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Abstract

In resource-constrained networks such as multi-hop wireless networks (MH-

WNs), service differentiation algorithms designed to address end users’ interests

(e.g. user satisfaction, QoS, etc.) should also consider efficient utilization of the

scarce network resources in order to maximize the network’s interests (e.g. rev-

enue). For this very reason, service differentiation in MHWNs is quite different

from the wired network scenario. We propose a service differentiation tool called

the “Investment Function”, which essentially captures the network’s cumulative

resource investment in a given packet at a given time. This investment value can

be used by the network algorithm to implement specific service differentiation

principles. As proof-of-concept, we use the investment function to improve fair-

ness among simultaneous flows that traverse varying number of hops in a MHWN

(multihop flow fairness). However, to attain the optimal value of a specific service

differentiation objective, optimal service differentiation and investment function

parameters may need to be computed.

The optimal parameters can be computed by casting the service differentiation

problem as a network flow problem in MHWNs, with the goal of optimizing the

service differentiation objective. The capacity constraints for these problems re-

quire knowledge of the adjacent-node interference values, and constructing these

constraints could be very expensive based on the transmission scheduling scheme

used. As a result, even formulating the optimization problem may take unac-

ceptable computational effort or memory or both. Under optimal scheduling, the

adjacent node interference values (and thus the capacity constraints) are not only

very expensive to compute, but also cannot be expressed in polynomial form.

Therefore, existing optimization techniques cannot be directly applied to solve

optimization problems in MHWNs.

To develop an efficient optimization framework, we first model the MHWN as
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a Unit Disk Graph (UDG). The optimal transmission schedule in the MHWN is

related to the chromatic number of the UDG, which is very expensive to compute.

However, the clique number, which is a lower bound on the chromatic number,

can be computed in polynomial time in UDGs. Through an empirical study, we

obtain tighter bounds on the ratio of the chromatic number to clique number in

UDGs, which enables us to leverage existing polynomial time clique-discovery al-

gorithms to compute very close approximations to the chromatic number value.

This approximation not only allows us to quickly formulate the capacity con-

straints in polynomial form, but also allows us to significantly deviate from the

traditional approach of discovering all or most of the constraints a priori ; instead,

we can discover the constraints as needed. We have integrated this approach of

constraint-discovery into an active-set optimization algorithm (Gradient Projec-

tion method) to solve network flow problems in multi-hop wireless networks. Our

results show significant memory and computational savings when compared to

existing methods.
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Chapter 1

Introduction

1.1 Multi-hop Wireless Networks

Multi-hop networks are networks where the communicating entities (nodes) in

the network are not directly “connected” to one another. Transfer of data between

any two nodes could potentially pass through multiple intermediate nodes (hops)

before reaching the intended destination. Multi-hop networks can be classified

based on the medium of communication:

• wired, where the communication between the nodes is realized through a

wired medium (e.g. traditional Internet)

• wireless, where the communication medium is wireless

• hybrid, where the network consists of a good mix of nodes using both wireless

and wired media for communication

In this dissertation, we focus only on multi-hop wireless networks (MHWNs).

Multi-hop wireless networks find application in a number of environments; they

can provide an alternative to a last-mile wireline infrastructure in geographically
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infeasible areas, can serve as limited-lifetime networks that provide communica-

tions infrastructure for disaster response (e.g., hurricane Katrina) or for security

for infrequent, large-audience events (e.g., NASCAR races), and can provide com-

munications for networks of sensors. MHWNs can be differentiated based on

whether the nodes in the network are mobile or static:

• Mobile Ad hoc NETworks or MANETs [man] are MHWNs in which the

nodes in the network are capable of mobility. Usually, these networks are

characterized by lack of infrastructure as well (and thus “ad hoc”). Typical

application scenarios include emergency and disaster response situations.

• Wireless Mesh Networks are MHWNs in which the nodes are static. These

networks are usually ad hoc as well. Perhaps the most popular network in

this category is the wireless sensor network.

The classification presented above is not rigid, and is made for illustration

purposes only. Networks that do not fall under either category are possible. One

could have a set of mobile users communicating with one another using a mesh

network of wireless access points. Various networking technologies and hardware

have been used to build the MHWNs. Some popular wireless networking standards

used in MHWNs are:

• PHY layer : 802.11 a/b/g/n [80207], 802.15.4 [80206]

• MAC layer : 802.11, 802.11e [80207], 802.15.4 [80206]

• Networking architectures : ZigBee [zig], 6loWPAN [KMS]

• Hardware: mica motes [mot], SunSPOTs [sun], GumStix [gum]

2



For a complete survey on the various technologies used in the various layers

of the wireless networking nodes, see [AWW05]. While the various categories of

MHWNs could vary in terms of specific networking technology used, application

scenarios, communication paradigms, etc., there are some unifying characteristics:

• Resource constraints on wireless channel bandwidth, node processing power,

electric power supply, etc. Usually, the nodes in MHWN are stand-alone

nodes that operate on battery power. So electric power is a very important

constraint in MHWNs.

• Lack of infrastructure

• Relatively small network size

• Adjacent-node interference that arises due to omni-directional broadcast

transmission over a shared medium.

Much of the work in the dissertation revolves either directly or indirectly

around the adjacent-node interference problem. While the interference problem is

prevalent in any wireless network, it is exacerbated in the multi-hop case due to

contention from packets belonging to the same flow but at different hops, leading

to extremely biased and inefficient bandwidth utilization. For the particular case

of 802.11 DCF, it was shown in [LBD+01] that the throughput of a single flow

traversing a chain of four or more wireless hops is upper-bounded by 0.25 of the

throughput attainable if the flow traverses only one hop, with actual reduction

factors closer to 0.14. When multiple flows are present, the situation deteriorates

even further, with strong dependencies on traffic patterns. Note that this inter-

ference problem is absent in wired networks, and it can be easily controlled in

single-hop wireless or cellular networks using a centralized scheduler.
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1.2 MHWN Preliminaries

Assume that we are given a MHWN of n nodes (1, 2, .., n), and their respective

position coordinates in two dimensional space. At the physical layer, the ability of

the wireless transceiver to successfully receive information is directly proportional

to the signal-to-noise ratio or the SNR value [Pro00] measured at the receiver.

The SNR is simply the ratio of received signal power(PR) to the ambient noise

power (Np). The received power value decreases as a non-linear function of dis-

tance between the sender and the receiver nodes for a given transmit power P T .

These models factor in large-scale fading [Rap01] or attenuation and sometimes

small-scale fading [Rap01]as well. Once the received power is computed using

these models, the SNR is then computed by assuming a constant value for am-

bient noise power. The receiver characteristics will usually include a “receiver

sensitivity” (RxThresh) parameter, which is the minimum required received sig-

nal power, such that for a given noise power, the SNR at the receiver is greater

than (SNRth), so that the probability of error in receiving the transmitted bit is

very small.

PR > RxThresh =>
PR

Np

> SNRth => P (error) < ε, ε→ 0

In CSMA networks (for e.g. 802.11), a given node checks to see if the carrier

can be “sensed” (i.e. checks to see if the carrier is busy) before engaging in any

transmission activity. The channel will be “sensed” by a given node v if there is a

transmission by some node u, such that the received power at v due to u’s trans-

mission exceeds the carrier-sense threshold or CSThresh (PR > CSThresh).

The importance of carrier-sensing can be illustrated as follows: if node u trans-
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mits to node v, then a simultaneous transmission from node w to some other

node x can corrupt the reception at node v if node v can sense the carrier due to

node w (the received “interference” or “noise” power at node v due to node w’s

transmission exceeds CSThresh).

The nodes in a CSMA network usually defer transmission if the carrier due to

an unrelated transmission can be sensed. CSThresh is a tunable parameter that

was devised as a means to overcome (albeit, unsuccessfully) the hidden and exposed

node problems [All,BDSZ94] that are inherent to wireless networks. Usually, the

carrier-sense threshold is set lower than the receiver sensitivity (CSThresh <

RxThresh). Some mechanisms of tuning the CSThresh can be found in [YYS03]

and [DLV04].

Very often, for ease of analysis, the physical layer details are abstracted, and

analytical models are built using simplifying assumptions. These models are bi-

nary or brickwall models of communication (carrier-sensing), where a node can

communicate (sense the carrier) with probability 1 if the receiver (sender) lies

within a distance of TR (CR), and with probability 0 otherwise. If interpreted in

terms of received power, the binary models imply that the probability of successful

reception is 1 if PR ≥ RxThresh, 0 otherwise, and the probability of successful

carrier sensing is 1 is PR ≥ CSThresh, 0 otherwise. Figure 1.1 shows the binary

model using received power values. This is also the model built into the ns-2

simulator [ns2] that is very widely used in the research community. We adopt a

similar model later in this dissertation when we use a graph-theoretic model to

represent MHWNs.

Based on brick-wall model, the following distance parameters can be defined:

• Transmission range: The Transmission range (TR) of a given node is de-
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Figure 1.1. Brick-Wall model of Communication and Carrier-
Sensing

fined as the maximum distance at which the node’s transmission can be

successfully received without corruption, assuming that there are no other

transmitters in the vicinity of the receiver (thus, corruption occurs only due

to ambient noise). Hence, TR can be interpreted as the maximum distance

beyond which the received signal power PR < RxThresh, for given physical

layer model. In other words, TR is the maximum distance computed using

a given physical layer model, beyond which the measured SNR < SNRth.

Thus, the sender node can communicate directly with the receiver node only

if the receiver lies within a distance of TR from the sender.

• Carrier-sense range: Carrier-sense range (CR) of given node is defined as

the maximum distance such that the transmission by this node will be re-

ceived with PR ≥ CSThresh. It is the threshold distance beyond which a

given node’s transmission (or carrier) cannot be ”felt” or sensed.

If CSThresh < RxThresh, then CR > TR. Fig.1.2 shows an example scenario

to illustrate the transmission and carrier-sense range concepts.
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Figure 1.2. Example showing Transmission Range and Carrier-
Sense Range of node u. Node v is within TR of node u, while nodes v,
w, and x are within CR of node u

1.3 Service Differentiation Tool for MHWNs

Due to the ill-effects of adjacent-node interference, efficient resource utiliza-

tion becomes a critical issue in MHWNs. Service differentiation may be required

to achieve certain network objectives (e.g. QoS) in MHWNs. Service differenti-

ation can be defined as the process of providing better treatment (higher access

to resources) to relatively more “important” traffic flows when compared to less

important ones. Identifying and quantifying “importance” of packets (and thus

flows) is a very critical part of service differentiation. In wired networks, usually

the nature of traffic (real-time, non-real time, etc) and monetary considerations

(more importance to higher paying users) influence the importance accorded to

flows. Usually, more important (higher priority) flows are provided better treat-
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ment at the expense of less important (lower priority) flows; in extreme cases it

may involve starving or dropping packets belonging to lower priority flows.

However, in MHWNs, given the scarcity of network resources, we argue that

the extent of network resources expended for a given flow must also be factored

into quantifying and assigning importance. We emphasize that we do not develop

a new service differentiation architecture; instead we develop a tool called the

“Investment Function” that aids in assessing the relative importance of a given

packet. The investment function factors in prior network investment into the

packet, in addition to monetary considerations. This information can then be used

by the service differentiation algorithm to realize a given service differentiation

objective. Although we believe the investment function potentially has very broad

networking applications, we will concentrate on its applicability in a multi-hop

wireless network context, where we believe its contributions can be substantial.

We demonstrate the effectiveness of the investment function by applying it

to a sample network objective of enhancing multi-hop fairness and efficient uti-

lization of the scarce bandwidth in multi-hop wireless networks. We develop a

simple heuristic service differentiation algorithm that makes use of the investment

function to achieve a two-pronged objective: significant increases in network band-

width utilization, while allocating and distributing the bandwidth among flows to

promote service quality and ensure fairness among flows. Our simulation results

show significant improvement in multi-hop flow fairness for both TCP and UDP

flows, while simultaneously reducing resource wastage when using the investment

function. This validates the usefulness of the investment function in a MHWN

scenario.
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1.4 Optimization Framework for MHWNs

While our sample network objective of enhancing multi-hop flow fairness and

network utilization efficiency showed improvement when the investment function

was used, the results were by no means optimal. This is because the definition of

the investment function and the service differentiation algorithm were based on

heuristics. To design investment function and service differentiation algorithms

to achieve optimal network objectives, suitable parameters for these algorithms

need to be computed. This can usually be achieved by formulating a network flow

problem for the given MHWN to optimize the desired network objective, with the

algorithmic parameters suitably captured in the constraints of the optimization

problem.

Unfortunately, the formulation of the optimization problem is very difficult

for MHWNs. This is due to the difficulty in formulating the capacity constraints,

which involves capturing the interference, and expressing the interference value in

polynomial form. The interference sensed by the nodes in the network is directly

related to the underlying scheduling scheme used to schedule transmissions of

the various nodes. Any scheduling scheme used for MHWNs should be exploit

the possibility of spatial reuse of the carrier frequency in a MHWN in order to

increase throughput. An optimal scheduling scheme is one that maximizes the

network throughput for a given set of traffic rates of the various nodes. If optimal

scheduling is assumed, the schedule can then be computed using graph-theoretic

techniques, specifically graph coloring. However, for most graphs, the optimal

coloring process is computationally prohibitive, and in most cases, one has to be

satisfied with approximations or bounds on the optimal coloring number.

The clique number of any graph lower bounds the chromatic or coloring num-
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ber. The clique number is as difficult to compute as the chromatic number for

most classes of graphs. However, for a special class of graph called the Unit Disk

Graph (UDG) [BCD90], the clique number can be computed in polynomial time,

as shown in [BCD90]. Fortunately, a MHWN lends itself naturally to be modeled

using a UDG. Prior research has shown that the ratio of the chromatic number to

clique number can be bounded within a factor of 2.155 [GM01]. In this disserta-

tion, we show through an empirical study that a much tigher bound can be used

for the ratio of chromatic number to clique number for practical MHWN-related

UDGs.

Based on our empirical results, excellent approximations to a particular con-

straint can be computed in polynomial time under UDG formulation (clique num-

ber). The bad news is that there could be a potentially exponential number

of constraints (cliques) for a given UDG [GWG05]. Traditional approaches of

formulating the optimization problem have included finding a large subset of

constraints [JPPQ03] or good approximations of the constraints (cliques), such

as the clique-generation approach in [GW04] or listing all super-maximal cliques

in [GWG05]. These approaches have steep memory requirements and tend to be

computationally expensive both at the problem formulation phase (due to finding

all or many cliques), and at the problem solving phase (due to the scale of the

problem with a large number of constraints).

To address this problem, we develop a discover-as-you-go approach, in which

the constraints are discovered as and when required by the optimization solution

algorithm. This is in contrast to the traditional methods that enumerate all con-

straints during problem formulation. Our approach has its inspiration from the

active-set theorem [Lue84] in optimization theory. We integrate this approach of
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finding constraints with a popular active-set strategy (Rosen’s Gradient Projec-

tion Method [Ros60]) for solving optimization problems. We present significant

memory and run-time savings using our method when compared to the exist-

ing strategies. We also show that the total number of constraints needed in the

discover-as-you-go approach is significantly lower than the number required by

traditional methods.

1.5 Related Work

MHWNs are plagued with bandwidth utilization and fairness problems. The

problem of poor transport layer performance in wireless networks has been at-

tributed to various factors such as mobility, erroneous congestion control, con-

tention of TCP packets with ACK packets, link-layer contention (lack of band-

width), etc. [RS05, GTB99, FZL+03, XPMS01]. Xu et. al. in [XS01] cite an

example where a 1-hop TCP flow completely shuts down a simultaneously active

2-hop TCP flow in its neighborhood. To improve end-to-end throughput, numer-

ous localized solutions have been proposed such as tweaking of TCP parameters,

modifying 802.11 DCF, modified link-layer schemes, drastic changes in TCP ar-

chitecture, etc [RS05, GTB99, FZL+03, NKGB00, LBS99, SAHS05]. We strongly

believe that end-to-end delivered throughput (sometimes called application good-

put) can be substantially improved by maximizing network utilization efficiency.

To our knowledge, we are the first to explore this avenue. The unifying tool that

we use to achieve this objective (and others) is the investment function.

Many service differentiation architectures such as IntServ [BCS], DiffServ

[BBC+], etc. have been developed for the Internet. Various researchers have

studied the feasibility of using these architectures and their variants in the con-
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text of MHWNs (see [XSLC00,LC05]). Some MHWN-specific architectures such

as [LAZC00] have been developed as well, to provide QoS in MHWNs. In all of

these approaches, resource allocation to the flows is based on some importance

metric of the flow or packet belonging to the flow. We do not propose a new

service differentiation scheme; instead we develop a novel framework which allows

us to specify a specific service differentiation algorithm and a related investment

function definition that computes the “importance” of each packet, without the

need to maintain any flow-related state in the intermediate nodes.

The investment function that we describe has a small degree of overlap with

the price-based approach discussed in [XLN06,QM03], but there are fundamental

differences in terms of applicability, objective function and computation of price

or investment. T.Strayer in his dissertation [Str92] develops the “importance

function” concept in the general context of task scheduling, where each task is

associated with an importance function that provides the importance of each

task to the global system at any given time. He shows that common scheduling

algorithms can be expressed via appropriate definitions of importance functions.

While our investment function concept is similar to the importance function in

terms of providing an importance value to the entity to be processed (packet,

task), there are fundamental differences. The importance function is specific to

scheduling problems, and aids in expressing scheduling algorithms in functional

form. Our emphasis is on arriving at a suitable investment function definition to

capture network investment to develop suitable service differentiation algorithms

to achieve a given network objective. In fact, once the algorithm is developed,

the importance function could conceivably be used to describe the algorithm in

functional form.
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To analyze the quality of the investment function definition and service differ-

entiation algorithm, it becomes necessary to solve a network flow problem in the

given MHWN. As a first step, we model the MHWN using a graph. Traditionally,

a number of networking problems such as scheduling, resource allocation, optimal

network flow, and minimum cost routing in the wired domain have been solved by

modeling the network as a graph and applying graph algorithms on such graphs

(for extensive treatment, see [AMO93, Lue84]). The wealth of graph algorithms

and their relationship to networking problems is an obvious incentive to model

networks as graphs. Some of these techniques have been extended to solve network

problems in single-hop wireless networks as well (e.g. frequency allocation using

graph coloring [Hal80] [GSW98]). The adjacent-node interference problem present

in MHWNs hampers application of these well-studied methods to solve problems

in the MHWN domain. Additional effort is required to suitably model the inter-

ference relationship between the various nodes in the MHWN. These interference

values manifest as capacity constraints.

In [KN05], Kodialam et. al. derive necessary and sufficient conditions using

edge coloring for feasibility of a rate vector in a multi-hop wireless mesh network

with orthogonal channels. They also propose algorithms to determine the achiev-

able rate region as an approximation to the optimal value. In [BJ08], Bazan et. al.

use the work from [KN05] to formulate a multi-commodity flow problem for MH-

WNs with smart antennas. Though our work has some overlap with [KN05], our

formulation of the capacity constraints is quite different. We also show that it is

both sufficient and necessary for any rate vector to satisfy the capacity constraints

to be feasible.

Various solution techniques have been proposed to solve specific instances of
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flow problems in MHWNs [JPPQ03,GMW07,KMPS05]. The interference problem

was not addressed explicitly in these papers. In [JPPQ03, GMW07], the impact

of interference was indirectly captured using cliques as approximations, while in

[KMPS05], the interference value on a given link was upper-bounded using the

sum of link rates of all interfering links (pessimistic scheduling). These approaches

are mostly limited to the specific flow problem at hand, and not to a general flow

problem. In contrast, our framework is quite general and can be used to solve

generalized flow problems in MHWNs.

In [LQZ+07], the authors attempt to explicitly model interference to iden-

tify high-throughput paths while routing packets. Interference is computed using

an approximation algorithm to generate cliques (related to [JPPQ03]). In [vR-

SWZ05], a model of interference is presented in the context of topology control

for MHWNs using UDGs. However, the interference is defined in terms of num-

ber of nodes which is not particulary useful for solving network flow problems.

In [CdGB07], interference is modeled explicitly, but the total interference is com-

puted under a pessimistic scheduling scheme (sum of transmission rates of all

interfering neighbors). It is important to note that constraint formulation under

a pessimistic scheduling scheme is trivial, and the performance measure obtained

using a pessimistic scheduling scheme serves as a lower bound on the optimal

value, and could deviate significantly from the optimum. Our explicit model of

interference is quite general and allows for a variety of scheduling algorithms. In

this dissertation, as a working example, we choose the optimal scheduling scheme,

which is perhaps the toughest for computing interference. By using a UDG to

model the given MHWN, we were able to provide tighter bounds on the interfer-

ence value under an optimal scheduling scheme. The study of interference bounds
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is an extension of the work in [MP07].

Another major contribution in our work is the Discover-As-You-Go (DAY G)

approach to formulate constraints where constraints are discovered on-the-fly, in

contrast to the approaches ( [JPPQ03, GWG05]) which discover constraints a

priori. The key observation which motivated the DAY G approach was that

both [JPPQ03,GWG05] probably generate a lot more constraints than what is ac-

tually required to solve the optimization problem. The DAY G approach discovers

the constraints only as needed thus leading to manageable number of constraints,

and lower runtime. It has to be noted that the method in [JPPQ03] is quite gen-

eral and does not rely on an underlying UDG, whereas the method in [GWG05]

is applicable only to UDGs. The DAY G method is quite general as well, in the

sense that it does not require an UDG to operate - it only requires a polynomial-

time separation oracle (LCONSTR) for efficient runtimes. For general graphs,

the separation oracle may not be polynomial-time, thus impacting the runtime

efficiency of the optimization algorithm (MGPM). However, the DAY G ap-

proach still provides significant savings in memory requirements when compared

to [JPPQ03,GWG05] due to the limited number of constraints discovered.

In short, our major contributions in this dissertation can be summarized as

follows:

1. Developed the concept of investment function as a tool to aid service differ-

entiation in MHWNs

2. Demonstrated tighter bounds for the ratio of chromatic number to clique

number in practical MHWN-related UDGs

3. Formulated global capacity constraints for network flow-related problems in
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MHWNs, and showed that they are necessary and sufficient conditions for

feasibility

4. Developed the notion of local capacity constraints for network flow-related

problems in MHWNs that are easier to formulate than the global capacity

constraints and can be used in place of the global capacity constraints.

5. Developed a Discover-as-you-go approach to discover constraints while com-

puting optimal network objective value in MHWNs

6. Demonstrated substantial improvments in memory efficiency and speed com-

pared to existing MHWN optimization formulation and solution approaches,

while simultaneously improving the accuracy of the desired solution.

1.6 Organization of Dissertation

This dissertation has been organized as follows:

• In Chapter 2, we develop the notion of investment function, and demonstrate

its usefulness via a proof-of-concept study. We also observe the difficulty in

obtaining optimal service differentiation and investment function parame-

ters.

• In Chapter 3, we introduce tools necessary to formulate flow optimization

problems in MHWNs. In particular, we model the given network using Unit

Disk Graphs, and introduce global capacity constraints necessary for the

optimization framework.

• In Chapter 4 we demonstrate an accurate polynomial-time approximation

to the ratio of chromatic number to the clique number in UDGs. We intro-
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duce the notion of local capacity constraints and demonstrate that they are

quicker to formulate than the global capacity constraints, and can be used

in place of the global capacity constraints by virtue of possessing properties

similar to that of the global capacity constraints.

• In Chapter 5, we develop an optimization framework for MHWNs. We de-

velop the modified gradient projection algorithm by integrating the polynomial-

time constraint formulation procedure into an existing optimization algo-

rithm (gradient projection method). Through performance analysis experi-

ments, we demonstrate its superiority over existing methods of solving flow

problems in MHWNs.

• In Chapter 6, we present the conclusions of this dissertation, along with

directions for future work.
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Chapter 2

Investment Function

2.1 Motivation

In networking systems, service differentiation algorithms are commonly used

to dictate access to resources to packets or flows based on a specific set of policies.

These policies are framed to achieve an overall system objective. As an example,

quality-of-service (QoS) provisioning to flows as requested by the end users is one

such system objective for which service differentiation is employed. Two popular

QoS mechanisms exist in the Internet, the IntServ and the DiffServ architecture.

The Intserv architecture aims to provide hard guarantees as requested by the user

and involves resource allocation at each intermediate node via some signalling

mechanism (e.g. RSVP [BZB+]). The DiffServ architecture does not provide

hard guarantees; instead it defines various service classes, with each class offering

varying degrees of preferential treatment to packets or flows mapped to it. The

mapping to a specific service class is done based on the importance or “priority”

of the packet. For example, in DiffServ, the DiffServ Code Point (DSCP) present

in the IP TOS field of the packet is used to map the packet to a specific class (EF,
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AF, etc).

Conventionally, the priority of the packet or flow depends primarily on the

user-assigned priority. The user-assigned priority, as the name implies, is assigned

by the user to indicate the level of service that the user expects to receive from

the network. The level of service requested by the user (user QoS) could depend

on the type of application that generates the traffic flow (real-time, non real-time,

etc.). Some times, monetary considerations could also influence the priority of the

packet. The traffic generated by users willing to pay a higher monetary rate per bit

of traffic injected into the network (dollars per bit) could be given higher priority

relative to the traffic generated by the users in the lower end of the rate-per-bit

bracket. The goal of the network provider is usually to design algorithms so as

to maximize network revenue, which would mean delivering the “promised” QoS.

The wired networks can tolerate some degree of network utilization inefficiency

in order to satisfy higher priority users (e.g. dropping lower priority packets in

order to accommodate higher priority users). In other words, the cost of inefficient

network utilization in wired networks is likely to be miniscule when compared to

the overall revenue generated.

While this model of priority assignment is very suitable for wired networks, it

may not be suitable for resource-constrained systems such as MHWNs. The cost

associated with inefficiencies in network utilization is no longer trivial. We ar-

gue that in addition to user-assigned priority, the amount of resources “invested”

by the network (network investment) into packets or flows should be factored in

the process of determining the importance or priority of those respective packets

or flows. The amount of investment into a flow could also be used for pricing

decisions. To this end, we propose the investment function which is a means of
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combining and quantifying the various investments (network, user-assigned prior-

ity or investment, etc.) made into a packet.

The following example scenarios illustrate the need for an investment function

that combines these forms of investment. Assume three descending levels of service

quality expectation (and hence relative user investment) for flows: Blue, Red and

Yellow. Suppose at a given node we need to drop a packet from a given set of

packets because the node buffers are full. Which of the following packets would

be the right ones to drop?

1. A Blue packet that has traversed 1 hop or a yellow one that has traversed 5

hops?

2. A Blue packet that has traversed 2 hops under relatively congestion-free con-

ditions or a Red packet that has traversed 2 hops under severely congested

conditions, with numerous re-transmissions?

3. A 128-byte Blue packet that has traversed 4 hops or a 1024-byte Red packet

that has traversed 6 hops?

From an efficient network utilization perspective, it seems like the Blue packet

should be dropped in case 1, but the difference in user investment between Blue

service and Yellow service might override that conclusion. Similarly, in the other

cases the answer depends on the relative values placed on the different investment

factors.

2.2 Investment Function

In this section we introduce the concept of investment function and illustrate

its flexibility. Part of this work appeared in [MP06]. We begin by identifying the
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following dimensions of investment that can be made in network traffic, a list that

illustrates the flexibility of the investment function concept, but is by no means

exhaustive:

• Packet Length: larger packets require larger investment (in both bandwidth,

power and buffers) than smaller packets

• Hops Traversed : With each successful packet transmission (hop), the cu-

mulative network resources (bandwidth, power, etc.) invested in the packet

increases

• Congestion: It can be argued that more has been invested in a packet that

has been transmitted by a congested node than in one transmitted in a

relatively congestion-free environment

• User Investment : The customer or user will have invested monetarily in

the traffic, with greater relative investment tied to greater service quality

expectations.

2.2.1 Sample Investment Function

This diversity of investments in network traffic can be unified by means of an

investment function, which can be considered to represent the global value of the

packet or packet flow. Here we introduce one possible investment function. Each

packet carries in its header a Beginning Investment (IB) value that is based on

the packet size and the relative user investment, and a Network Investment (iN)

factor that reflects number of hops already traversed and network conditions at

the upstream nodes. The Current Investment (IC) value of a packet arriving at a

node is computed as follows:
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IC = IB.iN (2.1)

The Current Investment (IC) is used to make decisions about packet handling, for

example, which packets are to be discarded (if necessary) at this node. Details of

the investment function computations follow.

The network provider assigns a User Investment (iU) factor for each service

quality level, such that the separation between the iU values reflect the extent of

service differentiation desired. At the source node, the Beginning Investment (IB)

value is computed based on packet size S:

IB = S.iU (2.2)

Also at the source, the Network Investment (iN) factor is set to some initial

value γ where 0 < γ ≤ 1 and the Current Investment (IC) at the source node is

computed as:

IC = IB.γ (2.3)

At each node (including the source node), after computing and storing the

Current Investment (IC) value of the packet, the Network Investment (iN) factor

is updated:

iN = iN + (1−BA) (2.4)

where BA is the normalized available bandwidth as seen by this node. Fi-

nally, embed the Beginning Investment (IB) value and Network Investment (iN)

factor into the data packet before transmission to the next node. Note that the
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investment function is generally a time-varying quantity, and its computation

constitutes a cross-layer exercise.

Along with the investment function, we introduce a new, related network per-

formance measure: investment throughput, defined as investment units delivered

to all destinations per unit time. For example, if we use a simpler investment

function that is simply hop count times packet size, the investment throughput

reduces to network throughput expressed in units of hops-bits per second. Specifi-

cally, the delivery rate of each flow (in bits per second) would be multiplied by the

number of hops traversed by that flow, and the resulting values would be summed

over all flows. Investment throughput in this simple example is identical to the

one-hop throughput in [LBD+01] and similar to the bits-meter per second unit

proposed in [GK00], but the concept of investment throughput allows us to gen-

eralize the metric. We also introduce an auxiliary metric: wasted investment rate,

the investment rate of packets that are dropped before reaching their destination.

This is calculated in the same manner as investment throughput, but for packets

that are dropped.

2.3 Sample Network Objective

The flexibility offered by the investment function can be exploited in vari-

ous ways. For example, the investment function can be used by packet handling

applications to control packet access to node buffers (packet dropping) during

congestion, with the goal of minimizing wasted network investment and improv-

ing bandwidth parity among flows with different hop counts. Or, the investment

function could be used to control access to bandwidth through priority service,

control of backoff parameters in wireless network protocols such as 802.11 DCF,
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etc. Similarly, average flow investment could be used for flow-level control deci-

sions.

We already provided a sampling of flow-related issues in MHWNs in section

1.5. In particular, we focus here on the unfairness exhibited by the MHWN

towards longer-hop flows. The problem of poor resource distribution for longer

hop flows in MHWNs is well-documented [XS01,Li05,SHS04,RDS+07]. Our aim

is to demonstrate the effectiveness of the investment function as a tool to achieve

the following sample objectives:

• improve flow fairness across multiple hops, and

• increase network utilization efficiency by reducing wasted investment.

2.3.1 Sample Service Differentiation Algorithm

In scenarios where flows of variable hop counts and variable user-priorities

compete for resources (such as in a MHWN), it seems reasonable that access to

the shared resource (bandwidth) should be provided by considering all flows or

packets that compete for the resource. The contention can emanate from within

a given node (intra-node contention), or from outside a given node (inter-node

contention). We will target our algorithm to consider only intra-node contention.

Tackling inter-node contention is a complicated task, and is beyond the scope of

this proof-of-concept study. We identify it as potential for future work.

To improve flow fairness under intra-node contention, it seems logical that

service be accorded to a packet based on accumulated investment of a packet

relative to other packets currently in the node, rather than strictly user-assigned

priority to the packet. By considering accumulated investment, algorithms can

be designed to improve multi-hop flow fairness and the efficieny of scarce wireless
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network resource utilization. We consider a priority-based queuing scheme, with

3 service categories (3LPQ) namely lowest, middle, and highest priority. With

conventional priority, one would perform static priority mapping (SPM) under

which the priority of a packet does not change as it progresses through the network

i.e. the iU value determines which of the 3 categories the packet of a given flow gets

mapped to. In contrast, the investment function allows us to perform dynamic

priority mapping (DPM) at each hop, so that treatment given to the current

packet is relative to investment carried by packets currently in the node i.e., the

current investment value IC carried in the packet determines the service category

that the packet gets mapped to. A relatively larger separation between user-

priorities (iU factors) can be used to approach absolute priority, thus achieving

controllable priority.

The DPM scheme used in our study is described as follows: A running mean

of the IC values seen so far (µn) is maintained at each node (suffix n denotes

nth packet arrival), along with the standard deviation (σn). Both are maintained

as running variables, updated with the arrival of the IC value of the nth packet

(IC−n).

µn = ωµn−1 + (1− ω)IC−n (2.5)

σn =
√
ω.µ2

n−1 + (1− ω)(IC−n − µn)2 (2.6)

The value for the weight ω is chosen as 0.99 to place a lot of emphasis on

the “past” relative to the emphasis on the current investment value. User-defined

priorities (when desired) are incorporated into IC values through iU values. Dy-

namic mapping of an incoming packet (nth packet) with current investment IC−n

25



is performed as follows (see Fig.2.1):

Lowest Priority: Ic−n < µn − σn

Middle Priority: µn − σn ≤ Ic−n ≤ µn + σn

Highest Priority: Ic−n > µn + σn

Figure 2.1. Dynamic Priority Mapping in a 3-Level Priority Queue

2.4 Performance Evaluation

In this section, we use simulations to demonstrate the potential utility of the

investment function concept introduced in section 2.2, and illustrate its character-

istics. For our simulation studies, we simplified the previous investment function

as follows: iN here is simply the number of hops traversed (regardless of conges-

tion), and packet size S is the same for all packets in a given simulation. We use

the sample algorithm introduced in section 2.3.1 to accomplish service differenti-

ation of flows using the investment function.

Keeping in mind the sample objectives from section 2.3.1, we conducted each

simulation by choosing one or more options from the following, which illustrate

the flexibility of the investment function and its application:
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1. Queuing disciplines: simple FIFO or 3-level non-preemptive priority (3LPQ),

2. Packet dropping: Tail-Drop packet dropping (TDD) scheme (drop arriving

packets for which there is no buffer space) or Investment-Based Dropping

(IBD) scheme, in which the packet to be dropped when a queue would

overflow is the packet with the smallest investment value, and

3. User Priority (UP): all equal or differentiated.

Based on the above options, we broadly divide the simulations into two cate-

gories:

1. Constant User-investment simulations (CU), and

2. Variable User investment or user-defined priority simulations (V U).

Under CU , IC is directly proportional to hop count, due to equal packet sizes

and equal iU values across all flows. The baseline case for CU experiment was

FIFO+TDD (or simply TDD), and the results were compared against FIFO+

IBD (or simply, IBD) and 3LPQ+DPM+IBD. The results were quite identical

between 3LPQ+DPM+IBD and 3LPQ+DPM+TDD. Under V U , the IC value

is directly proportional to the product of hop count and iU (equal packet sizes).

The baseline case in V U is 3LPQ+SPM +TDD, and the results were compared

to 3LPQ+DPM+IBD. The idea behind V U is to illustrate that the investment

function can be used to balance the objective of providing different service types

to the users while utilizing resources efficiently and fairly. Separation between

iU values will determine the extent of service differentiation. This flexibility, we

believe, is one of the more attractive features of the investment function.
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2.4.1 Simulation Scenario

All simulations were conducted using the ns-2 simulator, and both TCP and

UDP traffic patterns were used. The transmission range (TR) of each antenna was

approximately 250 meters, while the carrier-sense range (CR) was approximately

550 meters. We had IEEE 802.11 DCF MAC running on these nodes, with a

maximum data rate of 1 Mb/s. AODV was the routing protocol used, while

TCP-Tahoe was the flavor of TCP used. To minimize routing overhead, mobility

in the nodes was disabled. The total queue size (across all priorities) was fixed

to 30 packets in all cases (including FIFO). The 802.11 RTS threshold was set

to 400 bytes. In all of our V U simulations, the iU values for lower, middle and

highest priorities were set as 1, 2 and 3 respectively. The flows were randomly

assigned one of the three iU values.

We used a grid topology (Fig.2.2) consisting of 16 nodes arranged in a 4x4

grid. Adjacent nodes are separated by 185m (within transmission range), while

diagonally opposite nodes are separated by 265m (not within transmission range).

The maximum possible hop count in this topology is 6. For each simulation, we

chose source-destination (SD) pairs randomly, while enforcing the requirement

that there be exactly 12 1-hop flows, 6 2-hop flows, 4 3-hop flows, 3 4-hop flows,

3 5-hop flows, and 2 6-hop flows (total of 30 flows). This was done to ensure

that the total network offered load by flows belonging to various hop counts was

equal (approximately so for 5-hop flows). To improve the accuracy of our results,

we conducted 40 simulation runs for each experiment, with (different) random SD

pairs for each run. The duration of each simulation run was 400 seconds.

The performance metrics are Investment Throughput, Wasted Throughput,

Mean end-end flow delay, Mean flow throughput (TCP only), and Mean flow
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Figure 2.2. 4x4 Grid Topology

packet delivery ratio (UDP only). To assess fairness across multiple hops for the

throughput and investment throughput metrics, we make use of Jain’s fairness

index (JFI) [JCH84]. The JFI for a metric X with values {x1, x2, ..., xn} is

computed as:

JFI(x1, x2, ..., xn) =

(
n∑
i=0

xi)
2

n
n∑
i=0

x2
i

(2.7)

The JFI is bounded in the range [ 1
n
, 1], with higher values indicating higher

degree of fairness. For any other of our other performance metrics X, the variance

of X, in conjunction with an absolute performance measure such as the mean of

X, is taken as the fairness measure. The mean value is required for correct

interpretation of the variance. For example, for identical absolute measures, a

reduction in variance implies increased fairness.

29



2.4.2 UDP Simulations

The packet sizes are fixed at 128 bytes (hence the 802.11 RTS/CTS is disabled),

and the mean packet inter-arrival time is set as 0.15 seconds to generate a total

network load of 204.8 kb/s. Fig. 2.3a and 2.3b show the results for packet delivery

ratio (pdr) and mean flow delay, respectively, under the various schemes in CU

(no user-defined priorities). Please note that there is no SPM under 3LPQ in

CU ; only DPM is performed, which is totally transparent to the user. The

3PLQ + DPM scheme was included to illustrate the flexibility provided by the

investment function to network providers for packet handling applications, in a

manner that is totally transparent to the user.

When compared to the TDD scheme, Figures 2.3a and 2.3b show that the

IBD and 3LPQ schemes significantly improve pdr and delay fairness performance

across various flow hop counts. This is summarized in Table 2.1 where, for both

pdr and delay, the variance across hop count is much smaller using the investment

function (IBD, 3LPQ) compared to conventional TDD, with very little change

in mean values. Flows with higher hop counts benefit, while flows with lower hop

counts suffer a mild penalty. Hence, one can safely conclude that the investment

function indeed improves multi-hop fairness for the UDP − CU scenario.

Table 2.1. Mean and Variance of pdr and Delay for UDP − CU
Flow Packet Delivery Ratio Flow Mean Packet Delay
TDD IBD 3LPQ TDD IBD 3LPQ

σ2 0.0063 0.0031 0.0011 0.1215 0.0311 0.0224
mean 0.8412 0.8545 0.8510 0.5432 0.5333 0.5225

Table 2.2 shows the investment throughput and wasted investment across the

three schemes. It can be seen that both IBD and 3LPQ marginally improve in-

vestment throughput, while simultaneously decreasing wasted investment. From
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(a) pdr (b) mean delay

Figure 2.3. pdr and mean delay plots for UDP-CU

the high pdr values, one can conclude that the network has been loaded just

beyond saturation. We achieved larger improvements in network investment

throughput at even higher loads, but do not present results here.

Table 2.2. UDP − CU : Network Investment
Investment(Hops-kb/s) FIFO + TDD FIFO + IBD 3LPQ+ DPM

Throughput 380.9 387.1 390.7
Wasted 26.6 15.4 12.7

For the V U case (user-defined priorities), we compare SPM + TDD (no in-

vestment function) with DPM + IBD (using the investment function). Fig.2.4a

and 2.4b compare pdr and mean delay performance across flows with different

hop counts. Again, a significant improvement in hop-count fairness is evident.

Table 2.3 shows the investment throughput and wasted investment across the two

schemes for various priorities. The increase in investment throughput is around

5%, while the decrease in wastage is around 50%. Fig.2.5 compares mean delay

performance of the two schemes under V U across priorities, showing how the in-

vestment function can “soften” the distinction between priorities. This effect is

also shown in Table 2.3 (less variance in investment throughput) and Table 2.4, in
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which DPM has lower variance across priorities. If larger separation is used for

user-defined priorities, we expect to see greater distinction between priorities (con-

trollable priorities). Note that increasing the separation between user-investment

values (user-priorities) does not impact the SPM scheme at all.

(a) pdr (b) mean delay

Figure 2.4. pdr and mean delay plots for UDP-VU

Table 2.3. UDP − V U : Network Investment Results
Priority Investment Throughput Wasted Investment

SPM DPM SPM DPM
Low 10.37 12.93 1.76 0.49

Middle 12.80 12.69 0.54 0.37
High 13.98 13.36 0.19 0.38

Overall 374.34 391.16 25.09 12.24

As with UDP − CU , one also can see from Table 2.4 that the investment

function (DPM) is very effective in providing significant improvement in delay

and pdr multi-hop fairness, when compared to SPM . The variances of pdr and

delay values across various hop counts when using DPM are much lower compared

to SPM , while offering better mean delay and pdr performance. We conclude that

DPM offers better overall performance, while at the same time offering significant

improvements in multi-hop flow fairness.
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Figure 2.5. UDP − V U : Mean Delay Vs. Priority

Table 2.4. UDP − V U : Fairness Results
Metric SPM DPM

Pdr vs. Hop count
σ2 0.0057 0.0009

mean 0.8333 0.8575

E2e delay vs. Hop count
σ2 0.0930 0.0236

mean 0.5700 0.4733

E2e delay vs. Priority
σ2 0.0882 0.0016

mean 0.4167 0.4367
Inv. Throughput vs. Priority (JFI) 0.9855 0.9995

2.4.3 TCP Simulations

The packet size for TCP simulation was set to 1024 bytes (RTS/CTS enabled),

and the TCP window size was set to 32 kB. Ack packets inherited the investment

value of forward packets. Under CU , the total investment throughput values (in

hops-kb/s) for TDD, IDB and 3LPQ are 910, 886, and 891 respectively, while the

corresponding wasted investment values are 6.09, 5.86 and 5.17 respectively. In

this case, the investment function has essentially no effect in terms of investment
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throughput, nor does investment-based dropping substantially reduce the wasted

investment, but that wasted investment is small to begin with. We suspect that

TCP dynamics (throttling flows that have packet losses, hence minimizing those

losses) play a role in keeping wastage to a minimum; however, the fairness proper-

ties (throughput and delay) of TCP flows across flows of various hops are greatly

improved, as discussed below.

Table 2.5 shows the mean flow throughput across various flow hop counts un-

der CU , and Fig.2.6 shows the mean delay across hop count. For delay, TDD

and IBD schemes perform quite similarly, but the 3LPQ scheme performs much

better by reducing the mean delay of the higher hop counts. However, delay val-

ues beyond 3 hops are very high for all schemes because these flows are starved

for bandwidth. This asymmetric nature of wireless links and its undesirable in-

teraction with TCP has been studied by A.Rao et al. [RS05]. Our investigation of

this problem revealed that the TCP-ACKpackets (reverse direction) at the MAC

layer were starved for transmission opportunity due to the exposed node prob-

lem [BDSZ94], which resulted in poor throughput performance for higher hop

count TCP flows.

For illustration, consider the nodes in the first row of the grid topology (let’s

name them 1, 2, 3 and 4 for convenience). Suppose there are two simultaneous

TCP flows originating from node 1 (flow 1: node 1 to node 2; flow 2: node 1

to node 4). When node 1 is transmitting flow 1 packets, under a 802.11 MAC,

node 3 does not participate in any transmission or recepition activity because

node 3 is within carrier-sense range of node 1. However, node 4 is unaware of

the transmission from node 1, and the resultant inability of node 3 to respond.

This is the exposed node problem in 802.11 networks. Thus, any attempts from

34



node 4 to send a TCP-ACK to node 3 (final destination to node 1), fails with

high probability. This is because the rate of flow 1 is much higher than the rate

of flow 2 (inherent multi-hop wireless characteristic), and thus the probability of

a flow 1 packet occupying the channel is much higher than the probability of a

flow 2 (and thus the TCP-ACK of flow 2) packet occupying the channel. This

leads to multiple timeouts in the TCP connection of flow 2, eventually shutting

down flow 2. This is similar to the phenomenon noted in Xu et. al. in [XS01].

This relates to the inter-node contention that we referred to in Section 2.3.1, and

our algorithm is not capable of tackling this problem. A MAC layer solution is

needed to alleviate this problem, and we identify this as scope for future work.

Table 2.5. Throughput for TCP − CU
Flow Hop Count Flow Throughput (Kb/s)

TDD IBD 3LPQ
1 65.2 62.8 53.7
2 7.43 9.81 13.8
3 4.15 2.93 6.25
4 0.18 1.58 3.07
5 0.08 0.67 1.04
6 0.69 0.08 0.14

The dynamic mapping scheme reduces the starvation problem to some extent,

as evident from flow throughput values in Table 2.5. Though the throughput

gains for higher hop-count flows may not seem substantial in an absolute sense,

they are still quite substantial in a relative sense (improvement factors: around

2 for 3-hop flows, and around 17 for 4-hop flows). From Table 2.6, it can be

seen that both flow throughputs and investment throughput in schemes using the

investment function experience moderate (IBD) to significant (3LPQ) increases

in fairness (JFI) when compared to the TDD scheme. The IBD scheme is

expected to only improve network utilization efficiency, and hence we do not see
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Figure 2.6. TCP : Mean Delay Vs. Hop Count

significant improvements in fairness relative to TDD. For delay, the variance and

mean delay values are significantly reduced (almost 70% reduction in variance

and 45% reduction in mean delay) in the 3LPQ scheme when compared to the

TDD scheme. A more sophisticated investment function that captures dynamics

of TCP may lead to a higher degree of fairness, and a much better throughput

performance.

Table 2.6. TCP − CU : Fairness Results
Metric TDD IBD 3LPQ

Flow throughput vs. Hops (JFI) 0.2329 0.2495 0.3243
Inv. Throughput vs. Hops (JFI) 0.3430 0.3843 0.5591

Mean delay vs. Hops
σ2 2.3237 2.0087 0.6903

mean 2.1383 2.1517 1.3817

For V U simulations, as with UDP , we compared performance of 3LPQ +

SPM + TDD (no investment function) and 3LPQ + DPM + IBD (investment

function). The total investment throughput values (in hops-kb/s) for the SPM

and DPM schemes are 775.6 and 780.2 respectively, while the corresponding
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wasted investment values are 7.91 and 6.01 respectively. Again, these gains are

modest at best. Table 2.7 shows the throughput performance of both schemes,

while Fig.2.7 shows the delay performance under both schemes. Table 2.8 sum-

marizes the hop-count fairness improvements evident from Table 2.7 and Fig. 2.7.

Table 2.8 shows a modest improvement in throughput fairness across hop count

with DPM compared to SPM , with a more significant improvement in delay

fairness. As seen from Figures 2.8a and 2.8b and Table 2.8, DPM again shows

significant softening of the distinction between priorities. As with UDP , we ar-

gue that the degree of service differentiation under DPM can be controlled by

appropriate choice of iU values.

Table 2.7. Throughput for TCP − V U
Flow Hop Count Flow Throughput (Kb/s)

SPM DPM
1 44.99 37.66
2 11.83 16.04
3 9.87 8.73
4 0.98 2.01
5 0.24 2.19
6 0.06 0.36

Table 2.8. TCP − V U : Fairness Results
Metric SPM DPM

Flow throughput vs. Hops (JFI) 0.3403 0.4248
Inv. Throughput vs. Hops (JFI) 0.3403 0.4248

Mean delay vs. Hops
σ2 3.1730 0.4252

mean 2.2217 1.1517
Inv. Throughput vs. Priority (JFI) 0.5880 0.9863

Mean delay vs. Priority
σ2 0.0336 0.0013

mean 0.6410 0.6002
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Figure 2.7. TCP : Mean Delay Vs. Hop Count

(a) invst. throughput (b) mean delay

Figure 2.8. TCP − V U : Priority Results

2.5 Optimality of Results

While our heuristics-based definition of the investment function and service

differentiation algorithm seemed to achieve the desired objectives, the improve-

ments are probably far from optimal. In fact, we do not even know the “extent”

of the sub-optimality of our results. Only if we know the “optimal” values of

our network objectives, we can design algorithms to perform in a manner so as

to achieve optimal or near-optimal network objectives. Frequently, such network

design problems are cast as flow-optimization problems to obtain optimal design
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parameters. The theory and applications of network flow optimization is very

rich in wired networks. Sophisticated algorithms and techniques have been de-

veloped to solve specific flow problems in wired networks (e.g. Ford-Fulkerson

algorthim [LD56] to solve MAXFLOW ). Unfortunately, network flow problems

arising in MHWNs are difficult to solve by direct application or extension of tech-

niques from the wired domain due to differences in the concept of a link in wired

vs. wireless networks. In both domains, each link represents a transmission pipe

to the neighbor it is connected to, and the pipe’s capacity is constrained and

known a priori. In wired networks, the residual capacity (available bandwidth) of

the link is independent of the neighbor transmissions due to the dedicated nature

of the pipe. On the other hand, in wireless networks, since nodes use a shared

medium for transmission, the link is no longer dedicated; it can be viewed as a

transmission pipe with variable residual capacity that depends on neighbor nodes’

transmissions, i.e., interference. Thus, a constrained optimization approach is at-

tractive in these cases.

In a constrained optimization approach, an objective function that needs to

be optimized is specified, followed by a list of constraints under which an optimal

solution needs to be found. The optimization can either be a Linear Programming

(LP) or Non-Linear Programming (NLP) problem based on the objective function

and the constraints of the problem. The constraints consists of both problem-

specific constraints, and network-imposed constraints. The problem-specific con-

straints are related to the problem at hand that needs to be optimized, and could

vary based on the specific problem. On the other hand, the network-imposed

constraints are those that are imposed by the specific network for which the flow

optimization is being done. The network-imposed constraints are fundamental
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and inherent to the given network, and do not usually change for multiple opti-

mization problems formulated for the given network.

Formulating the practical problem at hand into an optimization problem is

an art in itself. Formulating an equivalent optimization problem for the dual-

objective problem from section 2.3 is quite challenging and requires a lot of effort.

In this dissertation, we do not strive for such a formulation; instead we focus on

a particular difficulty associated with solving all flow problems in MHWNs, and

develop techniques to solve it. More specifically, we focus on the problem of for-

mulating the network-imposed constraints for MHWNs. Through an example, we

will show that the network-imposed constraints are rather trivial to be formulated

for the wired networks, while surprisingly difficult for MHWNs. The difficulty is

due to the adjacent-node interference problem caused by the shared nature of the

wireless medium.

Consider the following motivating example: we consider the simple problem of

finding the maximum flow between a given source-destination in a given network

(MAXFLOW ). We will first formulate the problem for a wired network scenario

(formulation adapted from [Lue84]), followed by a wireless networking (MHWN)

scenario, illustrating the key differences and difficulties in the process.

Given n nodes in a multi-hop wired network, we wish to find the maximal

value of flow rate f between a given source (node r) and destination (node s) in

the network. The flow on the link uv is given as xuv. The specific nature of the

problem imposes the flow-conservation constraint (problem-specific constraint)

that each node must obey: the net flow outflow from the source be exactly f ,

and the net flow inflow into the destination be exactly f , while the net flow

into (from) the other nodes be exactly zero. The network configuration imposes
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the link capacity constraints (network-specific constraint) that the flow on each

transmission link xuv cannot exceed the total link capacity (rate) cuv. Note that

cuv = 0 if nodes u and v do not have a link between them.

Maximize f

Subject to

1. Flow balance equations

n∑
j=1
j 6=r

xrj −
n∑
j=1
j 6=r

xjr − f = 0 (source)

n∑
j=1
j 6=i

xij −
n∑
j=1
j 6=i

xji = 0 i = 1, 2, .., n; i 6= r, s

n∑
j=1
j 6=s

xsj −
n∑
j=1
j 6=s

xjs + f = 0 (sink)

2. Capacity constraints

0 ≤ xij ≤ cij, ∀i, j = 1, 2, .., n

Figure 2.9. LP formulation for MAXFLOW between source r and
destination s in a wired network

The MAXFLOW formulation for a MHWN is quite similar to the formulation

for wired networks shown in Fig.2.9, with the exception of the capacity constraints.

Links between various nodes no longer have “exclusive” capacities; instead the to-

tal channel capacity (rate) is shared among multiple nodes (transceivers). In

particular, for any node u, if C is the capacity (maximum data rate) of the chan-

nel used by the transceiver of u, then the following capacity constraint must be

satisfied:
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∑
∀v∈NC

u

xuv +
∑
∀v∈NC

u

xvu + ξu ≤ C, 0 ≤ xuv, ξu ≤ C (2.8)

HereNC
u is the set of “communicating neighbors” of u. All nodes that lie within

the transmission range of a given node are called the communicating neighbors of

that node (nodes within TR of u), since a node can have communication links only

with nodes that are within its transmission range. The first sum is the flow out

of node u and the second is the flow into node u; these are considered separately

due to the shared medium for transmit and receive. The value ξu is the effective

“interference” sensed by node u. The quantity ξu arises because of the shared

nature of the wireless medium, and this is precisely what we have been referring

to as adjacent-node interference. For analytical purposes, first we need to build

an “interference model” that captures the interference relationship between the

nodes. Under a given interference model, ξu depends on a variety of factors, chief

of them being the actual transmission rates of the nodes in the network (xuv) and

the scheduling algorithm used to provide channel access to the various nodes. The

scheduling algorithm for a given interference model also determines whether ξu

can be expressed in polynomial form using the xuv values. In the next chapter, we

develop the basic tools necessary to formulate the capacity constraints in MHWNs.

2.6 Summary

One of the major contributions of this dissertation is the introduction of a

new concept in networking called the investment function, the development of

which will, we believe, aid in more effective service differentiation procedures to

tackle the existing problems in MHWNs. Through a proof-of-concept study, we
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formulated a specific definition of the investment function, in addition to a simple,

customized service differentiation algorithm to achieve sample network objective

of improving multi-hop fairness in multi-hop wireless networks, in addition to

improving network utilization efficiency. Through our simulations, we demon-

strated two of the many ways that the investment function can be used for better

network performance. Our TCP and UDP simulation results with a grid topol-

ogy indicate that the investment function can provide substantial improvement

in throughput and delay fairness properties across multiple hops in addition to

substantial reduction in network wastage for UDP flows. We have also argued how

the investment-based approach can provide controllable-differentiation priority.

We noted that our results could be far from optimal, and to design optimal

algorithms, we need to obtain optimal design parameters. Often, these kinds of

problems are solved by first formulating these problems as network flow optimiza-

tion or simply network flow problems, and then solving them using well-known

optimization techniques. Unfortunately, solving flow problems in MHWNs is very

hard due to the complexity in modeling and computing the adjacent-node inter-

ference value. The rest of this dissertation is focused on studying and developing

techniques and methods to solve network flow problems in MHWNs.
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Chapter 3

Capacity Constraints in MHWNs

3.1 Interference Modeling in MHWNs

To formulate the capacity constraints, we need to model and compute inter-

ference. To this end, we first represent the MHWN using a graph model. Then,

under the assumption of a specific scheduling algorithm, we compute the inter-

ference using graph theoretic tools, and then formulate the capacity constraints.

Assume that we are given a MHWN of n nodes (1, 2, .., n), and their respective

position coordinates in two dimensional space. Let d(u, v) represent the euclidean

distance between any two nodes u and v. We make the following assumptions

while constructing our mathematical model that represents the interference and

connectivity relationships between the nodes in the network:

1. The nodes are considered to be stationary

2. All nodes use the same frequency and bandwidth for transmission (hence

use TDMA for channel access)

3. Presence of bi-directional wireless links between nodes that are neighbors
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4. Homogenous antenna properties i.e., all node antennas have same TR and

CR values

5. Fluid-flow model for node transmissions

6. Perfect (collision-free) scheduling for node transmissions

7. Transmitter (Tx) model of interference (described below)

The Tx-model was first introduced in [YPK03] to analyze the capacity of

random ad hoc networks. In the Tx-model, a transmission from a node u is

succesfully received by all of its neighbors within a distance of TR if and only if

for any other transmitter v, d(u, v) > (1+δ)(TR+CR), where δ is the guard band.

In our work, we shall assume that δ = 0. Under the Tx-model, two nodes that lie

within a distance of TR + CR from one another can be considered to ”interfere”

with each other’s transmission.

The intuition behind this model is that one could consider two transmitting

nodes u and v as interfering with one another if the transmission of one node

interferes directly with the other (nodes within a distance of CR of one another)

or indirectly (one or more receivers of one node within CR of the other node).

Thus, we coin the term interference range (IR = TR+CR) to denote the maximum

distance up to which a transmitting node’s ”impact” can be felt. In other words,

it is the distance of separation between two nodes that will guarantee that two

nodes can transmit simultaneously regardless of placement of receivers. All nodes

that lie within interference range of a given node are interfering neighbors of that

node.

It must be noted that the Tx-model is quite a conservative model. The

Tx-model would identify two nodes u and v as interfering with one another if
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CR ≤ d(u, v) ≤ IR, even if u and v do not have any receivers (within TR of

the transmitting nodes) located in the region of intersection of circles represent-

ing their respective interference ranges (common interference region). Moreover,

the Tx-model would consider simultaneous transmissions by u and v as interfer-

ing with one another even if respective receivers are located outside the common

interference region. Figure 3.1 gives an example which shows the conservative

property of the Tx-model. In this example, four nodes A, B, C, and D are con-

sidered, with CR ≤ d(A,B) ≤ IR, and d(A,D), d(B,C) < TR. Based on our

definitions of transmission range and carrier-sense range, the transmission from A

to D will not interfere with the transmission from B to C, and can occur simulta-

neously. However, the Tx-model would identify A and B as interfering with one

another, and prohibit these nodes from transmitting simultaneously.

Figure 3.1. Example showing the conservative nature of the Tx-
model of interference

A more realistic model is the protocol model, which was introduced in [GK00].

Under the protocol model, if node u transmits to node v, the following two con-

ditions have to be satisfied for successful transmission:

1. d(u, v) ≤ TR
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2. No other node w is transmitting simultaneously such that d(w, v) ≤ CR

Though the protocol model is more realistic than the Tx-model, the Tx-model

has its own merits. The Tx-model is a node-level interference model, whereas

the protocol model is a link-level interference model. That is, in the Tx-model,

the interference can be considered to occur between two nodes themselves, as

opposed to the protocol model where the interference needs to be considererd

as occuring between two links. This factor becomes important in the context of

graph-theoretic modeling of interference, where the size of the graph depends on

the number of interfering entities. As the number of links in a network of n nodes

is O(n2), a node-level model requires a significantly less computational resources

when compared to a link-level model. Moreover, as we will see later, the node-level

model enables us to use a special type of graph called the Unit Disk Graph (UDG)

for modeling the interference, which has certain advantages when compared to a

general graph model (details later).

As one can see, both the the Tx-model and the protocol models are rather sim-

plistic (binary on-off interference, based on distance). The most accurate model

for communication would be the Physical Model, also introduced in [GK00]. Un-

der the physical model, for the transmission between u and v to be successful,

the signal-to-noise ratio measured at v due to the transmission from u (SNRuv)

should exceed some threshold SNRth (already discussed in section 1.2). Though

the physical model is more realistic than the Tx-model, we use the Tx-model

because it facilitates analytical tractability when using graph-theoretic modeling.

The TDMA mode of channel access was assumed only for ease of exposition.

Under TDMA mode of access, the resource under contention is time-slots. The

concepts we develop in this dissertation can be extended to other modes of channel
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access, where interference will be defined appropriately for the resource under

contention. For example, under FDMA, the various carrier frequencies used for

modulation are the resources under contention.

3.2 Unit Disk Graph Model

We use the Unit Disk Graph (UDG) model to represent connectivity and

interference relatanship between the nodes. In a UDG G(V,E) with vertex set V

and edge set E, there is an edge uv between vertices u and v if and only if (iff )

the Euclidean distance between u and v , d(u, v), is less than or equal to 1:

E = {uv|d(u, v) ≤ 1 ∀u, v ∈ V }

From this definition, the UDG is a natural choice to represent the communication

and interference relationship between the nodes in a MHWN.

To capture the relationship between communicating neighbors of a graph, we

define the Communication UDG, G(V,EC), wherein all inter-nodal distances are

normalized with respect to TR. The vertex set V corresponds to the nodes in the

MHWN, and the edge set EC corresponds to the links between communicating

neighbors.

EC = {uv|d(u, v) ≤ TR,∀u, v ∈ V }

Similarly, we define the Interference UDG, G(V,EI), wherein all inter-nodal

distances are normalized with respect to IR. The vertex set V corresponds to

the nodes in the MHWN, and the edge set EI corresponds to the links between

interfering neighbors. Under the Tx-model, if two nodes in the interference UDG

share an edge (adjacent nodes), then they cannot transmit simultaneously.
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EI = {uv|d(u, v) ≤ IR,∀u, v ∈ V }

The notion of bidirectional links is implicit in the definition of these UDGs

i.e., if node u can communicate (interfere) with node v, then it also means that

node v can communicate (interfere) with node u.

For a given node u ∈ V , we can define the set of communicating neighbors

(NC
u ) and interfering neighbors (N I

u) as follows:

NC
u = {v|d(u, v) ≤ TR,∀v ∈ V, v 6= u}

N I
u = {v|d(u, v) ≤ IR, ∀v ∈ V, v 6= u}

The communication UDG can be used for several purposes in the MHWN, such

as determining connectivity, routing decisions, etc. The interference UDG can be

used for computing the interference sensed by the nodes in the MHWN. As an

example, consider a 6-node chain topology as shown in Fig.3.2. With TR = 250m

and CR = 250m (IR = 500m), the corresponding communication and interference

UDGs are shown in Fig.3.3 and Fig.3.4, respectively. Table 3.1 shows the set of

communicating and interfering neighbors for each node.

Figure 3.2. Chain Topology of 6 nodes. Inter-node distance
(d(u, v) = 200m)

Figure 3.3. Communication UDG for 6-node chain topology. TR =
250m
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Figure 3.4. Interference UDG for 6-node chain topology. IR =
500m.

Table 3.1. Communication neighbors and Interfering neighbors for
6-node chain topology

Node Communicating Interfering
Neighbors (NC) Neighbors (N I)

1 2 2, 3
2 1, 3 1, 3, 4
3 2, 4 1, 2, 4, 5
4 3, 5 2, 3, 5, 6
5 4, 6 3, 4, 6
6 5 4, 5

3.2.1 Limitations of UDG model

The UDG model is a node-level model, and very suitable for modeling the

Tx-model of communication. In some situations, it may be required to capture

the relationship between the links of neighboring nodes. Such situations may arise

if one is interested in analyzing a certain channel access protocol (e.g. 802.11),

where links may be in conflict due to protocol behavior, though the actual nodes

may not be (e.g. RTS-CTS handshake in 802.11). We accept this limitation in

our current work, but plan to address it in future work.

3.3 Scheduling and Interference Computation

In this subsection, we will look at some concepts that relate scheduling and

the interference experienced by the nodes in the network. We first define the rate

vector X = [{xuv}], where xuv is the total transmission rate from node u to node v,
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∀uv ∈ EC . To capture the traffic rate information by each node, we augment the

interference UDG G(V,EI) to a weighted interference UDG G(V,EI ,W ), where

W = [w1, w2, .., wn] is the vector of node weights. The node weight wu for a given

node u is computed by summing the total outgoing link rates of the node:

wu =
∑
∀v∈NC

u

xuv

For ease of exposition, we normalize the maximum channel data rate (wireless

bandwidth or capacity) achievable by the transceiver of each node to 1. Under

a time-slotted system, we can interpret each link (node) rate as the fraction of

time slots alloted for transmission for that particular link (node), in a given super-

frame or time-slot window of length γ time slots, where γ can be thought of as

the number of timeslots in one second for the given maximum channel data rate.

Given a rate vector X, we assume that there exists a scheduling algorithm that

computes a global schedule S which contains information about the nodes that

are permitted to transmit in any given time slot. The schedule S has the following

properties:

• each node is alloted transmission timeslots such that no two interfering nodes

transmit in the same timeslot

• the schedule is M slots in length (also called the span of the schedule)

• the fraction of time slots alloted to a given node in the span of M slots is

at least as high as the respective rate requirements of that node

A schedule S is feasible if and only if M ≤ γ. Given a feasible schedule S, the

same transmission order is repeated periodically, with a period of γ slots.
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From the Tx-model of interference, two nodes interfere with one another if

they cannot transmit simultaneously. Since we assume a CSMA/CA model of

channel access, a given node cannot receive and transmit simultaneously. Thus

the total interference sensed by a given node u, represented as eu, may also of

consist traffic intended for u (i.e. in reference to (2.8) eu =
∑
∀v∈NC

u

xvu + ξu). For a

time-slotted system, the interference value e′u = γ.eu, expressed as the number of

interfering time slots, is computed by counting the number of time slots in S in

which at least one interfering neighbor of u is scheduled. If I(u, i) is an indicator

variable which has a value of 1 if any node v ∈ N I
u is scheduled in time-slot i of S

(0 otherwise), then:

e′u =
M∑
i=1

I(u, i) (3.1)

Thus, the extent of interference experienced by a given node depends on the

following:

1. network topology

2. actual traffic generated (transmission rate vectorX) by the interfering neigh-

bors

3. span M of the schedule, which depends on the scheduling algorithm used

The span M of the schedule (and thus the interference values) depends on the

scheduling algorithm used. An optimal scheduling scheme returns the minimal

value of M , leading to the minimal value of interference as experienced by a

given node. This could potentially increase per node throughput, thus maximizing

network throughput performance. It can be argued that an assumption of optimal
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scheduling is essential to obtain benchmark or upper bound value on network

performance. It becomes more compelling to assume optimal scheduling since

we are focused on developing an optimization framework for MHWNs. Thus,

in this dissertation, we only consider optimal scheduling, though we provide an

illustration (later in this chapter) with a pessimistic scheduling algorithm as well.

Let us define the following capacity constraints :

∀u ∈ V :
∑
∀v∈NC

u

xuv + eu ≤ 1, 0 ≤ xuv, eu ≤ 1 (3.2)

∀u ∈ V :
∑
∀v∈NC

u

x′uv + e′u ≤ γ, 0 ≤ x′uv, e
′
u ≤ γ (3.3)

Two equivalent representations of the capacity constraints are given. The

set of capacity constraints in (3.2) are described in units of normalized bits per

second, while the set of constraints in (3.3) are given in units of time slots, where

x′uv = γ.xuv , e′u = γ.eu , w′u = γ.wu , and W ′ = γ.W .

For a given rate vector X, the knowledge of the span M of the schedule is suf-

ficient to assess feasibility of X. We will show that, equivalently, the knowledge

of the interference values (eu) is sufficient for feasibility assessment. In particular,

we will show that the capacity constraints are both necessary and sufficient con-

ditions to assess feasibility of X. Such feasibility assessments of some rate vector

X frequently arise in flow-related optimization problems in the MHWN domain,

and the capacity constraints are critical tools in that aspect. These capacity con-

straints are network-imposed constraints, and any rate vector X in flow-related

optimization in MHWNs must satisfy the network-imposed constraints, in addi-

tion to satisfying specific constraints imposed by the problem definition. Hence
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our interest in the capacity constraint formulation.

Lemma 1. For a given MHWN, a given rate vector X is schedulable or feasible

under a given scheduling algorithm if and only if ∀u ∈ V in the network, X

satisfies the capacity constraints.

Proof: Let us start by assuming that the scheduling algorithm provides a global

schedule S of length M time slots. Let us prove the sufficiency conditions by

contradiction. We assume that X satisfies (3.3), but is infeasible (M > γ). Out of

the total n nodes in the network, let us assume that exactly k nodes are scheduled

in timeslots [γ + 1, M ]. Without loss of generality, we number the k nodes as

1, 2, .., k. We consider node 1 and assume that it has been scheduled to transmit

in exactly p slots (0 < p ≤ M − γ) in [γ + 1, M ]. This implies that each of

the timeslots in [1, γ] either has node 1 scheduled, or some interfering neighbor

scheduled (otherwise, some of the p transmissions could have been scheduled in

[1,γ]). Using a similar approach from (3.1) we compute the interference e′′1 for

node 1 in [1,γ] (note: e′′1 ≤ e′1). Then:

∑
∀v∈NC

1

x′1v − p+ e′′1 = γ

=>
∑
∀v∈NC

1

x′1v − p+ (e′1 − δe) = γ, where δe = e′1 − e′′1 ≥ 0

=>
∑
∀v∈NC

1

x′1v + e′1 − (p+ δe) = γ (3.4)

Since (p+ δe) > 0, if (3.4) has to be satisfied, then it implies that
∑
∀v∈NC

1

x′1v +

e′1 > γ. This contradicts our initial assumption that X satisfies the capacity

constraints (3.3) for all nodes, including 1. A similar argument can be made for

the remaining nodes 2, 3, .., k and hence the proof.
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Now we prove the nececssary condition that a rate vector X must satisfy the

capacity constraints in order to be feasible or schedulable under a given scheduling

algorithm. We adopt a proof-by-contradiction strategy, and assume that for a

schedulable rate vector X, there is at least one node z ∈ V that violates the

capacity constraint. The constraint for z can be listed as
∑
∀v∈NC

z

x′zv+e
′
z = M ′,M ′ >

γ. It follows that max
∀u∈V

∑
∀v∈NC

u

x′uv+e′u ≥M ′. Since the scheduling algorithm returns

a schedule of length M , it must be that M ′ ≤ M . It follows that that M > γ,

thus contradicting the feasibility of X, and hence the proof. �

To illustrate computation of interference, we will consider the same 6-node

chain topology shown in Fig.3.2, augmented with some traffic rates generated by

each node. More specifically, we will assume that each node generates traffic at

the rate of 1 unit per second on each of its outgoing links, as shown in Fig.3.5.

The weighted interference UDG corresponding to the 6-node chain topology with

traffic rates (Fig.3.5) is shown in Fig.3.6. Nodes 1 and 6 each generate traffic at

the rate of 1 unit per second (and thus a node weight of 1), while the remaining

nodes generate traffic at the rate of 2 units per second (node weight of 2). For

convenience in the remainder of the dissertation, we drop the word “weighted”

when referring to the weighted interference UDG, and instead simply refer to it

as an interference UDG.

Figure 3.5. 6-node chain topology augmented with traffic rates.
Each node transmits at the rate of 1 unit per second on every out-
going link
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Figure 3.6. Weighted Interference UDG for 6-node chain topology.
Weights are enclosed within circles. A node’s weight corresponds to
it’s total outgoing transmission rate.

Without loss of generality, we assume that the transmission of 1 unit of data

requires exactly 1 time slot. First, we look at how these transmissions can be

scheduled in a feasible manner. Since the total number of transmission units

for the 6-node chain topology is 10, a pessimistic scheduler could schedule all

the 10 transmissions in 10 non-overlapping timeslots, as shown in Fig.3.7. This

is wasteful, as this schedule has been arrived at without any consideration for

spatial reuse of the carrier frequency. As the interference UDG would show, some

nodes can be scheduled simultaneously. For e.g., the pairs of nodes (1,4), (2,5) and

(3,6) can be scheduled to transmit in the same timeslot. The number of timeslots

required for realizing a feasible schedule depends on the scheduling algorithm

used. For the 6-node chain topology under consideration, an optimal schedule

requires 6 timeslots, as shown in Fig.3.7. The interference values defined in (3.1)

can be computed by looking at the global schedules in Fig.3.7. For example, for

node 4, the interfering neighbors are nodes 2, 3, 5 and 6, generating a total of 7

units of traffic, which can be scheduled in 4 timeslots (slots 2 - 5) under optimal

scheduling. This results in an interference rate of 4 timeslots per superframe,

as sensed by node 4. Under pessimistic scheduling, the interference rate can be

computed as 7 timeslots.

So far, we have assumed that given a rate vector X, there existed a method or

algorithm to compute the optimal schedule. We then compute interference values,

56



and test X for feasibility using the capacity constraints. We will now focus our

attention towards formal methods that can accomplish the optimal scheduling

process, and provide us with the value of M . We emphasize that we are only

interested in the interference values in the context of feasibility of a given rate

vector X under some scheduling algorithm, and not in the values themselves in

isolation. Readers famililar with graph coloring may recognize that the optimal

scheduling procedure shown in Fig.3.7 can be cast as an optimal weighted graph

coloring problem. Hence, a discussion of graph coloring is in order.

Figure 3.7. Pessimistic and Optimal scheduling. The scheduled
node indices are shown within rectangles

3.4 Graph Coloring and Interference

Graph coloring is the process of assigning colors to the vertices of an un-

weighted graph G (one color per vertex), such that no two adjacent vertices share

the same color. If the graph is weighted (integer weights only), then the num-

ber of colors required to color a vertex equals the weight of that vertex, and the

coloring procedure is referred to as weighted coloring. Weighted coloring on a

weighted graph G(V,E,W ) is usually accomplished by first transforming G into

an unweighted graph H(V H , EH), and then performing an unweighted coloring
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Figure 3.8. For a sample UDG (G), transformation from a weighted
graph to unweighted graph (H), followed by optimal coloring. Three
colors are used: Red (R), Green (G) and Yellow (Y)

procedure on H. The transformed graph H is constructed as follows: for each

vertex u ∈ V in G with an integer weight of wu :

1. replace u by Kwu , where Kwu refers to a clique (a complete subgraph) of

size wu, and

2. connect (using edges) every vertex ofKwu with every vertex ofKwv ,∀v|(u, v) ∈

E.

If the coloring is done using an optimal (minimum) number of colors, then

the coloring procedure is called Optimal coloring. The optimal number of colors

required to color a graph is called the chromatic number, χ of the graph. For

a weighted graph G, the chromatic sum or weighted chromatic number χw of G

equals the chromatic number of the transformed unweighted graph H i.e.,

χw(G) = χ(H)

Figure 3.8 shows the transformation and optimal coloring of a sample UDG.

Graph coloring is frequently used for resource allocation and scheduling prob-

lems. In multi-hop radio and cellular networks, graph coloring has been exten-

sively used for frequency assignment. For examples, see [Hal80, Lei79, Wer85,
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SDS97]. First, the competing entities and their relationship is represented as a

graph, and coloring is performed on this graph to arrive at a resource allocation

decision. In our case, a time-slot is the resource under contention, and the con-

tention relationship between the competing entities (node transmission attempts)

are represented using the interference UDG.

All vertices that are colored using the same color are said to belong to a

coloring class i.e., if c(v) is the color of vertex v, then set of all coloring classes

can be represented as Vi = {v|c(v) = i,∀v ∈ V }. The transmission scheduling

problem discussed in the previous section can be solved by first transforming the

weighted graph to an unweighted one, where the vertices in the transformed graph

correspond to individual node transmission units, followed by optimal coloring

of the transformed graph. Optimal scheduling is accomplished by allowing all

vertices colored using the same color to transmit in the same time slot. The

total number of colors required to color the graph represents the span M of the

schedule. In optimal scheduling, there are exactly χw(G) coloring classes, and the

nodes in each coloring class can be scheduled simultaneously. Thus, the set {Vi}

gives an optimal schedule of transmissions. In the optimal schedule in Fig .3.7,

the set of coloring classes can be given as { {1, 4}, {2, 5}, {2, 5}, {3, 6}, {3}, {4}

}.

Unfortunately, for most graphs (including UDGs), computing the chromatic

number is an NP-complete problem [BCD90]. No known polynomial time algo-

rithms exist for optimal coloring, except for few specific classes of graphs. Thus,

computing M is a potentially expensive task. Hence, we need to look at alternate

methods of computing the optimal schedule. One popular solution is to bound

the chromatic number using easily computable quantities. Plenty of polynomial-
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time approximate coloring algorithms exist, which produce upper bounds on the

chromatic number. An approximate coloring can be thought of as producing a

schedule of span ηM for some η ≥ 1. A rate vector X is then feasible if η.M ≤ γ.

For a complete survey on approximate coloring algorithms in UDGs, see [EF06].

In the next section, we will describe the use of a well-known graph invariant,

the clique number, as a bound on the chromatic number, and through an empir-

ical study, we observe that the bound is quite tight (η close to 1.0) for practical

scenarios.

3.5 Cliques and Clique Number

A clique is a complete (fully interconnected) sub-graph in a given graph G,

and a maximal clique is a clique that is not contained in any larger clique. The

maximum clique number (the modifier “maximum” is often omitted) ω(G) is the

maximum size of all maximal cliques. For weighted graphs, a Maximum Weighted

Clique (MWC) is a maximal clique with maximum sum of vertex weights. The

maximum weighted clique number ωw is the sum of vertex weights of the MWC.

Let Q denote the set of nodes that forms a maximal clique, and let |Q| denote

the cardinality (number of elements) of the set Q. Let us suppose that in a given

weighted graph G, there are m maximal cliques enumerated as {Q1, Q2, ..., Qm},

and the subgraph induced by the nodes of MWC be denoted as GM .

ω(G) = max
i

(|Qi|), i = 1, 2, ..,m

ωw(G) = max
i

(∑
∀j∈Qi

wj

)
, i = 1, 2, ..,m
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As an example, consider the weighted graph G shown in Fig.3.9. A total of 9

cliques and 2 maximal cliques (Q1 = {1, 2, 3} and Q2 = {3, 4}) can be identified

in G. Thus,

ω(G) = max(|Q1|, |Q2|)

= max(3, 2)

= 3

ωw(G) = max[(w1 + w2 + w3), (w3 + w4)]

Observation 1. In a given weighted graph G, the vertex weights have no influ-

ence while constructing the set of maximal cliques {Qi}. However, given a clique

set {Qi}, the choice of the maximum weighted clique (MWC) from this set is

affected by the vertex weights

In the above example, if W = [1, 1, 1, 1], then the MWC = Q1 and ωw(G) = 3.

On the other hand, if if W = [1, 1, 1, 3], then MWC = Q2 and ωw(G) = 4.

Figure 3.9. Example weighted graph to illustrate clique and maxi-
mal clique concepts. A total of 9 cliques can be identified: {1}, {2},
{3}, {4}, {1, 2}, {1, 3}, {2, 3}, {3, 4}, {1, 2, 3}. Out of these 9 cliques,
only two are maximal cliques: Q1 = {1, 2, 3}, Q2 = {3, 4}.

For a given weighted graph G, the weighted chromatic number χw(G) is at

least as large as the maximum weighted clique number ωw(G).
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ωw(G) ≤ χw(G)

Unfortunately, for most classes of graphs, computing the clique number is also

an NP-complete problem, i.e., computing the clique number is at least as difficult

as computing the chromatic number. However, while the chromatic number prob-

lem on a UDG is still NP-complete, the clique number problem can be solved in

polynomial time in UDGs [BCD90]. Moreover, in UDGs, the clique number can

be used to upper bound the chromatic number within some constant factor. Even

if the UDG is weighted, it does not pose any difficulties; the polynomial time

transformation preserves the polynomial time complexity of the clique number

computation procedure for UDGs.

3.6 Imperfection Ratio

For weighted UDGs, the authors in [GM01] introduce the metric “imperfection

ratio”, imp(G), defined as the supremum of the ratio of its chromatic number to

its clique number. The supremum is computed over all possible weight vectors

W. They also bound imp(G) as:

imp(G) = sup
W

χw(G)

ωw(G)
≤ 2.155

We now seek to apply this result for practical wireless networks. Using an

upper bound of 2.155ωw(G) to bound the chromatic number may be too conser-

vative, especially if ratio of the chromatic and clique numbers for most cases is

close to 1. This would mean overestimating the required number of time slots un-

der optimal scheduling by more than a factor of 2, thus underestimating available

bandwidth. In such cases, using 2.155 as a bound represents the “worst-case”
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scenario.

The authors in [GM01] mention that the imp(G) = 1 iff G is “Perfect”, i.e.,

in the special case of a “Perfect Graph” [JB01], χ and ω have equal values in

every induced subgraph (weighted and unweighted). They also speculated that

the bound could be improved to 1.5 for non-perfect UDGs. However, even non-

perfect graphs can have equal values for χw and ωw. Since we are only interested

in the relationship between χw(G) and ωw(G) for the given weighted graph G and

not for the induced subgraphs of G, a non-perfect graph might have equal values

(or nearly so) for the clique and chromatic numbers for a vast majority of weight

vectors. We investigate and quantify this possibility in the next chapter, with the

goal of obtaining a practical bound on the chromatic number that is tighter than

the theoretical bound.

3.7 Summary

We used the Tx-model as the model of interference in this dissertation. The

Tx-model enabled the use of Unit Disk Graphs to capture the interference rela-

tionship between the various nodes in a given MHWN. For a given rate vector

X in the MHWN under a specific scheduling algorithm, we computed the inter-

ference sensed by each node from the global schedule returned by the scheduling

algorithm. Using these interference values, we then formulated the global capacity

constraints, and showed that these constraints are both necessary and sufficient

conditions for the feasibility of X.

We then specifically focused on optimal scheduling, and observed that optimal

scheduling in a MHWN for a given rate vector X can be achieved by optimal

weighted coloring of the associated UDG. Specifically, the span of the optimal
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schedule was equal to the weighted chromatic number of the UDG. Noting that

the optimal coloring procedure for UDGs was NP-hard, we focused on computing

bounds for the weighted chromatic number. We observed that the weighted clique

number of the UDG can be computed in polynomial time, and can be used to both

upper and lower bound the weighted chromatic number. Noting that the theoret-

ical upper bound on the ratio of the weighted chromatic number to the weighted

clique number may be too conservative for practical wireless network scenarios, we

investigate the possibility of improving the bound for practical wireless networks

in the next chapter.
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Chapter 4

Bounds for Practical MHWNs

4.1 Practical Bounds on Imperfection Ratio

In this subsection, we construct distributions of the ratio of chromatic number

to clique number, as opposed to a theoretical upper bound on that ratio (as

in [GM01]). The general goal is to determine the likelihood that the clique number

ωw is “close to” the chromatic number χw for a randomly chosen weighted graph

G. This study is an extension of our work in [MP07].

Mathematical analysis to provide information on the closeness of chromatic

number and clique number seems very difficult to do. The other approach is

to employ an exhaustive search method over all possible weight vectors for all

possible UDG combinations. Clearly, the second approach is infeasible. Hence we

consider slightly less expensive estimation strategies.

To begin, we recall that the imp(G) is computed over all possible weight

vectors W , where W represents the transmission rates of each of the nodes in a

MWHN. From a practical wireless network perspective, it does not make sense

to consider all possible weight vectors W ; instead one could limit the maximum
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weight (transmission rate) to a reasonable value for MHWN UDGs, which may

improve the bound. While an exhaustive search will still not be possible even

with a bounded maximum weight, we can conduct experiments that will search

through a very large number of scenarios.

To assess closeness of χw and ωw, we define the measure partial imperfection

ratio (PIR) of a weighted graph G, defined as the ratio χw(G)/ωw(G) for a given

weight vector W . PIR values closer to 1 indicate very high closeness. The fol-

lowing is our experimental scenario: we assume our area of interest to be a disk

of radius 1. We place n nodes in randomly chosen locations within the disc and

any two nodes are connected by an edge if they lie within a distance of β, (β = 1)

from one another. Node u is assigned an integer weight wu that corresponds to its

traffic requirements. The weights are chosen randomly having a uniform p.m.f in

1, 2, .., K, where K corresponds to the maximum weight. To study the influence

of nodal density on PIR, we varied n as 10, 25, 50, 75 and 100. Also, to study

the effect of having various node traffic rates, we independently varied K as 1,

5 10, 20, 30, 40, and 50. It has to be noted that the mean weight assigned to a

node in weighted UDG G is 0.5(K + 1), and hence the mean number of nodes in

transformed, unweighted UDG H is 0.5n(K+ 1). Thus, for the purposes of graph

coloring using the transformation, the smallest mean size of the transformed UDG

in our study is 10, and the largest is 2550.

An experiment in our case comprised 10000 trials conducted for a given (n,K)

pair. For each experiment, the CDF curves corresponding to the PIR values were

plotted. We used MATLAB to generate graphs in DIMACS [dim] format. For

optimal coloring, we used the DSATUR program [dsa] written in C. To compute

the maximum weight clique, we used the CLIQUER software [cli], also written in
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C.

Fig.4.1 shows cdf plots for the various (n,K) values. First, we focus on the

variation in PIR values with respect to changes in K values. For a given value

of node density n, the CDF curves for the various K values (with the exception

of K = 1), are quite similar. The variance in the individual node weights (traffic

rates) increases with increase in K. The results when compared across K seem to

suggest that in a given network topology, there is a higher probability of the PIR

value to deviate from the 1.0 mark as K increases, with the exception of K = 1,

which shows a stepwise behavior. A value of K = 1 corresponds to a balanced or

near-balanced load scenario, where all nodes generate the same amount of traffic.

Now we focus on the variations in PIR values for changes in node density n.

The number of instances when PIR = 1.0 (exactly) seems to steadily decrease

with increase in node density. Interestingly, the PIR-spread (max PIR - min

PIR) seems to decrease with increase in node density. That is, at higher node

densities, most of the PIR values are only slightly higher than the ideally desired

value 1.0. The number of outliers seem to be more pronounced at lower node

densities. In fact, the maximum PIR value for each traffic rate (K) was noticed

for n = 10. This is an encouraging result because the the bulk of PIR values

for all scenarios are either equal to 1.0 (lower node densities) or very close to 1.0

(higher node densities).

The immediate conclusion one can draw from these plots is that the theoretical

bound of 2.155 on the ratio of chromatic to clique numbers for practical MHWN

UDGs is extremely conservative. The maximum value of PIR noticed was 1.428

for n = 10, K = 20.

Further inspection of the plots reveals that a vast majority of the PIR values
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(a) Node density (n) = 10 (b) Node density (n) = 25

(c) Node density (n) = 50 (d) Node density (n) = 75

(e) Node density (n) = 100

Figure 4.1. CDF plots for Partial Imperfection Ratio (PIR) for var-
ious (n,K) values and β = 1
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(a) 95th percentile PIR point (b) 99th percentile PIR point

Figure 4.2. 95 and 99 percentile PIR values for various (n,K) values
and β = 1

are very close to 1.0. In fact, as Fig.4.2a shows, 95% of the PIR values for all

scenarios considered are less than 1.1. Fig.4.2b shows that 99% of the PIR values

for all scenarios considered are less than 1.2. Also, a quick inspection of the median

(50 percentile point) values across all scenarios reveals a maximum median value

of 1.03. This implies that in at least 50% of all the cases investigated, the PIR

value deviated from the ideal value of 1.0 by a maximum of 3%.

For the case with n = 100, we also conducted experiments by varying the

value of β. This had the effect of varying the network diameter or number of

“connection” hops (lower β ⇒ more network hops). As β was varied as 0.25, 0.5,

and 0.75, the cdf results observed were very similar to the case with β = 1 and n

= (25, 50, 100), respectively. See Fig. 4.3 for cdf plots and Figures 4.4a, 4.4b for

percentile plots.

Thus, we now have evidence to believe that the theoretical bound of 2.155

very rarely holds in practice, and using this bound almost always grossly over-

estimates the actual interference value and under-estimates the available wireless

network capacity. Based on our investigation, we propose that in practical wireless
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(a) β = 0.25 (b) β = 0.50

(c) β = 0.75

Figure 4.3. CDF plots for Partial Imperfection Ratio (PIR) for var-
ious (β, k) values for n = 100

UDGs, the weighted clique number ωw itself can be used an excellent and accurate

approximation to the weighted chromatic number χw :

ωw ≈ χw (4.1)
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(a) 95th percentile PIR point (b) 99th percentile PIR point

Figure 4.4. 95 and 99 percentile PIR values for various (β, k) values
for n = 100

4.2 Consequences of Practical Bound

Given a MHWN and a rate vector X, we have so far established the following

for the corresponding weighted UDG G under a Tx-model of interference:

• the global capacity constraints are both necessary and sufficient conditions

for the feasibility of X

• formulating the global capacity constraints can take exponential time due

to the NP-completeness of the optimal coloring procedure for UDGs

• the span M of the optimal schedule S can be accurately approximated using

the weight of GM (the MWC of G)

While the approximation in (4.1) does help in assessing the feasibility of X, it

does not help in formulating the global capacity constraints. The global capacity

constraints cannot be formulated because the actual interference values for node

u (eu) are not known (our clique approximation only yields the span M , not the

number of time slots in the schedule that interfere with node u). In fact, it raises
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the following question: if the feasibility of X can be assessed in polynomial time

using the approximation in (4.1), then are the global capacity constraints even

essential?

We believe that the global capacity constraints are indeed desirable based on

the following argument: in an optimization problem, the goal is usually to generate

a sequence of rate vectors {Xk} until an X∗ is found that optimizes the objective

function. Note that the optimal point X∗ resides within the feasible region defined

by the complete set of problem-specific and network-imposed constraints. Since

the global capacity constraints are necessary conditions for the feasibility of any

X, the set of global capacity constraints formulated until some iteration k in the

optimization problem defines the feasible region at least partially (we use the term

“partial” because there could be more limiting constraints that we are not aware

of) i.e., a future rate vector Xk+τ , τ > 0 that violates the any of global capacity

constraints formulated until iteration k + τ − 1 is certainly infeasible. Hence, the

sequence of points generated in future can at least be guaranteed not to fall outside

the partial region of feasibility defined by these global capacity constraints. On

the other hand, if only feasibility was checked for each Xk, and no global capacity

constraints were formulated, then there is the possibility of generating points in

the future that fall outside the parital feasible region, which constitutes wasted

effort. Thus, having some form of capacity constraints could potentially speed up

the optimization procedure.

Since the global capacity constraints are difficult to construct, we construct

a set of constraints we call the local or L-capacity constraints that have similar

properties to the global capacity constraints. By similar, we mean that the L-

capacity constraints have a similar form to the global capacity constraints and
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are both necessary and sufficient conditions for feasibility of some rate vector X.

These constraints have the modifier “local” because they are constructed using

the optimal transmission schedule by considering only nodes “around” the local

neighborhood of a given node. In other words, the L-capacity constraints are

constructed for subgraphs of G (one subgraph per node).

To this end, we construct one subgraph per node in G, called Reduced In-

terference UDG, which is the UDG formed by the interfering neighbors of the

given node (node u is excluded from the reduced UDG), and compute the MWC

for each of these graphs. The reduced UDG for node u can be represented as

GR
u (Vu, E

I
u,W

R
u ), where:

Vu = {v|v ∈ N I
u}

EI
u = {uv|d(u, v) ≤ IR,∀v ∈ Vu}

WR
u = {wv|∀v ∈ Vu}

As an example, Fig.4.5 shows the reduced UDG for node 4 in the interference

UDG from Fig.3.6 (time slotted system). The vertices of GR
4 are V4 = {2, 3, 5, 6},

with weights W ′R
4 of [2, 2, 2, 1].

Figure 4.5. Reduced Interference UDG corresponding to node 4
(GR4 ) in 6-node chain topology.
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An optimal coloring of the reduced UDG of node u produces an optimal sched-

ule Su of span Mu (local solution). The local interference for node u, denoted as

e
′l
u, is simply Mu, because every slot of Su has at least one interfering neighbor of

u scheduled.

Observation 2. In a MHWN represented by the weighted UDG G(V,E,W ),

for a given node u ∈ V with reduced weighted interference UDG GR
u , the local

interference rate (elu) or number of interfering timeslots (e′lu) in the local schedule

Su of span Mu sensed under an optimal transmission scheduling scheme equals the

weighted chromatic number χw of the reduced weighted interference graph GR
u .

e
′l
u = χw(GR

u )

From observation-2 the following set of local or L-capacity constraints can be

formulated:

∀u ∈ V :
∑
∀v∈NC

u

x′uv + e′lu =
∑
∀v∈NC

u

x′uv + χw(GR
u ) ≤ γ (4.2)

The following is true for the reduced UDGs:

∀u ∈ V : Mu ≤ M

0 ≤ elu ≤ eu

=>
∑
∀v∈NC

u

xuv + elu ≤
∑
∀v∈NC

u

xuv + eu (4.3)

As an example, consider the reduced UDG shown in Figure 4.5 corresponding

to node 4. Here M4 is 4 time slots, which is also equal to the local interference

e
′l
4 sensed by node 4. The global interference value for node 4 (e4) computed from
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the global optimal schedule shown in Figure 3.7 also happens to equal 4 time slots

(equality need not always hold).

From (4.3), it follows that the L-capacity constraints in 4.2 are necessary con-

ditions for feasibility, but are not sufficient i.e., any rate vector X that satisfies the

global capacity constraints (feasible X) will also satisfy the L-capacity constraints

by virtue of (4.3). However, if only the local interference values e′lu are available

for a given X, then nothing can be said of the feasibility of X. In this case, the

knowledge of the scheduling span M is essential to assess the feasibility of X.

We will demonstrate sufficiency of the L-capacity constraints by showning that

there exists at least one L-capacity constraint (say, corresponding to node u) with

high likelihood such that the following is true:

∑
∀v∈NC

u

x′uv + e′lu = M (4.4)

If such a constraint exists, then M can be computed from the following:

max
u∈V

∑
∀v∈NC

u

x′uv + e′lu = M (4.5)

Equation (4.5) must hold if (4.4) is true because the span Mu of the local

schedule Su corresponding to any L-capacity constraint is never greater than

the span M of the global schedule. If the existance of an L-capacity constraint

that satisifes (4.4) can be established, then M can be computed from (4.5), thus

demonstrating sufficiency of the L-capacity constraints for the feasibility of a given

rate vector X.
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In addition, if (4.4) is true, then the following is also true by substitution of

alternate notation (M = χw(G),
∑
∀v∈NC

u

x′uv = w′u, e
′l
u = χw(GR

u )):

χw(GR
u ) = χw(G)− wu

e′u = e′lu = χw(GR
u )

From (4.1), we know that e′lu ≈ ωw(GR
u ). Thus, we can rewrite (4.5) as follows:

max
u∈V

∑
∀v∈NC

u

x′uv + ωw(GR
u ) ≈M (4.6)

Observing that M ≈ ωw(G), the problem of showing the existance of an L-

capacity constraint such that (4.4) is satisfied (and thus the sufficiency) with high

likelihood reduces to one of showing the existance of at least one reduced UDG

GR
u , such that ωw(GR

u ) = ωw(G)− w′u.

Lemma 2. In an MHWN, if the interference relationship is expressed using inter-

ference UDG G(V,E,W ), then ∃u ∈ V such that the reduced interference UDG

corresponding to u, GR
u , satisfies the following relationship: ωw(GR

u ) = ωw(G)−wu

Proof: Let GM(V M , EM ,WM) denote the (complete or fully interconnected) sub-

graph corresponding to the MWC of G (ωw(G) = ωw(GM) =
∑
∀u∈VM

wu). First

we show that ∀u ∈ V M : GM − u ⊆ GR
u (the notation A ⊆ B when applied to

graphs implies that graph A(VA, EA) is completely contained in graph B(VB, EB)

i.e., VA ⊆ VB and EA ⊆ EB). Since every node in V M is pair-wise adjacent, for

a given u ∈ V M , all nodes in {V M \ u} are adjacent to (or neigbhors of) node

u . Clearly, {V M \ u} ⊆ Vu. Thus, the complete subgraph corresponding to

GM − u must be fully contained in GR
u , because GR

u is the subgraph formed by all

neighbors of u i.e., ∀u ∈ V M : GM − u ⊆ GR
u . It is equivalent to saying that:
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∀u ∈ V M : GM ⊆ GR
u + u (4.7)

Also note that ωw(GM−u) = ωw(G)−wu. We will now show that ωw(GM−u) =

ωw(GR
u ) to complete the proof.

From (4.7), it is clear that the ωw(GM) ≤ ωw(GR
u + u). Similarly, noting that

GR
u + u ⊆ G, it can be seen that ωw(GR

u + u) ≤ ωw(G) = ωw(GM). Hence,

ωw(GR
u + u) = ωw(GM) = ωw(G). Since node u ∈ V M is connected to every node

in GR
u +u the graph GR

u formed by vertex removal of u will have the weight of the

maximum weighted clique value reduced by wu when compared to the weight of

the maximum weighted clique value of GR
u + u i.e., ωw(GR

u ) = ωw(GR
u + u)−wu =

ωw(G)− wu. Hence the proof.

�

It follows from lemma 2 that all nodes u ∈ V M lead to L-capacity constraints

that satisfies (4.4) with high likelihood, and thus it follows that satisfying the the

set of L-capacity constraints is a sufficient condition as well for the feasibility of X.

As an illustrating example, consider the interference UDG G shown in Figure 3.6.

The subgraph GM corresponding to the MWC of G could be either the subgraph

induced by nodes {2, 3, 4} or nodes {3, 4, 5}, with ωw(G) = 6. Table 3.1 gives the

set of nodes (interfering neighbors) that form the reduced UDG for each node.

Let GM
u (V M

u , EM
u ,W

M
u ) denote the the MWC of GR

u for some u ∈ V . Table 4.1

gives the set of nodes (V M
u ) in GM

u for each node u ∈ V , and the corresponding

ωw values:

From Table 4.1, it can be seen that every node in the all MWCs of G (2, 3, 4, 5)

leads to L-capacity constraints that satisfy (4.4).
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Table 4.1. Maximum Weighted Cliques for each node in the 6-node
chain topology

Node u in GR
u wu V M

u ωw(GR
u ) + wu

1 1 {2,3} 5
2 2 {3,4} 6
3 2 {2,4}, {4,5} 6
4 2 {2,3}, {3,5} 6
5 2 {3,4} 6
6 1 {4,5} 5

Due to observation-2, (4.1), and the practical bounds results, the following

holds:

∀u ∈ V : e′lu ≈
∑
∀v∈V M

u

w′v (4.8)

=
∑
∀v∈V M

u

∑
k∈NC

v

x′vk

⇒
∑
∀v∈NC

u

x′uv + e′lu ≈
∑
∀v∈NC

u

x′uv +
∑
∀v∈V M

u

∑
k∈NC

v

x′vk (4.9)

In the context of optimization problems, we can use the L-capacity constraints

in place of the global capacity constraints to enforce feasibility of a given rate

vector X. Due to (4.1), we can construct the L-capacity constraints in polynomial

time. Also, each of these L-capacity constraint is a linear inequality, since e′lu (and

thus elu) can be expressed in linear form (as shown in (4.9)). A polynomial-time

linear inequality (capacity constraint) formulation procedure is very attractive in

the context of solving optimization problems.

LCONSTR is the polynomial-time algorithm that takes the graph represen-

tation G of the MHWN and the rate vector X as input and returns the set of

L-capacity constraints at X for G (one constraint per node). Each L-capacity
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constraint is nothing but the constraint formed due to the MWC of the corre-

sponding node’s reduced UDG and that node’s transmission rates. The MWC for

each node is computed by invoking the polynomial time algorithm from [BCD90]

(let us call it MAXWTCLIQUE for convenience). Note that the vertex weights

need to be integers; if the weights in the original problem are real numbers, then

the weights need to be appropriately scaled to produce integer weights, such that

the integer weights are in the same proportion to one another as the original

weights. After the weighte clique number computation procedure is executed, an

inverse scaling procedure needs to be applied on the resulting weighted clique

numbers to recover the weighted clique numbers corresponding to the original

problem with non-integer weights.

Algorithm 1 LCONSTR (G , X)

1: for all u such that u ∈ V do
2: Form GR

u (Vu, E
I
u,W

R
u ) for node u

Require: wRv ∈ WR
u ∀v ∈ Vu are integers

3: mwc[u]⇐MAXWTCLIQUE(GR
u )

Ensure: Restore wRv ∈ WR
u ∀v ∈ Vu to original (non-integer) state if neces-

sary

4: e[u]⇐
∑

∀v∈mwc[u]

wRv

5: end for
6: return mwc, e

There is another potential advantage of using the L-capacity constraints, in-

stead of simply finding the value of M using the MWC of G. The clique finding

algorithm in [BCD90] has a time complexity of O(m4.5), where m is the number

of vertices in the UDG on which the maximal clique is found. If we find construct

the clique constraint using the entire UDG G with n nodes, then the complexity

of the procedure is O(n4.5). On the other hand, finding the MWC of G using the

reduced UDGs has a run-time complexity of O(n∆4.5), where ∆ is the maximum
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degree (maximum number of adjacent vertices for any node) of G. This method

is superior to the original method if n > ∆
4.5
3.5 , which holds good in networks that

are not very dense or near complete graphs.

4.3 Summary

In this chapter, through an empirical study, we demonstrated tighter bounds

on the ratio of the weighted chromatic number to the weighted clique number

in UDGs representing practical MHWNs. In particular, we concluded that the

weighted clique number can be used as an excellent approximation to the weighted

chromatic number for practical MHWNs. Observing that this approximation does

not aid in formulating global capacity constraints, we introduced the notion of lo-

cal or L-capacity constraints, which can be formulated in polynomial time due to

the clique number - chromatic number approximation introduced in this chapter.

We proved that the L-capacity constraints are both necessary and sufficient con-

ditions for the feasibility of a given rate vector X, and as a result can be used in

lieu of the global capacity constraints. In addition, the L-capacity constraints are

linear in nature, which makes them attractive for optimization problems. In the

next chapter, we will develop an efficient optimization framework that will make

use of the L-capacity constraints to solve flow-related optimization problems in

MHWNs.
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Chapter 5

Optimization Framework for

MHWNs

5.1 Network Flow Problems in MHWNs

In section 2.5, we saw that network flow problems arising in MHWNs are

difficult to solve by direct application or extension of techniques from the wired

domain. We revisit the MAXFLOW problem, which deals with finding the max-

imum amount of flow between a set of source-destination pairs in a given network.

We chose this problem becuause it is a very popular flow problem in wired net-

works and has received extensive treatment in literature. The most obvious way

of solving this problem is by casting the problem as a Linear Programming (LP)

problem and solving it using standard LP techniques [Lue84]. However, LP tech-

niques fail to take advantage of the special structure of the flow problem, and

are in most cases not very efficient. Several specialized algorithms such as Ford-

Fulkerson [LD56], Edward-Karp [EK72], etc. exist, which are more efficient than

the LP solution.
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Fig. 2.9 shows an LP formulation for the MAXFLOW problem in a MHWN,

which has been modeled as a UDG with vertex set V , and set of communicating

and interfering neighbors for a given node i are given by NC
i and N I

i , respectively.

We assume a single flow of value f exists between source node r and sink node

s. If a transmission link exists between two nodes u and v, then the flow on the

link uv is given as xuv. These link flows are represented in the form of a column

vector X of length equal to the number of links l. In this example, we assume

that an arbitrary MHWN of n nodes is given with a channel capacity of γ.

Maximize f

Subject to

1. Flow balance equations∑
∀j∈NC

r

xrj −
∑
∀j∈NC

r

xjr − f = 0 (source)∑
∀j∈NC

i

xij −
∑
∀j∈NC

i

xji = 0 ∀i ∈ V \{r, s}∑
∀j∈NC

s

xsj −
∑
∀j∈NC

s

xjs + f = 0 (sink)

2. Capacity constraints∑
∀j∈NC

i

xij + ei ≤ γ, ∀i ∈ V

0 ≤ xij ≤ γ, ∀i ∈ V, j ∈ NC
i

Figure 5.1. LP formulation for MAXFLOW in MHWNs

The MAXFLOW formulation shown in Fig.5.1 is quite similar to the one for

wired networks shown in Fig.2.9, except for the capacity constraints. The capacity

constraints for MAXFLOW in MHWNs include the interference term ei, which

is absent in wired networks. We already saw that the capacity constraints are very
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expensive to formulate in MHWNs; instead, we use the L-capacity constraints that

can be formed in polynomial time (due to (4.2) and (4.8)). We already showed

that for UDGs, the L-capacity constraints are both sufficient and necessary for

the feasibility of X. The eli values can be computed by invoking the LCONSTR

function call whenever a new point (link flow vector) X is computed. Recall that

due to (4.8), eli can be expressed as a linear combination of a subset of node

weights w. More specifically, if there are m maximal cliques (Q’s) that can be

identified around node i, then from (4.8):

eli ≈ max
k

( ∑
∀j∈Qk

wj

)
, k = 1, 2, ..,m

The number of variables in the MAXFLOW formulation is the sum of number

of links in the communication UDG (communicating or transmission links) and

the number of source-sink flows. The interference UDG is only used to determine

which nodes (and thus communicating links) are in interference for the purpose of

computing the interference values {eli}; the interference UDG does not influence

the number of variables in the MAXFLOW formulation.

Since the MWC can change based on the vector X (LP solution point), eli

does not have a pre-determined expression (form); it could be any one (or more)

of the m cliques based on X (see observation.1 and example following). Unfortu-

nately, standard LP algorithms such as Simplex [Dan51] require constraints to be

explicitly listed, i.e., to have a fixed form. Hence these algorithms do not permit

invoking the LCONSTR function call at each iteration to determine the form

and value of eli. To list all the capacity constraints explicitly, one needs to list or

enumerate all the m maximal cliques. The clique enumeration [MM65] problem

is a well-known NP-Hard problem in graph theory for most graphs (including
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UDGs), because the number of cliques could be exponentially many. Thus, us-

ing standard LP techniques to solve the MAXFLOW problem in MHWNs is

infeasible because it requires solving an NP-hard problem (clique enumeration)

(the LCONSTR algorithm does not employ clique enumeration to compute the

MWC; instead it exploits the geometry of the UDGs to compute the MWC in

polynomial time). Usually, this situation is tackled by listing a large subset of

the cliques as in [JPPQ03] or listing all sets that can be approximated as cliques

(super-maximal cliques) [GWG05] to formulate the constraints, and then solving

using standard LP techniques.

These approximation approaches to clique listing may not always perform well.

For example, the total solution time for the MAXFLOW problem in [JPPQ03]

is large even for moderate sized networks. For a given network, the total runtime

increased as a non-linear function of the number of constraints and a large number

of constraints need to be listed for good accuracy. On the other hand, though the

approach in [GWG05] lists all super-maximal cliques in polynomial time, it lists

a large number of cliques, which leads to increased optimization run-time and

memory requirements. The accuracy of the optimal solution might be affected

due to the use of super-maximal cliques as approximations to the actual cliques.

The super-maximal cliques are supersets of actual cliques, and might lead to over-

estimation of interference. Thus, both these methods have limited scalability.

We take a novel approach in order to leverage the polynomial-time LCONSTR

algorithm. Instead of listing the constraints a priori, we propose a discover-as-

you-go approach to discover constraints as needed, and integrate this approach

with the well-known Rosen’s gradient projection algorithm [Ros60] to solve the

MAXFLOW problem. We again emphasize that our solution method is not
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restricted only to theMAXFLOW problem. We chose theMAXFLOW problem

because it is well-known, easy to understand, and serves to illustrate the difficulty

posed by the interference (eli) quantity that appear in the capacity constraints

of MHWN flow problems. These constraints represent a physical limitation in

MHWNs (network-imposed constraints) and will appear in most MHWN flow

problems. Our solution method can be applied to all such problems.

5.2 Discover-as-you-go Approach (DAY G)

Our discover-as-you-go (DAY G) approach is inspired by the Active set theorem

[Lue84], which allows us to solve an inequality constrained optimization problem

by constructing an equality constrained problem at each iteration. The equality

constrained problem is constructed from the original problem by considering only

a subset of the active inequality constraints. An active inequality is one that is

met with equality for a given point X. The inactive constraints at iteration k

(point Xk) do not limit the search direction and hence may be ignored at that

iteration. The optimal solution found using the active set approach is an optimal

solution to the original problem as well. Interested readers are referred to [Lue84]

for an in-depth treatment on the active set approach.

The constraints which remain inactive during the entire optimization proce-

dure play no role under the active set approach, and any effort expended in discov-

ering those constraints can be considered to be wasted effort. Moreover, we argue

that the number of active constraints during the course of the optimization pro-

cedure is likely to be much smaller than the total number of possible constraints

(cliques), given that the total number could potentially scale in an exponential

fashion with the number of nodes. This intuition, if true, could lead to dramatic
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savings in memory requirements. Moreover, we would likely realize significant

run-time savings if only active or near-active constraints (cliques) are discovered

at every new point Xk, provided we have an inexpensive algorithm for constraint

discovery. This is where the LCONSTR algorithm comes into play.

The core of the DAY G approach is the polynomial-time LCONSTR algo-

rithm. For a given graph G and a point Xk, LCONSTR “discovers” the set of

L-capacity constraints for Xk in polynomial time. For convenience, we restate the

L-capacity constraints:

∀u ∈ V :
∑
∀v∈NC

u

x′uv + e′lu ≤ γ (5.1)

Using (4.9), the summation can be represnted in vector notation as auXk,

where au is an indicator (row) vector of length equal to the number of links (l).

The entries in au corresponding to the links in summation take a value of 1, while

the remaining entries are assigned a value of 0. These vectors can be arranged

in the form of a matrix A, which corresponds to the set of linear inequalities

for the optimization problem. The matrix A can be augmented with constraints

discovered at each iteration. Notice that the constraints “discovered” at point X

may not be unique, i.e., more than one node could have the same MWC or some

constraints discovered at point Xk may already have been discovered at a previous

point. It is sufficient to augment the A matrix with only new, unique constraints.

A newly discovered constraint (au) for a given node u could be in one of three

states for a given Xk: active (auXk−γu = 0), inactive (auXk−γu < 0), or violated

(auXk − γu > 0). Once a constraint has been constructed, it is trivial to check if

the constraint is in one of these three states. We now integrate the discover-as-

you-go approach with the well-known active set approach, the Gradient Projection
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Method (GPM) developed by Rosen [Ros60]. We call this the Modified gradient

projection method (MGPM).

5.3 Modified Gradient Projection Method

DAY G could conceivably be integrated with any primal method of optimiza-

tion such as the Simplex method, GPM , etc. The GPM was favored over the

Simplex method because, as we will see later, the memory requirements of GPM

with respect to the problem size scale much better than the requirements of Sim-

plex method. Moreover, the dynamic constraint discovery of DAY G implies that

the constraint matrix will need to be resized for every new constraint discovered.

For GPM , the matrix needs to be resized only along the rows; for Simplex, re-

sizing needs to occur both along rows as well as columns because the Simplex

method introduces one new variable for every inequality constraint.

We will first briefly describe the GPM (material adapted from [Lue84]) that

can be used to solve optimization problems with linear constraints, followed by

the description of MGPM. GPM is based on a pure active set strategy, and is mo-

tivated by the ordinary method of steepest descent for unconstrained problems.

In GPM, the negative gradient of the objective function is projected onto the

working surface in order to define the direction of movement. Consider problems

of the following form that have m linear inequalities and n linear equalities:

minimize f(X)

subject to aiX ≤ bi, i = 1, 2, ...,m

aeiX = bei , i = 1, 2, .., n
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At a feasible point Xk, there will be a certain number q ≤ m of the active

inequality constraints satisfying aiXk = bi and m−q inactive constraints satisfying

aiXk < bi. All equality constraints are active at every iteration. The working

set W (Xk) is the set of active constraints at Xk. The GPM seeks a feasible

direction vector d satisfying ∇f(X)d < 0, so that movement along d will decrease

the objective function f . Let Aq be defined as the subset of W (Xk), such that

the Aq is composed of linearly independent rows. The GPM considers feasible

directions that satisfy Aqd = 0, so that all the active constraints remain active.

This requirement amounts to requiring that d lie in the tangent subspace M

defined by the working set of constraints. GPM uses the projection P of the

negative gradient −∇f(Xk) onto this subspace M as the desired direction d k.

Given a non-zero feasible direction, a new point Xk+1 is computed by moving a

“distance” (step size) of α ≥ 0 along d such that Xk+1 = Xk +αd is feasible, and

yet realizes the maximum reduction in f along d. This process is repeated until

d = 0. If the feasible direction is zero, then it means that no further reduction can

be achieved with the current working set and the current point Xk is potentially

an optimal point. This point is checked for the Karush-Kuhn-Tucker (KKT)

conditions [Kar39, KT51] by computing the vector of Lagrange multipliers λ for

working constraints at Xk. If λ ≥ 0, then Xk is the optimal point. Otherwise,

the active inequality constraint corresponding to the most negative λ is dropped

from the working set W (X) and the iteration is repeated.

The GPM is a feasible set algorithm, which requires that the points Xk gen-

erated at each iteration be feasible. The computation of the feasible direction d

at a given Xk requires only the current working set (active constraints); on the

other hand, the distance α moved along d requires knowledge of the inactive con-
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straints. When the GPM is applied to problems where all the constraints are not

known a priori, then the α computed using the current set of inactive constraints

may yield an infeasible Xk+1 due to undetected constraints inactive at Xk.

We overcome this problem by modifying the GPM to yield MGPM . In

MGPM , a potential new point X̂k+1 is computed as X̂k+1 = Xk + αd, and is

checked for feasibility by invoking a separation oracle [JPPQ03] at X̂k+1. The

separation oracle is a procedure that tells if a given point violates any constraints,

and returns the violated constraints, if any. Since X̂k+1 is feasible with respect

to the current working set Aq (already discovered constraints), any infeasibility of

X̂k+1 will be due to a subset of undetected constraints at X̂k+1.

For MHWN flow problems with an underlying UDG, the LCONSTR algo-

rithm is used to determine new (undetected) constraints. The newly discovered

constraints are added to the current inequality constraint set (A matrix), and the

states of the constraints are checked (separation oracle). If any newly discovered

constraint is in the violated state, then the point X̂k+1 is infeasible. The infeasible

point is discarded and a new X̂k+1 that is feasible w.r.t the current set of con-

straints is found. This process of computing and discarding intermediate points

X̂k+1 is repeated until a feasible X̂k+1 results.

Note that for every infeasible X̂k+1, the inequality constraint set is guaranteed

to be augmented with the violated (and newly discovered) constraints. This has

the effect of yielding different step sizes (α) for each successive infeasible X̂k+1,

eventually leading to a feasible X̂k+1. Once a feasible X̂k+1 is found, then the

optimization procedure moves to the new point Xk+1 = X̂k+1. It can be observed

that the LCONSTR algorithm only returns a single dominant MWC for a given

node at any given point Xk. Now consider the case where there is more than one
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MWC for a given node u at a given Xk, i.e., more than one clique with total

weight equal to ωw of the reduced interference UDG of u. Though LCONSTR

returns only one MWC per node at Xk, the procedure of repeated computing and

discarding intermediate points X̂k+1 ensures the feasibility of the generated Xk+1.

The MPGM algorithm is shown Algorithm 2. All steps in MPGM , except

steps 7 - 13, are identical to the GPM algorithm (adapted from [Lue84]). The

additional steps in MPGM discover new constraints using LCONSTR and per-

form the separation oracle functionality to ensure feasibility of the output points

Xk.

5.4 Evaluation

In this section, we evaluate the performance of the discover-as-you-go (DAY G)

scheme as embodied in MGPM by solving a single-flow MAXFLOW problem.

The DAYG approach pertains to discovering constraints dynamically during the

course of optimization, as opposed to discovering the constraints a priori. To

study the gains of DAY G, we compare it with the following two approaches that

formulate constraints a priori :

• RAND: Method of constraint listing in [JPPQ03], in whichMAXEFFORT

iterations of constraint listing are performed, where MAXEFFORT de-

pends on required degree of accuracy. A value of MAXEFFORT = 150000

was used in [JPPQ03] to solve the MAXFLOW with high accuracy in a

grid topology of size up to 11 (121 nodes). We use this method to list

cliques for the topology under consideration, with a minor variation - in-

stead of specifying a fixed MAXEFFORT for all topologies, we specify

MAXEFFORT = min(max(l ∗ η, 10000), 150000), where l is the number
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Algorithm 2 MPGM (G, f , Ae, be, A, b, Xinit)

1: k ⇐ 0;Xk ⇐ Xinit

2: Find subspace of active constraints M , and form Aq, W (Xk)
3: P = I − Aq(ATq Aq)−1ATq ; d = −P∇f(Xk)
4: if d 6= 0 then
5: Find α1 and α achieving, respectively

max{α1 : Xk + α1d is feasible }, and
min{f(Xk + αd): 0 ≤ α ≤ α1 }

6: X̂k+1 = Xk + αd
7: [MWC, e] = LCONSTR(G, X̂k+1)
8: Form matrix of newly identified constraints AN from MWC
9: Augment inequality matrix A← A ∪ AN and corresponding b vector

10: if AX̂k+1 ≤ b then
11: Xk+1 ← X̂k+1

12: k ← k + 1
13: end if
14: GOTO step 2
15: else
16: find λ = −Aq(ATq Aq)−1ATq∇f(Xk)
17: if λj ≥ 0 ∀j ∈ W (Xk) then
18: Xk satisfies KKT conditions. GOTO step 24
19: else
20: delete row from Aq corresponding to the inequality with most negative

component of λ (and drop corresponding constraint from W (Xk)
21: GOTO step 3
22: end if
23: end if
24: return Xk

of links, and η is the number of iterations per link. This allows the number

of iterations to scale with the problem size. Another important difference

from [JPPQ03] is that we make RAND UDG-aware i.e. we use RAND

to list cliques in a node-level conflict graph, instead of a link-level conflict

graph as used in [JPPQ03].

• CLIQUDG: Method of clique listing for UDGs described in [GWG05],

where a bounded maximum number (O(m∆), m = number of links, ∆
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= maximum number of neighbors or node degree) of maximal cliques and

super-maximal cliques as approximations to maximal cliques are listed.

Under DAY G, the MGPM is employed to solve the optimization problem.

Under RAND and CLIQUDG, the constraints are first discovered for the given

topology using RAND and CLIQUDG respectively, and the appropriate LP is

generated. The LP is then solved using the GPM (active-set approach) to ensure

fair comparison with the DAY G (MGPM) approach which uses GPM as the

underlying optimization algorithm. Integrating DAY G to into other optimization

approaches is scope for future work.

In addition to these three methods, we also use a fourth method called IDEAL,

which serves as the baseline case for performance evaluation of these algorithms.

The IDEAL method takes all of the constraints discovered in DAY G and uses

GPM to solve theMAXFLOW problem. The IDEALmethod is “ideal” because

it does not incur any constraint discovery overhead (a priori or dynamic), and

the number of constraints is the minimum of the other three methods. Thus,

the performance of the other three algorithms in terms of run-time or memory

requirement, when using an active-set strategy (GPM), cannot exceed that of the

IDEAL method.

All experiments were conducted using MATLAB 7.5 (R2007b). To compute

the MWC of the UDG in LCONSTR, the C implementation provided by CLI-

QUER [cli] was cross-compliled to be used with MATLAB. However, CLIQUER

does not implement MAXWTCLIQUE, which is the MWC algorithm meant for

UDGs (from [BCD90]); instead it is an efficient general-purpose MWC computa-

tional tool. We use CLIQUER because the implementation of MAXWTCLQUE

was not available, and the implementation required considerable programming ef-
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fort. In any case, for UDGs, it is expected that MAXWTCLIQUE will perform

better than the algorithm in the CLIQUER software. The MGPM was imple-

mented by modifying the linprog and qpsub functions in MATLAB’s optimization

toolbox. For CLIQUDG, the MATLAB implementation provided by the authors

in [GWG05] was used. For RAND, we wrote our own implementation in MAT-

LAB based on the algorithm described in [JPPQ03]. The experiments were run on

a machine running CentOS R5 Linux, with a Intel(R) Xeon(TM) CPU 2.66GHz

processor and 4 GB of RAM.

For performance metrics, ideally, we would like to compare the total time-

complexity and memory requirements of the entire optimization for each of these

methods. Unfortunately, as is the case with most optimization procedures, the

time-complexity of GPM is not known, i.e., the total run-time cannot be bounded

as a function of input size. Thus, we resort to comparing actual measurements of

run-time instead of time-complexities. It has to be emphasized that when deal-

ing with run-time measurements, the absolute numbers do not allow meaningful

interpretation. However, the relative orders of magnitude of the measurements is

a good indicator of relative algorithm efficiency for comparison purposes.

The performance metrics under consideration are constraint discovery time

(CDT), total run-time (TRT), and number of constraints (NC), compared against

input size (number of nodes). Since each constraint is represented in vector form

(a), the amount of memory required to represent any given constraint is a constant

for a given topology under all schemes, and the total amount of memory required

to represent the constraints can be directly derived from NC.

We solved the MAXFLOW problem in two types of topologies - grid topology

and random topology. In the grid topology of size k, k2 nodes are arranged in
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the form of a k x k grid. The source and sink were placed at diagonally opposite

sides of the grid. The random topology was constructed by distributing nodes

randomly in a 2000m x 2000m area. To ensure a connected (non-partitioned)

network, the following procedure was adopted:

1. Place the source node at the location (0, 0), which corresponded to one of

the corners of the simulation area.

2. For every node u to be placed, pick a point (X, Y ) at random, where X, Y ∼

U [0, 2000]. If duv ≤ TR for some v that has already been placed, then

it implies that the (X, Y ) ensures that node u is connected to the network,

and is a valid location for node u (connectivity criterion). If any (X, Y ) does

not satisfy connectivity criterion, discard it and pick new (X, Y ). Repeat

procedure of discarding and picking new points as many times as necessary

until connectivity criterion is satisfied for node u.

3. Before placing the sink (last) node, the node v that is farthest from the

source node is identified. The sink node is placed randomly within TR of

node v. This step introduces a bias towards longer hop lengths as opposed

to shorter hop lengths. Longer hop lengths are desirable to study the effects

of a multi-hop path.

The communication range (TR) of the nodes was taken to be 250m for all

experiements. The experiments were conducted for two interference patterns:

CR = 250m and CR = 550m, leading to IR = 500 and IR = 800m. For IR = 800m,

the interference area is more than 2.5 times the area when IR = 500m, thus

potentially including more interfering nodes (and links). That is, the maximum
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(and average) node neighborhood degree (∆) in the interference UDG is higher

with high probability.

5.4.1 Grid Topology

The MAXFLOW problem was solved in grids of sizes 3, 5, 7, 9 and 11. Ad-

jacent nodes in the grid are within communication range of one another (adjacent

node distance = 200m), while diagonally opposite nodes are not. All methods

converged to the same optimal solution for a given grid size and interference

pattern. For RAND, the MAXEFFORT heuristic used seemed sufficient to

capture all the required constraints. For CLIQUDG, no super-maximal cliques

were discovered, so the cliques discovered were actual maximal cliques.

For IR = 500m, Fig.5.2a compares the total number of constraints (NC) dis-

covered by each method, Fig.5.2c compares the CDT and Fig.5.2e compares the

TRT for each method. Note the log scale on the vertical axis of each plot.

DAY G consistently discovers the least number of constraints, and hence re-

quires the least amount of memory, while RAND discovers roughly twice the

number of constraints than DAY G. While the number of constraints discovered

in CLIQUDG is more than one order of magnitude larger when compared to

DAY G, it performs the best in terms of CDT. CLIQUDG has a lower CDT

than DAY G because CLIQUDG is executed only once to discover all the con-

straints, while DAY G has to execute LCONSTR every time the optimization

migrates to a newer point. As noted in [Lue84], in rare cases, the GPM optimiza-

tion procedure might “zigzag”, leading to an excessive number of executions of

the LCONSTR procedure, and thus unacceptable CDT. RAND shows the high-

est CDT because of the large number of iterations required for clique discovery.
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(a) NC for IR = 500m (b) NC for IR = 800m

(c) CDT for IR = 500m (d) CDT for IR = 800m

(e) TRT for IR = 500m (f) TRT for IR = 800m

Figure 5.2. Performance Plots for Grid Topology
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However, it is apparent from the NC results that not every iteration of RAND

produces a new constraint. CLIQUDG outperforms RAND in CDT because the

algorithm in CLIQUDG is highly tuned and specific to UDGs while RAND is

more general-purpose. For TRT performance, as expected, the IDEAL method

has the lowest value for all scenarios, except for grid size of 3, where CLIQUDG

is the lowest. For grid size of 3, CLIQUDG seems to benefit from having a larger

number of constraints than IDEAL and quickly discovers the optimal solution.

CLIQUDG and DAY G show similar TRT values, which is surprising because the

CDT in CLIQUDG is significantly lower when compared to DAY G. However,

the CDT is only a small fraction of TRT, which significantly de-emphasizes the

CDT gains of CLIQUDG over DAY G. The TRT in RAND exceeds the other

methods by at least 0.5 orders of magnitude for all cases.

For IR = 800m, Fig.5.2b compares the total number of constraints (NC) dis-

covered by each method, Fig.5.2d compares the CDT and Fig.5.2f compares the

TRT for each method. The NC for DAY G and RAND shows little variation

from IR = 500m, while the NC for CLIQUDG shows a significant increase

when compared to IR = 500m, and differs from the other two methods by more

than 2 orders of magnitude. This represents significant memory requirement for

CLIQUDG when compared to the other methods. The NC in CLIQUDG is

higher in IR = 800m due to a higher value maximum node degree ∆ (number of

cliques = O(m∆2)). The CDT and TRT trends are similar to what was observed

for IR = 500m. Overall, the CDT in IR = 800m for all three methods is higher

when compared to their respective values in IR = 500m. The TRT values for all

three methods for IR = 800m show a slight increase when compared to their re-

spective values in IR = 500m. However, the separation in TRT between (DAY G,
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IDEAL) and (RAND, CLIQUDG) is higher in IR = 800m when compared to

IR = 500m

Overall, the grid topology results are very favorable for DAY G. The DAY G

comfortably outperforms RAND in all aspects. DAY G also shows a slightly

better TRT when compared to CLIQUDG, yet consuming much less memory

(smaller value of NC). DAY G also shows very good scalability with respect to

memory as can be seen from the NC plots for the two interference patterns.

The lower NC value in DAY G does not translate to lower CDT, as can be seen

from the CDT plots. The higher CDT value is due to repeated invocation of

LCONSTR, and each invocation of LCONSTR may not result in new constraints

being discovered. Since NC only counts unique constraints discovered, the low

value of NC in DAY G seems to corroborate the intuition behind DAY G that the

most dominant cliques hop around a small subset of cliques. This also implies

that significant savings in CDT can be realized, if one can reduce the number

of “wasteful” invocations of LCONSTR, i.e., invocations of LCONSTR that do

not lead to discovery of new constraints. This is potential for future work.

5.4.2 Random Topology

The total number of nodes in the random topology was varied as 20, 40, 60,

80 and 100, and each data point was computed as a mean over 10 simulation

runs. Overall, for both IR = 500m and IR = 800m, the results followed similar

trends as observed for the grid topology. DAY G showed the smallest value for

NC when compared to RAND and CLIQUDG, leading to substantial reduction

in memory usage for both IR values. The NC of CLIQUDG was at least 2 orders

of magnitude higher than RAND and DAY G, thus requiring very high amounts
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of memory, which limited the scalability of that method.

For IR = 500m, CLIQUDG was the fastest in terms of CDT, but the overall

solution time was quite similar to DAY G and IDEAL. For CLIQUDG and

DAY G, the CDT is a small fraction of the TRT, and thus the gains of CLIQUDG

over DAY G w.r.t CDT is only minimal. For RAND with node counts of 20, 40

and 60, the time taken to execute the optimization algorithm (GPM) is similar

to the time taken for the other methods; however the CDT is high for RAND,

which leads to a higher TRT when compared to the other methods. For node

counts of 80 and 100, the TRT in RAND is comparable to the other methods.

For IR = 800m, the results are very favorable to DAY G. As before, DAY G

showed lower NC values than CLIQUDG and RAND. DAY G also exhibited the

smallest CDT when compared to the other two methods, followed by CLIQUDG

and RAND, in that order. The TRT values were quite similar for CLIQUDG

and RAND, but were higher than DAY G and IDEAL by at least 0.5 orders of

magnitude.

A significant difference with the random topology as compared to the grid

topology is that it is very difficult to “verify” the optimal solution for each prob-

lem. However, the IDEAL, DAY G and RAND methods always converged to the

same solution. On the other hand, the solution from CLIQUDG was either equal

to (majority of the cases) or less than the optimal solution from DAY G. This

is consistent with the expected behavior because CLIQUDG might sometimes

discover super-maximal cliques, which may result in a feasible, but sub-optimal

solution. The sub-optimality is a result of having one or more super-maximal

cliques as part of the active set. Table 5.1 shows the average number of super-

maximal cliques discovered by CLIQUDG for the random topology. As we can
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(a) NC for IR = 500m (b) NC for IR = 800m

(c) CDT for IR = 500m (d) CDT for IR = 800m

(e) TRT for IR = 500m (f) TRT for IR = 800m

Figure 5.3. Performance Plots for Random Topology
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see, the number of super-maximal cliques increases as the node (link) density in-

creases. Overall, the impact of super-maximal cliques is only moderate in the cases

we investigated. However, this need not be true for other optimization problems

that use CLIQUDG for constraint discovery.

Table 5.1. Average Number of Super-Maximal Cliques in
CLIQUDG for the Random Topology

Nodes = 20 Nodes = 40 Nodes = 60 Nodes = 80 Nodes = 100
IR = 500m 2.7 38.7 163.4 348.4 437.0
IR = 800m 0.4 45.7 345.2 1480.1 2360.8

5.4.3 Miscellaneous

Here, we refer to the memory requirement as the amount of memory required

to store the inequality constraints, which can be computed as p x q x r, where p

is the number of inequality constraints, q is the number of optimization variables,

and r is the amount of memory (in bytes) required to store one entry in the

inequality constraint matrix. For the single flow MAXFLOW problem (Fig.2.9),

the number of variables in the problem is l + 1, where l is the sum of number of

links in the communication UDG. It has to be noted that changing the interference

pattern (from IR = 500m to IR = 800m) does not impact the number of variables

(q) in the optimization formulation. However, it does change the interference

UDG and increases the number of nodes that could form a clique, leading to a

larger number of unique constraints discovered. Thus the number of variables is

purely a function of topology, while the number of constraints is impacted by both

the topology and interference pattern. Fig. 5.4a compares the mean number of

interference links for the random topologies generated across the two interference

patterns. Note that the number of communicating links in each case equals the
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number of interfering links in the case where TR = IR = 500m.

It also has to be noted that the number of variables (q) is also influenced by

the optimization algorithm used. The GPM does not require slack or surplus

variables, and thus does not artifically inflate the problem size. For example, the

Simplex method [Dan51], on the other hand, converts all inequality constraints

into equality constraints by adding slack or surplus variables (one variable per

constraint). Observe that the number of constraints in network flow problems

in MHWNs typically outnumber the number of variables. The Simplex method

requires around r.p.(p+q) bytes of memory. Figures 5.4b and 5.4c compare for each

method (DAY G,RAND,CLIQUDG) the amount of memory required for each

random topology considered in the previous section, assuming r = 1. In addition,

it also compares the amount of memory that would have been required for the

Simplex method for RAND and CLIQUDG (computed from above expression).

We only show plots pertaining to random topologies in this section, as memory

scaling was not an issue with the grid topology experiments.

From Figures 5.4b and 5.4c, the memory savings due to DAY G are abundantly

clear, closely followed by RAND. Again, note the log scale on the Y-axis. It can

also be concluded that the Simplex method may not be a suitable method to solve

flow problems for MHWNs while using CLIQUDG. The large-scale method uses

lipsol (linear interior-point solver) that artifically inflates the number of variables

to convert an inequality constrained problem to a purely equality constrained one.

While RAND seems to have performed comparably to DAY G w.r.t memory

requirements, it is important to note that this is a direct consequence of using the

node-level interference UDG model instead of the link-level model. If the link-

level model had been used, then RAND required significantly higher memory
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(a) Mean Number of Interfering Links (b) Memory Requirement (IR = 500m)

(c) Memory Requirement (IR = 800m)

Figure 5.4. Memory Requirements for Random Topology

and run-time to complete execution. This is one of the advantages of using the

UDG-based graph model of representing MHWNs.

While the GPM scaled well with problem size, we observed that it was the

slowest in terms of execution time when compared to the Simplex method or large-

scale optimization methods in MATLAB (for problems that completed execution).

Further investigation revealed that the GPM reached the vicinity of the optimal

point very quickly, but spent a lot of iterations checking for optimality conditions

(deleting constraints from the active set). We suspect that this phenomenon
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was due to the degeneracy in the optimization variables i.e. a large number of

the variables had an optimal value of 0. A value of 0 for any variable xi will

“activate” the inequality corresponding to the non-negative constraints (xi ≥ 0).

A majority of the “wasted” iterations were perhaps spent adding and deleting

these constraints from the active set. Further investigation into this phenomenon

and methods of algorithm speed-up will be part of future work.

5.5 Summary

In this chapter, we developed the discover-as-you-go (DAY G) method of for-

mulating capacity constraints to solve flow-related optimization problems in MH-

WNs. The DAY G method formulated L-capacity constraints during the opti-

mization procedure in contrast to conventional methods that require formulating

constraints a priori. We integrated the DAY G approach into the gradient projec-

tion method (GPM) of optimization to obtain the modified gradient projection

method (MGPM). We then compared the run-time and memory requirements

of DAY G with some existing methods (RAND and CLIQUDG) by solving the

MAXFLOW problem using each of these methods in various grid and random

MHWN topologies. For each of these topologies, we varied the number of nodes

in the network and interference model parameters and compared the results ob-

tained in each of these cases. Our results showed that in almost all of the cases,

DAY G demonstrated superior performance in terms of run-time and memory

requirements when compared to the other methods considered.

104



Chapter 6

Conclusions and Future Work

6.1 Conclusions

One of the major contributions of this dissertation is the introduction of a new

concept in networking called the investment function, the development of which

will, we believe, serve as a potent tool to devise service differentiation algorithms

to address the unique resource allocation and utilization challenges in MHWNs.

We demonstrated the effectiveness of this tool by utilizing it to improve multi-

hop fairness in multi-hop wireless networks, in addition to improving network

utilization efficiency. Through our simulations, we demonstrated two of the many

ways that the investment function can be used for better network performance.

Our TCP and UDP simulation results with a grid topology indicate that the

investment function can provide substantial improvement in throughput and delay

fairness properties across multiple hops in addition to substantial reduction in

network wastage for UDP flows.

We noted that for optimal investment function definition and service differen-

tiation algorithm design, it might be essential to solve network flow problems in
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MHWNs. The shared nature of the wireless medium significantly complicates fo-

rumulation of the network-imposed global capacity constraints for MHWNs, and

thus the optimization problem itself. To overcome this, we have developed an

efficient optimization framework for solving network flow problems in MHWNs.

As a first step, we modeled the MHWN using a UDG. We observed that under

an optimal transmission scheduling scheme, the interference value is given by the

chromatic number of the UDG and is very hard to compute. We showed through

an empirical study that the clique number, which can be computed in polyno-

mial time for UDGs, can be used as an excellent approximation for the chromatic

number (interference) value.

We noted that while the approximation enabled in computing the span M

of the optimal schedule in polynomial time, it did not help in formulating the

global capacity constraints. Hence, we developed the notion of Local or L-capacity

constraints that possessed similar properties as the global capacity constraints. We

demonstrated that the L-capacity constraints can be forumlated in linear form in

polynomial time, and thus can be used in lieu of the global capacity constraints.

Observing that the number of capacity constraints in the network flow prob-

lems in MHWNs could be exponentially many, the second part of our study per-

tains to constructing an efficient constraint formulation method. We leveraged the

accurate polynomial-time interference approximation algorithm (LCONSTR) to

propose the Discover-as-you-go (DAY G) approach of discovering the constraints,

which discovers constraints only as needed in a dynamic fashion. This is in con-

trast to existing methods that list a large subset of the constraint set a priori.

Through a rigorous set of experiments, we show that our method is computation-

ally very efficient, and requires significantly less memory than existing methods.
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This makes our method very scalable with the problem size.

6.2 Future Work

There are many interesting research problems that we would like to solve

in the future. First, we would like to formulate the optimization problem for

the sample network objective discussed in section 2.3 (improving multi-hop flow

fairness and efficiency of network utilization), which is a very challenging task

in itself. Based on the results of the optimization algorithm, we would then like

to re-visit (and possibly re-design) our sample service differentiation algorithm

(section 2.3.1) and the associated investment function definition. We then would

like to evaluate the extent of sub-optimality in our algorithm design based on

probabilistic and simulation tools. Given the flexibility of the network investment

function, we plan to research its various forms and its application to different

scenarios such as provision of QoS, distributed fair bandwidth allocation, etc. We

would like to devise a distributed scheme that allocates flow-level and node-level

bandwidth in a multi-hop wireless network. Another avenue for future work is to

study the suitable form of investment function to reduce TCP bias towards 1-hop

flows. We also plan to study the fairness-priority tradeoff, by having a larger

separation between the user investment factors.

We would like to devise an augmented UDG model that overcomes the current

limitations of using a UDG model (discussed in section 3.2.1), and still retains

the desirable properties of a UDG model. Currently, the DAY G has been inte-

grated with GPM , and we identified some shortcomings of this approach. We

would like to investigate integration of DAY G into other more efficient optimiza-

tion methods such as the log-barrier method [BV04], so that the optimization
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is not only memory efficient, but also much faster than MGPM . We would

also like to compare our method with existing non-differentiable methods of op-

timization (NDO) [EGV01], and explore methods of developing highly efficient

MHWN-specific algorithms for a variety of generalized network flow problems in

MHWNs (such as Ford-Fulkerson [LD56] for MAXFLOW in wired networks).
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