructed to perform three maximal extension exertions for five seconds against a 

fixed frame while standing with their pelvis fixed to a stationary support.  The average of 

the integrated EMG (iEMG) for these maximal exertions was collected and used to 

normalize all subsequent iEMG signals.  In addition to the EMG data, all other data (from 

a load and a contact switch) were simultaneously collected at 1500 Hz.  

Procedure:
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Sudden loading response dynamics were determined using a sudden drop protocol 

(Figure 5).  The subject was asked to stand with extended knees and with his or her arms

straight and relaxed at his or her sides. The subject’s pelvis was fixed using a belt 

attached to a solid frame. The subject wore a harness across their chest to which a weight 

was attached by a Kevlar cable via a load cell and a pulley.  The load cell recorded the 

tension in the cable.  A small preload (0.5 kg) was applied to maintain tension in the 

cable.  A sudden impulse was applied by dropping a 4.5 kg weight from a height of 10 

cm.  This load is similar to that used in previous sudden loading experiments (Cholewicki 

et al., 2000, Moorhouse and Granata, 2006, Wilder et al, 1996).  This weight was allowed 

to bounce against springs attached to the weight holder to create an impulse load.  A 

contact switch was used to indicate the instant the dropped weight made contact with the 

springs.  Throughout the sudden loading protocol, the subjects stood behind a black 

curtain and wore headphones with music in order to block both auditory and visual cues.  

For each sudden loading trial, before the load was dropped, the subject was instructed to 

match his/her target lumbar curvature and flexion angle with visual biofeedback to ensure 

the same pre-perturbation posture throughout the experiment.  Data was collected for 5 

seconds for each sudden load.

Data Analysis:

EMG data from the right side Erector Spinae muscle group was analyzed to find 

the time to peak muscular activity (timePM).  This timePM was defined as the time 

between the onset of the contact switch and the peak muscular response measured by 

iEMG.  The torso flexion (TF) resulting from the sudden perturbation was defined as the 
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difference between the peak torso flexion and the average of the torso flexion 750 ms 

before the perturbation.  Five trials of the sudden loading protocol were for each 

condition (before and after vibration exposure).  The timePM and the TF from each of 

these trials were averaged for each subject in each condition as no significant difference 

was observed between trials within a condition.

Two-tailed, paired, student t-tests were performed with the time to peak muscle 

activity (timePM), and the torso flexion magnitude (TF) as dependent variables and time 

(before or after vibration exposure) as the independent variable.  To adjust for the 

multiple dependent variables, a Bonferroni correction was applied, requiring a 

significance level of p<0.025.  These analyses were performed to test the hypotheses that 

timePM and TF would increase after exposure to WBV.    

Experiment 2 - Results

In the lumped parameter model, the increase in the position sense error and 

predicted decrease in sensory ability were modeled as an increase in the detection 

threshold of the neuromotor response.  Using this model, such a decrease in sensory 

ability was predicted to lead to an increase in the timing of the neuromotor response

(such as timePM) and in the trunk flexion (measured here as TF) with a sudden 

unexpected perturbation.  The timePM was found to increase from 20561 ms before 

vibration to 22843 ms after exposure to WBV.  A two-tailed, paired student t-test found 

this increase to be statistically significant (p<0.025).  The TF was also found to increase 

from 11.85.7 degrees before vibration to 13.25.6 degrees after WBV exposure.  This 

increase was also found to be significant in a two-tailed, paired student t-test (p<0.025).
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Discussion

Whole body vibration has long been known to be a risk factor for low back injury.  

This research suggests that changes in the proprioceptive system after vibration exposure 

may alter dynamic low back stabilization increasing risk of low back injury.  In the first 

experiment, the position sense error ratio was found to be significantly increased with

vibration exposure relative to unexposed controls.  This increased error reflects loss in the 

ability to sense lumbar posture and suggests neuromotor habituation or adaptation with 

exposure to whole body vibration.  Vibration of the muscle and/or tendon has long been 

known to stimulate the muscle spindle organs (Roll and Vedel, 1982, Shinohara, 2005).  

Vibrations below 80 Hz applied directly to the muscle or the associated tendon have been 

demonstrated to have a one-to-one association between the vibration and activity in the Ia 

afferents from the muscle spindle organs in a number of muscles including the tibialis 

anterior and extensor digitorum longus (Roll et al., 1989).  This stimulation, which can 

cause kinesthetic illusions of muscle lengthening, has also been demonstrated to have 

longer term effects after removal of the vibration (Cordo et al., 1995, Shinohara, 2005, 

Wierzbicka et al., 1998).  These effects include increases in the discharge threshold of the 

Ia afferents and inhibition of Ia terminals (Hayward et al., 1986, Hultborn et al., 1987, 

Shinohara, 2005).  Such vibration has been shown, in the ankle, to decrease the amplitude 

of H reflexes in both the stimulated and synergistic muscles (Curtis and Eccles, 1960, 

Hultborn et al., 1987, Shinohara, 2005).   Such vibration exposure has been demonstrated 

to alter overall joint dynamics as well, with vibration of the ankle tendons, for example, 

altering center of pressure trajectories in standing sway after vibration exposure



Page 16 of 22

(Wierzbicka et al., 1998).  This previous research, while predominately on the muscles of 

the extremities, suggests that vibration transmitted to the musculature of the trunk could 

alter sensory and reflex behavior.  The increased position sense error ratio in subjects 

exposed to WBV in this study supports this possibility.

The next question is whether such a sensory change could affect low back 

stability.  In this work, a model was created to examine the possible effects of an altered 

sensory threshold on dynamic trunk stabilization.  Increasing the detection threshold of 

the neuromotor response was found in the model to increase the time to initiation and 

peak neuromotor response and to increase the trunk flexion in response to a sudden load.  

These increases occurred, even when the magnitude of the neuromotor response was 

maintained at constant levels by adjusting the neuromotor gain.  Experimentally, these 

predictions were confirmed with increases in both the time to peak EMG response 

(timePM) and in the torso flexion (TF) with a sudden unexpected load.  These findings 

agree with previous studies that have demonstrated increased delay in reflex response 

after exposure to axial WBV while seated in a flexed posture (Wilder et al., 1996).

Vibration has a number of characteristics including the duration and the frequency 

of the vibration.  In the extremities, previous studies examining the post-vibration effects 

on the muscle spindle organs and neuromotor system have been performed at frequencies 

ranging from 20 to 150 Hz (Roll and Vedel, 1982, Roll et al., 1989, Shinohara, 2005).  

However, to the author’s knowledge, no study has, as of yet, examined the frequency 

dependence of post-vibration changes in sensory behavior.  Unlike directly applied 

muscle or tendon vibration, WBV transmission to the musculature is filtered through 

other soft tissues.  As such, vertical, seat pan, WBV has been demonstrated to be 
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transmitted to the spine readily at frequencies at or below 4-6 Hz but is attenuated at 

higher frequencies (Griffin, 1990).  Other modes of vibration transmission such as 

horizontal seat pan vibration and back rest vibration have different transmission 

characteristics (Griffin and Brett, 1997, Kitazaki and Griffin, 1998, Mansfield and 

Griffin, 2000, Pope et al., 1998, Pope et al., 1999).  In this study, a frequency of 5 Hz was 

used to provide the greatest transmission of axial vibration to the musculature.  However, 

the interaction of vibration transmissibility and vibration susceptibility of the neuromotor 

system as a function of frequency should be investigated further.  Duration of exposure is 

another potential factor in the effects of vibration on the neuromotor system.  This study 

investigated the effect of a short (20 minutes) exposure to whole body vibration relative 

to the exposure that might occur during a full workday.  Longer exposures could yield 

more pronounced or differing effects.  The effect of longer exposures should be studied 

further.  Finally, the subjects in these two experiments were young adults without a 

history of occupational vibration exposure.  Workers with experience in vibration 

exposure could potentially demonstrate altered response patterns.  Future studies on these 

topics will further expand the understanding of whole body vibration and its effects on 

proprioception and trunk dynamics.

The time to peak muscle response (timePM) was found to average 218±63 ms. In 

the literature, experiments on sudden loading dynamics have delays in muscle response 

ranging from 127 to 205ms depending on the measurement method (Granata, Slota, & 

Wilson, 2004; Lavender, Marras, & Miller, 1993; Wilder et al., 1996).  Two factors 

contribute to the slightly longer times observed in this study.  The first is the use of the 

contact switch rather than the load cell to determine the beginning of the sudden loading.  
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Second, some of the studies have examined the onset rather than the peak muscular 

activation.  In this experiment, the contact switch and the peak muscular activation were 

found to be more consistent measures and therefore preferable for determining changes 

delay times.  While this method gave slightly larger delay times, they are consistent with 

previous sudden loading studies.  However, some authors have suggested that postural 

response may be a combination of multiple reflex and voluntary responses that could be 

examined separately by looking at earlier and late muscular responses (Marden et al. 

1981).  Future examination of vibration induced changes in sudden loading dynamics 

should examine muscular response, particularly in the short latency involuntary reflex 

response, to further elucidate proprioceptive effects on postural control.

In conclusion, WBV has been shown to increase errors in the ability to sense and 

reproduce lumbar posture.  Through modeling and experimental measurement, the role of 

the sensory system in the dynamic response to sudden loading has been demonstrated.  

For the truck driver, loss in the ability to accurately sense low back posture and to 

quickly respond to unexpected sudden loads could pose a risk.  If the driver were to 

unload his or her truck after a period of vibration he or she may not be able to 

appropriately react to an unstable footing or unexpectedly heavy box.  While isolating the 

driver from the vibration would be the ideal solution, such a driver might also benefit 

from a rest period after vibration to allow recovery of the proprioceptive system.  Future 

work should examine this recovery time, as well as the other factors that may influence 

these effects including vibration frequency, exposure duration and subject experience.  
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Figure Legends
Figure 1.  The position sense error ratio, defined as the average position sense error after 
exposure condition over the average position sense error prior to exposure condition, was 
found to increase significantly with vibration exposure.

Figure 2.  A model of the trunk in response to sudden loading was created to examine 
how errors in proprioception could be linked to dynamic trunk stabilization.  In this 
model, the trunk was modeled as a simple inverted pendulum with a mass (M), an inertia 
(I), a preparatory trunk stiffness (K), a damping constant (B) and a delayed neuromotor 
response.  The increased errors in proprioception were modeled as an increase threshold 
to detect trunk motion in the neuromotor response.  

Figure 3.  While holding the neuromotor gain constant, the detection threshold of the 
neuromotor response (Th) was increased from 0 to 5 degrees.  This resulted in changes in 
the neuromotor response including increases in the time to initiation and to peak 
neuromotor response and decreases in the magnitude of the neuromotor response (A).  
The peak torso flexion magnitude also increased with increasing detection threshold (B).

Figure 4.  In the second run, the neuromotor gain was adjusted to maintain a constant 
magnitude of neuromotor response with increasing detection threshold.  Increases in the 
time to initiation and to peak neuromotor response were again observed (A).  The peak 
torso flexion magnitude also increased with increasing detection threshold (B).

Figure 5.  The sudden loading protocol was performed with the subject standing with 
their pelvis fixed to a rigid restraint.  The sudden load was applied via a chest harness.  A 
Kevlar cable, connected through a pulley and load cell, was attached to a preload base.  A 
4.5 kg weight was dropped 10 cm and allowed to bounce against the base creating an 
impulse load.  Headphones with music and a curtain prevented audio and visual cues.
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