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Abstract 

Pain associated with chronic musculoskeletal disorders poses a major clinical 

problem and costs billions of dollars each year. The physical therapy profession has 

explored the physiology of exercise to control pain for many decades. Although we 

are far from understanding the underlying mechanism of exercise-induced analgesia, 

attempts have been made through body of this work to understand muscle pain and 

the role of exercise in mediating muscle pain utilizing animal models. The overall 

purpose of this dissertation was to examine muscle pain and the effect of aerobic 

exercise in reducing chronic pain induced by acidic saline in mice; this animal model 

mimics a human condition, fibromyalgia (FMS) and similar diseases that present 

with widespread hypersensitivity to mechanical stimuli. In addition, spinal activation 

of the immediate early gene, Fos, in response to gastrocnemius compression and 

hind paw palpation was investigated in the acid-induced pain model. Furthermore, 

the molecular basis by which exercise training can potentially control muscular pain 

in the chronic stage was investigated by exploring exercise-induced neurotrophin-3 

(NT-3) synthesis.  

All experiments were carried out in 2 different strains of female mice, 

C57Bl/6 and CF-1. Hypersensitivity to mechanical stimulation was tested in the 

cutaneous and muscle tissues utilizing standard methods of von Frey monofilaments, 

instrumented forceps and Fos expression of the dorsal horn spinal cells. The effect of 

aerobic exercise on chronic pain state was tested with behavioral (von Frey and 

instrumented forceps) and molecular (Reverse Transcription-Polymerase Chain 
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Reaction and Enzyme-Linked Immunosorbent Assay) measures. Two repeated 

intramuscular acid injections led to cutaneous mechanical hyperalgesia of bilateral 

hind paws in both strains of mice. In C57BL/6 mice, the effect of acid injections was 

limited to the contralateral muscle, indicating secondary muscle hyperalgesia. The 

CF-1 mice developed bilateral hind limb muscle hyperalgesia that lasted up to 2 

weeks, suggesting chronic phase of muscle pain. This finding was confirmed with 

increased Fos activity in the corresponding spinal cord level. The increase in 

cutaneous hypersensitivity did not correlate with spinal Fos expression in either 

strain of mice. These results indicate that acid injections induced cutaneous and 

muscle hyperalgesia in female mice, yet the development of muscle pain is subjected 

to the variability of genetic background in both strains of mice.  

The central projection of nociceptors from the paw and the gastrocnemious 

muscle evoked different Fos activation pattern in the spinal cord. Gastrocnemius 

compression resulted in rostrocaudal and centrolateral somatotopic organization of 

the ipsilateral dorsal horn in all laminae. In comparison, paw palpation resulted in 

Fos expression of mediocentral superficial laminae (I/II) of the ipsilateral side that 

was restricted to lumbar segments 4/5 (L4/5) and bilateral deep laminae (V/VI) of 

the entire lumbar spinal cord. Bilateral Fos activation was greater in C57BL/6 mice 

compared to CF-1 mice, demonstrating important baseline differences within the 2 

strains.  

NT-3 is known to act in an analgesic manner in the acid-induced model yet 

the molecular events of exercise training that cause upregulation of NT-3 have not 
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been investigated. Aerobic exercise training is likely to stimulate muscle spindle 

activity and blood flow to muscle cells, thus causing increase in NT-3 expression. 

Our results indicated that moderately intense level of aerobic exercise training was 

required to stimulate molecular changes in NT-3 expression, as observed in CF-1 

mice. NT-3 expression did not change in response to mild exercise training with 

C57BL/6 mice, in the acute or the chronic stage. In addition, exercise training 

significantly decreased muscle pain and had positive effects on cutaneous sensitivity 

in CF-1 mice, whereas the effect of mild exercise training was less robust in 

C57BL/6 mice.   

Some of the beneficial effects of exercise on chronic widespread 

musculoskeletal pain can be associated to increased NT-3 synthesis.  The molecular 

events responsible for anti-analgesic actions of NT-3 are yet to be determined. 

However, we propose a central action of NT-3 by which exercise decreased 

widespread hyeralgesia since the exercise effect was noted bilaterally and on 

secondary hyperalgesia of multiple tissues. Thus, the explanation for pain 

modulation by exercise may be through mediating central sensitization by 

stimulating muscle afferents, as supported by our results. The lack of a strong 

analgesic effect of exercise training and NT-3 expression in C57BL/6 mice further 

strengthens the role of NT-3 as an anti-nociceptive molecule. In addition, similar to 

the exercise training, acid injections increased NT-3 expression within the muscle, 

suggesting a possible compensatory mechanism to reduce pain. This finding 

indicates that muscle has an endogenous system to protect against painful conditions.  
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In summary, the results of the present study suggest a novel finding of 

chronic muscle pain and the beneficial effect of aerobic exercise training on muscle 

pain in the acid-pain model. The study explores the role of NT-3 as a possible 

correlate by which aerobic exercise training may control the sensory aspect of pain 

processing. Our results also indicate different Fos activation patterns in response to 

mechanical perturbation to deep and cutaneous tissues which adds new information 

to our understanding of deep tissue nociception as well as its spinal distribution. 
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1.1 Overview  

Most people suffering from various chronic pain syndromes report deep 

tissue pain. However, our knowledge about chronic musculoskeletal pain is primarily 

based on rodent models of cutaneous pain. Most animal studies related to exercise 

training and its effect on hypersensitivity have exclusively focused on cutaneous pain 

models. The growing numbers and limited efficacy of current pharmacological 

interventions necessitate better understanding and management of deep tissue pain 

associated with chronic pain syndromes. Many human studies provide strong support 

for aerobic exercise training specifically for individuals with fibromyalgia syndrome 

(Goldenberg, Burckhardt, & Crofford, 2004; Meiworm, Jakob, Walker, Peter, & 

Keul, 2000; Redondo et al., 2004), and yet, very little is known about the central and 

peripheral neuromuscular mechanisms of exercise-induced analgesia.  

Recent studies exploring the neuromuscular effects of physical training on 

healthy animals have indicated that selective neurotrophins, brain derived 

neurotriphin (BDNF) and NT-3 can be modulated by physical training (Gomez-

Pinilla, Ying, Opazo, Roy, & Edgerton, 2001; Ying, Roy, Edgerton, & Gomez-

Pinilla, 2003). The role of NT-3 in response to exercise in chronic pain has not been 

examined. In fact, very limited work has been conducted to show whether exercise 

can modulate sensory input in chronic muscular pain syndromes. The overall 

purpose of this dissertation was to analyze muscle hyperalgesia following acid 

injections, to explore activation of spinal cells in response to noxious mechanical 

stimulation, to tests the effect of exercise training on chronic widespread secondary 
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hyperalgesia, and to investigate molecular changes in NT-3 expression in response to 

exercise training using 2 strains of mice. We proposed that acid induces muscle pain 

and aerobic exercise training reduces the acid-induced muscle pain and increases 

NT-3 synthesis, providing a possible molecular link in the modulation of chronic 

muscle pain.    

 

1.2  Pain  

1.2.1 Historical Perspective    

Nearly a century ago, Sherrington first described characteristics of pain 

sensory neurons and neurons with distinct threshold levels (Julius & Basbaum, 2001; 

Perl, 2007). During that time in the early 19th century, anatomists also reported the 

evidence of ascending pathway that originated from the spinal cord, with axons 

crossing over to the opposite side and ascended in the lateral white matter to the 

rostral brainstem. Since then, a substantial body of knowledge from basic science to 

clinical studies has accumulated in the field of pain. In recent years, much progress 

has been made in our understanding of processing and transmission of nociceptive 

information, particularly of the primary sensory neurons at the peripheral levels and 

the secondary neurons at the spinal level (Basbaum & Woolf, 1999).   

 

1.2.2 Pain Generation  

Tissue damage results in a release of chemicals triggering a nociceptive 

response through C- and A-delta afferent fibers. These afferents generate electrical 
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impulses that travel along nerve axons to the dorsal horn of the spinal cord. In the 

dorsal horn, an extremely complex chemical interaction, neurotransmission, takes 

place between the 1st and the 2nd order neurons. Many excitatory neurotransmitters 

are released and an influx of sodium and calcium ions take place, primarily in lamina 

I, II and V before information crosses over to the opposite side and travels to higher 

centers (Bolay & Moskowitz, 2002; Lawrence, Stroman, Bascaramurty, Jordan, & 

Malisza, 2004; Zigmond, 1999). Typically 3 distinct order of neurons are described 

to the generation of pain: 1st order neurons from the periphery to the spinal cord, 2nd 

order neurons from the spinal cord to the thalamus and 3rd order neurons from the 

thalamus to the cerebral cortex. The focus of this dissertation has been on the the 1st 

and 2nd order neurons.  

 

1.2.3 Primary Afferents and Their Central Projections  

Anatomically, there are 2 broad primary sensory neurons that convey painful 

information, A-fibers and C-fibers. A-fiber nociceptors are mainly Aδ that responds 

to noxious mechanical and chemical stimuli and thus are considered polymodal 

neurons (Julius & Basbaum, 2001; Treede, Meyer, & Campbell, 1998). Some Aδ 

fibers exclusively respond to heat stimulus.  Aβ fibers mainly respond to mechanical 

stimuli but under certain conditions can elicit noxious chemicals. C-fiber nociceptors 

are most numerous in skin but also innervate other tissues. Most are polymodel as 

they respond to noxious chemical and heat stimuli. A small portion of C-fibers have 

a high threshold and respond to noxious mechanical stimuli (Light & Perl, 2003). 
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Beyond these two broad categories, there are suspected silent nociceptors that 

respond only to high-threshold or repeated stimuli and can be activated in acute 

inflammation (Mayer, Mao, Holt, & Price, 1999).  

C-fibers are further divided into two distinct categories, peptidergic and 

purinergic, based on their responses to neurotrophic factors (Basbaum & Woolf, 

1999) and their site of termination within the spinal cord (Bailey & Ribeiro-da-Silva; 

Hunt & Rossi, 1985; Nagy & Hunt, 1982). Peptidergic neurons synthesize and 

release neuropeptides, substance P and calcitonin gene-related peptide (CGRP), and 

express tyrosine kinase A (trkA) receptors for binding of nerve growth factor (NGF). 

These fibers terminate mainly in lamina I and the superficial layer of lamina II (Braz, 

Nassar, Wood, & Basbaum, 2005; Hunt & Mantyh, 2001; Levine, Fields, & 

Basbaum, 1993). This set of neurons is activated with inflammatory conditions and 

in clinical syndromes such as FMS (Basbaum & Woolf, 1999). Purinergic neurons 

express surface lectin receptors like IB4 and P2X3, and c-ret receptor for binding of 

glia cell derived neurotrophic factor (GDNF). These fibers terminate exclusively in 

the inner parts of lamina II, also called substantia gelatinosa (SG) (Bailey & Ribeiro-

da-Silva; Bennett, 1999; Hunt & Rossi, 1985). Both groups of C-fibers respond to 

similar types of noxious stimulation and express the capsaicin-gated transient 

receptor potential venilloid 1 (TRPV1) receptor, which responds to noxious chemical 

and thermal stimulation (Caterina et al., 1997; Hunt & Mantyh, 2001). Besides these 

receptors, acid-sensing ion channels (ASIC) have also been identified and react to 
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the high level of acidity in inflamed tissue (Basbaum & Woolf, 1999; Molliver et al., 

2005).  

1.2.4 Second Order Pain Neurons  

The central projections of primary afferents connect with the dorsal horns 

neurons, called 2nd order neurons. Lamina I receives direct input from myelinated 

and unmyelinated nociceptor fibers, including heat and cold transduction, and 

contributes to the classic spinothalamic pathway that conveys information about the 

discrimination of pain. The 2nd order neurons that originate from lamina I and II are 

considered selective neurons. Another area of the spinal cord, located deep in lamina 

V-VII contain neurons that responds to a wide range of input from the periphery, 

called wide dynamic range (WDR) neurons. This area is considered diverse as 

multiple inputs from periphery converse here, and it acts as a relay center for 

numerous noxious and innoxious stimuli before the information reaches to the higher 

centers. The property of lamina I neurons is to signal the nature and the location of 

stimuli, whereas the response from the WDR neurons is not well defined (Perl, 

2007).  

It is worth describing the degree of response from these neurons. These 

afferent neurons respond to different intensities of stimuli called threshold. Low 

threshold neurons that respond to non-painful low-intensity stimuli are called 

mechanoreceptors Aα and Aβ when innervating the skin and type-I and type- II 

when innervating the muscle. In contrast, neurons that respond to high intensity 

threshold are considered Aδ and C nociceptors when innervating skin and III and IV 
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fibers when innervating muscle (Graven-Nielsen & Mense, 2001). Under 

pathological conditions, mechanoreceptors can behave as nociceptors or these 

nociceptors can lower their threshold, as discussed in the section of central 

sensitization.  

 

1.2.5 Ascending Pain Pathways 

Peripheral sites convey nociceptive information to the spinal cord. 

Information travels from the spinal cord to the thalamus or limbic system and then to 

the higher centers (Fig. 1a) (Hunt & Mantyh, 2001). In addition to the traditional 

spinothalamic pathway, multiple ascending pathways project from the spinal cord to 

the midbrain and perhaps to other cortical and subcortical areas in the chronic stage 

of pain. Five major ascending pathways have been identified and discussed in the 

literature (Almeida, Roizenblatt, & Tufik, 2004). The spinothalamic tract is the most 

prominent ascending tract. This track carries information from lamina I of 

nocicepive-specific and laminae V-VII from WDR neurons of the dorsal horn. These 

neurons project to the contralateral side and ascend in the anterolateral white matter 

terminating in the thalamus. These neurons provide the discriminatory information of 

pain stimuli. The spinomesencephalic tract or spino-parabrachial pathway also 

originates in lamina I and terminates in the limbic system. This tract innervates the 

areas of the brain that are concerned with affective and emotion components of pain, 

including the reticular formation, periaqueductal gray and parabrachial nucleus 

Fibers from the spinoreticular track connect information from the spinal cord to the 
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reticular formation of medulla. This tract comprises the axons of neurons in laminae 

VII-VIII. It ascends in the anterolateral quadrant of the spinal cord and terminates in 

both the reticular formation and the thalamus. Axons of this track do not cross the 

midline. The cervicothalamic tract arises from neurons in the lateral cervical nucleus, 

located in the lateral white matter of the upper two cervical segments of the spinal 

cord. The lateral cervical nucleus receives input from laminae III and IV. They cross 

the midline and ascend in the medial lemniscous of the brainstem with some 

projections through the dorsal columns of the spinal cord. The spinohypothalamic 

tract is made up of axons of neurons from laminae I, V, and VIII that projects 

directly to surpraspinal autonomic control centers and is thought to activate complex 

neuroendocrine and cardiovascular responses.  

Of all these distinct pathways, the spinothalamic and spinomesencephalic 

tracts are considered the main pain processing pathways (Fig. 1a) (Hunt & Mantyh, 

2001).  The thalamus is a relay center where nociceptive input regarding type, 

temporal pattern, intensity and topographic location of pain is encoded prior to 

reaching limbic and other subcortical sites (Renn & Dorsey, 2005). Ultimately the 

nociceptive information reaches the cortex where it is integrated and undergoes 

cognitive and emotional interpretation. Regions of cortical and subcortical areas 

involved are somatosensory cortex (S1 and S2), anterior cingulated cortex, and 

medial prefrontal cortex (Craig, 2003b; Renn & Dorsey, 2005).  
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1.2.6 Descending Pain Pathways 

Cells in the midbrain and forebrain invariably project directly or indirectly to 

the areas of the spinal cord that originate the ascending pathways. These neurons 

make up the descending pathways that originate from the amygdala and 

hypothalamus and project to periaqueductal grey (Hunt & Mantyh, 2001; Vanegas & 

Schaible, 2004). Neurons from this region project to the lower midbrain and then to 

the dorsal horns (Fig. 1b). In the dorsal horns, descending pathways interact with 

both pre-synaptic and post-synaptic cells to influence incoming information. It is 

now clear that descending influence from the rostral ventromedial medulla (RVM) 

acts in both an inhibitory and facilitatory fashions (Vanegas & Schaible, 2004). The 

inhibitory descending influence on the spinal dorsal horn nociception is well studied 

and supports the anti-analgesic effect of exercise training (Bement & Sluka, 2005; 

Hoffman et al., 2004; Sparling, Giuffrida, Piomelli, Rosskopf, & Dietrich, 2003). 

The existence of descending facilitatory pathway is also recognized but less 

understood.  

Anatomical information of the nociceptive system is provided to reveal the 

complexity and difficulties associated with chronic pain syndromes. The 

multifaceted reciprocal nature of pain creates a system where connections at any 

level could fail and a painful condition could perpetuate into the chronic stage. The 

complex nature of pain puts many challenges on health professionals to implement 

intervention strategies. Therefore, it is vital to improve our understanding of pain 

processing and intervention techniques targeted toward the chronic phase.  
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1.3  Chronic pain  

Chronic pain differs from acute pain in  its onset, duration and underlying 

mechanisms (Carr & Goudas, 1999). As stated in the review by Wang et al. (Wang 

& Wang 2003), chronic pain may not have an apparent source of nociception or an 

identifiable ongoing injury or inflammation, and often responds poorly to 

pharmacological interventions. Normally, pain sensation results from specific 

activation, not hyperactivation, of the nociceptors in response to mechanical, thermal 

or chemical stimulus (Almeida et al., 2004). The physiological process of 

nociception in the spinal cord or supraspinal regions is altered in chronic pain that is 

characterized as maladaptive and persistent in nature (Almeida et al., 2004; 

Basbaum, 1999; Blomqvist & Craig, 2000; Bolay & Moskowitz, 2002; Holden & 

Pizzi, 2003; Kramis, Roberts, & Gillette, 1996; Mogil, Yu, & Basbaum, 2000; Sluka, 

1996). In chronic conditions (McMahon & Jones, 2004) or with damage to the 

nervous system (Desmeules et al., 2003), a shift in the pain-signaling system occurs 

such that noxious stimuli applied to the injury site produce more pain, or the pain 

threshold necessary to generate pain decreases. This increased excitability of sensory 

neurons is called sensitization (McMahon & Jones, 2004; Sluka, 1996). The 

increased sensitivity of pain to previous noxious stimuli in the injured area is termed 

primary hyperalgesia (Adams & Sim, 2005; Blomqvist & Craig, 2000; Bolay & 

Moskowitz, 2002; McMahon & Jones, 2004; Sluka, 1996; Willis, Sluka, Rees, & 

Westlund, 1996) which results from either the peripheral or the central nervous 

system dysfunction (Bolay & Moskowitz, 2002). When pain sensation is perceived 
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beyond the injured area, it is considered secondary hyperalgesia, resulting from 

changes in the central nervous system (McMahon & Jones, 2004; Sluka, 1996; 

Sluka, Kalra, & Moore; Willis et al., 1996) and is similar to referred pain symptom 

in humans. The hypersensitivity becomes most pronounced when even a non-

noxious stimulus, like light touch or pressure, causes a painful response and an 

avoidance behavior, indicating a state of allodynia (Blomqvist & Craig, 2000; 

McMahon & Jones, 2004). The occurrence of allodynia indicates that innocuous 

stimuli in some way have activated the nociceptive system (Blomqvist & Craig, 

2000). Spinal sensitization is presumed to be a result of either increased release of 

excitatory substances from primary afferents, from spinal neurons or decreased 

activity of inhibitory descending pathways, resulting in enhanced activity of dorsal 

horn neurons. The sensitization associated with chronic pain state can occur as a 

result of one or more of the following mechanisms.  

Hypersensitivity of WDR neurons: One possibility suggests that WDR 

neurons play a fundamental role in the spinal cord of central sensitization. WDR 

neuronal cells are located in lamina V (and I, II, IV and VI) of the dorsal horn and 

serve as relays for interaction of noxious and non-noxious stimuli. In general, these 

neurons assist in segmental suppression of pain because of the convergence of 

sensory afferents of A-δ, A-β and C-fibers (Almeida et al., 2004; Bolay & 

Moskowitz, 2002). However, once these neurons become activated and sensitized, 

they signal non-noxious stimuli as painful or the information is misinterpreted by 

supraspinal structures, and a perception of pain may be generated when for example, 
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only touch has occurred (Bennett, 1999; Kramis et al., 1996; Mogil et al., 2000). 

Convergence of sensory input from various tissues in the dorsal horn is the best 

anatomical explanation for referred pain and central sensitization seen in many 

clinical syndromes (Bennett, 1999).    

Sprouting and reorganization of spinal cord neurons: Another explanation 

for central sensitization comes from studies of neuropathic pain (Blomqvist & Craig, 

2000; Hoseini, Hoseini, & Gharibzadeh, 2006; Lekan, Carlton, & Coggeshall, 1996; 

Wilson & Snow, 1993; Woolf, Shortland, & Coggeshall, 1992). Neuropathic pain 

can lead to reorganization of spinal cord dorsal horn neurons, including induction of 

new genes, sprouting of primary afferent neurons of Aβ from lamina III and IV to 

laimna II or up-regulation of a various neurotransmitters, their receptors and second 

messengers. This rewiring leads to misinterpretation of non-noxious as noxious 

input. Hence, low-threshold stimuli activation of Aβ can cause central 

hyperexcitability.  

Phenotypic switching of Aβ: In neuropathic pain, some large diameter low-

threshold afferents that are normally not involved in nociception start to synthesize 

substance P and CGRP. Thus, they start communicating with spinal neurons that 

express substance P and contribute to central sensitization (Basbaum & Woolf, 

1999). These changes lead to increased excitability of dorsal horn neurons and 

contribute to the spontaneous firing of an action potential (Basbaum & Woolf, 1999; 

Hoseini et al., 2006) seen in conditions of nerve injuries.  
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Altered input from descending pathway: Decreased activity of inhibitory 

pathways or increase activity of facilitatory pathways have also contributed to central 

sensitization. Many syndromes, such as FMS or low back pain where defined tissue 

pathology is absent may be associated with a potential dysfunction in the descending 

pathways (Bennett, 1999; Leffler, 2002). A recent article suggests the involvement 

of the facilitatory descending pathway in the origination and the maintenance of 

widespread hypersensitivity in the acid-induced animal model (Tillu, Gebhart, & 

Sluka, 2007). It is worth noting that the acid-induced chronic hyperalgesia model 

used in the present dissertation causes secondary or referred hyperalgesia, primarily 

measured for its cutaneous hypersensitivity. In this dissertation, we attempt to assess 

deep tissue hyperalgesia in both the acute and chronic stages following acid 

injection and determine whether animals experience muscle hyperalgesia (Chapter 

2).    

 

1.3.1  Differences between Muscle and Cutaneous Nociception 

Muscle pain is different than cutaneous pain in many ways. The classification 

of sensory neurons is based on the conduction velocity and the cross-section of fiber 

diameter. The diameter and conduction velocities of afferent fibers vary slightly 

from tissue to tissue. In skin, sensory neurons that are myelinated are labeled as Aα, 

Aβ, Aδ, and those that are unmyelinated are called C-fibers or free nerve endings, all 

named from fastest to slowest conducting velocities. In deep tissue, sensory neurons 

are classified as I, II, III and IV, from largest to smallest diameter size (Sluka, 1996; 
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Almeida, 2004). The skeletal muscles are innervated by a large range of sensory 

axons, 60% myelinated and 40% unmyelinated (Graven-Nielsen and Mense, 2001). 

Primary muscle nociceptive afferents are group-III and group-IV, as classified based 

on the diameter size, where corresponding cutaneous Aδ and C-fiber are classified 

according to their conduction velocity.  

Rather than a propagated action potential that occurs with cutaneous free 

nerve endings, the stimulation of muscle nociceptive nerve ending causes graded 

potential of receptors that primarily depend on the strength of the stimuli. In muscle, 

the local receptors build currents and then elicit an action potential if the stimulus is 

strong enough to depolarize the membrane to its threshold level. In humans, the 

conduction velocity is between 3.1 – 13.5 m/s for group III and in the range of .6 to 

1.2 m/s for group IV (Graven-Nielsen & Mense, 2001).  

Muscle fibers are considered high threshold and polymodal (Graven-Nielsen 

& Mense, 2001) and are able to respond to a variety of stimuli. Both peptidergic and 

purinergic expressing receptor type nociceptors are likely to be present in muscle 

tissue for many algesic substances like bradykinin, serotonin, prostaglandin, 

adenosine triphosphate, present in the muscle (Graven-Nielsen & Mense, 2001). 

However, the muscle fibers proper are spared from nociceptors, explaining why 

muscle degeneration does not cause muscle pain. Nerve endings are located in the 

lining of blood vessels and fascia connective tissue covering the muscle bundles 

(Mense, 1993; Mense; Mense & Meyer, 1985), providing the explanation for muscle 

pain when muscle is overly stretched or inflammed. Experimentally, muscle pain can 
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be elicited by squeezing a muscle in rats and humans (Graven-Nielsen & Mense, 

2001). This technique was applied in the present study to assess muscle hyperalgesia 

in mice subjected to acid injections.   

The perception of pain originating from deep tissues of muscle and joints and 

their central projections to the spinal cord is different compared to cutaneous pain. 

Cutaneous pain is sharp and specifically localized whereas muscle pain is 

characterized as aching, cramping, diffuse in nature, longer lasting and has referred 

localization due to its convergence of multiple input to WDR neurons in the spinal 

cord and brainstem (Graven-Nielsen & Arendt-Nielsen, 2002; Mense, 1991).  

Even the mechanisms of pain and hyperalgesia induced by injecting 

inflammatory agents into different tissues (muscle, joint and skin) are thought to be 

different. Stimulation of C-fibers from a muscle nerve causes a long-lasting 

enhancement of the ventral root reflex compared to C-fibers from a cutaneous nerve. 

When capsaicin is injected into a muscle, it produces longer-lasting hyperalgesia. 

The central projection of the primary afferents from deep tissue mainly terminates in 

lamina I and deep regions of the dorsal horns. The central projection from cutaneous 

afferents is in lamina I and II (Graven-Nielsen & Arendt-Nielsen, 2002). This clearly 

indicates that the central projections for both tissues are different and should be 

recognized when conducting behavioral testing from cutaneous and deep tissues.  
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1.4  Chronic Pain Syndromes  

A range of conditions fall under chronic musculoskeletal pain syndromes 

such as FMS, chronic low back pain, arthritis and headaches (Aggarwal, McBeth, 

Zakrzewska, Lunt, & Macfarlane, 2006; Goldenberg et al., 2004). Each year, 

approximately 97 million Americans suffer from chronic pain syndromes (Brain 

Facts, 1997) and about 12% of all adults in other developed countries. According to 

the International Association for the Study of Pain, pain is defined as, “an unpleasant 

sensory and emotional experience associated with actual or potential tissue damage, 

or described in terms of such damage”. This definition describes pain more as a 

perception rather than a true sensation; for many people who suffer from chronic 

pain conditions, this perception is real with or without obvious tissue damage. 

Cognition and emotion are integrated in the perception of pain that guides one’s 

behavioral response to pain.  

FMS is an example of such a persistent pain syndromes (Goldenberg et al., 

2004) and is characterized by widespread musculoskeletal aching, altered 

biochemical substances, serotonin and substance P (Desmeules et al., 2003), and 

hypersensitivity to mechanical, thermal and electrical stimuli, suggesting 

abnormality in central pain mechanisms (Goldenberg et al., 2004; Jones, Clark, & 

Bennett, 2002; Staud, Price, Robinson, Mauderli, & Vierck, 2004; Whiteside, 

Hansen, & Chaudhuri, 2004). These characteristics could present with or without an 

obvious injury (Desmeules et al., 2003; Kramis et al., 1996) as people with FMS and 

other chronic musculoskeletal pain syndromes report similar symptoms that cannot 
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be traced to a specific structure. According to the American College of 

Rheumatology, nearly 6 million Americans (Jones et al., 2002), which is 2% of 

population or 1 every 73 people, present with FMS (Goldenberg et al., 2004). In 

addition, a substantial number of patients (~22%) with whiplash injuries develop 

widespread pain. Three main areas appear to play major roles in the development of 

FMS: central nervous system (CNS), musculoskeletal system and neuroendocrine 

system.   

 

Central Nervous System  

Adaptation in the CNS is the main culprit in the development of FMS. 

Several studies have reported that patients with FMS demonstrate altered levels of 

neurotransmitters, brain hormones and neuropeptides (Bennett, 1999; Russell, 1998a, 

1998b; Staud et al., 2004; Weigent, 1998). Increased cerebral spinal fluid (CSF) 

level of substance P, a pro-nociceptive substance, and decreased serum levels of 

serotonin, an inhibitory substance, in patients with FMS suggest hyperexcitability of 

the dorsal horn spinal neurons and thus, suggests a mechanism of central 

sensitization (Russell, 1998a, 1998b; Weigent, 1998). Activation of neurons with 

release of excitatory amino acids (SP, CGRP, and dynorphin) can over time lead to 

functional alterations in the dorsal horn neurons and increase nociceptive 

transmission to the brain (Russell, 1998a; Weigent, 1998). In addition, substance P 

causes an increase in the size and number of receptive fields of nociceptive neurons 

and decrease in the threshold level of post-synaptic potentials (Weigent, 1998). This 
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alteration may lead to the classic sign of widespread muscle pain and lowered muscle 

threshold which is the primary symptom of FMS.    

 

Musculoskeletal System 

The presence of tender points has also been linked to the local metabolic 

changes found within the muscle and abnormalities in muscle energy metabolism. 

People with FMS have increased resting level of phosphocreatine, a molecule rich in 

energy that generates adenotriphosphate (ATP), and decreased level of cellular 

oxidative enzymes and tissue oxygenation, leading to perception of weakness and 

fatigue. Muscle biopsy reveals non-specific type II fiber atrophy with a moth-eaten 

and banded appearance of muscle fibers. At present, it is believed that the skeletal 

muscle findings are altered but are not the origin of FMS.  

 

Neuroendocrine system 

Evidence also suggests alteration of many endocrine-derived hormones, 

including growth hormone, cortisol, thyroid-stimulating hormone, and abnormalities 

in hypothalamic-pituitary adrenal axis (HPA) in patients with FMS (Staud, Vierck, 

Cannon, Mauderli, & Price, 2001; Tanriverdi, Karaca, Unluhizarci, & Kelestimur, 

2007; Vierck, 2006; Wingenfeld et al., 2008). These hormones are important for 

tissue healing and stress responses. Thus caution must be taken to avoid tissue injury 

and overexertion when prescribing exercise training to people with FMS.  
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1.4.1 Referred Pain Symptom 

 Substantial clinical evidence exists regarding referred muscle pain from 

trigger point pressure in various musculoskeletal conditions. People with FMS have 

increased referred pain area and heightened temporal summation, suggestive of 

central sensitization. Sörensen et. al. first reported that people with FMS display 

musculoskeletal pain due to central sensitization. These people experienced pain in 

areas of lower limb muscles after intramuscular injection of hypertonic saline, where 

normally people with FMS do not experience ongoing pain, suggesting central 

sensitization (Sorensen, Graven-Nielsen, Henriksson, Bengtsson, & Arendt-Nielsen, 

1998). Since then others have reported central sensitization in people with FMS and 

other musculoskeletal syndromes (Banic et al., 2004; Desmeules et al., 2003; 

Lidbeck, 2002; Staud, 2004). The symptom of referred pain is related to the 

secondary hyperalgesia observed in many animal models of pain.  The underlying 

causes and characteristics of secondary hyperalgesia differ among various pain 

models.   

 

1.5  Use of Animal Models in Studying Pain 

Animal models of pain have provided many advances in our understanding of 

pain mechanisms. Many laboratory animal models of pain have been produced to 

mimic human painful conditions. These models of pain can be broadly divided into 

three types: 1) neuropathic pain that results from injury to the nervous system at 

central, spinal or peripheral levels; 2) nociceptive pain that rises from direct 
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stimulation of nociceptors; and 3) muscle pain by direct stimulation of muscle 

nociceptors. Here, the muscle is described as a separate entity since muscle 

nociception can be elicited by different means.   

1.5. Models of neuropathic pain  

Most neuropathic pain models are made by inducing diseases or causing 

injuries to spinal or peripheral nerves. The mechanism of neuropathic pain and its 

symptoms are quite different then other pain types. The description of neuropathic 

pain consists of burning, shooting, electrical shock or piercing quality. The direct 

evaluation of spontaneous pain is not possible in animal models. Therefore evoked 

pain, such as allodynia and hyperalgesia to thermal and mechanical stimuli, are 

observed (Wang & Wang, 2003; Wiesenfeld-Hallin et al., 1997).   

1.5.1.1 Contusion / Weight Drop Model 

This is the oldest model in which damage is induced by dropping a weight on 

a surgically exposed dorsal spinal surface at the thoracolumbar junction. This causes 

severe paraplegia and complete segmental necrosis. A complete transaction model 

has also been used. These models are quite traumatic to the nervous system and 

result in abnormal discharge of dorsal horn neurons with mechanical stimulation 

(Wang & Wang, 2003).   

1.5.1.2 Neuroma Model 

Complete nerve transaction at multiple sites along the sciatic nerve in rats 

and mice leads to development of a neuroma at the proximal nerve ending, 

mimicking the clinical condition of phantom limb pain secondary to amputation. 



21 
 

This causes symptoms of allodynia, hyperalgesia and autotomy behavior (self-

mutilation of the denervated limb by animals) (Wang & Wang, 2003; Wiesenfeld-

Hallin et al., 1997).   

1.5.1.3 Chronic Constriction Injury Model (CCI) 

This model was developed in 1988 by Bennett and Xie. By loosely tying the 

sciatic nerve bilaterally at mid thigh level, some afferents are spared. This type of 

nerve injury causes some damage to myelinated fibers and severe loss of C-fibers, 

leading to allodynia, hyperalgesia, cold allodynia and avoidance of weight bearing 

on limbs. These symptoms can lasts up to 2 months (Wang & Wang, 2003).   

1.5.1.4 Partial Sciatic Nerve Ligation Model  

This model was developed later (Seltzer, Dubner, & Shir, 1990) and 

simulates partial nerve injury in humans. The sciatic nerve is partially ligated at mid 

thigh level so that 1/3 to ½ thickness of the sciatic nerve is trapped in the ligature. 

Animals exhibit allodynia to a von Frey monofilament, cold and hyperalgesia to 

thermal and mechanical stimuli that lasts up to 7 months.  

 

1.5.2 Models of Nociceptive Pain  

There are many nociceptive pain models that mostly consist of injecting some 

type of inflammatory substance into cutaneous or deep tissues.   

1.5.2.1 Monoarthritis or Polyarthritis 

Several inflammatory agents like carageenan, kaolin or mustard oil, can be 

injected into the knee or the ankle joint to induce monoarthritis symptoms 
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demonstrated as decreased mechanical and thermal sensitivity in animals. An 

intradermal injection of complete Freund’s adjuvant (CFA) into a hind paw results in 

polyarthritis that develops over time and lasts up to several months. CFA is an 

antigen emulsified in mineral oil to stimulate T-cell immunity. Animals display 

behavioral symptoms of hypersensitivity to mechanical pressure and heat, 

vocalization and edema.      

1.5.2.1 Formalin 

Diluted formalin is injected subcutaneously into a hind paw that gives rise to 

2 stages of inflammatory pain in humans and animals, early and late phase. During 

the early phase, nociception is caused by direct chemical activation of nociceptors 

that results in excitation of the spinal cord neurons and lasts for 5 – 10 minutes. The 

late phase, lasting up to 15-60 minutes, is due to the hyperexcitability of the spinal 

cord neurons that release neuroactive mediators as a model of central sensitization. 

Animal behaviors of paw licking and paw flicking are noted during both phases of 

inflammation.  

 

1.5.3 Models of Muscle Pain  

Pain originating from cutaneous and muscle tissue has distinct features. Thus 

attempts have been made to develop animal models to mimic deep tissue pain and 

specific human painful conditions (Wang, 2003).   

1.5.3.1 Chemical Stimulation 
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In humans and animals, intramuscular injection of capsaicin, potassium 

chloride or hypertonic saline as well as acid of pH 5.2 induces muscular pain. The 

model of hypertonic saline was first introduced by Kellgren and Lewis in 1930s and 

has been exclusively used to characterize acute clinical muscle pain (Graven-Nielsen 

& Mense, 2001; Graven-Nielsen & Mense, 2002).  

1.5.3.2 Ischemic Contraction 

This is a classic experimental muscle pain model. A tourniquet is usually 

applied around a limb for a time sufficient to cause ischemic muscle pain. 

Interestingly, ischemic contraction in animals affects a very small portion of muscle 

nociceptors, showing the functional diversity of muscle nociception (Graven-

Nielsen, Arendt-Nielsen, & Mense, 2002; Graven-Nielsen & Mense, 2001).    

1.5.3.3 Electrical Stimulation of Muscle Nociceptors 

Physiologic properties and sensitivity of muscle nociceptors can be examined 

by use of intramuscular electrical stimulation. However, the major drawback of this 

method is that electrical stimulation bypasses receptor transduction and directly 

depolarizes the afferent fibers. Secondly the non-nociceptors with lower threshold 

are stimulated before nociceptors (Graven-Nielsen et al., 2002; Graven-Nielsen & 

Mense, 2001), opposite of the size recruitment principle that was first described by 

Sherrington. This poses a clinical problem in determining nociceptive properties in 

humans or animals.   

1.5.3.4 Delayed Onset Muscle Pain (DOMS) 
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The mechanism underlying DOMS is different than ischemic contraction and 

characterized by inflammation and muscle weakness. DOMS is a result of 

ultrastructural damage to muscle fiber that causes release of algesic substances and 

inflammation. Eccentric treadmill training with high running speed for 10-15 

minutes at downhill incline has been used in animal studies to mimic human DOMS. 

Muscles develop soreness 24 to 48 hours after the eccentric work load. The soreness 

is mainly caused by a peripheral mechanism. A classic feature of DOMS is absence 

of pain at rest but presence with muscle function or palpation (Graven-Nielsen & 

Mense, 2002; Kehl, 2003).    

1.5.3.4 Model of Acid-Induced Hyperalgesia  

An animal model of FMS-type pain mediated by acid injections has recently 

been developed (Sluka et al., 2001). Two repeated injections of low pH (4.0 saline) 

into the gastrocnemius muscle induce bilateral mechanical, but not thermal, 

hyperalgesia that is persistent for at least 4-6 weeks. The mechanical hypersensitivity 

develops within 4 hours following the 2nd injection (Sluka et al., 2001), 

demonstrating a shift in sensation perception from touch to pain. This widespread 

mechanical hyperalgesia is dose and time dependent; interinjection interval of 2 or 5 

days, not 10 days, produces equal and significant decrease in mechanical withdrawal 

threshold bilaterally and the lowest pH (pH 4.0) produces the greatest hyperalgesia 

compared to pH level of 5.0, 6.0 and 7.2 (Sluka et al., 2001). This widespread 

somatic pain also extends to the visceral sensation that lasts up to 2 weeks. Increased 

electromyography (EMG) response from the external oblique muscle to colorectal 
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distention was reported in rats following acidic injections into the gastrocnemius 

muscle (Miranda, Peles, Rudolph, Shaker, & Sengupta, 2004).  

It is hypothesized that when low pH acidic saline is injected into muscle 

fibers, the tissue pH drops to a maximum of 6.0 levels for approximately 6-8 

minutes. The local change in the intramuscular pH is thought to activate acid-sensing 

ion channel-3 (ASIC-3) receptors (acid sensors), generating currents in small and 

large diameter primary muscle afferents (Hoheisel, Reinohl, Unger, & Mense, 2004; 

Lee, Lee, & Oh, 2005; Molliver et al., 2005; Sluka et al., 2003). The signaling of 

these afferents in turn increases the resting activity of spinal WDR neurons, 

increasing their responsiveness to mechanical stimuli and causing bilateral 

widespread hyperalgesia (Sluka et al., 2001). This is evident by an increase in the 

firing frequency of WDR neurons, an increase in the receptive field of WDR neurons 

including hypersensitivity of the contralateral paw in response to noxious and non-

noxious stimuli (Sluka et al., 2003) and a decrease mechanical threshold. The WDR 

cells of the convergence region (lamina V) also receive input from visceral afferents 

(Fib 2). As a result of viscerosomatic convergence, a noxious somatic stimulus is 

also capable of altering visceral sensation as evident in acid-induced pain model 

(Miranda et al., 2004) and in patients with FMS (Kwan et al., 2005; Lubrano et al., 

2001). Therefore, the mechanism seems to be related to the changes in the spinal 

cord nociception (Skyba, King, & Sluka, 2002; Skyba, Lisi, & Sluka, 2005; Sluka et 

al., 2001; Sluka et al., 2003; Sluka, Rohlwing, Bussey, Eikenberry, & Wilken, 2002). 
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Figure 2 provides a schematic diagram to explain acid-induced hypersensitivity and 

central sensitization.   

The central sensitization theory is further strengthened by other evidence: 1) 

anesthetic blockage to the ipsilateral grastrocnemius with lidocaine or elimination of 

the primary afferent input by ipsilateral dorsal rhizotomy does not alter mechanical 

threshold of contralateral hyperalgesia (Sluka et al., 2001), 2) spinal administration 

of µ- or δ- opioid receptors against N-methyl-D-aspartate (NMDA) or non-NMDA 

ionotropic glutamate receptor antagonists reverses cutaneous hyperalgesia (Skyba et 

al., 2002; Sluka et al., 2002), suggesting functional changes in the spinal neurons, 3) 

systemic administration of 10 mg/kg pregabalin increases the withdrawal threshold 

of paw and deep muscle (Yokoyama, Lisi, Moore, & Sluka, 2007), 4) it requires two 

injections to develop bilateral hyperalgesia; the 1st acid injection primes the nervous 

system in such a way that 2nd injection leads to widespread hypersensitivity, 5) intra-

muscular acid injections increase phosphorylation of cAMP-response element 

binding protein (CREB) transcription factor in bilateral dorsal horns of the spinal 

cord (Hoeger-Bement & Sluka, 2003), and 6) acid injections increase the release of 

glutamate in the spinal cord (Skyba, et al., 2005).  

Recent evidence suggests involvement of a supraspinal pain center. An 

injection of local anesthetic (ropivacaine) into the rostral ventromedial medulla 

(RVM) reversed secondary hyperalgesia. Rats failed to develop hypersensitivity 

when ropivacaine was administrated into nucleus raphe magnus (NRM) and the 

nucleus giganocellularis (Gi) prior to the 2nd acid injection, suggesting that 
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widespread hypersensitivity originates in RVM via facilitatory pathways (Tillu et al., 

2007). All current evidence suggests that the mechanism that drives the development 

and maintenance of chronic hyperalgesia seems to be centrally oriented, either at the 

spinal or midbrain level.  

However, ASIC-3 channels located on muscle primary afferent fibers are key 

features to inducing bilateral hyperalgesia as mice deficient in ASIC-3 fail to 

develop secondary hyperalgesia (Sluka et al., 2003). It should be noted that the 

structural and molecular mechanism to activate a nociceptive pathway by innocuous 

information beyond the involvement of ASIC-3 is not known in the development of 

acid-induced pain.  

The concept of sensitization of muscle nociceptors is not new and may 

explain the reasons why some muscle injuries lead to Complex Regional Pain (CRP) 

syndrome. The mechanical sensitization associated with acid-injection is dose and 

time dependent. It is proposed that the 1st dose of acid is sufficient enough to cause 

sensitization of ASIC-3 receptors but not strong enough to lower their threshold. In 

addition, there might be some lingering effects of the primary or secondary afferents 

following the 1st acid injection. The 2nd dose of acid injection is needed to lower the 

threshold level to excite the receptors. The same concept is seen in human muscle 

inflammation in which first sensitization takes place and then excitation, unless the 

inflammatory substances are presented in high concentration. This explanation is 

provided to share some insight to the dose-dependency of the acid-model.  
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The time dependency of the acid-injection is difficult to comprehend, and it is 

not clear why the interinjection period needed to induce widespread pain in animals 

falls within 2-5 days apart. Many clinical studies suggest that central sensitization is 

time dependent. In humans, increased sensitization to pressure in a non-painful area 

has been associated with time. People with rheumatoid arthritis with pain symptoms 

greater than 5 years had increased secondary sensitization compared to those with 

pain less than 6 months (Leffler, Hansson, & Kosek, 2002). This fits well with the 

acid-model of central sensitization suggesting that a localized injury in the deep 

tissue causes somatosensory changes and leads to the development of central 

sensitization over time. This model explains the phenomenon of receptor 

sensitization that is seen in humans as a 2nd dose of algesic substance such as 

bradykinin (BK) or prostaglandin (PGE) causes more pain than a single dose. If the 

theory of receptor sensitization is attributed to muscle pain, strategies to desensitize 

should also be examined with the same vigor.  

Although several animal models (as described above) have been developed to 

mimic varying degree and symptoms of the chronic pain state, the work of this 

dissertation focuses on an acid model of chronic pain. This model of pain is 

classified as a non-inflammatory muscle pain model, making it a unique model to 

analyze exercise-induced behavioral and molecular changes at peripheral and central 

nervous system levels. Since the inception of the acid-induced pain model, it has 

been repeatedly shown that rats (Sluka et al., 2001) and mice (Gandhi, Ryals, & 

Wright, 2004) develop secondary cutaneous (Hoeger-Bement & Sluka, 2003; Skyba 
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et al., 2002; Skyba, Lisi et al., 2005; Sluka et al., 2001; Sluka et al., 2002) and 

visceral hyperalgesia (Miranda et al., 2004). The model is described as a muscle pain 

model based on the fact that injections are given into a muscle and the presence of 

ASIC-3 within muscle afferents are required for widespread hyperalgesia. However, 

it is unclear whether animals develop muscle hyperalgesia following intra-muscular 

injections. Therefore we assessed muscle hyperalgesia following acid injections in 

acute and chronic stage. This work is described in Chapter 2.  

 

1.5.3.5 The Role of ASIC in Pain Generation  

A decrease in intramuscular pH as a result of tissue injury or inflammation 

(Hoheisel et al., 2004), ischemia (Molliver et al., 2005) or manual injection of acidic 

solution into muscle activates nociceptors and produces pain sensation. A molecule 

that is responsible for proton sensitivity of nociceptors is ASIC, named for its ability 

to detect changes in the extracellular pH levels (Julius & Basbaum, 2001; Krishtal & 

Pidoplichko, 1981; Price et al., 2001). Lazdunski el al. first described a family of 

transmembrane protein ASICs belonging to the sodium ion channel family. The 

molecular mass of these channels is about 50 – 70 kDa. At present a total of 5 ASIC 

genes (1-5) are identified in animals (Lee et al., 2005). Of all ASICs, ASIC-3 is 

widely distributed in sensory neurons. Approximately 40% of DRG neurons express 

ASIC-3 (Molliver et al., 2005), diversely through both large and small diameter 

afferents (non-nociceptors and nociceptors) that innervate muscle (Molliver et al., 

2005). They are considered important in muscle pain for both non-inflammatory 
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acid-induced muscle pain (Sluka et al., 2003) and inflammatory carrageenan-induced 

muscle pain (Ikeuchi, Kolker, Burnes, Walder, & Sluka, 2008; Sluka et al., 2007).  

ASIC-3 channels are not expressed in muscle spindles; rather they are expressed in 

small muscle afferents and lining of the muscle arterioles and blood vessels. These 

channels can open with even a small change in pH level (0.5 units) that occurs when 

a muscle is under metabolic stress or in an ischemic state. ASIC-3 channels respond 

to build-up of lactic acid following isometric exercise or when a muscle uses 

anaerobic metabolism providing a mechanism to explain exercise-induce pain. Based 

on nuclear magnetic resonance (NMR) of muscle cells, the intramuscular pH can 

drop up to 6.0 during ischemic or exhaustive exercise (Hoheisel et al., 2004; Pan, 

Hamm, Rothman, & Shulman, 1988). Similarly human studies show that 

intramuscular injections of acid at 5.2 pH level elicit intense pain (Steen, Reeh, 

Geisslinger, & Steen, 2000).  

 

1.6 Methods of Pain Measures  

Pain is an individual explaination that is often assessed by subjective reports. 

As animals are unable to report painful sensation, many behavioral measures are 

used to determine their nociceptive response; Bars and colleagues have provided a 

comprehensive review of all nociceptive measures used in animal pain models (Le 

Bars, Gozariu, & Cadden, 2001). Most models of pain rely on detecting a change in 

threshold to an applied stimulus. The following measures are considered reliable and 

therefore were used in the present studies.   
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1.6.1 Von Frey Monofilments  

In 1884, Blix and Goldscheider first described discrete spots on skin that 

yielded different sensory experiences: touch, cold, warmth and pain (Craig, 2003). 

This concept was later supported by von Frey in 1896 (Craig, 2003). The stimulus of 

direct touch and tissue deformation is detected via ASIC. Beyond this ion channel 

family, other mechanically gated channels are not identified (Julius & Basbaum, 

2001). Mice lacking these channels show reduced sensitivity to hair movement but 

normal response to noxious mechanical stimulus (Julius & Basbaum, 2001). Thus, 

the sensory processing of light touch is thought to be mediated through Aβ fibers and 

measured with von Frey monofilaments. Von Frey monofilaments are a series of 

approximately 2 cm length nylon monofilaments, with increasing diameter and 

known force (1-358 mN) and are often used in animal studies to test mechanical 

sensitivity. A filament is generally applied at the plantar surface of the hind paw to 

the point of bending. The animal’s response of licking, withdrawing or shaking is 

recorded. Rats normally display high tolerance to even large bending force of 

monofilament but normal mice respond to 10 mN (a typical range for mice is 1-15) 

and their response is lowered to 1 mN with injury (Kehl & Fairbanks, 2003). This 

behavior from mice poses a challenge, and results should be interpreted with care. 

We used 1.0 g (10 mN) bending force with CF-1 mice and 0.6 g (6 mN) with black 

57 mice to test their withdrawal responses to acid injection.   

1.6.2 Muscle Compression Test  
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A common technique to assess deep tissue pain is to measure pain sensitivity 

to pressure. The direct method to measure deep tissue hyperalgesia of the knee joint 

was first established by Yu (Yu et al., 2002) and since, has been used to measure 

deep muscle hyperalgesia following acidic injections in rats (Yokoyama et al., 2007). 

We modified this method to fit a mouse model of acid-induced pain. Previous studies 

have shown that the mechanism of muscle withdrawal in acid-induced model is 

primarily based on the activation of muscle afferents as desensitization of skin 

overlying the muscle had no effect on the withdrawal response (Skyba, 

Radhakrishnan, & Sluka, 2005). It is difficult to compare thresholds from various 

pressure pain studies because different species, instrumentation and rates of pressure 

application have been used. All of these factors influence the animal’s ability to 

sense the amount of pressure being applied. The small size and sharpness of the 

pressure area located in the center of the sensor used in the present study can excite 

more cutaneous receptors due to high shear forces. A standard technique should be 

used to measure pressure threshold of large muscle in animal studies.  

In humans, a decrease in pressure pain threshold is seen with palpation to 

tenderness. Therefore, this forceps compression device is similar to the hand-held 

algometers used in clinical studies to measure threshold level of muscle tissue. The 

sensitized nociceptors display lowered mechanical threshold and longer response to 

noxious stimuli. The threshold level is measured with peak force response to applied 

compression. With innocuous deformation or light palpation, about 30% of group IV 

muscle afferents can be excited; the rest of group IV afferents respond to noxious or 
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tissue damaging pressure (Hoheisel et al., 2004) that our mice may have perceived 

with muscle compression test following acid-injections.    

 

 

1.6.3 C-Fos 

The biochemical analysis of muscle nociception is challenging because their 

peripheral sensory nerve endings are not localized to a particular anatomical location 

(Julius & Basbaum, 2001); in muscle tissues, nociceptors are located within nerve 

endings innervating the blood vessels and muscle fascia (Mense, 1993). However, 

genes like c-fos and c-jun are rapidly expressed in the dorsal horn neurons following 

different forms of stimulation and are therefore often used to assess nociception 

(Bon, Wilson, Mogil, & Roberts, 2002; Coggeshall, 2005; Harris, 1998; Munglani & 

Hunt, 1995; Naranjo, Mellstrom, Achaval, & Sassone-Corsi, 1991; You & Arendt-

Nielsen, 2005). Once afferent fibers are simulated from their peripheral ends, an 

electrical current is initiated that reaches the cell bodies in the dorsal horn ganglia 

(DRG). The signals then activate and release certain nociceptive neurotransmitters, 

glutamate, substance P, CGRC, from their central terminals in the spinal cord. The 

post synaptic processing and increased concentration of Ca2+ in the spinal cord 

neurons activate the process of c-fos and c-jun transcription (Munglani & Hunt, 

1995) in the 2nd order neurons. This occurs within minutes of stimulation and the 

accumulation of c-Fos mRNA reaches its peak within 30 – 40 minutes. The level of 

protein peaks about 2 hours following the gene transcription in the nucleus and can 
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be detected with immunohistochemistry. This technique has been extensively used in 

the field of pain since it was first reported by Hunt (Hunt, Pini, & Evan, 1987).   

The laminar distribution of Fos expression depends on the nature of the 

sensory stimulus. The distribution of spinal Fos expression is different for noxious 

and nonnoxious (tactile) stimulation. Nonnoxious stimulation of brushing of hairs 

and gentle ankle joint manipulation (Hunt et al., 1987) as well as walking (Jasmin, 

Gogas, Ahlgren, Levine, & Basbaum, 1994) induces Fos reactivity in the inner part 

of lamina II (IIi) and the nucleus proprious (lamina III and IV) (Harris, 1998). In 

contrast, noxious stimulus normally results in Fos activity in the superficial layers of 

dorsal horns, laminae I and II. This technique has been used to assess acid-induced 

muscular hyperalgesia and to map the spinal cord neurons in response to 

mechanical activation of the gastrocnemius muscle and hind paw afferents in the 

present study (Chapter 2).    

 

1.7 Role of Exercise in Controlling Pain  

The complexity and chronicity of musculoskeletal pain syndromes place 

many challenges on clinicians who manage these patients. A recent review of the 

management of FMS reveals limited efficacy of current pharmacological 

interventions (Goldenberg et al., 2004; Wang & Wang, 2003). But there is growing 

evidence suggesting that aerobic exercise is an effective treatment for patients with 

FMS (Droste, Greenlee, Schreck, & Roskamm, 1991; Fulcher & White, 1997; 

Goldenberg et al., 2004; Gowans & deHueck, 2004; Gowans, Dehueck, Voss, Silaj, 
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& Abbey, 2004; Hoffman et al., 2004; Mannerkorpi, 2005; Meiworm et al., 2000; 

Redondo et al., 2004; Whiteside et al., 2004). The therapeutic benefit of aerobic 

exercise for individuals with FMS was 1st recognized approximately 20 years ago 

when patients randomized to 20 weeks of high-intensity exercise program showed 

improvement in tender point pain threshold, fitness level, and global functional 

ratings compared to a control group undergoing flexibility training (McCain, 1986). 

Since then an escalating number of randomized clinical trials have confirmed the 

benefits of exercise for individuals with FMS (Droste et al., 1991; Fulcher & White, 

1997; Goldenberg et al., 2004; Gowans & deHueck, 2004; Gowans et al., 2004; 

Hoffman et al., 2004; Mannerkorpi, 2005; Meiworm et al., 2000; Redondo et al., 

2004; Whiteside et al., 2004). These subsequent exercise programs, by and large 

have examined the benefit of moderately intense aerobic exercise as it is difficult to 

motivate patients to perform exercise training at maximum level.  

Current literature suggests that long-term aerobic training at a moderate level, 

50-60% maximum heart rate with gradual progression from pool walking to land 

jogging for 30 minutes, 3-5 times per week decreases symptom severity, improves 

physical function, and aspects of self-care in individuals with FMS (Gowans et al., 

2004; Meiworm et al., 2000; Whiteside et al., 2004). These studies confirm that 

exercise has no serious side-effects, results in decreased pain, and improves aerobic 

fitness in people with FMS (Meiworm et al., 2000).   

Despite growing human studies, the analgesic effect of exercise on chronic 

pain has not been extensively examined in animal models. There are few animal 
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studies of chronic pain (Bement & Sluka, 2005; Hutchinson, Gomez-Pinilla, Crowe, 

Ying, & Basso, 2004) conducted to assess sensory modulation in response to 

exercise. The proposed study is based on a recent experiment in which low-intensity 

exercise training reduced hyperalgesia in the acid-induced chronic pain (Bement & 

Sluka, 2005). The exercise-induced analgesia was attributed to the activation of the 

endogenous opioid system (Bement & Sluka, 2005). Rats were trained on a treadmill 

at low-intensity speed (10 - 20 ft/min) for 15-30 min for five days. Using varying 

force of monofilaments, behavioral testing was conducted before each acid injection, 

before and after each exercise training, and one day after the final exercise session. 

Five days of exercise at low intensity (10 – 20 ft/min for 15-30 minutes) reversed 

mechanical allodynia associated with chronic pain (Bement & Sluka, 2005). In 

another study, seven weeks of daily low intensity exercise (11-13 m/min) reversed 

allodynia associated with the spinal cord injury within 5 weeks (Hutchinson et al., 

2004). These studies demonstrate that exercise training is capable of reducing or 

reversing hypersensitivity associated with chronic pain in various animal models. 

The present study examined the efficacy of exercise training and mechanical 

sensation in response to aerobic exercise training after muscle pain induction 

(Chapter 3).     

 

1.8 The Sensory Nervous System and Neurotrophins  

The sensory nervous system is primarily supported by neurotrophins. A 

family of four NTs has been identified in rodents: NGF, BDNF, NT-3, and 
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neurotrophin-4/5 (NT-4/5) (Lewin & Barde, 1996; Lu, Pang, & Woo, 2005; 

Malcangio, Garrett, Cruwys, & Tomlinson, 1997; Mendell, Munson, & Arvanian, 

2001; Snider, 1994; Zweifel, Kuruvilla, & Ginty, 2005). NTs are a family of low-

molecular weight proteins with similar biochemical characteristics. All neurotrophins 

are synthesized as precursor proteins in their pro-neurotrophin form of 30 kDa and 

are cleaved to the mature form of 13 kDa size. Neurotrophins and their precursors 

are extracellular signaling molecules important for survival and differentiation of 

neurons during embryonic development. They are important for repair and 

maintanence of adult nervous system. These neurotrophins are synthesized in target 

tissues and retrogradely transported to the cell body where they alter transcription of 

many neuropeptides, ion channels, and nociceptors influencing neuronal signaling 

and their functional capacity (Basbaum & Woolf, 1999; DiStefano et al., 1992).   

Each neurotrophin has specificity for different type of sensory neurons and is 

associated with different sensory modalities. NGF primarily responds to small 

nociceptive sensory neurons; NT-3 responds to proprioceptive and mechanoreceptive 

sensory neurons; BDNF has overlapping function supporting of large and small 

diameter sensory neurons (tactile discrimination). In addition to their primary 

function, NGF and NT-3 also support sympathetic neurons, where BDNF supports 

parasympathetic and spinal motor neurons and plays a role in synaptic plasticity. 

During development, all neurotrophins are expressed in high levels in their target 

cells; NGF is expressed in skin and NT-3, BDNF and NT/4 are expressed in skeletal 

muscles (Zhao, Veltri, Li, Bain, and Fahnestock 2004). Their synthesis is drastically 
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decreased within the 1st few weeks after birth. Of all NTs, BDNF and NT-3 influence 

synaptic plasticity and thus are often subjected to changes through physical activity.  

 

 

1.8.1 Neurotrophin Receptors  

The diverse functions of neurotrophins are supported via two classes of 

receptors: p75 neurotrophin receptor (p75NTR) with low affinity and tyrosine kinase 

receptor (trk) with high affinity (Friedman & Greene, 1999; Huang & Reichardt, 

2003; Lu et al., 2005). These receptors are expressed selectively in different sensory 

neurons and allow preferential binding; NGF binds to trkA receptor, NT-3 to trkC 

(Lamballe, Klein, & Barbacid, 1991) and BDNF & NT4/5 to trkB. However, p75NTR, 

expressed by 80% of DRG neurons (Karchewski, Kim, Johnston, McKnight, & 

Verge, 1999), is a common receptor for all neurotrophins (Roux & Barker, 2002), 

with low affinity to mature neurotrophins and high affinity to proneurotrophin. 

Under some circumstances, NT-3 also binds to trkB and trkA receptors (Karchewski, 

Gratto, Wetmore, & Verge, 2002; Rodriguez-Tebar, Dechant, Gotz, & Barde, 1992; 

Soppet et al., 1991). Binding of the ligand to trk receptors or p75NTR leads to different 

functions.  

These trk receptors have up to 5 distinct domains and almost 800 amino acids 

(Huang & Reichardt, 2003). Upon ligand binding, trk receptors auto-dimerize and 

the entire ligand-receptor-complex is internalized by endocytosis and retrogradely 

transported to the cell soma (Fig 3a) (Zweifel, Kuruvilla, & Ginty, 2005; Stock, 
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1996). Once the ligand is bound and dimerized, it becomes active, which in turn 

causes autophosphorylation of tyrosine residues on the cytoplasmic domain resulting 

in activation of a number of signaling cascades. These intracellular signaling 

cascades are mitogen-activated protein kinase (Ras/Raf/MAPK), phospholipase C-y 

(PLCy) and phosphoinositide 3-kinase (PI3K) (Fig 3 b) that eventually lead to gene 

transcription of cell differentiation, neuronal plasticity, and neuronal survival, 

respectively (Hennigan, O’Callaghan, & Kelly 2007). Since the sensory nervous 

system is primarily supported by neurotrophins, adult DRG neurons express their 

receptors at varying levels as discussed below; however, almost 80% DRG neurons 

express p75 receptors (Gratto & Verge, 2003).  

 

1.8.2 Neurotrophins  

Detailed information of each neurotrophin is provided to describe their 

individual role.  

1.8.2.1 NGF 

In mammals, about 70-80% of sensory neurons in the DRG that terminate in 

lamina I and II depend on NGF during development. However, almost 40% of 

mature DRG neurons express trkA receptors (Karchewski, et. al. 1999). The 

majorities of these nociceptors are polymodal in nature and respond to more than one 

type of noxious stimulus. During the embryonic state, the development of these 

polymodal neurons depends on availability of NGF. In adult rats, blockage of NGF 

with antibodies prevents both heat and mechanical hyperalgesia following tissue 
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inflammation, indicating that the adult nocicpetors do not require NGF for survival 

but rather are important for synaptic efficacy of nociceptor connections in the spinal 

cord.  

 

1.8.2.2 BDNF and NT-4 

In adults, approximately 35% of adult DRG neurons express trkB receptors 

(Karchewski et al., 1999). BDNF predominately supports large and medium size 

neurons, is anterogradely transported from the cell bodies to the spinal cord, 

terminates predominately in lamina I and II, and is upregulated in models of 

inflammatory and neuropathic pain. These neurons are primarily thought to be 

cutaneous neurons as no proprioceptive muscle afferent loss occurs in BDNF-/- 

animals (Carroll, Lewin, Koltzenburg, Toyka, & Thoenen, 1998; Perez-Pinera et al., 

2008). The trkB receptors are also expressed in post-synaptic dorsal horn neurons, 

throughout the gray matter and in motor neurons (Scarisbrick, 1999; Tabuchi 2007). 

In addition to peripheral tissues, BDNF is predominately expressed in the CNS and 

plays a critical role in long-term potentiation (Tabuchi, 2007). NT-4 is dependent on 

muscle activity and its immunoreactivity can be detected in slow, type I muscle 

fibers.  

1.8.2.3 NT-3 

About 40% of adult DRG neurons express trkC receptors (Karchewski et al., 

1999). During development, NT-3 is highly expressed in skeletal muscle and in skin 

(Ernfors, Lee, Kucera, & Jaenisch, 1994). Following birth, the intramuscular 
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expression of NT-3 is primarily restricted to muscle spindles where it supports 

proprioceptive neurons (Merlio, Ernfors, Jaber, & Persson, 1992; Simon, Terenghi, 

Green, & Coulton, 2000); thus spindle activity either via electrical stimulation or 

exercise is likely to stimulate NT-3 synthesis. The cutaneous expression of NT-3 is 

limited to Merkel cells whose primary afferents convey information about fine 

discriminatory touch.  

Given its anatomical location, NT-3 in general is believed to play an 

important role in proprioception modulation (Wright, et. al. 2001; Hutchinson, et. al. 

2004; Ernfors, et. al. 1995; Liebl & Tessarollo, 1997). Overexpression of NT-3 

during embryonic development and the postnatal period increases the number of 

surviving proprioceptive neurons and muscle spindles (Wright, 2001). Similarly, 

intramuscular injection of NT-3 protects neuronal survival of muscle afferents 

following sciatic nerve crush (Wright, 2001). Additionally, mice lacking NT-3 gene 

show a severe loss of sensory neurons including muscle spindle and Golgi tendon 

organ afferents and concomitant gait abnormalities, providing further evidence for 

role of NT-3 in the survival and function of sensory neurons (Lewin & Barde, 1996; 

Tessarollo, Vogel, Palko, Reid, & Parada, 1994).    

In the normal adult DRG, neither NGF nor NT-3 mRNA is present in 

detectable amounts, while their receptors are found in significant amounts. This 

suggests the retrograde transport mechanism by which these neurotrophins exert 

their effects. Contrary to this finding, a substantial amount of BDNF mRNA is 
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detected in the normal adult DRG. NT-3 is expressed in both muscle and skin in 

adult animals and their trkC receptor is expressed on spindle afferent fibers and 

motoneurons in the spinal cord (Munson, Johnson, & Mendell, 1999), suggesting the 

role of NT-3 in maintaining the normal physiological properties of muscle stretch 

receptor afferent fibers in adults.  

BDNF gene transcription is dependent upon Ca2+ influx and is regulated by 

CRE-bind protein (CRAB) transcription factor. The molecular mechanisms that 

control NT-3 gene transcription are not fully understood and may be different than 

those involved in BDNF transcription. The NT-3 gene consists of 2 untranslated 

exons IA (EIA) and IB (EIB) and a common exon II. Two transcription factors, 

specificity proteins (Sp) 3 and 4 bind to Sp1 sequences within the promoter region 

and regulate NT-3 gene expression. Recent evidence suggest that NT-3 is 

independent of extracellular Ca2+ influx and functions through IP3 or 

Ca2+/Calmodulin-dependent Kinase II (CaMKII) signaling pathways (He, Yang, Xie, 

& Lu, 2000). Figure 4 represents a schematic diagram for BDNF and NT-3 gene 

transcription (Tabuchi, 2007). 

It is apparent from animal models that neurotrophins are essential for growth 

and survival of certain motor, sympathetic and sensory neurons in both the central 

and peripheral nervous systems during embryonic development (Snider, 1994; 

Watanabe, Endo, Kimoto, Katoh-Semba, & Arakawa, 2000; Wright, 2001). 

However, in adult life, neurotrophins have two primary functions: 1) to provide 
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trophic support for neurons and 2) to support activity dependent plasticity that is 

essential for maintenance and repair (Frostick, Yin, & Kemp, 1998; Gomez-Pinilla, 

Ying, Roy, Hodgson, & Edgerton, 2004; Hennigan, O'Callaghan, & Kelly, 2007; 

McAllister, Katz, & Lo, 1999). The concept of activity dependent neuroplasticity is 

evident in many clinical conditions of neurogenerative diseases and provides support 

for exercise training.  

Since neurotrophins support sensory neurons, their role in pain modulation is 

currently being explored and has clinical importance. Both BDNF and NT-3 are 

important for the regulation of sensorimotor function (Molteni, 2004). Of the four 

neurotrophins, this dissertation focuses primarily on NT-3 as it plays an important 

role in suppressing chronic pain triggered from intramuscular acid injections 

(Gandhi et al., 2004). It is hypothesized that sensory neurons responsive to NT-3, 

and those projecting to skeletal muscles play a key role in mediating exercise-

induced analgesia.     

 

1.9 The Role of NT-3 and Sensory Modulation 

Recently, efforts have been made to determine the clinical significance of NT-3 

for pain modulation.  

1.9.1  NT-3 and Pain  

The role of NGF in promoting inflammatory pain is well understood (Wilson-

Gerwing, Dmyterko, Zochodne, Johnston, & Verge, 2005). Recently, evidence is 

emerging about the role of NT-3 as a pain modulator. NT-3 has been shown to 
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modulate mechanical (Gandhi et al., 2004) and thermal (Wilson-Gerwing et al., 

2005) hyperalgesia in various animal models of injury. The affect of NT-3 on 

mechanical hyperalgesia developed in response to acid injection was assessed by 

Gandhi, et al. (Gandhi et al., 2004). Mice with either high overexpression of NT-3 

(high-OE myo/NT-3) or with intramuscular injection of NT-3 demonstrated transient 

mechanical hyperalgesia in contrast to mice with low-OE myo/NT-3, wild-type or 

saline treated who developed persistent hyperlagesia. This study demonstrated that 

NT-3 is a potent pain modulator in acid-induced hyperalgeia and provides the reason 

for exploring its role endogenously via exercise training to mitigate muscle 

hyperalgesia (Chapter 3). 

Additional support comes from an experiment by Malcangio and colleagues. 

A single systemic dose of NT-3 into hyperalgesic rats from injection of NGF resulted 

in mechanical but not thermal hypoalgesia 24 hours after administration. In addition, 

NT-3 either systemically injected for two weeks or acutely applied to the spinal cord 

significantly reduced electrically evoked release of substance P from central 

terminals of the primary afferents, suggesting possible anti- nociceptive action of 

NT-3 involving substance P (Malcangio et al., 1997). Intrathecal administration of 

NT3 prevented thermal hyperalgesia and suppressed the injury-induced 

overexpression of TRPV1 receptors in the DRG and the spinal cord in a sciatic nerve 

injury model (Wilson-Gerwing et al., 2005). A local injection of NT3 into the skin of 

the hind paw transiently reversed inflammatory hyperalgesia associated with 

complete Freund’s adjuvant (CFA) (Watanabe et al., 2000). These findings suggest a 



45 
 

link between NT-3 and hypoalgesia and guide the hypothesis for Chapter 3. It should 

be noted that the mechanism by which NT-3 modulates pain is not known.   

 

1.9.2  Exercise and NT-3  

Abundant evidence demonstrates that physical activity improves motor 

function following neurological impairments in clinical and experimental settings 

(Hutchinson et al., 2004; Johnson & Mitchell, 2003; Johnson, Rhodes, Jeffrey, 

Garland, & Mitchell, 2003; Ying, Roy, Edgerton, & Gomez-Pinilla, 2005). Recently, 

evidence suggests that exercise can also modulate sensory function in healthy 

(Molteni, Zheng, Ying, Gomez-Pinilla, & Twiss, 2004) and injured animals (Bement 

& Sluka, 2005; Hutchinson et al., 2004). The cellular and molecular mechanisms of 

exercise impact on neuronal function are mainly unexplored. Some studies have 

demonstrated that exercise may modulate various neurotrophins at central (Cotman 

& Berchtold, 2002), spinal (Ying et al., 2003, 2005), and peripheral levels (Gomez-

Pinilla et al., 2001; Hutchinson et al., 2004; Molteni et al., 2004; Ying et al., 2003, 

2005). The effect of exercise on neurotrophin-dependent nerve regeneration (Molteni 

et al., 2004), neuronal excitability and synaptic efficacy (Hutchinson, 2004; Ji, R-R., 

Kohno, T., Moore, K. A. & Woolf, C. J., 2003) of sensory and motoneurons and 

signal transduction receptor (Ying et al., 2003) have been reported. Thus, activation 

of NTs by exercise leads to improved neuronal networking.  

The concept of exercise and NT-3 modulation is fairly novel. Few recent 

studies by Gómez-Pinilla and colleagues have proven that voluntary exercise is 
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capable of altering the level of NT-3 mRNA and NT-3 protein in the spinal cord as 

well as in the skeletal muscle (Gomez-Pinilla et al., 2001; Ying et al., 2003) in 

healthy animals. In the soleus muscle of healthy rats, a significant increased in NT-3 

mRNA following 1 and 5 days of treadmill training at 27m/min and 3% incline 

(Gomez-Pinilla et al., 2001) and 3 days of voluntary wheel running (Ying et al., 

2003) have been reported. However, NT-3 mRNA reduced to the control levels after 

7 days of wheel running and no change in NT-3 protein was reported in response to 3 

or 7 days of wheel running (Ying et al., 2003). In contrast to wheel running, 

treadmill training showed a progressive increase in mRNA NT-3 by day 1 and 5 as 

well as mRNA and protein levels of BDNF by day 5 (Gomez-Pinilla et al., 2001).  

In the spinal cord of healthy rats, the levels of NT-3 mRNA and protein were 

significantly elevated after 7 days of wheel running (Ying et al., 2003) and 1 and 5 

days of treadmill training (Gomez-Pinilla et al., 2001). The increase in NT-3 

imunostaining was localized to substantia gelatinosa and motoneurons (Ying et al., 

2003). Ying and colleague reported that motorneuron axons projecting to muscle 

show NT-3 immunostaining, suggesting that NT-3 is involved in spinal cord-skeletal 

muscle interactions. In the same study, 3 and 7 days of wheel running increased the 

expression of the trkC receptor in the spinal cord (Ying et al., 2003). These studies 

demonstrate the upregulation of NT-3 mRNA in soleus and spinal cord in response 

to acute stage of exercise (1-7 days) in healthy rats.   

Similar results have been seen in the spinal cord and sciatic nerve crush 

injury models. Twenty-eight days of wheel running counteracted the reduced 
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expression of BDNF and increased NT-3 mRNA in the lumbar spinal cord in rats 

subjected to mid-thoracic hemisection. The increased level of mRNA NT-3 was only 

seen after 28 days and not after 3 or 7 days of wheel running, suggesting that the 

injured spinal cord requires long-term exercise training (Ying et al., 2005). 

Additionally, there was no change in the protein level of NT-3 in response to 28 days 

of exercise period (Ying et al., 2005). These authors did not analyze the effect of 

exercise on NT-3 in skeletal muscle. Neurons of DRG and sciatic nerve from three-

day exercised animals showed significant longer neuritis and more axons 

respectively, compared to the sedentary animals; seven-days exercised animals 

showed even longer neuritis in DRG in vitro, suggesting increased neuronal 

outgrowth with longer periods of exercise (Molteni et al., 2004).  In the same study, 

3 and 7 days of running wheel activity resulted in increased expression of mRNA of 

NT-3, BDNF, and Synapsin I, a member of a family of nerve terminal-specific 

phosphoproteins and involved in neurotransmitter release (Molteni et al., 2004) 

supporting successful sensory stimulation from exercise training (Molteni et al., 

2004). Although these experiments provided insight into exercise-induced 

modulation of neurotrophins and their connection to motor and sensory neurons, they 

are limited to biochemical and histological assessment and lack functional analysis 

of animal behavior associated with injury.  

1.9.3 NT-3, Pain and Exercise 

Many animal and human studies have provided clear evidence that voluntary 

exercise stimulates neurogenesis and improves neuronal survival, learning and 



48 
 

mental performances (Cotman & Berchtold, 2002). Locomotion activity in particular 

is proven to be beneficial in maintaining and improving neuronal function following 

insult (Wernig, Nanassy, & Muller, 1999). The effect of exercise on NT-3 

production in pain-induced animals is limited to only one study in which 7 weeks of 

treadmill training reversed allodynia and restored normal sensation after 

experimental spinal cord injury (Hutchinson et al., 2004). Thus, exercise has been 

shown to affect the expression of NT3 (Gomez-Pinilla et al., 2001; Ying et al., 

2003), and NT3 plays a central role in modulating hyperalgesia associated with acid-

induced pain (Gandhi et al., 2004). These results provide a physiological basis to 

investigate exercise as the means to induce endogenous NT-3 and modulate 

sensitivity in acid-pain model (Chapter 3).  All these experiments are based on the 

male rat model and various nerve injuries. No experiment has been conducted to 

examine NT-3 production in female mice in response to exercise and its effect on 

chronic muscle pain. The proposed study has addressed this issue by using acid-

induced chronic muscle pain using a mouse model.  

 

1.10 Significance of the Present Work 

The complexity of chronic pain syndromes in reference to its physiology, 

diagnosis and intervention is well recognized in literature. Many attempts are being 

made to understand the underlying pathology, yet the present studies are limited to 

cutaneous sensation in regards to pain measures and exercise-induced effects in 

rodent models. Additionaly basic science research and its clinical applications are 
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needed to define muscle pain and to manage people with chronic pain syndromes. 

This was the basis of the present dissertation.  

Despite growing literature on FMS and its management, limited empirical 

evidence exists for the molecular basis of exercise that is routinely used in the 

management of the condition. In fact most intervention techniques are based on 

clinical observation and lack empirical support. Recent advances in the role of 

exercise training on neurotrophins in healthy and various nerve injury animal models 

have provided insights into how activity-dependent plasticity can affect neuronal 

biology. However, the same effects have not been examined in chronic muscle pain 

which affects 97 million people in the United States (Brain Facts, 1997). Recently, 

the association between NT-3 and pain had begun to unfold. Logically, the 

association between exercise and NT-3 to modulate chronic muscle pain was the 

next step in understanding exercise-induced effects. The present study is the first to 

examine the chronic nature of muscle pain and exercise-induced changes in 

neurobiology of the peripheral and spinal cord tissues in a chronic muscle animal 

model of widespread pain.  

The results of this study highlight important features of muscle pain and 

provide a molecular basic for exercise training to mitigate nociception using an 

animal pain model. In the absence of animal models, defining muscle pain and 

understanding mechanisms of exercise-induced analgesia would not be possible. 

Future studies should utilize animal studies to improve our knowledge base. Other 

important findings of this dissertation are that we were able to demonstrate 
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variability in the development of muscle hyperalgesia in different strains of mice, 

reproduce acid-induced hypersensitivity in female mice, and analyze the effect of 

exercise training using female-mouse model. These are important issues to consider, 

which we hope will guide the future experiments using animal models.  

 

1.11 Goal of the Study  

The purpose of this study was to assess muscle pain and determine the role of 

aerobic exercise in reducing chronic pain states in mice.  Furthermore, the central 

projections of the gastrocnemius and the hind paw in response to mechanical 

perturbation in a chronic state were determined. Also, a possible mechanism by 

which exercise influences pain was investigated. This was attempted by utilizing an 

animal model of acid-induced mechanical hyperalgesia in 2 different strains of mice. 

The use of acid-model is ideal to analyze muscle pain and study exercise related 

effects on behavioral and molecular levels for 2 reasons: one, acid produces long-

term chronic pain condition without inflammation or tissue damage (Sluka et al., 

2001); and two, it resembles the characteristics of clinical condition of FMS and 

other related syndromes that display referred hypersensitivity to mechanical stimuli. 

The overall goal of this dissertation was to define muscle pain and to investigate the 

efficacy of exercise training of 2 different intensities in reducing chronic muscle pain 

at behavioral and molecular levels.  

The effects of exercise-induced analgesia in patients with chronic pain are 

complex and poorly understood (Vierck et al., 2001). Exercise-induced analgesia 
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may involve activation of proprioceptive and muscle afferents to inhibit central pain 

circuitry and modulate descending inhibitory pathways (Hoffman et al., 2004). 

Animal models allow the investigation of such potential mechanism. The proposed 

research seeks to explore this by measuring changes in mechanical sensitivity in 

response to exercise and exercise-induced NT-3 levels. Additionally, we determined 

whether expression of NT-3, a proprioceptive sensory modulator (Ernfors et al., 

1994; Farinas, Jones, Backus, Wang, & Reichardt, 1994; Klein et al., 1994; 

Tessarollo et al., 1994; Wright, 2001) and a potent pain modulator (Gandhi et al., 

2004) occurred peripherally in muscle or centrally in the spinal cord. This was 

attempted to localize anatomical sites involved in pain modulation from exercise. 

This information is important to neuroscientists and clinicians as it adds to the role of 

NT-3 in pain and provides insights into the potential molecular changes that occur in 

response to exercise training.  

Concerning the use of acid-induced pain model, Sluka and others from our 

laboratory have reported secondary hyperalgesia in animals, but not all later studies 

have been able to reproduce this finding (Ambalavanar, Yallampalli, Yallampalli, & 

Dessem, 2007). We examined the acid-induced hypersensitivity in 2 different strains 

of mice and analyzed the spinal Fos pattern in response to mechanical perturbation. 

Injections of acidic saline led to increased mechanical hyperalgesia to skin and 

muscle at different degrees in each strain of mice.   

Our findings may identify a specific subpopulation of DRG neurons that are 

activated with exercise training and mediate analgesic effect through upregulation of 
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NT-3. These neurons express trkC and ASIC-3 and innervate vasculature in skeletal 

muscles.  The sensory neurons that respond to NT-3 in the skeletal muscle are 

mainly Aα, Aβ and Aδ. A previous study from our lab demonstrated that the Aδ 

fibers are the ones that attenuate the function of exogenous NT-3 in reversing acid-

induced cutaneous pain. The present study focused on the endogenous mean of NT-3 

synthesis through exercise training and its role in reducing deep muscle pain 

induced by acid injections. Our results also indicate a possible compensatory 

mechanism by which NT-3 mitigates muscle pain under the condition of 

physiological stress of tissue acidosis. Together these data strengthens the role of 

NT-3 as an anti-nociceptive neurotrophin in treating muscle pain and provide further 

support for exercise training as a therapeutic intervention for the growing field of 

pain medicine.  
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   Ascending            Descending  

Figure 1: The main ascending (a) and descending (b) pain pathways.  

Figure a demonstrates 2 primary ascending pathways: spinoparabrachial (left) and 

spinothalamic (right). Figure b demonstrates the descending pathways from the 

origin sites of amygdale and hypothalamus to periaqueductal gray (PAG); from PAG 

to lower midbrain (rostroventral medulla – RVM); from lower midbrain to the dorsal 

horn (DH) (Hunt & Mantyh, 2001).   
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Figure 2 demonstrates the central projections of the primary afferents from the 

cutaneous and deep tissues. The convergence of these afferents in deeper laminae of 

the dorsal horn of the spinal cord provides anatomical explanation for secondary 

hyperalgesia induced by acid injections.  
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Figure 3a: A schematic figure demonstrating internalization of neurotrophin and 

neurotrophin receptor (Zweifel et al., 2005)  
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Figure 3b: A photograph showing trk receptors, ligand binding and intracellular 

pathways downstream from trk receptors (Chevrel, Hohlfeld, and Sendtner, 2006). 
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A: BDNF gene transcription   

 

   

 

B:  NT-3 Gene transcription 

Figure 4: A diagram depicting BDNF and NT-3 gene transcriptions (Tabuchi, 2007). 
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2.1  Abstract 

To test the hypothesis that animals develop muscular hyperalgesia following 

intramuscular acidic injections, acid-induced muscle hyperalgesia was analyzed in 2 

strains of mice and was compared to secondary cutaneous hyperalgesia in the hind 

paw that develops following intramuscular acid injection. Two acid (pH 4.0) 

injections were administrated into the gastrocnemius of female C57BL/6 and CF-1 

mice. Mechanical sensitivity to paw and muscle stimulation was examined using 

behavioral measures and spinal Fos expression. Compared to C57BL/6, CF-1 mice 

developed a robust hypersensitivity bilaterally in hind paws and gastrocnemius 

muscles that lasted up to 2 weeks. In CF-1 mice, muscle hyperalgesia correlated well 

with Fos activity. Cutaneous hind paw palpation stimulated ipsilateral Fos expression 

in the superficial spinal laminae at L4/L5 levels, and bilaterally in deep laminae at 

L2-L5 spinal levels. In contrast, muscle compression stimulated widespread Fos 

expression in all regions of the ipsilateral dorsal horn within L2-L6 spinal segments. 

These findings identify that there are important mouse strain differences in response 

to acid, that acid injection induces muscle hyperalgesia, and finally that the patterns 

of Fos expression in response to muscle versus cutaneous stimulation are strikingly 

different. 

 

PERSPECTIVE  

This study assesses muscular pain, which is the primary complaint of people 

with musculoskeletal conditions. The results suggest that critical strain differences 
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exist related to nociception in this model and that the spinal patterns activated by 

noxious mechanical stimuli to the gastrocnemius is different than paw. This 

information should aid our understanding of spinal processing of muscular pain and 

approaches to test nociception arising from muscle. 

 

2.2  Introduction  

Pain associated with chronic musculoskeletal disorders poses a major clinical 

problem, affecting nearly one-third of the world’s population and costing 

approximately $100 billion each year (Bergman, 2007; Holden & Pizzi, 2003).  

Clinically, people report pain arising from joint, muscle, fascia or visceral tissues (L. 

J. Kehl & Fairbanks, 2003). However, most of our knowledge concerning the 

mechanism and measurement of pain is inferred from studies assessing cutaneous 

tissue. Little is known about muscle pain, in part because of the complexity of 

muscle nociception (L. J. Kehl & Fairbanks, 2003) and the lack of reliable laboratory 

measures. Clinically, muscle pain is measured by the presence of edema and 

bruising, loss of strength, and pain with palpation. In animals, muscle strength tests 

have been used for testing muscle pain, (L. J. Kehl, Trempe, & Hargreaves, 2000; 

Schafers, Sorkin, & Sommer, 2003) but are currently limited to assessing forelimb 

muscles. An effective way to test hind limb deep tissue pain may be direct muscle 

compression, (Schafers et al., 2003; Skyba, Radhakrishnan et al., 2005; Yu et al., 

2002) which parallels clinical assessment by muscle palpation. Yu et al. (Yu et al., 

2002) first described a study in which a compression was applied to the deep hind 
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limb tissues using an instrumented forceps to control the compressive force applied. 

This device has become a widely accepted and beneficial tool for measuring deep 

tissue pain in various pain models (Schafers et al., 2003; Skyba, Radhakrishnan et 

al., 2005; Yu et al., 2002).   

Animal models of muscle pain are induced by ischemia (Graven-Nielsen et 

al., 2002; Graven-Nielsen & Mense, 2001); various irritant chemicals (Hoheisel, 

Mense, Simons, & Yu, 1993; Hunt et al., 1987; L. J. Kehl et al., 2000; Sluka, 2002); 

muscle contraction via either electrical stimulation (Taguchi, Matsuda, Tamura, Sato, 

& Mizumura, 2005; S. F. Wang, Chen, Liao, & Shyu, 2005) or exercise (L.J. Kehl, 

1996); and acidic saline (Sluka et al., 2001). The model of acid hyperalgesia is 

unique in that it causes no muscle damage and the widespread hypersensitivity has 

been proposed to mimic fibromyalgia (Sluka et al., 2001). Muscle hyperalgesia 

induced by acid injection is dependent on the presence of acid sensing ion channel-3 

(ASIC3) (Sluka et al., 2003) and mediated by central sensitization of spinal (Hoeger-

Bement & Sluka, 2003; Miranda et al., 2004; Skyba et al., 2002; Skyba, Lisi et al., 

2005; Sluka et al., 2001) and supraspinal mechanisms (Tillu et al., 2007). Following 

2 acidic injections, animals develop widespread secondary hyperalgesia that spreads 

to bilateral cutaneous (Gandhi et al., 2004; Hoeger-Bement & Sluka, 2003; Miranda 

et al., 2004; Skyba et al., 2002; Skyba, Lisi et al., 2005; Sluka et al., 2001) and 

visceral tissues (Miranda et al., 2004). The development of cutaneous hyperalgesia 

has been reported in many studies, but it is not clear whether animals develop muscle 

hyperalgesia following intramuscular acid injection (Tillu et al., 2007).  
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Fos has been extensively used to examine neuronal activation following 

cutaneous application of noxious chemical, (Bon et al., 2002; Hunt et al., 1987; Jinks 

et al., 2002; Li, Lighthall, Liang, & Clark, 2004; Svendsen, Edwards, Lauritzen, & 

Rasmussen, 2005) thermal, (Hunt et al., 1987; Todd, Spike, Young, & Puskar, 2005; 

Williams, Evan, & Hunt, 1990), and electrical stimuli (Lawrence et al., 2004; 

Taguchi et al., 2005). The activation and expression of Fos in the dorsal horn in 

response to gastrocnemius muscle stimulation is limited to two studies utilizing 

chemical or electrical stimuli (Hunt et al., 1987; S. F. Wang et al., 2005). Here, we 

used immunohistochemistry to map the distribution Fos in the dorsal horn in 

response to mechanical stimulation of the gastrocnemius muscle and hind paw in the 

acid-induced pain model. The purpose of the present study was to 1) compare the 

responses of 2 strains of mice to intramuscular acid injection, 2) assess muscle 

hyperalgesia using an instrumented forceps device and Fos activation in the acid pain 

model and 3) compare patterns of Fos expression in response to either hind paw 

palpation and gastrocnemius muscle compression. Characterizing the features of pain 

in different strains of mice using the acid-induced model of muscle pain may provide 

a broader understanding of muscle nociception and add to our understanding of 

clinical testing of muscle palpation.  

 

2.3  Materials and Methods 

Animals 
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All experiments were approved by the Institutional Animal Care and Use 

Committee of the University of Kansas Medical Center and adhered to the 

University’s animal care guidelines. Eighteen female C57BL/6 mice and twenty 

female CF-1 mice were randomly assigned to either acid or saline groups. Two 20 μl 

injections of either acidic (pH 4.0) or normal (pH 7.4) saline were administered 2 

days apart into the right gastrocnemius muscle to induce wide spread 

hypersensitivity. Injections were made with a 1 ml latex-free insulin syringe with 10 

µl increments (Becton Dickinson, Franklin Lakes, NJ). The examiner was blinded to 

group assignment for all experiments. 

  

Behavioral Assessments 

Cutaneous Sensitivity:  Cutaneous sensation of both hind paws was measured 

using 0.6 g (C57BL/6) and 1.0 g (CF-1) von Frey monofilaments according to a 

previous study (Gandhi et al., 2004). Two different filaments were used due to the 

differences in mechanical sensitivity between the 2 strains of mice. The 0.6 g 

filament for female C57BL/6 mice was chosen based on unpublished data from our 

laboratory that suggested a 1.0 g filament produced a ceiling effect and did not 

adequately allow assessments of hyperalgesia in these mice. For all animals, the 

monofilament was applied 5 times to each hind paw with 15-30 seconds between 

each application for a total of 3 trials. Three days prior to the initial testing, animals 

were acclimated under small plastic chambers on wire mash table for 30 minutes 

each day until the day of testing. The numbers of positive responses were recorded, 
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and the percent withdrawal response for each paw was calculated. A positive 

response was defined as retraction of the paw. In C57BL/6 mice, the response was 

measured at pre-injection and 1 and 3 days following the 2nd injection. In CF-1 mice, 

testing was performed pre-injection and 1, 10 and 16 days following the 2nd acid 

injection to examine the chronic stage of muscle hyperalgesia.  

 

Muscle Sensitivity: To assess whether animals experience deep tissue 

hyperalgesia following acid injections, we used a forceps compression device similar 

to the one described by Yu et. al. (Yu et al., 2002). Our device is a modified version, 

built internally in our Neuromuscular Research Laboratory. The device consists of a 

forceps, a pressure sensor, a signal amplifier, and a laptop computer. Yu et. al. (Yu et 

al., 2002) used a strain gage sensor affixed in the middle portion of a forceps’ arm. 

The deformation of the forceps arm was measured during the experiment and later 

converted to the compressive force applied at the tip of the forceps. Here, we used a 

commercial pressure sensor, (LCKD subminiature compression load cells, Omega 

Engineering, Inc. Stanford, CT, USA), which was mounted on the inner tip flat 

surface of the forceps. This modification makes the device more reliable and allows 

a direct measure of the compressive force applied to the tissue through the tip of the 

forceps. The signal from the load cells was amplified through a DMD-465 

Bridgesensor AC Powered Signal Conditioner (Omega Engineering, Inc. Stanford, 

CT, USA), digitized using an A/D board, and stored in a laptop computer. The 

examiner applied manual force from a marked area using the forceps (Fig. 1). The 



65 
 

contact area of the pressure sensor measured the direct compressive force applied to 

the tissue. The recorded force signal was processed using a custom-written Mat-Lab 

computer program (Matlab 6.5, The MathWorks Inc., Boston, MA, USA) to identify 

the force peaks and the respective loading time. The peak force was defined as the 

amount of force when the animal either withdrew its hind limb or vocalized.  

Three days prior to each testing session, mice were acclimated in a 50 ml 

restraining tube for 10 minutes 3 times a day. Each gastrocnemius muscle was 

compressed 3 to 5 times in 1 trial for a total of 3 trials. In C57BL/6 mice, the 

response was measured prior to acid injection and 5 days following the 2nd injection. 

In CF-1 mice, testing was conducted prior to acid injection and 3 and 16 days post-

second acid injection. The mean of 9-11 peak forces over 3 trials was calculated for 

each hind limb. Only peak forces with a loading time (defined as the beginning of 

loading to the point of peak) of less than 1.5 (C57BL/6) or less than 1.0 (CF-1) 

seconds were used for the final calculations.  

 

Paw Palpation and Muscle Compression to Induce Fos Expression:  In order 

to produce a strong enough mechanical stimulus to induce Fos expression in the 

spinal cord, groups of mice were either stimulated with paw palpation of the right 

hind paw or manual compression of the right gastrocnemius muscle. For paw 

palpation, mice were restrained in 50 ml conical tubes with their hind paws exposed, 

and the right hind paw was manually compressed with a circular motion for 2 

minutes (Gandhi, et al., 2004). For muscle compression, mice were similarly 
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restrained and the right gastrocnemius was manually compressed with a circular 

motion for 2 minutes. The manual compression to hind paw and gastrocnemius 

muscle was applied by the same individual who was blinded to the group 

assignments. 

 

Immunohistochemistry:  Two hours following muscle or hind paw 

compression (Harris, 1998; Hunt et al., 1987; S. F. Wang et al., 2005), mice were 

deeply anesthetized with 500 µl 1.25 % Avertin (20 ul / g; 100% Avertin in 10 g 

2,2,2-tribromoethyl alcohol and 10 ml tert-amyl alcohol) and perfused 

intracardiacally with 50 ml 1x PBS followed by 500 ml 4% paraformaldehyde (pH 

7.4). The lumbar spinal cord was removed and the ventral surface of the spinal cord 

was nicked on one side to identify the right and left sides. The cord was postfixed 

overnight then cryoprotected overnight with 30% sucrose. Serial 20 µm sections of 

frozen lumbar cord were cut and mounted on microscope slides. Approximately 

every 3rd slide was chosen for Fos immunocytochemistry. The sides were incubated 

in 0.5% Triton X-100 for 20 minutes, followed by 2 washes and 10% normal horse 

serum for 10 minutes at room temperature. Sections were incubated overnight with a 

rabbit polyclonal Fos primary antibody (1:3000, Santa Cruz Biotechnology, Santa 

Cruz, CA) at 4°C in a humidified tray. The sections were washed 3 times and 

incubated with the secondary antibody (donkey anti-rabbit CY3; 1:200 in 0.1M PBS; 

Jackson ImmunoResearch) for one hour at 4°C. Sections were washed in PBS and 

coverslipped before viewing. 
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To assess the rostrocaudal extent of spinal Fos activation in response to 

muscle or paw stimulation, the lumbar spinal cord was subdivided into 3 segments: 

L2/3 (rostral), L4/5 (central) and L6 (caudal). Furthermore, each dorsal horn was 

divided into 3 regions on each side: lamina I and II (superficial region); lamina III 

and IV (intermediate region); lamina V and VI (deep region). Every 3rd section on 

each slide was used to count Fos-positive cells. The dorsal horns were photographed 

using a Nikon E800 microscope attached to a Magnafire digital camera (Optronics, 

Goleta, CA). A person blinded to the animals' grouping manually counted positive 

cells in each area of the ipsilateral and contralateral dorsal horns. 

 

Statistical Analysis 

For all measures, ipsilateral and contralateral sides were analyzed separately. 

A repeated measures analysis of variance (RM ANOVA) was used to analyze von 

Frey withdrawal responses and muscle compression withdrawal peak forces before 

and after acid injections. In addition, a t-test was conducted to examine the group 

differences related to cutaneous and muscle hyperalgesia at different time points 

when group differences or interactions (time*acid) were significant using RM 

ANOVA. Group differences in the number of Fos-positive cells in L4/L5 segment 

were also analyzed between acid and saline groups using RM ANOVA to account 

for possible laminar interactions. Further analysis was conducted using t-tests to 

examine differences in specific laminae when either group or interactions were 

significant with RM ANOVA. Additionally, correlations were performed between 
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behavioral measures and the number of Fos-positive cells in the ipsilateral superficial 

L4/L5 dorsal horn using Pearson's Correlation Coefficients. Values were considered 

significant at α level P < 0.05. 

 

2.4  Results  

Behavioral Assessments  

Cutaneous Sensitivity: Acidic injections into the right gastrocnemius muscle 

produced secondary cutaneous hyperalgesia in both hind paws in both strains of mice 

as assessed by paw withdraw in response to von Frey monofilaments. In saline-

injected mice, withdrawal responses remained relatively constant on the ipsilateral 

and contralateral sides in both strains of mice (Fig. 2). In C57BL/6 mice, the 

withdrawal responses in the ipsilateral paw of acid-injected mice increased from 

29.63 ± 6.60 SEM to 60.74 ± 4.36 SEM (P < 0.05) 3 days following the 2nd acid 

injection (Fig. 2A). The % withdrawal responses in the contralateral paw of acid-

injected C57BL/6 animals also increased from 49.63 ± 7.21 SEM to 69.63 ± 7.12 

SEM (P < 0.05) 3 days following the 2nd acid injection (Fig. 2B). 

In comparison, CF-1 mice displayed a robust and long-lasting mechanical 

hypersensitivity in response to intramuscular acid injection. In CF-1 mice, the % 

withdrawal response in the ipsilateral paw of acid-injected mice increased from 

22.67 ± 5.28 SEM to 66.00 ± 7.20 (P < 0.05) 16 days following acid injection in CF-

1 mice (Fig. 2C). The % withdrawal response in the contralateral paw of acid-

injected CF-1 animals also increased from 21.33 ± 4.07 SEM to 65.33 ± 5.33 SEM 



69 
 

(P < 0.05) 16 days following acid injection (Fig. 2D). These results indicate changes 

in the withdrawal threshold level of ipsilateral and contralateral sides in animals 

following acid injections and confirm the development of cutaneous hyperalgesia in 

the acid-induced pain model. Importantly, these findings reveal that CF-1 mice 

develop a comparatively stronger response to intramuscular acid injection than 

C57BL/6 mice. 

 

Muscle Sensitivity The assessment of muscle hyperalgesia was tested with a 

forceps compression device as shown in Fig 1. In the ipsilateral limb of saline-

injected C57BL/6 mice, the compression withdrawal thresholds increased from 73.2g 

± 18.7 SEM pre-injection to 124.1g ± 12.0 SEM post injection (P < 0.05, Fig. 3A), 

suggesting the saline-injected mice became acclimated to the test and were able to 

endure greater compression at later tests. The ipsilateral limb of acid-injected 

C57BL/6 mice displayed a similar increase in withdrawal thresholds (72.2g ± 14.9 

SEM to 133.6g ± 17.1 SEM) following the 2nd acidic injection. The compression 

withdrawal thresholds in the contralateral limb of saline-injected mice also increased 

(66.7g ± 10.1 SEM pre-injection to 140.6g ± 19.4 SEM post-second injection, P < 

0.05). However, the withdrawal thresholds in the contralateral limb of acid-injected 

C57BL/6 mice did not increase comparably to the saline-injected mice (80.2g ± 8.1 

SEM pre-injection to 89.8g ± 13.1 SEM post-injection, Fig. 3B).  

In comparison, CF-1 mice developed robust muscle hypersensitivity in 

response to acid-injection compared to C57BL/6 mice (Figs 3C, D). In the ipsilateral 
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limb of acid-injected CF-1 mice, compression withdrawal thresholds significantly 

decreased from 129.39g ± 10.59 SEM pre-injection to 103.47g ± 6.13 SEM (P < 

0.01) 16 days following acid-injections. In the contralateral limb of acid-injected CF-

1 mice, the compression withdrawal thresholds were also significantly decreased 

after acid injection (63.43g ± 6.79 SEM to 61.09 ± 3.82 SEM (P < 0.05) 16 days 

post-acid injections. These decreases in compression withdrawal thresholds were 

also evident 3 days post acid injection in both limbs and were significantly different 

from saline-injected mice (P < 0.05, Fig. 3C, D), These results indicate that CF-1 

mice developed bilateral muscle hyperalgesia that lasted up to 16 days. 

 

Acid-Induced Spinal Fos Expression From Hind Paw and Gastrocnemius 

C57BL/6 Mice: The early immediate gene c-Fos is upregulated in spinal cells 

following the administration of peripheral noxious stimuli. Here, the number of Fos-

positive neurons in L4/5 segment was quantified in saline and acid-injected animals 

in response to either rigorous hind paw palpation or compression of the 

gastrocnemius. Both stimuli were performed in the leg ipsilateral to saline- or acid 

injection. In C57BL/6 mice, hind paw or muscle compression was performed 5 days 

following the second acid injection. As shown in Table 1 and Fig. 4, hind paw 

palpation induced the expression of Fos-positive cells (30.63 +2.27 SEM total Fos-

positive cells). In comparison, acid-injection did not stimulate additional Fos 

expression in the ipsilateral dorsal horn in C57BL/6 mice (35.00 + 2.09 SEM total 

Fos-positive cells).   
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In comparison to paw palpation, ipsilateral muscle compression of the 

gastrocnemius resulted in a comparable number of Fos-positive cells (Table 1, Fig. 

4). In saline-injected C57BL/6 mice, muscle compression induced a total of 35.84 + 

3.50 SEM total Fos-positive cells in the ipsilateral dorsal horn, whereas the number 

of Fos-positive cells in acid-injected C57BL/6 mice totaled 32.84 + 1.55 SEM Fos-

positive cells. Thus, in C57BL/6 mice, acid-injection had no impact on Fos 

expression either following paw palpation or muscle compression, a finding that is 

consistent with the mild to moderate changes in mechanical sensitivity observed 

following acid-injection. 

CF-1 Mice: In CF-1 mice, paw or muscle compression was performed 16 

days following the second acid injection. As shown in Table 1 and Fig. 4, paw 

palpation induced the expression of a total of 39.89 + 2.84 SEM Fos-positive cells. 

In comparison, acid-injection of CF-1 mice induced 46.49 + 2.88 SEM Fos-positive 

cells. This number was increased compared to saline-injected C57BL/6 mice, but this 

increase was not statistically significant (P > 0.05). 

In contrast to paw palpation, muscle compression of the gastrocnemius in 

CF-1 mice resulted in 25.80 + 1.35 SEM Fos-positive cells (Table 1, Fig. 4). 

However, Fos expression in acid-injected CF-1 mice was higher than saline-injected 

CF-1 mice (36.24 + 1.50 SEM Fos-positive cells), although this increase was not 

statistically significant (P = 0.054). Further analysis revealed that the effects of acid 

on increased Fos expression in CF-1 mice were mainly restricted to the superficial 

laminae (P < 0.05). Moreover, even though no significant differences were observed 
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following paw palpation, a similar trend was observed in that acid increased Fos 

expression in the superficial laminae only, suggesting laminar-specific changes in 

response to acid-induced hyperalgesia. Finally, this increased expression of Fos in 

acid-injected CF-1 mice is consistent with the robust mechanical hypersensitivity 

observed in these mice and suggests that this mouse strain is perhaps more sensitive 

to acid-injection and develops a chronic mechanical muscular hyperalgesia. 

 

Fos Expression Patterns in Response to Mechanical Compression of Paw or Muscle 

As part of the analysis of Fos expression, we mapped the rostrocaudal and 

ipsilateral-contralateral expression of Fos-positive cells in response to either paw 

palpation or muscle compression. The number of Fos-positive cells from 3 different 

lumbar segments within each lamina from both ipsilateral and contralateral sides 

were quantified and represented schematically in Fig. 5. First, paw palpation induced 

Fos expression predominantly in deeper laminae in lumbar segments L2-L5; the 

greatest number of Fos-positive cells were located in laminae V/VI. The pattern of 

Fos expression in deeper laminae in response to paw palpation was similar in both 

C57BL/6 and CF-1 mice. Second, paw palpation induced a noticeable bilateral 

expression of Fos that was greater in C57BL/6 mice compared to CF-1 mice. Finally, 

paw palpation induced Fos expression in superficial laminae that was restricted to 

lumbar segments L4/L5. These rostrocaudal patterns were similar in both strains of 

mice. 
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In comparison to paw palpation, muscle compression led to a very different 

pattern of Fos expression (Fig. 5). First, muscle compression induced a relatively 

uniform pattern of Fos expression with superficial to deep laminae.  This is in 

contrast to paw palpation in which the predominant pattern was in deep layers of the 

dorsal horn. Second, muscle compression in C57BL/6 mice led to a slight bilateral 

pattern of Fos expression similar to paw palpation, but to lesser degree. Finally, 

muscle compression led to a much broader rostrocaudal pattern of expression that 

stretched from L2-L6. This broad expansion of Fos-positive cells was evident in both 

C57BL/6 and CF-1 mice. These results reveal that there are differences in the 

patterns of Fos expression with the dorsal horn (superficial to deep) in response to 

paw or muscle compression; there are important differences within the 2 strains 

related to the bilateral nature of Fos expression; and finally, there are important 

differences in the rostrocaudal limits to Fos expression induced by paw or muscle 

compression. 

 

Correlations Between Behavioral Measures and Fos-Positive Cells 

In addition, we performed an analysis of the correlation between behavioral 

responses and Fos expression within the superficial laminae of L4/L5 (Fig. 6). This 

lamina was chosen since it displayed the most significant changes in response to acid 

injections.  Foremost, Fos expression in the dorsal horn correlates with measures of 

behavioral sensitivity, regardless of whether the animal is induced to a 

hypersensitive state. Related to paw palpation, C57BL/6 mice had poor separation 
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between saline-and acid-injected mice. Alternatively, the CF-1 displayed only a 

moderate correlation, but did display a clear distinction between saline- versus acid-

injected mice. This is consistent with the view that these mice develop robust 

mechanical hypersensitivity in response to acid injections. Relative to muscle 

compression, C57BL/6 had neither a correlation to Fos expression and behavioral 

responses, nor a separation of saline- or acid-injected mice. In contrast, CF-1 had a 

strong correlation that was significant (P<0.05) and distinct separation between 

saline-and acid-injected mice. Again, this is consistent with the view that C57BL/6 

mice respond comparatively poorly to the acid, whereas CF-1 mice are more 

sensitive to acid-induced mechanical hyperalgesia. 

 

2.5  Discussion 

Muscular pain is relatively understudied and approaches to quantify muscle 

pain are limited. Here, we compared muscle and cutaneous hyperalgesia that 

develops after acid injection into the gastrocnemius muscle. Our results suggest that 

different strains of mice develop primary and secondary hyperalgesia to different 

degrees, and that the patterns of Fos expression vary in response to muscle or paw 

stimulation. These results provide novel information about our understanding of the 

acid-induced model of pain and also provide new insight about the patterns of spinal 

activation that arise from mechanical stimulation of different anatomical sites. 

 

Acid-Induced Secondary Hyperalgesia 
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The intramuscular acid model is proposed to mimic aspects of 

musculoskeletal pain associated with secondary hyperalgesia that spreads to the 

paws and viscera (Lawrence et al., 2004; Miranda et al., 2004). This model does not 

rely on peripheral inflammation to elicit changes, and central mechanisms likely 

contribute to the maintenance of the hyperalgesia (Hoeger-Bement & Sluka, 2003; 

Skyba et al., 2002; Sluka et al., 2001; Sluka et al., 2002). Convergent input in the 

spinal cord from muscle/paw fibers and receptive field plasticity likely underlie the 

acid-induced secondary hyperalgesia. For example, after acid injection, wide 

dynamic range (WDR) neurons that respond to multiple peripheral stimuli and have 

broad receptive fields. After acid injection, WDR neurons increase their 

responsiveness to mechanical stimuli and expand their receptive fields. These 

changes are thought to be critical for the appearance of the secondary hyperalgesia 

(Sluka et al., 2003; Treede, Meyer, Raja, & Campbell, 1992). Our assessment of 

secondary hyperalgesia in the paw is consistent with previous findings using this 

model, both from our laboratory and others (Gandhi et al., 2004; Sluka et al., 2001). 

However, information about primary hyperalgesia is comparatively lacking, and our 

studies provide new information that this acid model also induces hyperalgesia in 

muscle, both ipsilateral and contralateral to the site of acid injection. 

 

Quantitative Approaches to Measuring Muscle Sensitivity  

 Muscle compression was used to activate muscle afferent nociceptors and to 

test whether acid injection alters the behavioral sensitivity of mice to muscle 
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compression. The use of quantitative approaches to measure deep tissue pain 

thresholds is relatively new, and no previous studies have examined deep tissue 

threshold levels in mice. Using similar measures in rats, investigators have reported 

average threshold around 15,000 – 23,000 mN (Skyba, et. al., 2005; Yu et al., 2002) 

under inflammatory conditions and 1500 mN following acid-induced hyperalgesia 

(Skyba, et al., 2005). All of these studies used a flat contact surface with a relatively 

large area of pressure applied to the animals’ muscle belly. In comparison, Schafers 

et. al. (Schafers et al., 2003) reported an average threshold of 1000 mN when 

pressure was applied to the muscle belly using a small contact area.  

Our study is the first to report changes in deep tissue pain thresholds using 

this approach in mice. Here, we used a small contact area to measure direct 

compressive force applied parallel to the muscle belly. We found the compression 

threshold values for mice were approximately 75 to 100 g (1000 mN), indicating that 

mice may have similar threshold levels as rats when using the same size contact area. 

It is important to note that the mechanical threshold levels were greater for ipsilateral 

compared to the contralateral sides in CF-1 mice. This difference may be due to the 

testing paradigm, as the ipsilateral side was always tested before the contralateral 

side. It is possible that animals anticipated testing of the contralateral side and 

responded to a smaller amount of compression force. Moreover, both strains of mice 

were able to tolerate greater force over time, and these threshold changes could be 

attributed to acclimation to repeated testing and handling. Both of these effects may 

need to be accounted for in future studies. 
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Acid-Induced Primary Site Muscle Hyperalgesia 

In C57BL/6 mice, response threshold levels to deep tissue compression were 

unchanged on the ipsilateral side, but decreased on the contralateral side in acid-

injected mice compared to their saline-injected counterparts, suggesting that primary 

muscle hyperalgesia failed to develop in acid-induced in C57BL/6 mice. In contrast 

to C57BL/6 mice, response thresholds to muscle compression significantly decreased 

bilaterally in CF-1 mice and remained decreased up to 2 weeks. Additional analysis 

of muscle hyperalgesia with Fos expression revealed no differences between saline- 

and acid-injected C57BL/6 mice, but significant differences in muscle sensitivity 

between saline- and acid-injected CF-1 mice. Differences in Fos expression mirrored 

the behavioral assessments and suggest that C57BL/6 mice did not develop 

ipsilateral deep tissue pain (primary hyperalgesia). However, the appearance of 

muscle hyperalgesia following acid injection in CF-1 mice suggests that acid 

injection does lead to a primary hyperalgesia in mice and is consistent with previous 

reports in rats that propose acid induces primary hyperalgesia in rats (Yokoyama, et 

al., 2007). Our results extend their findings as the muscle hyperalgesia lasted for 

over 2 weeks, suggesting that this hyperalgesia is not transient. 

 

Patterns of Fos Expression In Response to Paw or Muscle Stimulation 

Hind paw palpation stimulates nociceptive fibers from cutaneous tissue 

whereas muscle compression stimulates nociceptive and non-nociceptive fibers 

located within the deep tissue. Previous studies have reported that afferent fibers 
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from rat hind paw project predominantly to L4/5 spinal segments (Abbadie, 

Lombard, Morain, & Besson, 1992; Takahashi, Chiba, Kurokawa, & Aoki, 2003)  

with additional projections to adjacent segments (L3-L6) (Lawrence et al., 2004). 

Accordingly, we observed the highest Fos expression in superficial laminae within 

spinal L4/L5 segments. In addition, we observed substantial Fos expression in deeper 

layers (laminae IV/V) following paw palpation, suggesting that mechanical palpation 

activates Fos expression significantly in deeper layers of the dorsal horn.  

In comparison, patterns of Fos expression following muscle stimulation are 

not well understood. Wang and colleagues (S. F. Wang et al., 2005) examined Fos 

expression following electrical stimulation to the gastrocnemius muscle and reported 

Fos expression predominantly in laminae I, II and V. Similarly, Hunt et. al. (Hunt et 

al., 1987) reported Fos expression in laminae I/II following the introduction of 

chemical irritants into the gastrocnemius. Our findings support the idea that muscle 

nociception activates Fos in laminae I, II and V, but also suggest that muscle 

compression induces Fos in intermediate laminae as well. However, it is plausible 

that cutaneous afferents were also activated overlying the gastrocnemius, as our 

muscle compression included the overlying skin.  

One clear finding from this study is that compared to paw stimulation, muscle 

stimulation induced Fos expression in a much broader pattern within the rostrocaudal 

axis. In both strains of mice, we observed relatively equal Fos expression in L2 and 

extending back to L6, suggesting that muscle compression leads to a broad activation 

of spinal neurons. This rostrocaudal expansion of Fos intensity into all dorsal horn 
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layers within lumbar segments L2-L6 is in agreement with previous studies 

(Clement, Keay, Podzebenko, Gordon, & Bandler, 2000; Taguchi et al., 2005), 

supporting the idea that deep tissues project to multiple spinal segments compared to 

cutaneous projections. 

 

Fos as a Correlate of Mechanical Sensitivity 

Fos has been extensively used as a marker of activation of spinal cells in 

response to inflammatory (Abbadie & Besson, 1992; Abbadie, Honore, Fournie-

Zaluski, Roques, & Besson, 1994; Bon et al., 2002; Hoheisel et al., 1993; Hunt et al., 

1987; Jinks et al., 2002; Li et al., 2004) and neuropathic pain (Molander, 

Hongpaisan, & Grant, 1992; Munglani & Hunt, 1995). One important aspect of the 

current study is that we compared the von Frey -induced responses of mice with the 

expression of Fos following paw palpation. Interestingly, the correlation between 

these 2 measures of pain sensitivity was strong in C57BL/6 mice and moderate in 

CF-1 mice. These findings suggest that animals that react more frequently to 

monofilament stimulation also have greater nociceptive responses in spinal 

expression of Fos, regardless of whether they received saline- or acid-injection. In 

contrast, correlations between muscle compression and Fos expression following 

muscle compression were poor in C57BL/6 mice and stronger in CF-1 mice. Our 

finding of acid-induced muscular pain via behavioral measures and Fos activity 

indicates that the compression device used in the present study is a reliable tool to 

test deep tissue hyperalgesia in mice, but also reveals important differences between 
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the two strains of mice with regard to the correlation between withdrawal responses 

to noxious stimuli from different anatomical sites and the expression of Fos. 

 

Genetic Differences in Nociception  

One clear finding from this study is that C57Bl/6 and CF-1 mice respond 

differently to acid injection. As measured by most of our parameters, the C57Bl/6 

mice developed only minor hypersensitivity to acid injections. In comparison, the 

CF-1 mice robustly responded to the acid injections by developing a clear primary 

and secondary hyperalgesia in response to intramuscular acid injection that lasted 

well over 2 weeks. As the use of intramuscular acid injections increases, reports are 

emerging that acid injection does not always generate demonstrable hypersensitivity. 

For example, a recent study by Ambalavanar et al. (Ambalavanar et al., 2007) 

reported that acid injection into the masseter muscle failed to induce nociceptive 

behavioral responses. This has led some to question the reliability of acid to induce 

hyperalgesia, but this result could also be explained simply by the inherent 

differences in various muscles to acid injection (masseter versus gastrocnemius). Our 

findings shed some additional light on this issue and suggest that there are important 

species differences related to the response to acid. 

In addition, our studies revealed interesting differences between C57BL/6 and 

CF-1 mice related to the bilateral nature of Fos expression following peripheral 

stimulation. C57BL/6 displayed a greater bilateral expression Fos to both paw 

palpation and muscle compression compared to CF-1 mice. It is not clear why these 
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species differences exist, but our results do suggest that these spinal responses be 

considered in future studies assessing the role of bilateral activation and widespread 

pain.  

 

2.6  Conclusion 

The present study assessed acid-induced deep tissue hyperalgesia and spinal 

Fos expression following cutaneous and muscle nociception in 2 strains of mice. Our 

results suggest that CF-1 mice may be a better model to study acid-induced 

widespread pain due to their robust response to acid and the long-lasting 

hypersensitivity. Also, our results demonstrate that acid does induce primary muscle 

hyperalgesia, in addition to the cutaneous and visceral pain that has been reported 

(Gandhi et al., 2004; Miranda et al., 2004; Sluka et al., 2001). This study adds to the 

growing knowledge of muscle thresholds and muscle hyperalgesia in this model of 

widespread pain and provides new information about Fos-related patterns of spinal 

activation in response to mechanically stimulated gastrocnemius muscle afferent 

fibers. 
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 Table 1 

   Superficial Intermediate Deep Total 

C57BL/
6 Mice 

Paw 
Palpation 

Saline 6.12 ± 2.07 9.05 ±1.91 15.46 
± 2.84 

30.63 ± 
2.27 

  Acid 6.23 ± 1.9 9.48 ± 1.6 19.25 
± 2.45 

34.97 ± 
2.09 

 Muscle 
Compression 

Saline  11.60 ± 3.0 12.92 ± 4.64 11.32 
± 2.91 

35.84 ± 
3.50 

  Acid 11.03 ± 1.21 9.97 ± 1.48 11.84 
± 2.0 

32.84 
±1.55 

       

CF-1 
Mice 

Paw 
Palpation 

Saline 12.46 ± 3.0 8.32 ± 1.88 19.11 
± 3.65 

39.89 ± 
2.84 

  Acid 16.19 ± 3.57 9.40 ± 1.88 20.90 
± 3.19 

46.49 ± 
2.88 

 Muscle 
Compression 

Saline  8.75 ± 2.47 5.31 ± 1.60 11.75 
± 1.21 

25.80 ± 
1.35 

  Acid *15.85 ± 
2.10 

7.12 ± 1.55 13.27 
± 1.58 

*36.24±
1.50 

 

The table illustrates the mean ± S.E.M number of Fos-positive cells in each L4/L5 

spinal laminae ipsilateral to the acid-injected limb in response to either hind paw 

palpation or muscle compression. * denotes significant difference between saline and 

acid-injected mice.  
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Figure 1: Photograph of the forceps device used to measure muscle compression 

threshold. Arrows indicate the pressure sensor (which is also the contact area with 

the tissue) and the site where force was applied by the examiner. 
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Figure 2: Withdrawal Responses to Von Frey Monofilament Application to the 

Hind Paw 

Comparison of % withdrawal mean scores from pre-injection to post-injection 

periods in C57BL/6 mice. Arrows illustrate the time point at which acid was injected 

into the right gastrocnemius. Withdrawal responses on the ipsilateral (A) and 

contralateral (B) sides in C57Bl/6 mice. Withdrawal responses on the ipsilateral (C) 

and contralateral (D) sides of CF-1 mice. Data represented as mean + S.E.M. 

Asterisks denote significant differences at specific time points between saline- and 

acid-injected mice (P <0.05). 
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Figure 3: Withdrawal Responses to Muscle Compression of the Gastrocnemius 

Muscle 

Comparison of mean withdrawal peak forces from pre-injection to post-injection in 

C57BL/6 and CF-1 mice. In C57BL/6 mice, the ipsilateral side (A) was not 

significantly different between saline- and acid-injected mice. However, the 

contralateral side (B) of acid-injected mice was significantly different following acid 

injection compared to saline-injected mice. In contrast, CF-1 mice displayed 

significant reductions in withdrawal thresholds on both ipsilateral (C) and 

contralateral (D) sides at both days tested. Data represented as mean + S.E.M. 

Asterisks denote significant differences between saline- and acid-injected mice (P 

<0.05). 
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Figure 4: Fos Expression in Ipsilateral Lumbar Dorsal Horn Following Paw 

Palpation or Muscle Compression 

Expression of Fos positive cells in L2/3, L4/5, and L6 dorsal horn in C57BL/6 mice 

(left side) and CF-1 mice (right side). Images are displayed for both hind paw 

palpation and muscle compression for each strain of mice. Scale bar equals 100 µms. 
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Figure 5: Schematic Representation of Fos Expression in the Lumbar spinal 

cord 

A representation of the segmental distribution of the entire lumbar spinal cord 

following hind paw palpation (A, C) and gastrocnemius muscle compression (B, D). 
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Following paw palpation, the largest number of Fos-positive cells was concentrated 

in superficial dorsal horn of segment L4/5 on ipsilateral side and deeper layers from 

L2-L5. Following muscle compression, widespread Fos activity was observed 

throughout the rostrocaudal extent of the lumbar spinal cord, L2-L6. Note that 

C57BL/6 mice display greater Fos expression bilaterally following both paw 

palpation and muscle compression compared to CF-1 mice, particularly with regard 

to paw palpation.  
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Figure 6: Correlation of Behavioral Responses and Fos Expression in 

Superficial Lamina Correlations between responses to von Frey application (A, C) 

and muscle compression (B, D) and Fos expression in the ipsilateral superficial 

dorsal horn in C57BL/6 (A, B) and CF-1 mice (C, D). A and C display correlations 

between von Frey-induced withdrawal responses and paw palpation-induced Fos 

expression. B and D display correlations between von Frey-induced responses and 

muscle compression-induced Fos expression. Related to paw palpation, strong 

(C57BL/6) and moderate (CF-1) correlations were noted between von Frey testing 

and Fos expression. Related to muscle compression, a weak correlation was noted in 

C57BL/6 mice, whereas a strong correlation was observed in CF-1 mice. 
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3.1  Abstract 

 Exercise is considered beneficial for neuronal function and pain reduction. 

Present knowledge is restricted to exercise-induced analgesia at the cutaenous level 

in healthy and nerve-injured rodent models. Exercise is believed to negatively affect 

pain transmission via stimulation of medium and large diameter muscle afferents. 

However, the molecular basis for this explanation remains poorly understood. A few 

recent studies suggest that neurotrophin-3 (NT-3) can be stimulated with exercise 

training in rats. Others have shown that NT-3 plays an important role in controlling 

neuropathic pain when delivered exogenously. Thus this study examined the effect 

of physical activity on muscle-derived NT-3 and deep tissue hyperalgesia. Two 

separate studies were conducted using female mice (C57BL/6, n=80 and CF-1, 

n=40). C57BL/6 mice performed mildly-intense exercise training whereas CF-1 mice 

performed moderately-intense exercise training for 3 weeks. Mice were injected with 

either saline (pH 7.2) or acidic (pH 4.0) solution to induce widespread hyperalgesia. 

Cutaneous (von Frey) and muscle (forceps compression) mechanical sensitivity was 

tested for measurements of hyperalgesia and the effect of exercise. The results 

demonstrate that aerobic exercise training reduced cutaneous and deep tissue 

mechanical hyperalgesia, induced by intramuscular acid saline and upregulated NT-3 

synthesis in peripheral tissue. However, moderately-intense exercise training was 

required for NT-3 synthesis and the reduction of secondary hyperalgesia. The effect 

of exercise-induced NT-3 was more significant at the protein levels compared to 

mRNA expression. In addition, the protein levels were significant only in the 
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gastrocnemius and not in the soleus muscle, suggesting that exercise can 

preferentially target NT-3 synthesis in select muscles. In conclusion, this is the first 

study demonstrating the effect of exercise on deep tissue mechanical hyperalgesia in 

a rodent model of pain and provides a link between exercise, NT-3 and muscle pain. 

 

3.2  Introduction  

Chronic widespread pain is complex, poorly understood, and affects about 

12% of the adult population in developed countries (Gran, 2003; Neumann & 

Buskila, 2003; Rohrbeck, Jordan, & Croft). Management of chronic pain syndromes 

places challenges on health care practitioners and pharmacological interventions 

offer limited efficacy (Goldenberg et al., 2004; L. X. Wang & Wang, 2003). Exercise 

training has been long suggested to reduce pain and improve functional activities 

(Goldenberg et al., 2004; Gowans & deHueck, 2004; Gowans et al., 2004; Hoffman 

et al., 2004; Mannerkorpi, 2005; Meiworm et al., 2000; Redondo et al., 2004; 

Whiteside et al., 2004). Surprisingly, the literature is mainly limited to human 

studies. Few animal studies have been conducted to address the effect and 

mechanism of exercise on sensory modulation in the chronic pain stage of pain. 

Bement and Sluka reported that low-intensity exercise training for 5 days (treadmill 

walking) increased the cutaneous mechanical withdrawal threshold in the same acid-

pain model used in current study (Bement & Sluka, 2005). In another study, 

swimming exercise also decreased mechanical and thermal hypersensitivity 

associated with inflammation and peripheral nerve injury (Kuphal, Fibuch, & Taylor, 
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2007). These studies demonstrate that exercise training is capable of reducing or 

reversing hypersensitivity associated with chronic pain in various animal models. 

However, they are limited to examining cutaneous sensation, lacking the effect of 

exercise on deep tissue pain, which is a major clinical complaint of many people 

with chronic pain syndromes. There are no known animal studies that have evaluated 

the effect of exercise on muscle pain. 

The molecular mechanisms by which exercise induces analgesia are unknown 

beyond the release of endogenous opioids. The concept of exercise-induced 

analgesia via modulation of neurotrophins is fairly novel. Few recent studies by 

Gómez-Pinilla and colleagues have reported that various exercise regimens 

(voluntary or forced) alter neurotrophins at the central and peripheral levels in 

healthy and injured animals (Gomez-Pinilla et al., 2001; Hutchinson et al., 2004; 

Ying et al., 2005). A significant increase in soleus and spinal cord levels of BDNF 

and NT-3 mRNA following 5 days of treadmill training (at speed of 27m/min and 

3% incline) was reported (Gomez-Pinilla et al., 2001). Ying et al. (Ying et al., 2003) 

also examined NT-3 mRNA and protein levels in the spinal cord and soleus. These 

authors showed that voluntary wheel running increased NT-3 message and protein 

levels in the spinal cord in healthy rats. The up-regulated NT-3 mRNA levels in the 

soleus were transient and decreased to control levels within 7 days, and no change in 

NT-3 protein level in soleus was seen. In a separate study, Ying et al. (Ying et al., 

2005) showed a similar effect of exercise training in a nerve-crush injury model. 

These studies provide the first line of evidence in support of neurotrophin 
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modulation after exercise training, yet are limited to biochemical assays without 

analysis of behavioral responses to exercise training. Only one study examined the 

effect of exercise on cutaneous hypersensitivity and correlated improved behavioral 

responses to exercise-induced BDNF levels in a spinal cord contusion model 

(Hutchinson et al., 2004). These scatted and conflicting results clearly necessitate 

further analysis of exercise training’s effect on neurotrophins. 

In recent years, evidence has emerged about the role of NT-3 as a pain 

modulator for thermal (Wilson-Gerwing et al., 2005) and mechanical (Gandhi et al., 

2004) hyperalgesia. A local injection of NT-3 into the skin of the hind paw of rats 

transiently reversed inflammatory hyperalgesia in response to complete Freund’s 

adjuvant (CFA) (Watanabe et al., 2000). NT-3 is effective in controlling neuropathic 

pain via alteration of trkA, substance P (SP), calcitonin gene related peptide (CGRP), 

pituitary cAMP-activated peptide (PACPL) and galanin levels (Wilson-Gerwing & 

Verge, 2006) and transient receptor potential vanilloid receptor-1 (TRPV1) via 

phosphor-p38 MAPK (Wilson-Gerwing et al., 2005). Furthermore, an earlier 

experiment from our lab (Gandhi et al., 2004) revealed that higher than normal levels 

of NT-3 (either genetically overexpressed or given intramuscularly) abolished 

mechanical hypersensitivity developed in response to acid injections. If exercise 

increases NT-3 synthesis and NT-3 reduces cutaneous and thermal pain, it is logical 

to test the hypothesis of whether exercise-induced analgesia can be achieved in a 

muscle pain model, specifically in the chronic stage. Thus, the goals of the present 

study were to 1) examine the effect of exercise training on muscle pain in a mouse 
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model of chronic pain and 2) test muscle-derived NT-3 synthesis in response to 

exercise, which is becoming a prime neurotrophic candidate of antinociception. 

 

3.3  Experimental Procedures  

Animals 

All experiments were approved by the Institutional Animal Care and Use 

Committee (IACUC) of the University of Kansas Medical Center and adhered to the 

University’s animal care guidelines. Two separate experiments were conducted; one 

with C57BL/6 mice and one with CF-1 mice to examine the effects of mildly- or 

moderately-intense exercise on secondary hyperalgesia and NT-3 synthesis (Table 

1). Eighty female C57BL/6 mice (25 g weight) and forty female CF-1 mice (25 g 

weight) were purchased from Charles Rivers Laboratories. Mice were exposed to a 

12-hour light/dark cycle and had excess to food and water ad libitum. Mice were 

daily transported to our laboratory for acclimation, exercise training and testing 

purpose. The examiner was blinded to group assignment of acid or saline but not for 

exercise or sedentary. Based on the random assignment, mice received two 20 µl 

injections either acid (pH=4.0 ±.1) or normal (pH=7.4 ±.1) saline 2 days apart into 

the right gastrocnemius muscle to induce chronic muscle hyperalgesia. Injections 

were made with a 1 ml latex-free insulin syringe with 10 µl increments (Becton 

Dickinson, Franklin Lakes, NJ). The hind paw plantar tactile sensitivity to von Frey 

test develops within 4 hours following the 2nd injection (Gandhi et al., 2004; Sluka et 

al., 2001).   
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Exercise training 

All mice were acclimated and trained for 3-4 days on treadmill at the desired 

speed level before group assignment. The purpose of training all mice was to assign 

only those mice who run without prompting into the exercise groups. However since 

all mice ran naturally, they were randomly assigned to either exercise or sedentary 

groups. Two six lane motorized treadmills (Columbus Instruments) were utilized for 

exercise training. During the training sessions, occasional mild electrical shock 

stimulation and/or brushing were applied as necessary to maintain the running 

motivation. The speed of the treadmill and the duration of the training were different 

for each experiment as discussed below and in table 1. For each experiment, the 

desired speed and duration was gradually increased over time. Each mouse in the 

exercise group was assigned a daily running score (0, 1, 2, 3, 4) based on her 

performance level. The scoring was based on the amount of prompting mice 

required: 4 = no assistant was needed, 3 = some manual encouragement was given, 2 

= mouse required some prodding to maintain running, 1 = mouse didn’t complete 

full running period in which case the length of the run was recorded, and 0 = mouse 

did not run that session. Most mice did not require physical encouragement and ran 

spontaneously (97% of mice scored higher than 3 points on average). Although 

treadmill running in rodents is considered forced activity (Burghardt, Fulk, Hand, & 

Wilson, 2004), we observed that most animals ran without any promoting and were 

allowed to rest for short period. Animals did not seem overly fatigued, which is an 
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important consideration as continuous exercise of moderate level may result in 

fatigue and increased levels of lactic acid that may increase pain sensitivity. 

 

Experiment design 

C57BL/6 mice: This experiment was a time-course design over a 3-week 

period (Table 2). Mice were initially randomly assigned to either the exercise or the 

sedentary group to examine the acute effect of exercise training on NT-3 synthesis 

and the ability of exercise to alter the development of secondary hyperalgsia from 

acid injection. After one week of exercise training, the remaining mice were further 

randomly assigned to either acid-injected or control groups, resulting in Sedentary-

control (SC), Sedentary-acid (SA), Exercise-control (EC) and Exercise-acid (EA) 

groups. As limited animal studies exist, this exercise protocol was chosen based on 

the human studies (Glass et al., 2004; Gowans et al., 2004; Meiworm et al., 2000; 

Whiteside et al., 2004) in which physiological and analgesic effects were noted with 

low-moderate intensity exercise protocol.  

 

CF-1 mice: Based on the results from C57BL/6 mice, in which no change in 

NT-3 levels or tissue hypersensitivity at any time-point was noted, we increased the 

exercise protocol to longer duration and higher intensity (Table 1). CF-1 mice were 

initially randomly assigned to either acid or control group. After inducing muscle 

hyperalgesia with acid injections, animals were further assigned to either exercise or 

sedentary groups, resulting in Sedentary-control (SC), Sedentary-acid (SA), 
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Exercise-control (EC) and Exercise-acid (EA) groups. The assignment into exercise 

or sedentary groups was stratified within each group (acid or saline group) based on 

their post-injection von Frey scores as animals displayed some variability in their 

cutaneous sensitivity (with pre- and post-injections). All mice were sacrificed after 

completing 3-weeks of exercise training to examine the effect of exercise on chronic 

cutaneous and muscle sensitivity and NT-3 levels. 

 

Behavioral Testing 

For all behavioral testing, animals were acclimated for 3 days; 2 times a day 

for von Frey testing and 3 times a day for muscle squeeze testing. Each exercise 

testing was conducted in the afternoon, between 4-6 PM when animals are in their 

wake cycle. Behavioral testing was always conducted in the morning to avoid 

potential confounding factors such as stress-induced antinociception or acute effect 

of exercise training. 

  

Mechanical Testing of Cutaneous Sensitivity: Mechanical hyperalgesia to 

innocuous stimulus was assessed using von Frey monofilaments. Clear plastic 

chambers (3 X 8 X 12) were placed in inverted position on a wire mesh-top table. 

Mice were placed under the plastic chambers and allowed to acclimate for 20 

minutes prior to beginning of each test. A single von Frey monofilament (Stoelting, 

Wood Dale, IL) of 1.0 g bending force was applied to the plantar surface of each 

foot. A positive response to the von Frey stimuli was defined as retraction of paws or 
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retraction of paws with licking upon application of the von Frey monofilament. 

Responses to the single monofilament were recorded for the ipsilateral and the 

contralateral hind paw of each animal at baseline (pre-injections), 1 day following 

the 2nd acid injection and every week thereafter. Three trials, each consisting of 5 

stimuli of repeated application (each 30 seconds apart) of von Frey monofilament to 

the plantar surface of the ipsilateral and the contralateral hind paws were conducted. 

The percent response for each hind limb was obtained by determining the number of 

withdrawals in response to 5 repeated stimuli of von Frey monofilament. For 

statistical analysis, data were averaged per group. 

 

Mechanical Testing of Muscle Sensitivity: Mice were placed in 50 ml tube, 

and mechanical sensitivity to deep tissue was tested with a forceps compression 

device similar to the one described by Yu et al (Yu et al., 2002). A modified version 

of the device was built internally in our Neuromuscular Research laboratory to 

accommodate small size of the mouse species. The details of our modified version 

have been described previously (Sharma, submitted 6/2008). In brief, the device 

consisted of a forceps, a pressure sensor, a signal amplifier, and a laptop computer. A 

manual force was applied to each gastrocnemius muscle by the examiner blinded to 

group assignment and peak force to withdrawal response as well as time to peak 

force was recorded for each leg. The peak threshold level as demonstrated by 

withdrawal response or vocalization upon compression was measured bilaterally. 

Three consecutive squeezes on the right and left sides were conducted on each 
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mouse. A total of 3 trials were conducted only with CF-1 mice in experiment 2. The 

mean of 9 force peaks over three trials was calculated for each hind limb. Only force 

peaks with a loading time period, defined as the beginning of loading to the force 

peak, less than 1.0 second were used for the final calculation. 

 

Biochemical Assays 

In experiment 1 with C57BL/6 mice, 3 and 7 days following mild-exercise 

training, 11 mice from each group (the exercise and sedentary groups) were 

euthanized to analyze acute effect of exercise training on NT-3 synthesis. The 

remaining animals in the exercise group continued with treadmill training for 1 or 2 

more weeks before termination. This time course design was chosen to determine 

changes in NT-3 expression over time following exercise training. A few animals 

were randomly chosen from each group at different time periods to analyze the 

biochemical effects of exercise. In experiment 2, CF-1 mice from all groups were 

terminated at the end of experiments, 24 hours after last exercise session. Two to 

three independent RT-PCR and protein assays per animals were performed. In 

experiment 1 (C57BL/6 mice), gastrocnemious and soleus muscle samples were 

homogenized together for message and protein assays; whereas both tissues were 

analyzed separately in experiment 2 (with CF-1 mice). Soleus is often chosen in 

many rat studies because of its high level of recruitment during treadmill training 

(Gomez-Pinilla et al., 2004; Hutchinson et al., 2004; Ying et al., 2003). 
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NT-3 mRNA: Total RNA was isolated using Trizol (SIGMA). Briefly, soleus 

and gastroctrocneimus tissue samples were removed from each animal, homogenized 

in 1 mL of Trizol reagent and precipitated with isopropanol. RNA pellets were 

washed with 75% ethanol and resuspended in DEPC water. RNA concentration was 

determined using a BioRed spectrophotometer. The amount of 0.653 ug reaction was 

reverse-transcribed using iScript TM cDNA synthesis kit (BIO-RAD). Reverse 

transcriptase-polymerase chain reaction (RT-PCR) amplification of NT-3 mRNA 

was done using .2 ug of total RNA and SYBR green master mix (BioRad iCycler). 

The thermal cycling conditions for PCR were set at 95º C and 60º C for 40 cycles 

(MyiQ real-time PCR detection system). Either Beta-actin (C57BL/6 mice) or 

glyceraldehydes-3-phosphate dehydrogenase (GAPDH) (CF-1 mice) (Gomez-Pinilla 

et al., 2001; Ying et al., 2003, 2005) was used as a housekeeping gene. The primer 

sequences used for RT-PCR were as follows: 

NT-3 forward: 5’ AACGGACACAGAGCTACTACG-3’ 

NT-3 reverse: 5’ CCATTAGGTATAAGGGAGGGGG-3’ 

Beta-actin forward: 5’ AGTGTGACGTTGACATCCGTA-3’ 

Beta-actin reverse: 5’ GCCAGAGCAGTAATCTCCTTCT-3’ 

GAPDH forward: 5’ AGGTCGGTGTGAACGGATTTG-3’ 

GAPDH reverse: 5’ TGTAGACCATGTAGTTGAGGTCA-3’ 

For standards, tissues from transgenic mice over-expressing NT-3 in skeletal 

muscle were used. Samples were run in duplicate or triplicate and control reactions 

were run with each amplification series. Each sample was analyzed 2 or 3 times 
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independently to reduce procedural variability. Only data with efficiency (90 – 105) 

and correlation > .98 were used to analyze group differences. Values were averaged 

and a relative change in RNA level was determined by subtracting threshold cycle 

values from the housekeeping gene (ΔCT). The group difference of ΔCT was 

calculated and the relative fold change was determined 2-ΔCT. 

Agarose gel electrophoresis: To verify the size of PCR product and the 

primer specificity, 6 samples were randomly selected from experiment 1 and 

analyzed with electrophoresis. Ten µl of PCR product was directly sequenced (using 

bi-directional method) through 2% agarose gels, stained with DNA sample loading 

buffer, photographed, and analyzed for separation of DNA strain. Electrophoresis 

showed clear bands (Fig 5), and PCR product of NT-3 was approximately 100 bp 

and GAPDH was approximately 120 bp in length.  Only samples with clear band of 

appropriate size were used for the final calculation.     

Agilent Analysis: In addition, samples were tested for the quality of RNA 

using an electrophoretic separation technique (Agilent 2100 bioanalyzer tracer with 

the Eukaryote Total RNA Nano assay) prior to RT-PCR analysis. Only samples with 

RNA Integrity Number (RIN) above 7.0 were used for group comparison (Schroeder 

et al., 2006)]. Sample RNA integrity values for CF-1 mice ranged between from 8 to 

9 on a 0-10 scale. The RIN range was around 7.0 for most C57BL/6 mice.  

 

NT-3 protein analysis: The left gastrocnemius and soleus muscle either 

combined (C57BL/6 mice) or separately (CF-1 mice) were used to assess NT-3 
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protein levels using enzyme-linked immunosorbent assay (ELISA) methods. Frozen 

sections of samples were homogenized in homogenization buffer consisting 20 mM 

Tris-HCI, pH 8.0, 137 mM NaCl, 1% NP40, 1 mM PMSF, 10% Glycerol, 10 µg/ml 

aprotinin, 1 µg/ml Leupeptin, 0.5 mM Sodium Vanadate and 4% Triton X-100 using 

electrical homogenizers. The homogenates were centrifuged and supernatants were 

collected. The total protein concentration was measured using the Bradford method 

(protein reagent, Bio-Rad). NT-3 protein was quantified using ELISA kit (NT-3 

Emax Immuno Assay System Kit, Promega, Madison, WI) (Ying, 2003; Ying 2005). 

Equal amounts of protein extracts (10 ug for soleus and 5 ug for gastrocnemius, 

when both tissues were analyzed separately in the 2nd experiment with CF-1 mice) 

were analyzed in duplicate using manufacturer’s instructions. Only test samples with 

the linear part of the standard curve were used to determine the NT-3 concentration 

in pg/ml and compared for group differences. 

 

Data Analysis 

Hypersensitivity following the acid injections and the effect of exercise on 

behavioral measures was initially tested with a repeated measures analysis of 

variance (RM ANOVA) on ipsilateral and contralateral side separately. In addition, 

one-way ANOVA was conducted to examine the group differences related to 

cutaneous and muscle hyperalgesia at different time points when interactions 

(time*acid or time*exercise) were significant. Post hoc analysis of behavioral 

measures was used to conduct pair wise comparisons when group was significant 



105 
 

using RM ANOVA. In experiment 1 with C57BL/6 mice, a linear mixed model was 

used to compare cutaneous measures among groups over time. Mixed model is 

equivalent to RM ANOVA yet accounts for imbalance design (Verbeke & 

Molenberghs, 2000) as experiment 1 was a time-course study, scarifying certain 

numbers of animals for NT-3 synthesis and remaining fewer numbers over time. NT-

3 mRNA measures were analyzed with Pfaffl method to determine pair wise 

comparisons between animals from different groups (Pfaffl, 2001; Pfaffl, Horgan, & 

Dempfle, 2002). NT-3 protein levels were analyzed with one-way ANOVA for 

group difference. Values were considered significant at α level p < 0.05. 

 

3.4  Results  

Behavioral assessments 

The effect of mild intensity exercise training on secondary hyperalgesia was 

tested in experiment 1 with C57BL/6 mice. These mice were tested for the cutaneous 

hypersensitivity only. We did not test these mice for deep tissue pain. For the effect 

of moderate intensity level of exercise, we switched to CF-1 mice in experiment 2. 

This was based on a previous experiment conduced in our lab, which demonstrated a 

more robust effect of acid on the cutaenous and muscle hyperalgesia in CF-1 strain 

[Sharma, submitted 6/2008]. 

 

Cutaneous mechanical hypersensitivity 
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C57BL/6 mice: Behavioral data from C57BL/6 mice were considered 

inconclusive as a trend toward increased sensitivity was noted in all animals 

(regardless of group assignment) as the testing progressed with 1.0 g bending force 

of von Frey monofilament. Nevertheless, data are presented in Fig. 1. On the 

ipsilateral side, the pre-injection withdrawal threshold was 25% and increased to 

approximately 55% 3-weeks post-injection in all mice; mice in the exercise-con 

group displayed less ceiling effect of testing. On the contralateral side, the pre-

injection withdrawal threshold of mice was at varying levels (from 15% to 35%) and 

increased to 60% 3-weeks post-injection in all mice; again, mice in the exercise-con 

group had less ceiling. These results indicate that exercise training prior to acid-

injection had no effect on cutaneous hypersensitivity that normally develops 

following acid injection; that C57BL/6 mice in Sed-acid (SA) group did not develop 

secondary cutaneous hyperalgesia following acid injections; and that mildly-intense 

exercise training did not have significant effect on the cutaneous sensitivity (Fig. 1 

A, B p > 0.05). 

 

CF-1 mice: In comparison to C57BL/6 mice, CF-1 mice displayed a robust 

increase in secondary hyperalgesia in response to acid injection. Additionally, 

moderate intensity exercise decreased cutaneous hypersensitivity induced by acid 

injection (Fig 2, A, B). The cutaneous withdrawal response remained fairly 

unchanged on ipsilateral and contralateral sides in both control groups of mice (Fig. 

2 A). In contrast to the control groups, the % withdrawal response increased on 
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ipsilateral and contralateral sides in both acid-injected groups. The % withdrawal 

response on the ipsilateral side in SA mice increased from 22.67 ± 5.2-8 to 45.33 ± 

9.73 after 1-day and to 60.33 ± 4.05 after 3 weeks post-acid injection (p < 0.05). The 

% withdrawal response on the ipsilateral side in Ex-acid (EA) mice also increased 

from 30 ± 7.18 SEM to 50 ± 8.62 1-day after acid injection but then decreased to 

41.33 ± 5.43 after 3 weeks of exercise training (Fig. 2 A, p < 0.05). 

Likewise, the % withdrawal response on the contralateral side in SA mice 

increased from 21.33 ± 4.07 pre-injection level to 46 ± 6.24 1-day and 52.67 ± 5.92 

3-weeks post-acid injection (p < 0.05).  However, the % withdrawal response on the 

contralateral side in EA mice increased from 26.67 ± 7.50 of pre-injection level to 

44.33 ± 9.43 SEM 1-day after the acid injection but then remained at 43.33 ± 6.46 

after 3 weeks of exercise training (Fig. 2, B, p > 0.05). These results indicate that 

acid induced a robust cutaneous hyperalgesia in bilateral hind limbs of CF-1 mice. 

Furthermore, exercise training significantly reduced the heightened cutaneous 

hypersensitivity on the ipsilateral side. The effect of exercise training on the 

contralateral side was also positive but didn’t reach the significance level. These 

results are consistent with previous studies (Bement & Sluka, 2005; Hutchinson et 

al., 2004; Kuphal et al., 2007) and indicate that long term exercise training is 

effective in altering cutaneous hypersensitivity. 

 

Muscle mechanical hypersensitivity:  
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Muscle hypersensitivity was assessed only in CF-1 mice. As with the 

cutaneous sensitivity, CF-1 mice displayed a robust muscle hyperalgesia that lasted 

up to 2 weeks post-acid injections, and moderately-intense exercise minimally 

decreased muscle hyperalgesia (Fig. 2 C, D). Muscle withdrawal threshold increased 

on ipsilateral and contralateral sides in both control groups. Muscle withdrawal 

threshold on the ipsilateral side in the Sed-con (SC) mice increased from 99.58g 

±8.74 pre-injection levels to 170.27g ± 5.04 and in the Ex-con group from 102.13g 

±6.14 to 171.77g ±8.12 2-weeks post-saline injection. Likewise, muscle withdrawal 

threshold on the contralateral side in the SC mice increased from 74.64g ± 7.12 to 

97.71g ± 5.59 and in the Ex-con (EC) group from 67.62g ± 4.93 to 99.26g ±5.55 2-

weeks post-saline injection. These results suggest the control mice became 

acclimated to the muscle compression test and were able to tolerate greater 

compression over time. 

In contrast to the control groups, muscle withdrawal threshold decreased after 

acid injections in both acid-injected groups (Fig. 2 C, D). Muscle withdrawal 

threshold on the ipsilateral side in SA mice decreased from 129.39g ±10.59 pre-

injection level to 71.59g ±3.87 post-acid injection and remained decreased to 

103.47g ± 6.13 levels 2 weeks later. Muscle withdrawal threshold on the ipsilateral 

side in EA mice also decreased from 98.62g ±6.36 pre-injection level to 69.18g 

±5.93 after acid injection but then increased to 123.12g ±7.26 after 2 weeks of 

exercise training (Fig. 2 C, p < 0.05). Likewise, muscle withdrawal response on the 

contralateral side in SA mice decreased from 63.43g ±6.79 pre-injection level to 
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36.43g ±2.85 post-injection and returned to 61.09 ± 3.82 2-weeks later (p > 0.05). 

However, muscle withdrawal threshold on the contralateral side in EA mice also 

decreased from 53.94g ±4.78 of pre-injection level to 38.49g ±4.50 after the acid 

injection but then increased to 75.63g ±4.62 after 2 weeks of exercise training (Fig. 

2, D, p < 0.05). These results indicate that acid induced a robust muscle hyperalgesia 

in bilateral hind limbs of CF-1 mice. Furthermore, exercise training minimally but 

significantly increased the muscle hypersensitivity on ipsilateral and contralateral 

sides. These results for the first time indicate that exercise training increased muscle 

withdrawal threshold in the chronic stage in animal model of acid pain. 

 

Biochemical Assessments 

C57BL/6 mice: To investigate whether mild intensity level of exercise 

training can stimulate NT-3 synthesis, a time course analysis was performed with 

C57Bl/6 mice. Both mRNA and protein levels of combined soleus and 

gastrocnemius muscle were analyzed after 3 and 7 days of exercise training to 

examine the acute effect of exercise. We also analyzed mRNA and protein levels 

following 2 and 3 weeks of exercise training (one week after the acid-injections were 

administrated). No significant difference was noted at any time point for message or 

protein levels (Fig. 3, p > 0.05) indicating mild intensity exercise training was not 

sufficient to synthesize NT-3 in mice. 

CF-1 mice Since no change in message or protein levels were noted from 

experiment 1 with C57Bl/6 mice, the exercise training was increased to moderate 
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intensity level in the 2nd experiment with CF-1 mice, and lower limb muscle (soleus 

and gastrocnemius) were analyzed separately, as previous studies have analyzed 

exercise-induced neurotrophic synthesis in soleus (Hutchinson et al., 2004; Ying et 

al., 2003 2001).    

NT-3 mRNA: the exercise training had no effect on mRNA in soleus muscle 

(Fig. 4 A, p > 0.05). In comparison, the exercise training increased mRNA level of 

the gastrocnemius muscle to 1.7 fold (SC versus EC), but the increased level of 

message was not significant (Fig. 4 B, p=.06). In addition, when the two groups of 

acid-injected (SA versus EA) were compared, no significant change in mRNA was 

noted; in fact, the EA had less message level. Interestingly we noticed up-regulation 

of NT-3 message in the sedentary mice that received acid injections (SC versus SA) 

(Fig. 4 B, p=.044), suggesting a possible interaction between acid and NT-3. 

NT-3 protein: In contrast to mRNA, significant increase in protein levels was 

noted following 3 weeks of moderate-level of exercise training in CF-1 mice. In the 

soleus muscle, an upward trend was noted in both exercise groups but the difference 

was not significant (Fig. 4 C, P > 0.05). However, a more robust effect was noted in 

the protein levels of the gastrocnemius muscle. Both exercise groups (EC and EA) 

had significantly greater amount of NT-3 protein compared to the sedentary control 

group (Fig 4 D, P < 0.05). The results were consistent with each separate assay and 

Fig. 4 is a representation of one assay. These results indicate that exercise 

performance at a high level is required to stimulate NT-3 synthesis in the skeletal 

muscle. Additionally, exercise can preferentially increase NT-3 synthesis in select 
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muscles, preferentially muscle with higher number of spindles. We didn’t test for 

NT-3 synthesis in the spinal cord, and this should be examined in the future. 

 

3.5 Discussion  

There is a significant gap in our knowledge about how exercise alters deep 

tissue hypersensitivity, as many experiments are limited to cutaneous sensation. Here 

we analyze the effect of mild and moderate levels of exercise training on secondary 

hyperalgesia induced by acid injection and NT-3 synthesis in skeletal muscle. There 

are 2 main findings of the present study. One, we have demonstrated that exercise 

training doesn’t reverse acid-induced secondary hyperalgesia but significantly 

reduces muscle hypersensitivity, especially in the chronic stage in the acid-induced 

pain model. Two, moderately intense treadmill running is required to cause an 

increase in muscle-derived NT-3 levels in mice species that is preferentially greater 

in the gastrocnemius muscle. These results show for the first time that exercise 

decreases chronic muscle hyperalgesia in rodents, support the growing literature 

indicating the role of NT-3 in pain modulation, and provide a possible explanation 

for exercise-induced analgesia in chronic muscle pain. 

 

Chronic Acid-Induced Muscle Pain Model 

The acid model is a non-inflammatory muscle pain model and is considered 

analogues to human fibromyalgia. Acid saline produces mechanical hypersensitivity 

of cutaneous (Hoeger-Bement & Sluka, 2003; Skyba et al., 2002; Sluka et al., 2001; 
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Sluka et al., 2003; Sluka et al., 2002), visceral (Miranda, 2004) and muscle tissue 

(Yokoyama, Maeda, Audette, & Sluka, 2007a; Sharma, submitted 6/2008) that lasts 

up to 3-4 weeks. This model does not rely on on-going input from the periphery to 

elicit hypersensitivity, and central mechanisms likely contribute to the development 

and maintenance of the hyperalgesia. (Hoeger-Bement & Sluka, 2003; Skyba et al., 

2002; Sluka et al., 2001; Sluka et al., 2002; Tillu et al., 2007). Convergent input in 

the spinal cord from muscle and paw fibers and receptive field plasticity of wide 

dynamic range (WDR) neurons is believed to cause the widespread secondary 

hyperalgesia (Sluka et al., 2001). No muscle tissue damage or gross motor / sensory 

loss is associated with this model of pain (Sluka et al., 2001), thus making it ideal for 

the present exercise and pain study.  

 

Aerobic exercise attenuates mechanical hyperalgesia associated with acid-injections 

Clinical studies using various types of exercise interventions for people with 

chronic pain syndromes are increasing (Gowans, 2004; Glass, 2004; Hoffman, 2004; 

Meiworm, 2000; Mannerkorpi, 2005; Whiteside, 2004; Droste, 1991; Fulcher, 1997; 

Redondo, 2004; Goldenberg, 2004). Although human experiments provide important 

treatment avenues, their basis are theoretical rather than empirical. More animals 

studies are needed to extend our knowledge about exercise-induced analgesia and its 

mechanisms. A limited number of animal studies have attempted to address this 

issue. Bement and Sluka recently reported that low intensity treadmill training (3.05 

m/min speed for 30 minutes) for 5 days reversed acid-induced cutaneous mechanical 
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allodynia in rats, suggesting opioid-mediated effects of exercise training on 

cutaneous pain (Bement & Sluka, 2005) . However, this study examined an 

immediate effect of exercise, as seen in most animal studies (Koltyn, 2000).  

 

Another study reported a decrease in responses of licking/flinching following 

9 days of swimming. They associated the beneficial effects of exercise by decreasing 

C-fiber activity that causes phase 2 symptoms following formalin injection (Kuphal 

et al., 2007). In the same study, the authors demonstrated a decrease in cold and heat 

hyperalgesia associated with nerve injury in response to long term exercise. The goal 

of the present study was to examine the long-term effect of exercise training on 

muscle hypersensitivity, which is the predominant complaint in people with various 

chronic pain syndromes. The results suggest that moderately intensity exercise is 

more effective in reducing chronic nature of secondary hyperalgesia. These results 

are consistent with previous studies (Bement & Sluka, 2005; Hutchinson et al., 2004; 

Kuphal et al., 2007) and provide additional information about the role of exercise in 

negating muscle pain. 

 

Moderately intense exercise training is needed to induce NT-3 synthesis 

No consensus currently exists on specifics of the level or the type of activity 

required for NT-3 synthesis in adult rodents. In addition, studies examining the effect 

of exercise on NT-3 have been performed exclusively using rat models. Thus, we 

examined 2 different intensities of exercise training on 2 mouse strains. Contrary to 
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Hutchinson’s finding where NT-3 mRNA was up-regulated with general physical 

activity (low intensity treadmill training at 11-13 m/min, swimming or standing), we 

report that a moderately intense exercise is required to stimulate NT-3 synthesis 

mice. The differences in the exercise training protocol and in the choice of species 

may explain such disparity in results. Here, the exercise training in experiment 1 was 

not vigorous enough to alter gene express of NT-3 in C57Bl/6 mice. Therefore, 

exercise training was increased to a moderate level in the 2nd experiment with CF-1 

mice, resulting in significantly increased NT-3 levels. This finding is consistent with 

Ying’s study in which 28 days of wheel running was required to stimulate NT-3 

synthesis in the spinal cord under a condition of injury (Ying et al., 2005). In adult 

life, NT-3 is primarily synthesized in peripheral tissues, especially in skeletal muscle 

and in muscle spindles. A higher level of exercise is likely to activate the nervous 

system and stimulate muscle-derived NT-3 synthesis via spindle activity. Besides 

muscle spindles, NT-3 is also synthesized in smooth muscle cells along the lining of 

vasculature that innervate muscle tissues (unpublished data from our lab). 

Moderately intense running is required to stress the cardiovascular system and to 

promote blood circulation, thus leading to increased NT-3 synthesis in the peripheral 

tissues. Our findings are consistent with those who used a higher level of exercise 

regimen for NT-3 levels (Ying et al., 2005). An in vitro experiment provides further 

support for activity-dependent expression of NT-3. Xenopus developing muscle 

cultured cells treated with an electrical stimulation (for 1-hour, 6 Hz, just above the 

threshold of muscle contraction level) or with acetylcholine (Ach) significantly 
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increased NT-3 RNA (Xie, Wang, Olafsson, Mizuno, & Lu, 1997). These authors 

suggested activity-dependent NT-3 expression via Ca2+ influx that was restricted to 

immature muscle cells. 

 

Additionally, the increase in NT-3 was mainly observed at the protein levels 

and not at message levels. This could be attributed to the experimental design where 

animals were sacrificed 24 hours after the last exercise bout. We might have missed 

the period when the message was upregulated. The detectable protein levels in the 

muscle are either a result of in-situ synthesis or its cellular transport from the spinal 

cord, as exercise has been shown to increase spinal NT-3 (Ying et al., 2003). 

However, we believe that the earlier explanation is more plausible as NT-3 is 

primarily synthesized in skeletal muscle postnatally. 

 

Consistent with previous rat studies (Gomez-Pinilla et al., 2004; Hutchinson 

et al., 2004; Ying et al., 2003, 2005), we observed an upward trend in NT-3 protein 

synthesis in the soleus muscle. However, the group difference between exercise and 

sedentary animals was not significant. This could be due to the small size of the 

soleus muscle in mice, compared to rats. Additionally although soleus is a postural 

muscle and likely to be more active during treadmill running, the running pattern of 

mice is different than rats. Mice often jump, run backwards, and climb on the walls 

of the treadmill; all which stimulate spindle activity in the gastrocnemius as well. In 

addition, it is unclear whether NT-3 is preferentially more expressed in slow-twitch 
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or fast-twitch fibers in adult rodents under normal conditions. NT-3 has been shown 

to favorably improve reinnervation of fast twitch fibers (gastrocnemius and extensor 

digitorum longus) over the slow twitch fiber muscle, soleus (Simon, Mann, Coulton, 

& Terenghi, 2002; Simon et al., 2000) and myo/transgenic mice showed 

overproduction of NT-3 and spindle counts in gastrocnemius and plantaris muscle 

compared to the soleus muscle (Wright, Zhou, Kucera, & Snider, 1997). 

Collectively, these data suggest that NT-3 is synthesized in higher levels in fast-

twitch fibers and support the finding of the present study in which aerobic exercise 

training had greater effect of NT-3 synthesis in the gastrocnemius over soleus. 

 

Interestingly, acid saline also increased NT-3 expression in the gastrocnemius 

muscle in SA mice. This suggests a possible interface between acid and NT-3, which 

was not expected. No link between ASIC3 channels that are responsible for sensing 

the change in intracellular pH levels and NT-3 has been reported in the literature to 

our knowledge. Our finding suggests that acid may not selectively activate ASIC3 

and might cause activation of other factors that lead to an increase in NT-3 synthesis. 

This finding may indicate an interaction between acid and NT-3 levels in the 

condition when the muscle is metabolically challenged (either with acidosis or 

exercise). There could be also be a more simple explanation such as animals in the 

acid group could have been more active in their cages under painful conditions, 

which might have resulted in an increase in NT-3 synthesis. 
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There may be different adaptive mechanisms in response to exercise or 

activity in different strains of rodents. The differences observed in the current study 

could also be due to different genetic backgrounds of the 2 strains of mice used in 

the experiment. A previous study from our lab [unpublished data] show genetic 

variability in the development of muscle pain with acid injections. Exercise training 

has also been shown to be subject to genetic variability.  

 

Potential mechanisms underlying anti-nociceptive effect of exercise-induced NT-3 on 

chronic muscular pain 

The effects of exercise-induced analgesia in patients with chronic pain are 

poorly understood. Limited information is available to determine the role and 

mechanism of exercise in relieving chronic pain. Two possible mechanisms have 

been reported in support for exercise-induced analgesia. The most widely accepted 

explanation of exercise-induced analgesia involves modulation of central opioid 

receptors (Bement & Sluka, 2005; Hoffman et al., 2004; Skyba et al., 2002; Sluka et 

al., 2002). However, this effect is short-term and often a result of intense exercise 

training. Another theory of central mechanisms proposes that activation of 

proprioceptive and muscle afferents inhibit central pain circuitry and may affect 

descending inhibitory pathways (Hoffman et al., 2004). We propose this explanation 

in support for our results over other mechanisms of exercise induced analgesia as the 

beneficial effect of exercise on muscle pain was bilateral and extended to cutaneous 

tissue. In adult life, NT-3 is primarily synthesized in peripheral tissues, preferentially 
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binds to trkC receptors located on about 75% of muscle afferents (Watanabe et al., 

2000) and retrogradely transported to cell bodies of the DRG (Malcangio et al., 

1997; Munson et al., 1999; Watanabe et al., 2000; Wright, 2001). Given its 

anatomical location and ability to be altered under physiological stress (i.e. exercise), 

NT-3 could provide an indirect measure of neuroplasticity associated with inhibition 

of central pain circuitry. Additionally, NT-3 may also be expressed by C-fibers 

and/or A-δ fibers (Gandhi et al., 2004; Wilson-Gerwing et al., 2005) which could 

provide additional support for its ability to modulate pain. 

 

Besides trkC receptors, NT-3 is also capable of activating trkA and trkB 

receptors after certain injuries (Saragovi & Gehring, 2000; Wilson-Gerwing et al., 

2005), providing another possible mechanism by which exercise alters muscle pain. 

NT-3 has been shown to reduce the expression of trkA receptors and substance P that 

are involved in the inflammatory response in intact neurons (Gratto & Verge, 2003). 

NT-3 either systemically injected for 2 weeks or acutely applied to the spinal cord, 

significantly reduces electrically evoked release of substance P from the central 

terminals of the primary afferents (Malcangio et al., 1997) under normal conditions. 

In addition, the antagonistic role of NT-3 to secondary hyperalgesia has been tested 

in many pain models. Intrathecal administration of NT-3 prevents thermal 

hyperalgesia and suppresses the injury-induced overexpression of transient receptor 

potential vanilloid (TRPV1) receptors in the DRG and the spinal cord in rats 

receiving a chronic constructive injury (CCI) of the sciatic nerve (Wilson-Gerwing et 
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al., 2005). A single systemic dose of NT-3 into hyperalgesic rats (by injection of 

NGF) results in mechanical but not thermal hypoalgesia 24 hours after the 

administration. Either overexpression of NT-3 or intramuscular injection of NT-3 

negatively affects mechanical hyperalgesia from acid injection (Gandhi et al., 2004). 

In many of these studies, continuous infusion of exogenous NT-3 was required for its 

positive effects. If exercise provides a continuous source of endogenous NT-3, it 

could explain its positive effect on muscle pain, at least in part. 

The activity-induced muscle-derived NT-3 could have antinociceptive effects 

on muscular pain at 3 possible sites. One, NT-3 may have local effects on muscle 

afferents. Two, it may have general influences on gene expression of various 

neuropeptides and neurotransmitters that are involved in the process of nociception 

after it reaches the soma via retrograde transport. Three, NT-3 is likely to influence 

the spinal circuitry of nociception through central projections of muscle afferents that 

terminate in lamina III and IV (Woolf, 1987). The interneurons of lamina III and IV 

have direct connections with wide dynamic range (WDR) neurons whose 

hyperactivity leads to the acid-induced hyperalgesia (Sluka et al., 2001). These 

questions should be addressed in future studies. 

 

3.6  Conclusion  

Our study is the first to report the effect of exercise training on muscular 

pain. We have demonstrated that long-term exercise training did not reverse, but 

significantly reduced cutaneous and deep tissue mechanical hypersensitivity induced 
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from acid injection. The data also demonstrate activity-dependent NT-3 synthesis in 

selective peripheral tissues as a result of higher intensity exercise training. We 

associate the decrease in mechanical hypersensitivity to elevated levels of NT-3 

protein as mild intensity level of exercise training failed to increase NT-3 expression 

and thus decrease secondary hyperalgesia. This further supports the notion that NT-3 

is an anti-nociceptive neurotrophin. We also show a positive correlation between 

exercise, activity-induced NT-3 and modulation of deep tissue pain. These findings 

indicate a beneficial effect of exercise and a potential role of NT-3 in the treatment 

of muscular pain. However, the mechanism by which NT-3 modulates 

mechanoreceptors is unknown and remains to be investigated. The findings of 

exercise’s effects on NTs are restricted to animal models; however, these studies 

give insight into the potential explanation for exercise-induced relief of muscle pain 

reported in clinical studies. 
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Table1. Experimental design  

C57BL/6 Mice     CF-1 Mice 

Exercise protocol: 12 m/min, 25’, 3 weeks 1st week: 13 m/min, 30’  

2nd week: 14m/min for 40’ 

3rd week: 15-16 m/min for 45’  

Acid Injections:  1 week after start of Ex  2 days before s of Ex 

Behavioral measures: Cutaneous hypersensitivity Cutaneous hypersensitivity 

Muscle hypersensitivity 

Biochemical measures: NT-3 mRNA and protein  NT-3 mRNA and protein  

 gastrocnemius & soleus combined  Soleus  

Gastrocnemius separately 
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Table 2: Animal assignment  

Experiment 1: C57BL/6 mice 

 3 days Ex 
Remaining 
mice (n=58) 

7 days Ex 
Remaining 
mice (n=36) 
 

 14 days Ex 
Remaining 
mice (n=20) 

21 
days 
Ex 

   Acid-
Injection 

  

Sedentary 

(n=40) 

-11 for NT-3 
analysis 
 
 

-11 for NT-3 
analysis 

 -8 for NT-3 
analysis 
 

 

  Sed-Con 
(n=9) 

N=9 
 

N=5 
 

Sed-Acid 
(n=9) 

N=9 
 

N=5 
 

Exercise 

(n=40) 

-11 for NT-3 
analysis 
 
 

-11 for NT-3 
analysis 
 

 -8 for NT-3 
analysis 
 

 

  Ex-con 
(n=9) 

N=9 
 

N=5 
 

Ex-Acid 
(n=9) 

N=9 
 

N=5 

 

Experiment 2: CF-1 mice 

Random Assignment  Stratified Assignment 

Acid (n=20) Sedentary-Acid (n=10) 

Exercise-Acid (n=10) 

Control (n=20) Sedentary-Control (n=10) 

Exercise-Control (n=10) 
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Figure 1: The effect of mildly-intense exercise training on cutaneous 

hyperalgesia  

Mice did not development cutaneous hyperalgesia and mildly-intense exercise had 

no effect on cutaneous sensitivity on the ipsilateral or contralateral sides (group; 

interaction p > 0.05). Mice in all groups developed hypersensitivity with 1.0 g force; 

thus these data are considered inconclusive. Data are shown in mean ± SEM. 
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Figure 2: The effect of moderately-intense exercise on cutaneous and muscle 

hyperalgesia 

Acid injections significantly increased cutaneous withdrawal response of the 

ipsilateral and contralateral sides. Moderately-intense exercise significantly 

decreased withdrawal response (A, p < 0.05) on the ipsilateral side. Similar effect 

was noted the contralateral but was not significant (B, p > 0.05). Likewise, acid 

injections significantly decreased muscle withdrawal threshold. Exercise training had 

minimal but significant effect on muscle withdrawal threshold.   
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Figure 3: NT-3 mRNA and Protein Levels in C57BL/6 Mice 

No significant differences were noted at mRNA or protein levels in combined tissue 

of the gastrocnemius and soleus muscle following 3, 7, 14, or 21 days of mildly-

intense exercise training. Data are represented in mean ± S.E.M. mRNA was 

analyzed with Pffafl pair wise comparisons (p >0.05). Protein level was analyzed 

with t-test (p >0.05) following 3 and 7 days of exercise and ANOVA (p >0.05) 

following 14 and 21 days of exercise training.    
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Figure 4: NT-3 mRNA and Protein Levels in CF-1 Mice 

Moderately intense exercise training did not change NT-3 expression in soleus or the 

gastrocnemius muscle (A, B, p > 0.05). Acid injection significant increased NT-3 

mRNA in the gastrocnemius muscle (B, p < 0.05). In contrast, the effect of exercise 

training was greater at the protein levels (C and d). The increased NT-3 protein 

levels were not significant in soleus (C, p > 0.05) but were significant in the 

gastrocnemius muscle (D, p < 0.05).   
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Figure 5: Agarose Gel Electrophoresis of RT-PCR  

 Six animals from C57BL/6 mice, as labeled, were randomly selected to verify the 

primer size. NT-3 primer resulted in 100 bp and GAPDH resulted in120 bp size of 

RT-PCR produce, as expected from each primer size.   
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Chapter 4 
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5.1  Summary of Findings 

The goal of the present study was to use a referred pain animal model of 

musculoskeletal structures to study muscle pain and to investigate the efficacy of 

exercise training in negating centrally driven widespread musculoskeletal pain. The 

identification of muscle pain and its assessment is a relatively recent development in 

the field of pain research. Previously most pain related experiments have exclusively 

used various cutaneous and neuropathic pain models. Even to this date, very little is 

known about physiological events and the underlying mechanisms that lead to 

muscular pain. We have measured muscle pain in 2 strains of female mice and 

assessed the hypothesis that animals develop chronic muscle hyperalgesia following 

acid injection. The results suggested variability in the development of muscle 

hyperalgesia in C57BL/6 versus CF-1 mice, as observed by different measures, 

presumably due to the genetic background. The 2 strains of mice also differed in Fos 

expression of the spinal cord cells, which was analyzed by applying mechanical 

stimulation to the cutaneous and muscle tissues. Cutaneous palpation and muscle 

compression resulted in different pattern of Fos expression in the dorsal horn cells of 

the spinal cord.   

Secondly, despite many human studies, the impact of exercise on the pain 

threshold and its underlying mechanism has received limited attention in basic 

science experiments. The anti-nociceptive effect of exercise at the cellular and 

molecular level is largely unexplored. Here, the effect of 2 levels of aerobic exercise-

training, mild and moderate, in negating widespread hyperalgesia and over-
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expression of NT-3 was analyzed using an animal model of chronic pain. The results 

indicated that moderate intensity exercise was most beneficial in decreasing the 

cutaneous and muscle hyperalgesia induced by acid injections. Furthermore, the 

moderate intensity exercise was required to cause the necessary physiological events 

that led to over-expression of NT-3 in mice. Thus, the study also provides a 

molecular link between exercise training and muscular pain hypersensitivity.  

 

5.2 Limitation of study 

Characterization of muscular pain is difficult in rodent models of pain. 

Previous electrophysiological studies are limited to a specific set of dorsal horn 

neurons; the Fos measure provides a broader image of all possible neurons that are 

activated to a given stimulation. However one criticism is that this measure does not 

distinguish between facilitatory and inhibitory cell populations. Another limitation of 

the Fos measure is that it is difficult to separate brainstem input from the dorsal horn 

activity. Additionally, since the compressive force was manually delivered to induce 

Fos expression in the present study, it is difficult to compare results of the present 

experiment across different studies (Chapter 2). A quantifiable method needs to be 

considered in future studies. The forceps compression device used for behavioral 

testing in the present study is ideal to apply long-duration noxious stimulus needed 

for Fos expression.  

The duration of the exercise protocol with CF-1 mice (Chapter 3) may be a 

limitation of this study. The experiment should have been extended from 3 weeks to 
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4 weeks, as acid has been shown to induce chronic hyperalgesia that lasts up to 4 

weeks (Sluka et al., 2001). The significant effect of exercise on cutaneous 

hyperalgesia started about 3 weeks post-exercise. Likewise, the effect of exercise on 

muscle hyperalgesia should have been analyzed every week for 4 weeks. The present 

study assessed the effect of exercise on muscle hyperalgesia 2 weeks post-exercise 

training, which displayed minimal effect. Thus it is difficult to comprehend the full 

effect of exercise training on the chronic stage of pain. One additional week of 

exercise training would have provided a better understanding of its effect on 

secondary hyperalgesia in the chronic state.    

The efficacy of exercise training on the chronic nature of pain was analyzed 

with behavioral measures. A complimentary biomarker of a pain measure, such as 

Fos, could confirm the behavioral finding and should be utilized in future studies. 

One must be cautious as Fos can be evoked with exercise alone (Jasmin et al., 1994). 

However, Fos dissipates after 5-6 hours following stimulation (Harris, 1998), thus 

should be utilized as a biomarker to examine the effect of exercise on 

hypersensitivity at least 24 hours following the exercise training.  

The physiological significance of increased NT-3 level in the periphery is 

contingent upon the availability of trkC receptors or other receptors responsive to 

NT-3. In the present study, we measured the expression of NT-3 at peripheral and 

central levels (only mRNA in the spinal cord, unpublished data) and report that 

activity can modulate its synthesis. We did not examine the effect of exercise on trkC 

receptors and assumed that over-expressed NT-3 is being taken up by these 
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receptors. However, a previous study reported upregulation of trkC receptors 

peripherally and centrally from 7 days of exercise training (Ying et al., 2003). 

Considering the lack of studies in this field, future studies should determine if 

activity could modulate the expression of its signal transduction receptor, trkC in 

skeletal muscle and in the spinal cord to confirm that NT-3 is being taken up via its 

receptors to exert its effect on functional levels.   

The mode of exercise training, treadmill training chosen in the present study 

could have been a potential confounding factor in decreasing mechanical 

hypersensitivity. Previous studies have suggested that stress is often associated with 

forced treadmill running that may not be due to physical exhaustion (Burghardt et al., 

2004). To counter this, a 12-hour lag period between exercise training and behavioral 

testing was allowed. Also, animals were permitted to rest on shocker during the 

exercise training, as shockers were kepted turned off. Additionally, it may be 

difficult to relate the results of the present study to clinical syndromes of chronic 

pain in humans. Many people with FMS suffer from multiple symptoms and thus 

have less motivation to perform their exercise training regularly. These patients have 

poor level of physical fitness, exemplified by lesser capability to perform exercise 

and a tendency to fatigue with usual activities (Adams & Sim, 2005; Jones et al., 

2002). These people present with reduced physical performance capacity but not 

reduced aerobic capacity (Mannerkorpi, 2005). Unlike the animals, humans cannot 

be forced to exercise at researcher-determined exercise training. However basic 

science experiments, as proposed in the present study are necessary to examine 
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possible molecular changes occurring in response to exercise training. The 

correlation of pain modulation to molecular changes through exercise training can 

provide the necessary research information to clinicians to support exercise 

prescriptions and to guide these patients.   

 

5.3 Characteristics of Acid-Induced Model   

The acid model is an important pain model that allows for assessment and 

intervention of hyperalgesia in deep tissues. Tissue acidosis occurs in many 

physiological (exercise, ischemia) (Hoheisel et al., 2004; Molliver et al., 2005) and 

pathological conditions (such as arthritis, inflammation and cancer) (Hoheisel et al., 

2004; Issberner, Reeh, & Steen, 1996) and is thought to contribute to the experience 

of pain. The acid-pain model was first developed in the rat by Sluka (Sluka et al., 

2001) and has been extensively used to assess widespread musculoskeletal 

hyperalgesia of cutaneous structures. Since then, the model has been tested in a 

mouse species by an earlier experiment in our lab. Gandhi et al. demonstrated that 

the acid-model can be reproduced in CF-1 mice and pH 4.0 is most effective in 

causing secondary hyperalgesia, compared to pH 5.0 or 6.0 (Gandhi et al., 2004; 

Sluka et al., 2003), similar to initial rat studies (Sluka et al., 2001). In the present 

studies, the acid-model was repeated in 2 distinct strains of female mice; C57BL/6 

inbred, a commonly used strain in the field of pain, and CF-1 outbred. We have 

demonstrated that the acid-model does not work well in C57BL/6 female mice; CF-1 

is the best strain for studying acid-induced hyperalgesia. In CF-1 mice, Gandhi et al. 



134 
 

reported a 30% increase in cutaneous sensitivity with a 1.4 g monofilament 

following acid injections; in the present studies, a 30% increase was also found with 

a 1.0 g bending force, resulting in 30% pre-injection to 60% post-acid injection 

withdrawal response. Collectively, these results indicate consistent and reproducible 

findings in the cutaneous tissue and favor the use of CF-1 strain in acid-pain model.   

It has been repeatedly shown that acid induces widespread cutaneous 

hyperalgesia (Gandhi et al., 2004; Sluka et al., 2001) and visceral hyperalgesia 

(Miranda et al., 2004). However, it is unclear whether animals continue to 

experience muscular pain, which is a clinically important issue. Concurrent to our 

study of muscular pain assessment, Yokoyama et. al. demonstrated that rats develop 

muscle hyperalgesia 24 hours following the acid-injections (Yokoyama et al., 2007), 

indicating the acute state of muscle pain in rats. We demonstrated that intramuscular 

acid not only produced bilateral muscle hyperalgesia but also muscle hyperalgesia 

was maintained for 2 weeks, indicating the chronic state of muscle pain. More 

importantly, our study demonstrated strain differences in the development of muscle 

hyperalgesia; C57Bl/6 female mice did not develop robust cutaneous 

hypersensitivity, nor did they develop primary muscle hyperalgesia to mechanical 

stimulation. In contrast, the mechanical hyperalgesia related to the cutaneous and 

muscle tissue was robust and long-lasting in CF-1 female mice. The increase in the 

primary muscle hyperalgesia was strongly correlated with an up-regulation of Fos 

expression in the corresponding superficial dorsal horn laminae in the spinal cord. 

Thus the chronic phase of muscle hyperalgesia was evident by behavioral and 
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neurochemical marker analyses. These results for the first time demonstrate that 

animals develop chronic muscle hyperalgesia following acid injections. It is worth 

noting that the ipsilateral muscle hypersensitivity is being called as the primary 

hyperalgesia; it may also be referred to as secondary hyeralgesia since acid does not 

induce any tissue injury (Sluka et al., 2001). The present experiment extends the 

results of previous studies conducted in rats (Sluka et al., 2001) and mice (Gandhi et 

al., 2004) and additionally shows the development of chronic muscle hyperalgesia.    

 

Genetic variability 

This is the first evidence demonstrating possible genetic differences in the 

development of muscle hyperalgesia. Many clinical studies have pointed out gender 

and genetic differences that contribute to human pain sensitivity (Berkley, 2006; 

Limer, Nicholl, Thomson, & McBeth, 2008). The same is true for animals. Jeff 

Mogil has published a number of articles indicating the naturally occurring variations 

in pain measures attributed to genetic differences. One might think that inbred mice 

will have less variability then outbred. However, Mogil et al. tested 11 inbred strains 

of mice with 12 commonly used nociceptive measures and reported significant strain 

variability within the inbred mice (Mogil et al., 1999). In this study, C57BL/6 mice 

displayed resistance to acid saline with von Frey testing. Besides this reported 

finding, the specific information related to the strains of mice used in the present 

experiments is not available, i.e. the variability in the number of ASIC3 receptors, 

their variants, the variability in nociceptive behavior of these 2 mouse strains or their 
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susceptibility to pain. In general, the genetic variability associated with nociception 

involves the promoter regions of genes or other regulatory regions such as their loci, 

their variants and the product they code for, which ultimately leads to functional 

changes in protein and enzymes involved in nociception rather than a point mutation 

in specific genes (Mogil et al., 2000). Mogil identified quantitative trait loci (QTL) 

on chromosome 4, which accounts for the inconsistency in hot-plate nociception 

measure among male and female C57BL/6 mice. The variability was mainly in the 

gene that encodes the delta-opioid receptor (Mogil & Belknap, 1997). The fact that 

we showed differences in deep tissue hyperalgesia by 2 distinct measures, behavior 

and Fos, which indicated that C57Bl/6 female mice were less susceptible to acid-

induced effects. Thus, we suggest that CF-1 female mice should be used to perform 

any further testing in an acid-induced pain model. This knowledge also provides an 

explanation for the baseline variability that we have encountered with each 

nociceptive measure in C57Bl/6 mice and previously reported in QTL experiments 

among female mice (Mogil et al., 1997). We relate the variability in pain measures to 

the genetic background since the environment is often controlled in the laboratory 

setting. However, there may be some environmental factors that could have skewed 

the results. Future studies should examine how two strains are different in their 

genetic make-up resulting in different responses to acid.     

 

Spinal Neuronal Activation Pattern  
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The spinal activation for centrtal projection of deep tissue structures has not 

been studied in depth. Previous studies of the gastrocnemius muscle hyperalgesia 

caused by inflammatory agents (Hunt et al., 1987) or an electrical stimulation to 

sensory nerves (S. F. Wang et al., 2005) suggested the activation pattern of Fos in the 

lateral aspect of the dorsal horn, which is similar to the present finding. These studies 

have provided important information regarding the dorsal horn activation following 

primary muscle afferents but are limited to inflammation and individual nerve 

stimulation. The intention of on of the present studies was to examine the spinal cord 

Fos expression of the gastrocnemius muscle under a chronic non-inflammatory 

condition with a clinical test of “palpation”. Therefore, to obtain a complete spatial 

distribution of all primary afferents originating from the gastrocnemius muscle, we 

examined the activation of the entire lumbar spine, including both dorsal horns, in 

response to a functional / clinical stimulus of compression. This knowledge provides 

an increased understanding of the dorsal horn circuitry, involved in mechanical 

nociception.  Gastrocnemius compression resulted in rostrocaudal, centrolateral 

somatotopic organization of the ipsilateral dorsal horn including all laminae. In 

comparison, paw palpation resulted in Fos expression of mediocentral superficial 

laminae (I/II) of the ipsilateral side restricted to the L4/5 segment and bilateral deep 

laminae (V/VI) involving multiple segments (L2-L5). These results indicate that paw 

tissues mainly contain nociceptors (C-fibers and Aδ) whose projections are bilateral 

in the deeper regions, in addition to the known ipsilateral superficial layers. Whereas 

muscle tissues contain both nociceptors and mechanoreceptors, and their orientation 
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is in rostrocaudal direction that is limited to the ipsilateral side only; unexpectedly 

minimum to no Fos straining was noted on the contralateral side following muscle 

compression. These findings indicate the different neuronal activation pattern in 

response to mechanical perturbation to deep and cutaneous tissues and add new 

information to our understanding of deep tissue nociception and its spinal 

distribution. 

 

5.4 Female Pain Syndromes and Exercise Training  

Numerous studies and clinical observations have demonstrated that women 

develop widespread pain syndromes at a greater rate than age-matched men 

(Berkley, 1997; Berkley, Zalcman, & Simon, 2006; Gran, 2003; Greenspan et al., 

2007). However, most animal models examining the mechanism of pain have 

exclusively utilized male rat models. The present study demonstrated that acid-

induced chronic muscle hyperalgesia can be induced in female mice. Future 

experiments should address the issue of female prevalence of chronic pain 

syndromes.  

Exercise training has been long suggested to people who experience chronic 

pain. We examined the effect of 2 different intensities, low and moderate aerobic 

trainings. Unlike previous rat studies (Ying et al., 2003, 2005 2001), our findings in 

mice showed that low-intensity treadmill training was not sufficient to up-regular 

NT-3 or to decrease secondary hyperalgesia induced by acid injection. Few previous 

studies examining the effect of exercise on various neurotrophins have exclusively 
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used a rat model under healthy or neurologic conditions (Hutchinson et al., 2004; 

Ying et al., 2003, 2005 2001). At present there is no established exercise protocol to 

determine the level of physical activity required to stimulate NT-3 synthesis in 

skeletal muscle. A great deal of inconsistencies in the intensity of the exercise, from 

6 m/min speed (Bement & Sluka, 2005) to 27 m/min (Hutchinson et al., 2004) as 

well as in the duration of the exercise from 5 days (Bement & Sluka, 2005) to 7 

weeks (Hutchinson et al., 2004) exist in rodent experiments utilizing treadmill 

training. As limited animal studies exist, our exercise protocol was chosen based on 

the human studies (Droste et al., 1991; Fulcher & White, 1997; Glass et al., 2004; 

Goldenberg et al., 2004; Gowans & deHueck, 2004; Gowans et al., 2004; Hoffman et 

al., 2004; Mannerkorpi, 2005; Meiworm et al., 2000; Redondo et al., 2004; 

Whiteside et al., 2004) in which physiological and analgesic effects were noted with 

low-moderate intensity exercise protocol. Most animal studies utilize a running 

wheel (Kuphal et al., 2007; Ying et al., 2003, 2005); however, humans are normally 

engaged in walking or running. Secondly, treadmill training, as opposed to wheel 

running (Ying et al., 2003, 2005) or swimming (Hutchinson et al., 2004; Kuphal et 

al., 2007), was chosen as a mode of aerobic exercise based on some recent animals 

studies (Bement & Sluka, 2005; Gomez-Pinilla et al., 2001; Hutchinson et al., 2004) 

in which treadmill training increased NT-3 production and reduced allodynia. These 

scattered findings suggest that expression of NTs can be altered in response to 

mechanical and metabolic changes.  Nevertheless, we report that in the mouse 
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species, at least moderately intense exercise training was required to up-regulate NT-

3 expression.   

Inconsistent exercise designs may be responsible for the unpredictable results 

found in the literature. The mode and the intensity of exercise were considered prior 

to designing the present experiments. The exercise training should optimize physical 

performance and benefits as their effects are dose-dependent; however, intense-level 

of exercise without rest period may cause exhaustion, fatigue and ultimately increase 

painful condition (Aguiar, Tuon, Pinho, Sliva, Andreazza, Kapczinski, Quevedo, 

Streck, Pindo, 2008; Yokayama, 2007b). Thus the effect of low-level treadmill 

training was first investigated. The subsequent treadmill training with CF-1 mice was 

considered moderate as animals were allowed to take frequent breaks to eliminate 

possible over-exhaustion. Only exhaustive levels of exercise induce oxidative 

damage (Sastre et al., 1992). Thus an incremental running program was used to 

progressively increase running intensity to 16 m/min over 3 weeks. Surprisingly, the 

exercise training did not result in an increase in citrate synthase activity [unpublished 

data]. Citrate synthase is one of the key regulator mitochondrial enzymes in the 

energy- generating metabolism and is frequently used as a metabolic biomarker in 

assessing oxidative capacity of the cell (Bahi et al., 2004; Siu, Donley, Bryner, & 

Alway, 2003). However, inconsistant results have been reported in CS activity from 

various exercise protocols (unpublished data from rat experiments conducted in the 

diabetes laboratory at KUMC).         
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One way to distinguish aerobic versus anaerobic exercise intensity is to 

quantify lactate levels in blood sample (Aguiar, Tuon, Pinho, Sliva, Andreazza, 

Kapczinski, Quevedo, Streck & Pindo, 2007; Aguiar, et. al. 2008) and make a 

comparison between trained and untrained animals. Aguiar et al. reported that trained 

animals displayed lower lactate values indicating improvement of the oxidative 

metabolism (Aguiar, et. al., 2007). Aguiar el al. conducted a study utilizing male CF-

1 mice that ran 16.5 m/min for 45 minutes for 8 weeks. This training regimen 

resulted in low blood level lactate, indicating aerobic fitness of mice and thus was 

considered at an intense level. The exercise training used in the present study was 

less intense than one used by Aguiar and colleagues (Aguiar, et. al., 2007) and is 

therefore considered at a moderate high level in study two.  

 

5.5 Mechanisms of Exercise-Induced Analgesia  

The effects of exercise-induced analgesia in patients with pain are poorly 

understood. Limited information is available to determine the role and mechanism of 

exercise in relieving pain. Several possible mechanisms have been postulated in 

support for exercise-induced analgesia. The theory of exercise-induced release of 

central opioids is the most studied and widely accepted explanation for exercise 

training (Hoffman, 2004; Bement & Sluka, 2005). Exercise training can release B-

endorphin and catecholamines in central and peripheral tissues as evident by 

increased plasma concentration of these substances with short-term or long-term 

exercise training (L. J. Kehl & Fairbanks, 2003). A similar result was noted with a 
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low-intensity exercise training (10-20 ft/min for 15-30 min, 5 days for 1 week) that 

reversed mechanical allodynia associated with acid-induced hyperalgesia (Bement & 

Sluka, 2005). These studies are limited to immediate effects or intense exercise 

training. It is a less likely mechanism in support for the present finding as the effect 

of exercise training was tested in the chronic stage.  

Another theory of central mechanism proposes that activation of 

proprioceptive and muscle afferents inhibit central pain circuitry that may affect 

descending inhibitory pathways (Hoffman et al., 2004). This theory has gained 

interest in physical therapy rehabilitation and has been supported by studies in which 

resistive exercise (Hoffman et al., 2004) and electric stimulation of afferent nerves 

(Pertovaara, Kemppainen, & Leppanen, 1992) produce an analgesic effect. However, 

based on randomized experiments, there is limited evidence supporting this. The 

present study showed that aerobic exercise indeed synthesized a trophic factor, 

which exerts its effect by activating large and medium diameter muscle afferents. 

Does this finding support the well known “classic” hypothesis that exercise 

stimulates activity of medium and large diameter afferents that might be involved in 

closing the gate for painful input at the spinal cord? Future experiment should 

address this question.    

In addition, a peripheral mechanism that involves the local release of 

circulating factors, potassium, hydrogen or prostaglandins that act on receptor sites 

in response to exercise has also been postulated. However, it is a less supported 

theory as these substances activate nociceptors. Another possibility suggests that 
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exercise serves as a distracter, and attention modulates pain perception. However this 

is not a complete explanation as human studies show that alternation in pain 

perception does not occur in all humans and at all intensities of exercise (Hoffman et 

al., 2004). Another system besides endogenous opioids, involved in exercise-induced 

analgesia may be endocannabinoids (Elmes, Jhaveri, Smart, Kendall, & Chapman, 

2004; Sparling et al., 2003). Endurance training (Long term running or cycling at 70-

80% of maximum heart rate for 6 months for the duration of 30 minutes, 4 days 

/week) resulted in elevated anandamide levels, a ligand for CB1 receptor, in the 

circulation of healthy male adults (Sparling et al., 2003). This possibility was 

examined in healthy subjects who were able to perform high intensity exercise 

training for a long period of time and is limited to one study.   

Exercise is considered as an endogenous way of controlling pain. But, there 

have been reports of exercise interventions in which exercise training in fact 

increased the pain perception (Mathes & Kanarek, 2001; Smith & Lyle, 2006). These 

exercise trainings utilized wheel running in which animals voluntarily exercised for 

6-8 weeks while they received exogenous opioids. These studies reported that 

chronic exercise training, which tended to upregulate opioids, caused tolerance to 

opioid receptors (Mathes & Kanarek, 2001; Smith & Lyle, 2006). This phenomenon 

explains the concept seen in patients who develop a greater degree of sensitivity to 

opioids with higher dosages of morphine. Among all these theories, the present study 

provides support for the hypothesis of activation of large diameter 

mechanoreceptors, via NT-3 synthesis, to overcome sensory input from nociceptors.   
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5.6 Proposed Mechanisms of Exercise-Induced, NT -3 Linked Analgesic Effect  

The regulation of NT expression and NT receptors on sensory nerves in adult 

life is not fully understood. However, NT expression on sensory neurons is 

influenced by injury (Hennigan et al., 2007) and activity (Gomez-Pinilla et al., 2001; 

Hutchinson et al., 2004 2003; Molteni et al., 2004; Ying et al., 2005). Muscle activity 

provides signals to innervating neurons and can alter synthesis of neurotrophic 

factors (Gomez-Pinilla et al., 2001; Hutchinson et al., 2004 2003; Molteni et al., 

2004; Xie et al., 1997; Ying et al., 2005).  

These neurotrophins are synthesized by target tissues, skeletal muscles, and 

the receptors are found on neurons innervating muscle tissue; thus exercise is likely 

to mediate its effect on the sensory nervous system through mobilization of 

neurotrophins. Among all NTs known to this date, NT-3 plays a crucial role in pain 

perception. Emerging evidence suggests that NT-3 is capable of negating thermal 

hyperalgesia (Wilson-Gerwing et al., 2005) and mechanical hyperalgesia (Gandhi et 

al., 2004). There are two lines of evidence reported in the literature that signifies the 

role of NT-3 as a pain modulator: 1) its effect via trkC receptors (Wilson-Gerwing, 

& Verge, 1996; Karchewski, 2002) and 2) its ability to bind to trkA receptors (Gratto 

& Verge, 2003; Wilson-Gerwing et al., 2005; Wilson-Gerwing & Verge, 2006). In 

all of these studies, NT-3 was exogenously delivered into a muscle or spinal cord 

tissues.  These authors didn’t find a significant influence of NT-3 on the baseline 

thermal or mechanical sensitivity. We propose that NT-3 is likely to affect deep 

tissue pain via trkC receptors as there is no indication that acid-infusion alters trkA 
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susceptibility. Gandhi et al. examined the anti-nociceptive effect of all neurotrophins 

in the development and maintenance of acid-induced hyperalgesia. NT-3 was the 

only neurotrophin capable of reversing acid-induced mechanical hyperalgesia. Other 

NTs (NGF, BDNF and GDNF) had no physiological effect on mechanical 

hyperalgesia. This study clearly suggested that NT-3 played an important role in 

mitigating mechanical hyperalgesia related to musculoskeletal tissues and guided the 

hypothesis of the present study (Chapter 3). In the present study, moderate intensity 

exercise training resulted in overexpression of NT-3 in the skeletal muscle. It is, 

therefore, suggested that increased muscle and cutaneous thresholds in response to 

exercise training are attributable to increased peripheral levels of NT-3, but its 

mechanism is different than suggested by Gandhi et al., as described below.    

A large number of studies highlight the importance of exercise-induced 

neuroplasticity via a BDNF-linked mechanism in the hippocampus to fight against 

declining brain function. Thus exercise-induced neurotrophins, specifically NT-3 to 

negate nociception at the peripheral or spinal level is an equally important 

phenomenon to investigate. Exercise has been shown to affect the expression of NT-

3 in soleus and spinal cord (Gomez-Pinilla et al., 2001; Ying et al., 2003). However, 

the effect of exercise on NT-3 production in pain-induced animals is limited to only 

one study in which 7 weeks of treadmill training reversed allodynia and restored 

normal sensation after experimental spinal cord injury (Hutchinson et al., 2004). 

Post-developmentally, NT-3 is synthesized in peripheral tissues and retrogradely 

transported by cutaneous (A-α, A-β) and nociceptive (group III and IV) and 
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proprioceptive (group I and II) muscle afferents to the cell bodies within the DRG 

(Malcangio et al., 1997; Munson et al., 1999; Watanabe et al., 2000; Wright, 2001).  

The cell bodies of group III terminate in lamina III- VI of the spinal cord (Malcangio 

et al., 1997; Woolf, 1987). This suggests that the anti-nociceptive action of NT-3 via 

exercise can be at 3 possible sites: 1) peripheral terminals of the primary afferents 

innervating muscular tissue, or 2) at cell bodies of the sensory neurons in the DRG, 

or 3) centrally in the spinal cord. See figure one.       

 

5.6.1 Peripheral Terminal Level  

Overexpression of NT-3 could decrease muscle hypersensitivity by locally 

blocking the activity of the primary afferents (Gandhi et al., 2004). However, in the 

present study, this explanation for the exercise-induced analgesia is less likely. An 

earlier study from our lab identified a subset of sensory neurons (Aδ fibers projecting 

to muscle tissues) that respond to NT-3 and thus mediate the nociceptive effect of 

acid-induced hyperalgesia. The study also demonstrated that NT-3 is highly 

expressed in muscle spindles and smooth muscle cells along the lining of the blood 

vessels [unpublished data]. Exercise training, particularly treadmill training, is likely 

to stimulate muscle spindles and increase blood flow, thus resulting in over 

expression of NT-3, as observed in the present study. NT-3 expression in muscle 

spindles supports the longstanding understanding that proprioception neurons, group 

Ia and II spindle afferent fibers, respond to NT-3 (Wright et al., 1997). Additionally, 

the expression of NT-3 within the arterioles contributes to the anti-nociception role 
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of NT-3. Arterioles are innervated by sympathetic fibers, C-fibers and A-δ fibers. A-

δ fibers express trkC, the receptors for NT-3 [Funfschilling, 2004]. These findings 

identified the anatomical sites for NT-3 expression within the skeletal muscle which 

are also stimulated with exercise training. The study by Gandhi demonstrated that the 

delivery of exogenous NT-3 was required concurrently with acid-injections for its 

protective effect. In addition, once NT-3 protection against the development of 

mechanical hyperalgesia occurred, mice did not require continued delivery of NT-3 

to reduce sensitization (Gandhi et al., 2004) suggesting the role of NT-3 in 

suppressing the initial events that lead to hypealgesia. Mice in the present study 

started exercise training 3-4 days following the 2nd acidic injection. By this time, 

animals had developed widespread hyperalgesia of cutaneous and muscle tissues. 

Thus it is less likely that NT-3 had anti-nociceptive effect via the peripheral 

mechanism suggested by Gandhi et. al. (Gandhi et al., 2004). Yet, together, these 

findings suggest that over expression of NT-3 in muscle, either delivered 

exogenously or induced by exercise training, can lessen chronic muscular pain.    

  

5.6.2 DRG Level   

Chronic pain processing signals are complex and require upregulation of 

many pain substances and their corresponding receptors (Bolay & Moskowitz, 2002; 

Waxman, Cummins, Dib-Hajj, & Black, 2000). The anti-nociceptive effects of 

exogenous NT-3 are being explored in various pain models. NT-3 has been shown to 

regulate many proteins in the DRG, including voltage-gated potassium (Park et al., 
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2003) and sodium (Wilson-Gerwing, Stucky, McComb, Verge, 2008) channels, 

substance p (Wilson-Gerwing et al., 2005) and trkA receptors (Karchewski, 2002; 

Gratto, 2003). Intrathecal administration of NT-3 blocked the development of 

thermal but not mechanical hyperalgesia in rats subjected to chronic constructive 

injury (CCI) (Gratto & Verge, 2003). Exogenous infusion of NT-3 for 7 days 

prevented thermal hyperalgesia and suppressed the injury-induced overexpression of 

TRPV1 receptors in the DRG and spinal cord in rats receiving a CCI of the sciatic 

nerve (Wilson-Gerwing et al., 2005). It is also known that NT-3 can mediate certain 

anti-nociceptive effects by altering trkA expression (receptor for NGF) in the DRG 

neurons in healthy animals and animals subjected to neuropathic pain (Karchewski, 

2002; Gratto, 2003). Intrathecal delivery of NT-3 for one week reduced neuronal 

galanin expression and pituitary adenylate cyclase-activating polypeptide (PACAP) 

in CCI-injury model; both of these peptides are associated with neuropathic pain 

(Wilson-Gerwing & Verge, 2006). NT-3 also effects BDNF, substance P and CGRP 

and TRPV1 via p38 MAPK (Wilson-Gerwing et al., 2005). Many of these molecules 

are involved in nociception. By regulating their expression, protein synthesis and 

functional signaling in the DRG, NT-3 could influence thermal and mechanical 

sensitivity. Thus it is possible that exercise-induced NT-3 upregulation observed in 

the present study exerted its anti-nociceptive effect indirectly by regulating the 

expression of other molecules involved in nociception through retrograde transport 

of NT-3 from the gastrocnemius muscle to the DRG.   

5.6.3 Central or Spinal Level    



149 
 

The central nervous system contains modulatory circuits whose main 

function is to regulate the perception of pain. The initial site of pain modulation in 

the CNS is within the dorsal horns where interconnections between nociceptive and 

nonnociceptive afferent pathways can control the transmission of incoming 

nociceptive information prior to reaching higher centers (Bennett, 1999; Lima, 

1998). The time dependent changes and cronicity observed after tissue injury may be 

a result of an imbalance between the facilitatory and inhibitory descending pathways, 

as observed in many pain models (Desmeules et al., 2003; Tillu et al., 2007; 

Wiesenfeld-Hallin et al., 1997). Various types of tissue injuries, inflammatory versus 

neuropathic, result in a different pattern of facilitation or inhibition of descending 

control over time (Tillu et al., 2007). A recent study demonstrated the involvement 

of NRM and Gi nuclei of RVM in initiating and facilitating chronic acid-induced 

pain; both nuclei NRM and Gi project bilaterally to laminae VII, VIII and lamina I, 

II, V respectively (Tillu et al., 2007). Furthermore many clinical studies have also 

shown deficits in the descending pain inhibitory systems in the chronic stage of pain 

(Bennett, 1999; Desmeules et al., 2003; Wiesenfeld-Hallin et al., 1997). Many 

exercise-induced analgesic effects are also considered to be under descending control 

(Bement & Sluka, 2005; Hoffman et al., 2004; Sparling et al., 2003). Thus the 

involvement of descending pathways in the development and maintenance of acid-

induced pain and the attenuation of hyperalgesia from exercise training cannot be 

ignored. In fact, we suggest that the exercise-induced analgesic effect on muscular 

pain detected in the present study is centrally driven, via NT-3 retrograde transport. 
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This is largely due to the fact that exercise training was initiated 3-4 days after the 

central sensitization had developed, and the reduction in muscular pain was 

bilateral and extended to the cutaneous tissue.   

  In adult life, the majority of muscle afferents (75%) (Watanabe et al., 2000) 

and half of the DRG neurons (approximately 40%) express trkC receptors, mainly 

medium and large diameters (Gratto & Verge, 2003). TrkC receptors are also 

expressed in many areas in the CNS (Merlio et al., 1992); importantly in the dorsal 

horns of the spinal cord (Bradbury, King, Simmons, Priestley, & McMahon, 1998; 

Scarisbrick, Isackson, & Windebank, 1999; Watanabe et al., 2000), in 2nd order 

projection sensory neurons (Bradbury et al., 1998) and in primate descending 

serotoninergic system (Arvidsson et al., 1994; Bechade, Mallecourt, Sedel, Vyas, & 

Triller, 2002). Thus, it is plausible to suggest that the action of exercise-induced NT-

3 was mediated through spinal mechanisms. In addition, the general spatial 

arrangement of central projections of the primary afferents in the spinal cord allows 

direct contact between nociceptors and mechanoreceptors. A-δ fibers terminate in I 

and V layers; C-fibers mainly terminate in lamina II and Aβ terminate in lamina III – 

V (Craig, 2003; Leigh A. Lamont, 2000); however, C-fibers and Aβ also terminate in 

lamina II – IV from a dorsal to ventral direction. Our results (Chapter 2) suggest that 

muscle sensory afferents (noxious and non-noxious) terminate in all lamina and 

multiple lumbar segments. Previous knowledge suggests that the input to laminae II-

IV is arranged in 2 horizontal sheets of afferent terminals. The superficial sheet 

represents terminals of C-fibers and the deep sheet represents terminals of A-β fibers 
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(Woolf, 1987). Woolf and Fitzgerald also demonstrated that cells responding to low-

threshold mechanical stimuli (A-β) can be found in all laminae (Woolf, 1987). There 

are interneurons located within lamina II, III, and IV, making direct connections with 

lamina I and V (Lima, 1998) and are likely to influence nociception. This 

arrangement allows complex neurochemical connection between nociceptors and 

mechanoreptors that result in either facilitation or inhibition of painful sensation. 

Thus we believe this is likely the mechanism by which exercise-induced NT-3 exerted 

its anti-nociceptive effect.  

 

Acid and NT-3 - a Compensatory Mechanism  

In addition to the evidence of co-expression of trkC and ASIC-3 that 

occupies a small portion of mechanoreceptors, there is no information available that 

links NT-3 and acidosis. The co-expression of trkC and ASIC-3 propose a possible 

signaling mechanism through which NT-3 could influence ASIC-3 channel activity 

and increase mechanical threshold sensitivity. An interesting finding from this study 

seems to suggest a possible interaction between the physiological alteration in pH 

level that activates ASIC and an up-regulation of NT-3 (Chapter 3). The finding 

illustrates that acid itself regulates NT-3 expression in muscle up to 3 weeks after the 

initial injections were delivered. This suggests a possible interaction between NT-3 

and ASIC-3 receptors of the primarily sensory neurons whose activity, in the chronic 

stage, is primarily driven by central sensitization. This finding could be a cofounding 

factor or may suggest an intrinsic compensatory mechanism by which body attempts 
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to negate tissue acidosis and nociception. Does this finding imply another 

mechanism by which exercise modulates pain when muscle is physiologically 

challenged either by acid or exercise? Future investigations should address this 

question by examining ASIC-3 expression in skeletal muscle in exercised and acid-

injected animals.   

5.7 Future Directions  

The present studies have established a correlation between exercise, NT-3 

and pain modulation in a chronic musculoskeletal pain model.  Future studies should 

focus on solidifying the physiological processes involved in exercise-induced pain 

modulation. The exact mechanism by which activity induces NT-3 synthesis and the 

subsequent events that lead to muscular analgesia is beyond the scope of this study 

and remains to be investigated. However some thoughts about investigating these 

questions are shared below. A series of cause and effect hypotheses/experiments are 

suggested to understand mechanisms underlying exercise-induced analgesia through 

NT-3.    

 

NT-3 Effects Mediated by TtrkC Receptors 

If exercise-induced NT-3 expression reduces secondary hyperalgesia, 

presumably through trkC receptors, then blocking NT-3 ligand binding to trkC 

receptor with antibody against trkC should reverse the analgesic effect of NT-3. This 

may be the next logical step to investigate. Clear anti-nociceptive action of NT-3 on 

sensory nerves should be determined by examining the signaling cascade in sensory 
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nerves. By blocking messages from the periphery or by retrograde transport to cell 

bodies that influence gene transcription of many neuropeptides and ion channels 

involved in pain transduction, one could analyze the anti-nociceptive action of NT-3.   

 

Target Subpopulation of Sensory Neurons 

There is a significant co-expression of trk receptors and ASIC-3 receptors on 

sensory neurons. Approximately, 50% of all small sensory neurons that innervate 

muscle tissue and 28% of small sensory neurons that innervate skin express ASIC-3 

channels (McIlwrath, Lawson, Anderson, Albers, & Koerber, 2007; Molliver et al., 

2005). Additionally, approximately 68% of ASIC co-express trkA receptors 

(receptor for NGF), and 25% co-express trkC receptor (receptor for NT-3). 

Interestingly, ASIC3+/trkC+ subpopulation of neurons are non-nociceptive 

mechanoreceptors rather than proprioceptors. These mechanoceptors are probably 

the target neurons for NT-3 action induced by exercise training. NT-3 may also be 

expressed by C-fibers and/or A-δ fibers (Gandhi et al., 2004; Wilson-Gerwing et al., 

2005) and could mitigate nociception via these afferents. In future, a double-labeling 

immunohistochemistry technique can be utilized to identify a subset of neurons 

responsive to ASIC-3 and trkC receptors under exercise conditions.  

Moreover, recent evidence indicates that intrathecally delivered NT-3 binds 

to trkA receptors in adult DRG neurons (Gratto & Verge, 2003). Since NT-3 

preferentially binds to its trkC receptors, we hypothesize its exercise-induced 

analgesic effect through trkC receptors by increased activity of large diameter fibers. 
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However, as mentioned earlier, NT-3 is capable of binding multiple trk receptors 

(both trkA and trkB) in certain injuries (Wilson-Gerwing, 2005); this is not 

surprising since about 50% DRG neurons co-express trkA and trkC receptors and 

provides further support for its ability to modulate pain. Therefore it is important to 

examine its influence on both trk receptors to determine its effect on muscle pain 

with exercise training. To examine the effect mediated via NT-3, again techniques of 

colocalization (radioautography or in situ hybridization, can be applied to visualize 

and quantify trkA, trkC, trkB, SP, p75, BDNF and ASIC3 in DRG neurons.   

 

5.7.1 Solidify Peripheral versus Central Mechanism of Exercise-Induced Analgesia 

The next step may be to solidify peripheral or central effects of anti-

nociception associated with NT-3. Because neurotrophins are expressed by target 

tissue and exert their impact via sensory neurons, their action at specific anatomical 

sites is critical to the understanding of possible associated mechanisms. In vivo 

expression patterns and specific transport sites of NT-3 in the spinal cord should 

reveal its anti-nociceptive action induced by exercise training. The present study 

demonstrated over expression of exercise-induced NT-3 in peripheral tissues. 

However, its action is likely to be within the CNS.   

 To assess whether NT-3 protein is being retrogradely transported to DRG 

and then anterogradely to the spinal cord (X. Wang, Butowt, Vasko, & von Bartheld, 

2002) a technique of retrograde tracer may be employed. An earlier study from our 

lab utilized mice with lacZ gene inserted into a protomoter region of the trkC gene to 
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trace peripheral terminal sites for NT-3 synthesis. In that experiment, 5 ul of 2% 

solution of Fast Blue (Sigma, St. Louis, MO) was injected into the right 

gastrocnemius muscle to retrogradely label muscle afferent neurons and cell bodies 

of neurons positive for NT-3 in the DRG. The same technique can be utilized to trace 

the physiological source of NT-3 from exercise training. Approximately 5 days prior 

to scarifying animals, retrograde labeling should be injected into the gastrocnemius 

muscle, and animals should be allowed to continue with the exercise training. The 

DRG and spinal cord (L4/5) should be processed with the technique of 

immunohistochemistry utilizing anti-ASIC3 and anti-mouse trkC antibodies and 

viewed under a microscope to identify the type of neurons and their specific 

locations in the spinal cord. This procedure would ensure the retrograde transport 

and identify trkC+/ASIC3+ neurons.  

The classic view states that neurotrophins are produced in peripheral target 

tissues and retrogradely transported to the CNS (DiStefano et al., 1992); however, 

increasing evidence now suggests that NTs are also expressed locally in the spinal 

cord, specifically in response to exercise (Gomez-Pinilla et al., 2001; Hutchinson et 

al., 2004; Ying et al., 2003, 2005). Exercise provides systemic stimuli which may 

either cause in-situ synthesis or translocation of NT-3 protein from periphery via 

retrograde transport.  Both long-term (28 days) and short-term (7 days) exercise 

training have shown to increase trkB and BDNF expression in the spinal cord 

(Macias et al., 2007). In addition, exercise training has also been shown to upregulate 

NT-3 expression in the spinal cord (Ying et al., 2003). Our results indicated that 3 
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weeks of treadmill training at moderate intensity caused a 1.5 fold increase in the 

spinal cord NT-3 mRNA expression in the exercise control group, which was not 

statistically significant (unpublished data). However together these findings suggest 

that exercise could induce local increase in NT-3 expression in the spinal cord. The 

method of RT-PCR used in the present studies is sensitive and beneficial to detect 

changes in gene transcription but does not provide cell specific information. A 

technique such as in situ hybridization and immunohistochemistry should be utilized 

to localize laminae and cell type expressing NT-3 in the spinal cord.  

To detect cell specific changes in the mRNA expression, in-situ hybridization 

is often used (Gratto & Verge, 2003; Wilson-Gerwing et al., 2005; Wilson-Gerwing 

& Verge, 2006). A DNA (cDNA) probe of NT-3 complementary to the coding 

sequence of mature NT-3 should be generated to read the NT-3 sequence. Two 

probes, the sense and the antisense with specific RNA polymerase will be needed. 

pRNT3-1 with 392 bp insert (nucleotides 481 – 873) has been used to encode mature 

rat NT-3 in the spinal cord (Scarisbrick et al., 1999). Following 

immunohistochemistry, slides with spinal enlargement should be processed with 

hybridization buffer and cRNA hybridization can be visualized by film or emulsion 

autoradiography for the relative amount of cRNA hybridization. The details of this 

procedure have been described by Sarisbrick and colleagues (Scarisbrick et al., 

1999).  

Besides the mRNA expression, changes in the protein levels within the spinal 

cord should be examined. In the present study, we did not examine the protein levels 
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of NT-3 in the spinal cord. A previous study demonstrated an upregulation of NT-3 

protein and mRNA and trkC mRNA in the spinal cord from 3 and 7 days wheel 

running (Ying et al., 2003); this upregulation of NT-3 was mostly seen in the 

substantial gelatinosa (SG) region (Ying et al., 2003), suggesting either localized 

increase in protein or retrograde transport from the primary afferent as the central 

projections of mechanoreceptors innervate lamina III or IV. The increase in NT-3 

from exercise training in the spinal cord could suggest a means of sensory 

modulation within the spinal cord. The study by Ying et. al. (Ying et al., 2003) 

showed that exercise training regulated the expression of NT-3 and its cognate 

receptor trkC in the spinal cord. However, this finding is limited to only one study 

and the cellular localization of trkC receptors in the spinal cord was not determined. 

Further studies are needed to confirm this finding. 

If exercise provides a physiological stimulus that leads to a mechanism of 

pain modulation and if the spinal cord circuitry is involved in negating central 

sensitization, then a detailed mapping of the cellular expression of NT-3 and trkC 

receptors within the spinal cord would be a valuable approach. This knowledge is of 

crucial importance, particularly for understanding the anti-nociceptive role of NT-3 

and exercise-induced analgesic mechanisms at the spinal level. Exercise may change 

the mRNA level of the trkC receptor or the number of cells expressing trkC 

receptors. The majority of previous studies examining NT-3 expression focused on 

the ventral horn motor nuclei as NT-3 primarily supports proprioceptive function.  A 

mapping of NT-3 and trkC receptor of sendentary and exercised-mice in the dorsal 
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horns should be important for central sensitization. This will also suggest whether 

the dorsal horn neurons in lamina III and IV receive input from A-β relays on the 

trophic support from the peripheral sensory neurons or produce their own source of 

NT-3. Based on a few previous studies, exercise training is likely to have some effect 

on spinal neuronal networks. Thus, in future experiments, one might expect to find 

NT-3 in lamina III-IV or deep layers where Aβ fibers from smooth muscle cells of 

arterioles and group II from muscle spindle terminate. The interneurons in laminae 

V-VI are also involved in motor control and therefore may be activated during 

locomotion (Bannatyne, Edgley, Hammar, Jankowska, & Maxwell, 2006).   

The trk receptors, especially trkB and trkC are found in many areas of the 

brain, including the neocortex, hippocampus, thalamic and hypothalamic nuclei, 

brainstem nuclei, cerebellum and spinal cord motoneurons (Merlio et al., 1992). 

Many of these regions influence pain processing, directly or indirectly. Given the 

diversity of trk receptors, it is possible that exercise could influence NT-3 expression 

in the CNS and pain processing at supraspinal levels.  

 

5.7.2 Human Studies  

The findings of exercise’s effects on NTs are restricted to animal models; 

however, these studies give insight into the potential explanation for exercise-

induced relief of muscular pain reported in clinical studies. It will be interesting to 

find out whether these observations hold true in human skeletal muscle. Blood 
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sample and muscle biopsy following exercise training might provide some insight 

into exercise effects on select NTs in human experiments.   

Future investigations into these questions should provide a better 

understanding of how physical activity controls pain. It is likely that exercise may 

affect pain in multiple ways; through activation of large diameter primary afferents 

or through activation of descending inhibitory pathways. Many questions remain 

unanswered and opportunities for multiple experiments for further studies regarding 

the effect of exercise exist.   

 

5.8 Clinical Significance  

Pain is multidimensional. Although the sensory aspect represents only a 

fraction of the entire pain experience, we have combined different stimulation and 

assessment approaches to gain better understanding of the chronic nature of pain. 

Direct muscle sensitivity, referred pain (secondary hyperalgesia) pattern and spinal 

activation pattern have been tested through this dissertation. Although this is an 

animal study and generalization is limited, a major advantage of animal models is 

that aspect of pain and intervention mechanisms can be investigated in a 

standardized setting without confounding factors. Considering the high prevalence 

rate of chronic musculoskeletal pain conditions in women, female mice were used in 

all experiments to understand muscle pain and the analgesic effect of exercise on 

muscle pain.  
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The recent appreciation of deep tissue pain by the scientific community has 

started to shift the focus toward understanding muscle pain. Unfortunately, our 

understanding of the treatment of deep tissue pain with exercise training and other 

physical therapy interventions lags behind. An editorial report in Rheumatology 

identified chronic musculoskeletal pain as an international issue (Rheumatology. 

2005). After osteoarthritis, Fibromyalgia (FMS) is the second most prevalent 

disorder observed by rheumatologists (Goldenberg et al., 2004). The persistent 

nature of pain associated with FMS leads to decreased functional activity and pain 

with even light activities (Gowans & deHueck, 2004) effecting overall function and 

fitness level (Fulcher & White, 2000). These individuals have limited success with 

current pharmacological interventions (Goldenberg et al., 2004; L. X. Wang & 

Wang, 2003) and depend on other avenues to manage their symptoms. A growing 

numbers of human studies provide measurable, physiological and functional proof of 

exercise benefits (Droste et al., 1991; Fulcher & White, 1997; Goldenberg et al., 

2004; Gowans & deHueck, 2004; Gowans et al., 2004; Hoffman et al., 2004; 

Mannerkorpi, 2005; Meiworm et al., 2000; Redondo et al., 2004; Whiteside et al., 

2004) with little to no molecular explanation. The clinical importance of exercise-

induced analgesia warrants an investigation to explore possible molecular changes 

involved in controlling pain. It is important to determine whether exercise facilitates 

a continuous upregulation of NT-3 and can be used as an intervention to control pain. 

This work expands our understanding of exercise-induce analgesia, and allows 

clinicians to better guide these individuals while improving their function and quality 
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of life. The study also adds evidence to the current knowledge of exercise-induced 

sensory alteration in the chronic pain model which is limited to only a few 

experiments.  

 

5.9 Conclusion 

In summary, we have used behavioral, anatomical, and molecular approaches 

to identify muscle pain and to evaluate the efficacy of exercise training in 

modulating chronic musculoskeletal pain induced by intramuscular acid injection in 

2 different strains of mice. Our data demonstrated that acid injection into the 

gastrocnemius muscle resulted in persistent, long-lasting, mechanical hyperalgesia of 

cutaneous and muscle tissues in CF-1 mice. Mice with a C57BL/6 background did 

not develop secondary hyperalgesia consistently and therefore should not be used 

when studying acid-induced pain. Future studies should consider genetic differences 

when studying pain mechanisms and therapeutic interventions. Our data also 

revealed that exercise training, when performed at moderately high intensity 

produced over expression of NT-3 in skeletal muscle and in the spinal cord to a 

lesser extent. Exercise training did not reverse the acid-induced hyperalgesia but 

significantly reduced it, which is consistent with many clinical studies in which 

exercise training does not cure a painful condition but rather lessens it. We 

contribute the positive effect of exercise training to over-expressed NT-3 levels. 

Because many chronic pain syndromes occur in females, we tested the acid-model in 

female mice and demonstrated that the acid-model was reproducible in female 
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gender. Since the acid model was sensitive to female mice, produced widespread 

hyperalgesia and did not cause inflammation or tissue damage, made this model 

unique to study the effects of exercise training. Future experiments should focus on 

clarifying peripheral versus central actions of exercise-induced NT-3 and its 

underlying mechanisms in mediating nociception.  

 

 

 

Figure 1: represents a schematic diagram showing possible anatomical sites for 

anti-nociceptive actions of NT-3, at peripheral levels, in DRG via retrograde 

transport or in the spinal cord dorsal horn neurons.    
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