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ABSTRACT 

The articulation of the temporomandibular joint (TMJ), or the jaw joint, is one of the 

most complex and least studied joints of the musculoskeletal system.  Painful 

disorders of the TMJ, known as temporomandibular disorders (TMDs), have 

considerable prevalence with over 10 million patients in the United States alone, 

which may severely interfere with everyday activities like chewing, yawning, talking, 

and laughing.  Within the TMJ, the inferior joint space, which includes the 

mandibular condyle, typically sustains the greatest damage in TMDs.  The objective 

of this dissertation was to characterize the condylar cartilage biomechanics, and to 

explore novel routes to fabricate integrated gradient-based osteochondral constructs.  

Pioneering efforts were made toward understanding structure-function correlations 

for the condylar cartilage.  A greater stiffness of the condylar cartilage in the 

anteroposterior direction than in the mediolateral direction under tension was 

observed, corresponding to the never before seen anteroposterior organization of 

collagen fibers.  A positive correlation between the thickness and stiffness of the 

cartilage under compression suggested that their regional variations may be related 

phenomena caused in response to cartilage loading patterns.  Beyond these vital 

biomechanical characterization efforts, novel microsphere-based gradient scaffolds 

were developed to address functional osteochondral tissue regeneration.  Novel 

microsphere sintering routes, using ethanol as an anti-solvent or sub-critical CO2 for 

melting point depression, were established to construct microsphere-based scaffolds.  

A technique to create opposing macroscopic gradients of encapsulated growth factors 
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using poly(D,L-lactide-co-glycolic acid) microspheres was developed, and in vitro 

studies with human umbilical cord stem cells provided promising results for 

osteochondral tissue regeneration.  By encapsulating nanoparticles in the 

microspheres, a proof-of-concept was provided for creating functional scaffolds with 

a gradient in stiffness.  This dissertation lays down the foundation for a combined 

growth factor-stiffness gradient approach that could lead to a translational-level 

regenerative solution to osteochondral tissue regeneration with extended applications 

in other areas, including tissue engineering of heterogeneous/interfacial tissues. 
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CHAPTER 1: Introduction 
 

 
The overall objective of this dissertation was to characterize the condylar 

cartilage biomechanics, and to explore novel routes to fabricate integrated functional 

osteochondral constructs.  In the characterization phase, the objective was to 

determine and model the tensile and compressive properties of the mandibular 

condylar cartilage.  The next phase was then to develop integrated osteochondral 

scaffolds and evaluate them for osteochondral tissue regeneration.  The 

characterization stage provided important mechanical property data that were largely 

missing from the literature, providing a ‘gold standard’ reference, which may serve as 

the design criteria for future condylar cartilage and mandibular condyle tissue 

engineering studies.  In the scaffold development stage, a combination of 

microparticle technology and unconventional microsphere-sintering techniques (i.e., 

ethanol sintering, sub-critical CO2 processing) were applied toward the fabrication of 

seamless gradient scaffolds containing opposing gradients of encapsulated factors.  

The scaffolds were evaluated for their tissue engineering performance in vitro, and 

important steps were taken toward the functional regeneration of interfacial tissues by 

introducing macroscopic stiffness gradient scaffolds.  To achieve the overall 

objective, three Specific Aims were designed: 

1) To characterize the mechanical properties of the condylar cartilage.  This aim was 

accomplished via biomechanical testing under tension and compression, and 

viscoelastic modeling.  It was hypothesized that the condylar cartilage would 
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exhibit a greater stiffness in the anteroposterior direction than in the mediolateral 

direction under tension due to collagen fiber orientation, and would exhibit a 

regional heterogeneity correlated with the regional cartilage thickness under 

compression.  Uniaxial tensile testing was performed in two different directions 

with three regions per direction, and unconfined compression was performed for 

five different regions.  

2) To develop integrated osteochondral constructs using novel microsphere-sintering 

techniques.  This aim consisted of two phases, which were performed in parallel.  

One phase consisted of the development of a novel gradient scaffold fabrication 

technology, which was utilized to fabricate microsphere-based scaffolds using an 

ethanol sintering technique.  In phase two, an alternate method of microsphere 

sintering – CO2 processing at sub-critical conditions – was developed and refined 

for the fabrication of microsphere-based scaffolds.  Using microspheres 

encapsulated with model factors or nanoparticles, it was hypothesized that the 

sintering techniques could be applied to fabricate microsphere-based scaffolds 

that possess opposing gradients of encapsulated growth factors or a gradient in 

scaffold stiffness, and a CO2 processing method would provide a cytocompatible 

route to fabricate such scaffolds.  

3) To evaluate the integrated osteochondral constructs for tissue regeneration in 

vitro.  To accomplish this aim, a 6 wk in vitro study was performed using bone 

marrow stromal stem cells with the signal gradient scaffolds designed in Specific 

Aim 2, and validated with a biomechanical design criterion developed in Specific 
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Aim 1.  Constructs containing opposing gradients of bone and cartilage promoting 

growth factors were compared against a control group having no growth factors.  

The hypothesis was that the gradient scaffolds would outperform blank scaffolds 

for in vitro tissue regeneration 

The organization of the remaining chapters is as follows: 

Chapters 2 and 3 serve to provide background information, where the 

literature pertinent to the subsequent chapters is comprehensively reviewed.  In 

Chapter 2, a review of the biomechanical properties of the condylar cartilage is 

provided, highlighting its structure-function correlations in relation to the TMJ disc, 

citing the deficiencies in the mechanical characterization data, and delineating its 

importance for the TMJ finite element modeling community.  Chapter 3 provides a 

rationale to the tissue engineering community for the incorporation of signal and 

biomaterial-based gradients in scaffold design, where several gradient generation 

methodologies from different areas of scientific research are brought together and 

presented to address biomimetic, functional, and/or interfacial tissue regeneration.  

After the background information is established in Chapters 2 and 3, Chapters 4 – 9 

address the experiments performed to satisfy the aforementioned Specific Aims.   

Chapters 4 and 5 serve to address Specific Aim 1.  Chapter 4 corresponds to 

the tensile testing of the native condylar cartilage, where stress relaxation and 

viscoelastic modeling were performed.  Chapter 5 constitutes the regional 

compressive characterization of the native condylar cartilage under high strain 

compression, followed by viscoelastic modeling.   
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Specific Aim 2 is addressed in Chapters 6–8.  In Chapter 6, a scaffold 

fabrication set-up was designed and built that allowed controlled positioning of the 

microspheres along the axis of the cylindrical molds.  In Chapter 7, an attempt was 

made to mimic the mechanical properties of the interfacial region.  Using 

microspheres encapsulating nano-phase filler materials (i.e., nano-phase CaCO3 or 

TiO2), initial steps were taken toward the development of stiffness gradient scaffolds 

that may allow functional regeneration of interfacial tissues, in general.  In Chapter 8, 

a novel cytocompatible technique was developed to produce cell-loaded shape-

specific scaffolds and patches using a single-step sub-critical CO2 sintering of 

microspheres in the presence of cells at near-ambient temperatures.   

Chapter 9 focuses on Specific Aim 3, which involved in vitro osteochondral 

tissue engineering, where bone marrow stromal stem cells (BMSCs) were induced 

with simultaneous osteogenesis and chondrogenesis with opposing gradients of bone 

morphogenic protein (BMP)-2 and transforming growth factor (TGF)-β1, 

respectively.   

Chapter 10 is the conclusion, where findings are summarized in a global 

context and exciting directions that may be pursued in the imminent future are 

discussed. 
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CHAPTER 2: Biomechanical Properties of the Mandibular 
Condylar Cartilage and Their Relevance to the TMJ Disc*

                                                           
*Chapter submitted to J Biomech as Singh and Detamore, “Biomechanical Properties of the 
Mandibular Condylar Cartilage and Their Relevance to the TMJ Disc”, September 2008. 

 
ABSTRACT 

 Mandibular condylar cartilage plays a crucial role in temporomandibular joint 

(TMJ) function, which includes facilitating articulation with the TMJ disc, reducing 

loads on the underlying bone, and contributing to bone remodeling.  To improve our 

understanding of TMJ function in normal and pathological situations, accurate and 

validated three-dimensional (3-D) finite element models (FEMs) of the human TMJ 

may serve as valuable diagnostic tools as well as predictors of thresholds for tissue 

damage resulting from parafunctional activities and trauma.  In this context, 

development of reliable biomechanical standards for condylar cartilage is crucial.  

Moreover, biomechanical characteristics of native tissue are important design 

parameters for creating functional tissue-engineered replacements.  Towards these 

goals, biomechanical characteristics of the condylar cartilage have been reviewed 

here, highlighting the structure-function correlations.  Structurally, condylar cartilage, 

like the TMJ disc, exhibits zonal and topographical heterogeneity.  Early structural 

investigations of the condylar cartilage have suggested that the tissue possesses a 

somewhat transversely isotropic orientation of collagen fibers in the fibrous zone.  

However, recent tensile and shear evaluations have reported a higher stiffness of the 

tissue in the anteroposterior direction than in the mediolateral direction, 
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corresponding to an anisotropic fiber orientation comparable to the TMJ disc.  In a 

few investigations, condylar cartilage under compression was found to be stiffer 

anteriorly than posteriorly.  As with the TMJ disc, further compressive 

characterization is warranted.  To draw inferences for human tissue using animal 

models, establishing stiffness-thickness correlations and regional evaluation of 

proteoglycan/glycosaminoglycan content may be essential.  Efforts directed from the 

biomechanics community for the characterization of TMJ tissues will facilitate the 

development of reliable and accurate 3-D FEMs of the human TMJ.  

 

INTRODUCTION 

 The mandibular condyle, the temporomandibular joint (TMJ) disc and the 

fossa-eminence complex together form the two-compartment articulation of the 

TMJ.1  Disorders of the TMJ, known as temporomandibular disorders (TMDs), have 

considerable prevalence with 16–59% of the population having symptoms and 33–

86% having clinical signs.2  According to the diagnostic classification system of the 

American Academy of Orofacial Pain (AAOP), TMDs are subcategorized in two 

primary classes: articular and muscle-related disorders, based on their anatomic 

origin.3  Biomechanics as a field is important for the TMJ for two primary reasons.  

First, biomechanical dysfunctions (such as clicking, locking, or lateral deviation in 

mouth opening) are symptoms that generally accompany many TMDs of articular 

origin.  The other reason, of special interest to the clinical community, is that 

biomechanics is a likely contributor in the development of such TMDs, e.g., 
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biomechanical alterations resulting from parafunctional behavior or trauma that may 

lead to the development of or exacerbate an existing pathological condition.  In other 

words, we are interested in TMJ biomechanics from both the cause and effect 

perspectives in relation to TMDs. 

 What kinds of forces are necessary to irreparably damage the tissues in the 

TMJ, and what are the associated magnitudes and durations of these forces?  

Fortunately, a growing number of researchers are building three dimensional (3-D) 

finite-element models (FEMs) of the human TMJ to answer this question.  A major 

limitation with such models pertains to the inclusion of material properties that do not 

represent the constituent tissues, which may render them inaccurate.  In this context, 

development of reliable biomechanical standards for TMJ cartilaginous tissues, 

including the mandibular condylar cartilage, will be a useful input to further the 

development of 3-D FEMs of the human TMJ.  Among biomechanical studies of the 

cartilaginous tissues of TMJ, the TMJ disc has by far received the most attention (see 

reviews by Detamore and Athanasiou4, 5).  This review primarily focuses on the 

mandibular condylar cartilage, an articular cartilage that is distinct from the articular 

hyaline cartilages of appendicular skeleton,6 specifically inspecting independent 

evaluations of biomechanical properties of the tissue as a reflection of the known 

extracellular matrix (ECM) organization, and providing recommendations to validate 

critical structure-function correlations.  A brief perspective on 3-D FEMs of the 

human TMJ is also provided, highlighting potential applications of such 

computational models.  Highly accurate and validated models would be valuable tools 
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for clinical diagnosis of TMJ disorders, and could be useful for evaluating the 

implications of parafunctional activity (e.g., bruxism) and trauma as a means to 

substantiate preventive measures for TMJ disorders. 

  

BIOMECHANICAL PROPERTIES OF THE CONDYLAR 

CARTILAGE AS A REFLECTION OF ECM ORGANIZATION  

 Condylar cartilage is a viscoelastic tissue that exhibits characteristic responses 

of creep, stress relaxation and hysteresis.7-9  The tissue functions in a complex force-

field, experiencing simultaneous compression and shear.10  The cartilage ECM is 

heterogeneous both topographically and zonally, reflecting its versatility in 

responding to varying functional demands.  Conflicting views remain for the schemes 

of zonal delineation and terminologies used to describe the zone-based histological 

architecture of the condylar cartilage.11, 12  For a comparative analysis, the commonly 

used zonal classification of four zones has been used in this review: fibrous zone, 

proliferative zone, mature zone, and hypertrophic zone, categorized in a distal-

proximal manner relative to the subchondral bone of the condyle (Fig. 2.1).  

Furthermore, to compare the regional variations in properties, we have divided the 

condylar cartilage anteroposteriorly into three regions (anterior, superior and 

posterior), and mediolaterally into three sections (medial, central and lateral).  Major 

ECM components discussed in the manuscript are collagen (types I and II) and 

proteoglycans.  Proteoglycans are glycoproteins, having a long core protein with at 

least one associated anionic glycosaminoglycan (GAG) side-chain.13, 14  Among 
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primary GAG molecules in this context are chondroitin sulfate (CS), keratin sulfate 

(KS), and dermatan sulfate (DS).  Large chondroitin sulfate proteoglycans (CSPGs), 

such as aggrecan (with CS and KS side-chains) and versican (with CS side-chains 

exclusively), contain several GAG moieties.  In contrast, dermatan sulfate 

proteoglycans (DSPGs) are small proteoglycans with one (decorin) or two (biglycan) 

GAG side-chains.  Biomechanical characterization studies of the condylar cartilage 

are discussed under the following two subsections – a) tension/shear, and b) 

compression, where ECM organization with respect to aforementioned major ECM 

components is discussed, followed by a synopsis of important future considerations. 

 

Tension and Shear 

Condylar cartilage experiences tensile loads primarily due to shear and 

friction produced by mandibular motion especially in the regions closer to the joint 

synovium.9  Unlike under compression, viscoelasticity of the articular cartilage under 

tension is primarily governed by the solid constituents in a relatively flow-

independent manner.15  Collagen, which forms more than 60% of the dry weight of 

condylar cartilage (in rabbits),16 is the primary ECM component responsible for the 

tensile resistance of the soft tissues.15  In the following sub-sections, tensile and shear 

properties of the condylar cartilage and collagen organization in the tissue are 

reviewed.  In addition, distribution of dermatan sulfate proteoglycans (DSPGs), 

which also play a role in the enhancement of tensile properties,4 are briefly discussed.  
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Tensile and shear evaluations 

There are four studies that have reported the tensile or shear evaluations of 

porcine condylar cartilage.9, 17-19  Specimen preparation-wise, cartilage specimens 

were tested in only one study,9 while cartilage-bone specimens were utilized in the 

others.  Tensile evaluations confirmed the viscoelastic nature of the tissue.9, 17  

Interestingly, the directional differences (anteroposterior vs. mediolateral) in the 

elastic moduli were found to be statistically significant in both tensile and shear 

testing,9, 17, 18 where a higher stiffness in the anteroposterior direction than in the 

mediolateral direction was reported.  Intuitively, it may indicate a relationship 

between shear and tension somewhat analogous to a cause and effect relationship, 

respectively.  So far, data for the failure properties,17 stress relaxation behavior9 and 

shear dynamics of porcine condylar cartilage18, 19 are available, which are 

summarized in Table 2.1.  

While these pioneering efforts certainly provide valuable property data, the 

characterization of tensile and shear properties is not complete.  To provide specific 

examples: 1) strain-rate dependent behavior of the condylar cartilage under tension 

remains unexplored, as the tensile properties of the tissue were measured at fixed 

strain-rate values; 2) failure properties of the tissue were not determined at 

physiological temperature ;17 3) viscoelastic creep for the tissue under tension has not 

been tested yet; 4) human tissues have yet to be tested;  and 5) shear has so far been 

evaluated in only one of the several possible jaw configuration (i.e., at a constant 

compression level of 10% strain; corresponding to maximum clenching, as the 
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authors noted).18, 19  In addition, considering parafunctional activities, where loading 

conditions are different than those under normal function, a broader range of test 

parameters (i.e., load levels, strain rates, frequencies) that may include levels of 

physiological extremities may be desired.  Further testing is required to fully 

characterize the tensile and shear properties of the tissue, including the probing of 

regional and zonal differences in the tissue.  

 

Organization and distribution of collagen 

With regard to the collagen fiber organization and orientation, light and 

transmission electron microscopic observations of condylar cartilage from primate 

and rodent models have indicated that the cartilage possesses a zonal heterogeneity.  

At the level of individual collagen fibrils, the average diameter of the fibrils was 

observed to vary from one zone to another (average diameters ~100 nm).20  Table 2.2 

summarizes available data for the fiber/fibrils diameters.  Regarding orientation, 

previous microscopic structural investigations of the condylar cartilage indicated that 

the collagen fibers in the fibrous zone appear to run predominately parallel to the 

surface but not to each other, forming sheet-like structures,20-24 indicating a 

transversely isotropic fiber orientation.  However, in a recent macroscopic 

investigation of the condylar cartilage, an anisotropic fiber orientation in the fibrous 

zone of porcine condylar cartilage was observed via polarized light, where the 

predominant orientation of collagen fibers was in the anteroposterior direction,9 

which coincides well with the mechanical anisotropy of the tissue.9, 17  The crimped 
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state of fibers at the articular surface, as observed earlier,25 is consistent with the non-

linear stress-strain response of the tissue under continuous tensile deformation.9, 17  In 

contrast, the mature and hypertrophic zones exhibited an arrangement of randomly 

oriented fiber bundles,20, 21 suggesting an isotropic distribution of fibers.  The 

proliferative zone contained mostly scattered individual fibrils and a few collagen 

fiber bundles.20, 22  Elastic fibers were also found to be present in the rat condylar 

cartilages.26  These observations suggest that the tissue has a bi-layered arrangement 

in terms of fiber orientation, where an anisotropic layer (proximal to the joint 

synovium) transitions into an isotropic layer (proximal to the subchondral bone).  The 

cartilage overall is expected to exhibit anisotropic mechanical characteristics, the 

extent of which may primarily depend on the thickness ratio of the fibrous zone to the 

entire cartilage. 

It is known that tensile forces correspond more to fibroblastic activity, leading 

to the production of collagen type I, while compressive forces tend to be correlated 

with chondrocytes and the increased production of collagen type II and large 

chondroitin sulfate proteoglycans.27  Therefore, the distribution of the primary 

collagen types (I and II) in the condylar cartilage may reflect 

biomechanical/functional requirements of the tissue.28  Major collagen types specific 

to condylar cartilage are summarized in Table 2.2.  Immunohistochemical evidence 

suggests that collagen type I, although distributed throughout the condylar cartilage, 

is present in considerably higher concentrations in the fibrous and proliferative 

zones.28-30  In addition, localization of collagen type I was noted in the mature and 
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hypertrophic zones of the posterior margins, which may be due to the attachment of 

this region to the tensile load bearing retrodiscal tissue, as suggested by the authors.28  

Collagen type I has also been localized in the lacunae of hypertrophic chondrocytes, 

most likely an indicative of a phenotypic change (from chondrogenic to osteogenic).20  

In contrast, collagen type II has been detected almost exclusively in the mature and 

hypertrophic zones,10, 28, 30 and to a lesser degree in the proliferative zone.31  The 

distribution of collagen types I and II may suggest tension to be the primary mode of 

loading in the fibrous zone, and compression to be the primary mode in the mature 

and hypertrophic zones, except for the posterior margins that may experience 

considerable tensile loads.  

In addition to zonal heterogeneity, regional differences in the tensile and shear 

properties, which were found to be significant for the TMJ disc,13, 32-36can be expected 

as the condylar cartilage functions in a multi-directional force field.  Although 

regional differences in tensile properties of the condylar cartilage in a given direction 

were found not to be significantly different,9 regional data for collagen content and 

degree of anisotropy may provide valuable validation. 

 

Distribution of dermatan sulfate proteoglycans (DSPGs)  

Decorin is an ECM component considered to enhance the tensile properties by 

increasing the collagen fiber diameter and modulating fibril synthesis (reviewed by 

Detamore and Athanasiou5).  A higher expression of decorin in the fibrous zone of 

the cartilage compared to other zones, as observed in rat models,37 may reflect the 
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fulfillment of the functional demand, i.e., enhancement of the tensile resistance due to 

the presence of considerably higher tensile loads.  Condylar cartilage showed no 

presence of biglycan in rat condylar cartilages.38 

 

Summary: structure-property-function correlation under tension 

In summary, these studies suggest that shear forces have a pronounced effect 

on the condylar cartilage in the fibrous zone, especially near the articular surface, as 

evidenced by the anisotropic distribution of collagen fibers, almost exclusive 

presence of collagen type I, and considerable localization of decorin.  In addition, it is 

likely that the surface of the condyle is exposed to predominately anteroposterior 

shear, which is caused by the primarily anteroposterior movement of the mandibular 

condyle and results in a preferred anteroposterior collagen fiber alignment in the 

fibrous zone,9 leading to a higher tensile and shear stiffness of the cartilage in 

anteroposterior direction.  The predominance of collagen fiber orientation in the 

anteroposterior direction has also been seen in the anatomically and functionally 

related TMJ disc.13, 32, 34, 35  Due to the animal and species differences, further 

validation may be required (e.g., investigation of collagen types in porcine condylar 

cartilage or fiber architecture in primate condylar cartilage) to make coherent and 

conclusive arguments.  Furthermore, the collagen content of the condylar cartilage, 

which has only been characterized in rodent models (Table 2.3), should be 

investigated in higher animal models such as a porcine model. 
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Compression 

Compression appears to be the primary mode of loading on the osseous 

portion of the condyle, as discovered using in vivo strain measurement at the condylar 

neck during mastication in pigs,39, 40 and deduced from the structure of the bone, 

suggesting the predominance of a somewhat superoinferior direction of forces at the 

condyle.41, 42  In the following sub-sections, compressive properties of the condylar 

cartilage have been reviewed, and comparisons to regional proteoglycan/GAG 

distribution in the tissue have been made.  

 

Compressive evaluations 

Four compressive characterization studies of the condylar cartilage are 

currently available in the literature.  Detailed descriptions of testing parameters and 

results from these compressive indentation tests are summarized in Table 2.1.  

Specimen preparation-wise, in situ testing of porcine cartilage over the intact condyle 

was performed in one study,8 while porcine/rabbit cartilage-bone sections were 

utilized in the other studies.43-45  So far, data for the creep8 and dynamic properties43-

45 are available.  The cartilage deforms more with sustained compression than with 

intermittent compression, and a higher stiffness was observed at greater loads.8  This 

phenomenon of strain stiffening under compression has also been observed with the 

TMJ disc.46  While exploring regional differences using dynamic nano-indentation 

experiments, a decrease in the stiffness (elastic moduli), average Poisson’s ratio and 

surface roughness from the anterior to the posterior side and a relatively smaller 
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decrease from the medial to the lateral side were reported, demonstrating the 

heterogeneity of the condylar cartilage.43, 44  The differences in the regional properties 

were statistically significant for 6 week old rabbits, but not for 7 day old rabbits, 

suggesting that the regional heterogeneity of the articular surface evolves with time.  

In another study, regional dynamic indentation tests of porcine condylar cartilages 

were performed by applying sinusoidal strains with a wide range of loading 

frequencies, and complex, storage (proportional to energy storage in a deformation 

cycle) and loss (proportional to energy dissipated in a deformation cycle) moduli 

were reported.45  The complex, storage and loss moduli all increased with an increase 

in frequency.  In agreement with the aforementioned nano-indentation experiments, 

the anterior region of the condyle had larger complex, storage and loss moduli than 

the posterior region (in general) at a given frequency, with the stiffness being highest 

in the anteromedial region of the four regions explored (see Table 2.1).  Interestingly, 

in our observations (unpublished data), a relationship between the stiffness and 

thickness of the regions was observed, where the average elastic modulus was found 

to increase with the thickness.  A thickness-stiffness correlation can also be gleaned 

from the study by Tanaka et al.,45 where specimens from the stiffer regions were 

generally thicker.  Validation of the thickness-stiffness correlation for the condylar 

cartilage is certainly required.  Moreover, exploration of zonal property differences 

may provide valuable information regarding zonal structure-material property 

relationship. 
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Spatial variation of proteoglycans/GAGs 

Among different zones, aggrecan, the primary proteoglycan in condylar 

cartilage, was found to be localized mainly in the mature and hypertrophic zones 

using immunohistochemical methods in porcine47 and rat10 models.  Using 

immunohistochemistry, the presence of CS-rich versican-like proteoglycans were 

detected in the fibrous and proliferative zones in porcine and rat models,38, 47 possibly 

owing to the fibroblastic38 or progenitor cell activity.47  Interestingly, 

immunohistochemical analysis of primate condylar cartilages located keratan sulfate 

and chondroitin sulfate only in the mature and hypertrophic zones, while their 

presence in the fibrous zone was not observed.30  This observation is not in accord 

with other observations38, 47 unless it is due to the differences in animal models.  

Among regions, the maximum synthesis of CS-rich proteoglycans was reported to be 

in the posterosuperior region of the rabbit condylar cartilage.48  Histochemical 

observation of the condylar cartilages of rabbits showed the amount of CS-rich 

proteoglycans in the anterior and posterosuperior regions to be higher than in the 

superior region, with the highest content in the anterior region.49  Some of the studies 

where sulfated GAG content of condylar cartilage (observed in rodent models) was 

quantified are summarized in Table 2.3 as a reference. 

Although some information about occurrence of proteoglycans is available, 

the literature lacks a comprehensive regional quantification data of proteoglycans in 

the condylar cartilage.  One limitation of the previous efforts to quantify proteoglycan 

content was the lack of thickness characterization, i.e., specimen preparation 
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protocols did not clearly indicate the methods employed to affirm the nature of the 

specimen (a cartilage section, entire cartilage or cartilage-bone).  Another important 

issue pertains to the animal models used in many of these studies.  Due to the small 

size and anatomical differences of the rodent TMJ relative to the human TMJ,50 

further quantification of these components (regional and overall) in more suitable 

animal models (e.g., porcine or primate) may be desired.  It is worth noting that 

results of biochemical assays between rats and higher animal models have also 

exhibited general inconsistencies with TMJ disc studies as well.5 

 

Summary: structure-property-function correlation under compression 

Condylar cartilage has a heterogeneous nature in terms of both structure and 

mechanics.  There are indications that the tissue may have a positive correlation 

between regional thickness and corresponding stiffness, which may imply that 

regional variations in the stiffness and thickness are related phenomena, developed in 

response to regional loading patterns.  It may also indicate that the role of the 

cartilage is to sustain a heterogeneous in vivo biomechanical environment, where 

cartilage possibly experiences higher loads in the thicker regions.  Valuable data 

regarding the thickness of human condylar cartilage are available in the literature,51-53 

and summarized in Table 2.4.  Validation of the thickness-stiffness correlation in 

humans may improve our understanding of the nature and extent of condylar loads.  If 

indeed such a correlation exists, it may have a direct influence on the FEMs of the 

human TMJ in the future, where in vivo imaging techniques will facilitate the 
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determining of material properties of condylar cartilage in a subject-specific manner.  

Regarding the structure, localization of aggrecan mainly in the mature and 

hypertrophic zones and absence from the fibrous zone supports the notion that the 

zones proximal to the subchondral bone are more hyaline-like in nature and primarily 

serve to resist the compression.  However, comprehensive regional and zonal 

quantification of proteoglycans and GAGs may be warranted to clearly establish the 

structure-property-function correlation.  A possible variation of compressive 

properties as a function of depth, also observed in knee cartilage,54 can be anticipated, 

where hyaline-like mature and hypertrophic zones would be stiffer under compression 

than the fibrous zone.  In addition, the extent of collagen fiber reinforcement, known 

to affect viscoelasticity via impeding the fluid flow that results in fluid 

pressurization,55 against compression in the condylar cartilage is required to be 

understood.  This leads to two important questions: i) is there any significant 

difference in the collagen content of the condylar cartilage compared to the other 

articular cartilages? and ii) how does the difference in the collagen architecture affect 

the fiber reinforcement and interstitial fluid flow in the condylar cartilage? 

 

A PERSPECTIVE ON 3-D COMPUTATIONAL 

RECONSTRUCTION OF THE HUMAN TMJ 

 Due to the difficulties associated with in vivo estimation of the stress 

distribution using invasive experimental techniques, e.g., strain measurement using 

strain gauge devices, which may develop/exacerbate a pathological situation, 3-D 
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TMJ computational reconstruction approaches are attractive alternatives56 (see 

reviews 57, 58).  Efforts are being made by the TMJ modeling community worldwide, 

including groups from Japan,59-63 the Netherlands,56, 64-68 Spain69-73 and 

Switzerland.74-76  These models rely on an accurate replication of in vivo conditions 

and reliable biomaterial properties of TMJ structures.  In this respect, the lack of 

universally agreed upon material properties of the condylar cartilage has been a 

limitation.  The literature shows that FEM models of the TMJ have generally either 

not included the condylar cartilage69, 70 or have incorporated only approximate 

material properties for the condylar cartilage as an isotropic elastic material62, 77 or 

hyperelastic material,68, 78 with rare exceptions, e.g., a study that incorporated 

heterogeneous material properties of the condylar cartilage obtained from a previous 

nanoindentation test.79  

 Potential applications of accurate and validated FEMs of the human TMJ are 

vast.  Such models can allow characterization of the thresholds of normal function 

and parafunction, which may help to explain the etiology of TMJ disorders.  The 

direct applications of these computational techniques are to track the 3-D motions of 

the joint and to note the distribution of the stress-fields inside the TMJ in prescribed 

situations.  These models may be used to evaluate force-fields that accompany 

different activities, e.g., talking, chewing gum, bruxism or whiplash, and to predict 

which activities might lead to tissue damage.  This would also be valuable to 

clinicians by assessing loads in the TMJ during various procedures (e.g., third molar 

extraction) as a means to evade iatrogenicity.  For surgeons, one implication could be 
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to serve as a guide to the biomechanical environment and functionality of the joint 

before and after surgery 80, for example to evaluate implant performance.  Another 

application of FEMs of the human TMJ could be in understanding the cause of 

functional adaptation and growth.  Cellular and molecular regulation effects 

associated with functional remodeling of the condylar cartilage are being explored;11, 

81 however, mechanical changes that lead to remodeling have not been well-

characterized.  3-D FEM models of the TMJ can be used to assess the changes in the 

mandibular environment and the forces experienced by the tissue, which could be 

related to the heterogeneous histological alterations that follow.  Because these 

models require only computational effort, they may be used to perform hundreds of 

thousands of cycles of patient-specific implant testing, at no material cost and with 

full-patient compliance.  Moreover, models could possibly be used to test the 

mechanical integrity required of a tissue-engineered construct.  Currently, diagnosis 

of TMJ disorders is based on clinical, radiographic and morphological evaluations.  

Patient-specific models of motion and forces are expected to add another dimension 

to diagnose TMJ patients of the future. 

 

DISCUSSION 

 The current literature for the mechanical characterization of the condylar 

cartilage is limited.  To develop reliable biomechanical standards for the tissue that 

can be utilized in the FEMs of the human TMJ, several important issues should be 

considered.  The ideal method is to determine mechanical properties by in vivo 
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biomechanical characterization in humans that can be readily applied in the FEMs.  

However, due to the relative unavailability of human tissue and possibility of 

degenerative changes in preserved cadaver tissues, a fundamental issue is which 

animal model should be regarded as ideal in lieu of the human TMJ tissues.82  

Researchers have shown growing interest in the porcine model due to the anatomical 

and functional resemblance of the porcine TMJ to the human TMJ,50, 83, 84 although 

differences do exist, e.g., in the frequency of chewing.18, 19  The model, age, gender 

and weight are all among well-known important animal selection parameters that can 

indirectly affect the biomechanical properties.  In addition to these, the loading 

history of the subject tissues is another factor that may alter the biomechanical 

properties of the tissues, as the condylar cartilage is known to undergo adaptation and 

remodeling (reflected by changes in extracellular matrix composition) following the 

changes in the stress-fields over the condyle.10, 49, 85-88  Apart from animal selection, 

another important issue is the mode of testing - in vitro or in situ?  Likely due to the 

lack of accurate in vivo stress-strain measurement techniques, most of the 

macromechanical characterization studies for the condylar cartilage have been 

performed in vitro on tissue samples isolated from the joints.  However, in situ testing 

of intact condylar cartilage may represent the in vivo conditions more closely than 

confined or unconfined compression, which may better suit finite element models of 

the TMJ.  From a computational modeling perspective, an important issue is to 

consider the activity being modeled (e.g., clenching, chewing or trauma).  Mechanical 

properties of the condylar cartilage under functional loading and parafunctional 
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loading may differ, as the tissue most likely experiences, for example, a greater level 

of strain in clenching or a considerably high strain rate in trauma compared to the 

physiological levels.  Considering such parafunctional activities, where loading 

conditions are different than those under normal function, in is important to note that 

mechanical properties corresponding to a broader range of test parameters (i.e., load 

levels, strain rates, frequencies) must be explored, which will allow the selection of 

more accurate material properties.  To determine intrinsic material properties, explain 

the mechanics and predict the tissue behavior under various conditions of loading, 

mathematical modeling using constitutive material models (such as, viscoelastic, 

biphasic or triphasic models) is usually performed.  In this respect, there is scarce 

information available in the literature with respect to the condylar cartilage, due to 

which little is currently known about the mechanical properties of the condylar 

cartilage with regard to its permeability, moduli and Poisson’s ratio.  Comprehensive 

biomechanical characterization efforts, incorporating the existing or evaluated 

knowledge about the geometry, anisotropy and heterogeneity of condylar cartilage is 

essential to develop a standard for biomaterial properties.   

 In addition to the condylar cartilage, similar characterization of other TMJ 

tissues is also desired for the development of reliable 3-D FEMs of the human TMJ.  

For example, although the TMJ disc received much attention from the FEM 

community, the tensile force-bearing retrodiscal tissue is another TMJ structure that 

we believe is important to TMJ function, and which may have a possible initiating 

role in anterior disc displacement.  The retrodiscal tissue also behaves as a 
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viscoelastic material, which has been evaluated for its tensile and compressive 

properties (Table 2.5).89-91  Characterization with regard to the plastic deformation or 

failure data of the retrodiscal tissue, which have been made available to an extent by 

only one study, would be highly relevant to modeling and better understanding of 

internal derangement and its etiology.  

 

SUMMARY 

 Condylar cartilage possesses a unique architecture with zonal and regional 

heterogeneity, reflected in its compressive biomechanical properties.  The condylar 

cartilage also exhibits anisotropy under tension, which is consistent with the primarily 

anteroposterior motion of the condyle, and suggests that the fibrous zone of the 

cartilage may be comparable in some regards to the fibrocartilaginous TMJ disc.  For 

example, both the fibrous zone of the condylar cartilage and the TMJ disc exhibit 

circumferentially and anteroposteriorly aligned collagen fibers, resulting in a tissue 

that is anisotropic under tension and shear.  In the future, further explorations of 

tensile and compressive properties of the condyle are needed, and deficiencies with 

regard to the viscoelastic and biphasic models should be addressed to determine the 

material properties of the condylar cartilage.  Although the TMJ disc5, 46, 71, 92-98 is 

more well-characterized than the mandibular condyle in terms of biomechanical 

properties, more extensive data under a wide variety of conditions (impact, high 

strain, degeneration, etc.) are required for both.  Establishment of biomechanical 

standards for condylar cartilage, the TMJ disc, and other tissues of the TMJ such as 
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the retrodiscal tissue, will provide necessary data for FEMs, provide validation 

standards for tissue-engineered constructs, and ultimately lead to a better 

understanding of TMJ biomechanics, which will ultimately have clinical application 

in the prevention (evaluating the implications of various activities), diagnosis 

(tracking motion and forces), and treatment (providing engineering design 

requirements) of TMJ disorders.  
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CHAPTER 3: Strategies and Applications for Incorporating Physical 
and Chemical Signal Gradients in Tissue Engineering* 

 
ABSTRACT 

 From embryonic development to wound repair, concentration gradients of 

bioactive signaling molecules guide tissue formation and regeneration.  Moreover, 

gradients in cellular and extracellular architecture as well as in mechanical properties 

are readily apparent in native tissues.  Perhaps tissue engineers can take a cue from 

nature in attempting to regenerate tissues by incorporating gradients into engineering 

design strategies.  Indeed, gradient-based approaches are an emerging trend in tissue 

engineering, standing in contrast to traditional approaches of homogeneous delivery 

of cells and/or growth factors using isotropic scaffolds.  Gradients in tissue 

engineering lie at the intersection of three major paradigms in the field – biomimetic, 

interfacial and functional tissue engineering – by combining physical (via biomaterial 

design) and chemical (with growth/differentiation factors and cell adhesion 

molecules) signal delivery to achieve a continuous transition in both structure and 

function.  This review consolidates several key methodologies to generate gradients, 

some of which have never been employed in a tissue engineering application, and 

discusses strategies for incorporating these methods into tissue engineering and 

implant design.  A key finding of this review was that 2-D physicochemical gradient 

substrates, which serve as excellent high-throughput screening tools for optimizing 

                                                           
*Chapter published as Singh, Berkland, and Detamore, "Strategies and Applications for Incorporating 
Physical and Chemical Signal Gradients in Tissue Engineering", Tissue Eng Part B Rev, Epub ahead 
of print, 2008.                                                blah blah blah blah blah blah blah blah 
blah blah blah 
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desired biomaterial properties, can be enhanced in the future by transitioning from 2-

D to 3-D, which would enable studies of cell-protein-biomaterial interactions in a 

more native tissue-like environment.  In addition, biomimetic tissue regeneration via 

combined delivery of graded physical and chemical signals appears to be a promising 

strategy for the regeneration of heterogeneous tissues and tissue interfaces.  In the 

future, in vivo applications will shed more light on the performance of gradient-based 

mechanical integrity and signal delivery strategies compared to traditional tissue 

engineering approaches. 

 

INTRODUCTION 

 From rocks99 to squid beaks100, nature is rich with gradients.  Chemical signal 

gradients drive embryonic development, whereas gradients in cellular-extracellular 

architecture exist throughout the human body, within tissues and at tissue interfaces, 

to satisfy spatially diverse functional needs.  To engineer complex tissues, gradient-

based strategies can be incorporated into tissue engineering.   

 In this review, we discuss gradient-generation methodologies, some of which 

have been applied in tissue engineering investigations, while many others hold 

potential to be incorporated into biomaterial design or for spatially-controlled 

delivery of bioactive factors.  From the perspective of traditional tissue engineering, 

gradient-based substrates have provided a quick single-experiment route to optimize 

biomaterial characteristics without introducing the experimental artifacts generated 

due to discrete substrate preparations, thus serving as a tool for high throughput 
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screening of biomaterials.  More importantly, chemical and/or physical gradients can 

be directly incorporated into the design of biomaterials to engineer heterogeneous 

tissues and tissue interfaces.  Combined with spatially- and temporally-controlled 

delivery of exogenous bioactive factors, gradient-based tissue engineering approaches 

may provide an effective scheme to engineer tissues and organs.  The known 

sensitivity of cells to various physical and chemical stimuli, which cause cell 

migration (or “-taxis”) (Table 3.1),101, 102 has yet to be fully utilized in tissue 

engineering.  Integration of spatially controlled signal gradients with tissue 

engineering may lead to dynamic cellular machineries that could enhance such cell-

based therapies. 

 Gradient-based devices and strategies are employed in practice in a plethora 

of fields commercially, such as in electrophoresis,103 dielectrophoresis,104 

chromatography (e.g., gradient elution generators in liquid chromatography), the 

aerospace industry,105 and the discovery of drugs, materials and catalysts.106  Here, we 

concisely present gradient generation techniques relevant to the tissue engineering 

community, many of which have never before been employed in tissue engineering 

applications, and emphasize specific possible future roles of mechanical and signal 

gradients in next-generation tissue engineering strategies. 

  

BIOMATERIAL-BASED “PHYSICAL” SIGNAL GRADIENTS 

Tissues consist of cells and extracellular matrix, and differ in type, content, 

and organization of the constituent cells and extracellular matrix components.  In 
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tissue engineering, these differences must be considered before selecting biomaterials 

and designing scaffolds for a specific application.  In addition, findings of several 

studies probing cell-biomaterial interactions suggest that biomaterials at the micro-

/nano-scale may also act as a “physical” signal that may affect cell behavior, such as 

adhesion, spreading, motility, survival and differentiation.  The following is a 

discussion of the importance of gradient-based strategies that – 1) can be utilized in 

the identification of optimal scaffold design parameters for traditional homogeneous 

scaffolds, and 2) can directly be incorporated as physical and chemical signals in the 

heterogeneous scaffold design for specific tissue engineering applications.  We also 

briefly discuss the use of gradient-based approaches in the design of implants used for 

orthopedic and orthodontic repair procedures.   

 

Polymeric materials 

In this section, we discuss the strategies that have been applied for creating 

polymer-based gradients, and also emphasize the possible applications of these 

gradients from a tissue engineering perspective.  Among several scaffold design 

parameters, we have considered a select few: pore-size, porosity, material stiffness, 

and surface physicochemical characteristics, which are of high interest.  

 

Pore-size/porosity gradients 

Among several scaffold design parameters, pore size and porosity bear prime 

importance.  Pore size is known to affect cellular affinity and viability by influencing 
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cellular movement, binding and spreading, intracellular signaling, and transport of 

nutrients and metabolites.107  Porosity governs the maximum possible accommodation 

of cell mass in the scaffold;108 however, high porosity values often compromise 

mechanical properties of the scaffold.109  From an application standpoint, pore size 

and porosity also affect neovascularization in vivo.108  In addition, the scaffold 

architecture also requires consideration.  An interconnected pore network is desired to 

minimize dead volume, and tortuosity of the network requires attention from a mass 

transport perspective.110  Pore shapes may also critically affect the cellular 

organization in the scaffolds,111, 112 as substantiated by several studies based on the 

contact guidance theory.  The importance of scaffold architecture in tissue 

engineering is increasingly being realized, which has resulted in a change in trend in 

the designs of scaffolds, from isotropic scaffolds to heterogeneous and anisotropic 

“biomimetic” scaffolds, with the goal being to mimic the organization of the cells 

(such as, alignment or clustering) and/or the extracellular matrix of the tissue under 

consideration.   

For designing isotropic scaffolds, the required range of optimal pore sizes 

depends on the intended tissue engineering application (i.e., the type(s) of 

cells/tissues that will interact with the scaffold).107, 108, 113  In this regard, scaffolds 

containing a pore size gradient provide a rapid screening tool to probe in vitro cell-

scaffold or in vivo tissue-scaffold interactions, as demonstrated earlier,107 which may 

help in the identification/validation of the optimal pore sizes.  Such graded porous 

scaffolds can be instrumental in the engineering of specific tissues that possess highly 
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zonal architecture or interfacial tissues, consisting of organized multiple cell layers 

and extracellular environments.  So far, only a few such reports exist, e.g., where 

native zonal organization of the cartilage was accounted for in the scaffold design by 

utilizing an anisotropic gradient-based pore architecture,114 or where heterogeneous 

organization of an osteochondral tissue was considered by including gradients in 

material composition (and thus, mechanical properties) and pore size in the scaffold 

design.115  In one study, a prototype of graded bone implant with spatially varying 

pore size and porosity (in the radial direction) was created.116  Gradients in material 

composition at the transition region may also reduce or eliminate the problem of 

delamination that is commonly observed in similar biphasic scaffold designs.115  

Scaffolds exhibiting pore size and porosity gradients can also provide control over 

cell migration, where the migration can be restricted in the direction of decreasing 

pore sizes by appropriately selecting the pore sizes,117 or can be facilitated in the 

direction of increasing porosity to guide tissue in-growth.118 

Application of pore size gradients is common in pore gradient gel 

electrophoresis.119  Due to its purpose, the size of the pores in such gels allows 

permeability at the protein-size level, not at the cellular level.  To create continuous 

gradients in pore size as well as porosity in macro-porous scaffolds (permitting 

movement at the cellular level), techniques that have been developed include a 

centrifugation–heat sintering method,107 a combination of melt pressing and porogen 

leaching,116 a centrifugation–freeze drying method,117 and a phase separation–freeze 

drying method.120, 121  Using a 3-D printing technique in combination with porogen 
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leaching, scaffolds having gradients in porosity with near-uniform pore sizes were 

created.115, 118  Solid free-form fabrication (SFF) methods would in general be quite 

amenable to creating pore-size and other structure-based gradients.  A novel 3-D fiber 

deposition technique was utilized in creating scaffolds that contained a gradient in 

pore size with a uniform porosity.114  Table 3.2 summarizes the specifics of the 

aforementioned studies, which provide routes to creating 3-D scaffolds with a pore-

size and/or porosity gradient(s).  

 

Substrate stiffness gradients 

 Substrate stiffness affects cellular adhesion, spreading, motility, survival, and 

differentiation (for details, see reviews122-124).  Research with fibroblasts, epithelial 

cells, and smooth muscle cells has demonstrated that cell-contact with the substrate 

diminishes on increasingly softer substrates,125, 126 and cells migrate from softer 

regions to stiffer regions when exposed to a gradient in substrate stiffness,101, 127-130 a 

phenomenon termed “durotaxis” or “mechanotaxis” (Table 3.1).  A recent review by 

Georges and Janmey131 summarizes findings with various cell types (e.g., endothelial 

cells, neurons, hepatocytes) that provide corroborating evidence for the importance of 

substrate stiffness as a physical signal for cells.  An “effective” stiffness range, 

however, varies between cell types and leads to cell-specific responses.131  For 

example, fibroblasts placed on various soft polyacrylamide substrates (shear modulus: 

<1.6 kPa;132 Young’s modulus (AFM): 14 kPa,101 ~2.7 kPa;133 Young’s modulus 

(bulk): 1.8 kPa,127 ~4.4 kPa133) display a change in their cytoskeletons (destabilized 
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focal adhesions, and loss in actin filament or “stress fiber” expression, resulting in a 

rounded cellular morphology) compared to corresponding stiffer substrates (shear 

modulus >3.6 kPa;132 Young’s modulus (AFM): 30 kPa,101 ~7.7 kPa;133 Young’s 

modulus (bulk): 34 kPa,127 12.4 kPa133), where these cells adapt a flat morphology.  

Neurons preferentially branch on soft substrates (50 Pa) compared to stiff surfaces 

(550 Pa), while the range of stiffness that is relevant to neurons may not affect 

fibroblasts.133, 134  Smooth muscle cells prefer moderately stiff surfaces (E ~ 8 –10 

kPa) to display tissue-like actomyosin patterns and cellular spreading areas compared 

to softer or stiffer substrates.135, 136  Also, the response of the cells to the physical cues 

is generally not isolated from the presence of cell-to-cell interaction and haptotactic 

(surface-bound) cues.132, 137  These pioneering studies have proven the importance of 

substrate stiffness for cells;  however, many of these studies utilized homogeneous or 

step gradient substrate preparations possessing randomly selected stiffnesses, which 

provided little information regarding the “threshold values” of stiffness that critically 

alter the behavior (e.g., morphology, clustering, apoptosis) of a particular type of cell.  

In this regard, use of substrates containing continuous gradients with a large range in 

stiffness may provide a means to systematically study the cell response to substrate 

stiffness and accurately identify the threshold substrate properties critical to cellular 

behavior.130  Continuous gradient surfaces may also facilitate the understanding of 

molecular mechanisms of cellular dependence on substrate stiffness.   

 Strategies to design tissue-engineered replacements require judicious selection 

of the biomaterials with one of the goals being to satisfy the biomechanical 
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requirements of musculoskeletal tissues.  Material selection and scaffold design 

become particularly important when developing heterogeneous tissues or tissue 

interfaces that are biomechanically anisotropic and endowed with gradients in 

stiffness by nature, such as an osteochondral tissue, the intervertebral disc, skin 

layers, blood vessel walls, etc.  Importantly, some investigations suggest that a tissue-

like in vitro growth of cells (such as tissue-like striated actomyosin patterns and 

cellular spreading areas, as in the case of smooth muscle cells, or elevated branching, 

as in the case of neurons) requires substrate mechanical properties to be close to that 

of the extracellular matrix (ECM) of the native tissue.134-136  While these findings 

certainly require validation of the relationship between physiologically relevant 

cellular morphology and cell functions,130 the implication of these findings could be 

relevant to tissue engineers because it may provide justification to the current criteria 

of biomaterial selection and design.  It may further implicate the need to design 

heterogeneous constructs for interfacial tissue regeneration, containing built-in 

continuous 3-D gradients in stiffness imparted by the specific biomaterials, which 

may not only lead to a mechanically robust tissue-engineered replacements, but may 

also prove useful in cell-mediated tissue repair.  In addition, in vivo cellular 

infiltration in the biomaterial from the surrounding tissue can be optimized by 

suitably selecting material properties that may promote durotaxis towards the tissue-

engineered replacement.  Also, due to the diversity in the ranges of effective stiffness 

to which a cell responds (as mentioned earlier), gradient substrates hold potential to 

be utilized in durotaxis-driven cell separation and sorting applications commercially.  
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 2-D Substrates containing both a step-transition and a continuous gradient in 

stiffness have been made in the past.  Using soft lithography, poly(dimethylsiloxane) 

(PDMS) substrates containing near-absolute step gradients in stiffness were 

fabricated, and utilized to study durotaxis and micro-patterning of cells.127  In some 

studies (including the breakthrough work by Wang and colleagues), a diffusion-based 

photopolymerization approach was utilized to create substrates that contained a sharp 

transition in material stiffness with a thin (extending to several microns) stiffness-

gradient region.101, 127, 128  To fabricate substrates containing controlled continuous 

stiffness gradients at macro- and micro-scales, controlled photopolymerization 

processes have been utilized in the past, where gradients were generated by controlled 

photo-exposure (using a gradient photomask129, 138 or by varying photo-exposure 

time139) or by precisely altering the cross-linker concentration using a microfluidic 

device.130, 135  In many of these early investigations, polyacrylamide gels served as 

tools to create step and continuous compliance substrates.  Various other materials 

that have similarly been used to create substrates with continuous stiffness gradients 

include a two-component dimethacrylate blend,139 styrenated gelatin,128 and PEG-

diacrylate.140 

 In summary, the utility of stiffness gradient surfaces has so far been realized 

in studying durotaxis phenomena, micropatterning of cells, and high throughput 

screening of materials.  Probing other possible cell-biomaterial combinations using 

continuous stiffness gradient surfaces (as a screening tool) may provide useful 

information to the tissue engineering community.  Stiffness gradient constructs may 



 36

also be useful in interfacial tissue regeneration; however, it will require a transition 

from 2-D surfaces to 3-D environments.  The challenge lies in gathering further 

knowledge and combining it towards designing “active” optimal bioengineered 

constructs. 

 

Surface gradients in physicochemical characteristics 

Surface physicochemical characteristics of a biomaterial (e.g., wettability 

(hydrophilicity), roughness, crystallinity, charge, functionality) may critically 

influence the host response to an engineered replacement by affecting protein-

biomaterial and cell-biomaterial interactions in vivo, directly or indirectly (as 

reviewed by Ruardy et al.141).  Tailoring the surface features in a user-specified 

manner can provide spatial control over relevant phenomena, such as protein 

adsorption and cellular adhesion, proliferation and morphology, selectively or non-

selectively.  For example, cell repellant surface functional groups can be utilized 

and/or surface wettability can be controlled to diminish scar tissue formation or 

reduce platelet adhesion and activation.142  For a different application, the same 

functional groups can be exploited to immobilize nanospheres that may alter cellular 

spreading and morphology, or to immobilize bioactive factors of interest over the 

surface (for example, by utilizing surface carboxyl or amine functionalities) to impart 

other desired features.143, 144  For tissue engineering advancements, surface 

physicochemical gradients continue to serve as a fast-screening tool to identify the 

threshold regimes in physicochemical characteristics to optimize biomaterial 
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properties (e.g., improved biomaterial coatings, application-specific protein and cell 

interaction with the biomaterial, etc.).145  In addition, patterned and gradient 

substrates can be utilized to alter site-specific biomaterial properties.142  In the 

following paragraphs, we highlight some of the well-developed surface chemistry 

gradient generation methodologies (summarized in Table 3.3).  These continuous 

surface chemistry gradient generation methodologies can be divided into two major 

groups, as described by Genzer and Bhat:146 1) top-down (involving modification of a 

substrate via physical and/or chemical treatments) or 2) bottom-up (involving 

deposition onto the substrate).  For a more detailed overview, we recommend recent 

review articles by Kim et al.145 and Genzer and Bhat,146 where surface chemistry 

gradients and characterization techniques have been comprehensively discussed.   

 Wettability gradient surfaces have been produced using surface etching 

techniques, such as, UV-ozonolysis (UVO),147-149 radio-frequency gas plasma 

discharge,150-153 power-graded corona discharge treatment,154-161 or a combination 

(UVO-plasma).162  Peroxide initiators generated during the etching process lead to 

oxidation of the substrate surface and induce oxygen-based hydrophilic 

functionalities (such as, -OH, -COOH, -COOR).  By varying a process-specific 

parameter continually (such as exposure intensity, exposure time, power, etc.), a 

surface with a continuously increasing surface energy and wettability results.  

Deposition of monomer(s) during the induction or graft-co-polymerization following 

the induction of these functionalities results in polymer-templated substrates, where 

gradients can be produced by monomer composition and/or by varying a process-
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specific parameter in a controlled manner.  Examples include UV grafting,139, 162-165 

grafting following power graded corona discharge,166-171 and plasma deposition172-175 

(Table 3.3).  With a proper choice of monomers, the chargeable functional group 

gradients were created to investigate the effect of charge density over cell 

behavior.170, 171  In addition to the functional group density and wettability gradients, 

a gradient in nano-scale thickness of the substrate usually develops following the 

graft-co-polymerization, where the grafted polymer shows a transition from a loosely 

packed “mushroom” regime to a densely packed  “brush” regime.176  Other creative 

methods utilized to fabricate wettability gradient surfaces include diffusive deposition 

from a vapor or liquid phase absorbent (organosilanes) to hydrophilic substrates,177-181 

a density gradient method,182 spatially varying electrochemical desorption/adsorption 

of alkane thiols on gold electrodes,143 hyperthermal polyatomic ion deposition,183 

atom transfer radical polymerization (ATRP) (grafting from initiator gradients 

generated via diffusion,184, 185 continuous depletion of monomer solution184, 186), 

thermochemical manipulation of aliphatic tert-butyl ester functionalized self-

assembled monolayers (SAM),187 and continuous immersion techniques (polyvinyl 

carbonate films in NaOH solution,142 gold substrate in alkanethiol solutions,188 

gradient chemisorption in ATRP initiator solution,176 and a metal oxide substrate into 

a solution of polycationic polymer (electrostatic interaction).189  These methods result 

in a gradient in surface functional group density that can generally be translated into 

gradients in polymer grafting density (or molecular weight), surface nanoparticle 
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density (by covalent or charge190, 191 interactions), and/or immobilized bioactive 

factor density.   

 Development of two-dimensional gradient substrates with continuously 

modified polymer compositions has been one of the central themes in combinatorial 

polymer research.192, 193  Gradients in thickness and nanostructure were achieved by 

block co-polymer thin film casting using accelerated knife-edge coating followed by 

annealing.194, 195  A gradient in morphology and nanoscale roughness was achieved by 

using a constant thickness thin film casting followed by temperature gradient 

annealing.196  Utilizing a 3-syringe pump system, polymer composition gradients 

were generated by thin film casting followed by annealing, where an appropriate 

choice of polymers along with acceleration of the knife-edge coater and annealing 

temperature can lead to gradients in other properties (such as thickness, chemistry, 

crystallinity, stiffness, microstructure, roughness, wettability, degradation rate or a 

combination).197-201  In particular, coating velocity and acceleration affect the 

thickness of the film, and temperature affects the morphological appearance and 

roughness (as rate of crystallite nucleation is a function of temperature).196  By 

combining UV ozonolysis pre-treatment, surface energy gradients were also 

introduced to the substrates.202  Utilizing one or a combination of these continuous 

gradient generation methodologies, two-dimensional “orthogonal” gradient libraries 

were also created, where gradual variation in one or more properties occurred 

orthogonal to each other independently; for example, orthogonal gradients of 

molecular weights or molecular weight–graft density generated through ATRP, or an 
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orthogonal gradient in the thickness (h), temperature-induced roughness (T) or 

composition (ϕ) of polymeric thin films (i.e., h-T, h-ϕ and T-ϕ libraries).111, 186, 198, 199, 

201-204 

To summarize, a number of 2-D surface physicochemical gradient generation 

methodologies have been developed in the past and have served as a great high-

throughput fast-screening tool.  An important future step from a tissue engineering 

perspective will be the advancement of such methodologies from 2-D flat substrates 

to 3-D polymeric scaffolds, and recording/validating the phenomena observed on 2-D 

substrates in a 3-D environment, as cellular responses in 2-D environments are known 

to be different from those in 3-D environments.205, 206     

 

Metal or bioceramic materials  

A major area of contemporary research is the development of biomaterial-

based implants for orthopaedic and orthodontic applications (including, maxillofacial, 

hip or knee replacements).  Unlike tissue engineered constructs, such implants are 

usually non-degradable and devoid of cells by design, usually lacking in self-

repairing ability.  Nevertheless, such “spare-parts” appear promising due to their “off-

the-shelf” nature.  Two major categories of such implants are metallic implants and 

bioceramic implants.  Gradient-based strategies can be integrated in the design of 

such implants to address some of the major concerns associated with them.  In this 

section, we highlight some of the interesting and relevant current trends in implant 

design (Table 3.4). 
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Due to the relatively inferior biocompatibility and poor corrosion resistance of 

metallic implants, bioceramic or polymeric coatings are usually applied.  The 

bioconductive nature of bioceramic coatings, or degradable nature of the polymeric 

coatings, imparts on them the ability to induce/promote bone in-growth and to help in 

the integration of the implant with the surrounding tissue.  However, the durability of 

the coating-substrate interface is a common concern.207  This issue has been 

addressed by using coatings made of so-called functionally-graded materials, which 

are non-uniform composites containing a continuous or multi-layered structure, 

varying in composition (and other desired properties) from one end of the composite 

to the other.207-210  Using a bioconductive ceramic (such as hydroxyapatite, β-

tricalcium phosphate or bioglass) as the outer surface, a metallic/tough bioceramic 

(TiO2, Al2O3, ZrO2, etc.) as the inner surface (contacting the substrate) and a gradient 

of the materials in between, the desired balance between the mechanical properties 

and bioconductivity can be achieved.207, 211, 212  In a similar manner, graded-polymeric 

coatings or graded-composite (polymer-bioceramic) coatings were employed to 

achieve gradient transitions in mechanical properties and degradation, where 

degradation of the coating can be programmed to match the bone in-growth, 

ideally.213  Polymeric coatings can also be utilized as a controlled delivery vehicle of 

osteogenic factors that may enhance bone in-growth.  Likewise, gradient surface 

treatments of metal implants were utilized to reduce the metal ion release, enhance 

corrosion resistance, and improve the biocompatibility of the surface layer, while 

preserving the superior mechanical properties of the implant with a durable interface 
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between the coating and the implant.214-216  For example, electrochemical oxidation 

processes were used to form graded TiO2 coatings on Ti-based implants with a porous 

outer coating to enhance integration with the bone, and a dense inner coating to 

reduce metal ion release.216  Similarly, addressing wear-induced osteolysis as a result 

of ultra-high molecular weight polyethylene (UHMWPE) debris formation following 

total joint arthroplasty, a gradient surface treatment using a low energy electron beam 

resulted in depth-dependent gradient cross-linking that yielded a UHMWPE surface 

with high wear resistance and superior mechanical properties in the interior (due to 

low cross-linking).217, 218  In a different approach, a gradient interpenetrating polymer 

network (IPN), formed due to the diffusion of poly-L-lysine (PLL) into UHMWPE, 

was proposed to address UHMWPE wear, where recruitment of hyaluronic acid by 

PLL (via charge interaction) was hypothesized to decrease joint friction and wear.219 

Another area of application for gradient-based strategies is in the design of the 

implant itself.  To address detrimental bone resorption resulting from stress-shielding, 

a metal implant with a gradient in porosity was utilized to match the stiffness of the 

implant to that of the bone.220  Graded structures were created to mimic the bone 

architecture (low porosity outside, as in cortical bone, and high porosity inside, as in 

cancellous bone)209, 221 or to influence the bone in-growth while maintaining the 

mechanical integrity of the implant (high porosity inside and low porosity outside).222, 

223  These two approaches to create bimodal bone structures primarily depend on the 

desired mechanical characteristics of the engineered structure and influence the pore 

sizes.  Functionally-graded implants have also been considered for other applications, 
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e.g., for the treatment of cranial defects224 and spinal disc prosthesis.225  Moreover, 

gradient-based structures may be instrumental in optimizing the biocompatibility of 

the implants.  Such structures can be utilized as cost-effective fast-screening tools in 

determining the biocompatibility of the materials, as demonstrated earlier,226 or can 

be utilized in the design of implants, both traditional and functionally-graded 

implants, to improve biocompatibility at desired locations.227, 228 

Various techniques have been applied to create functionally-graded implants 

and coatings, resulting in desired spatial variation in properties of interest, while 

reducing or eliminating the interfacial stresses due to the material-property disparity 

that may cause delamination99, 207 (summarized in Table 3.4).  Many studies, at least 

preparation-wise, included the formation of graded structures in a multi-step, as 

opposed to continuous, manner.  Although these techniques may have resulted in the 

formation of micro/sub-micron -range diffusion-based gradients at the interface, it 

may not be sufficient to avoid delamination or interfacial failure.  Controlled 

continuous gradation can be employed to ensure a smooth transition, as opposed to 

step-wise transition, that may (or may not) be a concern for delamination.  Another 

distinct benefit with the use of continuously graded structures is that many techniques 

for creating such continuously graded structures offer a one step fabrication method, 

which is more efficient than multiple processing steps commonly employed for step-

wise gradation.229  For example, a dual- torch plasma spraying was used to create 

decreasing titanium and increasing hydroxyapatite gradients towards the surface by 

independently adjusting the feed rate and plasma power of mixture gases to yield a 
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continuously varying gradient region.207  Generally, a higher percent value of the 

thickness of the gradient region compared to the overall thickness of the 

implant/coating can be selected to eliminate the cause for concern (i.e., delamination); 

however, one must also take the envisioned application into consideration.  

In summary, functionally-graded materials have tremendous application in the 

design of implants/implant coatings, which can either be fabricated or may result as 

an effect of transport-based surface-treatment methods (see reviews230, 231).   

Compared to multi-stepwise graded structures, continuous gradient-based approaches 

appear promising as they may provide more time-efficient and mechanically robust 

alternatives; however, they are still in their infancy.  In this regard, development of 

novel fabrication techniques and comparison with the corresponding step-wise 

gradation will provide more insight regarding the usefulness of continuously graded 

structures.  

 

“CHEMICAL SIGNAL” GRADIENTS 

Concentration gradients of bioactive signaling molecules (hereafter, 

collectively referred to as chemical signals) play a crucial role in developmental and 

biological repair processes, including morphogenesis, wound healing, the immune 

response, vessel pathfinding, and axonal guidance, where cellular migration and/or 

differentiation is sensitively governed by spatially patterned endogenous chemical 

signals (see reviews232-235).  A biomimetic approach towards tissue regeneration 

necessitates a proper consideration of the spatial and temporal aspects of exogenous 
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delivery of such signals in tissue engineering.236, 237  The following sections contain a 

brief discussion of the importance of chemical signal gradients, and the techniques 

applied to generate chemical signal gradients in 2-D and 3-D environments. 

 

Gradients of growth/differentiation factors and cell adhesion molecules (CAMs) 

Spatial patterning of chemical signals is a field of growing interest for the 

tissue engineering community.  Several of these bioactive factors are well 

characterized for different tissue engineering applications, are known to induce 

concentration-dependent cell-type specific responses, and usually work in a 

synchronized manner with other similar factors during the development or repair of a 

natural tissue.238  While these factors are traditionally delivered homogeneously for in 

vitro or in vivo tissue engineering, both temporal and spatial control over the delivery 

of such factors is an understood requirement for biomimetic repair and regeneration.   

 Cell-extracellular matrix (ECM) interfacing is governed through a type of 

ligand-receptor binding primarily mediated by transmembrane adhesion proteins of 

the integrin family, where extracellular domains of the integrin receptors form 

anchoring junctions (such as focal adhesions, fibrillar adhesions and 

hemidesmosomes) by binding to certain ECM proteins, e.g., collagens, fibronectin, 

fibrinogen, vitronectin, etc.239  Cell-matrix interaction, in turn, produces specific cell 

responses that influence cell adhesion, motility, shape, orientation, differentiation and 

survival.  Specific parts of the ECM protein sequences act as cell adhesion ligands, 

and domains, RGD, YIGSR and IKVAV represent some well investigated peptide 
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sequences that are recognized by cells as adhesion sites (see reviews240, 241).  The 

RGD sequence, for example, is a cell adhesion site found in active fibronectin, 

fibrinogen and laminin. 

 Continuous gradients of chemical signals are a form of spatially patterned 

signals that have been successfully developed and employed in various investigations, 

most notably, probing directed axonal regeneration,162, 242-249 nerve regeneration,250 

controlled cellular migration, localization and/or alignment involving fibroblasts, 

endothelial cells,  Chinese hamster ovary cells, vascular smooth muscle cells, 

leukocytes, and neutrophils.140, 163, 167, 176, 251-260  In their soluble or immobilized 

forms, the chemical signal gradients induce specific cellular responses, which may 

include controlled cellular migration (a.k.a. chemotaxis or haptotaxis, respectively) 

(Table 3.1), usually in the direction of increasing concentration/surface density of the 

chemical signal.  A positive effect on directed axonal growth has been demonstrated 

under the influence of various chemical signal gradients, including gradients of 

IKVAV-containing peptide,261 laminin,244-246 nerve growth factor (NGF),242, 249 

combined laminin and NGF,250 and combined NGF and neurotrophin-3 (NT3),243, 248 

where neurite extensions were found to be superior in the presence of signal gradients 

compared to corresponding homogeneously delivered signals.  Wound healing is 

another area of investigation.  Controlled movement of fibroblasts is known to take 

place under the influence of chemotactic factors secreted by macrophages and 

platelets262 and represents a key area to explore the effect of various chemical signal 

gradients on the migratory behavior of fibroblasts, leukocytes, and neutrophils.  In 
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addition, the ability of chemical signal gradients (such as an RGD-containing peptide 

density gradient) to influence the alignment of the fibroblasts, as suggested by the 

authors, can also be exploited in the tissue engineering of ligaments and tendons.251  

Moreover, gradient substrates can also be used as a screening tool in optimizing the 

dosage of growth factors that lead to, for example, a higher cell proliferation rate or 

improved juxtracrine signaling.255  In addition to chemical signals, a number of other 

model factor gradients (such as other proteins or fluorophores) have also been created 

during the development of gradient-generation techniques, some of which are 

summarized in Table 3.5. 

  

Strategies to create gradients of growth/differentiation factors and CAMs 

Chemical signal gradients can be broadly divided into two categories: 1) 

soluble and 2) immobilized.  Other important categories include gradients in 2-D vs. 

3-D, and the principle involved in gradient generation.  Specifically, the methods to 

create signal gradients are based on either diffusion or convection-based approaches.  

In convection-based approaches, a gradient of the concentration/surface density of the 

bioactive factor is achieved by a gradual increase/decrease in the concentration of the 

factor itself, or continuous spatial variation in the chemistry/pre-processing of the 

substrate that leads to a gradient in the concentration/surface density of the factor.  

General methods used to create chemical signal gradients (for peptide and proteins) 

are summarized in Table 3.6. 
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Soluble 

To study chemotactic responses of cells under the influence of gradients, the 

principle of molecular diffusion was first utilized to create soluble factor gradients in 

solutions (such as culture medium) using a Boyden chamber or its variants (such as 

Zigmond and Dunn chambers).256, 258, 260  These chambers, although simple and 

inexpensive, have drawbacks in sustaining the concentration gradients of signals for a 

long period and do not provide a 3-D cell culture environment.263  Similar creation of 

gradients in macroporous gels (such as agarose, fibrin or collagen) provided 3-D 

culture platforms.  Approaches to generate signal gradients in such gels involves 

either a single source/chamber of bioactive factors (such as a chamber of bioactive 

factor-rich solution),254, 264 or multi-source/chamber of factors (such as the gel in 

between two chambers of factor, or delivery of factors at multiple positions in gel);242, 

243, 257, 259 the latter enabling the generation of relatively more stable linear gradient 

profiles.  A controlled microdispensing technique was recently developed to create 

patterns of chemical factors with user-defined profiles on the surface of thin 3-D gels, 

where gradients of these factors are established via diffusion in the gel, which were 

found to be stable for a day or more.249, 263  Laminar flow-based microfluidic devices 

have also been developed that are capable of generating concentration gradients of 

chemical signals with highly stable spatial and temporal profiles, although these have 

mostly been applied to 2-D systems.265-268  Devices based on controlled release 

principles, e.g., phosphatidyl choline-based lipid microtubules (LMTs) loaded in gels 

or microsphere-based scaffolds, have recently been applied to create gradients of 
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chemical signals/model factors.250, 269, 270  Such devices may serve as long-term 

(several days to months) release vehicles for the generation of gradients of 

chemotactic factors.   

 

Immobilized 

The general techniques to create surface immobilized chemical gradients 

include adsorption of the molecule on the desired surface, covalent linking of the 

peptides/proteins via peptide bond formation through carboxylic acid (-COOH) or 

primary amine (-NH2) moieties present on the original or modified surface (for 

example, using carbodiimide chemistry), or by derivatizing with photoreactive 

moieties (such as azidophenyl, benzophenone, acryloyl or aryl azide groups), all more 

or less governed by the chemistry of the substrate/scaffold, as reviewed earlier.  

General methods that have been utilized to create immobilized chemical signal 

gradients in 2-D and 3-D include single or dual source/chamber approaches,245, 246, 250, 

271 pump or gravity-driven flow of factor solution,140, 244, 247, 248, 251-253, 271 capillary 

driven flow of factor solution,272 automated printing,273 and adsorption or covalent 

linking of proteins utilizing polymer-grafted/micropatterned substrates.162, 163, 165, 176, 

255, 274  Microfluidics, photopolymerization, atom transfer radical polymerization, 

and/or protein conjugation chemistry are among valuable flexible tools that were 

usually involved during the fabrication of immobilized protein gradients (Table 3.6). 

Techniques to create bioactive factor gradients vary in terms of scale, 

accuracy, flexibility and stability of gradient profiles.263  In summary, hydrogel-based 
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approaches have provided many routes to generate soluble or immobilized bioactive 

factor gradients in both 2-D and 3-D, which were widely used in studying the 

chemotaxis and haptotaxis.  Surface modification and photopolymerization 

techniques have been successfully used to create gradients of surface-bound factors 

on polymeric surfaces.  In contrast, fewer attempts have been made regarding the 

generation of such gradients in degradable 3-D macroporous scaffolds, a prototype 

that constitutes a significant percentage of commonly used tissue engineering 

scaffolds.  In this regard, primary issues to be addressed appear to pertain to the 

translation of many 2-D physicochemical gradient generation techniques from 2-D to 

3-D.   

 

DISCUSSION 

Integration of three schools of thought – functional, interfacial and biomimetic 

tissue engineering – can be addressed through gradient-based strategies by combining 

physical and chemical signal delivery.  Various tissues display strong non-

homogeneous characteristics in their morphology, cellular and extracellular matrix 

organization.  For example, cartilage (superficial, middle, deep zones), bone (cortical, 

cancellous), blood vessels (media, intima, adventitia), skin (dermis, epidermis), or 

any interfacial tissue (such as bone-cartilage or muscle-tendon), all consist of graded 

zonal structures to satisfy diverse functional needs.  Gradients in mechanical 

properties often exist within and between the tissues, which help in avoiding stress 

concentrations,100 e.g., cartilage,275 human crystalline lens,276 and the dentin-enamel 
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junction.277  A tissue-engineered replacement must satisfy at least the “minimum” 

functional requirements that may be addressed through the choice of biomaterials and 

the scaffold design.  Incorporating gradient-based physical signal delivery strategies 

in the design of biomaterials, such as pore-size and porosity gradients or stiffness 

gradients, may thus improve the functional characteristics of and cellular remodeling 

in the scaffolds.  Simultaneously, chemical signal gradients that are involved during 

the regeneration and repair of tissues can be incorporated in the design of scaffolds.  

Gradients of chemical signals may also offer single cell source tissue regeneration 

alternatives for the regeneration of interfacial tissues, where a stem cell population 

can be selectively differentiated into disparate lineages in a graded manner in the 

same construct.  Thus, a biomimetic approach can be combined with a functional 

tissue regeneration approach by utilizing a combined physical and chemical signal 

delivery through gradient-based strategies.  As an example, stiffness gradients could 

be combined with growth factor gradients that may yield a synergistic response of 

enhanced axonal branching134 and guided axonal regeneration.  

 While a combination of physical and chemical signal gradients may not be 

necessary for all tissues, such an approach could be an interesting subject of 

investigation for interfacial tissue regeneration.  From the perspective of interfacial 

tissue regeneration, a transition from homogeneous cell/growth factor/scaffold 

designs to signal gradient-based tissue engineering may be advocated for a number of 

reasons.  First, the replacement of a tissue that is engineered in isolation requires a 

fixation or bridging with the adjacent tissue (such as suturing, press-fitting, or 
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gluing), which may not result in the best mechanical characteristics at the interface.  

Second, isolated tissue engineering may not be able to provide mutually inductive 

endogenous signals from the adjacent tissues that are involved during the tissue 

formation in vivo.  In an extreme example, it is widely known that gastrulation and 

the subsequent fate of germ layers during embryogenesis depend on a series of 

spatially and temporally controlled inductive cell interactions.278, 279  In a specific 

example, relevant to osteochondral tissue engineering, an in vitro culture study 

reported that only co-culture with chondrocytes (as opposed to fibroblasts or 

osteoblasts) was successful at promoting osteogenic differentiation of mesenchymal 

stem cells in a selective manner.280  Even tumor cells display a strong neighbor-

dependent behavior arising from cell-cell interactions.281
  Finally, stratified tissue 

regeneration techniques (e.g., utilizing bi- or multi-phasic scaffolds), the closest 

alternative to gradient-based signal delivery, may not effectively mimic the native 

tissue function, or may undergo delamination due to stress concentrations.   

 Along with spatial regionalization of chemical signals, another key aspect of 

biomimetic tissue engineering is the delivery of such signals in a temporally 

controlled manner, i.e., simultaneous or sequential release of multiple growth 

factors.282, 283  In this regard, controlled drug delivery technologies can be combined 

with gradient fabrication strategies, e.g., phosphatidyl choline-based lipid 

microtubules (LMTs) or microsphere-based scaffolds.250, 269, 270 

 In summary, continuous gradients of physical and chemical signals can be 

considered as an important subset of spatially patterned signals, capable of driving 
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dynamic cellular phenomena and a cost-effective tool for high-throughput screening.  

A variety of gradient-generation techniques have been reviewed here, which are 

promising for biological and tissue engineering investigations.  Controlled patterning 

of chemical signaling molecules combined with physical gradients of signals hold 

immense potential for complex tissue regeneration, which may be a missing 

ingredient in the quest to fulfill the true potential of the field of regenerative 

medicine.  In the future, in vivo comparisons will be required to provide substantial 

evidence for the superior performance of gradient-based signal delivery strategies 

compared to traditional forms of tissue engineering.  
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CHAPTER 4: Tensile Properties of the Mandibular Condylar 
Cartilage*

                                                           
*Chapter published as Singh and Detamore, “Tensile Properties of the Mandibular Condylar 
Cartilage”, J Biomech Eng, 130(1):011009, 2008. 

 
ABSTRACT 

 Mandibular condylar cartilage plays a crucial role in temporomandibular joint 

function, which includes facilitating articulation with the temporomandibular joint 

disc and reducing loads on the underlying bone.  The cartilage experiences 

considerable tensile forces due to direct compression and shear.  However, only 

scarce information is available about its tensile properties.  The present study aims to 

quantify the biomechanical characteristics of the mandibular condylar cartilage to aid 

future three-dimensional finite element modeling and tissue engineering studies.  

Porcine condylar cartilage was tested under uniaxial tension in two directions, 

anteroposterior and mediolateral, with three regions per direction.  Stress relaxation 

behavior was modeled using the Kelvin model and a second order generalized Kelvin 

model, and collagen fiber orientation was determined by polarized light microscopy.  

The stress relaxation behavior of the tissue was bi-exponential in nature.  The tissue 

exhibited greater stiffness in the anteroposterior direction than in the mediolateral 

direction as reflected by higher Young’s (2.4 times), instantaneous (1.9 times) and 

relaxed (1.9 times) moduli.  No significant differences were observed among the 

regional properties in either direction.  The predominantly anteroposterior 

macroscopic fiber orientation in the fibrous zone of condylar cartilage correlated well 



 55

with the biomechanical findings.  The condylar cartilage appears to be less stiff and 

less anisotropic under tension than the anatomically and functionally related TMJ 

disc.  The anisotropy of the condylar cartilage, as evidenced by tensile behavior and 

collagen fiber orientation, suggests that the shear environment of the TMJ exposes the 

condylar cartilage to predominantly but not exclusively anteroposterior loading. 

   

INTRODUCTION 

The mandibular condyle, along with the fossa-eminence complex and the TMJ 

disc, together form the articulation of temporomandibular joint (TMJ).1  The articular 

condylar cartilage plays a crucial role in the adaptation of the TMJ to external 

muscular forces.284  The cartilage facilitates articulation with the TMJ disc and 

distributes the compressive loads over the condyle during the normal function of a 

healthy joint.  

Temporomandibular joint disorders (TMDs) have considerable prevalence 

with 16–59% of the population having symptoms and 33–86% having clinical signs.2  

While TMDs involving the TMJ disc (specifically, internal derangement) have been 

reported to be the most common,285 the resulting biomechanical dysfunctions (such as 

clicking or locking) may lead to damage of the condylar cartilage.62  Abnormal 

loading conditions, e.g., clenching or bruxism, are probable factors that contribute to 

the development of many TMDs.  Osteoarthritis is one such example, where the 

biomechanical factors likely play a role in the progressive deterioration of the 

articular cartilages.286, 287  However, the role of mechanics is still unclear.  To 
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understand the TMJ function in normal and pathological conditions, three-

dimensional finite element models of the human TMJ have emerged as valuable tools.  

The predictions by these mathematical models may be improved by incorporating 

more reliable biomechanical properties of the condylar cartilage.  Therefore, the 

development of biomechanical standards for this tissue is important.  Moreover, 

biomechanical properties of the native tissue are also necessary as design and 

validation criteria for an artificial or tissue-engineered replacement.  

  Although the loading condition of the condyle has been reported to be 

primarily compressive,39, 40, 78 direct compression and shear forces generated due to 

mandibular motion may produce significant tensile loads on the collagen fibers in the 

condylar cartilage, especially in the regions closer to the joint synovium.  The effects 

of the surrounding force environment are reflected in the heterogeneous zonal 

architecture of the condylar cartilage, which contains a fibrocartilaginous fibrous 

zone (adjoining the inferior joint compartment) and hyaline-like cartilage in lower 

zones.  The fibrous zone contains primarily collagen type I with fibers aligned 

parallel to the surface,20-22, 28, 30 and is mainly responsible for the tensile stiffness of 

the tissue in the plane parallel to the surface. 

While there are a few studies that have investigated the compressive 

biomechanical behavior of condylar cartilage,8, 43-45 there is only one previous tensile 

study, where the failure properties of the porcine condylar cartilage in the 

mediolateral and anteroposterior directions were characterized.17  However, the 

tensile stress relaxation behavior of this viscoelastic tissue has never been 
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investigated, thus the tensile equilibrium moduli of the tissue are heretofore unknown.  

In addition, a higher stiffness in the anteroposterior direction compared to the 

mediolateral direction was reported in the lone tensile evaluation,17 which implied 

preferred anteroposterior collagen fiber alignment.  However, to the best of our 

knowledge, there has been no conclusive evidence to reflect a commensurate 

anisotropy of collagen fiber orientation in the condylar cartilage.  Moreover, regional 

variations in the tensile properties, which were found to be significant for the TMJ 

disc,13, 36, 288, 289 have yet to be explored in the condylar cartilage.  

The goals of this study were to quantify the tensile biomechanical properties 

of the porcine condylar cartilage, to verify its anisotropy, and to explore the regional 

heterogeneity of the condylar cartilage.  We hypothesized that fiber orientation in the 

condylar cartilage was predominantly anteroposterior due to primarily anteroposterior 

mandibular motion.  A porcine animal model was selected due to the similarities in 

anatomy50, 83 and function84 between the pig TMJ and the human TMJ.  Uniaxial 

tensile tests were performed in two directions (anteroposterior and mediolateral) with 

three regions in each direction (anterior, superior and posterior regions in the 

anteroposterior direction, and medial, central, and lateral regions in the mediolateral 

direction).  We then compared the regional and directional properties of the condylar 

cartilage with that of the TMJ disc.  In addition, we correlated the biomechanical 

properties of the condylar cartilage with its structure, as observed by polarized light 

microscopy. 
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MATERIALS AND METHODS 

Specimen Preparation 

 Hog heads from 6-month-old females (Yorkshire cross, skeletally immature) 

weighing 70-85 kg (150-190 lb) were obtained from a local abattoir.  TMJs were 

harvested from the heads with joint capsules intact within 24 h of death.  Mandibular 

condyles from both sides were separated by opening the lower joint compartments 

carefully (Fig. 4.1).  Subsequently, articular condylar cartilage and other joint 

components were assessed morphologically.  Condyles from the TMJs with no signs 

of degeneration were wrapped in gauze, soaked in PBS (phosphate buffered saline – 

0.138 M sodium chloride, 0.0027 M potassium chloride) and stored at -20 ºC.  Left 

and right condyles were used to make specimens in the anteroposterior or 

mediolateral directions, respectively.  A total of seven condyles were used for each 

direction tested, giving a sample size of n = 7. 

 Three cartilage specimens were created from each condyle, either in the 

anteroposterior or mediolateral direction (Fig. 4.2).  Prior to specimen preparation, 

frozen condyles were thawed at room temperature and condylar cartilages with the 

subchondral bone attached were carefully isolated from the bulk of the condylar bone 

using a scalpel.  Subsequently, the cartilage-bone samples were divided into three 

equal parts either in the anteroposterior or mediolateral direction.  Each part was 

individually sectioned in a cryotome (Microm HM550, Richard-Allan Scientific, 

Kalamazoo, MI) to a uniform thickness of 250 μm with the articular surface intact.  
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To accomplish this task, a stage of frozen tissue embedding medium was prepared, 

which was cryotomed to create a surface that was flat and parallel to the cryostat 

blade.  Using the remaining travel feature of the cryotome, the position (remaining 

travel = x μm) of the flat embedding medium surface along the line of travel of the 

stage was recorded.  Subsequently, the articular surface of the cartilage was flattened 

against a flat freezing metal surface in the cryotome by very gently applying pressure 

on the sample.  The sample was then firmly fixed to the embedding medium stage 

with its flattened surface facing the stage and covered in embedding medium.  

Starting from the uppermost subchondral bone, the sample was serially cryotomed 

until a distance of 250 μm was left from the recorded initial position of the flat 

embedding medium stage (Remaining Travel = 250+x μm), producing the 250 μm 

thick cartilage section with the articular surface intact.  The integrity of the articular 

surfaces of the cartilage sections was confirmed by visual observation of the stage, 

where no tissue remnants were found.  Rectangular tensile specimens were cut out 

from the 250 μm thick cartilage sections using an assembly of two parallel razor 

blades separated by a 1.8 mm thick aluminum spacer.  Rectangular specimens have 

previously been used successfully to observe tensile stress relaxation behavior of 

articular cartilages.290-293  To ensure that specimen thickness did not exceed cartilage 

thickness, a preliminary thickness measurement study, employing a needle 

penetration technique,294 was performed.  The study indicated cartilage thickness in 

all regions to be more than 300 μm and formed the basis of thickness selection.  

During the specimen preparation, complete removal of the subchondral bone region 
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was visually verified.  Specimens were immediately wrapped in gauze, soaked in 0.01 

M PBS, then frozen at -20 ºC until tested. 

 

Tensile Tests 

Tensile tests were performed using a uniaxial testing apparatus (Instron Model 

5848, Canton, MA) having a displacement accuracy of 1 μm and a 50 N load cell 

with force resolution of 0.001 N and measurement accuracy of ± 0.5% of the 

measured force or better.  A custom-made stainless steel bath and grip assembly, 

illustrated in Fig. 4.3, was mounted in the apparatus.  To prevent slippage, squares of 

220-grit waterproof sandpaper were glued to grip faces using cyanoacrylate adhesive 

that provided adequate roughness without damaging the specimens.13  Specimens 

were kept hydrated in the bath with 0.01 M PBS during the testing.13, 291, 292, 295-298  

The temperature of the bath was regulated to 37±1 ºC.13, 296, 298  Buoyant forces acting 

on the top grip were accounted for as described by Detamore and Athanasiou.13  

Briefly, the load of the top grip (Fb) was measured empirically as a function of grip-

to-grip separation (d).  Measured force (Fm) was calibrated to the actual force (F) by 

subtracting the effect of buoyancy, i.e., F (d) = Fm(d) – [Fb(d) – Fb(L0)], where L0 is 

the initial specimen length and is the reference point.  For a consistent buoyant profile 

and to maintain ionic concentration,299, 300 the bath height was held constant 

throughout all experiments.  In addition, the bath surface was covered with parafilm 

to reduce evaporation due to heating.  The change in bath volume was observed to be 

negligible at the end of each test. 



 61

 

Before testing, each specimen was thawed and equilibrated in 0.01 M PBS at 37 ºC 

for 1 h to achieve thermal, hydration and ionic equilibrium.290, 295, 297, 299  Thus, all the 

specimens underwent three freeze-thaw cycles, which has been shown not to alter the 

mechanical properties of cartilaginous specimens.301  Specimen dimensions, which 

changed due to swelling during the equilibration phase, were quickly measured at 

three sites using a micrometer (±0.001 mm) at 25X magnification.13, 296  The 

specimen widths and thicknesses slightly increased, resulting in average widths of 

2.0±0.1 mm and 1.9±0.1 mm and average thicknesses of 0.47±0.07 mm and 

0.49±0.07 mm in the anteroposterior and mediolateral directions, respectively.  

Subsequently, the specimen was loaded into the grips.  A tare load of 0.03N 

(~0.035MPa) was applied to remove the laxity of the specimen.290, 292, 293, 295-297  The 

bath was filled with 0.1 M PBS at 37 ºC and the specimen was allowed to re-

equilibrate under this tare load for 10 min.290, 293, 295-298  Specimen grip-to-grip length 

after the tare load was taken as the initial specimen length.  Although the porcine 

condylar cartilage is longer mediolaterally than anteroposteriorly, initial specimen 

lengths were taken in the same range (~9 mm) by placing a slightly higher percentage 

of mediolateral specimens into the grips, which was done to compare the results in 

the two directions without introducing differences in percent strain rate.  Resulting 

average initial specimen lengths were 9.6±1.4 mm and 9.1±1.2 mm in the 

anteroposterior and mediolateral directions, respectively. 
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Following the re-equilibration phase, specimens were subjected to 

preconditioning by applying cyclic loads from 0 to 6% strain, a range corresponding 

to the initial exponential region,7 at a rate of 10 mm/min.13, 290, 295  Preliminary studies 

demonstrated that a total of 10 cycles were sufficient to produce repeatable stress-

strain curves in successive cycles.  Finally, preconditioned specimens were subjected 

to stress relaxation.  A 20% ramp strain at 6 mm/min was applied to the specimen 

followed by a 1.5 h relaxation period.  Given that the duration of the ramp strain was 

very short compared to the overall relaxation period, the ramp strain will be 

subsequently referred to as a step strain.  Preliminary testing showed 20% strain to be 

safely below the onset of failure, which typically occurred from 24 to 44 %.  

Specimens that still failed (4%) during the testing led to the exclusion of all 

specimens from the condylar cartilage from which the specimens were made.  Such 

exclusion was essential to avoid the interference of inter-condylar differences with 

the regional property comparisons.  Thus, a total of 12% of all specimens were 

discarded from the data analysis.  Preliminary tests also revealed a long relaxation 

phase for the tissue, where 100% equilibrium could not be achieved even after 8 h.  

However, a reasonable duration of 1.5 h was selected, which corresponded to 

approximately 90% relaxation of the tissue. 

Stress-strain curves were generated from the continuous pull during the step 

strain to 20%.  Young’s moduli were obtained from the linear regions of the stress-

strain curves.  The stress was defined as the ratio of the load to the initial cross-
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sectional area, and the strain was defined as the ratio of the change in the tare length 

to the original tare length. 

 

Viscoelastic modeling 

Two viscoelastic models were used to model the stress relaxation following 

the step strain: a) the Kelvin model, and b) a second-order generalized Kelvin model.  

As described by Fung,7 stress relaxation that occurs on applying a step strain ( 0ε ) to 

the Kelvin model is represented by the relaxation function,  
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where στ , ετ  and RE are the creep time constant, stress relaxation time constant and 

equilibrium modulus, respectively.  The instantaneous modulus 0E  is related to these 

parameters by the following equation, 
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The second order generalized Kelvin model is an extension of the Kelvin model, 

where an additional Maxwell element is attached parallel to the Kelvin element.7  The 

relaxation function for the second order generalized Kelvin model, obtained by 

extending the first order analysis by Fung,7 is given by 
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The instantaneous modulus can be expressed as 
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To model the relaxation data of each specimen tested, the Kelvin model was 

first used.  Modified relaxation curves were generated by excluding initial relaxation 

data collected up to 10 min (rationale explained later).  The modified relaxation 

cureves were used for three-parameter curve-fitting in MATLAB (MATLAB 7.3, The 

MathWorks, Natick, MA) using Eq. (1) to obtain RE , στ  and ετ .  Overall relaxation 

curves were then fitted to the second order generalized Kelvin model, using the 

equilibrium modulus obtained from the Kelvin model.  A four-parameter curve-fitting 

of all of the relaxation data was performed according to Eq. (3), yielding the time 

constants 
1ε

τ , 
2ε

τ , 
1σ

τ  and 
2σ

τ .  Subsequently, instantaneous moduli 0E were 

calculated using Eq. (4).  

 

Polarized Light Microscopy 

Collagen fiber orientation was observed under polarized light.  A fresh 

condylar cartilage sample was divided into three parts: medial, central and lateral 

regions.  From each part, 30 μm thick transverse frozen sections were cryotomed 

from the fibrous zone and were mounted on slides for microscopy.  Specimens were 

viewed using a Nikon microscope (Eclipse TS100-F) under polarized light at 100X 

magnification,13 and images were captured using a high resolution camera.   

 

Statistical Analyses 



 65

Properties, i.e., moduli (Young’s, instantaneous and equilibrium) and time 

constants (
1ε

τ , 
2ε

τ , 
1σ

τ  and 
2σ

τ ), were compared among all regions using a single 

factor analysis of variance (ANOVA) and a Fisher’s Protected Least Significant 

Difference post hoc test. 

 

RESULTS 

The porcine condylar cartilage demonstrated viscoelastic behavior under 

tension.  When the tissue was stretched, resulting stress-strain curves had the 

characteristic non-linear “toe” region,7 followed by the linear region (Fig. 4.4).  The 

toe region was found to be consistent, extending to about 6% strain.  Following a step 

change in the strain, a typical stress relaxation behavior was observed in all of the 

specimens, where the stress relaxed in a bi-exponential manner.  The relaxation 

proceeded rapidly during the first 10 min (short relaxation time), followed by gradual 

relaxation at a very slow rate (long relaxation time) (Fig. 4.5).  These phases with 

markedly different relaxation time constants will be referred to as the “rapid” and 

“slow” relaxation phases, respectively.  Complete equilibration could not be achieved 

in the relaxation duration of 1.5 h, and may take more than 8 hours.  To model the bi-

exponential stress relaxation behavior, the Kelvin model was first used, which was 

found to be inadequate to fit the entire data set (Fig. 4.5).  Therefore, a Kelvin fit for 

only the slow relaxation phase and the second order generalized Kelvin fit for the 

entire relaxation data were applied (Fig. 4.5).  For all of the specimens, R2 values of 
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greater than 0.99 for the Kelvin fit (slow phase) and greater than 0.97 for the second 

order generalized Kelvin fit (entire range) were achieved. 

Directional and regional tensile stiffness of the condylar cartilage are 

summarized in Table 4.1, and respective time constants are summarized in Table 4.2.  

The anteroposterior direction was stiffer than the mediolateral direction, reflected by 

higher Young’s, instantaneous and relaxed moduli (2.4, 1.9 and 1.9 times greater, 

respectively) in the anteroposterior direction (p < 0.005).  In the anteroposterior 

direction, the central region was stiffer than the lateral region (1.3 times greater 

Young’s modulus and 1.4 times greater instantaneous and relaxed moduli), which 

was in turn slightly stiffer than the medial region (1.1 times greater instantaneous 

modulus and 1.2 times greater relaxed modulus).  In the mediolateral direction, the 

anterior and posterior regions had similar moduli, and were slightly stiffer than the 

superior region (1.1 times greater instantaneous and relaxed moduli).  However, the 

regional differences in stiffness were not statistically significant in either direction.  

Predictions from the second order generalized Kelvin model indicated that the 

rapid relaxation generally proceeded orders of magnitude faster than the slow 

relaxation.  The stress relaxation time constants for the slow phase compared to the 

rapid phase (
21 εε ττ ) were 46 times and 52 times higher in the anteroposterior and 

mediolateral directions, respectively (p < 10-15).  In the anteroposterior direction, 

relaxation rates were highest for the central region as indicated by 

lower
1ε

τ and
2ε

τ values, followed by the medial and lateral regions, respectively.  In 

the mediolateral direction, relaxation rates were highest for the anterior region, 
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followed by the superior and posterior regions, respectively.  However, the 

differences in time constants between directions and between regions were not 

statistically significant. 

Polarized light micrographs (Fig. 4.6) revealed that the fiber orientation was 

ring-like around the periphery and predominantly anteroposterior inside the 

periphery.  Based on the polarized light micrographs and verified by visual inspection 

of the articular surface of the cartilage, a schematic of overall macroscopic fiber 

arrangement of the fibrous zone has been developed (Fig. 4.7).  

  

DISCUSSION 

The present study examined the regional variation of tensile properties of the 

condylar cartilage in both the mediolateral and anteroposterior directions to 

characterize the tensile stress relaxation behavior of the condylar cartilage.  The only 

available previous tensile study of the condylar cartilage by Kang et al.,17 testing the 

porcine condylar cartilage to failure at 0.05 mm/min, reported stiffness values 

(Young’s moduli) of 9.04±1.73 MPa and 6.55±1.24 MPa in the anteroposterior and 

mediolateral directions, respectively.  Our study supports their observation by 

confirming the anisotropic nature of the condylar cartilage under tension.  However, 

Young’s moduli in our study were found to be 24±12 MPa and 10.1±5.5 MPa in the 

anteroposterior and mediolateral directions, respectively, indicating the cartilage to be 

stiffer in both directions than Kang et al. reported.  Moreover, a higher ratio of the 

mean Young’s moduli in the anteroposterior direction to the mediolateral direction 
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was observed in the current study, showing the anteroposterior direction to be 2.4 

times stiffer than the mediolateral direction, as opposed to a lower value of 1.4 times 

higher stiffness reported by Kang et al.  The likely reasons for the discrepancy in the 

results include the animal differences (breed, age), differences in specimen 

preparation technique, temperature and especially the applied strain rate.  The regions 

of the condyle from which the specimens were prepared were not indicated in the 

study by Kang et al. 

With these data, we were able to make regional and directional comparisons 

to the tensile behavior of the anatomically and functionally related TMJ disc.  

Comparison of the regional tensile properties of the condylar cartilage with that of the 

TMJ disc reported by Detamore and Athanasiou13 indicated the instantaneous 

modulus of the TMJ disc to be similar in the central region, 1.1 times higher in the 

medial region and 1.2 times lower in the lateral region in the anteroposterior 

direction.  The relaxed moduli of the TMJ disc were higher than that of the condylar 

cartilage in all regions in the anteroposterior direction (the relaxed moduli being 2.3, 

2.1 and 1.5 times greater in the medial, central and lateral regions, respectively).  

When compared to the stiffness of the condylar cartilage in the mediolateral direction, 

the TMJ disc had instantaneous and relaxed moduli that were higher (1.3 and 2.4 

times, respectively) in the anterior region and considerably higher (3.1 and 6 times, 

respectively) in the posterior region.  However, the superior region of the condylar 

cartilage was stiffer (8.9 times higher instantaneous modulus and 6.2 times higher 

relaxed modulus) than the corresponding intermediate zone of the TMJ disc.  In the 
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tensile characterization study of the TMJ disc, the peak and relaxed moduli were 

reported following an incremental stress relaxation protocol at 6 mm/min.  The peak 

moduli of the TMJ disc were compared to the Young’s moduli of the condylar 

cartilage obtained in the present study.  The two studies used the same animal species 

and had very similar specimen preparation technique.  However, the studies had 

differences in the hog breed, the calculation of properties, and the tensile test 

modality (incremental stress relaxation vs. single step strain followed by relaxation). 

A highly anisotropic macroscopic orientation of collagen fibers was 

demonstrated in the condylar cartilage using polarized light microscopy.  Previous 

investigations of the fiber arrangement in the condylar cartilage, using light and 

transmission electron microscopy, revealed a sheet-like arrangement of collagen 

fibers in the fibrous zone with fibers running predominately parallel to the surface.20-

24  One of these studies reported that these fibers were aligned in two predominant 

directions, anteroposterior and mediolateral, with some fibers running oblique to 

these directions.23  However, the dominance of anteroposterior fiber orientation was 

not conclusive.  In our study, macroscopic fiber arrangement in the fibrous zone of 

the condylar cartilage was investigated, and the results indicated the presence of a 

predominantly anteroposterior fiber orientation.  Fiber arrangement in the cartilage 

was observed to be somewhat analogous to an elliptical two-dimensional globe with 

majority of fibers aligned in bundles along the longitudes (Fig. 4.7).  However, 

randomly oriented fibers were also seen, which presumably contributed to tensile 

integrity of the superior region in the mediolateral direction.  The peripheral and 
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predominately anteroposterior orientation of fibers was strikingly similar to that of 

the TMJ disc.13, 36, 302  However, the differences in the regional tensile properties of 

the condylar cartilage were found not to be statistically insignificant.  Specimen 

preparation along the anteroposterior and mediolateral directions, which had regional 

differences in collagen fiber orientation, may have been one of the major 

determinants of regional heterogeneity along the two directions (Figs. 4.2 and 4.7).  It 

is possible that statistical significance would be achieved, if anterior and posterior 

regions were taken at the periphery (Fig. 4.2), or if a much larger sample size were 

used.  Based on the polarized light micrographs, it may be expected that preparation 

of specimens from the peripheral areas of the anterior and posterior regions may 

result in higher stiffness of these regions compared to the superior region in the 

mediolateral direction (Figs. 4.6 and 4.7).  Nonetheless, the results indicated that the 

condylar cartilage may not exhibit tensile heterogeneity to the same degree as the 

TMJ disc.  For validation of the results, tensile and shear testing of mature porcine 

and human cartilages will be of particular interest in the future. 

The stress relaxation curves were observed to be bi-exponential in nature.  

The rapid and slow relaxation phases were indicative of the viscous nature of 

relaxation, which occurred at two distinct rates (Fig. 4.5).  The Kelvin model was not 

suitable to fit the relaxation data (Fig. 4.5).  Therefore, the second order generalized 

Kelvin model was selected, which has previously been used to model similar bi-

exponential decay curves.303-306  However, the second order generalized Kelvin model 

could not accurately predict the relaxed moduli ( RE ).  This was discovered in 
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preliminary testing, where tests that were performed for relaxation times up to 6 h 

showed that the final empirical stress values at the end of the relaxation period were 

less than corresponding stress values predicted by the second order generalized 

Kelvin model.  Instead, the first order Kelvin model of the slow relaxation phase was 

used to provide the RE , since both models share a common RE (Eqs. (1) and (3) for 

t→∞).  Experimental curves indicated that the initially higher relaxation rates 

subsided to low values at around 10 min, being the reason to select t = 10 min as the 

point of the relaxation phase transition (Fig. 4.5).  Using the RE  values obtained by 

the Kelvin model, the bi-exponential relaxation behavior was then curve-fitted to the 

second order generalized Kelvin model (Fig. 4.5).  It should be noted that the second 

order generalized Kelvin model could not accurately predict the small transition 

region at the end of the rapid relaxation phase.  This is because the small transition 

phase had a relaxation rate intermediate to those of the two phases, while the model 

had the capability to account for only two relaxation rates (one Maxwell element 

accounting for each relaxation rate).  Generalized Kelvin models of higher orders or a 

quasi-linear model could be expected to provide a better fit to this narrow transition.  

However, since the transition phase lasted only for a brief duration, the second order 

generalized Kelvin model served as the simplest viscoelastic model that fit the 

experimental stress relaxation data closely.   

Both Young’s moduli and instantaneous moduli obtained from the second 

order generalized Kelvin model were reported (Table 4.1).  Higher values of Young’s 

moduli (slope of linear region of the stress strain curve) than the instantaneous moduli 
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(ratio of stress at the onset of relaxation to step strain) were obtained, which is 

expected due to the presence of the toe region ( YE > 0E ), and thus the disparity 

between the two moduli is indicative of the extent of the toe region. 

The specimen preparation technique used in this study to produce rectangular 

cartilage specimens provided a way to make uniform thickness pure-cartilage 

specimens, keeping the articular surfaces preserved.  In addition, lengths and widths 

were also kept similar, which ensured similar aspect ratios for all the specimens.  Full 

thickness pure-cartilage specimens could not be prepared due to the location-

dependent variations in the thickness of the condylar cartilage.51-53  It should also be 

noted that the true RE  values may be slightly lower than the reported RE  values 

because approximately 90% relaxation in peak stress could be achieved in the 

selected relaxation duration of 1.5 h.  

In conclusion, the stress relaxation behavior of porcine condylar cartilage 

specimens was modeled using a combination of two viscoelastic models.  The tensile 

properties were found to be anisotropic, having a higher stiffness in the 

anteroposterior direction than in the mediolateral direction.  However, the regional 

differences in the tensile properties were found to be insignificant in this study.  The 

anisotropy of the condylar cartilage suggests that the mechanical environment in the 

inferior joint space exposes the condylar cartilage to predominantly but not 

exclusively anteroposterior loading, which was also reflected in the results obtained 

by polarized light microscopy.  The condylar cartilage was less stiff than the TMJ 
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disc in all regions, except the superior region, which was significantly stiffer in the 

mediolateral direction than in the corresponding intermediate zone of the TMJ disc. 
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CHAPTER 5: Stress Relaxation Behavior of Mandibular Condylar 
Cartilage Under High-Strain Compression*

                                                           
*Chapter submitted to J Biomech Eng as Singh and Detamore, “Stress Relaxation Behavior of 
Mandibular Condylar Cartilage Under High-Strain Compression”, Aug 2008. 

 
ABSTRACT 

 During temporomandibular joint (TMJ) function, the mandibular condylar 

cartilage plays a prime role in the distribution and absorption of stresses generated 

over the condyle.  Biomechanical characterization of the tissue under compression, 

however, is still incomplete.  The present study investigates the regional variations in 

the viscoelastic properties and stress relaxation behavior of the condylar cartilage 

under high-strains using unconfined compression, with aims to facilitate future three-

dimensional viscoelastic finite element modeling and tissue engineering studies.  

Porcine condylar cartilages from five regions (anterior, central, lateral, medial and 

posterior) were tested under unconfined compression.  Stress relaxation behavior was 

modeled using the Kelvin model and a second order generalized Kelvin model.  The 

posterior region was the stiffest, followed by the middle (medial, central and lateral) 

regions and the anterior region, respectively.  Specifically, in terms of the equilibrium 

modulus, the posterior region was 1.4 times stiffer than the middle regions, which 

were in turn 1.7 times stiffer than the anterior region, and the difference was 

significant between anterior and posterior regions.  No significant differences in 

stiffness were observed among the medial, central, lateral and posterior regions.  A 

positive correlation between thickness and stiffness of the cartilage was observed, 
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reflecting that their regional variations may be related phenomena caused in response 

to cartilage loading patterns.  Condylar cartilage was less stiff under compression 

than in tension.  In addition, condylar cartilage under compression appears to behave 

in a manner similar to the TMJ disc in terms of the magnitude of moduli and drastic 

initial drop in stress after a ramp strain.    

 

INTRODUCTION 

The temporomandibular joint (TMJ) is a load-bearing joint, formed by the 

mandibular condyle along with the fossa-eminence and the TMJ disc.1  Soft tissues of 

the joint, including the mandibular condylar cartilage, help in the adaptation of the 

TMJ to the joint forces during function.284  Painful disorders of the joint (TMJ 

disorders or TMDs) affect a large population and have considerable prevalence with 

16–59% of the population having symptoms and 33–86% having clinical signs.2  

While internal derangement of the TMJ disc is arguably the most common of all 

TMDs,285 some studies suggest that the inferior joint space, including the condyle, 

sustains the greatest damage in such conditions.307, 308 

In a healthy joint, the mandibular condylar cartilage plays crucial roles of 

stress absorption and stress distribution over the condyle.  Abnormal loading 

conditions, due to parafunctional activities (e.g., clenching or grinding) or 

biomechanical dysfunctions caused by an existing TMD (e.g., locking of the jaw due 

to disc displacement), may lead to joint forces that exceed the functional limit of the 

condylar cartilage.  Such conditions may favor mechanical induction of a TMD such 
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as osteoarthritis, or may exacerbate an existing condition.286, 287  However, thresholds 

of normal and abnormal loading are unknown.  In this regard, developments in the 

field of modeling (using three-dimensional finite element models of the human TMJ) 

are promising, which may provide insight into the role of mechanics in TMDs.  For 

improved accuracy in the predictions by such finite element models, incorporation of 

reliable mechanical properties of the TMJ tissues is a must.  Moreover, biomechanical 

properties of the native tissue are also necessary as design and validation criteria for 

tissue engineering.  Complete biomechanical characterization of the condylar 

cartilage is, therefore, essential.   

The condylar cartilage is heterogeneous, both topographically and zonally.11, 

12  While a combination of compressive and tensile forces acts on the condylar 

cartilage, reflected in its heterogeneous zonal architecture, the loading of the condyle 

is primarily compressive in nature.40  Aggrecan, which is mainly responsible for the 

compressive integrity of the cartilage, is located in the hyaline-like mature and 

hypertrophic zones of the condylar cartilage (closer to the subchondral bone).10, 38, 47  

Moreover, the thickness and histological architecture of the condylar cartilage varies 

regionally, indicating the possibility of regional variations in its macroscopic 

compressive properties. 

Poroelastic and biphasic models have been extensively used in the past for 

modeling the hyaline cartilage behavior under compression, and provide useful 

material properties, such as permeability and Poisson’s ratio.14, 309-311  More 

importantly, these models serve as an excellent tool to provide a physical explanation 
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of cartilage biomechanics.  However, the diffusional drag between the solid and fluid 

phases, which is the basis of these models, may be limited in the cases of 

fibrocartilaginous tissues with lower GAG content compared to hyaline cartilages.46, 

93  In these cases, viscoelastic models provide a reliable representation of the cartilage 

response.  With regard to the choice of the constitutive models, the present study 

utilized isotropic viscoelastic models to model the stress relaxation data as these 

models are capable of modeling time-dependent mechanical behavior under large 

deformations (similar to the strains applied in this study).  One reason for selecting 

these models was to allow direct comparison with the tensile properties of the 

condylar cartilage obtained in our previous study.9  Moreover, we are interested in 

obtaining the equilibrium modulus and understanding the time scales associated with 

tissue stress relaxation behavior for each region, and in comparing these regions, and 

the viscoelastic model allows us to collect these data of interest.  The data obtained 

using viscoelastic models are highly relevant to tissue engineers, and favor the 

channeling of viscoelastic parameters into existing viscoelastic finite element models 

of the TMJ.59, 93 

Compressive viscoelastic characterization of the condylar cartilage is 

incomplete.  Previous compressive characterization studies of condylar cartilage, 

summarized in Table 5.1, investigated surface properties using atomic force 

microscopy,43, 44 the creep response of the anterior half using indentation of cartilage-

bone samples,8 and strain-rate dependent behavior using dynamic indentation of 

cartilage-bone samples.45  However, regional data for continuous and step 
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deformations of full-thickness condylar cartilage under compression are currently not 

available in the literature.  Specifically, given the soft nature of the condylar cartilage 

and the significant loads that the tissue experiences during functional and 

parafunctional activities (e.g., chewing on ice, clenching, etc.), one might expect that 

high strains would not be uncommon.  With this in mind, the aim of the present study 

was to investigate regional stress relaxation behavior of the condylar cartilage using 

unconfined compression under large deformation.  Compressive stress relaxation 

experiments were performed for five regions (anterior, medial, central, lateral and 

posterior).  A porcine animal model was selected due to the similarities in anatomy 

between the pig and human TMJ.50, 83, 312, 313 

 

MATERIALS AND METHODS 

Specimen Preparation 

 Hog heads from 7-month-old females (Duroc-White, skeletally immature) 

weighing 100-110 kg (220-250 lb) were obtained from a local slaughterhouse.  TMJs 

were harvested from the heads with joint capsules intact within 24 h of death.  

Mandibular condyles from both sides were separated by opening the lower joint 

compartments carefully and were assessed morphologically.  Condyles from the 

TMJs with no gross morphological signs of degeneration were wrapped in gauze, 

soaked in PBS (0.01 M phosphate buffered saline – 0.138 M sodium chloride, 0.0027 

M potassium chloride) and stored at -20 ºC.  Cartilage specimens were made from 

five different regions of the condyle: anterior, medial, central, lateral and posterior 
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(Fig. 5.1).  A total of nine right condyles were used during specimen preparation.  

However, stress relaxation data from a medial and a lateral specimen could not be 

obtained because of a premature ending of a test (load cell limit of 9 N exceeded) and 

a computer system failure, respectively.  Therefore, the sample size used in the study 

was n = 9, except for the medial and lateral regions (n = 8). 

 Prior to specimen preparation, frozen condyles were thawed at room 

temperature.  Condylar cartilages with the subchondral bone attached were carefully 

isolated from the bulk of the condylar bone using a scalpel and were divided into five 

regions, resulting in five cartilage-bone samples per condyle (Fig. 5.1).  

Subsequently, the subchondral bone was removed from each cartilage-bone sample 

using a cryotome (Microm HM550, Richard-Allan Scientific, Kalamazoo, MI) to 

produce full-thickness cartilage sections of uniform thickness.  A cylindrical cartilage 

specimen was cut out from the center of each cartilage section using a 5 mm diameter 

dermal biopsy punch.  Specimens were immediately wrapped in gauze, soaked in 

PBS, then frozen at -20 ºC until tested. 

 

Compression Tests 

Unconfined compression tests were performed using a uniaxial testing 

apparatus (Instron Model 5848, Canton, MA) with a displacement accuracy of 1 μm 

and a 10 N load cell with a force resolution of 0.0002 N.  A custom-made stainless 

steel bath and compression platen assembly, illustrated in Fig. 5.2, was mounted in 

the apparatus.  Specimens were kept hydrated in the bath with PBS during the testing.  
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The bath height was kept to a low value (approximately 1.5 mm from the lower 

platen) and was kept constant throughout all experiments to help maintain ionic 

conditions.300  Buoyant forces acting on the top platen, described by Detamore and 

Athanasiou,13 were found to be negligible.  The temperature of the bath was regulated 

to 37±1 ºC,13, 296, 298 and the bath surface was covered with parafilm to reduce 

evaporation due to heating. 

Prior to testing, each specimen was thawed at room temperature and 

equilibrated before testing in PBS at 37 ºC for 1 h to achieve thermal, hydration and 

ionic equilibrium.  In total, the specimens underwent four freeze-thaw cycles, which 

has been shown not to alter the mechanical properties of cartilaginous specimens.301  

Following equilibration, the specimen diameter was quickly measured at two sites 

using a micrometer (±0.001 mm) at 25X magnification.  The average specimen 

diameter was 4.73 ± 0.18 mm.  Subsequently, the specimen was placed on the lower 

platen and a tare load of 0.1 N (~0.006 MPa) was applied to the specimen.  The bath 

was then filled with PBS at 37 ºC and the specimen was allowed to re-equilibrate 

under this tare load for 10 min, which was found to be sufficient for re-equilibration 

during preliminary testing.  The grip-to-grip distance after the tare load was taken as 

the initial specimen thickness.  The specimen thicknesses were 0.39 ± 0.11 mm 

(anterior), 0.54 ± 0.07 mm (medial), 0.60 ± 0.11 mm (central), 0.63 ± 0.14 mm 

(lateral) and 0.78 ± 0.14 mm (posterior).  

Following the re-equilibration phase, specimens were preconditioned by 

applying cyclic loads from 0 to 25% strain, a range corresponding to the initial 
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exponential toe region,7 at a rate of 2 mm/min.13, 290, 295  Preliminary studies indicated 

that a total of 10 cycles were sufficient to produce repeatable stress-strain curves in 

successive cycles.  The preconditioned specimens were then subjected to stress 

relaxation.  A 50% ramp strain at 0.5 mm/min was applied followed by a 1 h 

relaxation period.  The rationale for using a moderate strain rate, close to ~1%/s,314-317  

was to obtain an elastic modulus from the stress-strain curve.  Given the duration of 

the ramp loading time (~ 30 s) in comparison to the overall relaxation duration (60 

min), the ramp strain serves as an approximation of a step strain for modeling 

purposes.  The ramp strain level was chosen based on preliminary testing, which 

demonstrated a linear stress-strain behavior beyond the toe region up to 80% strain.  

Furthermore, preliminary tests conducted on specimens made from the adjacent 

locations showed no significant difference in the equilibrium moduli at increasing 

ramp strains (at 40%, 50% and 60% ramp strain).  We therefore selected a value that 

was well beyond the toe region to ensure sufficient data were available from the 

linear region without reaching the load cell limit or tissue failure.  In addition, we 

conducted preliminary recovery tests to verify that the selected ramp strain value did 

not cause irreversible or permanent deformation of the tissue.  Preliminary tests also 

revealed that a relaxation duration of 1 h was sufficient for complete relaxation of the 

tissue.  

 

Obtaining the elastic modulus 
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Stress-strain curves were generated from the continuous deformation during 

the ramp strain to 50%.  Elastic moduli were obtained from the linear regions of the 

stress-strain curves.  The stress was defined as the ratio of the load to the initial cross-

sectional area, and the strain was defined as the ratio of the length change from the 

original tare length. 

 

Viscoelastic modeling 

Two viscoelastic models were used to model the stress relaxation following 

the ramp strain: a) the Kelvin model, and b) a second-order generalized Kelvin 

model.  Briefly, the stress-time relationship governing the time-dependent stress 

relaxation behavior for the Kelvin model, as described by Fung,7 is 
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where τε, τσ and ER are the stress relaxation time constant, creep time constant and 

equilibrium modulus, respectively.  The instantaneous modulus 0E  is related to these 

parameters by the following equation, 
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The second order generalized Kelvin model is an extension of the Kelvin model, 

where an additional Maxwell element is attached parallel to the Kelvin element.7  The 

relaxation function for the second order generalized Kelvin model, analogous to 

equation (1), is expressed as  
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The second order and first order models both share the same equilibrium modulus.  

However, the instantaneous modulus for the second order model is expressed as 
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The relaxation curve was first fit with the Kelvin model in MATLAB 

(MATLAB 7.3, The MathWorks, Natick, MA), obtained after excluding the first 5 

min of relaxation data (rationale explained later), using Eq. (1) to obtain RE , στ  and 

ετ .  Relaxation curves were then fit to the second order generalized Kelvin model, 

using the equilibrium modulus obtained from the Kelvin model.  A four-parameter 

curve-fitting of all of the relaxation data was performed according to Eq. (3), yielding 

the time constants 
1ε

τ , 
2ε

τ , 
1σ

τ  and 
2σ

τ .  Subsequently, instantaneous moduli 0E  

were calculated using Eq. (4).  To validate the constitutive models, additional 

compression tests were conducted and comparisons were made between the tissue 

behavior and the model prediction. 

 

Statistical Analyses 

Moduli and time constants were compared among the regions using a five-

level single factor analysis of variance (ANOVA), followed by a Tukey’s Honestly 

Significant Difference post hoc test when significance was detected.  The correlation 
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between stiffness and cartilage thickness was assessed with the Pearson correlation 

coefficient, r. 

 

RESULTS 

The porcine condylar cartilage demonstrated viscoelastic behavior under 

compression.  Stress-strain curves had the characteristic non-linear “toe” region,7 

which extended up to 25–30% strain, followed by the linear region (Fig. 5.3).  

Following a ramp change in the strain, a typical stress relaxation behavior was 

observed in all the specimens, where the stress relaxed in a bi-exponential manner.  

The relaxation proceeded rapidly during the first 5 min (short relaxation time), 

followed by gradual relaxation at a very slow rate (long relaxation time) (Fig. 5.4).  

These phases with markedly different relaxation time constants will be referred to as 

the “rapid” and “slow” relaxation phases, respectively.  The Kelvin model was first 

used, which was found to be inadequate to model the entire stress relaxation data set.  

Therefore, the Kelvin model was applied only to the slow relaxation phase (Fig. 5.4).  

For all of the specimens, R2 values of greater than 0.99 for the Kelvin fit (slow phase) 

and greater than 0.98 for the second order generalized Kelvin fit (entire range) were 

achieved.  Validation tests conducted on the samples made from different regions of 

the condylar cartilage demonstrated a similar bi-exponential behavior (Fig. 5.5), and 

the values were found to primarily lie within the upper and lower bounds (± 1 

standard deviation) set by the predicted model.  
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Regional compressive moduli and time constants of the condylar cartilage are 

summarized in Table 5.2, and a summary of statistical comparisons is provided in 

Table 5.3.  A comparison of moduli among regions reflected that the posterior region 

was stiffer than the anterior region after stress relaxation (p < 0.05), and that all 

regions were stiffer than the anterior region during initial loading (i.e., elastic and 

instantaneous moduli) (p < 0.05).  Specifically, the equilibrium moduli for the 

posterior and the anterior regions were 1.4 times and 0.6 times that of the pooled 

middle regions, respectively.  The regional differences in the stiffnesses among the 

medial, central, lateral and posterior regions were not statistically significant. 

Predictions from the second order generalized Kelvin model indicated that the 

rapid relaxation proceeded orders of magnitude faster than the slow relaxation, in 

general.  The stress relaxation time constants for the slow phase compared to the 

rapid phase (
21 εε ττ ) were 17–22 times higher.  The stress relaxation rates for the 

rapid phase were similar among all regions as indicated by similar 
2ε

τ values.  The 

stress relaxation rates for the slow phase, however, were higher in the central region 

compared to the posterior region, as indicated by lower value of 
1ε

τ for the central 

region (p < 0.05).  

 

DISCUSSION 

The elastic modulus values for the condylar cartilage used in some of the 

previous finite element modeling studies of the TMJ were 0.4961 and 0.7960, 64 MPa, 
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which are only slightly lower than the elastic moduli obtained in the present study.  

The average elastic modulus of the condylar cartilage under compression was found 

to vary from 0.8 MPa to 1.5 MPa, approximately matching the range of dynamic 

moduli reported in previous regional indentation studies (Table 5.1).43, 45  In this 

study, the compressive stiffness of the condylar cartilage was found to increase from 

the anterior to the posterior side, whereas variations in the stiffness of the middle 

regions were statistically insignificant.  In comparison, previous regional 

characterization studies reported a decrease in the stiffness of the cartilage from the 

anterior to the posterior side and a relatively smaller decreasing gradient from the 

medial to the lateral side.43, 45  It is likely that the differences in qualitative trends and 

quantitative observations can be attributed to animal differences (i.e., species or 

breed/gender/weight) and differences in experimental methods (testing method, strain 

rate, final strain value, experimental protocol).  Interestingly, we noticed that there 

was a relationship between the stiffness and thickness of the regions (r = 0.61), where 

the average elastic modulus was found to increase with the thickness.  Such a 

correlation may imply that regional variations in the stiffness and thickness are 

related phenomena, developed in response to regional loading patterns.  It may also 

indicate that the role of the cartilage is to sustain a heterogeneous in vivo 

biomechanical environment, where cartilage possibly experiences higher loads in the 

posterosuperior region compared to the anterior region.  The correlation between 

stiffness and thickness can also be gleaned in the study by Tanaka et al.,45 where 

specimens from the stiffer regions were generally thicker.  Since cartilage samples 
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from skeletally immature porcine were utilized in the present study, regional 

compression and thickness characterization of mature porcine cartilage will be of 

particular interest in the future for validation of the results.  Moreover, the 

compressive properties of human mandibular condylar cartilage have heretofore not 

been tested.  However, studies of its thickness have revealed that anteroposteriorly, 

the middle region is the thickest, followed by the anterior and posterior regions, 

respectively;51-53 and mediolaterally, the medial and central regions are thicker than 

the lateral region.  Elucidation of the regional compressive behavior of human 

mandibular condylar cartilage in the future will reveal whether a similar correlation 

between thickness and stiffness also exists in humans.  

Compared to the tensile properties of the condylar cartilage,9 the compressive 

elastic and instantaneous moduli were an order of magnitude lower than the 

corresponding tensile moduli, and the compressive equilibrium moduli were two 

orders of magnitude lower.  In addition, the ratio of elastic to instantaneous moduli 

was larger under compression (~2.5–3.5) than in tension (~1.4–2.1), which was due to 

the presence of a larger non-linear toe region in compression (~6% strain for tension 

vs. 25–30% for compression).  Collectively, these comparisons show that the 

condylar cartilage is less stiff and exhibits a greater viscous character under 

compression than in tension.  Compared to the instantaneous modulus of the TMJ 

disc under compression,46 regional instantaneous moduli of the condylar cartilage 

were found to be higher with the exception of the anterior region.  In contrast, 

regional equilibrium moduli of the condylar cartilage were found to be smaller than 
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that of the disc (22–38 kPa).  This may indicate that the condylar cartilage has a 

relatively greater viscous character than the TMJ disc under compression.  It should 

be noted that the two studies (TMJ disc and current) had possible animal differences 

and differences in experimental methods (incremental stress relaxation vs. single 

ramp strain, final ramp strain value, strain rate). 

In the present study, a ramp strain value of 50% was selected, which is higher 

than the typical strain values used in previous reports of articular cartilage 

indentation.  In vivo strain measurements in the TMJ, however, indicate that 

significant bone strains exist, ranging from 89 to 109 με during masseter contraction 

in miniature pigs.318  In terms of condyle loading, axial compressive loads on the 

condyle of up to approximately 32 N in baboons were calculated in bite-force 

experiments,319 and forces up to 210 N were reported on human condyles under 

simulated muscle activity.  Moreover, the maximum regional compressive stresses 

achieved in the condylar cartilage samples following 50% strain ranged from 0.29 

MPa (anterior) to 0.49 MPa (lateral).  These values are, in general, similar to or lower 

than maximum principle stress levels in the compressed condylar regions during 

unloaded jaw-closing movement,68 and are lower than parafunctional compressive 

stress levels (during clenching) in the compressed condylar regions,60 as predicted by 

a finite element models of the TMJ.  Based on such previous reports and the observed 

full-recovery of the cartilage following stress relaxation in vitro, it is conceivable and 

likely that strains up to or exceeding 50% may be present during 

normal/parafunctional jaw activities in vivo.  It should be noted that a direct 
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correlation between the present test results and in vivo findings cannot be made, as in 

vivo environment is significantly different than the applied testing conditions 

(confined-dynamic vs. unconfined-fixed strain rate). 

The constitutive models utilized in this study assume a linear viscoelastic 

response, while the tissue demonstrated a non-linear viscoelastic response (as shown 

in Fig. 5.3).  The inability of the employed viscoelastic models to incorporate material 

non-linearity was a limitation of this model.  In this regard, improvements can be 

made in the future by utilizing the quasi-linear viscoelastic (QLV) model7, 320, 321 or 

non-linear viscoelastic models.322-324  In addition, use of Lagrangian stresses 

(calculated from stresses in the present configuration to the cross-sectional area in the 

reference configuration) in such isotropic constitutive models, which are usually 

formulated for the Cauchy stresses, is also a potential limitation.  Moreover, a ramp 

strain was applied in this study to approximate a step strain, so the actual values of 

instantaneous and relaxed modulus would be a little bit higher than the values 

predicted.  To understand the cartilage biomechanics physically, use of more 

sophisticated constitutive models will provide relevant information in the future.325 

Due to the bi-exponential decay in stress, the Kelvin model was not suitable to 

curve fit the relaxation data (Fig. 5.4).  Therefore, the second order generalized 

Kelvin model was selected.  There are previous reports where this model was used 

successfully to model similar bi-exponential decay curves.303-306  However, the 

second order generalized Kelvin model could not accurately predict the equilibrium 

moduli here.9  Instead, the first order Kelvin model of the slow relaxation phase was 
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used to provide the RE , since both models share a common RE (Eqs. (1) and (3) for 

t→∞).  Experimental curves indicated that the initially higher relaxation rates 

subsided to low values at around 5 min, providing the rationale for selecting t = 5 min 

as the point of the relaxation phase transition (Fig. 5.4). 

In this study, uniform pure-cartilage specimens were tested under unconfined 

compression.  Variations in the thicknesses among regions resulted in regional 

differences in the applied percentage strain rate (%/s).  However, the results reflect 

the relaxation behavior of full-thickness specimens at a given rate of deformation 

(mm/s), which we believe are more relevant to 3-D finite element modeling and tissue 

engineering communities. 

In conclusion, the stress relaxation behavior of porcine condylar cartilage 

under compression was successfully modeled using a combination of two viscoelastic 

models.  The posterior region was the stiffest, followed by the middle regions and 

then the anterior region, respectively.  No statistically significant differences were 

observed among the middle regions.  A possible relationship between thickness and 

stiffness of the cartilage was observed, suggesting that their regional variations may 

be related phenomena caused by variations in cartilage loading patterns.  The stiffness 

of the condylar cartilage appears to be lower under compression than under tension.  

In addition, condylar cartilage under compression appears to behave in a manner 

similar to the TMJ disc in terms of the magnitude of moduli and drastic initial drop in 

stress after a compressive ramp strain.  This study is an important early step in 

understanding the compressive behavior of the condylar cartilage.  In the future, use 
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of lower strain values and constitutive models, having an ability to provide physical 

explanation of the non-linear condylar cartilage response, would be a significant step 

forward. 
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CHAPTER 6: Microsphere-Based Seamless Scaffolds Containing 
Macroscopic Gradients of Encapsulated Factors for Tissue 

Engineering*

                                                           
*Chapter published as Singh, Morris, Ellis, Detamore, and Berkland, “Microsphere-Based Seamless 
Scaffolds Containing Macroscopic Gradients of Encapsulated Factors for Tissue Engineering”, Tissue 
Eng Part C Methods, Epub ahead of print, 2008. 

  
ABSTRACT 

 Spatial and temporal control of bioactive signals in three-dimensional (3-D) 

tissue engineering scaffolds is greatly desired.  Coupled together, these attributes may 

mimic and maintain complex signal patterns, such as those observed during axonal 

regeneration or neovascularization.  Seamless polymer constructs may provide a route 

to achieve spatial control of signal distribution.  In this study, a novel microparticle-

based scaffold fabrication technique is introduced as a method to create 3-D scaffolds 

with spatial control over model dyes using uniform Poly(D,L-lactide-co-glycolide) 

(PLG) microspheres.  Uniform microspheres were produced using the Precision 

Particle Fabrication technique.  Scaffolds were assembled by flowing microsphere 

suspensions into a cylindrical glass mold, then microspheres were physically attached 

to form a continuous scaffold using ethanol treatment.  An ethanol soak of 1 h was 

found to be optimum for improved mechanical characteristics.  Morphological and 

physical characterization of the scaffolds revealed that microsphere matrices were 

porous (41.1 ± 2.1%) and well connected, and their compressive stiffness ranged 

from 142 to 306 kPa.  Culturing chondrocytes on the scaffolds revealed the 
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compatibility of these substrates with cell attachment and viability.  In addition, bi-

layered, multi-layered and gradient scaffolds were fabricated, exhibiting excellent 

spatial control and resolution.  Such novel scaffolds can serve as sustained delivery 

devices of heterogeneous signals in a continuous and seamless manner, and may be 

particularly useful in future interfacial tissue engineering investigations. 

 

INTRODUCTION 

Engineering tissues and organs requires combinations of biomaterials, cells, 

and bioactive signaling molecules.326  Bioactive signals may be exogenously supplied 

via either the nutrient media (possible in in vitro culture conditions), polymeric 

scaffolds (incorporated in a soluble or immobilized form), by utilizing growth factor-

secreting natural or genetically modified cells, and/or by gene delivery,238 and are 

most commonly delivered in a homogeneous manner.  However, spatial patterning of 

biological cues is vital to some of the most fundamental aspects of life, from 

embryogenesis to wound healing to nerve cell signaling, all involving concentration 

gradients of signaling molecules.  Spatial patterning of bioactive signals may thus be 

a critical design element in the engineering of tissues or organs. 

Various strategies have been developed to create gradients of bioactive 

signals.  As early as the 1960’s, diffusion-driven two-dimensional non-linear 

gradients of soluble proteins were developed to identify chemotactic response.256  A 

few recent studies reported innovative diffusion- or convection-dominated approaches 

of creating linear or non-linear protein gradients within three-dimensional 
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scaffolds.243, 245, 271  Using photolithographic and soft lithographic techniques, many 

innovative methods of protein/cell patterning have been reported that provide micron-

level positional accuracy; however, such techniques are largely limited to two-

dimensional constructs (reviewed by Park and Shuler327).  To fabricate three-

dimensional scaffolds with embedded linear gradients, a commercially available 

gradient maker (Gradient maker, CBS Scientific, Del Mar, CA) has also been utilized 

in various studies.247, 248, 252  A number of other innovative strategies that have been 

applied to create gradient-based substrates for highly diversified applications have 

been reviewed recently.145, 146 

In the areas related to tissue engineering, gradient-based signal delivery 

systems have by far gained the most attention in the fields of neural tissue 

engineering243, 245, 247 and in the study chemotaxis.254  Interfacial tissue regeneration is 

another key area that may benefit from gradients of bioactive signals, as some studies 

have suggested that signals from a tissue may influence the development and growth 

of its neighbor.  For example, it can be seen during embryonic development and 

morphogenesis that the fate of one germ layer depends on signals from its 

neighbor.278  An in vitro culture study reported that only co-culture with chondrocytes 

(as opposed to fibroblasts or osteoblasts) was successful at promoting osteogenic 

differentiation of mesenchymal stem cells in a selective manner,280 indicating the 

importance of simultaneous triggering of osteo- and chondro-induction for 

osteochondral tissue regeneration.  An integrated scaffold with embedded gradients of 
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growth factors at the interface, therefore, may trigger simultaneous tissue formation, 

and may have an adjuvant effect on interfacial tissue regeneration. 

Microparticles have been long studied as polymeric delivery devices for a 

variety of drugs due to the ease of fabrication, control over morphology, the ability to 

discretely control their physicochemical properties and versatility of controlling the 

release kinetics of loaded therapeutics.328  Recently, microparticle-based approaches 

of scaffold design have received much attention in the field of tissue engineering, 

targeting regeneration/repair of a variety of tissues (e.g., cartilage329, 330, bone331, 332, 

neural333, 334), where microparticles may act as supporting matrices for cell attachment 

and/or as carriers of bioactive agents for controlled delivery of exogenous signals.  

Poly(D,L-lactide-co-glycolide) (PLG), an aliphatic polyester, has been widely used in 

many of these investigations because the polymer is biocompatible and 

biodegradable.  Moreover, the degradation kinetics of the polymer is flexible, which 

can be modulated by altering one or more of the factors, such as co-polymer ratio, 

molecular weight, end-group chemistry, crystallinity, glass transition temperature, 

etc.335, 336  Some recent studies reported fabrication of matrices exclusively made of 

PLG microspheres utilizing heat-sintering331, 337 dichloromethane vapor treatment282, 

338 or a solvent/non-solvent sintering method.339, 340 

It is well known that microsphere size is one of the major determinants of 

polymer degradation rate, and is a primary factor governing the release kinetics of 

loaded molecules.328  Unfortunately, microsphere fabrication using traditional 

methods (e.g., emulsion or spraying technique) generates reproducible, but often 
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poorly controllable, sphere sizes and size distribution.341  To achieve control over 

local growth factor concentrations in a microsphere-based scaffold, control over 

microsphere size is critical.  Moreover, by controlling the microsphere sizes, precise 

spatial control over pore-sizes and macro-porosity may also be achieved. 

In the present study, utilizing our ability to create relatively monodisperse 

microspheres,341 we introduce a novel microparticle-based scaffold fabrication 

technique to create scaffolds with spatial control over active ingredients using 

uniform PLG microspheres and an ethanol treatment.  As discussed later, such 

macroscopic gradients can particularly be useful for future interfacial tissue 

regeneration investigations.  

 

MATERIALS & METHODS 

Materials 

Poly(D,L-lactide-co-glycolide) copolymer (50:50 lactic acid:glycolic acid; 

intrinsic viscosity 0.41 dL/g, Mw ~50,000 Da, density 1.34 g/mL) was purchased 

from Birmingham Polymers (Pelham, AL).  Poly(vinyl alcohol) (PVA; 88% 

hydrolyzed, 25,000 Da) was obtained from Polysciences, Inc. (Warrington, PA).  

Rhodamine B base and fluorescein were obtained from Sigma (St. Louis, MO).  

Dichloromethane (DCM; HPLC grade) was obtained from Fisher Scientific 

(Pittsburgh, PA).  Ethanol (Absolute - 200 Proof) was obtained in house. 

 

Preparation of microspheres 
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Uniform PLG microspheres were prepared using technology from our 

previous reports.341  Briefly, PLG dissolved in DCM (30% w/v) was sprayed through 

a small-gauge needle.  The polymer stream was acoustically excited using an 

ultrasonic transducer (Branson Ultrasonics, Danbury, CT) controlled by a waveform 

generator (model 33220A, Agilent Technologies, Santa Clara, CA), resulting in 

regular jet instabilities that produced uniform polymer droplets.  An annular carrier 

stream (~0.5 % PVA (a surfactant) w/v in distilled water) surrounding the droplets 

was produced using a nozzle coaxial to the needle.  The emanated polymer/carrier 

streams flowed into a beaker containing approximately 1,000 mL of 0.5% PVA.  To 

extract the solvent, incipient polymer droplets were stirred for 3-4 h.  Subsequently, 

the hardened microspheres were filtered and rinsed with distilled water (~1 L) to 

remove residual PVA.  Finally, microspheres were lyophilized (Freezone, Labconco 

benchtop model) for 2 days and stored at –20°C under desiccant.  In a similar manner, 

fluorescent dye-loaded microspheres were prepared for concentration profile 

assessment (discussed later) by using PLG solution (~30% w/v in DCM) co-dissolved 

with rhodamine B or fluorescein.  

 

Particle size distribution 

The size distribution of microsphere preparations was determined using a 

Coulter Multisizer 3 (Beckman Coulter Inc., Fullerton, CA) equipped with a 560-μm 

aperture.  Freeze-dried particles were suspended in Isoton electrolyte that was stirred 
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at low speeds to prevent particles from settling.  A minimum of 5,000 microspheres 

was analyzed for each set of particles. 

   

Scaffold fabrication 

Two sets of freeze-dried microspheres were separately loaded into two 

syringes in the form of suspensions, prepared by suspending microspheres (~1% w/v) 

in distilled water/PVA solution (volume ratio PVA:distilled water 1:20 (PVA 0.5% 

w/v)).  The syringes were then installed in the scaffold fabrication apparatus (Fig. 

6.1).  The suspensions were pumped through the attached tubing to a cylindrical glass 

mold (6 mm diameter) in a controlled manner using programmable syringe pumps 

(PHD 22/2000, Harvard Apparatus, Inc., Holliston, MA).  Through the bottom of the 

mold, the distilled water/PVA solution was filtered, while the microparticles stacked 

in the mold.  The suspensions in the syringes were constantly stirred magnetically to 

keep them homogeneous.  To prevent microspheres from rapid settling or sticking to 

the walls of the mold, a constant level of distilled water was maintained in the mold, 

controlled by an additional infusion syringe pump (Harvard Apparatus, Inc.) and a 

vacuum pump.  The stacked microspheres were washed with distilled water (~100 

mL), were allowed to soak in ethanol (100%) for 50 min, then the ethanol was pulled 

out using a vacuum pump.  Ethanol-soak resulted in physical attachment of adjacent 

microspheres, due to adhesion and/or reptation, resulting in the formation of a matrix.  

To compare the effects of the duration of ethanol-soak on scaffold morphology, 

porosity and mechanical characteristics, additional scaffolds with various ethanol 
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soak times (i.e., 30 min, 1 h, 2 h or 4 h) were prepared.  The molds (containing the 

scaffolds) were freeze-dried (Freezone, Labconco benchtop model, Kansas City, MO) 

for a minimum of 2 days, and then the scaffolds were retrieved from the molds.  In 

some cases, the scaffolds were prepared using suspension(s) of dye-loaded 

microspheres with predefined distinct flow profiles, which were later used in 

concentration profile assessment studies. 

 

Scanning electron microscopy 

Both microspheres and scaffolds were freeze-dried overnight and 

cryofractured with a razor blade, then sputter coated with gold.  The imaging was 

performed using a Leo 1550 field emission scanning electron microscope at an 

accelerating voltage of 5 kV under a high vacuum. 

 

Differential scanning calorimetry 

Differential scanning calorimetry (DSC) (Q100, TA Instruments, Inc., New 

Castle, DE) was used to measure the change in glass transition temperature (Tg) of the 

PLG following the microparticle and scaffold preparations.  Prior to the analysis, raw 

PLG and one set of microspheres were lyophilized for 1 day, and a scaffold (prepared 

by ethanol-soak of 50 min) was lyophilized for 2 days.  The experiments were carried 

out in triplicate on the samples (~15-20 mg each) packed in sealed aluminum pans.  

For each sample, a nonisothermal scan was performed from –10°C to +80°C at a 
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heating rate of 10°C min-1 under nitrogen atmosphere, and the corresponding Tg was 

recorded. 

 

Porosity estimation and measurement 

Porosity measurements were performed by imaging the scaffolds (prepared by 

50 min ethanol-soak) using microCT (μCT 40, Scanco Medical, Southeastern, PA).  

Using 3-D MicroCT reconstruction and a segmentation value of 75, porosities and 

degrees of anisotropy were directly determined from scaffold sections (height 0.44-

0.47 mm) (n = 4).  Using NIH ImageJ software, 2-D microCT images were also 

analyzed.  In addition, theoretical porosities of the scaffolds were calculated using the 

density of the raw PLG and the apparent densities of the scaffolds prepared by 30 

min, 50 min, 1 h, 2 h, and 4 h of ethanol exposure.342  The diameter (d), thickness (h) 

and mass (m) of the cylindrical scaffolds were measured, and porosities were 

calculated as:  

%100 - 1 Porosity app ×⎟
⎠
⎞

⎜
⎝
⎛= ρ

ρ ,  

where appρ  is the apparent density of the scaffold, given by hd
m4

2app πρ = , and ρ  

is the density of the stock PLG. 

 

Mechanical characterization 

Unconfined compression tests were performed using a uniaxial testing 

apparatus (Instron Model 5848, Canton, MA) with a 50 N load cell.  A custom-made 
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stainless steel bath and compression- plate assembly was mounted in the apparatus.  

Cylindrical scaffold samples prepared with an ethanol-soak duration of 30 min, 1 h, 

2h and 4 h (2.7 to 6 mm height, diameter ~6 mm) were tested at a strain rate of 5 

mm/min under simulated physiological conditions (i.e., under PBS (phosphate 

buffered saline – 0.138 M sodium chloride, 0.0027 M potassium chloride) at 37 ºC).  

A strain rate in this range, i.e., ~1 to 2 %/s, is considered to be a moderate value for 

compressive testing of cartilaginous tissues.314-317  Moduli of elasticity were obtained 

from the initial linear regions of the stress-strain curves (rationale explained later).343  

The stress was defined as the ratio of the load to the initial cross-sectional area, and 

the strain was defined as the ratio of the change in the length to the original length. 

 

Cell seeding on scaffolds and viability 

Porcine chondrocytes were harvested from a hog ankle (Duroc breed, 6 

months old, female) obtained from a local slaughterhouse in a manner described 

previously.344  The cells were then plated for expansion in monolayer and incubated 

at 37°C in 5% CO2, with media changed every 2–3 days.  The cell culture medium 

consisted of Dulbecco’s Modified Eagle medium, 10% fetal bovine serum (ES cell 

quantified), 1% penicillin–streptomycin–fungizone, 1% non-essential amino acids (all 

from Invitrogen Life Technologies, Carlsbad, CA) and 50 μg/mL L-ascorbic acid 

(tissue culture grade; Fisher Scientific, Pittsburgh, PA).  The cells were expanded and 

passaged twice before being seeded onto the scaffolds. 
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Cylindrical scaffolds (~6 mm diameter, 1mm height) were prepared using a 50 

min ethanol soak, as mentioned earlier.  Cells were seeded onto these scaffolds at a 

density of 3 × 106 cells per scaffold using the orbital shaker method as described 

previously,345 and cultured for 18 days with half of the media refreshed every other 

day.  Following this incubation period, the scaffolds were stained with LIVE/DEAD 

reagent (dye concentration 2 mM calcein AM, 4 mM ethidium homodimer-1; 

Molecular Probes, Carlsbad, CA) and incubated for 45 min, before being subjected to 

fluorescence microscopy (Olympus/Intelligent Innovations Spinning Disk Confocal 

Microscope, University of Kansas). 

 

Concentration profile assessment study – Spatial control over composition of the 

scaffold 

Four specific scaffolds were prepared, as mentioned earlier, using two 

different microsphere types (rhodamine-loaded and fluorescein-loaded microspheres, 

or rhodamine-loaded and blank microspheres).  The syringes were loaded 

individually with one microsphere type and attached to the scaffold fabrication 

apparatus.  Microspheres were pumped in a predefined manner using specific flow 

profiles (Fig. 6.2), and then the scaffolds were prepared by physically attaching the 

microspheres together with an ethanol-soak of 50 min.  The resulting scaffolds were 

imaged under UV light using a UV lamp (254/365 nm; UVGL-25, UVP, Inc., 

Upland, CA) and a high-resolution camera, and images were analyzed using NIH 

ImageJ software to assess spatial control over the composition of the scaffolds. 
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Statistical analyses 

The effects of microparticle preparation and ethanol-soak on the Tg of PLG 

were statistically analyzed using a three-level single factor analysis of variance 

(ANOVA) and a Tukey’s Honestly Significant Difference post hoc test when 

significance was detected (n = 3).  Moduli of elasticity and theoretical porosities of 

scaffolds prepared using varying ethanol soak-times were analyzed in a similar 

manner using a four-level single factor ANOVA, followed by a Tukey’s Honestly 

Significant Difference post hoc test when significance was detected (n = 5). 

 

RESULTS 

Preparation of microspheres 

Microspheres having a uniform diameter were created using the previously 

reported Precision Particle Fabrication method341 and were characterized for their size 

and morphology.  Four sets of microparticles were produced; a) blank-220 μm, b) 

blank-160 μm, c) rhodamine B-loaded (10% w/w)-150 μm, and d) fluorescein-loaded 

(10% w/w)-150 μm.  Uniform solid PLG microspheres of 220 μm diameter were used 

to form scaffolds for all sub-studies, except the scaffolds used in scanning electron 

microscopic imaging (160 μm diameter was also used) and the flow profile 

assessment study (dye-loaded microspheres were also used).  The microspheres had 

relatively monodisperse size distribution and a solid interior morphology (Fig. 6.3).  

Specifically, microsphere sizes in the range of 100-300 μm were chosen, as it is our 
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hypothesis for future in vitro tissue engineering investigations that this range may 

provide optimal pore sizes to allow cellular infiltration and cell-to-cell interaction.  

 

Fabrication and characterization of scaffolds  

A novel scaffold fabrication apparatus was designed, as mentioned earlier, to 

construct microsphere-based scaffolds with spatial control over their structure.  

Microsphere matrices were constructed using blank microspheres of 160 μm or 220 

μm diameter with 50 min ethanol soak-time (denoted by Smicrosphere-size-time in minutes; S160-

50 group and S220-50, respectively).  In addition, to observe the effect of ethanol soak 

times on scaffold morphology and mechanical properties, scaffolds were prepared 

using microspheres of 220 μm diameter with varying ethanol soak-times of 30 min, 1 

h, 2 h and 4 h (S220-30, S220-60, S220-120 and S220-240, respectively).  The ethanol soak-

time was selected based on preliminary scaffold fabrication results, which indicated 

that a minimum of a 30 min ethanol-soak was required to attain some partial 

integration between the microspheres.  It was also observed that exceeding a soaking 

time of 70 min resulted in reduced porosities.  In general, the optimum range of 

ethanol soak-time was a function of the polymer properties (co-polymer ratio, 

molecular weight, etc.).  Microspheres composed of PLG with lower molecular 

weights are expected to require shorter ethanol soak-times or dilution of ethanol for 

production of mechanically integrated porous matrices. 

Cylindrical scaffolds, 6 mm in diameter and 2.7 to 6 mm in height, were 

prepared and their morphology was analyzed (Fig. 6.4).  Scanning electron 
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micrographs of a representative scaffold from the S160-50 group revealed that the 

scaffolds were porous, having interconnected pores.  In addition, to investigate the 

effect of the duration of ethanol-soak on the microspheres, S220-30, S220-60, S220-120 and 

S220-240 scaffolds were analyzed using SEM (Fig. 6.5).  Microsphere morphology and 

pore sizes in the scaffolds were found to be a function of the duration of ethanol soak, 

where soak-times longer than 1 h resulted in visible distortion from spherical 

morphology and pore closure at several places (Fig. 6.5A-D).  Representative pore 

size range from one representative time group (1 h ethanol soak) measured from the 

SEM images was found to be ~20-120 μm.  Higher magnification images (Fig. 6.5E-

H) show the points of contact between the microspheres.  Surface film layers formed 

as a result of plasticization of PLG with ethanol.  Integration of these surface films 

led to the formation of a well-connected matrix.  

The mechanical integrity of the scaffolds were analyzed by unconfined 

compression testing at simulated physiological conditions.  A characteristic plot 

obtained from the testing of a scaffold sample demonstrated that the curve had a 

typical nature: an initial linear region (0 to ~25% strain), a middle non-linear region 

(~25 to 70% strain) and a final linear region of considerably higher linear slope (post 

70% strain) (Fig. 6.6A).  The hypothesized mechanism of compression is somewhat 

analogous to the compression of closed-foam cellular solids.343  Accordingly, the 

initial linear region (0 to ~25% strain) was used to determine the stiffness of the 

scaffolds (142 – 308 kPa) (Fig. 6.6B).  The middle non-linear region (~25 to 70% 

strain), the onset of which begins after achieving a yield stress, signifies the 
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phenomenon of pore collapse, causing a continuous increase in scaffold density and 

stiffness.  The final linear region (post 70% strain) corresponds to the material 

densification regime due to the absence of pores or any further changes in pore 

volume.  Unlike the observations in cellular solids,343, 346 a collapse plateau region 

was absent from the stress-strain curve, probably owing to the differences in testing 

conditions (i.e., simulated physiological condition as opposed to testing in air at 

ambient temperature).  Mechanical test results indicated that the average modulus of 

elasticity of S220-60 was significantly higher than the moduli of the S220-30 and S220-240 

scaffolds (p<0.05).  While it may be expected that an increase in ethanol soak-time 

would result in an increased stiffness and reduced porosity of the scaffolds, no such 

trends were seen in the range of ethanol-soak times examined.  Visual inspection of 

the scaffolds revealed that scaffolds prepared by a 30 min soak did not have well-

integrated microspheres, and microspheres were falling off of the ends of the 

scaffolds.  When the ethanol soak-time exceeded 1 h (i.e., for S220-120 and S220-240 

groups), the reduction in mechanical integrity might be a result of increased 

morphological distortion of the microspheres from a spherical shape that may have 

resulted in a poor packing of the microspheres.  Thus, an ethanol soak of 1 h was 

found to provide optimal mechanical properties. 

The effect of microsphere preparation and scaffold fabrication on Tg of PLG 

was analyzed by DSC (Table 6.1).  Microsphere preparation led to a small drop (~1.4 

%) in the Tg of the raw polymer (p<0.005).  However, the ethanol treatment during 
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the fabrication of scaffolds resulted in reduced Tg of the PLG, where the average Tg 

dropped by 14 % compared to raw PLG (p<10-6).  

Changing the ethanol soak time resulted in the slight variation in the overall 

morphology of the scaffold.  The mean theoretical porosities of S220-30, S220-60, S220-120 

and S220-240 scaffolds were 41.1, 38.8, 32.8 and 40.4%, respectively (n=5).  

Unexpectedly, the theoretical porosity for the S220-240 group was found to be higher 

than that for the S220-60 and S220-120 groups; however, no statistically significant 

differences were noticed among the groups.  For the measurement of porosities of the 

scaffolds experimentally, scaffolds prepared using a 50 min ethanol soak-time were 

imaged using microCT (Fig. 6.7), and average porosities determined directly from 

scaffold sections using 3-D reconstruction were found to be 41.1%.  The values were 

found to be considerably similar to the corresponding porosity value obtained using 

2-D imageJ analysis (41.5%) and similar to the average theoretical porosities (44.9%) 

(Table 6.2).  MicroCT analysis also confirmed that the scaffolds were isotropic; the 

average degree of anisotropy was 1.06 ± 0.1.  In addition, interconnectivity of the 

pore structure was confirmed by microCT. 

 

Viability assessment 

Porcine ankle chondrocytes, dynamically seeded and cultured on S220-50 group 

scaffolds, were assessed for their viability.  The majority of the cell population was 

identified as viable after a total of 18 days in culture (Fig. 6.8).  
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Concentration profile assessment study – Spatial control over the composition  

Images of scaffolds that were prepared using specific flow profiles with dye-

loaded or blank microsphere suspensions (described in Fig. 6.2) are shown in Fig. 6.9 

(A–D).  Images of the scaffolds captured under UV light were modified by pseudo-

coloring them to create black and white images.  Each image was divided in five 

equal parts, and particle distribution in the direction perpendicular to the interface 

was analyzed using ImageJ software to create relative intensity vs. relative distance 

plots.  The plots demonstrated successful fabrication of bi-layered, multi-layered and 

gradient scaffolds (Fig. 6.9 E–H).  Irrespective of the scaffolds, standard deviations 

were higher at the interface, probably due to imprecise settling of the microspheres in 

the mold and/or wetting effects on the walls of the mold.  The characteristic nature of 

each plot, however, was similar to the corresponding flow profile applied during the 

scaffold fabrication.  The plots demonstrated the ability of the scaffold fabrication 

set-up to create scaffolds of various predefined profiles with spatial control.  In 

addition, the orientation of the interface may also be varied (compare Fig. 6.9B and 

9C), which can be controlled by manipulating the vertical orientation of the 

cylindrical mold.  Note that similar flow profiles were used to prepare these two 

scaffolds (Fig. 6.2B and 6.2C), the only difference being the pitch of the mold. 

 

DISCUSSION 

Spatial control over the release of the bioactive molecules is a critical aspect 

that, along with the temporal control, may provide the possibility of mimicking 
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complex signal patterns, such as those during embryonic development.238  In the 

present study, we designed a novel scaffold fabrication apparatus and demonstrated 

our ability to produce microsphere-based scaffolds with spatial control over 

molecular composition.  Proof-of-concept was provided using blank or dye-loaded 

microspheres, which were used as building blocks to fabricate bi-layered, multi-

layered and gradient scaffolds.  

In comparison to traditional microsphere preparation methods, our ability to 

synthesize monodisperse microspheres may lead to improved systems to explore the 

effects of microparticle size on microsphere-based scaffolds.  Scaffolds made of 

uniform microspheres are ideal to study the influence of microparticle size on the 

degradation patterns and rates within scaffolds.  In addition, as observed in the case of 

colloidal crystal-templated gel-based scaffolds,347, 348 uniform microspheres can pack 

closely compared to randomly-sized microspheres, providing better control over the 

pore-sizes and porosity of the scaffold, and may considerably aid the mechanical 

integrity of the scaffolds.  Moreover, local release of growth factors from the 

microspheres in a bulk scaffold is related to individual microsphere size and polymer 

properties.  Reproducibility and predictability associated with uniform microsphere-

based scaffolds may make them suitable for a systematic study of physical and 

chemical effects in order to achieve control over local release of growth factor within 

such a scaffold. 

Integrated microsphere matrices have been created in the past by employing a 

heat-sintering technique, which requires heating of microspheres above their Tg.  Heat 
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sintering is suitable for the preparation of bioconductive microsphere-based scaffolds; 

however, inclusion of growth factors in the microspheres before exposing them to 

heat may severely affect protein activity.  The sintering temperatures and durations of 

heat exposure used in some previous studies were 160ºC for 4 h (PLG; 85:15 lactic 

acid:glycolic acid),331 65ºC for 4 h (PLG/bioactive glass),337 70ºC for 4 h (poly(D,L-

lactide)/poly(ethylene glycol)),270 and 62ºC for varied times of 4, 24, 48 and 72 h 

(PLG; 58:42 lactic acid:glycolic acid).349  Such elevated temperatures for extended 

durations may lead to reduction in the bioactivity or complete denaturation of 

encapsulated proteins.270  In the present study, we introduced an ethanol treatment 

technique as an alternative for the production of microsphere-based matrices, which 

may alleviate such concerns.  For example, the proprietary process used by Alkermes, 

Inc. (Cambridge, MA) utilizes low temperature casting of microspheres with ethanol 

as the anti-solvent.350  Recently, another technique for creating microsphere-based 

scaffolds was reported that utilized dichloromethane vapor treatment, a benign 

process that was shown not to affect the activity of bioactive signals.282, 338  

Dichloromethane is an organic solvent commonly used in microsphere preparation 

methods for dissolving polymeric materials.  Ethanol, on the other hand, is an organic 

solvent of higher polarity, which is arguably a more common chemical in tissue 

engineering protocols (applied as a sterilizing agent) and possesses an ability to 

physically attach aliphatic polyesters.  As predicted by the Hildebrand theory 

involving the polymer/solvent solubility,351 ethanol is a poor solvent for PLG in 

comparison to dichloromethane.  When ethanol came in physical contact with PLG, 
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dissolution of a thin surface layer of PLG microspheres was previously observed,352 

typically resulting in the formation of a “skin layer” or a “thin film” around the 

microsphere, as can also be evidenced from the SEM images (Fig. 6.5).  Due to 

ethanol treatment, a drop in Tg and subsequent plasticization of PLG scaffolds were 

reported.353  Based on these reports and our observations, the mechanism of 

microsphere attachment appears to be that the treatment with ethanol leads to a drop 

in Tg, resulting in softening of the wetted microspheres near the surface.  The surface 

films that form in the process adjoin, and then the subsequent freeze-drying step 

removes the ethanol from the integrated microsphere-based matrix.  In the ethanol-

free dry state, a recovery in mechanical properties of the scaffold is expected.353  The 

duration of the ethanol soak was an important process parameter, as longer durations 

were expected to lead to increased thicknesses of the surface film layer by affecting 

the diffusion of ethanol into the microspheres.  Figure 6.5 provides supporting 

evidence, where increased durations of ethanol exposure were observed to lead to 

increased deformation from a spherical morphology.  In addition, the extent of 

interconnection between the microspheres was also increased with increasing ethanol 

soak.  Plasticization of PLG with ethanol is also a function of polymer properties, 

such as molecular weight and crystallinity.  For example, Perugini et al.354  reported 

softening of lower molecular weight PLG (~12,000 Da) with an ethanol wash, while 

the same treatment did not affect the physical integrity of higher molecular weight 

PLG (~34,000 Da).  When contrasted to solvent/anti-solvent sintering techniques,339, 
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340 the ethanol treatment process is an anti-solvent treatment method, which requires a 

longer time exposure comparatively, however, to a relatively mild organic solvent. 

Because a highly porous substrate may provide more surface area for cellular 

attachment, high porosity and interconnectivity is a desired feature for tissue 

engineering scaffolds, which often comes at the expense of mechanical integrity.  In 

this regard, an ethanol soak of 1 h was found to be the optimum that led to acceptable 

porosities and improved mechanical characteristics.  The average porosity of the 

ethanol-treated scaffolds, as determined in the present study by 3-D microCT 

analysis, was found to be 41.1% for an ethanol soak of close to 1 h.  These values 

were found to be similar to the corresponding theoretical porosity measurement and 

porosity values determined using 2-D image analysis (Table 6.2).  The degradable 

nature of the substrate material suggests that the porosity of such a construct may 

eventually increase with time, thus porosities in this range (~38-43%) may be 

acceptable.  Moreover, a previous in vivo study utilizing microparticle-based 

scaffolds provides supporting evidence regarding the suitability of such scaffolds for 

in vivo defect repair.331  However, to enhance the porosity as well as interconnectivity 

of the pores in the scaffolds, one possible future approach would be to utilize hollow 

or porous microspheres in the preparation of the scaffolds.355, 356  Our group has 

demonstrated the ability to create porous microspheres in the past,357 and scaffolds 

made of such entities will be investigated in the future.  In addition, future work will 

be directed to improve the cell seeding efficiency and cell distribution within such 

matrices. 
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Unidirectional compression testing was performed in a simulated 

physiological environment, since these scaffolds are designed for in vitro/in vivo 

tissue engineering.  Mechanical properties are direction-independent due to the 

isotropic nature of the scaffolds.  The moduli of elasticity of the scaffolds were found 

to be ~140-300 kPa, after which the scaffold material began to deform plastically.  

The primary reason for such a low range of elastic moduli was the testing conditions 

(hydrated conditions, 37 °C), known to affect the mechanical properties of similar 

polymeric materials.353  Due to the degradable nature of the used polymer, one may 

expect a further decrease in the mechanical integrity of the scaffold with degradation.  

Although the degradation effects may be counteracted by tissue regeneration in the 

pores, which could enhance the mechanical properties, a few strategies can be 

investigated in the future in this regard.  First, selection of an adequate PLG polymer 

(e.g., a higher lactic acid content, higher molecular weight, ester-end group chemistry 

and a higher Tg) can be utilized in microsphere preparation that may significantly 

decrease the reduction in mechanical properties with hydration and temperature, and 

may allow tailoring the degradation rate of the scaffold for specific needs.  Second, a 

bimodal distribution of spheres can be utilized in scaffold preparation that will allow 

for a better mechanical integrity and closer packing of the microspheres (although it 

may lead to a reduced pore volume that can potentially reduce cellular infiltration).  

Finally, one may encapsulate nano-phase materials in the microspheres to create 

composite spheres that may improve the mechanical characteristics of the building 

units.  For example, one may encapsulate nano-phase biocompatible calcium salts as 
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a filler material in the microspheres that may improve the mechanical characteristics, 

and also act as a buffering agent to reduce pH changes that occur with the degradation 

of PLG (due to the formation of acidic by-products).224  This approach may also 

enhance the overall cellular viability over a long-term culture.  Finally, effects of 

adding haptotactic cues, such as RGD (Arg-Gly-Asp) and YIGSR (Tyr-Ile-Gly-Ser-

Arg), can be explored to improve the overall cell viability.358 

The effect of ethanol treatment on the Tg of the raw PLG was found to be 

significant.  It may indicate a possibility that residual levels of ethanol may be present 

in the scaffold.  More importantly, the Tg dropped below 37ºC, which is not desired 

as it may considerably affect the mechanical properties of the scaffolds when placed 

in vivo.  To keep the Tg of the scaffolds above the limit of 37ºC, some possible 

strategies could be to use PLG with higher molecular weights, or with a higher lactic 

acid to glycolic acid ratio.  

From the perspective of osteochondral tissue engineering, there are only a few 

previous reports of scaffold designs having heterogeneous distribution of growth 

factors embedded within an integrated scaffold.  Holland et al. created bi-layered 

oligo(polyethylene glycol) hydrogel based scaffolds, designed to release transforming 

growth factor-β1 (TGF-β1) and/or insulin like growth factor-I (IGF-I) in the cartilage-

forming layer, while no growth factors were added to the bone forming layer.359  In a 

similar previous study from the same group, single growth factor (TGF- β1) release 

from the cartilage-forming layer was investigated.360  The concept of zonal release for 

multiple growth factor delivery was demonstrated by Suciati et al.270  In their work, 
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poly(D,L-lactic acid) microsphere-based scaffolds were created using poly(ethylene 

glycol) as a plasticizer, and subsequently zonal release of horseradish peroxidase and 

bone morphogenic protein-2 (BMP-2) from tri-layered and bi-layered scaffolds, 

respectively, was demonstrated.  As the release kinetics of growth factors from such 

carriers is a diffusion-controlled phenomenon, a step transitioning of the carriers of 

signaling molecules in bi-layered scaffolds, as applied in the aforementioned studies, 

may be sufficient to promote the interfacial tissue regeneration successfully.  The 

approach described here offers the potential advantage of a seamless transition at the 

osteochondral interfaces using spatially controlled macroscopic gradients of bioactive 

signal molecules at the interface.  Although a single cell per se will not be able to 

sense such a macroscopic gradient (unless it is a migrating cell), spatial variations in 

the signals will cause an individual cell A at point 1 to experience different signals 

than cell B at point 2, and individual cell responses combined with cell-to-cell 

signaling may lead to a commensurate cell response that may benefit interfacial tissue 

regeneration.  In addition, microsphere-based gradient scaffolds made of subcellular-

sized microspheres may provide an alternative to generate stable gradients of soluble 

bioactive signals over a long time periods by acting as sustained delivery vehicles, 

and thus may prove helpful in the study of chemotaxis. 

 

CONCLUSIONS 

We have demonstrated a novel approach to creating microparticle-based 

gradient scaffolds, which may be designed to release opposing gradients of bioactive 
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signals at the interface of a biphasic scaffold.  The methodology may also be 

extended to create biphasic scaffolds with more than two growth factors or 

multiphasic scaffolds with more than one interface.  In addition, utilizing 

microspheres made of two different materials, one may employ this technique to 

create transversely isotropic substrates that contain a macroscopic gradient in 

composition and stiffness.  We reported use of ethanol treatment to create 

interconnected microsphere-based matrices, as an alternative to heat sintering and 

solvent treatment methods.  For example, growth factor-loaded microspheres may be 

used to create similar heterogeneous three-dimensional scaffolds to deliver growth 

factors with pre-defined spatial and temporal release profiles.  Future studies will be 

directed to quantify the release of active factors from the scaffolds, improve the 

mechanical properties, investigate the effect of microsphere size, and evaluate the 

performance of seamless gradient scaffolds, compared to bi-layered scaffolds, for 

osteochondral tissue regeneration.  
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CHAPTER 7: Three-Dimensional Stiffness Gradient Scaffolds for 
Functional Regeneration of Interfacial Tissues* 

 
Continuous transitional gradients in cellular-extracellular architecture exist 

throughout the human body, within tissues and at tissue interfaces, to satisfy spatially 

diverse functional needs.361, 362  Interfacial tissue engineering, an emerging field that 

focuses on regenerating interfaces between the tissues (e.g., bone-cartilage, muscle-

tendon, etc.), is a strategic approach to create functional tissue interfaces that 1) may 

resolve the issues of graft failure at the interface, and 2) may be able to provide 

mutually inductive endogenous signals from the adjacent tissues that are involved 

during tissue formation in vivo.269  In certain cases, interfacial tissue engineering may 

also provide an alternative to tissue adhesives,363, 364 where bridging a tissue-

engineered prosthetic/biomaterial to a native tissue could be achieved by successful 

integration of one (or both) end(s) of the tissue-engineered substrate directly with the 

native tissue to facilitate regeneration.  Approaches to engineer tissue interfaces, to 

date, have largely focused on creating graded-structures (e.g., biphasic, triphasic) in 

cellular/biomaterial composition, which do not closely mimic the continuous 

transitioning of native tissue, and which may lead to stress concentrations at each 

interface and eventual failure of the implant.361, 362 

Delivery of genes or growth factors in a continuous gradient manner across a 

tissue engineering scaffold via biomaterials is a relatively new avenue of research to 

                                                           
*Chapter to be submitted to Adv Mater as Singh, Dormer, Salash, Christian, Moore, Berkland and 
Detamore, “Three-Dimensional Stiffness Gradient Scaffolds for Functional Regeneration of Interfacial 
Tissues”, Oct 2008 
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engineer heterogeneous tissue substrates, where gradation in material properties may 

be achieved via matrix deposition in vitro or in vivo.361  An alternative approach 

could be to utilize a three-dimensional scaffold that contains a continuous gradient in 

mechanical properties from the beginning, as a functional culture substrate or a 

functional implant.  Various approaches used to create continuous gradient scaffolds 

at macro- and micro-scales included diffusion-based or controlled 

photopolymerization processes, where gradients were generated by controlled photo-

exposure (using a gradient photomask or by varying photo-exposure time) or by 

altering the cross-linker concentration via diffusion.126, 129, 130, 138, 139  A major 

limitation is that these approaches are primarily restricted to the construction of 2-D 

gel-based substrates.  Here, we demonstrate a novel approach to construct 

biocompatible, macroporous 3-D tissue engineering scaffolds containing a continuous 

gradient in stiffness.  Using polymeric microspheres, made of poly(D,L-lactic-co-

glycolic acid) (PLGA), and composite microspheres encapsulating a higher stiffness 

nano-phase material (PLGA encapsulating CaCO3 or TiO2 nanoparticles), 

microsphere-based homogeneous and gradient scaffolds were constructed.  The 

controllable mechanical characteristics and biocompatible nature of these scaffolds 

makes them an attractive alternative for a variety of interfacial tissue engineering 

applications. 

PLGA/composite microspheres were prepared via an emulsion/solvent 

extraction method using technology from our previous reports, resulting in a 

relatively monodisperse microsphere size distribution compared to traditional 
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microsphere fabrication techniques.269, 341  Composite suspensions were prepared by 

dispersing nano-phase materials in a PLGA solution (dissolved in dichloromethane 

(DCM)) in different proportions (% by weight).  Controlled regular jet instabilities 

created by an ultrasonic transducer resulted in cleaving the polymer/composite stream 

into uniform droplets that harden into microspheres following solvent extraction.269  

Microspheres were characterized for their size and morphology (Fig. 7.1).  Coulter 

Multisizer size distribution plots demonstrated the high monodispersity of 

microspheres, with their average diameters each in the range of 130-175 µm 

following solvent extraction (Fig. 7.1a).  Morphological assessment of intact and 

cryofractured microspheres with scanning electron microscopy (SEM) indicated that 

encapsulation of nano-phase materials led to changes in the typically smooth surface 

and interior morphology of PLGA microspheres (Fig. 7.1B, D).  In general, 

encapsulation of nano-phase CaCO3 resulted in the formation of granular interior and 

exterior containing submicron-sized pores throughout the microspheres, possibly 

indicating that a portion of the CaCO3 leached out of the microspheres during solvent 

evaporation (Fig. 7.1B).  In contrast, TiO2-encapsulated microspheres displayed a 

smooth exterior and less porous interior (Fig. 7.1D).  SEM/Energy dispersive 

spectroscopy (EDS) was performed to determine the distribution of nano-phase 

materials within the microspheres.  The presence of Ca and Ti were each confirmed 

via EDS.  The elemental distribution of Ca and Ti, as observed via SEM/EDS on the 

surface and interiors of the microspheres, confirmed the presence of CaCO3 and TiO2 
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in respective composite microspheres (Fig. 7.1C, E), where agglomeration of nano-

phase materials at several locations was evident.  

Microsphere-based scaffolds were prepared using an ethanol sintering 

method, where ethanol is used as a plasticizer to fuse the adjoining microspheres.269  

Homogeneous cylindrical scaffolds, prepared using a 2 h duration of ethanol soaking, 

were characterized for their morphology and cytotoxicity (Fig. 7.2).  Scanning 

electron micrographs of a representative scaffold, prepared by sintering the composite 

microspheres (90:10 PLGA:CaCO3), displayed the typical porous nature of the 

scaffold and microsphere fusion sites (Fig. 7.2A, B).  The compatibility of scaffolds 

with human umbilical cord mesenchymal stromal cells (HUCMSCs) was also 

assessed. For this study, cells were seeded on the scaffolds (90:10 PLGA:CaCO3) 

drop-wise, and statically cultured for 2 wks.  HUCMSCs inside the scaffolds were 

imaged by fluorescence imaging of a fractured scaffold using a Live/Dead assay, 

which demonstrated high cell viability (green fluorescence) (Fig. 7.2 C, D).   

Gradient scaffolds containing an anisotropic distribution of CaCO3/TiO2 were 

prepared to demonstrate a continuous gradient of mechanical strength within 

constructs.  Using a gradient generation methodology described earlier,269 gradient 

scaffolds were prepared via controlled infusion of two separately-loaded microsphere 

suspensions (in ddH2O) into a cylindrical glass mold using two programmable 

syringe pumps followed by an ethanol sintering for 2 h.  The pumps were co-

programmed to provide a linearly increasing flow profile for one microsphere 
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suspension and a linearly decreasing profile for the other suspension, thus, 

maintaining a constant overall flow rate.  To visualize the gradient, a scaffold was 

created using dye (Rhodamine B)-loaded PLGA microspheres and composite (90:10 

PLGA:CaCO3) microspheres, which were flowed into the mold then fused using a 2 h 

ethanol soak (Fig. 7.3A).  Two-dimensional image analysis revealed that the 

fluorescence intensity of white pixels increased in a continuous gradient across the 

length of the scaffold, indicating an increase in the ratio of composite to dye-loaded 

microspheres along the axis of the scaffold.   

To determine the effect of the inclusion of nano-phase materials on the overall 

properties of the scaffolds, homogeneous scaffolds constructed using different 

microsphere types were subjected to uniaxial unconfined compression testing.  

Compression of microsphere-based scaffolds under hydrated conditions results in a 

typical stress-strain curve, where an initial linear region, representing the matrix 

stiffness, is followed by a non-linear pore-collapse regime and a material 

densification regime, respectively.269  Pore-collapse for the composite scaffolds 

usually began at ~40% strain compared to ~25% strain corresponding to the control 

PLGA scaffolds.  The moduli of elasticity evaluated at a fixed strain value (25% 

strain) and preceding the onset of pore-collapse (40% for the composite microspheres 

and 25% for the control microspheres) are reported (Fig. 7.3B).  Although the 

inclusion of nano-phase materials in the microspheres was expected to lead to an 

increase in stiffness of the microspheres, the overall stiffness of the composite 

scaffolds decreased compared to control PLGA scaffolds at a fixed strain value (25% 
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strain).  This suggested a lower extent of sintering of composite microspheres for a 2 

h ethanol-soak, and likely a higher porosity, compared to the control PLGA 

microspheres.  The maximum matrix stiffness, corresponding to the onset of the pore-

collapse regime, was found to be higher for the scaffolds prepared using composite 

microspheres having a higher CaCO3 content (20% and 30% by wt) compared to the 

controls.  Scaffolds prepared using 95:5 PLGA:CaCO3 and 90:10 PLGA:CaCO3 (% 

by wt) demonstrated a lower matrix stiffness, in general.  It is possible that the 

surface modifications resulting from the incorporation of nano-phase materials led to 

a decrease in the extent of sintering of the composite microspheres, thus yielding a 

lower stiffness of the scaffolds.  For composite microspheres, increasing the relative 

content of CaCO3, however, led to an increase in the scaffold stiffness.  In addition, 

scaffolds constructed using TiO2-encapsulated microspheres displayed relatively 

higher stiffness compared to corresponding CaCO3-encapsulated microspheres. 

Using composite microspheres (containing nano-phase CaCO3/TiO2) and 

polymeric microspheres, a method to prepare scaffolds containing a gradient 

distribution in the nano-phase material was demonstrated.  The extent of sintering, 

composition of the microspheres and the relative content of the two microsphere 

types can be selectively varied to alter the stiffness of the matrix to create regular and 

inverse-gradients in mechanical properties.  The approach described here offered 

biocompatible and porous macroscopic 3-D scaffolds with controllable mechanical 

properties for tissue engineering, and gradient scaffolds that may be particularly 

useful for interfacial tissue regeneration.  Integration of controlled release strategies 
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(e.g., growth factors) via microspheres would be straightforward and would allow 

fabrication of acellular implantable devices for translational tissue regeneration 

applications.  

EXPERIMENTAL 

Materials 

PLGA (50:50) (inherent viscosity: 0.36 dL g–1) was purchased from 

Lakeshore Biomaterials.  CaCO3 nanoparticles (SOCAL® 31, mean particle size 70 

µm) were generously donated by Solvay Chemicals.  TiO2 nanoparticles (<100 nm 

(BET)) were purchased from Sigma.  Poly(vinyl alcohol) (PVA; 88% hydrolyzed, 

25,000 Da) was obtained from Polysciences, Inc.  Rhodamine B was purchased from 

MP Biomedicals, Inc.  All cell culture media was supplied by Invitrogen, unless 

otherwise stated.  Dichloromethane (DCM; HPLC grade) was obtained from Fisher 

Scientific (Pittsburgh, PA).  Ethanol (Absolute - 200 Proof) was obtained in house. 

 

Preparation of microspheres 

 Uniform microspheres were prepared using technology from our previous 

reports.269, 341  Briefly, PLGA dissolved in DCM (20% w/v) was sprayed through a 

small-gauge needle.  Using acoustic excitation produced by an ultrasonic transducer, 

regular jet instabilities were created in the polymer stream that produced uniform 

polymer droplets.  An annular carrier non-solvent stream (0.5% PVA w/v in ddH2O) 

surrounding the droplets was produced using a nozzle coaxial to the needle.  The 

emanated polymer/carrier streams flowed into a beaker containing the non-solvent.  
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Incipient polymer droplets were stirred for 3-4 h to allow solvent evaporation, which 

were then filtered and rinsed with ddH2O to remove residual PVA.  Finally, 

microspheres were lyophilized for ca. 2 days and stored at –20°C under desiccant.  

Composite microspheres were prepared likewise, where the polymer stream was 

replaced with a composite stream that also contained a nano-phase material 

(CaCO3/TiO2) suspended in the PLGA/DCM solution (sonicated at 50% amplitude 

for 1 min; in different proportions, % by weight).  

 

Preparation of scaffolds 

Gradient scaffolds were prepared in a manner described earlier.269  Briefly, 

two sets of lyophilized microspheres were dispersed in ddH2O 2.5 % w/v, and 

separately loaded into two syringes.  The suspensions were pumped to a cylindrical 

glass mold (6 mm diameter) in a controlled manner using programmable syringe 

pumps (PHD 22/2000, Harvard Apparatus, Inc.).  Using an additional infusion 

syringe pump and a vacuum pump, a constant level of distilled water was maintained 

in the mold.  Using a filter (particle retention > 3µm) at the bottom of the mold, 

ddH2O was filtered, while the microparticles stacked in the mold.  The stacked 

microspheres were then sintered using an ethanol treatment (100%) for 2 h.269  The 

molds (containing the scaffolds) were freeze-dried for a ca. 2 days, and then the 

scaffolds were retrieved from the molds. 

 

Characterization of microspheres and scaffolds 
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The sizes of the different types of microspheres were determined using a 

Coulter Multisizer 3 (Beckman Coulter Inc., Fullerton, CA) equipped with a 560-μm 

aperture.  SEM/EDS analysis was performed on intact and cryofractured 

microspheres using a LEO 1550 field emission scanning electron microscope 

equipped with an energy dispersive system (EDAX).  Scaffolds prepared using dye-

loaded microspheres were imaged under UV light using a UV lamp (254/365 nm; 

UVGL-25, UVP, Inc., Upland, CA) and a high-resolution camera, and images were 

analyzed using NIH ImageJ software to assess spatial distribution of the dye 

molecules. 

 

Mechanical testing 

Mechanical characterization of the scaffolds (~2 to 6 mm height, diameter ~6 

mm) was performed under uniaxial, unconfined compression (Instron Model 5848, 

Canton, MA; 50 N load cell).  Samples were tare-loaded (0.1 N, i.e., ~3.5 kPa), then 

compressed at a strain rate of 1% s-1 under phosphate buffered saline (0.138 M NaCl, 

0.0027 M KCl) at 37 ºC.  Moduli of elasticity were obtained from the initial linear 

regions of the stress-strain curves.269, 343   

 

Cell Culture and seeding 

HUCMSCs were harvested from one human umbilical cord obtained from the 

University of Kansas Medical Center (KU Medical Center IRB approval no. 10951, 

KU-Lawrence IRB approval no. 15402; informed signed consent was obtained prior 



 126

to the delivery) as described earlier.365  The cell culture medium consisted of low 

glucose Dulbecco’s Modified Eagle’s Medium (DMEM-LG), 10%FBS (Gemini), and 

1% penicillin streptomycin (PS).  Cells (expanded to passage 4, suspended in 75 µL 

medium) were seeded onto scaffolds (90:10 PLGA:CaCO3; sterilized using ethylene 

oxide) drop-wise at a density of 10 × 106 cells mL-1 in a 24 well untreated plate, then 

1 mL of culture medium was added into wells. 

 

Viability assessment 

Cells were cultured for 2 weeks onto scaffolds, with half of the media changed 

every other day.  Subsequently, cell viability was evaluated by staining the scaffolds 

using a LIVE/DEAD reagent (2 mM calcein AM, 4 mM ethidium homodimer-1; 

Molecular Probes) followed by a 45 min incubation at room temperature, before 

being subjected to fluorescence microscopy (Olympus/Intelligent Innovations 

Spinning Disk Confocal Microscope). 

 

. 
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CHAPTER 8: Microsphere-Based Scaffolds for Cartilage Tissue 
Engineering: Using Sub-critical CO2 as a Sintering Agent*

                                                           
*Chapter submitted to Nat Mater as Singh, Sandhu, Scurto, Berkland and Detamore, “Microsphere-
Based Scaffolds for Cartilage Tissue Engineering: Using Sub-critical CO2 as a Sintering Agent”, Oct 
2008. 

 
ABSTRACT 

Shape-specific, macroporous tissue engineering scaffolds were fabricated and 

homogeneously seeded with cells in a single step.  This method brings together CO2 

polymer processing and microparticle-based scaffolds in a manner that allows each to 

solve the key limitation of the other.  Specifically, microparticle-based scaffolds have 

suffered from the limitation that conventional microsphere sintering methods (e.g., 

heat, solvents) are not cytocompatible, yet we have shown that cell viability was 

sustained with sub-critical (i.e., gaseous) CO2 sintering of microspheres in the 

presence of cells at near-ambient temperatures.  On the other hand, the fused 

microspheres provided the pore interconnectivity that has eluded supercritical CO2 

foaming approaches.  Here, fused poly(lactide-co-glycolide) microsphere scaffolds 

were seeded with human umbilical cord mesenchymal stromal cells to demonstrate 

the feasibility of utilizing these matrices for cartilage regeneration.  We also 

demonstrated that the approach may be modified to produce thin cell-loaded patches 

as a promising alternative for skin tissue engineering applications. 

 

INTRODUCTION 
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Microsphere-based tissue engineering scaffold designs have attracted 

significant attention in recent years269, 329-334 because the microspheres as building 

blocks offer several benefits, including ease of fabrication, control over morphology 

and physicochemical characteristics, and versatility of controlling the release kinetics 

of encapsulated factors.328  The properties of a scaffold, in turn, can be tailored by 

altering the microsphere design and fabrication method, for example to create 

gradient-based scaffolds.269, 355, 356  Similarly, macromechanical properties and 

degradability can be altered with the selection of the raw material.  The polymer also 

offers flexibility in the degradation kinetics, modulated by altering one or more of the 

factors, such as the molecular weight, co-polymer ratio, tacticity, crystallinity, etc.335, 

336  To date, the methods used to produce microsphere-based scaffolds have utilized 

heat-sintering,331, 337 a solvent vapor treatment (dichloromethane),282, 338 a 

solvent/non-solvent sintering method (acetone and ethanol treatment),339, 340 or a non-

solvent sintering technique (ethanol treatment),269 all of which involve exposure to 

elevated temperatures or organic solvents that may be a potential limitation for their 

pharmaceutical or medical applications.366   

In lieu of conventional temperature-regulated or organic solvent-assisted 

scaffold fabrication, supercritical fluid (SCF)-technology has offered an alternative 

method of melt processing of the polymers.367  Specifically, supercritical carbon 

dioxide (CO2) has been widely used as it is inexpensive, non-toxic, non-flammable, 

recoverable and reusable366.  Exploiting the ability of supercritical CO2 (Tc = 304.1 K, 

Pc = 73.8 bar) to dissolve/plasticize many polymeric materials, some polymeric 
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scaffold fabrication techniques have been developed including gas foaming and 

emulsion templating (see reviews by Davies et al.367 and Barry et al.368), which allow 

incorporation of bioactive factors and/or cells during the scaffold fabrication.369, 370  

Near-critical or liquid CO2 exposure (pressure ~ 55-60 bar) has been used to produce 

regular or intricate-shaped scaffolds using gas foaming or particulate 

consolidation.371-373  However, one inherent limitation of gas foaming-based 

techniques is the closed-cell structure and lack of pore interconnectedness, and 

alternative modified techniques such as gas foaming/particulate are usually time-

consuming and present challenges in incorporating bioactive factors.367, 374 

For microsphere-based scaffolds, microsphere size is one of the major 

determinants of polymer degradation rate, governing the release kinetics of loaded 

molecules and providing the control over pore-sizes and macro-porosity.269  Utilizing 

our ability to create highly monodisperse microspheres341 and capitalizing on the 

plasticizing ability of CO2, a novel microsphere-based scaffold fabrication technique 

is presented here using poly(D,L-lactide-co-glycolide) (PLG) microspheres, which 

also allows the production of shape-specific scaffolds.  Using chondrocytes and 

human umbilical cord mesenchymal stromal cells (HUCMSC),344, 365, 375, 376 

preliminary evaluations of the scaffolds for cartilage tissue engineering applications 

were performed.  Perhaps most importantly, the CO2 sintering technique is amenable 

to produce cell-containing, shape-specific matrices (patches and scaffolds) under 

relatively mild conditions via a single-step sintering of microspheres in the presence 

of cells, with high cell viability. 
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RESULTS AND DISCUSSION 

Relatively monodisperse microspheres having uniform nominal diameters 

were created using a previously reported method.341  These microspheres demonstrate 

a solid interior morphology.269  The nominal particle sizes were: 120 μm, 140 μm 

(both with an intrinsic viscosity (i.v.) of 0.37 dL/g), and 5 μm, 100 μm, 175 μm, 240 

μm and 500 μm (i.v. = 0.33 dL/g) (Fig. 8.1A).  The sub-critical CO2 sintering method 

to manufacture microsphere-based scaffolds is a modification of the gas foaming 

technique.  In the past, plasticization of PLG in pressurized CO2 has been applied to 

create foamed scaffolds, where saturation of the polymer with CO2 was performed at 

sub-critical pressures (~55 bar) with equilibration periods of greater than 24 h, and a 

rapid depressurization led to the nucleation of the gas (forming pores in the material) 

and restoration of the glass transition temperature.371, 374, 377  To prepare microsphere-

based matrices in the current study, the equilibration of CO2 in the polymer was 

restricted by decreasing the pressure and the duration of CO2 exposure, leading to a 

comparatively reduced plasticized state of the PLG.  While this allowed the 

microspheres to primarily retain their shape, the plasticization of the microsphere 

surfaces led to the sintering of the adjoining microspheres, yielding a porous matrix 

(Fig. 8.2).  The conditions of CO2 exposure are likely a prime factor responsible for 

promoting the mutual-penetration and increasing the chain mobility at the interfaces 

of adjoining microspheres.378  Based on preliminary investigations, the pressure (15 

bar) and duration of CO2 exposure (1 h) were selected to allow sintering of all the 
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microspheres (with different sizes and i.v. of PLG).  Usually, microspheres with 

smaller sizes may require milder conditions (less pressure or shorter exposure) to 

achieve optimal sintering.  As shown earlier, a similar consolidation technique 

applied to attach PLG fiber aggregates (700-1400 µm) required only a 15 s duration, 

however with liquid CO2 at 55 bar pressure.373  In addition, the rate of 

depressurization was an important factor that governed the basic morphology of the 

scaffolds in the current study.  A moderate rate of depressurization (0.14–0.21 bar/s) 

was found to be optimal for the production of sintered matrices.  For typical CO2 

sintering conditions, instantaneous depressurization (i.e., in less than 5 s; for 64 µm 

diameter microspheres, i.v. = 0.33 dL/g) or depressurization at very slow rates (i.e., < 

0.07 bar/s; for 240 µm diameter microspheres, i.v. = 0.33 dL/g) led to foaming of the 

prepared scaffolds, depending on the microsphere size and i.v. of the polymer. 

Microsphere-based cylindrical scaffolds were constructed in cylindrical 

plastic molds using monodisperse microspheres (~20-80 mg) of all of the sizes except 

for the 5 μm group.  In addition, to prepare scaffolds with a bimodal population of 

microspheres, a mixture of two different particle types (sizes: 5 μm and 140 μm) were 

used.  By utilizing custom rubber molds of different shapes and microspheres of size 

140 µm, a variety of shape-specific scaffolds were also constructed in a similar 

manner (Fig. 8.1B).  Morphological assessment of the scaffolds using scanning 

electron microscopy revealed that the microsphere matrices were porous, where the 

microspheres largely retained their shape.  Under the typical CO2 sintering 

conditions, the extent of sintering of the microspheres was found, in general, to be a 
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factor of the microsphere size (compare Fig. 8.2 (A and B) with (C and D), 

respectively).  Also, the PLG microspheres of lower i.v. (i.e., 0.33 dL/g) displayed a 

distortion from the spherical morphology and a higher degree of sintering (compare 

Fig. 8.2 (A and C) with (B and D), respectively).  Both the size of the microsphere 

and the intrinsic viscosity of the polymer were found to affect the pore sizes.  As can 

be observed in Fig. 8.2, the pore sizes for the scaffolds prepared with PLG 

microspheres of lower i.v. had anisotropic pores with closed pores at several places.  

Roughly, the average pore-sizes were around 70 µm (Fig. 8.2A and 8.2B), 50 µm 

(Fig. 8.2C) and 40 µm (Fig. 8.2D).  Micrographs of a single microsphere (140 µm) 

revealed the modifications in the surface of the microspheres following the CO2 

sintering, including the microsphere connection sites (Fig. 8.2E).  The microsphere 

morphology, closely resembling the appearance of a microsphere reported earlier in 

an ethanol melding method,269 showed the presence of a surface film of PLG 

containing ripples, indicating the surface swelling of PLG.  To improve the inter-

microsphere connection that could improve the mechanical characteristics of the 

scaffolds, scaffolds were prepared using two different groups of microspheres (140 

µm and 5 µm) (mixed together in a ratio of 1:8 by weight, respectively).  Additional 

connecting bridges between the large microspheres were formed, however, at the loss 

of overall scaffold porosity, with reduced pore-sizes (Fig. 8.2F).  

Mechanical characterization of the scaffolds was performed by unconfined 

compression under simulated physiological conditions.  The hypothesized mechanism 

of compression for microsphere-based matrices is somewhat analogous to the 
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compression of closed-foam cellular solids.343  Following an initial linear region, a 

non-linear pore collapse region follows.269  The moduli of elasticity were determined 

from the stress-strain plots using the end of the initial linear regions before the onset 

of non-linear region (extending to ~ 40% strain, in general), which indicate the 

scaffold elasticity269. The average moduli of the scaffolds ranged from 71 to 196 kPa 

(Fig. 8.3), matching the moduli of native cartilaginous tissues.379  The stiffnesses of 

the scaffolds revealed a somewhat inverse relationship between average microsphere 

size and average mechanical modulus.  Also, a higher intrinsic viscosity of the 

polymer also seemed to improve the mechanical characteristics, probably because of 

a spherical morphology and more ordered packing of the microspheres (as mentioned 

before, see Fig. 8.2).  In addition, inclusion of smaller interstitial spheres in the pores 

led to an increase in the average mechanical modulus (compare i.v. = 0.37 vs. 

bimodal for the 140 µm diameter microspheres) of the scaffolds.  The differences 

between the average moduli of all the groups, however, were not statistically 

significant, probably owing to imperfect packing of the microspheres (inter-specimen 

variability leading to large standard deviations). 

Cell culture studies were performed to determine the suitability of these 

scaffolds for tissue engineering.  Porcine chondrocytes, dynamically seeded and 

cultured on the scaffolds, were assessed for their viability.  The majority of the cell 

population was identified as viable after 3 week in culture (Fig. 8.4-I).  

Immunohistochemistry revealed positive staining for collagen types I and II following 

the 3 week culture (Fig. 8.4-II).  In addition, Safranin-O staining revealed signs of 
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glycosaminoglycan (GAG) formation for both the groups (Fig. 8.4-II).  Biochemical 

analysis also revealed positive indications of cartilage-like matrix formation, where 

the presence of GAGs and collagen were detected (Table 8.1).  However, biochemical 

analysis revealed that the cell number per construct considerably dropped, and the 

majority of the cells could not attach to the scaffolds.  A possible reason could be the 

cell seeding method, where cell infiltration into the scaffolds was probably affected 

by seeding them dynamically.269  To address this issue and to allow for homogeneous 

seeding of the constructs, cell loaded matrices were fabricated via a one-step CO2 

sintering of microspheres with the HUCMSCs.  The conditions of sintering were 

altered to minimize the time of exposure (4 min or less, excluding the 

depressurization time), while keeping the CO2 pressure to a relatively low value (30 

bar).  Interestingly, when performed in the presence of the culture medium, the 

sintering process resulted in a thin patch formation, where only a few microsphere 

layers at the top of the mold were sintered together (Fig. 8.5).  In contrast, in the 

absence of the medium, a mixture of cells with the microspheres yielded completely 

sintered matrices.  The difference between the thin patch formation (with culture 

medium) and full 3D scaffold formation (absence of medium) can be attributed to the 

thermodynamic limitation of CO2 solubility in the liquid phase (Henry’s Law).  

Viability assessment of the cell-loaded thin patch and the scaffolds revealed that 

virtually the entire cell population survived the sintering process (Fig. 8.5B and C).  

The pioneering work by Ginty et al.,369 where cell survival in a brief exposure to 

supercritical CO2 was demonstrated, and less than 5 min of overall CO2 exposure was 
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shown to be primarily non-malignant for a variety of cells, formed the basis of 

selecting the exposure time range.  Although CO2 at high pressures for long durations 

may not be cytocompatible due to known sterilization efficacy of supercritical CO2 

achieved by lowering the cytoplasmic pH from the formation of carbonic acid and the 

shear forces of intercellular bubble formation upon depressurization, we have 

demonstrated that the milder conditions with milder gaseous CO2 conditions are 

highly conducive to cell viability.  Based on the size of the microspheres, the type of 

PLG, and the type of cells under consideration, various sub-critical CO2 sintering 

conditions may exist (i.e., a number of combinations of sub-critical pressures and 

exposure times), which may allow the formation of cell-loaded matrices without 

affecting the cell viability.  Future in vitro and in vivo investigations will shed more 

light on the long-term performance of cell-loaded constructs prepared in this manner 

for the purposes of tissue regeneration. 

Gaseous CO2 sintering was found to be a straightforward method to fabricate 

cell-seeded, microsphere-based, shape-specific constructs in a single step.  These 

constructs of course retain the numerous advantages of microsphere-based scaffolds 

such as spatiotemporal control for creating 3D signal and stiffness gradients for 

interfacial tissue engineering within a single scaffold.  Compared to the other 

methods of microsphere-based scaffold fabrication, which utilize heat, solvent and/or 

anti-solvent–induced plasticization,269, 282, 331, 337-340 the CO2 sintering method may be 

a more benign process.  The resulting scaffolds were porous, exhibited moduli similar 

to the native cartilaginous tissues, and displayed support for chondrogenesis and 
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cartilage-like tissue growth.  The process of sub-critical CO2 sintering is also 

amenable to produce cell-containing matrices under relatively mild conditions.  The 

ability to create cell-loaded scaffolds and patches may have important implications 

for cartilage and skin tissue engineering, respectively, where growth factor-

encapsulated microspheres can be used to design cell-loaded controlled release 

vehicles in a single-step as a regenerative medicine.  

  

MATERIALS AND METHODS  

Uniform PLG (50:50 lactic acid:glycolic acid; acid end group, Mw ~40,000-

45,000 Da of intrinsic viscosity (i.v.) 0.33 dL/g (Lactel, Pelham, AL) and of i.v. 0.37 

dL/g (Lakeshore Biomaterials, Birmingham, AL)) microspheres were fabricated using 

technology from our previous reports.269, 341  The size distribution of microspheres 

was determined using a Coulter Multisizer 3 (Beckman Coulter Inc., Fullerton, CA).  

Particles of different average diameters were separately loaded into cylindrical molds, 

and exposed to CO2 at sub-critical levels, commonly ~ 15 bars (220 psig) at 25°C for 

1 h followed by depressurization at ~0.14-0.21 bar/s, unless otherwise specified.  CO2 

exposure was accomplished with a high-pressure vessel, consisting of a stainless steel 

body with view windows rated to 400 bar of pressure.  Scaffolds containing a 

bimodal distribution of particles were prepared using a mixture of particles of two 

different sizes.  Preparation of shape-specific scaffolds was carried out in a similar 

manner in rubber molds cut into specific designs. 
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For morphological assessment, freeze-dried scaffolds were sputter coated with 

gold and observed using a Leo 1550 field emission scanning electron microscope at 

an accelerating voltage of 5 kV.  Mechanical characterization of the scaffolds (1 to 4 

mm height, diameter ~6 mm) was performed under uniaxial, unconfined compression 

(Instron Model 5848, Canton, MA; 50 N load cell).  Samples were tare-loaded (~10 

kPa), then compressed at a strain rate of 0.5 mm/min under phosphate buffered saline 

(0.138 M sodium chloride, 0.0027 M potassium chloride) at 37 ºC.269  Moduli of 

elasticity were obtained from the initial linear regions of the stress-strain curves.269, 343   

Chondrocytes were harvested from hog ankles and mandibular condyles 

(Duroc breed, 6 months old, female) as described previously.344  Frozen HUCMSCs 

(P1) for 3 week cell culture studies were generously donated by Dr. Mark Weiss’s 

group at Kansas State University (The Kansas State University IRB approval no. 

3966).365  All cells were plated for expansion in monolayer and incubated at 37°C in 

5% CO2, with media changed every 2–3 days.  The culture medium for HUCMSCs 

was composed of Dulbecco’s Modified Eagle medium (DMEM; low glucose), 1% 

penicillin–streptomycin (both from Invitrogen Life Technologies, Carlsbad, CA) and 

10% fetal bovine serum (FBS; Gemini, West Sacramento, CA).  The culture medium 

for chondrocytes consisted of DMEM (high glucose), 1% penicillin–streptomycin–

fungizone, 1% non-essential amino acids (NEAA) (all from Invitrogen Life 

Technologies), 10% FBS and 25 μg/mL L-ascorbic acid (Sigma, St. Louis, MO).  

Chondrocytes from the porcine mandibular condyle (P3) and ankle (P2) were mixed 
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before being seeded onto one set of scaffolds, whereas HUCMSCs (P4) were seeded 

onto another set of scaffolds. 

 Cylindrical scaffolds (6 mm diameter, ~2 mm height) were produced using 

microspheres of 175 µm diameter at CO2 sintering conditions of ~13 bar (190 psig) 

pressure and 1 hour exposure followed by depressurization at ~0.14-0.21 bar/s.  Cells 

were then seeded on scaffolds (sterilized using ethylene oxide) at a density of 

approximately 20 × 106 cells per mL of scaffold using the orbital shaker method as 

described previously,345 and cultured for 3 week with half of the media refreshed 

every other day.  During the cell culture, the culture medium for HUCMSC-seeded 

scaffolds was replaced with a chondrogenic medium.365  At week 3, scaffolds were 

analyzed for matrix production using histology (Safranin-O staining for GAG 

production), immunohistochemistry (for collagen types I and II), and biochemical 

assays (picogreen, hydroxyproline, and dimethylmethylene blue (DMMB) assays for 

determining the cell number, collagen content and GAG content, respectively), as 

described previously.365  Cell viability was evaluated with a LIVE/DEAD assay (2 

mM calcein AM, 4 mM ethidium homodimer-1; Molecular Probes Carlsbad, CA) 

with fluorescence microscopy (Olympus/Intelligent Innovations Spinning Disk 

Confocal Microscope).269 

 To assess cell survival during sub-critical CO2 sintering, HUCMSCs were 

harvested from one human umbilical cord obtained from the University of Kansas 

Medical Center (KU Medical Center IRB approval no. 10951, KU-Lawrence IRB 

approval no. 15402) as described earlier.365  To prepare cell-loaded constructs, cell 
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pellets of HUCMSCs (P4; 1 × 106 cells) were mechanically mixed with ethylene 

oxide-sterilized microspheres (diameter: 120 µm, ~200 mg) using a sterile spatula.  

The cell-particle mixture was loaded into cylindrical molds and exposed to CO2 at 

subcritical conditions (30 bar, 4 min, 25°C, depressurization rate ~3psi/s).  A 

modified processing was performed for another set of particles (size: 120 µm, ~100 

mg), where the particles were suspended in 100 µL of medium containing HUCMSCs 

(P4; 2 × 106 cells), then exposed to CO2 at subcritical conditions (30 bar, 2 min, 25°C, 

depressurization rate ~3psi/s).  The prepared constructs were assessed for HUCMSC 

viability using the LIVE/DEAD staining as described above.  

The effects of microsphere size on the mechanical properties of the scaffolds 

were statistically analyzed using a seven-level single factor analysis of variance 

(ANOVA) followed by Tukey’s Honestly Significant Difference post hoc test (n = 5, 

except for scaffolds prepared with 240 µm and bimodal spheres (n =4), and 140 µm 

(n = 6)). 
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CHAPTER 9: Osteochondral Tissue Engineering Using Bioactive 
Signal Gradients* 

 

 
ABSTRACT 

Continuous transitional gradients in cellular-extracellular architecture exist at 

osteochondral interfaces, which may be engineered by applying spatially patterned 

gradients of biological cues.  In the present study, a protein-loaded microsphere-based 

scaffold fabrication strategy was applied to achieve spatially and temporally 

controlled delivery of bioactive signals in three-dimensional (3-D) tissue engineering 

scaffolds.  Bone morphogenic protein-2 and transforming growth factor-β1 -loaded 

poly(lactic-co-glycolic acid) microspheres were utilized with a gradient scaffold 

fabrication technology to produced microsphere-based scaffolds, containing opposing 

gradients of these signals.  Using bone marrow stromal cells, single cell source-based 

osteochondral tissue regeneration was assessed in the gradient scaffolds, and 

compared to the blank controls. Following a 6 wk cell culture, the gradient scaffolds 

were shown to outperform the blank control scaffolds in cell number and GAG 

production.  Gradient scaffolds also demonstrated a sign of increase osteoblastic 

activity during the 6 wk culture. 

 

INTRODUCTION 

                                                           
*Chapter in preparation to be submitted to Biomaterials as Singh, Wang, Zhao, Berkland, and 
Detamore, “Osteochondral Tissue Engineering Using Bioactive Signal Gradients”, 2008. 
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Spatial patterning of biological cues is vital to some of the most fundamental 

aspects of life, from embryogenesis to wound healing to nerve cell signaling, all 

involving concentration gradients of signaling molecules.  Gradient-based signal 

delivery strategies have so far gained the most attention in the fields of neural tissue 

engineering243, 245, 247 and in the study of chemotaxis.254, 256  Continuous gradient-

based bioactive signal delivery systems have been seldom applied in the area of 

interfacial tissue regeneration.  For example, a recent study reported a gradient-gene 

delivery strategy, where a zonal organization of osteoblastic and fibroblastic cellular 

phenotypes was engineered in a single construct for the purposes of interfacial tissue 

engineering.361  Interfacial tissue engineering using gradients of bioactive signals 

provides a promising alternative for the regeneration of multiple tissues in a single 

construct with functional interfaces.  Moreover, such interfacial tissue engineering 

strategies also address a biomimetic approach towards tissue regeneration, where 

regeneration of a tissue may be enhanced by the presence of endogenous signals 

provided by the neighboring tissue.280  Furthermore, using gradients of multiple 

bioactive factors, multiple tissue regeneration could be addressed via a single cell 

source, where, for example, stem cells can be differentiated along different lineages 

within the same constructs. 

From the perspective of osteochondral tissue engineering, an in vitro culture 

study reported that only co-culture with chondrocytes (as opposed to fibroblasts or 

osteoblasts) was successful at promoting osteogenic differentiation of mesenchymal 

stem cells in a selective manner,280 indicating the importance of simultaneous 
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triggering of osteo- and chondro-induction for osteochondral tissue regeneration.  An 

integrated scaffold with embedded gradients of growth factors at the interface may 

trigger simultaneous tissue formation, and may have a synergistic effect on tissue 

regeneration.  For osteochondral tissue engineering, there are only a few previous 

reports of scaffold designs having a heterogeneous distribution of growth factors 

embedded within an integrated scaffold.359, 360  Continuous gradient-based signal 

delivery, to date, has never before been applied in the area of osteochondral tissue 

engineering.  

While various strategies have been developed to create gradients of bioactive 

signals (see review362), a major limitation with many of these techniques is that they 

allow the delivery of only haptotactic cues via gel-based substrates.  Integration of 

controlled release technology with graded-signal delivery from macroporous 

polymeric scaffolds may be a valuable tool to the tissue engineering community.  

Microsphere-based tissue engineering scaffold designs have gained increasing 

interest over the past few years.  Microspheres as the building block of a scaffold 

offer several benefits, which include the ease of fabrication, control over morphology 

and physicochemical characteristics, and versatility of controlling the release kinetics 

of encapsulated factors.328  The properties of a scaffold, in turn, can be tailored by 

altering the microsphere design.  For example, the pore size and porosity of a scaffold 

at micro-levels can be made application-specific by altering the size or changing the 

interior morphology of the microspheres.355, 356  Similarly, macromechanical 

properties and degradability can be altered with the selection of the raw material.  To 
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design biodegradable matrices, poly(D,L-lactide-co-glycolide) (PLG), an aliphatic α-

hydroxy polyester, is one of the most widely used FDA-approved polymers.  The 

polymer also offers the flexibility in the degradation kinetics, modulated by altering 

one or more of the factors, such as molecular weight, co-polymer ratio, tacticity, 

crystallinity, etc.335, 336 

The present study aimed towards the integration of controlled release 

technology with a gradient scaffold fabrication strategy, where microsphere-based 

scaffolds containing opposing gradients of chondrogenic and osteogenic factors were 

fabricated using monodisperse protein-loaded microspheres and an ethanol sintering 

method.  The constructs were utilized for osteochondral tissue engineering using bone 

marrow stromal cells. 

 

MATERIALS AND METHODS 

Materials 

 Poly(D,L-lactide-co-glycolic acid) copolymer (PLGA; 50:50 lactic 

acid:glycolic acid; acid end group, Mw ~40,000-45,000 Da) of intrinsic viscosity 

(i.v.) 0.37 dL/g was purchased from Lakeshore Biomaterials (Birmingham, AL).  

Poly(vinyl alcohol) (PVA; 88% hydrolyzed, 25,000 Da) was obtained from 

Polysciences, Inc. (Warrington, PA).  Transforming growth factor (TGF)-β1 and bone 

morphogenic protein (BMP)-2 were purchased from Peprotech, Inc. (Rocky Hill, NJ).  

BMSCs (P1, i.e., plated once) were purchased from STEMCELL Technologies 

(Vancouver, Canada).  Dichloromethane (DCM; HPLC grade) was obtained from 
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Fisher Scientific (Pittsburgh, PA).  Ethanol (Absolute - 200 Proof) was obtained in 

house. 

 

Preparation of protein-loaded microspheres 

 BMP-2 (100 µg) was reconstituted in 0.5 ml of 10 mg/mL bovine serum 

albumin (BSA; Sigma, St. Louis) in PBS to get 0.2 mg/mL BMP-2 stock solution.  

TGF-β1 (50 µg) was reconstituted according to the manufacturer’s instructions to 25 

µg/mL with a final BSA concentration of 1 mg/mL.  The reconstituted protein 

solutions were individually mixed with PLGA dissolved in DCM (wt 6.5 g; 20% 

w/v), and sonicated over ice (50% amplitude, 20 s).  Using PLGA-protein emulsions, 

uniform protein-loaded PLGA microspheres were prepared using technology from 

our previous reports.269, 341  Briefly, using acoustic excitation produced by an 

ultrasonic transducer, regular jet instabilities were created in the polymer stream that 

produced uniform polymer droplets.  An annular carrier non-solvent stream (0.5% 

PVA w/v in ddH2O) surrounding the droplets was produced using a nozzle coaxial to 

the needle.  The emanated polymer/carrier streams flowed into a beaker containing 

the non-solvent.  Incipient polymer droplets were stirred for 3-4 h to allow solvent 

evaporation, which were then filtered and rinsed with ddH2O to remove residual 

PVA, and stored at -20°C.  Control microspheres were prepared in a similar manner, 

where the protein solution was replaced with an equivalent volume of BSA solution 

(1 mg/mL). The size distribution of microsphere preparations was determined using a 
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Coulter Multisizer 3 (Beckman Coulter Inc., Fullerton, CA) equipped with a 560-μm 

aperture.  

   

Scaffold fabrication 

Gradient scaffolds were prepared using a technology reported previously.269  

Briefly, lyophilized protein-loaded microspheres were dispersed in ddH2O 2.5 % w/v, 

and separately loaded into two syringes.  The suspensions were pumped into a 

cylindrical glass mold (6 mm diameter) in a controlled manner using programmable 

syringe pumps (PHD 22/2000, Harvard Apparatus, Inc.).  Using a filter (particle 

retention > 3µm) at the bottom of the mold, ddH2O was filtered, while the 

microparticles stacked in the mold.  Using an additional infusion syringe pump and a 

vacuum pump, a constant level of distilled water was maintained in the mold.  The 

stacked microspheres were then sintered using an ethanol treatment (100%) for 1 h.269  

The molds (containing the scaffolds) were freeze-dried for 2 days, then the gradient 

scaffolds were retrieved and stored at -20°C.  Blank scaffolds were prepared in a 

similar manner using control microspheres. 

 

Cell seeding, culture and construct analyses 

Frozen BMSCs were thawed, plated at a density of 4000 cells/cm2 and 

cultured.  The culture medium consisted of Dulbecco’s Modified Eagle medium 

(DMEM; low glucose), 1% penicillin–streptomycin (PS) (both from Invitrogen Life 

Technologies, Carlsbad, CA) and 10% fetal bovine serum (FBS-MSC quantified).  
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When 80-90% confluent, the cells were trypsinized and re-plated at the same plating 

density.  Cells (~ 60 × 106;  P4) were then seeded on the dry scaffolds using a drop-

wise seeding protocol.  Scaffolds (diameter 5.3 mm, height 2.5 mm) were sterilized 

using ethylene oxide, and placed in a 48 well plate.  Cells were then seeded on the 

scaffolds at a density of 10 × 106 cells/mL.  Approximately 28 µL (50% of the 

scaffold volume, approximately corresponding to pore volume269) of cell solution was 

placed directly above a scaffold, which was soaked into the scaffold via a capillary 

mechanism.  Cells were allowed to attach to the scaffolds for 2 h, then 1 mL of a 

defined medium was added, and the scaffolds were cultured statically.  Up to day 3, 

the defined medium consisted of DMEM (low glucose), 1% PS, 1X Insulin-

Transferrin-Selenium (ITS)-premix (BD Biosciences, San Jose, CA), 40 µg/mL L-

proline (Sigma, St. Louis); 100µM sodium pyruvate (Fisher Scientific) and 50 μg/mL 

L-ascorbic acid (Sigma, St. Louis), which was refreshed twice a day.  Following day 

3, the defined culture medium was supplemented with 4 mM β-glycerophosphate 

(Disodium Salt, Pentahydrate; Calbiochem) and 100 nM dexamethasone, which was 

refreshed every 24 h.  Constructs were analyzed for matrix production using 

biochemical assays (picogreen and a dimethylmethylene blue (DMMB) assays for 

determining the cell number and GAG content), in a manner described before.365   

Alkaline phosphatase (ALP) activity was determined, as a measure of p-nitrophenol 

concentration/min using an ALP assay, as described elsewhere.380  Mechanical 

characterization of the constructs was performed using a uniaxial testing apparatus 

(Instron Model 5848, Canton, MA; 50 N load cell) under unconfined compression.  
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Tare-loaded (0.05 N) constructs were compressed to 15 % strain at a rate of 1 %/s 

under simulated physiological conditions (i.e., under PBS (phosphate buffered saline 

– 0.138 M sodium chloride, 0.0027 M potassium chloride) at 37 ºC), followed by 

stress relaxation for a duration of 30 min.  Moduli of elasticity were obtained from the 

linear regions of the stress-strain curves.  Relaxed moduli were calculated as the ratio 

of the final stress value (at the end of 30 min duration) to the step strain.  The stress 

was defined as the ratio of the load to the initial cross-sectional area, and the strain 

was defined as the ratio of the change in the length to the original length. 

 

Statistical analyses 

To compare the cell numbers and GAG production, a three-level single factor 

analysis of variance (ANOVA) was performed, followed by a Tukey’s Honestly 

Significant Difference post hoc test when significance was detected (n = 4).  

 

RESULTS AND DISCUSSION 

Protein-loaded microspheres having uniform diameter were created using the 

previously reported Precision Particle Fabrication method.341  The microspheres 

displayed high monodispersity, with a ~220 µm nominal diameter for all of the three 

types of microspheres prepared (BMP-2 loaded “osteogenic” microspheres, TGF-β1 

loaded “chondrogenic” microspheres, and control “blank” microspheres).  

Specifically, microsphere sizes in the range of 100-300 μm were chosen, as it was our 
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hypothesis that this range may provide optimal pore sizes to allow cellular infiltration 

and cell-to-cell interaction.  

Cylindrical gradient scaffolds containing opposing gradients of chondrogenic 

and osteogenic factors along the axis of the molds were produced.269  The scaffolds 

were seeded with BMSCs and cultured for a 6 wk duration.  The overall cell number 

per construct increased by ~ 100% during the 6 wk cell culture, and the differences 

were found to be statistically significant (p < 10-5) (Fig. 9.1).  Gradient scaffolds 

displayed a higher mean cell number per construct compared to the blank scaffolds, 

although the difference was not statistically significant.  GAG content per scaffold 

increased approximately 6-7 fold during the 6 wk culture, and the results were found 

to be statistically significant (p < 10-5) (Fig. 9.2).  At wk 6, the GAG content per 

construct was found to be ~ 20% higher for the gradient scaffolds compared to the 

blank scaffolds, and the results were found to be statistically significant (p < 0.05).  

The mechanical integrity of the scaffolds at wk 6 was very similar, reflected by their 

similar moduli of elasticity and relaxed moduli (Fig. 9.3).  In comparison to the blank 

scaffolds at wk 0 (elastic modulus = 126.6 kPa relaxed modulus = 2.1 kPa), the 

elastic modulus of the scaffolds dropped drastically, although the relaxed modulus 

was not significantly changed.  The ALP activity of the scaffolds showed a 

consistently decreasing trend from wk 0 to wk 3 for the blank scaffolds (Fig. 9.4).  

The ALP activity for the gradient scaffolds decreased up to wk 2; however, there was 

an increasing trend in the ALP activity afterwards (up to wk 6). 
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Based on these results, it could be speculated that the effects of chondrogenesis 

were prominent during the 6 wk cell culture, demonstrated by a significantly higher 

GAG content for the gradient scaffolds compared to the blank scaffolds at wk 6.  The 

increasing trend in ALP activity for the gradient scaffold started at wk 3, which might 

be indicative of the osteoblastic activity that began after an initial culture period.  The 

drastic drop in the mechanical integrity of the constructs was most likely a 

consequence of microsphere degradation that led to the disappearance of the sintering 

sites with time, transitioning to the mechanical integrity of the neo-synthesized tissue.  

To improve the mechanical characteristics of the constructs, one method could be to 

utilize microspheres with a bimodal distribution in the design of the scaffolds, which 

would provide additional “connecting bridges” between the microspheres and a closer 

packing, however at the expense of porosity.  Moreover, with the proof-of-concept 

established here, it may stand to reason that the gradient-based scaffolds will be better 

suited for in vivo application, where faster healing rates, more conducive to the 

scaffold degradation rate, would of course be expected. 

 

CONCLUSIONS 

A new gradient-based approach was introduced for osteochondral tissue 

regeneration in vitro.  BMSC cell culture for 6 wks demonstrated signs for cartilage-

like tissue regeneration, while an increasing trend in ALP activity was indicative of 

osteoblastic activity.  Matrix analysis at wk 6 demonstrated that the gradient scaffolds 

outperformed blank scaffolds in cell number, GAG production and ALP activity, 



 150

while mechanical properties were similar for the two groups.  Future work will 

include the incorporation of stiffness gradients and expanded in vivo studies to 

evaluate the efficacy of gradient-based materials in osteochondral defect repair. 
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CHAPTER 10: Conclusion 
 

Addressing mandibular condylar tissue regeneration, the first obstacle was the 

unknown mechanical design parameters for the cartilage part of the tissue, known to 

have cellular and extracellular characteristics intermediate to the hyaline cartilages 

and fibrocartilages.  To obtain important mechanical properties relevant to the tissue 

engineering community and to develop a structure-function correlation, regional 

tensile and compressive characterization of the tissue was performed, together 

comprising the most comprehensive biomechanical characterization effort for the 

condylar cartilage to date.  It also led to the first incidence of characterizing the stress 

relaxation behavior of the tissue under tension or compression.  A direct correlation 

between directional tensile properties and the collagen fiber orientation was 

demonstrated, which was the first incidence of establishing the directional structure-

property correlation with respect to condylar cartilage under tension (Chapter 4).  The 

compression study provided clear validation of cartilage heterogeneity and indicated a 

correlation between the regional thickness and stiffness of the tissue (Chapter 5).  

Both the studies together set the gold standard reference for future condylar cartilage 

and mandibular condyle tissue engineering studies in our group and for the TMJ 

tissue engineering community. 

Next, to address osteochondral/interfacial tissue regeneration using a 

controlled release approach, a microsphere-based gradient scaffold fabrication 

technology was developed, which allowed spatial control over the positioning of the 

microspheres along the axis of cylindrical molds (Chapter 6).  Using dye-loaded 
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microspheres, a proof-of-concept was provided for the generation of bi-layered, 

multi-layered and gradient scaffolds.  Novel routes to fabricate microsphere-based 

scaffolds were developed.  An ethanol-treatment method was developed to create 

monodisperse microsphere-based sintered matrices, which were comprehensively 

characterized for their morphology, glass transition temperature, porosity, mechanical 

properties and cytotoxicity (Chapter 6).  The method allowed the fabrication of 

porous and non-cytotoxic microsphere-based scaffolds.  Moreover, to address 

functional regeneration of interfacial tissues, nanoparticle-encapsulated composite 

microspheres were used to fabricate ethanol-sintered stiffness gradient scaffolds 

(Chapter 7).  While the stiffness of the individual microspheres was expected to 

increase by the encapsulation of nanoparticles, it was observed that the scaffolds 

prepared with composite microspheres exhibited a lower stiffness compared to 

corresponding blank microspheres with a 2 h ethanol-soaking duration.  Changes that 

occurred on the surfaces of the microspheres following nanoparticle encapsulation 

was a likely cause of the decrease in the extent of sintering.  Although the individual 

building blocks were stiffer, the structure as a whole demonstrated a lower stiffness 

due to lower than optimal sintering.  Nevertheless, the composite microspheres 

demonstrated an increasing trend in stiffness with the increase in the nanoparticle 

content.  The method can thus be extended to prepare scaffolds with a gradient or 

inverse-gradient in stiffness.  Furthermore, an alternative route to prepare fused 

microsphere-based scaffolds using sub-critical CO2 sintering was explored (Chapter 

8).  The scaffolds demonstrated a porous morphology, and stiffnesses comparable to 
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native cartilage stiffness.  In addition, using porcine chondrocytes and human 

umbilical cord mesenchymal stromal cells, the feasibility of utilizing these scaffolds 

for cartilage tissue engineering was assessed using biochemical assays and 

immunohistochemistry.  Perhaps even more importantly, it was demonstrated that 

gaseous CO2 processing allows fabrication of cell-loaded three-dimensional matrices 

and patches in a cytocompatible way without adversely affecting the cell viability 

(Chapter 8).  Finally, signal gradient scaffolds, with opposing gradients of 

chondrogenic and osteogenic factors, were utilized for osteochondral tissue 

engineering (Chapter 9).  A single cell source-based approach was taken, where bone 

marrow stromal cells were selectively differentiated into cartilage-like and bone-like 

cells.  Following a 6 wk cell culture, the gradient scaffolds were shown to outperform 

the blank control scaffolds in cell number and GAG production.  Gradient scaffolds 

also demonstrated a sign of increased osteoblastic activity during the 6 wk culture. 

Cumulatively, the characterization studies of this dissertation fill voids in the 

current TMJ biomechanics literature (Chapters 4 – 5), and a combination of novel 

gradient-based tissue regeneration approaches were taken toward osteochondral tissue 

engineering (Chapters 6 – 9).  This dissertation lays down the foundation for a 

combined growth factor-stiffness gradient approach that could lead to a translational-

level regenerative solution to osteochondral tissue regeneration with extended 

applications in other areas, including tissue engineering of heterogeneous/interfacial 

tissues. 
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Figure 2.1: (A) Schematic of a sagittal section of the human TMJ, showing the 

position of the condyle with respect to the TMJ disc and eminence-fossa.  The 

cartilaginous surfaces are dark gray.  (B) A schematic of the zonal architecture of the 

condylar cartilage, enlarged from the boxed region of (A), showing four explicit 

zones: fibrous, proliferative, mature and hypertrophic.  This figure highlights fiber 

organization and cellular composition of these zones. 
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Figure 4.1: A) Posterior view of a left porcine condyle with the articular condylar 

cartilage intact.  B) An enlarged superior view of condylar cartilage isolated from a 

right porcine condyle, displaying the different regions of the cartilage: anterior, 

posterior, superior, medial and lateral.  
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Figure 4.2: A superior view of condylar cartilage superimposed with the specimen 

preparation scheme.  Three specimens from each condylar cartilage were tested, 

either in the mediolateral direction or in the anteroposterior direction.  In the 

mediolateral direction, specimens were prepared from the anterior, superior and 

posterior regions.  In the anteroposterior direction, specimens were prepared from the 

medial, central and lateral regions. 
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Figure 4.3: Photograph of the custom-built tensile bath and grip assembly.  Shown 

here is the bath (1) to which the lower grip (2) was clamped.  The upper grip (3) was 

attached to the movable crosshead that carried a load cell (4) of 50 N capacity.  The 

temperature was controlled using an immersion heater (5) and a temperature probe 

(6), both connected to a temperature controller. 
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Figure 4.4: Typical stress-strain response of a condylar cartilage specimen, when 

stretched to 20% strain.  The example curve provided here belonged to a specimen 

from the superior region, tested in the mediolateral direction.  The curve demonstrates 

a non-linear region extending to approximately 6% strain, followed by a linear region. 
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Figure 4.5: Example of a typical stress relaxation response curve-fitted to the linear 

viscoelastic models.  The specimen provided here was from the superior region, 

tested in the mediolateral direction.  The solid line represents the experimental data, 

showing the bi-exponential stress relaxation behavior of the specimen.  The Kelvin 

model could not provide a close fit for the entire data.  Therefore, the Kelvin model 

was fitted to only the slow relaxation phase and was used to obtain the equilibrium 

modulus.  Using this equilibrium modulus, the second order generalized Kelvin 

model provided a close fit to the experimental data. 
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Figure 4.6: Polarized light micrographs displaying the collagen fibers from the 

fibrous zone of condylar cartilage from a right condyle at 100X magnification (scale 

bar = 100 μm).  The locations from where the micrographs were captured are shown 

in the schematic of condylar cartilage in R1:C1 (denoted by white dots).  The three 

columns (C2-4) correspond to tensile specimens tested in the anteroposterior direction 

and correspond to the specimens from the medial, central and lateral regions, 

respectively.  The three rows (R1-3) correspond to tensile specimens tested in the 

mediolateral direction, where the middle row (R2) corresponds to the specimens from 

the superior region of the cartilage, and other two rows (R1 and R3) belong to regions 

close to the anterior and posterior edges of the cartilage.  Micrographs from the 

peripheral regions (R1, R3, C1, C5) show that fibers ran in a ring-like fashion around 

the periphery. Micrographs from the interior regions (R2:C2-4) show that fiber 

orientation was predominantly anteroposterior inside the periphery.  A: Anterior, P: 

Posterior, M: Medial, L: Lateral.  
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Figure 4.7: Superior view of a left porcine condyle superimposed with a simplified 

schematic of macroscopic fiber orientation of the fibrous zone, where only the 

predominant fiber orientation is shown.  The schematic is based on the polarized light 

micrographs and visual inspection of the articular surface of the cartilage.  
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Figure 5.1: Superior view of a left porcine condyle, displaying the different regions 

of the condylar cartilage (A: Anterior, M: Medial, C: Central, L: Lateral, P: 

Posterior).  The circles represent the locations from where cylindrical specimens of 5 

mm diameter were prepared (shown to scale). 
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Figure 5.2: Photograph of the custom-built bath and compression platen assembly.  

Shown here is the bath (1) to which the lower compression platen (2) was affixed.  

The upper compression platen (3) was attached to the movable crosshead that carried 

a load cell (4) of 10 N capacity.  The temperature was controlled using an immersion 

heater (5) and a temperature probe (6), both connected to a temperature controller. 
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Figure 5.3: Typical stress-strain response of a condylar cartilage specimen, when 

compressed to 50% strain.  The example curve provided here belongs to a specimen 

from the posterior region.  The curve demonstrates a non-linear region extending to 

approximately 30% strain, followed by a linear region.  The inset displays an 

enlarged view of stress-strain response for the initial strain values. 
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Figure 5.4: Example of a typical stress relaxation response curve-fitted to the linear 

viscoelastic models.  The specimen provided here was from the posterior region.  The 

Kelvin model could not provide a close fit for the entire data.  Therefore, the Kelvin 

model was fitted to only the slow relaxation phase and was used to obtain the 

equilibrium modulus.  Using this equilibrium modulus, the second order generalized 

Kelvin model provided a close fit to the experimental data. 
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Figure 5.5: Additional compression tests conducted for the validation of the model.  

The data presented here corresponds to three specimens tested from the lateral region.  

Stress relaxation behavior was contrasted against the corresponding second order 

generalized Kelvin model, which displays the consistency of the model in predicting 

the relaxation behavior.  The values were found to primarily lie within the upper and 

lower bounds set by the predicted model.  It should be noted that there were breed 

and weight differences between the porcine tissues used in the original tests and 

validation tests. 
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Figure 6.1: An over-simplified schematic of the design of the scaffold fabrication 

apparatus.  The syringes (1), containing dye-loaded or blank microsphere suspensions 

in distilled water/PVA solution, were attached to two programmable syringe pumps.  

The suspensions were pumped in a predefined controlled manner through the attached 

tubings to a cylindrical glass mold (2).  Through the bottom of the mold, the distilled 

water/PVA solution was constantly filtered, while the microparticles settled in the 

mold.  At the end of the process, distilled water was completely pulled out using the 

vacuum pump, leaving microparticles stacked in the mold. 
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Figure 6.2: Specific flow profiles programmed into the two syringe pumps.  The 

black line represents flow profile of Rhodamine B-loaded microspheres (A–D), and 

the gray line represents the flow profile of fluorescein-loaded (A–C) or blank (D) 

microspheres.  
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Figure 6.3: A) Coulter multisizer size distribution plot of PLG microspheres, 

displaying the monodispersity of the microspheres with a discrete peak at 220 μm.  B) 

Scanning electron micrographs of the interior and exterior morphology of 

cryofractured microspheres.  
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Figure 6.4: The near-perfect cylindrical geometry of bulk scaffolds (A) fabricated 

using blank microspheres of 220 μm diameter with 50 min ethanol soak time.  

Scanning electron micrographs of a scaffold fabricated using blank microspheres of 

160 μm diameter (B–D), displaying the outside appearance of a bulk scaffold (B), the 

physical attachment of microspheres by ethanol (C) and interconnectivity of the pores 

(D). 
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Figure 6.5: Scanning electron micrographs of scaffolds fabricated using blank PLG 

microspheres of 220 μm diameter with varying ethanol soak-times: 30 min (A, E), 1 h 

(B, F), 2 h (C, G) and 4 h (D, H). (Scale bar: 100 μm for A-D and 20 μm for E-H). 
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Figure 6.6: A) Characteristic stress-strain plot obtained from the compression of a 

scaffold prepared using a 1 h ethanol soak-time (see Results – Fabrication and 

characterization of scaffolds). B) Modulus of elasticity of the scaffolds prepared 

using varying ethanol soak-times (30 min, 1 h, 2 h and 4 h) (* indicates that the 

results were found to be statistically significant.) (p < 0.05). 
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Figure 6.7: A) A representative three-dimensional microCT image of a scaffold 

(prepared using a 50 min soak-time). B) Top-view of the scaffold displaying a cross-

sectional layer of microspheres. 
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Figure 6.8: Fluorescence micrographs of “Live/Dead” dye-stained porcine 

chondrocytes seeded on scaffolds (50 min soak-time) following 18 day cell culture 

period – A) live cells, B) dead cells, and C) live and dead cells.  
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Figure 6.9: Concentration profiles of bi-layered, multi-layered and gradient scaffolds 

created using rhodamine B-loaded, fluorescein-loaded and blank microspheres (A–

D). Top row: Rhodamine B-loaded microspheres (red) were transitioned into 

fluorescein-loaded (orange; A–C) or blank microspheres (white; D) using flow 

profiles described in Fig. 2. Middle rows: The scaffolds were imaged under UV light 

(365/254 nm). There was a characteristic change in appearance of fluorescein-loaded 

microspheres to blue color.  Bottom row: Red pixels from the previous images were 

pseudocolored as white (A–C) or black (D) against a black background. The 

pseudocolored images were analyzed using ImageJ software to create relative 

intensity vs. relative distance plots (E–H corresponding to A–D, respectively). 
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Figure 7.1: (A) Coulter multisizer size distribution plot of microspheres of different 

types (PLGA-CaCO3/TiO2) prior to lyophilizing, displaying their relative 

monodispersity and nominal sizes (average diameters: 130-175 µm) (peaks with % 

volume less than 0.5 have been omitted for the sake of clarity).  (B-E) Morphological 

analysis of microspheres using scanning electron microscopy/energy dispersive 

spectroscopy (SEM/EDS).  Panels B and D display representative SEM images of 

intact (left) and cryofractured (right) microspheres, corresponding to 90:10 

PLGA:CaCO3 and 90:10 PLGA:TiO2, respectively.  Panels C and E show the 

elemental distribution of the microspheres obtained using EDS, displaying an overlay 

of C, O, and Ca/Ti (left) and corresponding Ca/Ti distribution (right) (Panel C – 

cryofractured 90:10 PLGA:CaCO3, color scheme C/O/Ca blue/red/green; Panel E – 

intact 90:10 PLGA:TiO2, color scheme C/O/Ti blue/green/red).  Scale bar: 20 µm (B-

D) and 50 µm (E). 
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Figure 7.2: (A, B) Characteristic SEM micrographs of a scaffold, prepared by 

sintering the microspheres (90:10 PLGA:CaCO3) using ethanol sintering, displaying 

the porous nature of the scaffold (A) and typical microsphere connection sites (B). 

Scale bar: 100 and 50 µm for A and B, respectively. (C, D) Live-dead images of 

human umbilical cord mesenchymal stromal cells cultured on these scaffolds for a 

period of 2 weeks, demonstrating high viability.  The representative images of cells in 

a single plain (C) and a 100 µm thick section (D) were taken from an interior section 

of a scaffold.  Scale bar: 100 µm (C). 
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Figure 7.3: (A) A proof-of-concept gradient scaffold prepared using dye (Rhodamine 

B)-loaded PLGA microspheres and 90:10 PLGA:CaCO3 microspheres using a 2 h 

ethanol soak. The image was taken under UV light using a UV lamp (254/365 nm; 

UVGL-25, UVP, Inc.) and a high-resolution camera, and analyzed using NIH ImageJ 

software to plot relative intensity as a function of pixel distance. (n = 5)  (B) Moduli 

of elasticity of the homogeneous scaffolds prepared using different types of 

microspheres.  The moduli were obtained from the initial linear regions of the stress-

train curve: 1) at 25% strain (preceding the onset of pore-collapse for PLGA 

scaffolds), and 2) preceding the onset of pore-collapse, in general (at 40% strain for 

composite scaffolds).  Surface modifications (see Fig. 1) that result due to the 

incorporation of nano-phase materials led to a decrease in the extent of sintering of 

the composite microspheres compared to the control PLGA microspheres for a 2 h 

ethanol-soak.   
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Figure 8.1:  (A) Coulter multisizer size distribution plot of PLG microspheres of 

different nominal sizes used in these studies, displaying the monodispersity of the 

microspheres with discrete peaks (peaks with % volume less than 0.5 have been 

omitted for the sake of clarity).  (B) An image of various shape-specific scaffolds that 

were produced with PLG microspheres (140 µm) using CO2 at sub-critical conditions 

(15 bar for 1 h at 25°C followed by depressurization at ~0.14–0.21 bar/s) utilizing 

rubber molds of different shapes.  From left to right: cylinder, bilayered cylinder, 

tube, plus-sign, and star. 
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Figure 8.2:  Characteristic scanning electron micrographs of scaffolds fabricated 

using different types of PLG microspheres at the typical processing conditions for 

sintering (CO2 exposure at 15 bar for 1 h at 25°C followed by depressurization at 

~0.14–0.21 bar/s).  Sizes of the microspheres used were 240 µm (A, B), 175 µm (C), 

140 µm (D, E), and (140 µm together with 5 µm) (F).  The morphology of a 

microsphere following the CO2 sintering (E) is also displayed, where enlarged images 

of the microsphere connection site (top panel) and sub-micron level surface 

modifications (bottom panel) are shown.  The microspheres were made using PLG 

(with acid-end group chemistry) of either 0.33 or 0.37 dL/g intrinsic viscosity (i.v.) 

(see Fig. 1 and text).  Scale bar: 100 μm unless labeled otherwise. 
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Figure 8.3:  Modulus of elasticity of the scaffolds prepared using different 

microspheres sizes (corresponding to Fig. 1).  The differences in the moduli were not 

statistically significant (p > 0.05). 
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Figure 8.4:  I. Fluorescence micrographs of Live/Dead dye-stained porcine 

chondrocytes seeded on scaffolds (175 µm) following a 3 wk cell culture period – A) 

live (green) and dead (red) cells, B) live cells only, and C) dead cells only.  Scale bar: 

100 μm.  II. Immunohistochemistry for collagen types I and II (purple indicates 

positive stain) and Safranin-O staining for GAGs (orange indicates positive stain) at 

week 3 (n = 2).  HUCMSCs = human umbilical cord mesenchymal stromal cells, CI = 

collagen type I, CII = collagen type II, and GAG = glycosaminoglycan.  Scale bar: 

100 μm. 
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Figure 8.5:  (A) A schematic of producing a microsphere-based cell-loaded scaffold 

or thin patch is shown.  The process of combining the cells and microparticles in a 

liquid medium results in a melded thin patch (top), whereas mechanically mixing a 

loose cell pellet in a minimal liquid volume with the microparticles results in a 

homogeneously seeded scaffold.  Scale bar: 6 mm.  (B, C) Fluorescence micrographs 

of Live/Dead dye-stained HUCMSCs display cell survival during CO2 sintering of 

microspheres (120 µm) at sub-critical conditions.  Processing conditions (pressure, 

duration of exposure, depressurization rate, presence/absence of culture medium) for 

the production of the thin patch (B) and the macroscopic scaffold (C) were (30 bar, 2 

min, ~0.21 bar/s, medium present) and (30 bar, 4 min, ~0.21 bar/s, medium absent), 

respectively.  Green indicates live cells and red indicates dead cells.  Note the dark 

circular areas, corresponding to the locations of the microspheres.  Scale bar: 100 µm. 
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Figure 9.1: Cell number per construct at wk 0 and wk 6.  Note that the cell number 

nearly doubled over the duration of the study.  *Statistically significant difference (p 

< 10-5).  Error bars represent standard deviations. 
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Figure 9.2: Glycosaminoglycan (GAG) content per construct at wk 0 and wk 6.  The 

GAG content increased by ~6-7 fold over time, with a significantly higher content in 

the gradient scaffolds.  *Statistically significant differences between wk 0 and wk 6.  

#Statistically significant differences between gradient and blank scaffolds at wk 6.  

Error bars represent standard deviations. 
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Figure 9.3: Moduli of elasticity and relaxed modulus of constructs at wk 6.  The 

differences in the moduli were not statistically significant. 
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Figure 9.4: p-nitrophenol concentrations (nM)/min as a measure of ALP activity. 
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Table 2.1. Mechanical properties of condylar cartilage under different testing modalities

Specimens Species
 tested (Age)

Compression

Ramp stress 
(MPa)

Strain rate 
(mm/min)/ 

frequency (Hz)
Modulus of 

elasticity (Mpa)
Creep time constant (s) Equilibrium 

modulus (MPa)

0.51 125.5 ± 23.3 2.684
1.02 112.5 ± 33.0 3.591
1.53 104.0 ± 28.8 4.751
0.51 146.5 ± 35.2 3.355
1.02 134.4 ± 15.0 5
1.53 139.8 ± 25.0 6.623

Ramp stress 
(MPa) Frequency (Hz) Modulus of 

elasticity (MPa) Poisson's ratio Equilibrium 
modulus (MPa)

AM 2.34 ± 0.26 0.46 ± 0.05
AL 1.51 0.41
PM 1.11 ± 0.07 0.38
PL 0.95 ± 0.06 0.31 ± 0.05
AM 0.95 ± 0.15 -
PL 1.02 ± 0.22 -

Applied % strain 
range Frequency (Hz)

Dynamic complex 
modulus g  (MPa)

Storage and loss moduli g 

(MPa)
Equilibrium 

modulus (MPa)
AM 1.40 ± 0.39 1.36 ± 0.38, 0.34 ± 0.07 
AL 1.15 ± 0.33 1.12 ± 0.32, 0.24 ± 0.07 
PM 0.81 ± 0.21 0.79 ± 0.21, 0.16 ± 0.04
PL 0.73 ± 0.26 0.72 ± 0.25, 0.16 ± 0.05

Shear
% strain 

Amplitude Frequency (Hz) Complex shear 
modulus i  (MPa)

Storage and loss moduli i 

(MPa)
Equilibrium 

modulus (MPa)

1 1.56 ± 0.27 1.50 ± 0.27, 0.41 ± 0.06 

2 1.82 ± 0.26 1.77 ± 0.26, 0.45 ± 0.06 

3 2.10 ± 0.33 2.03 ± 0.33, 0.51 ± 0.10 
1 1.56 ± 0.27 1.50 ± 0.27, 0.41 ± 0.06 
2 1.82 ± 0.26 1.77 ± 0.26, 0.45 ± 0.06 
3 2.10 ± 0.33 2.03 ± 0.33, 0.51 ± 0.10 
1 0.34 ± 0.08 0.33 ± 0.08, 0.09 ± 0.02 
2 0.43 ± 0.12 0.42 ± 0.11, 0.11 ± 0.03
3 0.57 ± 0.10 0.55 ± 0.10, 0.15 ± 0.04

Tension

Ramp strain (%) Strain rate (mm/s) Young's modulus 
(MPa)

Ultimate tensile strength 
(MPa) 

Equilibrium 
modulus (MPa)

AP 9.04 ± 1.73 2.92 ± 0.84 

ML 6.55 ± 1.24 2.15 ± 0.64 

Ramp Strain (%) Strain rate (mm/s) Young's modulus 
(MPa)

Stress relaxation time 
constant (min)

Equilibrium 
modulus (MPa)

M 21.7 ± 4.4 38.5 ± 5.8 6.2 ± 4.4
C 29 ± 13 32.4 ± 8.2 8.8 ± 4.1
L 22 ± 11 42.5 ± 9.6               7.3 ± 4.6
A 11.3 ± 7.9 38 ± 12 3.9 ± 3.5
S 8.7 ± 3.7 40 ± 13 3.6 ± 2.0
P 10.2 ± 4.5 39 ± 19 3.9 ± 1.9

a A: Ant, AL: Anterolateral, AM: Anteromedial, C: Central, L: Lateral, M: Medial, P: Posterior, PL: Posterolateral, PM: Posteromedial, S: Superior
b AP: Anteroposterior, ML: Mediolateral
c Mean ± standard deviation
d Regional and/or directional comparisons of stiffness values (complex, Young's or elastic modulus) that were found to be statistically significant, if any.
e The results tabulated here are obtained by comparing the function curve-fitted by Kuboki et al. , i.e. , A(1-exp(-t/ζ)), to the Kelvin model having the assumption that µ1 << µ0. 
  The equilibrium modulus of elasticity reported has been calculated using the mean values of A.
f Intermittent compression of 1 second duration at 2 seconds interval
g Numerical values provided via personal communication, representing a frequency of 1 Hz
h Frequency sweep
i Corresponding to an excitation frequency of 2 Hz

Regional 
differencesd 

-

Mechanical propertiescTesting parameters

Kuboki et al.,  1997e Indentation 
(creep)

Loading 
profile

A

Sustained
Cartilage-bone, 
entire cartilage 

intact
Intermittent

10

10

Porcine     
(7 months)

- 14 - Rabbit      
(6 weeks)

1.04/0.33f

AM vs. others  
AL vs. others   

PM vs. others  PL
vs. others

-

1.04/-

Tanaka et al.,  2006 Indentation 
(dynamic) Dynamic 10Cartilage-bone, 

rectangular plugs Normal

18Hu et al.,  2001 

Normal

Atomic force 
microscopy

Atomic force 
microscopyPatel & Mao, 2003 Cartilage-bone, 

rectangular plugs

Cartilage-bone, 
rectangular plugs Dynamic

1 ± 0.2 0.01 - 10h - Porcine     
(6-9 months)

Method SampleGroup

Rabbit      
(7 days)-- 14Dynamic 18

Directionb

Normal

Normal

Regiona

Dynamic 10 0.01 - 10hTanaka et al.,  2007

Shear 
(dynamic), 

compressive 
strain (10%)

Cartilage-bone, 
rectangular plugs C - Porcine     

(6-9 months)

Tanaka et al., 2008 Porcine     
(6-9 months)

Cartilage-bone, 
rectangular plugs

Shear 
(dynamic), 

compressive 
strain (10%)

AP

ML

0.01 - 10h

AP

Cartilage-bone, 
rectangular plugs

7

10

DynamicC

26

Porcine     
(6 months)

To failure

0.1

-

20
Cartilage, 

rectangular 
sections

Singh & Detamore, 2008

Kang et al., 2000a
Porcine     
(10-14 
months)

Sustained

AP

Sustained 7

0.05 -

ML

Unidirectional 
tension (stress 

relaxation)

-Unidirectional 
tension

-

AP vs. ML    

AM vs. PM      
AM vs. PL      
AL vs. PM      
AL vs. PL

-

AP vs. ML

AP vs. ML
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Table 2.2. Fibril/fiber dimensions and major collagen types in condylar cartilage

Group Property Results Location a Species Method b

Orientation Region (Age)
Elastic fiber diameter 350nm
Elastic fibril diameter 8nm

Collagen fibril diameter 40-100nm
Width of fiber layers 1-4µm

65nm F 
45nm P, M 

70-180nm L
Collagen type collagen I F, L IHC

collagen II M, H, PCM
collagen X M, H, PCM

collagen I F, P, M
collagen II M,H
collagen III F

Anterior, Superior collagen I F, P, M, H
& Posterior collagen II M, H

collagen I F, P, M, H
collagen II M, H

a A- Articular layer, F- Fibrous zone, P- Proliferative zone, M- Mature zone, H- Hypertrophic zone, L- Lacunar, UF- Upper fibrous zone, PCM- Pericellular matrix
b TEM- Transmission electron microscopy, IHC- Immunohistochemistry, PLM- Polarized light microscopy,  DIC- Differential interference contrast microscopy

- Collagen type

Collagen typeMizoguchi et al., 
1996 Longitudinal (AP)

Longitudinal (AP)Berkovitz, 2000

Milam et al.,  1991 Longitudinal (AP)

A19.4 µmMean crimp periodicity-

IHC

PLM & 
DIC

IHC

Rats           
(4 weeks)

Baboons        
(9.5 years)

Human         
(4.5 to 58 years)

IHCRats           
(8 weeks)

TEM

IHC

Rats           
(neonatal )Delatte et al.,  2004 Longitudinal (AP) - Collagen type

Longitudinal (ML)Shibata et al.,  1991 Rats           
(15 weeks)

Teramoto et al., 
2003

-

Longitudinal (AP) Anterior and 
posterior Collagen type

TEMRats           
(3 weeks)

All zones Rats           
(20 & 80 days) TEM

F Monkeys TEM

Collagen fibril diameter 30-100nm F

Collagen fibril diameter

Specimen

Appleton, 1975

Klinge, 1996

Mizuno et al.,  1990 Longitudinal (ML)

-

Longitudinal, oblique 
and transverse -

-

-
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Table 2.3. Quantified values of extracellular matrix components in condylar cartilage

Group Region Condition Properties Values Method Dry/Wet Species
weight? (Age)

Pietila et al. , 1999 Anterior 
half 

Normal Total dry weight 2.6 mg Density-gradient 
ultracentrifugation

Dry Rabbits      
(25 days)

Sulfated GAG 
content

~0.192 mg Dimethylmethylene 
blue assay

Collagen content 165.7 nmol/mg a Hydroxyproline 
assay

Poikela et al. , 2000 Anterior 
half 

Induced unilateral 
mastication b 

Total dry weight 2.1 mg Density-gradient 
ultracentrifugation

Dry Rabbits      
(25 days)

Sulfated GAG 
content

~0.154 mg Dimethylmethylene 
blue assay

Normal c Total dry weight 2.6 mg Density-gradient 
ultracentrifugation

Sulfated GAG 
content

~0.181 mg Dimethylmethylene 
blue assay

Delatte et al. , 2004   - Normal Sulfated GAG 
content

6.4 ± 0.6 µg/mg Dimethylmethylene 
blue assay

Wet Rats         
(4 days)

Collagen content 2.2 ± 0.3 µg/mg Hydroxyproline 
assay

a nmol hydroxyproline per mg of dry-weight guanidium chloride extractant 
b 15 days unilateral mastication subjected to right condyles
c Controls from the same experiment
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Table 2.4. Thickness data for healthy mandibular condylar cartilage
Group Region Location Number of Thickness (mm) a, b Specimen Method Species

 condyles examined preparation (Age-range)
Hansson et al. , Mediocentral Anterior 46 0.41 ± 0.14 Hematoxylin-eosin Light microscopy Human
1977 Superior 47 0.48 ± 0.18 van Geison (1 day to 93 years)

Posterior 46 0.25 ± 0.17 Toluidine Blue
Lateral Anterior 36 0.37 ± 0.11

Superior 35 0.37 ± 0.15
Posterior 35 0.15 ± 0.11

Bibb et al. , 1993 Central Anterior 50 0.438 ± 0.191 Hematoxylin - Light microscopy Human
Superior 50 0.507 ± 0.186 triosin (16 to 38 years)
Posterior 45 0.322 ± 0.173 

Pullinger et al. , Medial Anterior 49 0.39 ± 0.11 Hematoxylin - Light microscopy Human
1990 Superior 49 0.41 ± 0.14 triosin (16 to 38 years)

Posterior 47 0.28 ± 0.17
Central Anterior 53 0.40 ± 0.11

Superior 53 0.41 ± 0.14
Posterior 48 0.26 ± 0.16

Lateral Anterior 45 0.38 ± 0.10
Superior 45 0.38 ± 0.14
Posterior 43 0.21 ± 0.11

Bosshardt-Luehrs  Mediocentral & Anterior 4 0.094 ± 0.007 F Unstained Radiography Monkey
and Luder, 1991 Lateral-central 0.053 ± 0.004 P followed by (14 months to 

0.066 ± 0.007 M morphometric 46 months)c

0.066 ± 0.004 H image analysis
0.279 ± 0.022 O

Superior 4 0.131 ± 0.016 F
0.092 ± 0.012 P
0.096 ± 0.009 M
0.120 ± 0.011 H
0.439 ± 0.048 O

a Mean ± Standard Deviation
b F: Fibrous zone, P: Proliferative zone, M: Mature zone, H: Hypertrophic zone (Endochondral ossification front excluded), O: Overall Thickness
c Corresponds to prepubertal age
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Table 2.5. Macromechanical properties of the condylar part of retrodiscal tissue

Group Test type Specimens Strain rate Modulus of elasticity a Additional property a Equilibrium Species Method Model
(Load profile)  tested (MPa) modulus? (Age) used

Tensile stress (MPa) 
and % strain at fracture

Kang et al.,  2000b Tension (up to 
failure) 13 0.05 mm/s 4.35 ± 3.27 1.76 ± 1.01 & 95.25 ± 33.19 No Human       (8

15 years)
Uniaxial 

tensile test
Quasi-linear 
viscoelastic

Time constant (s)

Tanaka et al.,  2003 Tension      
(Step strain) 10 10% s-1 2.08 and 4.30 b

30.5 and 39.1 (Stress relaxation)b     

49.1 and 63.8 (Creep)b No Bovine      
(3 years)

Uniaxial  
tensile test

Standard linear 
solid

Tanaka et al.,  2002 Compression 
(Step strain) 10 50% s-1 1.54 (Instantaneous)    

0.21 (Equilibrium)
11.6 (Stress relaxation)           

84.9 (Creep) Yes Bovine      
(10 years)

Unconfined 
compression

Standard linear 
solid

a Mean ± standard deviation
b The two values correspond to the two segments of the bilinear model.
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Table 3.1. A summary of various forms of physical and chemical stimuli, 
gradients of which are known to provide a control over cell movement 
or "taxis" (adapted from Lo et al. 3 and Haga et al .4)

Type Form
Chemical Dissolved form Chemotaxis

Immobilized form Haptotaxis
Physical Substrate rigidity Durotaxis/mechanotaxis

Electrostatic potential Galvanotaxis
Light intensity Phototaxis

Gravitational potential Geotaxis
Extracellular tension Tensotaxis

Stimulus Form of "-taxis"
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Table 3.2. Fabrication techniques used to prepare continuous macroscopic gradients in porosity and/or pore size in three-dimensional scaffolds

Gradient type Fabrication method
Geometry/          

Gradient direction Materials useda Primary gradient shape-controlling process parameter(s)b Application Ref
Centrifugation - heat sintering Cylindrical/axial PCL-pluronic F127 f(centrifugal speed) E.g., pore sizes ~88 to ~405 μm and 

porosities ~80 to 94% at 3000 rpm
To investigate the cell/tissue interaction with 

the scaffold in order to optimize the pore-size
107

Centrifugation - freeze drying Tubular/radial Collagen-GAG f(centrifugal speed, time) E.g., pore sizes <5 μm (at the 
wall) to ~20 μm (near the lumen) at 30,000 rpm for 15 min 

spinning time

"Mold-less" creation of tubular scaffolds; to 
study myofibroblast migration during 

peripheral nerve regeneration

117

Phase separation (by 
temperature gradient-driven 
cryogenic treatment) - freeze 

drying

Cuboid-shaped/normal 
(in the direction of heat

transfer)

Gelatin hydrogel 
(Chemically cross-

linked)

f(cooling rate, temperature gradient) E.g., pore sizes 20-
30 to 330 μm and porosities 61 to 82% for 30 °C 

temperature gradient at 0.15 °C/min cooling rate with 10%
(w/v) gelatin

Gelatin scaffolds for tissue engineering with 
controllable pore-size, pore geometry and 

porosity 

120

Solid state polymerization - melt 
pressing - porogen leaching

Cylindrical/radial or 
axial

PGA f(porogen content and porogen size) E.g., macroscopic 
pore size ~300 μm and microscopic pore size 0.3 μm

Scaffold that mimics natural bone 116

Porosity and 
material 
composition 
gradient

3-D printing (TheriFormTM) - 
porogen leaching

A disc on a 
cloverleaf/axial

PLGA-PLA-TCP Programmable porosity gradient: f(axial porogen content) 
(55 to 90%), pore-size: f(porogen particle diameter) 106-

150 μm

Scaffold for osteochondral defect repair 115

Porosity gradient 3-D printing (TheriFormTM) - 
porogen leaching

Disc/axial PLGA with 20%  β-
TCP

Programmable porosity gradient: f(axial porogen content),
pore-size: f(porogen particle diameter) 125-150 μm

A composite material for bone defect repair 118

Pore-size gradient 3-D fiber deposition technique Disc/axial PEGT-PBT Programmable pore-size gradient: f(fiber deposition 
pattern) (200-1650 μm)

Scaffolds with anisotropic pore architecture 
to engineer cartilage with native zonal 

organization 

114

aGAG: Glycosaminoglycan, PBT: Poly(butylene terephthalate), PCL: Poly(caprolactone), PEGT: Poly(ethylene glycol)-terephthalate, PGA: Poly(glycolic acid), PLA: Poly(L-lactic acid), PLGA: 
Poly(lactic-co-glycolic acid), TCP: Tricalcium phosphate
bPrimary "gradient-controlling" parameter is the parameter investigated and found to have a profound effect over the gradient profile; the influencing parameters are reported as: 
f(process-dependent parameter(s)).

Pore-size and 
porosity gradient
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Table 3.3. Methods to create surface chemistry gradients on  two-dimensional substrates including functional group gradients and oligomers/polymer-grafted surfaces

Grafted species Substrate

Final graded 
functionality/surface 

characteristics
Diffusive deposition (vapor 
or liquid phase adsorbent)

Diffusion controlling factors dichlorodimethylsilane 
or other organosilanes 

(hydrophobic)

Hydrophilic 
substrates (Silicon 

dioxide, silica, 
quartz)

Hydrophobic (methyl 
groups) gradient on 
hydrophilic substrate

Functional group density, 
wettability

Fibroinogen, γ-
globulin, lysozyme, 

kininogen, IgG

- 177-181

Grafting from initiator 
gradients generated via 
diffusion (ATRP and/or 
NMRP)c

Time, monomer concentration, 
temperature#

PAA/(PMM & PS) 
grafted from 

organisilane-based 
initiators

Silicon wafer (-COOH) functionality Polymer graft density, 
thickness, wettability

- - 184,185

Continuous depletion of 
monomer solution (ATRP)

Monomer solution removal 
rate, MCl2 concentration 

(governing reaction rate and 
polydispersity)&

PMM, (PHEMA and 
PMM)

Silicon wafer with 
chemisorbed 

initiator

(-COOH) functionality Molecular weight 
(orthogonal)**, thickness

- - 184,186

Initiator gradient via diffusion
- continuous depletion of 
monomer solution (ATRP)

(As mentioned above)#,& PDMAEMA, PHEMA Silicon wafer (-COOH) functionality Polymer graft density & 
molecular weight 

(orthogonal)** (others, e.g., 
thickness, wettability)

Lysozye, fibronectin Osteoblast-
like cells

186,203

Thermochemical 
manipulation of aliphatic tert
butyl ester functionalized 
SAM

Temperature(s), pH, 
nanoparticle colloidal solution 

properties

(-NR2) and( -COOH) 
functionalized 
polystyrene 

nanospheres

Au substrate with 
functionalized 

SAM

Nanosphere gradient (built
on SAM containing -

COOH gradient)

Functional group density, 
nanoparticle density

- - 187

Density gradient method Reactant concentration, 
reaction time (i.e., flow rates)

dichlorodimethylsilane 
or other organosilanes 

(hydrophobic)

Hydrophilic 
substrates (Silicon 

dioxide, silica, 
quartz)

Hydrophobic (methyl 
groups) gradient on 
hydrophilic substrate

Functional group density, 
wettability

Fibroinogen, IgG, 
lysozyme

- 182

Hyperthermal polyatomic 
ion deposition

Flurocarbon (C3F5
+) ion fluence 

(ions/cm2)

Flurocarbon PMM, PS Fluorocarbon Functional group density, 
wettability

- - 183

Spatially varying 
electrochemical 
desorption/adsorption of 
alkane thiols

Applied potentials, time Carboxylic acid-
modified PS 
nanospheres

Au electrode with 
assembled amine-
terminated alkane 

thiol layer

(-NH2) functionality 
translated into PS surface

Functional group density, 
nanopsphere surface density

- - 143

Continuous immersion in 
NaOH solution

Immersion speed (time), 
temperature, [OH-]

(hydrolysis of the 
surface groups)

PVC films Carbonate (hydrophobic) 
and hydroxyl (hydrophilic) 

groups

Functional group density, 
wettability

- Endothelial 
cells

142

Continuous immersion of 
gold substrate in alkanethiol 
solution 

Immersion speed (time) Methyl and hydroxyl 
terminated alkanethiol

Au coated Si 
wafers

(-CH3) or (-OH) groups Functional group density, 
wettability

- - 188

Continuous immersion in 
initiator solution (ATRP)

Immersion speed (time) PHEMA Si wafer (-COOH) functionality Functional group density Fibronectin Fibroblasts 176

Etching (ozonolysis) Silane monolayer 
(on glass), 
Polymeric 

substrates (PCL)

Hydrophilic functionailities 
OH, -COOH)

Surface energy, wettability Fibronectin Osteoblast-
like cells

148,149

Etching (ozonolysis) Silane monolayer 
on Si substrate 
masked with a 

elastomeric stamp

Hydrophilic (-COOH 
groups) gradient on 

hydrophobic SAM (methyl 
groups)

Surface energy, wettability - - 147

BP-TEG-PE 
polymerization (using a 

heterobifunctional 
photolinker)/BP-RGD

Glass, 
alkanethiolate 

monolayer on gold-
coated Si wafer

Model factor Graft density, model factor R-Phycoerythrin - 164,165

Graded pre-irradiation 
to induce -COOH 

functionality followed by
PAAcid grafting 

Polyethylene 
terephthalate

Model factor and -COOH 
functionality

Graft density, model factor Laminin (covalently 
attached)

PC12 cells 144

EBPDMA, TEGDMA Glass Functionality of casted 
polymers

Methacrylate conversion, 
mechanical properties

- - 139

MMA SBDC monolayer 
on Si wafer

(-COOH) functionality Graft density, thickness, 
model factor

RGD Fibroblasts 163

Peroxide initiators 
(surface oxidation or 

etching)

Polyethylene 
(inert), PDMS, PS, 

PTFE

Oxygen-based 
functionailities (such as, 

hydroxyl, ester, acid, 
ether, ketone, aldehyde 

groups)

Functional group density, 
surface energy, wettability

Constituents in 
blood, Albumin, IgG,

fibrinogen

Platelets 150-153

ppAAm and ppHEX 
(graft co-

polymerization)

Glass Hydrophobic alkane 
groups to hydrophilic 

allylamine groups

Thickness, functional group 
density, wettability

- Fibroblasts 174

ppAAm/octa-1,7-diene 
and ppAA (graft co-

polymerization)

Glass Amine/hydrocarbon and 
carboxyl functionalities

Thickness, functional group 
density, wettability

IgG - 172,173,175

UV irradiation-plasma 
discharge

(As mentioned above)α,β AA Polymeric 
substrate

Hydrophilic (-COOH) Functional group density, 
wettability

Serum proteins Neurons 162

Peroxide initiators 
(surface oxidation)

Polyethylene 
(inert)

Oxygen-based 
functionailities (such as, 

hydroxyl, ester, acid, 
ether, ketone, aldehyde 

groups)

Functional group density, 
wettability

Fetal bovine serum, 
Calf serum and 
NGF, Human 

albumin, Plasma 
proteins

CHO cells, 
fibroblasts, 
endothelial 

cells, PC-12 
cells, 

platelets

154,156-
159,161

" PLGA/ 
Polycarbonate

" " Fetal bovine serum Fibroblasts 155,160

PEO-MA Polyethylene 
(inert)

PEO Functional group density, 
wettability

Plasma proteins Platelets 168,169

AA/NaSS/DMAPAA 
(graft co-

polymerization)

Polyethylene 
(inert)

Charged functionalities 
(AA/NaSS: -ve, DMAPAA: 

+ve)

Functional group density, 
charge density, wettability

Plasma proteins CHO cells, 
platelets

170,171

MAPC (graft co-
polymerization)

Polyethylene 
(inert)

Groups with high 
phospholipid affinity

Functional group density, 
wettability

Plasma proteins, 
fibronectin

Platelets, 
fibroblasts

166,167

Substrate translation velocity, 
electrode-substrate gap width, 

power, time

Power-graded corona 
discharge treatment

Materialsa 

Gradient type(s) 
characterized

Radio-frequency gas 
plasma discharge

Plasma composition, electrode-
substrate gap width, power, 
time, exposure area using a 
graded or partially covering 
mask/exposure time using a 

moving mask, diffusionβ

Method
Possible gradient controlling 

parameter(s)

UV properties, exposure time 
using a motorized stage, 
exposure intensity using a 

mask or filterα

Ultraviolet (UV) (or photo)-
irradiation

Refs

Cell type(s) 
investigated 

(if any)b
Bioactive or model 
factors used (if any)
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Table 3.3 (contd). Methods to create surface chemistry gradients on  two-dimensional substrates including functional group gradients and oligomers/polymer-grafted surfaces

Grafted species Substrate

Final graded 
functionality/surface 

characteristics
Thin film casting (using 
knife-edge flow coating) 
followed by annealing

Polymer solution composition, 
annealing temperature(s) and 

time, knife-substrate gap width, 
coating velocity and 

acceleration

PS-b-PMM Silicon wafer PS (function of film 
thickness)

Thickness, nanostructure - - 194,195

Annealing temperature(s) and 
timeδ

PLLA Silanized Si wafer Functionality of casted 
polymers

Crystallinity, nanoscale-
roughness

Fetal bovine serum Osteoblast-
like cells

196

(As mentioned above)δ PS Silicon wafer PS Thickness and temperature 
(orthogonal)** (others, e.g., 

roughness)

- - 204

Gradient mixing (with a 3-
syringe pump system) - 
Thin film casting - Melt 
annealing

Sample collection rate, 
annealing temperature(s) and 

time, knife-substrate gap width, 
coating velocityη

PDLLA & PLLA Glass Functionality of casted 
polymers

Material composition, 
crystallinity, stiffness, 

roughness

- Osteoblast-
like cells

197,200

Gradient mixing - Melt 
annealing (utilizing a 
temperaure gradient)

(As mentioned above)δ,η (PDLLA & PCL)/ (PS & 
PVME)/ (PLGA & PCL)

Glass, silicon 
wafer

" Material composition and 
temperature (orthogonal)** 

(others, e.g., Chemistry, 
microstructure, crystallinity, 
roughness, hydrophillicity, 
stiffness, degradation rate)

- Osteoblast-
like cells, 
VSMCs

198,199, 
201

UV (ozonolysis) treatment - 
Thin film casting -annealing

(As mentioned above)α,δ PS-b-PMM with an 
underlying oxidized 

chlorosilane monolayer

Silicon wafer (PS or PMM) (function of 
surface energy)

Surface energy and 
thickness (orthogonal)** 

(others, e.g., microstructure)

- - 202

Electrostatic interaction 
(Continuous immersion of a 
charged substrate into a 
suspension of nanoparticles 
carrying the opposite 
charge)

Immersion rate/colloidal 
solution filling rate

anionic nanospheres   
(silica, gold, silver)

Poly(ethylene 
imine) coated Si 

wafer, Glass slide 
modified with 

cationic moeties

PLL-g-PEG-RGD coated 
nanospheres/protein 

conjugated nanospheres

Nanoparticle density 
gradient, nanostructure, 
nanoscale-roughness, 

protein gradient

Bovine serum 
almbumin, ephrin-

A5, ephrin B1

Osteoblasts, 
hippocampal 

cells

190,191

Electrostatic interaction 
(Continuous immersion of a 
metal oxide substrate into a 
solution of polycationic 
polymer)

Immersion rate PLL-g-PEG TiO2/Nb2O5 Functionality of grafted 
polymer, surface adsorbed 

protein

Polymer graft density, 
thicknesss, adsorbed or 

conjugated protein surface 
density

Human serum 
albumin, fibrinogen, 
IgG, blood serum 
and blood plasma

- 189

aAA: Acrylic acid, BP: Benzophenone, DMAPAA: N,N-Dimethyl aminopropyl acrylamide, EBPDMA: Ethoxylated bis-dimethacrylate, MMA: Methacrylic acid, MAPC: ω-methacryloyloxyalkyl 
phosphorylcholine, NaSS: Sodium p-styrene sulfonate, PAA: poly(acrylamide), PAAcid: Poly(acrylic acid), PCL: Poly(ε-caprolactone), PDLLA: Poly(D,L-lactic acid), PDMAEMA: 
Poly(dimethyl aminoethyl methacrylate), PDMS: Polydimethylsiloxane, PE: Polyethylene, PEO: Polyethylene oxide; PEO-MA: Polyethylene oxide-monomethacrylate, PHEMA: 
Poly(2-hydroxy ethyl methacrylate), PLGA: Poly(lactic-co-glycolic acid), PLL-g-PEG: Poly(L-lysine)-graft-poly(ethylene glycol), PLLA: Poly(L-lactic acid), PMM: Poly(methyl methacrylate),
 ppAA: Plasma polymerized acrylic acid, ppAAm: Plasma polymerized allylamine, ppHex: Plasma polymerized hexane, PS: polystyrene, PS-b-PMM: Polystyrene-b-poly(methyl methacrylate), 
PTFE: Poly(tetrafluoro ethylene), PVC: Poly(vinyl carbonate), PVME: Poly(vinyl methyl ether), RGD: (arginine-glycine-aspartic acid), SAM: Self assembled monolayer, SBDC: N,N-(diethyl-
aminodithicarbamoylbenzyl(tri-methoxy)silane), TEG: Tetraethylene glycol, TEGDMA: Triethylene glycol dimethacrylate 
bCHO: Chinese hamster ovary, PC-12: Pheochromocytoma, VSMCs: Vascular smooth muscle cells
cATRP: Atom transfer radical polymerization, NMRP: Nitroxide mediated radical polymerization

Thin film casting followed 
by annealing (utilizing a 
temperaure gradient)

Bioactive or model 
factors used (if any)

Cell type(s) 
investigated 

(if any)b RefsMethod
Possible gradient controlling 

parameter(s)

Materialsa 

Gradient type(s) 
characterized
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Table 3.4. Gradient-based approaches highlighting current trends of application in implant desig

Application
Gradient type (transition 

type) Fabrication method
Geometry - Gradient 

direction
Implant/coating 
thickness scale

Thickness scale of 
the gradient region 
or number of step 

transitions a Materials used b Ref
Differential impregnation - heat sintering Cylindrical - axial ≥ mm 1 transition HA and a cellulosic 

sponge
221

Dip casting - vacuum impregnation - 
stiching/press fitting 

Cylindrical - radial ≥ mm 1 transition HA/TCP and 
polymeric foams 209

Multiple slip-casting - heat sintering Cylindrical - radial ≥ mm 1 transition HA, PVC and Li3PO4 222
Multiple tape-casting - sintering - heat induced

removal of porogens
Bar or disc - Axial ≥ mm 4 transitions HA, PBMA 223

Graded orthopaedic 
replacement to reduce 
stress-shielding

Porosity and stiffness    
(step gradients)

Liquid phase sintering Bar - longitudinal ≥ mm 2 transitions Ti, Si powder 220

Irradiation (low energy electron beam) Finished acetabular 
liner - radial

≥ mm mm UHMWPE 218

Melt-irradiation (low energy electron beam) Hemispherical - radial ≥ mm mm UHMWPE 217

Material composition 
[diffusion-based IPN c] 
(continuous gradient)

Swelling at elevated temperature with 
ultrasonics

- > monolayer - UHMWPE, PLL 219

Plasma spray - 660 μm (coating 
thickness)

3 Transitions HA, Ti-6Al-4V, 
TCP/TiO2

212

Plasma spray - - 3 Transitions HA, Ti 211
Material composition 

(continuous gradients)
Plasma spray - 100 μm 40 μm HA, Ti 207

Bioceramic-polymer 
based skull implant 
(e.g., calvarial defect 
repair)

Material composition and 
porosity               

(Step gradients)

Hot pressing - gas foaming Custom (CAD/CAM 
assisted)

~ cm 4 transitions PLA, CaCO3, 
Ca3(PO4)2

224

Bioceramic-polymer 
intervertebral disc 
prosthesis

Material composition   
(continuous gradient)

Centrifugation Cylindrical - radial ≥ mm across the sample 
(100%)

HA, polycarbonate-
urethane

225

Polymeric coatings on 
metallic implants

Material composition (step
gradients)

Dip coating - 1 mm (coating 
thickness)

2 transitions Ti, PLA, HA, CaCO3 213

Material composition  
(Sodium titanate and 

apatite)          (Continuous
gradient)

Sodium hydroxide treatment - heat treatment - ≥ mm Nano scale Ti-6Al-4V, Sodium 
titanate

214

Material composition 
(apatite)                   (step 

gradient)

Sol-gel and slurry dip coating - drying and 
sintering

- < 100 μm 3 transitions ZrO2, HA, Fluorapatite 215

Degree of oxidation 
(porous outer layer- dense

inner layer)       
(Continuous gradient)

Electrochemical oxidation (Pre-anodic 
oxidation - Micro-arc oxidation)

- 16 μm (coating 
thickness)

< 1 μm (nano scale) Ti, TiO2 216

Material composition (step
and continuous gradient)

Sedimentation/Powder packing - sintering 
(furnace/high frequency induction 
heating/spark plasma sintering)

Cylindrical - axial ≥ mm (see the articles for 
details)

Ti, HA (and others) 227,228

Material composition (step
gradients)

Powder packing - hot isotactic pressing Bar ≥ cm 9 transitions Ti, Ni 226

a For continuous gradient approaches, % thickness of the gradient region compared to the overall thickness of the structure is indicated. To elilminate/reduce interfacial stresses that 
may cause delamination, a higher % value of the thickness of the gradient region compared to the overall thickness of the implant/coating can be selected. However, one must also take the 
envisioned application into consideration. Some of the studies utilized step gradients, where dual/multiple layers were present having sharp (discontinuous) interfaces in between. The 
diffusive effects may have led to a blurred region at the interface; however, we do not treat it as a continuous gradient unless measured. Studies, where multi-layered structures were 
created and the overall gradient region comprised of several step transitions that spanned the entire implant/coating, are marked by the number of such transitions.
b HA: Hydroxyapatite, PBMA: Poly(butylmethacrylate), PLA: poly(lactic acid), PVC: Polyvinyl polyacrylate, TCP: Tricalcium phosphate, UHMWPE: Ultra high molecular weight polyethylene
c IPN: Inter-penetrating network

As a fast-screening tool 
for biocompatibility 
assessment of the 
metallic implants

Gradient surface 
treatment of metallic 
implant to improve 
biocompatibility/osteoco
nductivity

Bioceramic materials 
with bimodal pore 
structure for bone 
replacement 

Porosity and pore size    
(step gradients)

Cross-linking density 
(continuous gradients)

Bioceramic coatings on 
metallic implants

UHMWPE wear 
resistance (for total joint
arthroplasty, etc.)

Material composition (step
gradients)
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Table 3.5. Example studies involving concentration/surface density gradients of peptides, proteins or other model factors for tissue engineering

Profile Soluble/ Immobilized
CAMs/Peptides
RGD-containing 
peptides

2-Dd Linear Immobilized (covalently 
bound)

Poly(acrylic acid), 
Poly(methacrylic acid) 
(photoiniferter SAM), 
Poly(ethylene glycol)

Acryloyl derivatization to 
induce photopolymerization

Controlled cell adhesion, 
alignment, and motility 

(temporally and spatially)

Fibroblasts, endothelial 
cells

140,163, 
251,253

3-D Non-linear Soluble Collagen or fibrin gel - Styding chemotaxis Fibroblasts 254
IKVAV 2-D Linear Immobilized (covalently 

bound)
Polystyrene substrate Benzophenone 

derivatization to induce 
photopolymerization

Probing axon guidance DRG neurons 261

2-D Linear Immobilized (Adsorbed 
or covalently bound)

Glass/Poly-L-Lysine coated-
substrate, Carboxy-
terminated alkathiol 
monolayer on gold

- Probing neurnal 
development and axon 

guidance, Cell migration

Hippocampal neurons, 
Intestinal IEC-6 cells

244,246, 
266

2-D Sigmoidal Immobilized Polyethylene terephthalate Carbodiimide chemistry Probing axon guidance PC12 cells 144

3-D Quadratic Immobilized (covalently 
bound)

Agarose SANPAH (hetero 
bifunctional crosslinker) 
Photoreactive perfluoro 

arylazide group

Improved neurite ougrowth 
and nerve regeneration in 3-

D environment

DRG neurons, sciatic 
nerve regeneration (in 

vivo)

245,250

Fibronectin 2-D (Function of 
alkyl chain 

length)/ 
Sigmoidal

Immobilized (adsorbed) ω-methacryloyloxyalkyl 
phosphorylcholine grafted 
PE/ Poly(2-hydroxyethyl 

methacrylate)

- Manipulating cell adhesion 
and spreading

Fibroblasts 167,176

Growth factors
EGF 2-D Custom Immobilized (covalently 

bound)
Azidophenyl-derivatized 
poly(allylamine)-coated 

polystyrene 

Azidophenyl derivatization Concentration dependent 
effects of immobilized 
biosignals on cellular 

mobility and localization, 
artificial juxtracrine 

simulation

Chinese hamster ovary 
cells

255

bFGF 2-D* Linear Immobilized (covalently 
bound)

Poly(ethylene glycol) Acryloyl derivatization to 
induce photopolymerization

Directed cellular migration 
and alignment

VSMCs 252

NGF 3-D Custom/Line
ar

Soluble Collagen gel/Agarose gel - Axonal guidance, studying 
chemotaxis and 
morphogenesis

DRG neurons/PC12 cells 242,249

Linear Immobilized (entrapped) Poly(2-hydroxyethyl 
methacrylate)

- Axonal guidance PC12 cells 247

NGF and NT3 3-D Linear Soluble Agarose - Axonal guidance DRG neurons 243
3-D Linear Immobilized (entrapped) Poly(2-hydroxyethyl 

methacrylate)
- Axonal guidance DRG neurons 248

Model proteins and others
Human serum 
albumin/FMLP/ AGG

2-D Non-
linear/Linear

/Linear

Soluble Culture medium - Studying chemotaxis Polymorphouclear 
leukocytes/Neutrophils

256,258, 
260

cAMP 3-D Linear Soluble Agarose gel - Studying chemotaxis Dictyostelium 
discoideumAmoebae

259

ZAS 3-D Linear Soluble Agarose gel - Studying chemotaxis Leukocytes 257
Casein-b 3-D Custom Soluble Collagen gel - Axonal guidance, studying 

chemotaxis and 
morphogenesis

- 263

HRP 3-D Linear Immobilized Silk fibroin Carbodiimide chemistry Chemotaxis, tissue 
engineering, biosensors

- 271

R-phycoerythrin 2-D Linear Immobilized Polystyrene substrate Carbodiimide chemistry, 
benzophenone 
derivatization

Probing biological 
responses

- 165

Fluorescent dye, 
antigens and/or 
antibodies

2-D Custom Soluble/surface 
adsorbed

PDMS - Chemotaxis, haptotaxis, 
etching, nucleation and 

growth, Marangoni effects, 
antibody-antigen binding

267,272

a bFGF: Basic fibroblast growth factor, cAMP: 3'-5'-cyclic adenosine monophosphate, CAMs: Cell adhesion molecules, EGF: Epidermal growth factor, HRP: Horseradish peroxidase, NGF:  
Nerve growth factor, NT-3: Neurotrophin-3, RGD: Arginine-glycine-aspartic acid, SANPAH: Sulfosuccinimidyl-6-[4'-azido-2'-nitrophenylamino] hexanoate, ZAS: Zymosan activated serum
b PDMS: Polydimethylsiloxane, PE: Polyethylene, SAM: Self-assembled monolayer
c DRG: Dorsal root ganglion, PC12: Pheochromocytoma, VSMCs: Vascular smooth muscle cells, 
d Some of these studies (e.g., Delong et al.  (156)) employed the techniques that were capable of generating gradients of immobilized factors in 3-D. 
However, cellular interactions were monitored on the surfaces of the gels (i.e., in 2-D).

Laminin

ApplicationFactorsa 2-D/3-D Ref

Gradient type
Materials used to incorporate 

the factorb Cell type investigatedcNotes
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Table 3.6. Methods to create surface density/concentration gradients of peptides and proteins for tissue engineering applications

Technique
Process driving phenomenon 

(-a) Additional processing
Soluble factor gradients

Boyden/Zigmond/Dunn 
Chambers

Diffusion (in solution) - Time Macroscale 2-Da Limited 256, 258, 260

Single source/chamber (of 
bioactive factor) approaches

Diffusion (in macroporous 
gels)

- Time Macroscale 3-D Limited 254, 264

Diffusion (in macroporous 
gel)

- Time Macroscale 3-D Limited 242, 243, 257, 259

Monomer flow, diffusion (in 
solution)

Microfluidicsb Channel design, monomer 
flow

Micro to macro-
scale

2-D Yes 265, 267, 268

Microprinting Concevtion and diffusion (in 
macroporous gels)

Contact-less controlled microdispensing Droplet ejection rate, stage 
translation rate

Macroscale 2-D or 3-D Yes 249, 263

Soluble factor gradients (controlled release approach) b

Phosphatidyl choline-based 
lipid microtubules (LMTs) in 
gels

LMT loading in gels Gelation by cooling LMT loading profile (the step 
size)

Macro-scale 3-D Limited 250

Microsphere-based scaffolds Matrix preparation using 
microspheres loaded with the 

active factors

Melding the microspheres (using heat-
sintering, ethanol-melding or 
dichloromethane treatment)

Microsphere size, polymer 
properties (degradation, 
molecular weight, etc)

Macro-scale 3-D Limited 269, 270

Immobilized factor gradients
Diffusion (in macroporous 

scaffolds) (covalently bound)
EDC-NHS chemistry - Macroscale 3-D Limited 271

Diffusion (adsorbtion on 
surface)

Capillary method - Macroscale 2-D Limited 246

Dual source/chamber 
approaches

Diffusion (in gels) Hetero-bifunctional crosslinker - Micro to macro-
scale

3-D Limited 245, 250

Convection (in macroporous 
scaffolds)

EDC-NHS chemistry Suction rate Macroscale 3-D Yes 271

Photopolymerization (factor entrapped) Monomer flow rate Micro to macro-
scale

2-D or 3-D Yes 247, 248

Photopolymerization (factor covalently 
attached)

Monomer flow rate Micro to macro-
scale

2-D or 3-D Yes 251-253

Monomer flow, diffusion Microfluidics, photopolymerization (factor
covalently attached)/factor adsorbed

Channel design, monomer 
flow

Micro to macro-
scale

2-D Yes 140, 244, 266

Capillary force-driven flow of 
factor solution

Monomer flow, diffusion 
(adsorption on surface)

Microfluidics (factor adsorbed) Capillary forces, channel 
geometry, substrate affinity 

for the factor

Micro to macro-
scale

2-D Limited 272

Differential photo-exposure 
(photomask)

Protein conjuagtion to a photoreactive 
species

Mask pattern Micro to macro-
scale

2-D Yes 255

Controlled-time exposure Gradients of protein conjuagted to a 
photoreactive species

Photo exposure time 
controlled using a motorized 

stage

Micro to macro-
scale

2-D Yes 165, 261

polymer graft density/thickness gradient 
(using motorized stage/photomask or 

differential dipping in an initiator solution 
(ATRP)) 

Photo exposure time, mask 
pattern and/or initiator 

exposure time (filling/removal 
rate)

Micro to macro-
scale

2-D Yes 144, 176, 163, 274 

Computerized printing (inkjet 
printing)

- Pattern design, substrate and 
solution properties

Macroscale 2-D Yes 273

a Solution-based gradients can be generated in 3-D. However, cells cannot be kept suspened and eventually attach to the substratum
b Some approaches of gradient generation have potential to provide spatial as well as temporal control; such as, microfluidic-based and controlled release approaches
ATRP: Atom transfer radical polymerization, EDC: ethyl(dimethylaminopropyl) carbodiimide, NHS: N-hydroxysuccinimide

Primary gradient-shape 
controlling parameter(s)

Fabrication 

Refs
Gradient-shape 

control?2-D/3-DGradient-scale 

Grafting/Micropatterning

Dual/multi - source/chamber 
approaches

Convection (monomer flow)

Single source/chamber 
approaches

Pump-/gravity-driven flow of 
factor solution

234



Table 4.1. Regional and directional tensile stiffness of the porcine condylar cartilagea   
          

Anteroposterior (AP) Direction Mediolateral (ML) Direction Modulus        
(MPa) Medial Central Lateral Overall AP Anterior Superior Posterior Overall ML 

AP vs ML   
p valued 

Young'sb 21.7 ± 4.4 29 ± 13 22 ± 11 24 ± 12 11.3 ± 7.9 8.7 ± 3.7 10.2 ± 4.5 10.1 ± 5.5 <0.0001 
Instantaneousc 10.4 ± 6.4 14.3 ± 5.4 11.7 ± 6.5 12.2 ± 6.0 6.5 ± 5.2 6.1 ± 2.6 6.9 ± 3.0 6.5 ± 3.6 0.003 

Relaxed 6.2 ± 4.4 8.8 ± 4.1 7.3 ± 4.6 7.4 ± 4.3 3.9 ± 3.5 3.6 ± 2.0 3.9 ± 1.9 3.8 ± 2.5 0.0009 
          

a Errors are standard deviations, n=7. 
b Slope of the stress-strain curve generated from continuous pull (6 mm/min). 
c Obtained from the second order generalized Kelvin model. 
d Significance of the results between the two directions tested. Note that no significant differences were observed between regions in a given direction.
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Table 4.2. Regional and directional time constants for the porcine condylar cartilagea 
 

 Anteroposterior (AP) Direction Mediolateral (ML) Direction Time constants      
(min)  Medial Central Lateral Overall AP Anterior  Superior Posterior Overall ML

Kelvin model τε 43.3 ± 8.4 37.3 ± 8.4 47 ± 11 42.6 ± 9.7 44 ± 12 43 ± 13 42 ± 19 43 ± 14 

 τσ 51.8 ± 8.4 43 ± 10 57 ± 13 50 ± 12 53 ± 12 53 ± 16 53 ± 23 53 ± 17 

2nd order  τε1 38.5 ± 5.8 32.4 ± 8.2 42.5 ± 9.6 37.8 ± 8.7 38 ± 12 40 ± 13 39 ± 19 39 ± 14 

generalized Kelvin  τσ1 49.3 ± 5.7 40 ± 11 54 ± 13 48 ± 11 49 ± 12 52 ± 17 53 ± 22 52 ± 17 

 τε2 0.84 ± 0.31 0.72 ± 0.16 1.12 ± 0.43 0.89 ± 0.35 0.80 ± 0.45 0.90 ± 0.31 0.86 ± 0.39 0.85 ± 0.37 

 τσ2 1.25 ± 0.45 1.04 ± 0.21 1.61 ± 0.62 1.30 ± 0.50 1.18 ± 0.49 1.29 ± 0.29 1.38 ± 0.91 1.28 ± 0.59 
a τε and τσ are stress relaxation and creep time constants, respectively.  Errors are standard deviations, n=7. 
Italicized time constants correspond to the slow relaxation phase. 
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Table 5.1. Previous studies of the condylar cartilage under compression 

Group Region Load profile Modulus of elasticity b Additional property b Equilibrium Species Method 
Step stress (MPa) Frequency (Hz) (MPa) modulus? (Age)

Creep time constant (s) 
Kuboki et al. , 1997 a [8] Anterior Sustained 0.51 - 2.684 125.5 ± 23.3 Yes Porcine Indentation

1.02 3.591 112.5 ± 33.0 (7 months)
1.53 4.751 104.0 ± 28.8

Intermittent 0.51 0.33 c 3.355 146.5 ± 35.2
1.02 5 134.4 ± 15.0
1.53 6.623 139.8 ± 25.0

Poisson's ratio
Hu et al. , 2001 [43] Anteromedial Dynamic - 14 2.34 ± 0.26 0.46 ± 0.05 No Rabbit Atomic Force

Anterolateral 1.51 0.41 (6 weeks) Microscopy
Posteromedial 1.11 ± 0.07 0.38
Posterolateral 0.95 ± 0.06 0.31 ± 0.05

Patel and Mao, 2003 [44] Anteromedial Dynamic - 14 0.95 ± 0.15 - No Rabbit Atomic Force
Posterolateral 1.02 ± 0.22 - (7 days) Microscopy

Complex modulus e Storage & loss moduli e

Tanaka et al. , 2006 [45] Anteromedial Dynamic - 0.01 - 10 d 1.40 ± 0.39 1.36 ± 0.38, 0.34 ± 0.07 No Porcine Indentation
Anterolateral 1.15 ± 0.33 1.12 ± 0.32, 0.24 ± 0.07 (6-9 months)
Posteromedial 0.81 ± 0.21 0.79 ± 0.21, 0.16 ± 0.04
Posterolateral 0.73 ± 0.26 0.72 ± 0.25, 0.16 ± 0.05

a The results tabulated here are obtained by comparining the function curve-fitted by Kuboki et al. , i.e. A(1-exp(-t/ζ)), to the Kelvin model having the assumption that µ1 << µ0. 
  The equilibrium modulus of elasticity reported has been calculated using the mean values of A.
b Mean ± standard deviation
c Intermittent compression of 1 second duration at 2 second intervals
d Frequency sweep
e Numerical values provided via personal communication, representing a frequency of 1 Hz

Testing parameters
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Table 5.2. Viscoelastic compressive properties of the porcine condylar cartilage a

Elastic c Instantaneous d Relaxed
τ ε τ σ τ ε1 τ σ1 τε2 τσ2

Anterior 826 ± 323 238 ± 132 9.4 ± 3.5 11.8 ± 1.1 37.0 ± 6.5 8.4 ± 1.4 49.1 ± 9.7 0.4 ± 0.1 6.6 ± 1.5
Medial 1297 ± 384 487 ± 162 16.1 ± 8.5 11.5 ± 1.0 39.4 ± 5.6 7.4 ± 1.1 54.8 ± 9.3 0.4 ± 0.2 10.0 ± 2.0
Central 1316 ± 229 526 ± 122 16.4 ± 5.7 10.2 ± 2.2 34.2 ± 7.8 6.8 ± 1.7 50.7 ± 8.2 0.4 ± 0.1 10.9 ± 2.6
Lateral 1411 ± 238 555 ± 150 16.0 ± 2.3 11.1 ± 1.8 33.6 ± 4.8 7.0 ± 1.5 46.2 ± 6.3 0.4 ± 0.1 11.2 ± 3.2

Posterior 1526 ± 400 519 ± 186 22.5 ± 7.5 12.5 ± 1.3 35.9 ± 4.6 8.8 ± 1.4 46.1 ± 5.5 0.4 ± 0.1 7.4 ± 1.9

a Mean ± S.D., n = 9, except for medial and lateral regions with n = 8.
b τε and τσ are stress relaxation and creep time constants, respectively, and subscripts 1 and 2 refer to slow and rapid relaxation, respectively.
c Slope of the linear region of the stress-strain curve generated from continuous pull.
d Obtained from the second order generalized Kelvin model.
Italicized time constants correspond to the slow relaxation phase.

                                               Time constants (min) b                                                              

Kelvin 2nd order generalized Kelvin
                    Modulus (kPa)                     
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Table 5.3. Statistical evaluation of the differences in regional compressive properties of the porcine condylar cartilage (p values) a

Elastic Instantaneous Relaxed
τ ε τ σ

c τ ε1 τ σ1
c τε2

c τσ2

Anterior vs. Medial 0.04 0.01 0.2 1.0 - 0.6 - - 0.04
Anterior vs. Central 0.02 0.002 0.1 0.2 - 0.1 - - 0.003
Anterior vs. Lateral 0.005 0.001 0.2 0.9 - 0.3 - - 0.002
Anterior vs. Posterior <0.0005 0.003 <0.0005 0.9 - 1.0 - - 1.0
Medial vs. Central 1.0 1.0 1.0 0.4 - 0.9 - - 0.9
Medial vs. Lateral 1.0 0.9 1.0 1.0 - 1.0 - - 0.8
Central vs. Lateral 1.0 1.0 1.0 0.7 - 1.0 - - 1.0
Medial vs. Posterior 0.6 1.0 0.2 0.7 - 0.3 - - 0.2
Central vs. Posterior 0.6 1.0 0.2 0.03 - 0.05 - - 0.02
Lateral vs. Posterior 0.9 1.0 0.2 0.4 - 0.1 - - 0.01

a Bold indicates statistically significance differences. n = 9, except for medial and lateral regions with n = 8. 
b τε and τσ are stress relaxation and creep time constants, respectively.
c Significance level of p<0.05 was not detected by ANOVA.

2nd order generalized KelvinKelvinComparison
                    Modulus                                                                   Time constantsb                                                               
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Table 6.1: Comparison of Glass Transition Temperatures (Tg) using 
Differential Scanning Calorimetry a 
 

 Tg (°C) 

Pure PLGA 50:50 41.62 ± 0.37 
Microspheres 41.04 ± 0.17 
Scaffold b 33.98 ± 0.09 
a Errors are standard deviations, n = 3. 
b Prepared by using 50 min ethanol soak. 

 

240



Table 6.2: Comparison of different evaluation methods employed to evaluate 
the porosity of the scaffolds a 
 

Evaluation Method % Porosity b 
MicroCT 3-D reconstruction 41.1 ± 2.1 
MicroCT image analysis using ImageJ 41.5 ± 4.9 
Theoretical porosity 44.9 ± 1.9 
a Scaffolds prepared using 50 min ethanol soak-time. 
b Errors are standard deviations, n = 4. 
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Table 8.1. Biochemical assay results following 3 wk cell culture a 
 

Scaffold Group Number of cells GAG content (µg) Hydroxyproline 
content (µg) 

Chondrocytes 5.8 ± 1.0 × 104 12.8 ± 7.1 1.8 ± 0.8 
HUCMSCs 5.9 ± 1.0 × 104 2.8 ± 1.0 1.8 ± 0.4 

 
 
Mean ± S.D.; n = 4, except for cell number for the chondrocyte-seeded group with n = 3. 
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