
 

Isatin Derivatives as Inhibitors of Microtubule 

Assembly 

By 

 

Karen L. Beckman 

B.S., North Dakota State University, 2005 

 

Submitted to the Department of Medicinal Chemistry and the 

Faculty of the Graduate School of The University of Kansas in 

partial fulfillment of the requirements for the degree of Masters of 

Science.      

Thesis Committee:    
     

 ______________________________ 
       (Chairperson) 

        
     

 ______________________________ 
           

  ______________________________ 
 

Date defended: ___________________________  
 

 



 -ii- 

The Dissertation Thesis Committee for Karen L. Beckman certifies that this is 

the approved version of the following dissertation: 

 

 

 

 

 

Isatin Derivatives as Inhibitors of Microtubule 

Assembly 

 

 

 

Thesis Committee: 
        

      
 ______________________________ 

       (Chairperson) 
        

      
 ______________________________ 

        
      

 ______________________________ 
 

    Date defended: ________________________ 



 -iii- 

Abstract 
 

 This thesis describes the rationale, design, and syntheses of 

derivatives of isatin (1-H-indole-2,3-dione).  Isatin was identified, during a high 

throughput screen of 10,000 compounds, as a potential scaffold for 

microtubule-destabilizing agents. Additional screening of purchased isatin 

derivatives gave rise to four substitution patterns of interest, 7-arylisatins, 5-

methyl-N-alkyl/aryl isatins, 5-chloro-N-alkyl/aryl isatins and 5,7-dichloro-N-

alkylated isatins. Series of compounds with the substitutions of interest were 

synthesized to further probe the structure-activity relationship (SAR) of isatin. 

 The SAR study showed that substitutions in the 5- and 7- positions of 

the aromatic ring combined with N-substitutions increased the disruption of 

microtubule assembly. The 7-phenylisatin and N-arylisatin derivatives were 

inactive in the biological assay. Several of the 5-chloro-N-alkylisatins and the 

5,7-dichloro-N-alkylisatins were cytotoxic in both MCF-7 and NCI/ADR-RES 

cell lines. 5,7-Dichloro-N-(4-bromobenzyl)isatin was the most active 

compound against MCF-7 cells, IC50 = 2.1 µM. To date the most cytotoxic 

compound tested is 5-methyl-N-(1-propyl)isatin, with an IC50 value of 52 nM 

(microtubule assembly IC50 = 2.6 µM) in the drug resistant cancer cell line 

NCI/ADR-RES.  
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Introduction and Background 

 

 Microtubules are basic components of cell structure, which take part in 

a wide number of cellular functions including, cell movement, vesicle 

transport, and chromosome segregation during mitosis.1 These functions are 

performed in conjunction with the dynamic restructuring of the microtubule 

cytoskeleton, i.e. lengthening and shortening of individual microtubules, tread-

milling of microtubules through the cell, or complete disassembly and 

rebuilding of microtubule arrays.2 

 The dynamic properties of microtubules were apparent to early 

cytologists, who discovered their importance in the formation of mitotic 

spindles as early as 1928.3 Advancements in visualization techniques, such 

as cryoelectron microscopy, have provided detailed structures of 

microtubules. The knowledge gained from the structure of microtubules has 

shed light on the dynamic nature of microtubules.4  

 Microtubules are noncovalent polymers of the protein tubulin. The 

subunit of a microtubule, a heterodimer of α- and β- tubulin, was first purified 

using its affinity for the natural product, colchicine.5 The α- and β- tubulin 

monomers, are approximately 50% homologous at the amino acid level.6 The 

αβ-heterodimers of tubulin polymerize into protofilaments in a head-to-tail 

association.7 In vivo, 13 protofilaments laterally associate in parallel to form a 



 -2- 

hollow, helical microtubule roughly 25 nm wide.8 The inside of the hollow 

microtubule is referred to as the lumen. The number of protofilaments 

associated in a given microtubule is subject to numerous factors, including the 

isoforms of tubulin involved.9 The head-to-tail association of αβ -heterodimers 

gives rise to polarity in the microtubule structure. The faster growing end of 

the microtubule is referred to as the plus end and the slower growing end is 

the minus end. The consensus is that in each protofilament the αβ-

heterodimers is orientated with β-tubulin exposed at the plus end and α-

tubulin exposed at the minus end.10-12 This polarity is intrinsic to the different 

polymerization rates at the two ends of the microtubule (Figure 1). 

Figure 1: Microtubule Structure 
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 Tubulin heterodimers co-purify with two moles of guanine nucleotide 

per mole of αβ dimer, with each monomer binding one guanine nucleotide 

(GTP).5 α-Tubulin contains a non-exchangeable GTP-binding site known as 

the N-site. β-Tubulin, in turn, contains an exchangeable GTP-binding site 

known as the E-site. During polymerization, GTP bound to the E-site is 

hydrolyzed upon addition of a dimer to the microtubule end, at which point it 

becomes non-exchangeable.13 

 The biological functions of microtubules in all cells are determined and 

regulated in large part by their polymerization dynamics. It is important to 

emphasize that microtubules are not simple equilibrium polymers. 

Microtubules display two kinds of non-equilibrium dynamics. The first dynamic 

behavior of microtubules is called ‘dynamic instability’;14 the second is called 

‘tread-milling.’15  

 Dynamic instability is a process in which individual microtubule ends 

switch between phases of growth and shortening (Figure 2).14 Dynamic 

instability is characterized by four main variables: the rate of microtubule 

growth, the rate of shortening, the frequency of transition from the growth or 

paused state to shortening (this transition is called a ‘catastrophe’), and the 

frequency of transition from shortening to growth or pause (called a 

‘rescue’).16  
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Figure 2: Microtubule Dynamic Instability 
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 In the polymerization phase, GTP-tubulin subunits add to the end of a 

microtubule, forming a stabilizing GTP-cap allowing the polymer to grow. 

During or soon after polymerization, the tubulin subunits hydrolyze their 

bound GTP and subsequently release the hydrolyzed phosphate. This 

hydrolysis leads to a conformational change in the αβ-heterodimer, thus 

destabilizing the polymer. During the depolymerization phase, GDP-tubulin 
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subunits are released from the microtubule ends at a very rapid rate and 

subsequently GDP is subsequently exchanged for GTP (Figure 2 and 3). 

 

Figure 3: Role of GTP-GDP Exchange in Microtubule Dynamic 

Instability. 
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 The second dynamic behavior, treadmilling, is a net growth at one 

microtubule end and balanced net shortening at the opposite end.15,17 It 

involves the intrinsic flow of tubulin subunits from the plus end of the 

microtubule to the minus end and is created by differences in the critical 

subunit concentration at the opposite microtubule ends. Treadmilling has 

been implicated as an important phenomenon in mitosis during anaphase 

chromosome poleward movement.18 

 Compounds that affect microtubule dynamics, and subsequently 

mitosis, are particularly important in cancer chemotherapy.19 These agents 

are considered to be anti-mitotic as they halt the cell cycle at the G2/M-phase 

interface. Figure 4 depicts several well-known anti-mitotic agents.  

 

Figure 4: Structures of Anti-mitotic Agents. 
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 Microtubule anti-mitotic drugs are usually classified into two main 

groups: microtubule destabilizing and microtubule stabilizing. These drugs 

can be further classified based on the location of tubulin binding, as depicted 

in Table 1.20 Tubulin has three distinct binding sites: the taxol, colchicine, and 

vinblastine domains.  

 

Table 1: Classification of Anti-mitotic Agents 

 

Class

1

2

3

4

Compounds

Paclitaxel, Epothilones, 
Discodermolide, Eleutherobin

t-BCEU, T138067, Ottelione

Combretastatin A-4, 2-Methoxyestradiol,
NSC-639829, Mivobulin

Maytansine and Rhizoxine (competitive);
Macrocyclic polyethers, Peptides,
Despipeptides (non-competitive)

Mechanism

Microtubules hyperassembly and stabilization

Binding to Cys239

Microtubules destabilization, binding to the 
colchicine site

Microtubules destabilization, binding to the
vinblastine site

 

  

 The taxol binding pocket is lined by several hydrophobic residues and 

is situated on the luminal (inside) of the microtubule wall, roughly in the 

middle of the β monomer.21 The peeling apart of protofilaments in taxol-

stabilized microtubules is greatly inhibited; suggesting the mechanism by 

which taxol stabilizes microtubules is mainly through strengthening of the 
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lateral interactions between protofilaments.22 Other natural products that bind 

to the taxol binding site are the epothilones,23 discodermolide,24 and 

eleutherobin.25  

 Although not as well defined as the taxol-binding site, the colchicine 

and vinblastine binding domains primarily interact with the β monomer of 

tubulin.26-28 Binding at both of these sites leads to a disruption in microtubule 

polymerization. Combretastatin A-429 and 2-methoxyestradiol30 are examples 

of compounds that bind to the colchicine site. Compounds are found to bind in 

both competitive (maytansine and rhizoxine) and non-competitive (the 

halichondrins and despipeptides) manners with regard to the vinblastine 

site.30 

 Current clinically important anti-mitotic agents include, Taxol, Taxotere 

and the alkaloids vinblastine, and vincristine.16 Although some of these agents 

have shown clinical success, they display limitations of drug resistance and 

undesired side effects due to toxicity of the compounds; therefore, the 

development of additional microtubule inhibitors is an attractive avenue of 

exploration. To this end, we conducted a high-throughput screen (HTS) of 

10,000 compounds using a fluorescent microtubule assembly assay to 

identify potential inhibitors of microtubule polymerization.   

 Microtubule polymerization is typically determined as a measure of 

turbidity using a spectrophotometer. This method encounters limitations when 
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a high number of simultaneous determinations are desired. Microtiter plates, 

used in high throughput systems, have a much smaller path-length than the 

standard 1 cm absorption cell, and the signal is decreased accordingly.19 In 

contrast, the fluorescence signal can be much more sensitive and less prone 

to interference. 4’,6-Diamidino-2-phenylindole (DAPI), Figure 5, a DNA 

interculator, binds to dimeric and polymeric tubulin with differing affinities and 

thus has been useful in the development of HTS methods for microtubule 

polymerization.31  

 

Figure 5: Structure of DAPI 
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 Unlike other binders of tubulin, DAPI does not interfere with the binding 

of taxol or colchicine. Therefore, in the presence of microtubule stabilizing 

agents, an increase in fluorescence is observed; a decrease in fluorescence 

is observed in the presence of microtubule destabilizing agents. 

 The HTS identified sixty compounds displaying an inhibitory activity 

toward microtubule polymerization. Table 2 depicts the most active 
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compounds identified during the HTS. Within these compounds, 60% of the 

compounds contain the core scaffold isatin (1-H-indole-2, 3-dione); the most 

active compound being 5-methyl-N-(1-propyl)isatin with an IC5o value of 52.0 

µg/mL.   

Table 2: Most Active High Throughput Screen Compounds 

 

N
H
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O

O IC50 158 µg/mL

N

Me
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O

O

IC50 180 µg/mL

Me
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IC50 189 µg/mL
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IC50 144 µg/mL
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 Isatin, a proposed oxidative metabolite of the amino acid tryptophan, 

(Figure 6) was first isolated in 1841 as a product from the oxidation of 

indigo.32 In nature, it is found in plants of the genus Isatis33 and Couroupita 

guianensis.34 A variety of substituted isatins are also found in nature such as 

the melosatin alkaloids (methoxy phenylpentyl isatins) obtained from the 

Caribbean tumorigenic plant Melochia tomentosa,35 as well as 6-(3’-

methylbuten-2’-yl)isatin isolated from the fungi Streptomyces albus.36 

Figure 6: Origins of Isatin 
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The most commonly used method for the preparation of isatin is the 

Sandmeyer procedure (Scheme 1).37 
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Scheme 1 
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This protocol involves the formation of an isonitrosoacetanilide from chloral-

hydrate and aniline, in the presence of hydroxylamine hydrochloride (Scheme 

2), followed by acid catalyzed cyclization to the isatin.38 

 

Scheme 2 
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Another frequently used method developed by Stolle39 involves the treatment 

of an aniline with oxalyl chloride followed by a Friedel-Crafts-type 

intramolecular acylation in the presence of a strong Lewis acid (Scheme 3). 

 

Scheme 3 
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 Since both of these methodologies require electrophilic attack on the 

aromatic ring, the presence of strong electron-withdrawing substitutes tends 

to inhibit the reaction. The Gassman40 procedure (Schemes 4 and 5) 

depends on the conversion of anilines into 3-(methylthio)oxindoles followed 

by oxidative removal of the methylthio group via chlorination and subsequent 

hydrolysis. The advantage of this procedure is that the method is compatible 

with the presence of both electron-withdrawing and electron-donating groups.  
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Scheme 4 
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Scheme 5 
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 These three common methodologies suffer from the lack of 

regioselectivity and meta-substituted anilines generally give rise to a mixture 

of 4- and 6- substituted isatins. This problem can be overcome using the 

directed ortho-metalation procedure (Scheme 6).41Although the directed 
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ortho-metalation method has advantages, it is not widely used in practice due 

to the sensitive reaction conditions and expense of the reagents when 

compared to the other methodologies. 

 

Scheme 6 
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 The isatin scaffold proves to be a privileged structure, with many of its 

derivatives possessing biological activities (Figure 7). Isatin displays CNS 

activity having been identified as an inhibitor of monoamine oxidase B (MAO 

B)42 as well as antibacterial and antiproliferative activity.43 Additional analogs 

have displayed inhibitory activity against eLF2 kinase activator,44 TNF-α45 

CDK2,46 and SARS protease.47 Schiff bases of the isatin scaffold have anti-

small pox48and GAL3 receptor antagonist capabilities.49 Radio-labeled isatins 

have also been used to visualize the inhibition of pro-apoptotic enzymes 

caspase 3 and 7.50 
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Figure 7: Biologically Active Isatins 
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Results and Discussion 

 

 In light of the wealth of biological activity of isatins and the HTS data, 

we ascertained that isatin would be a valuable lead scaffold upon which a 

structure-activity relationship (SAR) study could be conducted. To this end, a 

series of isatin derivatives were purchased from vendors and tested in both 

the microtubule assembly assay and cytotoxicity assays (cell lines: MCF-7 

and NCI/ADR-RES) (Table 3).  
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Table 3: Biological Activity of Purchased Compounds 

 

N
O

O

N
H

O

O

N
H

O

O

N
H

O

O

N
H

O

O

N
H

O

O

Me

Cl

Cl

Cl

Cl

Cl

Cl

Cl

MeO

IC50 2.6 µM
IC50/IC50(col): 0.5

IC50 12.3 µM
IC50/IC50(col): 2.5

IC50 33 µM
IC50/IC50(col): 6.6

IC50 >100 µM
IC50/IC50(col): 20

IC50 >100 µM
IC50/IC50(col): 20

IC50 ~100 µM
IC50/IC50(col): ~20

IC50 0.052 µM

IC50 6 µM

IC50 17 µM

IC50 30 µM

IC50 8 µM

IC50 42 µM

NCI/ADR-RESaMicrotubule Assay

IC50 9 µM

IC50 6 µM

IC50 11 µM

IC50 20 µM

IC50 24 µM

IC50 22 µM

MCF-7

a NCI/ADR-RES formerly known as MCF7-ADR

MeO

MeO
MeO O

OMe

O
Me

NH
IC50 5.0 µM
IC50/IC50(col): 1.0

IC50 1 µMIC50 0.005 µM

N
H

O

O
Me

Me

IC50 ~100 µM
IC50/IC50(col): ~20

IC50 >100 µMIC50 >100 µM
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 The initial biological screens identified four potential lead compounds 

with promising activity against the drug resistant cancer cell line NCI/ADR-

RES (Scheme 7). 

 

Scheme 7 
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 These screens also showed that substitutions in the 5 and 7 positions 

of the aromatic ring combined with N-substitutions increased in activity the 

microtubule assembly assay.  5-Methyl-N-(1-propyl)isatin was the most active 

compound in this series with an IC50 value for NCI/ADR-RES (0.052 µM) in 

the sub-micromolar range as well as low micromolar IC50 values in the MCF-7 

cell line and microtubule assembly assay, 9 µM, and 2.6 µM, respectively. 

Additionally, 5-chloroisatin showed activity in both MCF-7 (IC50 11 µM) and 

NCI/ADR-RES cell lines (IC50 17 µM); although it was less active in the 

microtubule assembly assay (IC50 33 µM). 

 Interestingly, 4,7-dichloroisatin did not inhibit tubulin polymerization but 

displayed a cytotoxic effect in the low micromolar range making it a potential 
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lead compound. There are two main synthetic challenges associated with 

synthesizing 4,7-disubstituted isatins: addition of bulk in the ortho positions 

leading to sluggish ring closure and electron-withdrawing substitutes also 

leading to sluggish electrophilic attack on the aromatic ring. Further evaluation 

of the biological data showed that 4,5-dichloroisatin did not affect tubulin 

polymerization and showed reduced cytotoxicity against NCI/ADR-RES, while 

the activity of 5,7-dichloroisatin was similar to the 4,7-derivative. Therefore it 

could be postulated that the cytotoxicity of the 4,7-dichloroisatin is likely the 

result of substitution in position seven. Based on these evaluations, 4,7-

dichloroisatin was removed as a new lead compound in favor of the 7-

monosubstituted isatin derivatives. These results suggested four substitution 

patterns of interest: 7-substituted isatins, 5-alkyl-N-alkyl/aryl isatins, 5-chloro-

N-alkyl/aryl isatins and 5,7-dichloro-N-alkylated isatins (Scheme 8). 

 

Scheme 8 
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7-Phenylisatins.  In order to probe the SAR of the isatin scaffold, a series of 

7-aryl substituted isatins were synthesized using a palladium-catalyzed cross-

coupling reaction described by Lisowski and coworkers (Scheme 9).51 

 

Scheme 9 
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 First 2-bromoaniline was reacted under acidic conditions with chloral 

hydrate in the presence of hydroxylamine hydrochloride and sodium sulfate 

via the Sandmeyer methodology (Scheme 10) to yield an off-white precipitate 

of isonitrosoacetanilide. This precipitate was filtered and used immediately in 

the acid catalyzed cyclization, yielding 7-bromoisatin, a bright orange solid. 
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Scheme 10 
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  Initial attempts using this 2-step procedure were unsuccessful with 

yields around 24%. These low yields could be attributed to the precipitation of 

2-bromoaniline during initial formation of the isonitrosoacetanilide 

intermediate. Modification of the Sandmeyer procedure, as suggested by de 

Silva and coworkers, called for the addition of ethanol to the reaction such 

that the ratio of ethanol to water is 1:3 (v:v).52 These modifications produced 

biphasic reactions and increased reaction yields to 85%. 

 With the 7-bromoisatin starting material in hand, a series of Suzuki 

cross-couplings were performed to determine the optimal catalyst system 

(Table 4). Although original work by Lisowski used boronic acids as coupling 

partners, we opted to use trifluoroborates as coupling agents due to their 

availability and increased stability under atmospheric conditions.53 
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Table 4: Suzuki Cross-Coupling Optimizations 

 

N
H

O

O

Br Catalyst System

0.10 mmol 0.11 mmol

NaHCO3

2% Pd(dppf)2Cl2

0.2 mmol

0.10 mmol 0.11 mmol

1% Pd(PPh3)4

0.2 mmol

0.10 mmol 0.11 mmol 0.2 mmol

0.10 mmol 0.11 mmol 0.2 mmol

74%

70%

66%

30%

Yield

BF3K

OH

0.10 mmol 0.11 mmol 10% Pd(PPh3)4

2% Pd(PPh3)4

5% Pd(OAc)2, 5% S-PHOS 0%

0.2 mmol

* Reaction condition: 1:1 THF/H2O degassed, reflux, 5 h

1

2

3

4

5

 

 

 The catalyst system in reaction 1 of Pd(OAc)2, and S-PHOS54 was 

unsuccessful, yielding only starting materials and isatin ring-opened 

degradation products. Similarly, reaction 2 was plagued by ring-opened 

degradation. Although the catalyst system of reaction 5, 10% Pd(PPh3)4, 

provided the best yields the expense and air sensitivity of the catalyst led to 

the selection of catalyst system 4, 2% Pd(PPh3)4, for the subsequent Suzuki 

cross-couplings. The synthetic yields were best for the least hindered 

substrates, shown in Table 5. 
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Table 5: Yields and Microtubule Assembly Results of 7-Arylisatins 

 

OH

OMe

Br

Cl

CF3

OMe

OMe

MeO

OMe

OMe

OMeMeO

85%
31 µM

65%
>100 µM

OMe 32%
>100 µM

74%
>100 µM

20%
>100 µM

24%
>100 µM

46%
>100 µM

74%
>100 µM

60%
>100 µM

24%
>100 µM

8.9%
>100 µM

10%
>100 µM

19%
>100 µM

44%
>100 µM

Yield

IC50

Yield

IC50

N
H

O

O

R

O

OH2N

 

 

  



 -25- 

  The only compound showing activity, 7-bromoisatin, which exhibited an 

IC50 value of 31 µM, suggested that substitution in position seven of the isatin 

ring has little effect on the relative activity of isatin. The increased activity in 

the lead compounds, 5-methyl-N-(1-propyl)isatin and 5,7-dichloroisatin, is a 

result of substitution in position five of isatin.  

 The remaining scaffolds to be studied are 5-methylisatin, 5-

chloroisatin, and 5,7-dichloroisatin (Scheme 11). Three series of N-alkylated 

and N-arylated derivatives were synthesized to complete the SAR study. 

 

Scheme 11 
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N-Alkylated Isatins. 5-Methylisatin and 5-chloroisatin were both obtained 

from commercial sources and used without further purification. 5,7-

Dichloroisatin was synthesized in a 53% yield via Sandmeyer methodology 

(Scheme 12). 
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Scheme 12 

 

Cl Cl
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N
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Na2SO4, HCl, 1:3 EtOH/H2O

35 °C to 65 °C

65%

 

 

 There are several procedures for the N-alkylation of isatins described 

in the literature.32,55,56 The procedure by Garden and coworkers, was chosen 

as our standard methodology for N-alkylation of isatin (Scheme 13).57 

Scheme 13 

 

Cl

Cl

N
H

O

O

R

Br

1. Cs2CO3, DMF
0 °C to rt

2. rt to 50 °C, 6 h

Cl

Cl

N
O

O

R

Cl

N
H

O

O

R

Br

1. Cs2CO3, DMF
0 °C to rt

2. rt to 50 °C, 6 h

Cl

N
O

O

R

Me

N
H

O

O

R

Br

1. Cs2CO3, DMF
0 °C to rt

2. rt to 50 °C, 6 h
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 Initially the substituted isatin was dissolved in dry dimethyl formamide 

(DMF) producing a bright reddish-orange solution. The reaction temperature 

was reduced to 0 °C. The addition of cesium carbonate rendered the reaction 

medium a dark purple color. After allowing the reaction to warm to room 

temperature, the addition of the appropriate alkylating agent led to the return 

of the reddish-orange color, becoming more vibrant with increased 

temperature. Yields ranged from 40% to 90% as seen in Table 6. Further 

optimization studies were not conducted. The synthesized compounds were 

then submitted for biological evaluation (Table 7, 8 and 9). 
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Table 6: N-Alkylation Yields 

83%

48%

58%

52%

68%

86%

65%

36%

62%

84%

71%

78%

YieldYield

CH3

F

96% 91%

Br

83% 89%

CF3

40% 51%

Cl

N

O

O

R

Me

CH3

F

Br

CF3

Cl

N

O

O

R

Cl

36%

20%

12%

34%

53%

48%

Yield

41%

88%

45%

CH3

F

Br

CF3

Cl

N

O

O

R

Cl

Cl
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Table 7: Biological Evaluation of 5-Methyl-N-Alkylisatins 

N
O

O

N
O

O

N
O

O

N
O

O

N
O

O

N
O

O

Me

Me

Me

Me

Me

IC50 16 µM
IC50/IC50(col): 3.2

IC50 2.6 µM
IC50/IC50(col): 0.5

IC50 12.8 µM
IC50/IC50(col): 2.6

IC50 4 µM
IC50/IC50(col): 0.8

IC50 5.7 µM
IC50/IC50(col): 1.1

IC50 5.5 µM
IC50/IC50(col): 1.1

IC50 >100 µM

IC50 0.052 µM

IC50 5 µM

IC50 >100 µM

IC50 >100 µM

IC50 >100 µM

NCI/ADR-RESaMicrotubule Assay

IC50 >100 µM

IC50 9 µM

IC50 >100 µM

IC50 >100 µM

IC50 >100 µM

IC50 >100 µM

MCF-7

a NCI/ADR-RES formerly known as MCF7-ADR
b IC50 values for Colchicine is 5 µM

Me

CH3

F

N
O

O
Me

IC50 6.5 µM
IC50/IC50(col): 1.3

IC50 31 µMIC50 >100 µM

Br

N
O

O
Me

IC50 5 µM
IC50/IC50(col): 1.0

IC50 20 µMIC50 >100 µM

CF3

N
O

O
Me

IC50 4 µM
IC50/IC50(col): 0.8

IC50 40 µMIC50 >100 µM

Cl

N
O

O

H

Me IC50 >100 µM
IC50/IC50(col): N/A

IC50 >100 µMIC50 >100 µM
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Table 8: Biological Evaluation of 5-Chloro-N-Alkylisatins 

N
O

O

N
O

O

N
O

O

N
O

O

N
O

O

N
O

O

Cl

Cl

Cl

Cl

Cl

IC50 4.2 µM
IC50/IC50(col): 0.8

IC50 5.4 µM
IC50/IC50(col): 1.1

IC50 5.2 µM
IC50/IC50(col): 1.0

IC50 6.4 µM
IC50/IC50(col): 1.3

IC50 6.0 µM
IC50/IC50(col): 1.2

IC50 5 µM
IC50/IC50(col): 1.0

IC50 7 µM

IC50 6 µM

IC50 12 µM

IC50 19 µM

IC50 8 µM

IC5017 µM

NCI/ADR-RESaMicrotubule Assayb

IC50 >100 µM

IC50 >100 µM

IC50 31 µM

IC50 81 µM

IC50 5 µM

IC50 >100 µM

MCF-7

a NCI/ADR-RES formerly known as MCF7-ADR
b IC50 value of Colchicine is 5 µM

Cl

CH3

F

N
O

O
Cl

IC50 5 µM
IC50/IC50(col): 1.0

IC50 10 µMIC50 24 µM

Br

N
O

O
Cl

IC50 11.2 µM
IC50/IC50(col): 2.2

IC50 17 µMIC50 63 µM

CF3

N
O

O
Cl

IC50 12.5 µM
IC50/IC50(col): 2.5

IC50 8 µMIC50 14 µM

Cl

N
O

O

H

Cl IC50 33 µM
IC50/IC50(col): 6.6

IC50 17 µMIC50 11 µM



 -31- 

Table 9: Biological Evaluation of 5,7-Dichloro-N-Alkylisatins 

N
O

O

N
O

O

N
O

O

N
O

O

N
O

O

N
O

O

Cl

Cl

Cl

Cl

Cl

IC50 3.2 µM
IC50/IC50(col): 0.64

IC50 3.0 µM
IC50/IC50(col): 0.6

IC50 3.5 µM
IC50/IC50(col): 0.7

IC50 8 µM
IC50/IC50(col): 1.6

IC50 13 µM
IC50/IC50(col): 2.6

IC50 13 µM
IC50/IC50(col): 2.6

IC50 7 µM

IC50 3 µM

IC50 1 µM

IC50 4 µM

IC50 2 µM

IC50 3 µM

NCI/ADR-RESaMicrotubule Assayb

IC50 18 µM

IC50 13 µM

IC50 6 µM

IC50 8 µM

IC50 4 µM

IC50 4 µM

MCF-7

a NCI/ADR-RES formerly known as MCF7-ADR
b IC50 value for Colchicine is 5 µM

Cl

CH3

F

N
O

O
Cl

IC50 5.5 µM
IC50/IC50(col): 1.1

IC50 2 µMIC50 2 µM

Br

N
O

O
Cl

IC50 11.5 µM
IC50/IC50(col): 2.3

IC50 7 µMIC50 19 µM

CF3

N
O

O
Cl

IC50 8.5 µM
IC50/IC50(col): 1.7

IC50 7 µMIC50 40 µM

Cl

Cl

Cl

Cl

Cl

Cl

Cl

Cl

Cl

Cl

N
O

O

H

Cl

Cl

IC50 12.3 µM
IC50/IC50(col): 2.5

IC50 6 µMIC50 6 µM
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 The compounds showed a significant improvement in biological activity 

when compared to 7-phenylisatins. All of the compounds were active in the 

microtubule assembly assay with IC50 values ranging from 2.6 - 16 µM; 

reinforcing earlier SAR findings that microtubule assembly activity is improved 

by nitrogen alkylation and substitution in position five of the isatin core.  

 Although all of the 5-methylisatin derivatives displayed activity in the 

microtubule assembly assay, the majority of derivatives lacked substantial 

cytotoxicity in both MCF-7 and NCI/ADR-RES cell lines. 5-Methyl-N-(1-

propyl)isatin was the only 5-methylisatin derivative to show activity in MCF-7 

cells, IC50 9 µM . This compound was also the most active, of all the 

compounds synthesized, in both the microtubule assembly assay, IC50 = 2.6 

µM, and against the NCI/ADR-RES cell line, IC50 = 0.052 µM. 5-Methyl-N-(1-

butyl)isatin also showed activity in NCI/ADR-RES cells with an IC50 value of 5 

µM.   

 The 5-chloroisatin derivatives were more active than the 5-methylisatin 

derivatives in MCF-7 and NCI/ADR-RES cell lines. Similar to the 5-

methylisatin derivatives, 5-chloro-N-(ethyl)isatin and 5-chloro-N-(1-

propyl)isatin displayed selective cytotoxic activity for NCI/ADR-RES over 

MCF-7 cells. The increases in MCF-7 cytotoxicity, for the 5-chloroisatins, are 

roughly associated with increases in log P of the compounds. The increases 

in NCI/ADR-RES cytotoxicity are not as closely associated with increases in 



 -33- 

log P. The most active compound of the 5-chloroisatin derivatives was 5-

chloro-N-(4-methylbenzyl)isatin with an IC50 value of 6.0 µM in the microtubule 

assembly assay, and IC50 values of 5 µM and 8 µM in MCF-7 and NCI/ADR-

RES respectively.  

 The 5,7-dichloroisatin derivatives were also considerably more 

cytotoxic than the 5-methylisatins. Similar to the 5-chloroisatins, 5,7-dichloro-

N-(1-propyl)isatin was active only in the microtubule assembly assay, IC50  = 

3.0 µM and the NCI/ADR-RES cell line, IC50 = 3.0 µM.  Several compounds 

were active against both cell lines as well as in the microtubule assembly 

assay. The cell line NCI/ADR-RES responded the most to 5,7-dichloro-N-(1-

butyl)isatin, IC50 = 1 µM, similar to the IC50 value of colchicine. 5,7-Dichloro-N-

(1-butyl)isatin was also active in the microtubule assembly assay, IC50 = 3.5 

µM, and against MCF-7 cells, IC50 = 6.4 µM. 5,7-Dichloro-N-(4-

methylbenzyl)isatin and 5,7-dichloro-N-(4-bromobenzyl)isatin were the most 

active compounds of the 5,7-dichloroisatins; both displayed low micromolar 

activity in MCF-7 (IC50 = 4 µM, IC50 = 2.1 µM)  and NCI/ADR-RES (IC50 = 2 µM 

and IC50 = 2 µM) cell lines.   

 Of the thirty N-alkylated isatin derivatives synthesized, eleven 

displayed greater activity in the microtubule assembly assay over colchicines; 

cytotoxicity in MCF-7 cell lines was also increased. Two compounds, 5-
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methyl-N-(1-propyl)isatin and 5,7-dichloro-N-(1-butyl)isatin were more 

cytotoxic than colchicine in NCI/ADR-RES cells.  

N-Arylisatins.  The final series of compounds prepared were the N-arylisatin 

derivatives. Initial attempts toward the preparation of these N-arylisatins used 

methodology developed by Chan and Lam (Scheme 14).58,59 

 

Scheme 14 
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 This Chan-Lam methodology was successful at converting isatin to N-

phenylisatin in 51% yield over 65 hours. The time of the reaction was modified 

for the substituted isatin scaffolds as the reaction was completed in a 24-hour 

period (Scheme 15). 
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Scheme 15 
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 The appropriate isatin scaffold was dissolved in dichloromethane 

(DCM), resulting in a bright orange solution. Subsequent addition of the base 

pyridine and copper (II) acetate led to a dark purple solution. The dark purple 

color subsided upon addition of the desired boronic acid. The coupling was 

moderately successful for both the 5-methyl and 5-chloroisatin scaffolds 

(Table 10).  
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Table 10: Yields for 5-Methyl and 5-Chloro-N-Arylisatins 

 

Cl

OCH3

CF3

Yield Yield

25%

34%

5%

16% 32%

41%

23%

15%

Cl

OCH3

CF3

N

O

O

R

Me

N

O

O

R

Cl

 

 

 

 The initial Chan-Lam test reaction failed to yield any of the 5,7-

dichloro-N-phenylisatin derivatives with only starting material recovered. 

Therefore, a series of reaction conditions was screened to examine viable 

conditions for the coupling of the 5,7-dichloroisatin to phenyl boronic acid 

(Table 11).  
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Table 11: 5,7-Dichloroisatin Chan-Lam Reactions 

 

Substrate Boronic Acid Cu(OAc)2 Base Time

1

2

Yield

3

0.1 mmol 0.11 mmol 0.1 mmol 2 eq NEt3 24 h n.r.

0.1 mmol 0.11 mmol 0.2 mmol 2 eq NEt3 24 h n.r.

0.2 mmol 0.22 mmol 0.2 mmol 2 eq Pyridine 48 h n.r.

Reaction Conditions: Addition of crushed 4 Å mol sieves to each reaction vessel  

 

 The exchange of pyridine for triethylamine, 1, had no affect on 

reactivity. The same was true for increasing the amount of copper (II) acetate, 

reactions 2 and 3; starting material was isolated in all cases.   

 The lack of activity in the Chan-Lam coupling led to the investigation of 

other N-arylation procedures by Buchwald and co-workers (Scheme 16).60-62 

 

Scheme 16 

 

N
H

Cl

Cl

O

O

CuI, Ligand
Base

Toluene, 120 °C

I

N

Cl

Cl

O

O

Ligand
NH2

NH2
a

HN

NH

Me

Me

b

CH3

CH3

+

 

 



 -38- 

 The Buchwald modification, of the Goldberg amidation reaction, uses 

inexpensive 1,2-diamine ligands to facilitate the copper-catalyzed aryl 

amidation reaction. The 1,2-diamine ligands we chose to study were racemic 

trans-1,2-cyclohexanediamine (a, reactions 1-3) and N,N’-dimethylethane-

1,2-diamine (b, reactions 4-6),(Table 12).  

 

Table 12: 5,7-Dichloroisatin Buchwald Reactions 

 

Substrate 4-Iodotoluene CuI Base Time

1

2

Yield

3

0.1 mmol 0.11 mmol 5 mol% 2 eq K3PO4 24 h n.r.

0.1 mmol 0.11 mmol 5 mol% 2 eq K2CO3 24 h n.r.

0.1 mmol 0.11 mmol 10 mol% 2 eq K2CO3 n.r.24 h

Ligand

a

a

a

4

5

6

0.1 mmol 0.11 mmol 5 mol% 2 eq K3PO4 24 h n.r.

0.1 mmol 0.11 mmol 5 mol% 2 eq K2CO3 24 h n.r.

0.1 mmol 0.11 mmol 10 mol% 2 eq K2CO3 n.r.24 h

b

b

b
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 The results, shown in Table 12, confirm that 5,7-dichloroisatin is not a 

good candidate for N-arylation. All of the reactions yielded starting material 

upon quenching with acid.  The steric hindrance and electron-withdrawing 

nature of the chloro groups may lead to the lack of reactivity. Another 

plausible explanation for the lack of reactivity is the formation of an insoluble 

complex between the deprotonated 5,7-dichloroisatin with the copper catalyst 

(Scheme 17). 

Scheme 17 
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 Additional attempts of N-arylation using palladium sources were also 

unsuccessful.63 Therefore 5,7-dichloroisatin was not used as a scaffold for the 

SAR study. The 5-methyl and 5-chloroisatin derivatives were submitted for 

biological evaluation. None of the 5-methyl or 5-chloro-N-arylisatin derivatives 

demonstrated biological activity (Tables 13 and 14).  
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Table 13: Biological Evaluation of 5-Methyl-N-arylisatins 

 

NCI/ADR-RESaMicrotubule Assayb MCF-7

N
O

O

IC50 3.2 µM
IC50/IC50(col): 0.64

IC50 >100 µMIC50 >100 µM

N
O

O

IC50 6.4 µM
IC50/IC50(col): 1.3

IC50 >100 µMIC50 >100 µM

Me

N
O

O

IC50 >25 µM
IC50/IC50(col): N/A

IC50 >100 µMIC50 >100 µM

Me

Cl

N
O

O

IC50 >25 µM
IC50/IC50(col): N/A

IC50 7 µMIC50 18 µM

Me

OCH3

N
O

O

IC50 >100 µM
IC50/IC50(col): N/A

IC50 >100 µMIC50 >100 µM

Me

CF3

a NCI/ADR-RES formerly known as MCF7-ADR
b IC50 values for Colchicine is 5 µM  
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Table 14: Biological Evaluation of 5-Chloro-N-arylisatins 

 

N
O

O

IC50 20 µM
IC50/IC50(col): 4.0

IC50 >100 µMIC50 >100 µM

Cl

N
O

O

IC50 >100 µM
IC50/IC50(col): N/A

IC50 >100 µMIC50 >100 µM

Cl

Cl

N
O

O

IC50 >100 µM
IC50/IC50(col): N/A

IC50 >100 µMIC50 >100 µM

Cl

OCH3

N
O

O

IC50 22.2 µM
IC50/IC50(col): 4.4

IC50 >100 µMIC50 >100 µM

Cl

CF3

a NCI/ADR-RES formerly known as MCF7-ADR
b IC50 values for Colchicine is 5 µM

NCI/ADR-RESaMicrotubule Assayb MCF-7
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Closing Remarks 

 

 The SAR study showed that substitutions in the 5- and 7- positions of 

the aromatic ring combined with N-substitutions increased the disruption of 

microtubule assembly. The 7-phenylisatin and N-arylisatin derivatives were 

inactive in all of the biological assays. Several of the 5-chloro-N-alkylisatins 

and the 5,7-dichloro-N-alkylisatins were cytotoxic in both MCF-7 and 

NCI/ADR-RES cell lines. 5,7-Dichloro-N-(1-propyl)isatin exhibited an IC50 

value of 3.0 µM in the microtubule assembly assay and was selectively 

cytotoxic in the NCI/ADR-RES cell line, IC50 = 2.7 µM. Similarly, 5,7-dichloro-

N-(ethyl)isatin and 5,7-dichloro-N-(1-butyl)isatin inhibited microtubule 

assembly with IC50 values of 3.2 µM and 3.5 µM, respectively, and IC50 values 

of 7.0 µM (1-ethyl) and 1.1 µM (1-butyl) in NCI/ADR-RES cells.  5,7-Dichloro-

N-(4-bromobenzyl)isatin was the most active compound against MCF-7 cells, 

IC50 = 2.1 µM. This compound was also active against the drug resistant line, 

IC50 = 2.2 µM. To date the most cytotoxic compound tested is 5-methyl-N-(1-

propyl)isatin, with an IC50 value of 52 nM (microtubule assembly IC50 = 2.6 

µM) in the drug resistant cancer cell line NCI/ADR-RES. 
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Experimental Section 

 

Materials and Methods. 1H and 13C nuclear magnetic resonance spectra 

were recorded using a Bruker DRX 400 MHz spectrophotometer. All chemical 

shifts were recorded as parts per million (ppm), and all samples were 

dissolved in CDCl3 using tetramethylsilane (TMS) as the internal standard. 

Mass spectra were obtained from a ESI-TOF HS mass spectrometer (Bruker, 

BioTOF II, Bruker BioSpin Corp., Billerica, MA, USA). Melting points were 

collected using a Fisher-Johns melting point apparatus and are uncorrected.  

 All moisture-sensitive reactions were performed using either oven or 

flame dried glassware under positive pressure of nitrogen unless otherwise 

noted. Solvents and reagents that are commercially available were used 

without further purification unless otherwise noted. All silica gel (230-400 

mesh) used for column chromatography was purchased from VWR Scientific 

Products. All compounds were concentrated using standard rotovap and high-

vacuum techniques where concentration was noted. Flash chromatography 

was performed using 60 Å porosity silica gel from Sorbent Technologies 

under a positive pressure of nitrogen.  

Microtubule Assembly Assay. The reactions were performed in 96-well 

plates in a volume of 120 µL per well. The wells contained PEM buffer (0.1 M 

Pipes, 1 mM MgSO4, 1 mM EGTA, pH 6.9), 4% DMSO, 10 µM DAPI, 2 
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mg/mL microtubule protein and varying concentrations of the compound. The 

plates were incubated at 37 ºC for 30 min after which the fluorescence was 

measured in a multi-plate reader. The readings were corrected for a control 

lacking the compound. 

Cytotoxicity Assay. The cytotoxic effects of test compounds were measured 

using a modification of the procedure developed by the National Cancer 

Institute (NCI). Originally the assay was performed using sulforhodamine to 

measure protein content,64 but they later modified it to use a colorimetric 

redox dye, 2-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium (MTT).65 We 

have again modified the procedure to use an alternative, water soluble redox 

dye, resofurin (Alamar Blue™). The dye also has the advantage that the red-

shifted fluorescence of the dye reduces interference from auto-fluorescent 

compounds. A direct comparison measuring cytotoxicity of standard 

compounds with a number of cell lines using this dye compared to the original 

sulforhodamine assay in our laboratories produced identical results 

(unpublished data).  

Two cell lines from NCI were used in this study (MCF-7 and MCF-

7/ADR). The former cell line is a human breast adenocarcinoma cell line, and 

the later a derivative that is multi-drug resistant due to over expression of p-

glycoprotein. 



 -45- 

Stock cultures were grown in T-75 flasks containing 40 mL of RPMI-

1640 medium with glutamine, bicarbonate and 10% fetal bovine serum. After 

growth for 48 hours, cells (in exponential-phase culture) were dissociated with 

0.25% trypsin in buffer (contaiing 0.38 g/L of EDTA·4Na+ in Hanks’ Balanced 

Salt Solution: without CaCl2, MgCl2·6H2O, and MgSO4·7H2O, with phenol red) 

and harvested by centrifugation at 125 g for 5 min. The supernatant 

containing trypsin was removed and the cells re-suspended in new culture 

medium, the cell density was adjusted to1x105 cells/mL.  

Cells were dispensed as 50 µL aliquots into 96-well microtiter plates 

(density of 5,000 cells/well) and incubated for 24 hours at 37 oC and 5.0% 

CO2 in a humidified tissue culture incubator. During this time the cells 

attached to the bottoms of the microplate wells. At this point, 50 µL of culture 

medium containing test compounds at various concentrations were added to 

the wells and the plates incubated for 48 hours at 37 oC and 5.0% CO2 in a 

humidified tissue culture incubator. The plates were then removed and 25 µL 

of a stock solution of Alamar Blue™(Invitrogen) was added and the plates re-

incubated for 2 hours.. The stock solution was prepared bv making a 1:10 

dilution of the supplied reagent in media.   

After incubation the plates were remove and the fluorescence of the 

dye was measured spectrofluorimetrically using an excitation wavelength of 

560 nm and an emission wavelength of 590 nm using either a Molecular 



 -46- 

Devices Spectromax 2e™ multimode plate reader or a LJL Analyst AD™ 

multimode plate reader. 

 Taxol (Invitrogen) and Colchicine ( Sigma ) were used as standards, 

and prepared  in 100% DMSO. The initial highest final concentrations of Taxol 

and Colchicine in the test were 2500 ng/mL (2930 nM) and 60 µM 

respectively at 1% DMSO in RPMI culture medium. Four fold serial dilutions 

were made using RPMI culture medium containing 1% DMSO, and then 50 

µL of these solutions added to the cells as described above. Tests were 

conducted with 3 replicates of the dose-response curve, and results were 

average before being analyzed. IC50 curves and results were calculated using 

GraphPad (Prism software). 

General Procedure A: Suzuki cross-couplings of 7-bromoisatin. A 

solution of 7-bromoisatin (0.10 mmol, 1 eq), in THF/H2O (v:v, 4 mL) under a 

N2 atmosphere was stirred. Solid K2CO3 (0.2 mmol, 2 eq) and Pd(PPh3)4 (2 

mol %) were added. The reaction was stirred at rt for 1 h. The appropriate aryl 

trifluoroborate (0.11 mmol, 1.1 eq) was added and the reaction was stirred at 

60 °C for 12 h, until the starting material had been consumed (TLC). The 

reaction mixture was then transferred to a separatory funnel containing 10% 

aq. HCl (10 mL) and DCM (10 mL).  The layers were separated and the 

aqueous layer was extracted twice more with DCM (5 mL).  The combined 

organic layers were then washed with saturated aq. NaCl (20 mL) and dried 
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with MgSO4, concentrated and purified by flash chromatography on silica gel 

using isocratic elution with ethyl acetate. 

General Procedure B: N-Alkylation of isatin scaffolds. A solution of the 

appropriate indoline-2,3-dione (0.20 mmol, 1 eq), in anhydrous DMF (2 mL) 

cooled to 0 °C under a N2 atmosphere was stirred. Solid Cs2CO3 (0.22 mmol, 

1.1 eq) was added in one portion. The reaction was brought to rt and stirred 

for 1 h. The appropriate alkylating agent (0.20 mmol, 1 eq) was added and the 

reaction was stirred at 50 °C for 12 h, until the starting material had been 

consumed (TLC). The reaction mixture was then transferred to a separatory 

funnel containing 10% aq. HCl (10 mL), distilled H2O (10 mL) and diethyl 

ether (10 mL).  The layers were separated and the aqueous layer was 

extracted twice more with diethyl ether (5 mL).  The combined organic layers 

were then washed with saturated aq. NaCl (20 mL) and dried with MgSO4, 

concentrated and purified by flash chromatography on silica gel using 

isocratic elution with ethyl acetate. 

General Procedure C: Chan-Lam methodology for N-arylation of isatin 

scaffolds. A slurry of the appropriate indoline-2,3-dione (0.25 mmol, 1 eq) in  

anhydrous DCM (1 mL) was prepared. Solid Cu(OAc)2 x H2O (0.25 mmol, 1 

eq), the appropriate arylboronic acid (0.50 mmol, 2 eq), and pyrdine (0.50 

mmol, 2 eq) were added. The reaction was stirred at rt for 24 h, until the 

starting material had been consumed (TLC). The reaction mixture was then 
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transferred to a separatory funnel containing 10% aq. HCl (10 mL) and DCM 

(10 mL).  The layers were separated and the aqueous layer was extracted 

twice more with DCM (5 mL).  The combined organic layers were then 

washed with saturated aq. NaCl (20 mL) and dried with MgSO4, concentrated 

and purified by flash chromatography on silica gel using isocratic elution with 

ethyl acetate. 

General Procedure C: Buchwald methodology for N-arylation of isatin 

scaffolds.  A two-neck round-bottom was charged with 5,7-dichloroisatin 

(0.14 mmol, 1.2 eq), anhydrous toluene (5 mL), CuI (5 mol %), appropriate 

ligand (10 mol %), and the 4-methyl-iodobenzene (0.1 mmol, 1 eq).  The 

reaction was stirred at rt for 15 min. A solution of the appropriate base (1.0 M 

in H2O, 0.2 mmol, 2 eq) was added dropwise to the reaction. A reflux 

condenser was fitted to the round-bottom and the reaction was heated to 120 

°C for 24 h. 
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N
H

O

O

Br  

7-Bromoisatin.  A round-bottom flask was charged with chloral hydrate (0.55 

g, 3.3 mmol), anhydrous Na2SO4 (3.41 g, 24.0 mmol), and EtOH/H2O (v:v, 4 

mL). The solution was acidified to a pH 1 with 6 N HCl. The reaction was 

stirred at 40 °C until the solution became clear. Solid 2-bromoaniline (0.50 g, 

3.0 mmol) and NH2OH·HCl (0.70 g, 10 mmol) were added and the reaction 

was heated to 100 °C for 40 min. The reaction was cooled to rt and the 

isonitrosoacetanilide precipitate was formed. The precipitate was collected via 

filtration and dried under vacuum for 4 h.  The dried precipitate was then 

dissolved in concentrated H2SO4 (10 mL) and heated to 60 °C for 1 h. The 

reaction was cooled to rt and poured over cracked ice (20 mL) yielding an 

orange precipitate. The precipitate was collected via filtration and dried under 

vacuum overnight to give 0.56 g of the title compound as an orange solid 

(85%), mp 144-146 ºC. 1H NMR (400 MHz, CDCl3) δ 7.27 (1H, t, J = 7.5 Hz), 

7.95 (1H, d, J = 7.5,1.5 Hz), 8.0 (1H, s, br), 8.06 (1H, d, J = 7.5, 1.5 Hz). 13C 

NMR (100 MHz, CDCl3) δ 119, 123, 125, 126, 137.6, 143.3, 160.2, 184.7. 

HRMS calcd for C8H4BrNO2, 224.9425; found 225.0326. 
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N
H

O

O

 
7-Phenylisatin was prepared using general procedure A, (60%), orange 

solid, mp 249-250 ºC.  1H NMR (400 MHz, CDCl3) δ  to give 0.014 g of the title 

compound as an orange solid (60%), (100 MHz, CDCl3) δ 7.08 (2H, m, J = 

7.5, 7.5, 1.5, 1.5 Hz), 7.41 (1H, t, J = 7.5, 7.5, 1.5, 1.5 Hz), 7.44 (1H, d, J = 

7.5, 7.5 Hz), 7.51 (2H, m, J = 7.5, 7.5, 1.5, 1.5 Hz), 7.97 (1H, dd, J = 7.5, 1.5 

Hz), 8.05 (1H, dd, J = 7.5, 1.5 Hz), 8.0 (1H, s, br), 13C NMR (400 MHz, CDCl3) 

δ 118.2, 122, 124.6, 124.7, 127.6, 127.9, 127.9, 129.2, 129.2, 130.1, 138.3, 

139.8, 159.3, 184.3.  HRMS: calcd for C14H9NO2, 223.0633; found, 222.9989. 

N
H

O

O

OH  
7-(3-Hydroxyphenyl)isatin was prepared using general procedure A, (74%), 

orange solid, mp 360-362 ºC. 1H NMR (400 MHz, CDCl3) δ 5.35 (1H, s, br), 

6.91 (1H, dd, J = 7.5, 1.5, 1.5 Hz), 7.08 (1H, dd, J = 7.5, 1.5, 1.5 Hz), 7.32 

(1H, dd, J = 1.5, 1.5 Hz), 7.34 (1H, t, J = 7.5, 7.5 Hz), 7.44 (1H, t, J = 7.5, 7.5 

Hz), 8.0 (1H, s, br), 8.05 (1H, d, J = 1.5, 7.5 Hz). 13C NMR (100 MHz, CDCl3) 

δ 114.8, 115.9, 118.2, 121, 122.6, 124.6, 124.8, 127.9, 127.9, 129.8, 130.2, 
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137.9, 138.3, 157.6, 159.3, 184.3.  HRMS: calcd for C14H9NO3, 229.0582; 

found, 230.0019. 

N
H

O

O

OMe

 
7-(2-Methoxyphenyl)isatin was prepared using general procedure A, (32%), 

orange solid, mp 295-297 ºC. 1H NMR (400 MHz, CDCl3) δ 3.83 (3H, s), 7.05 

(1H, d, J = 7.5, 1.5 Hz), 7.08 (1H, t, J = 7.5, 7.5 Hz), 7.32 (1H, t, J = 7.5, 7.5, 

1.5 Hz), 7.44 (1H, t, J = 7.5, 7.5 Hz), 7.68 (1H, d, J = 7.5, 1.5 Hz), 8.0 (1H, s, 

br), 8.05 (1H, d, J = 7.5, 1.5 Hz). 13C NMR (100 MHz, CDCl3) δ 56.2, 116.8, 

118.2, 121.6, 122.3, 124.6, 124.8, 125.7, 127.9, 129.9, 130.8, 137.9, 157.7, 

159.3, 184.3.  HRMS: calcd for C15H11NO3, 253.0739; found, 253.0978. 

N
H

O

O

OMe  
7-(4-Methoxyphenyl)isatin was prepared using general procedure A, (74%), 

orange solid, mp 295-297 ºC. 1H NMR (400 MHz, CDCl3) δ 3.83 (3H, s), 7.05 

(2H, d, J = 7.5, 1.5 Hz), 7.44 (1H, t, J = 7.5, 7.5 Hz), 7.68 (2H, d, J = 7.5, 1.5 

Hz), 7.97 (1H, d, J = 7.5, 1.5 Hz),  8.0 (1H, s, br), 8.05 (1H, d, J = 7.5, 1.5 Hz). 

13C NMR (100 MHz, CDCl3) δ 55.2, 114.8, 114.8, 118.2, 122.3, 124.6, 124.8, 
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129.9, 130.1, 130.1, 132.2, 137.9, 159.3, 159.5, 184.3.  HRMS: calcd for 

C15H11NO3, 253.0739; found, 253.0978. 

N
H

O

O

O  
7-(4-Acetylphenyl)isatin was prepared using general procedure A, (44%), 

orange solid, mp 334-337 °C. 1H NMR (400 MHz, CDCl3) δ 2.50 (3H, s), 8.00 

(2H, d, J = 7.5, 1.5 Hz), 7.75 (2H, d, J = 7.3, 1.5 Hz), 8.05 (1H, d, J = 7.5, 1.5 

Hz), 7.44 (1H, t, J = 7.6, 1.8 Hz), 7.97 (1H, d, J = 7.5, 1.5 Hz), 8.0 (1H, s, br). 

13C NMR (100 MHz, CDCl3) δ 26.6, 197.0, 129.3, 127.8, 122.3, 130.0, 129.3, 

127.8, 135.6, 144.1, 124.6, 124.7, 118.2, 138.3, 184.3, 159.3.  HRMS: calcd 

for C16H11NO3, 265.0739; found, 265.0834. 

N
H

O

O

OH2N  
7-(4-Amidophenyl)isatin was prepared using general procedure A, (19%), 

orange solid, mp 404-407 °C. 1H NMR (400 MHz, CDCl3) δ 7.5 (2H, s, br), 

8.09 (2H, d, J = 7.5, 1.5 Hz), 7.82 (2H, d, J = 7.5, 1.5 Hz), 8.05 (1H, d, J = 

7.5, 1.5 Hz), 7.44 (1H, t, J = 7.5 Hz), 7.97 (1H, d, J = 7.5, 1.5 Hz),  8.0 (1H, s, 
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br). 13C NMR (100 MHz, CDCl3) δ 168.0, 130.2, 128.0, 122.3, 130.0, 130.2, 

128.0, 133.1, 143.1, 124.6, 124.7, 118.2, 138.3, 184.4, 159.3.  HRMS: calcd 

for C15H10N2O3, 266.0691; found, 265.0714. 

N
H

O

O

CF3  
7-(4-(Trifluoro-methyl)phenyl)isatin was prepared using general procedure 

A, (9%), orange solid, mp 278-280 °C. 1H NMR (400 MHz, CDCl3) δ 7.68 (2H, 

d, J = 7.5, 1.5 Hz), 7.38 (2H, d, J = 7.5, 1.6 Hz), 8.05 (1H, d, J = 7.5, 1.5 Hz), 

7.44 (1H, t, J = 7.5, 1.3 Hz), 7.97 (1H, d, J = 7.7, 1.5 Hz), 8.0 (1H, s, br). 13C 

NMR (100 MHz, CDCl3) δ 124.1, 125.6, 128.2, 122.3,130.0, 125.6, 128.2, 

129.9, 143.0, 124.6, 124.7, 118.2, 138.3, 184.3, 159.3. HRMS: calcd for 

C15H8F3NO2, 291.0507; found, 291.1067. 

N
H

O

O

Cl  
7-(4-Chlorophenyl)isatin was prepared using general procedure A, (24%), 

orange solid, mp 292-294 °C. 1H NMR (400 MHz, CDCl3) δ 7.73 (2H, d, J = 

7.4, 1.5 Hz), 7.55 (2H, d, J = 7.5, 1.5 Hz), 8.05 (1H, d, J = 7.7, 1.4 Hz), 7.44 
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(1H, t, J = 7.5, 1.5 Hz), 7.97 (1H, d, J = 7.5, 1.5 Hz), 8.0 (1H, s, br). 13C NMR 

(100 MHz, CDCl3) δ129.3, 122.3, 130.0, 129.3, 129.3, 129.3, 137.8, 124.6, 

124.7, 133.2, 118.2, 138.3, 184.3, 159.3. HRMS: calcd for C14H8ClNO2, 

257.0244; found, 257.0364. 

N
H

O

O

OMe

OMeMeO

 

7-(3,4,5-Trimethoxyphenyl)isatin was prepared using general procedure A, 

(46%), orange solid, mp 389-391 °C. 1H NMR (400 MHz, CDCl3) δ 8.0 (1H, s, 

br), 8.05 (1H, d, J = 7.6, 1.5 Hz), 7.98 (1H, d, J = 7.4, 1.6 Hz), 7.45 (1H, t, J =  

7.5, 7.5 Hz), 6.51 (2H, dd, J = 1.5, 1.5 Hz), 3.83 (9H, s). 13C NMR (100 MHz, 

CDCl3) δ 56.1, 56.1, 61, 106.3, 106.3, 118.3, 122.3, 124.5, 124.6, 130.0, 

131.4, 138.3, 138.1, 153.1, 153.1, 159.3, 184.3. HRMS: calcd for C17H15NO5, 

313.3047; found, 313.0950. 

N
H

O

O

OMe

OMe

 

7-(3,4-Dimethoxyphenyl)isatin was prepared using general procedure A, 

(24%), orange solid, mp 341-343 °C. 1H NMR (400 MHz, CDCl3) δ 8.0 (1H, s, 
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br), 8.05 (1H, d, J = 7.4, 1.5 Hz), 7.98 (1H, d, J = 7.4, 1.6 Hz), 7.45 (1H, t, J =  

7.5, 7.5 Hz), 7.24 (1H, d, J = 7.4, 1.5 Hz), 6.94 (1H, d, J = 7.5 Hz), 6.95 (1H, 

d, J = 7.5 Hz), 3.83 (6H, s). 13C NMR (100 MHz, CDCl3) δ 56.1, 56.1, 61, 

111.0, 114.0, 118.2, 122.2, 122.4, 124.6, 124.7, 129.8, 130.0, 138.3, 148.7, 

150.3, 159.3, 184.3. HRMS: calcd for C16H13NO4, 283.2787; found, 283.0845. 

N
H

O

O

 

7-(4-t-Butylphenyl)isatin was prepared using general procedure A, (10%), 

orange solid, mp 310-312 °C. 1H NMR (400 MHz, CDCl3) δ 8.0 (1H, s, br), 

8.05 (1H, d, J = 7.4, 1.5 Hz), 7.97 (1H, d, J = 7.8, 1.7 Hz), 7.44 (1H, t, J = 7.6, 

7.6 Hz), 7.37 (2H, dd, J = 7.5, 7.5, 1.5, 1.5 Hz), 7.38 (2H, dd, J = 7.5, 7.5, 1.5, 

1.5 Hz), 1.35 (9H, s). 13C NMR (100 MHz, CDCl3) δ 31.3, 31.3, 31.3, 34.2, 

118.2, 122.4, 124.6, 124.7, 125.5, 125.5, 127.5, 127.5, 130.0, 136.6, 138.3, 

150.2, 159.3, 184.3. HRMS: calcd for C18H17NO2, 279.3331; found, 279.1259. 
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N
H

O

O

 

7-Vinylisatin was prepared using general procedure A, (65%), orange solid, 

mp 284-286 ºC. 1H NMR (400 MHz, CDCl3) δ 8.0 (1H, s, br), 7.89 (1H, d, J = 

7.4, 1.4 Hz), 7.64 (1H, d, J = 7.6, 1.3 Hz), 7.22 (1H, t, J = 7.6, 7.6) 6.90 (1H, 

dd, J = 16.8, 10.0 Hz), 5.44 (1H, d, J = 2.1, 16.8 Hz), 5.34 (1H, d, J = 2.1, 

10.0 Hz). 13C NMR (100 MHz, CDCl3) δ114.3, 117.8, 124.8, 124.9, 130.7, 

134.5, 134.6, 137.2, 159.3, 184.3. HRMS: calcd for C14H8ClNO2, 173.1681; 

found, 173.0477. 

N

O

O

Me

 

N-(Ethyl)-5-methylisatin was prepared using general procedure B, (83%), 

orange solid, mp 185-187 °C. 1H NMR (400 MHz, CDCl3) δ 1.32 (3H, t, J = 8.0 

Hz), 2.35 (3H, s), 4.28 (2H, q, J = 8.0 Hz), 7.50 (1H, dd, J = 7.5, 1.5 Hz), 7.58 

(1H, s, J = 1.5 Hz), 7.88 (1H, d, J = 7.5 Hz). 13C NMR (100 MHz, CDCl3) δ 

13.8, 21.3, 42.7, 124.1, 137.5, 116.5, 117.8, 145.1, 180.0, 160.0. HRMS: 

calcd for C11H11NO2, 189.0790; found, 189.1125. 
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N

O

O

Me

 

N-(1-Propyl)-5-methylisatin was prepared using general procedure B, 

(48%), orange solid, mp 195-197 °C. 1H NMR (400 MHz, CDCl3) δ 0.90 (3H, t, 

J = 8.0 Hz), 1.73 (2H, m, J = 7.1, 8.0 Hz), 2.34 (3H, s), 4.28 (2H, t, J = 7.1 

Hz), 7.50 (1H, d, J = 7.5, 1.5 Hz), 7.58 (1H, s), 7.88 (1H, d, J = 7.5, 1.5 Hz). 

13C NMR (100 MHz, CDCl3) δ 11.5, 20.3, 21.3, 45.1, 116.5, 117.6, 124.0, 

124.1, 137.5, 145.2, 160.1, 179.9. HRMS: calcd for C12H13NO2, 203.2371; 

found, 203.0946. 

N

O

O

Me

 

N-(1-Butyl)-5-methylisatin was prepared using general procedure B, (58%), 

orange solid, mp 207-208 °C. 1H NMR (400 MHz, CDCl3) δ 0.90 (3H, t, J = 8.0 

Hz), 1.31 (2H, m, J = 7.1, 8.0 Hz), 1.52 (2H, m, J = 7.1, 7.1 Hz), 2.34 (3H, s), 

3.97 (2H, t, J = 7.1 Hz), 7.50 (1H, dd, J = 7.5, 1.5 Hz), 7.58 (1H, s), 7.88 (1H, 

d, J = 7.5 Hz). 13C NMR (100 MHz, CDCl3) δ 13.8, 20.1, 21.3, 29.6, 42.7, 

124.1, 137.5, 124.0, 116.5, 117.8, 145.1, 180.0, 160.0. HRMS: calcd for 

C13H15NO2, 217.2637; found, 217.1103. 
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N

O

O

Me

 

N-(Benzyl)-5-methylisatin was prepared using general procedure B, (52%), 

orange solid, mp 268-270 °C. 1H NMR (400 MHz, CDCl3) δ 2.34 (3H, s), 4.94 

(2H, s), 7.26 (1H, m, J = 7.5, 7.5, 1.5, 1.5 Hz), 7.33 (2H, m, 7.5, 7.5, 1.5 Hz), 

7.49 (1H, d, J = 7.5, 1.5 Hz), 7.58 (1H, s), 7.88 (1H, dd, 7.5, 1.5). 13C NMR 

(100 MHz, CDCl3) δ 21.3, 47.6, 116.5, 117.6, 124.0, 124.1, 126.7, 126.9, 

126.9, 128.5, 128.5, 136.1, 137.4, 145.1, 160.4, 179.9. HRMS: calcd for 

C16H13NO2, 251.2799; found, 251.0946. 

N

O

O

Me

Me  

N-(4-Methylbenzyl)-5-methylisatin was prepared using general procedure 

B, (68%), orange solid, mp 290-293 °C. 1H NMR (400 MHz, CDCl3) δ 2.34 

(6H, s), 4.94 (2H, s), 7.11 (4H, dd, J = 7.5, 7.5, 1.5, 1.5 Hz), 7.49 (1H, d, J = 

7.5, 1.5 Hz), 7.58 (1H, s), 7.88 (1H, dd, 7.5, 1.5). 13C NMR (100 MHz, CDCl3) 

δ 21.3, 21.3, 47.6, 116.5, 117.6, 124.0, 124.1, 128.1, 128.8, 128.8, 133.1, 

136.1, 137.4, 145.1, 160.4, 179.9. HRMS: calcd for C17H15NO2, 265.3065; 

found, 265.1103. 
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N

O

O

Me

F  

N-(4-Fluorobenzyl)-5-methylisatin was prepared using general procedure B, 

(86%), orange solid, mp 281-282 °C. 1H NMR (400 MHz, CDCl3) δ 2.34 (3H, 

s), 4.94 (2H, s), 7.12 (2H, dd, J = 8.0, 7.5, 1.5 Hz), 7.39 (2H, dd, J = 7.5, 1.5, 

5.0 Hz), 7.49 (1H, d, J = 7.5, 1.5 Hz), 7.58 (1H, s), 7.88 (1H, dd, 7.5, 1.5). 13C 

NMR (100 MHz, CDCl3) δ 21.3, 47.6, 115.3, 115.3, 116.5, 117.6, 124.0, 

124.1, 128.5, 128.5, 131.7, 137.4, 145.1, 160.4, 160.9, 179.9. HRMS: calcd 

for C16H12FNO2, 269.2704; found, 269.0852. 

N

O

O

Me

Br  

N-(4-Bromobenzyl)-5-methylisatin was prepared using general procedure 

B, (96%), orange solid, mp 339-340 °C. 1H NMR (400 MHz, CDCl3) δ 2.34 

(3H, s), 4.94 (2H, s), 7.12 (2H, dd, J = 7.5, 1.5 Hz), 7.39 (2H, dd, J = 7.5, 1.5, 

5.0 Hz), 7.49 (1H, d, J = 7.5, 1.5 Hz), 7.58 (1H, s), 7.88 (1H, s). 13C NMR (100 

MHz, CDCl3) δ 21.3, 47.6, 116.5, 117.6, 121.1, 124.0, 124.1, 129.1, 129.1, 

131.4, 131.4, 135.1, 137.4, 145.1, 160.4, 179.9. HRMS: calcd for 

C16H12BrNO2, 330.1760; found, 329.0051. 
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N

O

O

Me

CF3  

N-(4-(Trifluoro)methylbenzyl)-5-methylisatin was prepared using general 

procedure B, (83%), orange solid, mp 295-297 °C. 1H NMR (400 MHz, CDCl3) 

δ 2.34 (3H, s), 4.94 (2H, s), 7.16 (2H, dd, J = 7.5, 1.5 Hz), 7.50 (2H, dd, J = 

7.5, 1.5 Hz), 7.49 (1H, d, J = 7.5, 1.5 Hz), 7.58 (1H, s), 7.88 (1H, s). 13C NMR 

(100 MHz, CDCl3) δ 21.3, 47.6, 116.5, 117.6, 124.0, 124.1, 124.1,  124.9, 

124.9, 128.5, 128.5, 129.1, 137.4, 139.4, 145.1, 160.4, 179.9. HRMS: calcd 

for C17H12F3NO2, 319.2779; found, 319.0820. 

N

O

O

Me

Cl  

N-(4-Chlorobenzyl)-5-methylisatin was prepared using general procedure 

B, (40%), orange solid, mp 309-310 °C. 1H NMR (400 MHz, CDCl3) δ 2.34 

(3H, s), 4.94 (2H, s), 7.32 (2H, dd, J = 7.5, 1.5 Hz), 7.37 (2H, dd, J = 7.5, 1.5, 

5.0 Hz), 7.49 (1H, d, J = 7.5, 1.5 Hz), 7.58 (1H, s), 7.88 (1H, s). 13C NMR (100 

MHz, CDCl3) δ 21.3, 47.6, 116.5, 117.6, 124.0, 124.1, 128.6, 128.6, 129.3, 

129.3, 132.3, 134.4, 137.4, 145.1, 160.4, 179.9. HRMS: calcd for 

C16H12ClNO2, 285.0557; found, 285.7250. 
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N

O

O

Cl

 

N-(Ethyl)-5-chloroisatin was prepared using general procedure B, (65%), 

orange solid, mp 202-204 °C. 1H NMR (400 MHz, CDCl3) δ 1.32 (3H, t, J = 8.0 

Hz), 4.28 (2H, q, J = 8.0 Hz), 7.75 (1H, dd, J = 7.5, 1.5 Hz), 7.79 (1H, s, J = 

1.5 Hz), 7.94 (1H, d, J = 7.5 Hz). 13C NMR (100 MHz, CDCl3) δ 13.8, 42.7, 

119.1, 124.7, 126.9, 134.8, 138.2, 146.2, 160.1, 179.9. HRMS: calcd for 

C10H8ClNO2, 209.6290 found, 209.0244. 

 

N

O

O

Cl

 

N-(1-Propyl)-5-chloroisatin was prepared using general procedure B, (36%),  

orange solid, mp 215-216 °C. 1H NMR (400 MHz, CDCl3) δ 0.90 (3H, t, J = 8.0 

Hz), 1.73 (2H, m, J = 7.1, 8.0 Hz), 4.28 (2H, t, J = 7.1 Hz), 7.75 (1H, dd, J = 

7.5, 1.5 Hz), 7.79 (1H, s, J = 1.5 Hz), 7.94 (1H, d, J = 7.5 Hz). 13C NMR (100 

MHz, CDCl3) δ 11.5, 20.3, 44.9, 119.6, 124.7, 126.9, 134.8, 138.2, 145.2, 

160.1, 179.9. HRMS: calcd for C11H10ClNO2, 223.6556; found, 223.0400. 
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N

O

O

Cl

 

N-(1-Butyl)-5-chloroisatin was prepared using general procedure B, (62%), 

orange solid, mp 225-227 °C. 1H NMR (400 MHz, CDCl3) δ 0.90 (3H, t, J = 8.0 

Hz), 1.31 (2H, m, J = 7.1, 8.0 Hz), 1.52 (2H, m, J = 7.1, 7.1 Hz), 3.97 (2H, t, J 

= 7.1 Hz), 7.75 (1H, dd, J = 7.5, 1.5 Hz), 7.79 (1H, s, J = 1.5 Hz), 7.94 (1H, d, 

J = 7.5 Hz). 13C NMR (100 MHz, CDCl3) δ 13.8, 20.3, 29.6, 42.9, 119.6, 124.7, 

126.9, 134.8, 138.2, 145.2, 160.1, 179.9.HRMS: calcd for C12H12ClNO2, 

237.6822; found, 237.0557. 

N

O

O

Cl

 

N-(Benzyl)-5-chloroisatin was prepared using general procedure B, (84%), 

orange solid, mp 286-288 °C.1H NMR (400 MHz, CDCl3) δ 4.94 (2H, s), 7.23 

(2H, m, J = 1.5, 7.5, 7.5 Hz), 7.26 (1H, m, J = 7.5, 7.5, 1.5, 1.5 Hz), 7.33 (2H, 

m, 7.5, 7.5, 1.5 Hz), 7.75 (1H, dd, J = 7.5, 1.5 Hz), 7.79 (1H, s, J = 1.5 Hz), 

7.94 (1H, d, J = 7.5 Hz). 13C NMR (100 MHz, CDCl3) δ 47.6, 119.1, 124.7, 

126.7, 126.9, 126.9, 126.9, 128.5, 128.5, 134.8, 136.1, 138.2, 145.1, 160.4, 

179.9. HRMS: calcd for C15H10ClNO2, 271.6984; found, 271.0400. 
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N

O

O

Cl

Me  

N-(4-Methylbenzyl)-5-chloroisatin was prepared using general procedure B, 

(71%), orange solid, mp 310-312 °C. 1H NMR (400 MHz, CDCl3) δ 2.35 (3H, 

s), 4.94 (2H, s), 7.11 (4H, m, J = 7.5, 7.5, 1.5, 1.5 Hz),  7.75 (1H, dd, J = 7.5, 

1.5 Hz), 7.79 (1H, s, J = 1.5 Hz), 7.94 (1H, d, J = 7.5 Hz). 13C NMR (100 MHz, 

CDCl3) δ 21.3, 47.6, 119.1, 124.7, 126.9, 128.1, 128.1, 128.8, 128.8, 133.1, 

134.8, 136.1, 138.2, 145.1, 160.4, 179.9. HRMS: calcd for C16H12ClNO2, 

285.7250; found, 285.0557. 

N

O

O

Cl

F  

N-(4-Fluorobenzyl)-5-chloroisatin was prepared using general procedure B, 

(78%), orange solid, mp 300-303 °C. 1H NMR (400 MHz, CDCl3) δ 4.94 (2H, 

s), 7.12 (2H, dd, J = 8.0, 7.5, 1.5 Hz), 7.39 (2H, dd, J = 7.5, 1.5, 5.0 Hz), 7.75 

(1H, dd, J = 7.5, 1.5 Hz), 7.79 (1H, s, J = 1.5 Hz), 7.94 (1H, d, J = 7.5 Hz). 13C 

NMR (100 MHz, CDCl3) δ 47.6, 115.3, 115.3, 116.5, 117.6, 119.1, 124.0, 

124.1, 124.7, 126.9, 128.5, 128.5, 131.7, 134.7, 138.4, 146.1, 160.4, 160.9, 

179.9. HRMS: calcd for C15H9ClNO2, 289.6889; found, 289.0306. 
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N

O

O

Cl

Br  

N-(4-Bromobenzyl)-5-chloroisatin was prepared using general procedure B, 

(91%), orange solid, mp 358-360 °C.1H NMR (400 MHz, CDCl3) δ 4.94 (2H, 

s), 7.12 (2H, dd, J = 7.5, 1.5 Hz), 7.85 (2H, dd, J = 7.5, 1.5 Hz), 7.75 (1H, dd, 

J = 7.5, 1.5 Hz), 7.79 (1H, s, J = 1.5 Hz), 7.94 (1H, d, J = 7.5 Hz). 13C NMR 

(100 MHz, CDCl3) δ 47.6, 115.3, 119.1, 121.1, 124.0, 124.1, 124.7, 126.9, 

129.1, 129.1, 131.4, 131.4, 134.7, 135.1, 138.2, 146.1, 160.4, 179.9. HRMS: 

calcd for C15H9ClNO2, 350.5945; found, 350.9485. 

N

O

O

Cl

CF3  

N-(4-(Trifluoro)methylbenzyl)-5-chloroisatin was prepared using general 

procedure B, (89%), orange solid, mp 312-314 °C.1H NMR (400 MHz, CDCl3) 

δ 4.94 (2H, s), 7.16 (2H, dd, J = 7.5, 1.5 Hz), 7.50 (2H, dd, J = 7.5, 1.5 Hz), 

7.75 (1H, dd, J = 7.5, 1.5 Hz), 7.79 (1H, s, J = 1.5 Hz), 7.94 (1H, d, J = 7.5 

Hz). 13C NMR (100 MHz, CDCl3) δ 47.6, 119.1, 124.1, 124.7, 124.9, 124.9, 

126.9, 128.5, 128.5, 129.0, 134.8, 138.2, 139.4, 146.2, 160.4, 179.9. HRMS: 

calcd for C16H9ClF3NO2, 339.6964; found, 339.0274. 
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N

O

O

Cl

Cl  

N-(4-Chlorobenzyl)-5-chloroisatin was prepared using general procedure B, 

(51%), orange solid, mp 330-333 °C.1H NMR (400 MHz, CDCl3) δ 4.94 (2H, 

s), 7.32 (2H, dd, J = 7.5, 1.5 Hz), 7.37 (2H, dd, J = 7.5, 1.5, 5.0 Hz), 7.75 (1H, 

dd, J = 7.5, 1.5 Hz), 7.79 (1H, s, J = 1.5 Hz), 7.94 (1H, d, J = 7.5 Hz). 13C 

NMR (100 MHz, CDCl3) δ 47.6, 119.1, 124.7, 126.9, 128.6, 128.6,  129.3, 

129.3, 132.3, 134.2, 134.8, 138.2, 146.2, 160.4, 179.9. HRMS: calcd for 

C15H9Cl2NO2, 306.1435; found, 305.0991. 

N

O

O

Cl

HCl  

5,7-Dichloroisatin.  A round-bottom flask was charged with chloral hydrate 

(0.55 g, 3.3 mmol), anhydrous Na2SO4 (3.41 g, 24 mmol), and EtOH/H2O (v:v, 

4 mL). The solution was acidified to a pH 1 with 6 N HCl. The reaction was 

stirred at 40 °C until the solution became clear. Solid 2,6-dichloroaniline (0.50 

g, 3.0 mmol) and NH2OH·HCl (0.70 g, 10 mmol) were added and the reaction 

was heated to 100 °C for 40 min. The reaction was cooled to rt and the 

isonitrosoacetanilide precipitate was formed. The precipitate was collected via 

filtration and dried under vacuum for 4 h.  The dried precipitate was then 
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dissolved in concentrated H2SO4 (10 mL) and heated to 60 °C for 1 h. The 

reaction was cooled to rt and poured over cracked ice (20 mL) yielding an 

orange precipitate. The precipitate was collected via filtration and dried under 

vacuum overnight to give 0.56 g of the title compound as an orange solid 

(53%). mp 230 °C. 1H NMR (400 MHz, CDCl3) δ 7.67 (1H, s, J = 1.5 Hz), 8.0 

(1H, s, br), 8.26 (1H, s, J = 1.5 Hz). 13C NMR (100 MHz, CDCl3) δ 120.5, 

125.0, 132.4, 136.4, 137.9, 140.4, 159.3, 184.3. HRMS calcd for C9H3Cl2NO2, 

216.0209; found 216.0265. 

 

N

O

O

Cl

Cl  

N-(Ethyl)-5,7-dichloroisatin was prepared using general procedure B, 

(36%), orange solid, mp 242-246 °C.1H NMR (400 MHz, CDCl3) δ 1.32 (3H, t, 

J = 8.0 Hz), 4.28 (2H, q, J = 8.0 Hz), 7.67 (1H, s, J = 1.5 Hz), 8.29 (1H, s, J = 

1.5 Hz). 13C NMR (100 MHz, CDCl3) δ 13.7, 42.0, 120.5, 125.0, 130.7, 136.4, 

137.9, 140.4, 160.1, 179.9. HRMS: calcd for C10H7Cl2NO2, 244.0741; found, 

244.0951. 
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N

O

O

Cl

Cl

 

N-(1-Propyl)-5,7-dichloroisatin was prepared using general procedure B, 

(20%), orange solid, mp 257-259 °C.1H NMR (400 MHz, CDCl3) δ 0.90 (3H, t, 

J = 8.0 Hz), 1.73 (2H, m, J = 7.1, 8.0 Hz), 4.28 (2H, t, J = 7.1 Hz), 7.67 (1H, s, 

J = 1.5 Hz), 8.29 (1H, s, J = 1.5 Hz). 13C NMR (100 MHz, CDCl3) δ 11.5, 20.5, 

44.4, 120.5, 125.0, 130.7, 136.4, 137.9, 140.4, 160.1, 179.9. HRMS: calcd for 

C11H9Cl2NO2, 258.1007; found, 258.0044. 

 

N

O

O

Cl

Cl

 

N-(1-Butyl)-5,7-dichloroisatin was prepared using general procedure B, 

(12%), orange solid, mp 268-270 °C.1H NMR (400 MHz, CDCl3) δ 0.90 (3H, t, 

J = 8.0 Hz), 1.31 (2H, m, J = 7.1, 8.0 Hz), 1.52 (2H, m, J = 7.1, 7.1 Hz), 3.97 

(2H, t, J = 7.1, 7.1 Hz), 7.67 (1H, s, J = 1.5 Hz), 8.29 (1H, s, J = 1.5 Hz). 13C 

NMR (100 MHz, CDCl3) δ 13.8, 20.1, 29.6, 41.9, 120.5, 125.0, 130.7, 136.4, 

137.9, 140.4, 160.1, 179.9. HRMS: calcd for C12H11Cl2NO2, 272.1272; found, 

272.0200. 
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N

O

O

Cl

Cl

 

N-(Benzyl)-5,7-dichloroisatin was prepared using general procedure B, 

(34%), orange solid, mp 330-332 °C.1H NMR (400 MHz, CDCl3) δ 4.94 (2H, 

s), 7.23 (2H, m, J = 1.5, 7.5, 7.5 Hz), 7.26 (1H, m, J = 7.5, 7.5, 1.5, 1.5 Hz), 

7.33 (2H, m, 7.5, 7.5, 1.5 Hz), 7.67 (1H, s, J = 1.5 Hz), 8.29 (1H, s, J = 1.5 

Hz). 13C NMR (100 MHz, CDCl3) δ 47.1, 120.5, 125.0, 126.7, 126.9, 126.9, 

128.5, 128.5, 130.7, 136.1, 136.4, 137.9, 140.4, 160.4, 179.9. HRMS: calcd 

for C15H9Cl2NO2, 306.1435; found, 306.0044. 

N

O

O

Cl

Cl
Me  

N-(4-Methylbenzyl)-5,7-dichloroisatin was prepared using general 

procedure B, (53%), orange solid, mp 352-354 °C.1H NMR (400 MHz, CDCl3) 

δ 2.35 (3H, s), 4.94 (2H, s), 7.11 (4H, m, J = 7.5, 7.5, 1.5, 1.5 Hz), 7.67 (1H, 

s, J = 1.5 Hz), 8.29 (1H, s, J = 1.5 Hz). 13C NMR (100 MHz, CDCl3) δ 21.3, 

47.1, 120.5, 125.0, 128.1, 128.1, 128.8, 128.8, 130.7, 133.1, 136.4, 136.4, 

137.9, 140.4, 160.4, 179.9. HRMS: calcd for C16H11Cl2NO2, 319.0167; found, 

319.0245. 
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N

O

O

Cl

Cl
F  

N-(4-Fluorobenzyl)-5,7-dichloroisatin was prepared using general 

procedure B, (48%), orange solid, mp 340-342 °C.1H NMR (400 MHz, CDCl3) 

δ 4.94 (2H, s), 7.12 (2H, dd, J = 8.0, 7.5, 1.5 Hz), 7.39 (2H, dd, J = 7.5, 1.5, 

5.0 Hz), 7.67 (1H, s, J = 1.5 Hz), 8.29 (1H, s, J = 1.5 Hz). 13C NMR (100 MHz, 

CDCl3) δ 47.1, 115.3, 115.3, 120.9, 125.0, 128.5, 128.5, 130.7, 131.7136.4, 

137.9, 140.4, 160.4, 179.9. HRMS: calcd for C15H8Cl2FNO2, 322.9916; found, 

323.0042. 

 

N

O

O

Cl

Cl
Br  

N-(4-Bromobenzyl)-5,7-dichloroisatin was prepared using general 

procedure B, (41%), orange solid, mp 399-400 °C.1H NMR (400 MHz, CDCl3) 

δ 4.94 (2H, s), 7.12 (2H, dd, J = 7.5, 1.5 Hz), 7.85 (2H, dd, J = 7.5, 1.5 Hz), 

7.67 (1H, s, J = 1.5 Hz), 8.29 (1H, s, J = 1.5 Hz). 13C NMR (100 MHz, CDCl3) 

δ 47.1, 120.5, 121.1, 125.0, 129.1, 129.1, 130.7, 131.4, 131.4, 135.1, 136.4, 

137.9, 140.4, 160.4, 179.9. HRMS: calcd for C15H8BrCl2NO2, 382.9115; found, 

382.9326. 
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N

O

O

Cl

Cl
CF3  

N-(4-(Trifluoro)methylbenzyl)-5,7-dichloroisatin was prepared using 

general procedure B, (88%), orange solid, mp 356-359 °C.1H NMR (400 MHz, 

CDCl3) δ  4.94 (2H, s), 7.16 (2H, dd, J = 7.5, 1.5 Hz), 7.50 (2H, dd, J = 7.5, 

1.5 Hz), 7.67 (1H, s, J = 1.5 Hz), 8.29 (1H, s, J = 1.5 Hz). 13C NMR (100 MHz, 

CDCl3) δ 47.1, 120.5, 124.1, 124.5, 124.5, 150.0, 128.9, 128.9, 129.0, 130.7, 

136.4, 137.9, 139.4, 140.4, 160.5, 179.9. HRMS: calcd for C16H8Cl2F3NO2, 

372.9884; found, 373.0039. 

 

N

O

O

Cl

Cl
Cl  

N-(4-Chlorobenzyl)-5,7-dichloroisatin was prepared using general 

procedure B, (45%), orange solid, mp 369-371 °C.1H NMR (400 MHz, CDCl3) 

δ 4.94 (2H, s), 7.32 (2H, dd, J = 7.5, 1.5 Hz), 7.37 (2H, dd, J = 7.5, 1.5, 5.0 

Hz), 7.67 (1H, s, J = 1.5 Hz), 8.29 (1H, s, J = 1.5 Hz). 13C NMR (100 MHz, 

CDCl3) δ 47.1, 120.5, 125.0, 128.6, 128.6, 129.3, 129.3, 130.7, 132.3, 134.2, 

136.4, 137.9, 140.4, 160.4, 179.9. HRMS: calcd for C15H8Cl3NO2, 338.9621; 

found, 338.9847. 
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N

O

O

 

N-(Phenyl)-isatin was prepared using general procedure C, (16%), orange 

solid, mp 243-246 °C. 1H NMR (400 MHz, CDCl3) δ 7.17 (1H, dd, J = 7.5, 7.5, 

1.5, 1.5 Hz), 7.38 (1H, dd, J = 7.5, 7.5, 1.5 Hz), 7.43 (2H, m, J = 7.5, 7.5, 1.5, 

1.5 Hz), 7.47 (2H, m, J = 7.5, 7.5, 1.5 Hz), 7.71 (1H, t, J = 7.5, 7.5 Hz), 8.05 

(2H, dd, J = 7.5, 1.5 Hz). 13C NMR (100 MHz, CDCl3) δ 115.2, 121.9, 123.8, 

126.4, 127.0, 127.0, 127.6, 129.6, 129.6, 135.4, 141.9, 144.4, 153.0, 184.3.  

HRMS: calcd for C14H9NO2, 223.0633; found, 223.0978. 

 

N

O

O

Me

 

N-(Phenyl)-5-methylisatin was prepared using general procedure C, (16%), 

orange solid, mp 256-258 °C. 1H NMR (400 MHz, CDCl3) δ 2.34 (3H, s), 7.19 

(1H, dd, J = 7.5, 7.5, 1.5, 1.5 Hz), 7.43 (2H, m, J = 7.5, 7.5, 1.5, 1.5 Hz), 7.47 

(2H, m, J = 7.5, 7.5, 1.5 Hz), 7.49 (1H, d, J = 1.5, 7.5 Hz), 7.58 (1H, s, J = 1.5 

Hz), 7.88 (1H, d, J = 7.5 Hz). 13C NMR (100 MHz, CDCl3) δ21.3, 115.1, 119.5, 
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121.9, 124.7, 127.0, 127.0, 129.6, 129.6, 131.1, 135.7, 141.4, 141.9, 153.0, 

184.3.  HRMS: calcd for C15H11NO2, 237.0790; found, 237.0991. 

N

O

O

Me

Cl  

N-(4-Chlorophenyl)-5-methylisatin was prepared using general procedure 

C, (25%), orange solid, mp 299-302 °C. 1H NMR (400 MHz, CDCl3) δ 2.34 

(3H, s), 7.47 (2H, dd, J = 7.5, 7.5, 1.5,1.5 Hz), 7.49 (1H, d, J = 1.5, 7.5 Hz), 

7.58 (1H, s, J = 1.5 Hz), 7.75 (2H, d, J = 7.5, 1.5 Hz), 7.88 (1H, d, J = 7.5 Hz). 

13C NMR (100 MHz, CDCl3) δ 21.3, 115.1, 119.5, 124.7, 127.2, 129.7, 129.7, 

131.3, 134.3, 134.3, 135.7, 140.0, 141.4, 153.0 184.3.  HRMS: calcd for 

C15H10ClNO2, 271.0400; found, 271.0739. 

N

O

O

Me

OMe  

N-(4-Methoxyphenyl)-5-methylisatin was prepared using general procedure 

C, (34%), orange solid, mp 300-302 °C. 1H NMR (400 MHz, CDCl3) δ 2.34 

(3H, s), 3.83 (3H, s), 6.97 (2H, d, J = 7.5, 1.5 Hz), 7.17 (2H, d, J = 7.5, 1.5 

Hz), 7.49 (1H, dd, J = 7.5, 1.5 Hz), 7.58 (1H, s, J = 1.5), 7.88 (1H, d, J = 7.5 
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Hz). 13C NMR (100 MHz, CDCl3) δ 21.3,  55.8, 115.1, 115.1, 115.2, 119.5, 

124.7, 131.3, 133.7, 133.7, 132.2, 135.7, 141.4, 152.8, 153.0, 184.4.  HRMS: 

calcd for C16H13NO3, 267.0895; found, 267.0783. 

N

O

O

Me

CF3  

N-(4-(Trifluoro)methylphenyl)-5-methylisatin was prepared using general 

procedure C, (5%), orange solid, mp 284-285 °C. 1H NMR (400 MHz, CDCl3) 

δ 2.34 (3H, s), 7.49 (1H, dd, J = 1.5, 7.5 Hz), 7.58 (1H, s J = 1.5 Hz), 7.60 

(2H, dd, J = 7.5, 7.5, 1.5, 1.5 Hz), 7.74 (2H, dd, J = 7.5, 7.5, 1.5, 1.5 Hz), 7.88 

(1H, d, J = 1.5 Hz). 13C NMR (100 MHz, CDCl3) δ 21.3, 115.1, 119.5, 124.1, 

124.7, 126.0, 126.0, 130.8, 130.8, 131.3, 135.7, 141.4, 145.2, 153.0, 184.3.  

HRMS: calcd for C16H10F3NO2, 305.0664; found, 305.4378. 

N

O

O

Cl

 

N-(Phenyl)-5-chloroisatin was prepared using general procedure C, (32%), 

orange solid, mp 274-276 °C. 1H NMR (400 MHz, CDCl3) δ 7.19 (1H, dd, J = 

7.5, 7.5, 1.5, 1.5 Hz), 7.43 (2H, m, J = 7.5, 7.5, 1.5, 1.5 Hz), 7.47 (2H, m, J = 
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7.5, 7.5, 1.5 Hz), 7.75 (1H, dd, J = 1.5, 7.5 Hz), 7.79 (1H, s, J = 1.5 Hz), 7.94 

(1H, d, J = 7.5 Hz). 13C NMR (100 MHz, CDCl3) δ 116.6, 121.0, 121.9, 127.0, 

127.0, 127.6, 129.6, 129.6, 132.1, 135.5, 141.9, 142.5, 153.0, 184.0.  HRMS: 

calcd for C14H8ClNO3, 257.0244; found, 257.0573. 

N

O

O

Cl

Cl  

N-(4-Chlorophenyl)-5-chloroisatin was prepared using general procedure 

C, (41%), orange solid, mp 316-318 °C. 1H NMR (400 MHz, CDCl3) δ 7.47 

(2H, dd, J = 7.5, 7.5, 1.5,1.5 Hz), 7.75 (3H, m, J = 7.5, 7.5, 1.5, 1.5 Hz), 7.79 

(1H, s, J = 1.5 Hz), 7.94 (1H, d, J = 7.5 Hz). 13C NMR (100 MHz, CDCl3) δ 

116.6, 121.0, 127.2, 127.6, 129.7, 129.7, 132.1, 134.3, 134,3, 135.5, 140.0, 

142.5, 153.0, 184.3.  HRMS: calcd for C14H7Cl2NO2, 290.9854; found, 

291.0023. 

N

O

O

Cl

OMe  

N-(4-Methoxyphenyl)-5-chloroisatin was prepared using general procedure 

C, (23%), orange solid, mp 320-323 °C. 1H NMR (400 MHz, CDCl3) δ 3.83 
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(3H, s), 6.97 (2H, d, J = 7.5, 1.5 Hz), 7.17 (2H, d, J = 7.5, 1.5 Hz), 7.75 (1H, 

dd, J = 1.5, 7.5 Hz), 7.79 (1H, s, J = 1.5 Hz), 7.94 (1H, d, J = 7.5 Hz). 13C 

NMR (100 MHz, CDCl3) δ 55.8, 115.1, 115.1, 116.6, 121.0, 127.6, 133.7, 

133.7, 134.2, 135.5, 142.5, 152.8, 153.0, 184.3.  HRMS: calcd for C15H10ClO3, 

287.0349; found, 287.0591. 

N

O

O

Cl

CF3  

N-(4-(Trifluoro)methylphenyl)-5-chloroisatin was prepared using general 

procedure C, (15%), orange solid, mp 302-304 °C. 1H NMR (400 MHz, CDCl3) 

δ 7.60 (2H, dd, J = 7.5, 7.5, 1.5, 1.5 Hz), 7.74 (2H, dd, J = 7.5, 7.5, 1.5, 1.5 

Hz), 7.75 (1H, dd, J = 1.5, 7.5 Hz), 7.79 (1H, s, J = 1.5 Hz), 7.94 (1H, d, J = 

7.5 Hz). 13C NMR (100 MHz, CDCl3) δ 116.6, 121.0, 124.1, 126.0, 126.0, 

126.0, 127.6, 130.8, 130.8, 132.1, 135.5, 142.5, 145.2, 153.0, 184.3.  HRMS: 

calcd for C15H7ClF3NO2, 325.0117; found, 325.0328. 
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