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Abstract

Polarization mode dispersion (PMD) is a major impairment in high bit rate

optical communication systems, causing system degradation. Although the ran-

dom nature of PMD makes it difficult to be characterized, many measurement

techniques have been developed to measure PMD and its effects on network re-

liability. However, the lack of in situ measurement techniques that can measure

PMD on traffic carrying fibers has made it difficult for engineers to characterize the

effects of PMD on wide bandwidth wavelength division multiplex (WDM) optical

systems. The objective of this research is to develop an in situ PMD monitoring

technique for long haul fiber optic links and use this technique to characterize the

magnitude and distribution of PMD on these links.

Towards this end, a systematic approach was followed to develop a monitoring

equipment that can measure PMD on traffic carrying links. First, an earlier

implementation of the PMD monitoring equipment based on coherent detection

and polarization scrambling [16] was improved in terms of size, speed and accuracy

to make it more suitable for field measurements of PMD in traffic carrying fiber

optic links. The coherent PMD monitor can measure differential group delay

(DGD) values in the range of 0 to 50 ps. Secondly, using theoretical analysis, it

was ascertained that the magnitude of PMD, the DGD measured by the PMD

monitor, is the apparent DGD of the fiber and not its true DGD. Mathematical

analysis was used to derive a relationship between the true DGD and the apparent

DGD of the fiber. Also, it was found that the distribution of the apparent DGD

is Rayleigh, unlike the true DGD which is Maxwellian.

Thirdly, the hardware and software for implementing a polarization tracking

algorithm to measure PMD was developed and tests were conducted to validate

the algorithm in terms of speed, accuracy and the characteristics of the measured

DGD. The polarization tracking algorithm has a higher measurement speed and
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lesser memory requirements than polarization scrambling. A number of labora-

tory experiments and field trials on traffic carrying fibers were conducted for a

comparative analysis of polarization scrambling and polarization tracking. Using

the polarization tracking algorithm to measure DGD, the measurement speed was

found to be 20 times higher and the memory requirements about 80 times less

than the memory required for DGD measurements using polarization scrambling.

Results of the laboratory experiments and field trials agree with our theoretical

analysis and the two algorithms have similar statistics for the measured DGD.

Finally, the possibility of a more efficient implementation of polarization tracking

was explored to measure PMD in real time. A run time implementation with

the existing hardware and software was developed where the advantages of polar-

ization tracking over polarization scrambling was made evident. The use of the

in-situ PMD monitoring technique will enable network engineers to monitor the

impact of PMD in live traffic carrying links and to select the wavelength bands

that are relatively less affected by PMD.
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Chapter 1

Introduction

The phenomenon of polarization mode dispersion (PMD), its characteristics

and effects on light wave systems has been a well- researched topic since 1970.

With the advent of fourth and fifth generation fiber optic systems where erbium

doped fiber amplifiers (EDFAs) are used to increase the repeater spacing in optical

links and wavelength division multiplexing (WDM) is used to increase data rate up

to 100Gb/s, the transmission capacity of fiber optic links have increased beyond

other communication technologies. This calls for very low dispersion on fibers

carrying the traffic at such high rates. As a result, there is a need for characterizing

fibers and the wavelengths at which fiber dispersion can be manageable by use

of dispersion compensation mechanisms.The fifth generation fiber optic systems

use optical pulses that preserve their shape while propogating through the fiber

by minimising the dispersion by use of fiber non-linearity.But, for bit rates higher

than 10Gb/s, the PMD effects on the system can be adverse if not compensated

for.

PMD in fiber optic systems is a property of single mode fibers, and is caused by

optical birefringence. PMD is due to a light wave propogating in two orthogonal
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polarization modes of a fiber with different propogation velocities.PMD results in

pulse broadening and distortion resulting in degradation of system performance

[18]. PMD is a stochastic process and varies with temperature, pressure and

manufacturing defects or stresses in the circular symmetry of the fiber core. These

dependencies make PMD a very difficult phenomenon to measure,to counter or

to compensate for. PMD is a vector quantity whose magnitude is called the

differential group delay (DGD) with a direction along the fast axis of the PSPs.

This thesis focuses on measuring the DGD of the fiber that can be easily measured.

The efforts of many researchers have helped engineers better understand the

characteristics of PMD. A number of techniques were proposed for PMD mea-

surement [13,17] such as the Jones Matrix Eigenanalysis method, Poincare sphere

analysis, fixed analyzer method and the interferometric method. All these mea-

surement techniques require control of polarization state and optical frequency of

the signal that is being measured and, as such, they are unsuitable for monitoring

the PMD of optical systems carrying live traffic. They also require access to both

ends of the fiber. At the lightwave laboratory at the University of Kansas, we

recently proposed a simple technique to measure DGD in live traffic carrying fiber

optic links using coherent heterodyne detection and RF signal processing [16].

In ealier research at KU, it has been demonstrated that the system Q margin is

inversely proprotional to the instantaneous DGD measured by the technique [10].

This result serves as a validation of our technique. Using this technique as a

conceptual base, different algorithms have been implemented for in-situ measure-

ment for PMD in live traffic carrying links. This thesis is a presentation of the

algorithms for measuring PMD.

The basic concepts of light wave polarization, their representation and origin,
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nature and effects of PMD in fiber optic links is discussed in chapter 2. Chapter 3

discusses the traditional PMD measurement techniques, their limitations and ca-

pabilities. The coherent PMD monitor developed in the light wave laboratory in

KU, theoretical analysis of our method, the algorithms used to measure the DGD

along with their hardware implementations, a time interleaved implementation

of these algorithms for comparative analysis and the performance analysis of the

hardware and software used in the equipment are discussed in detail in chapter 4.

In chapter 5, the experiments conducted to characterize the algorithms and field

trials to measure DGD and the results of the experiments are given. Conclusions

of our research and recommendations for future work are made in chapter 6.

3



Chapter 2

Polarization mode dispersion

(PMD) - Basic concepts

2.1 Description of Polarization Optics

Any electromagnetic wave can be represented by the electric and magnetic field

vectors at right angles to one another on a transverse plane that is perpendicular

to the direction of propagation. The pattern of electric field vectors traced out

by the wave as a function of time is defined as the polarization of the wave. The

concept of polarization applies to the light wave as well. Polarization is a time

snapshot of electric field vectors as a function of distance from the source [8]. Any

polarization state can be represented by a polarization ellipse shown in figure 2.1,

that shows the locus and direction of the electric field vector in a given direction.

If the propagation of the light wave is along the z-axis, then the electric field

vectors oriented in the xy plane can be represented by

Ex(z, t) = E0x cos(τ + δx) (2.1)
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and

Ey(z, t) = E0y cos(τ + δy), (2.2)

where τ = ωt − kz. E0x and E0y are the peak amplitudes of the field vector in

the x and y axis respectively, and δx and δy are their phase components. Also,

the field pattern of the electric field vector in an xy plane is given by,

E2
x

E2
0x

+
E2
y

E2
0y

− 2
Ex
E0x

Ey
E0y

cos δ = sin2 δ. (2.3)

E0y

E0x

Ex

Ey

E

Figure 2.1. A polarization ellipse [8]

2.2 The Jones Polarization Calculus

Developed by Clark Jones, the polarization calculus is a means of representing

polarization in terms of electric field components. Named the Jones vector, the

polarized light can be represented as a two-component vector that specifies the

magnitude and phase of the x and y components of the electric field in the plane
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perpendicular to the direction of propagation i.e., z plane. It has the form

E =

 Ex

Ey

 =

 E0xe
iδx

E0ye
iδy

 . (2.4)

Usually, the Jones vector is expressed in the normalised form where the compo-

nents are normalized with respect to the x or y component of the electric field.

It should be noted that the Jones vector representation is limited to completely

polarized light and represents light in terms of electric field rather than optical

power. In many cases, the latter can be more easily measured than the former.

2.3 Degree of Polarization (DOP)

A light wave can either be polarized or unpolarized. Unpolarized light can

be intuitively represented by electric field vectors occupying random orientations

in the xy plane from time to time. Even the polarization of a fully polarized

lightwave can be scrambled at a high enough rate for it to appear unpolarized.

This condition can occur due to bandwidth limitations of optical instrumentation.

In general, the extent of polarization of a light wave describes its uses and

challenges based on an application. The extent of polarization of a light wave is

defined by the term Degree ofPolarization (DOP), which is the ratio of polarized

power to the total power of the signal [8].

DOP =
Ppolarized

Ppolarized + Punpolarized
(2.5)

Light wave in free space maintains its DOP indefinitely. But its DOP through

a nonideal transmission medium or optical components changes due to the dis-
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persion properties of the medium or the spectral width of the signal.

2.4 Stokes Parameter Representation of Polarization

The Stokes vector contains an array of elements that represent optical power

in specific polarization states. The Stokes parameters are described as



S0

S1

S2

S3


, (2.6)

where S0 represents the total power in the optical signal. S1 represents the dif-

ference in power between the linear horizontal (LH) and the linear vertical (LV)

polarizations. S2 represents the difference in power between the linear +45 deg and

the linear −45 deg polarizations. S3 represents the difference in power between

the right hand circular(RHC) and the left hand circular (LHC) polarizations. The

polarized part of the optical power using Stokes parameters is given by,

Ppolarized =
√
S2

1 + S2
2 + S2

3 . (2.7)

The Stokes parameters can also be represented by normalizing with the total

optical power, i.e.,S0. The normalized stokes parameters are

s1 =
S1

S0

s2 =
S2

S0

s3 =
S3

S0

. (2.8)
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The normalized stokes parameters can be represented in an xyz cartesian coordi-

nate system as shown in figure 2.2.

RHC

LV

LHC
LH

L+45L-45
S2

S3

S1

Figure 2.2. Cartesian Coordinate representation of the stokes pa-
rameters [8]

2.5 The Poincare Sphere

The locus of all points described by the polarization equation 2.3 describes a

sphere called the Poincare Sphere. The Poincare Sphere shown in figure 2.3 shows

the mapping of the normalized stokes parameters. It is a three - dimensional

graphical representation of polarization states within a sphere centered on a three

- dimensional Cartesian coordinate system. A given point on the sphere represents

a unique polarization state of the completely polarized light, i.e., the DOP for the

light wave at that polarization state is unity. A partially polarized light wave

will describe a sphere whose radius lesser than the radius of the Poincare sphere.

Alternatively, the DOP can be represented in terms of the normalised stokes
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Linear 
Vertical
(-1, 0, 0)

Linear 
Horizontal
(1, 0, 0)

Linear +45
(0, 1, 0)

Linear -45
(0,-1, 0)

Right Hand 
Circular (0, 0, 1)

Left Hand 
Circular (0, 
0,-1)

Figure 2.3. The Poincare Sphere

parameters as

DOP =
√
s2
1 + s2

2 + s2
3 (2.9)

As seen in figure 2.3, the circular polarization states occupy the north and south

poles of the sphere while the equator represents the linear polarization states.

The right(left) hand elliptical states occupy the northern(southern) hemisphere.

Two polarization states that are orthogonal to one another are located on the

diamterically opposite sides of the Poincare sphere. Hence the Poincare sphere

can be used in optics to represent fully polarized light or the polarized part of the

partially polarized light.

2.6 Polarization Effects in Light Wave Systems

Traditionally, polarization effects have had little impact on development of

light wave systems. This is primarily due to the fact that commercial optical

9



receivers detect the optical power instead of the optical field and are therefore

insensitive to polarisation [23]. However, in recent times, polarization effects on

light wave systems have gained significance. The advent of optical amplifiers has

increased the path lengths of optical fiber and the number of optical elements

in an optical link. Moreover, rapid increase of bit rates in digital systems and

modulation techniques in analog systems have pushed the capacity of optical fibers

to its limit. This has lead to the polarization effects such as the polarization mode

dispersion (PMD) and polarization-dependent loss (PDL) can accrue to a point

where they are detrimental to optical communication at high data rates [18]. The

causes and effects of PMD along with its modeling are discussed in the remaining

sections of this chapter.

2.7 Birefringence and PMD

Ideally, in a single mode fiber, a light wave of arbitrary polarization can be

represented as a linear superposition of orthogonally polarized modes. Due to

the cylindrical symmetry of the waveguides, the two HE11 modes are degenerate.

In reality, owing to manufacturing defects and external stresses acting on the

fiber results in loss of symmetry [18]. The asymmetry can be either non circular

waveguide geometry or asymmetry in the stress field in the fiber core as shown in

figure 2.4.

The asymmetry results in loss of degeneracy, i.e., two distinct HE11 modes

with different group and phase velocities. The perturbation that causes degener-

acy is called birefringence. Birefringence can be caused by intrinsic or extrinsic

factors. Intrinsic factors are due to faults in the fiber manufacturing process such

as a non circular core and non symmetrical stress fields around the core. Such
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Ideal 
cladding

Elliptical 
cladding 

Non symmetric 
stress

HE11

x

HE11

y

Optical modes in the fiber

Elliptical core

Figure 2.4. Optical modes and stresses in a single mode fiber [18].

fibers have PMD of around 0.5ps/
√
km. These class of fibers are called legacy

fibers. Modern manufacturing techniques produce fibers with lesser defects have

a very low PMD that is typically lesser than 0.1ps/
√
km [18]. Factors caus-

ing birefringence after the fiber manufacturing process such as cabling of fibers,

environmental pressure and temperature are classified as extrinsic factors. The

geometric and stress related factors causing birefringence cause an asymmetric

change in refractive index of the core. Thus, when a light pulse is input into the

asymmetric fiber core, it results in two different modes of propagation with one

mode being faster than the other. The mode with lower refractive index and thus

with higher velocity is called the fast axis or the extraordinary mode while the

mode with higher refractive index and lower velocity is called the slow axis or the

ordinary mode.
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2.8 Polarisation Mode Coupling

Let us consider a significant population of birefringent fibers all subject to the

same conditions and thus the same random perturbations. Also consider a light

pulse launched into one of these fibers such that only one of two polarization modes

is excited. When this launched pulse propagates along a birefringent axis of the

fiber, the polarization state of the lightwave evolves with distance along the fiber.

Thus a portion of power is coupled from one mode of the fiber to its orthogonal

mode and this in turn couples back to the original mode. The power coupled from

one mode to another depends on the perturbations which are random along the

length of the fiber as shown in figure 2.5. If the average optical power leakage

from the fast-axis to the slow axis were calculated, we would find that the power

leakage increases with distance untill the average power in the two orthogonal

polarization modes is the same. In other words, at large distances from the input

of the fiber, all polarisation states of the lightwave are equally likely.

Fiber 
axis

Input 
SOP

Power in each axis at point 
A: Px =1 ,  Py=0

A B

Power in each axis at point 
B: Px =1/2 ,  Py=1/2

Poincare sphere depiction of 
SOP

Figure 2.5. Evolution of SOP along the length of a single mode
fiber due to Polarization mode coupling [18].
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The loss of correlation between the polarization at the input and the output of

the fiber can be mathematically represented by correlation length,lc. The correla-

tion length is defined as the length at which the average power at the orthogonal

mode, P⊥, is within 1/e2 of the power in the originally launched mode, P||. Typi-

cally, correlation lengths vary from tens of meters to a kilometer. Mode coupling

further complicates the characteristics of PMD. Typically, the class of fibers whose

length (li) are less compared to the correlation length of the fiber (li << lc) are

called short fibers, and those whose length are long compared to the correlation

length (li >> lc) are called long fibers [18].

According to the statistical theory of PMD, the mean square DGD, lc and li

are related as

(∆τ 2) = 2(∆τb
lc
lb

)2(l/lc + e−l/lc − 1), (2.10)

where lb is called the beat length of the fiber. The beat length is defined as the

propogation distance for light through a fiber for which a phase difference of 2π

occurs between the fast axis and the slow axis of the fiber. For short fibers i.e.,

when l << lc, the expression simplifies to

√
(∆τ 2) = ∆τrms = ∆τbl/lb (2.11)

and for long fibers, i.e., when l >> lc, the expression simplifies to

√
(∆τ 2) = ∆τrms = (∆τb/lb)

√
2llc. (2.12)

The birefringence in a short length fiber can be considered to be uniform [22].
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The difference between the propagation constants of the fast axis and slow axis

can be given as

∆β =
ωns
c

=
ωnf
c

=
ω∆n

c
, (2.13)

where ω is the angular frequency of the light, c is the velocity of light and

∆n = ns − nf is the refractive index difference between the fast axis and slow

axis.

2.9 Principal States Model

Developed by Poole and Wagner in 1986, the Principal States Model states

that for any given length of the fiber and at every frequency of light wave trans-

mission, there exists a pair of input polarization states called the Principal States

of Polarization (PSPs) over a small range of frequencies [18]. A PSP is that input

polarization state for which the output polarization state is independent of first

order changes in frequency. The model provides both time and frequency domain

characterisation for PMD. The model assumes that polarization does not affect

the optical loss in a fiber span and also that time delay caused by PMD in the

span is considerably smaller than transmission bit period. Thus the model ap-

plies to low bandwidth pulses only. This is a fair assumption in that all practical

high speed fiber optic systems today satisfy this assumption of the model. If we

neglect the polarization dependent loss in the fiber (which is negligible in most

fiber links), the PSPs are orthogonal. The model implies that for each pair of

input PSPs, there is a corresponding orthogonal pair of output PSPs related by
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the frequency dependent transimssion matrix T (ω)

E2(ω) = T (ω)E1(ω), (2.14)

where E2(ω) is the complex electric field vector at the output of the fiber and

E1(ω) is the field vector at the input of the fiber. Equivalently, in Stokes space, if

p̂s represents the unit vector of the input PSP while p̂ represents the unit vector

of the output PSP then,

p̂s = Rp̂, (2.15)

where R is the transmission matrix of the fiber. In the time domain, the model

allows us to express any light wave at the input (output) as a vector sum of two

components each of which is aligned with one of the input (output) PSPs [22]. As

a result the output field vector, E2(t) can be represented as

E2(t) = c+ε̂+E1(t+ τ+) + c−ε̂−E1(t+ τ−), (2.16)

where E1(t) is the input field vector, ε̂+ and ε̂− are unit vectors aligned with

output PSPs.

For short fibers, because the birefringence is uniform, the PSPs correspond

to the polarization modes of the fiber. However, in long fibers, the birefringence

and thus the PMD are highly sensitive to ambient changes in temperature and

pressure. This leads to the slow change of net PMD of the link as well as the

PSPs.
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2.10 Vector form of PMD

Pure PMD is completely described by the PSPs and the PMD vector [7]. For

a given input polarization state, the PMD vector can be represented using the

Principal States Model as

dŝ

dω
= Ω⊗ ŝ, (2.17)

where ŝ is the unit vector in Stokes space. Here Ω⊗ = RwR
T . Thus, the PMD

vector represents a change in the Stokes vector of the output polarization. The

PMD vector is expressed as a function of distance, time and optical frequency,

i.e., as Ω(z, t, ω) in the Stokes space. From equation 2.17, it is clear that the

PMD vector has a length which is the DGD and points in the direction of the

fast axis of the fiber about which the output state of polarization (SOP) rotates

in the counter clockwise direction as ω incresases [24]. The PMD vector evolves

along the length of the fiber as

dτ

dz
=
dβ

dω
+ β × τ, (2.18)

where z is the position along the direction of propagation of the fiber and β is the

three-dimensional local birefringent vector the direction of which is the same as

that of z [18]. The DGD can also be represented as the rate of change of output

SOP with respect to optical frequency as

∆τ =
∆θ

∆ω
. (2.19)
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2.11 PMD in short and long fibers

2.11.1 Frequency domain behavior of PMD

When a 45 deg linearly polarized light is launched into a short fiber, the state

of polarization evolves along the length of the fiber. Also if the polarisation

of the light is fixed and the optical frequency is varied, the polarization state

at the output of the fiber will evolve in the cyclic fashion [22]. The locus of

the output polarization states is a circle on the Poincare Sphere. As we shall

see in chapter 3, the frequency domain characteristic of PMD is used by PMD

measurement techniques such as Jones Matrix Eigenanalysis method, Poincare

Arc method and Fixed Analyzer method.

2.11.2 Time domain behavior of PMD

To describe the time domain behavior of PMD, we first define a beat length,

Lb which is the propogation distance for light through a fiber for which a phase

difference of 2π occurs between the fast axis and the slow axis. Mathematically,

Lb =
λ

∆n
. (2.20)

Telecommunication fibers have beat lengths of approximately 10m. For a short

fiber, the DGD, ∆τ , is defined as the difference in group delay between the fast

axis and the slow axis. The time domain behavior of PMD in short fibers is shown

in figure 2.6.

∆τ can be obtained by the frequency derivative as

∆τ

L
=

d

dω
(
∆nω

c
=

∆n

c
+
w

c

d∆n

dω
. (2.21)
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Figure 2.6. Time domain behavior of PMD in short fibers [22]

The dispersion of ∆n is negligible for a short fiber. Thus, the second term

of the above equation can be neglected and the DGD per beat length of a short

fiber, ∆τb, can be written as

∆τb = Lb
∆n

c
=
λ

c
=

1

ν
. (2.22)

As can be see from the above expression, the DGD per beat length is equal to one

optical cycle of the lightwave.

2.12 Random behavior of PMD

Since PMD varies randomly with wavelength of transmission and environmen-

tal stresses, the statistical distribution of PMD has been studied in some detail.

The PMD vector can be decomposed into three orthogonal components along

each of the axes of the Poincare sphere. Each component can be described by

Gaussian distribution with zero mean. The DGD, which is the magnitude of the

PMD vector, can then be given by the square root of the sum of the squares of

these orthogonal components. It has been shown that the distribution of DGD of
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fibers in long length regime, follows a Maxwellian distribution or a Chi distribu-

tion with three degrees of freedom [21]. Thus, if one were to measure the DGD

of a fiber over a range of wavelengths at fixed time, or over a long time with a

fixed wavelength, and with changing environmental conditions, the distribution of

DGD will be Maxwellian. If ∆τ represents the instantaneous DGD of the system,

the distribution of ∆τ is given by

p(∆τ) =

√
2

π

∆τ 2

σ3
ε
−∆τ2

2σ2 , (2.23)

where σ2 is the variance of DGD. The mean DGD of the expression above is given

by

< ∆τ >= σ

√
8

π
. (2.24)

2.13 Effects of PMD

PMD causes pulse broadening and signal distortion and hence, leads to sys-

tem penalties [20]. The DGD between two pulses propogating in orthogonal po-

larization modes induces inter-symbol interference (ISI) in digital transmission

channels. A system that is designed with penalties for normal conditions with

tolerable PMD may be subject to rare occurences of very high PMD due to rapid

changes in environmental conditions. Such rapid fluctuations in PMD cannot be

simulated in lab environments and so the power penalties assigned due to the

effects of PMD rely heavily on theoretical simulations [22]. In general, the power

penalty incurred due to PMD has the form

ε(dB) = A
∆τ 2γ(1− γ)

T 2
, (2.25)
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where γ is the power splitting ratio between the two orthogonal components, and

T is the full width of the half maximum of the optical pulse. Equation 2.25 shows

that the penalties have a quadratic dependence on DGD. In reality, the penalties

incurred vary randomly with DGD and γ. It has been established that any penalty

over 1dB is unsuitable [1,15]. Such a condition is called an outage, an analogy to

radio systems. The acceptable cumulative outage in a year due to PMD should

be less than 30 minutes.

Another effect of PMD is in polarization multiplexed systems such as the po-

larization interleaved WDM systems. Here the adjacent channels are launched

on orthogonal polarization modes to supress nonlinear effects such as cross phase

modulation and four wave mixing. PMD destroys the orthogonality of the polar-

ization states, leading to power leakage between the adjacent channels, thereby

inducing coherent cross talk at the receiver end [12,22].
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Chapter 3

PMD Measurement Techniques

PMD places limitations on the transmission bandwidth of an optical communi-

cation system particularly on very high bit rates. Thus, it becomes very important

to measure PMD to characterize a fiber optic link and to design the system in such

a way that the effects of PMD in the system are mitigated. Techniques for mea-

suring PMD has been well researched over the last two decades. These techniques

measure ∆τ , the time delay differential between the PSPs of the fiber. Traditional

PMD measurement techniques focused on measuring PMD on a single mode fiber

in the short length regime [8,19]. With time, however, the need to measure PMD

on fibers in the long length regime gained significance, as this is the regime under

which modern telecommunication fibers fall. In the long length regime, the PMD

behavior is random. Many measurement techniques measure the average or the

root-mean-square DGD in a fiber [27]. For a given fiber, the average values can

be obtained by either varying the optical wavelength or by measuring DGD over

varying external factors such as ambient temperature.

In general, the techniques can be classified based on the behaviour of PMD

used. The two main categories of PMD measurement techniques are, time-domain
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and frequency domain [13]. The time domain techniques sense pulse delays be-

tween the PSPs, while the frequency domain methods detect changes in SOPs

with change in optical frequency.

3.1 Time-domain measurement techniques

3.1.1 Pulse delay technique

The pulse delay technique is conceptually the simplest method to measure

PMD. This technique involves launching short pulses into the fiber, varying the in-

put polarization state to measure the maximum differential time of flight between

output PSPs. The differential time is measured using an oscilloscope syncronized

with the input pulses by the same clock source as shown in figure 3.1.

Electrical pulse 
source

polarizer

Polarization 
controller

Test 
deviceMode- locked 

laser
Input

Trigger

τΔ
Optical sampling oscilloscope

Launch in 
fast PSP

Launch in 
slow PSP

Figure 3.1. The pulse delay technique for measuring DGD [19]

The duration of pulses places a limit on sensitivity of PMD measurement,

i.e., pulses with extremely short duration are required for measuring low DGD.

In general, this method provides best results for measuring high DGD [8]. A

disadvantage is the need to sweep through input polarization states to find the
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two input PSPs. Hence, the pulse delay method is best suited for measuring

instantaneous DGD at a specific wavelength and not for measuring the average

DGD.

3.1.2 The interferometric method

The interferometric method is based on the basic Michelson interferometer

and is applicable to optical components with uniform birefrigence or well-defined

Eigen modes as well as fibers with random PMD in the long length regime. The

principle behind this technique is based on measuring the mutual coherence of the

electric fields of two signal generated from a wideband source [8]. This method,

like the pulse delay method, directly measures the time delay of the two signals.

LED
polarization 
controller

Device under        
test

Fixed mirror

Beam 
splitter Moving 

mirror

polarizer

Detector

Signal 
processing

Figure 3.2. The interferometric technique for measuring DGD [8]

Light from the LED source is coupled into the arms of the interferomter and

at the detector, light from the fixed and moving mirrors are superimposed. When
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the length of the arms is less than the coherence length of the source, interference

occurs. The width of the response is inversely proportional to the spectral width

of the source. If ∆x is the distance of the mirror from the point where the

interferometic paths are of equal length, then the time delay ∆t of the two pulses

is given by, ∆t = 2∆x/c. An experimental setup for the interferometric method

to measure DGD is shown in figure 3.2. Two polarizers, one at the source and the

other at the photodetector (called the analyzer), are required. The arms of the

interferometer are othogonally polarized with respect to one another. The analyzer

only allows the interference caused by the coupling of two output Eigen modes of

the test device onto the photodetector [8]. The two Eigen modes share a common

polarization. In the case of devices with uniform birefringence with no mode

coupling, the central peak occurs when the path lengths of the interferometric

arms are of equal length. The outlying peaks occur when the mirrors introduce

a delay equal to the DGD of the device under test. The two outlying peaks

correspond to the interference between slow (fast) mode light in the fixed mirror

path and the delayed fast (slow) mode of the moving mirror.

For fibers with mode coupling, and DGD greater than the coherent time of

the source, the fringe pattern becomes complex, with the photocurrent envelope

taking a Gaussian form with a width that is determined by the DGD of the device

under test. The DGD in this case can be determined either by Gaussian fitting

or by computation of the second order moment [8]. It has been proved that, in

the case of an ideal set, the mean DGD is related to the Gaussian fit as

< ∆τ >=

√
2

π
σ. (3.1)

Although the interferometric method applies both to fibers in the short and
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long length regimes, it can only measure PMD for wideband devices. As such,

a drawback of the method is that it cannot be used to measure PMD in narrow

band WDM optical components.

3.1.3 The modulation phase-shift method

The experimental setup is shown in figure 3.3

Phase detection

Photodiode 
receiver

Photodiode 
receiver

Electrical source

DFB 
laser

Fiber under 
test

Polarization 
controller

Phase display

Raw phase

f

Excess phase 
removed φ

φ
max

min

fm

Ref.

Figure 3.3. The modulation phase-shift method [8]

As the name suggests, the modulation phase-shift method measures DGD by

measuring the difference in modulation phase between the PSPs. An intensity

modulated light wave is launched into the fiber. The modulation phase of the

output signal in the detector is measured with respect to an electrical source using

a network analyzer that provides the source, phase detection and normalization

capabilites. Then, the input polarization of the lightwave is varied to detect the

minimum and maximum excursions of phase at which the polarization is aligned
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with the input PSPs of the device under test. The DGD of the device under test

at a given modulation frequency can be computed as

∆τ =
φmax − φmin

360× fm
. (3.2)

Like the pulse delay method, the modulation phase-shift method requires the

user to experimentally determine the PSPs of the fiber by varying the input SOP.

This method requires a stable operating temperature and thus, is unsuitable for

field measurements of PMD in fiber optic links.

3.2 Frequency domain techniques

3.2.1 The Fixed Analyzer method

In the Fixed Analyzer method, the mean DGD is calculated statistically from

the number of peaks and valleys of the output optical power as the wavelength

is scanned. For this reason, this method is also called the wavelength-scanning

method. The experimental set up for this method for narrowband as well as

broadband devices is shown in figure 3.4.

In the case of uniform birefringence, the output SOPs of the device under test

trace out a circle as we sweep through the wavelengths. The size of the circle

depends on the ratio of power in the PSPs. At the PSPs, the diameter of the

circle is zero. In other words, at the PSPs the output SOPs do not change with

the wavelength. For long fibers with random mode coupling, the path described

by the output SOPs on the Poincare Sphere is no longer a cirlce; but at a specific

wavelength, a pair of PSPs exists about which the output SOPs will rotate over
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Figure 3.4. The Fixed Analyzer technique using (a) a broadband
source and (b) a narrowband laser [8]

a small wavelength range. As seen earlier, the DGD can be calculated as

∆τ =
∆θ

∆ω
. (3.3)

Thus, the fixed analyzer is based on the same principle as the Poincare arc method.

The rate of rotation of the output Stokes vector in this case is calculated by the

rapid change in peaks and valleys in the transmission through the polarizer. The

mean DGD can be calculated using several methods. One such method is called

extrema counting. In this method, the DGD can be found using the relation

< ∆τ >λ=
kNeλstartλstop

2(λstop − λstart)c
, (3.4)

where c is the spped of light, λstart and λstop are start and stop wavelengths of

the scan in meters, Ne is the number of peaks and valleys across the scan. The
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dependence of PSPs on wavelength is accounted for by the constant k. The value

of k has been experimentally determined to be 0.824 for fibers with random mode

coupling and unity for devices and short fibers with no mode coupling.

As seen from the equation, mean DGD of a fiber is determined over a range

of wavelengths and as such this method cannot measure the instantaneous DGD.

However, this method is simple and mean DGD can be found by an uncomplicated

data analysis. When a broadband source is used, transmitter and receiver can

operate independently for measuring DGD and hence, this method can be used

for field measurements of DGD.

3.2.2 The Poincare Arc method

As for the Fixed Analyzer method, DGD is computed from the equation (3.3).

The traces for the output SOP are generated by light from a narrowband optical

source into each of the input PSPs of the device under test. Then, wavelength

is incremented, resulting in an arc on the Poincare Sphere perpendicular to the

principal axis of the device. As in the Fixed Analyzer method, the Poincare

Arc method is applicable to devices with simple birefringence as well as to long

fibers. Since the PSPs are wavelength dependent, the launch polarization should

be varied so that a reasonable ratio of power is maintained in the PSPs of the

device.

3.2.3 The Jones-Matrix Eigenanalysis (JME) method

The JME method directly measures the DGD between the PSPs as a function

of wavelength and is based on the transmission matrix of the device under test.

It is applicable to measurement of linear time invariant (LTI) devices. In other
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words, the polarization tranformation of the device should be constant over the

time of measurement. As seen in section 2.3, the Jones vector completely describes

the amplitude and polarization of a signal. The transmission characteristics of the

device are described by a two-by-two Jones matrix [14]. The JME requires that

three known polarizarion states be applied to the device under test.Usually, these

are the three linear polarization states oriented at 0,45 and 90 degress. The

transmission matrix can then be computed from the relationship of measured

output states to the known input states. The derived Jones matrix then descirbes

the polarization transformation characteristic of the device under test.

Tunable 
narrowband 
optical source

Linear 
polarizers

A B C

Polarization 
controller

Polarimeter

Test fiber A

B

C

°°° 90450

Figure 3.5. The Jones-Matrix Eigenanalysis technique [8]

The experimental setup for the JME is shown in figure 3.5. The setup consists

of a tunable narrowband optical source, a switchable polarizer for generating the

linear polarization states, the device under test and a fast polarimeter. A com-

puter is used to process the measured data and compute the DGD. The source is

adjusted to be circularly polarized to allow transmission through each polarizer.

Then, for a series of wavelengths, the Jones matrix of the path between polariz-
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ers and polarimeter is calculated [8, 19]. The DGD at a given wavelength, λi is

calculated using the following expression

∆τ = ‖
Arg

(
ρ1

ρ2

)
∆ω

‖, (3.5)

where ρ1 and ρ2 are the Eigenvalues of the expression involving the Jones matrix,

T. The JME can be easily automated to measure DGD over a range of wavelengths.

The JME also requires a feedback loop to coordinate the transmitter and the

receiver. Also, the accuracy of the JME is dependent on test path stability,

polarimeter accuracy and stray birefringences in the test path.

3.3 Summary of PMD measurement techniques

A short summary of PMD measurement techniques and their characteristics is

given in figure 3.6. For devices with simple birefringence and no mode coupling,

the measurement techniques discussed in this chapter agree with each other very

closely. But for fiber in long length regime, the error is about 20 percent for these

techniques. This is due to a number of reasons. First and foremost, PMD in

long fibers is random and is subjected to variation in temperature and mechanical

stresses. As such using long fibers to compare the performance of different mea-

surement techniques is not ideal. Another reason is the orientation of polarization

of the source and output lightwave with respect to the PSPs of the fiber. For in-

stance, in the fixed analyzer method, adjusting the fiber pigtails of the test fiber

can transform the orientation of polarizations and cause a change in number of

peaks and valleys [11]. Thirdly, the measurement techniques vary in their design

and algorithms used for computing the DGD. Also, the wavelength range of these
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measurements is limited by the bandwidth of the optical instrumentation used in

the test setup. Finally, the strong wavelength dependence of the PSPs is another

factor for disagreement between the measurement techniques.
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Figure 3.6. Summary of PMD measurement techniques [8, 19].
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Chapter 4

In situ PMD monitoring

4.1 Need for in-situ PMD measurement techniques

Traditional PMD measurements discussed in chapter 3 require access to both

ends of the fiber. In a long haul fiber optic link, the transmitter and receiver

are located far away from each other and are not accessible at the same time.

Moreover, the links carry traffic all the time which means using the traditional

measurement techniques to measure PMD would require disrupting the data traffic

carried by these fibers. As a result, there arises a need for developing a measure-

ment technique that does not block the traffic carried by the links and has no

need for accessing both ends of the fiber. An in-situ measurement technique is

necessary for conducting PMD measurements on traffic carrying signals so that

PMD in fiber optic links can be characterized. Several techniques were proposed

for in - situ measurement of PMD using the traffic carrying signal as the prob-

ing signal [5, 6].A nonintrusive technique using a heterodyne polarimeter with an

RF spectrum analyzer was used to estimate the PMD-induced system penalty by

measuring the ’string’ length of the state of polarization [4]. A similar method
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was also proposed for greater measurement speed [26]. The method uses direct

detection with a high resolution optical spectrum analyzer consisting of an In-

GaAs line-scan camera and a virtually imaged phase array was also proposed for

greater measurement speed. Researchers also proposed a novel method for mea-

suring PMD using four wave mixing where the possiblity of in-situ measurement of

PMD was discussed [25]. In this chapter, a nonblocking and nondestructive PMD

monitoring technique developed by the light wave laboratory at the University of

Kansas is discussed. This is followed by a detailed discussion of PMD measure-

ment algorithms, namely, polarization scrambling and polarization tracking. The

implementation of these two algorithms is also discussed here and a comparison

of their performances is discussed in chapter 5.

4.2 The coherent PMD monitor

4.2.1 Block diagram of the coherent heterodyne detector

The block diagram in figure 4.1 shows a coherent heterodyne detection used

for PMD monitoring. In this setup, a small portion of the optical signal is tapped

from the transmission fiber optic link in a WDM system. A tunable laser, which

chooses a channel on the International Telecommunication Union (ITU) grid acts a

local oscillator. A polarization scrambler is used to randomly scramble the output

polarization of the local oscillator. The two optical signals are combined using a

3 dB coupler and the output is incident on a wideband photodiode. The beating

of the signals at the diode converts the optical domain signal to its equivalent

RF spectrum. The detected spectrum is amplified before two RF bandpass filters

of bandwidth 1 GHz and center frequencies at 15 and 25 GHz are used to select

two different frequency components from the signal spectrum. An RF envelope
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Polarization scrambler

Tunable laser

Bandpass @ 15GHz Bandpass @ 25GHz

RF power meter RF power meter

Low pass filter Low pass filter

Normalization and calculation

3dB 
coupler

PD
RF amp.

Optical signal tapped from WDM
transmission link

Figure 4.1. A coherent heterodyne detection setup for PMD moni-
toring

detector is used to measure the RF power variation at the output of each bandpass

filter. The RF detectors’ output is then recorded using AD converters. It has been

shown that the first order DGD of the optical signal can be measured from the

differential polarization walk off between the two frequency components [10, 16].

This implies that the corresponding angular walk off can be measured and that the

DGD value can be calculated. Figure 4.2 illustrates a Poincare arc described by

the optical signal when its state of polarization changes from point A to point B,

where the points represent the polarization of the frequency components selected

by the banpass filters.

4.2.2 The theory of PMD measurement

The photocurrent of the photodiode, i due to the interference term of the

coherent heterodyne detection, is given by

i = 2ηD
√
TPSPL cos

φ

2
cos(ωIF t+ θ), (4.1)
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where the proportionlaity constant, ηD includes the effects of the responsivity of

the photodiode and the coupling coefficient of optical 3 dB coupler. PL and PS

are the optical power of the Local Oscillator (LO) and the transmission signal. φ

is the angle between the SOP of the local oscillator and the optical signal in the

Poincare Sphere, T is the transmission coefficient of the fiber optic link and θ is

the phase difference between transmission signal and the LO.

Then, the RF power at the photodiode is given by

Pin = i2R = 4η2RTPLPS cos2 φ

2
= kpT cos2 φ

2
, (4.2)

where R is the load resistance and kp = 4η2RPLPS. After RF signal processing,

output voltage at the RF detector is proportional to RF power at the input of the

RF amplifier.

V = kvPin = kT cos2 φ

2
, (4.3)

where kv includes the effects of the bandwidth of the RF bandpass filters, the

RF amplifier and the efficiency of the RF detector. It can be shown that output

voltage at point A is

VA = kT cos2 φA
2

(4.4)

and output at point B can be written as

VB = kT cos2 φA + ∆α

2
, (4.5)

where φB = φA + ∆α. Here ∆α is the angular polarization walk off between the

two frequency selected components as shown in figure 4.2.

Now, if we were to let the SOP of the optical signal at point A be aligned with
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B
A

LO

Aφ

Bφ
αΔ

Figure 4.2. An illustration of polarization walk off between the two
frequency selected components f1, point A and f2, pointB

the SOP of the LO, i.e., φ = 0, then the output voltage from point A is

VA = kT, (4.6)

and the output voltage from point B is given as

VB = kT cos2(∆α/2). (4.7)

Thus, the angular walk off between points A and B on the Poincare Sphere

can be extracted from equations 4.6 and 4.7. The true DGD of the transmitted

signal is represented by the equation

∆τtrue =
∆θ

∆ω
, (4.8)

where ∆θ is the separation between the azimuth angles of points A and B with
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the PMD vector Ω as shown in figure 4.3. The SOP of the input signal is not

adjustable and hence, it is not feasible to measure the true DGD. However, as

illustrated above, the differential walk off ∆α between the frequency selected

components can be measured and the DGD as seen by the probing signal is given

by

∆τapparent =
∆α

∆ω
. (4.9)

To correctly interpret the results of the PMD monitoring equipment, an under-

standing of the relationship between ∆α and ∆θ is essential. From figure 4.3, ∆α

B
A

O’

αΔ

β θΔ

Ω
r

O

Figure 4.3. An illustartion of polarization states of frequency com-
ponents and their relative orientations with the PMD vector of a long
fiber

and ∆θ are related as

sin

(
∆α

2

)
= sin

(
∆θ

2

)
sin β, (4.10)

where β is the angle between point A and PMD vector, ~Ω. ∆θ can be made

small by choosing the appropriate frequency difference ∆ω. As a result, the
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equation 4.10 simplifies to

∆α = ∆θ sin β. (4.11)

Using the principal states model discussed in section 2.9, a fiber in the long - length

regime can be regarded as a waveplate with time retardation equal to the DGD

of the fiber whose principle axis is aligned with the slow axis of the PMD vector.

Thus β can be equivalently viewed as the angle between the input polarization

state of the signal ~Sin and the PMD vector of the fiber, ~Ω. Hence, β can be

expressed as

cos β =
~Ω · ~Sin
‖~Ω‖‖ ~Sin‖

. (4.12)

The PMD vector, ~Ω, can be represented in the cartesian coordinate system by

decomposing it into its three orthogonal components as, ~Ω = ~axΩ1 + ~ayΩ2 + ~azΩ3,

where ~ax, ~ay and ~az are unit vectors and ‖~Ω‖ =
√

Ω2
1 + Ω2

2 + Ω2
3. As discussed

earlier in section 2.12, when each orthogonal component follows an independent

Gaussian distribution with zero mean and the same variance q2, the statistics of

the PMD vector follows a Maxwellian distribution [2] represented as,

p3(x) =

√
2

π

x2

q3
e
−x2

2q2 , (4.13)

where the mean of the Maxwellian p.d.f described can be given as [3],

µ3 = E(x) = q

√
8

π
. (4.14)

The SOP of the input optical signal is determined by the laser in the transmitter

of the fiber optic link. As a result, the SOP of the probing signal used for the

coherent PMD monitor is stable. In other words, we can conceptually assume
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that ~Sin is aligned with one of the three orthgonal components, for instance, Ω1

of the PMD vector, i.e.,

~Sin = (1, 0, 0). (4.15)

Subsituting equation 4.15 into 4.12 we get

Ω1 = ‖~Ω‖ cos β. (4.16)

Combining equations 4.16 and 4.11 yields,

∆α = ∆θ

√
Ω2

2 + Ω2
3

‖Ω‖
, (4.17)

which results in

τapparent =
∆α

∆ω
=
√

Ω2
2 + Ω2

3. (4.18)

It should be noted that equation 4.18 describes the apparent PMD as measured

by the probing signal. The apparent PMD is related to only two of the three

independent orthogonal components, while it has been shown here and by pre-

vious works that the true PMD of the fiber is related to all three independent

components of the PMD vector. Therefore, the true PMD follows a Maxwellian

distribution or a Chi distribution with three degrees of freedom. Hence, we can

conclude that the statistics of the apparent PMD measured by the probing signal

in our work should follow the Chi distribution with two degrees of freedom other-

wise called the Rayleigh distribution. The p.d.f of the Rayleigh distribution can

be given as

p2(x) =

√
2

π

x

q2
e
−x2

2q2 , (4.19)
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whose mean value is given by

µ2 = E(x) = q

√
π

2
. (4.20)

The relationship between the mean value of the true and apparent DGD can now

expressed by the relationship between µ2 and µ3 as

µ3 = 4µ2/π. (4.21)

Equation 4.21 implies that the true DGD is always greater than the DGD mea-

sured by the probing signal.

4.3 Polarization Scrambling

The techniques that are presented in this report differ in the algorithm that is

used to maximize the output power of one of the frequency selected components.

Briefly, the idea behind scrambling is that the SOP of the LO is scrambled in such

a way that all the possible states of polarization of the LO are covered at least

once in every measurement period as shown in the figure 4.20. As described in

section 4.2.2, the maximum value of the frequency component f1 occurs when its

SOP is aligned with the SOP of the local oscillator. The relative output power

of the other component gives a measure of DGD of the probing signal. When the
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output power of channel A is maximum, we have

VA = kT

VB = kT cos2(∆α)

∆α = arccos

√
VB
VA
. (4.22)

Now the DGD measured by the probing signal can be given as

DGD =
∆α

∆ω
, (4.23)

where ∆ω = 2π∆f and ∆f is the frequency of separation between the two fre-

quency components. In our experiment, ∆f is 10 GHz. Polarization scrambling

is the simplest algorithm used for the purpose of maximising the output power of

one of the two frequency selected components. The output data for a measure-

ment period is processed to obtain the maximum voltage of each component and

the relative voltage of the other component at that instant. Once these voltage

levels have been attained, the DGD can be calculated by the following equations,

β1 =
V2 − Vmin2

Vmax1 − Vmin1

β2 =
V1 − Vmin1

Vmax2 − Vmin2

β = arccos(0.5(
√
β1 +

√
β2))

DGD =
β

π ∗∆f
. (4.24)

Vmax1, Vmin1, Vmax2, Vmin2 are the maximum and minimum voltages of frequency

components where the subscript 1 represents the voltage of component f1 and the

subscript 2 represents voltage values of f2. V1 is the voltage of f1 at Vmax2 and
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V2 is the voltage of f1 at Vmax1. The details of hardware used for implementation

and the data acquisition algorithm used for implementing polarization scrambling

is discussed in this section.

4.3.1 The hardware for implementing polarization scrambling

The earlier implementation for PMD monitoring using coherent detection and

polarization scrambling [16] shown in figure 4.1 is bulky and tedious to set up

at each test site. Therefore, the need arose for using smaller and more compact

hardware for the measurement trials. Figure 4.4 shows the hardware used for

field measurements of the PMD and figure 4.5 shows a picture of the equip-

ment developed for this research. The RF signal processing hardware has already

been described in the previous sections of this chapter. This section looks at the

characteristics of other blocks used in the equipment.

BATI
Polarization controller

Santur tunable laser (programmable
using SPI)

Bandpass @15GHz Bandpass @25GHz

RF power meter RF power meter

Low pass filter Low pass filter

Simultaneous AD/DA
Data Acquisition Device (DAQ) 

Voltage converter for
polarization controller 

3dB 
coupler

PD
RF amp.

Optical signal tapped from WDM
transmission link

ADC1 ADC2
DAC1
DAC2

PC for instrument control and 
algorithm

implementation using MATLAB
RS232

High speed USB for 
data transfer and 
interface for DAQ

Figure 4.4. Hardware implementation for PMD monitoring using
polarization scrambling technique
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Figure 4.5. A picture of the hardware used for our reserach

4.3.1.1 The Local Oscillator(LO)

The Agilent 8164A tunable laser is replaced by a much smaller MEMS based

tunable laser from Santur Corporation. The polarization maintaining (PM) fiber

at the output of the LO means that the output SOP of the LO is stable. The LO

outputs light at a constant power of 10 dBm. The tuning grid of the LO output is

25 GHz with a frequency resolution of 0.1 GHz made possible via off-grid tuning.

The wavelength of the laser can be controlled via an RS232 serial port interface.

A simple sofware such as the Hyperterminal in WindowsXP can be used to tune

the wavelength of the LO with appropriate RS232 settings.

4.3.1.2 The polarization controller

The ceramic based polarization controller with two retardation plates (cells)

is used for polarization control of the LO output. The important characteristics

of the polarization controller are given in table 4.1. By applying a high voltage
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Attributes Performance
Insertion Loss 0.6 dB

Polarization dependent loss 0.1 dB
Polarization mode dispersion 0.01 ps

Input power 2.7 W
Speed 30 µs

Power consumption 600 mW
Dimensions 22.3*11*7.8 mm

Input voltage range for driver 1 to 4 V
Output voltage range of driver 0 to 383 V

Supply current 0.7 A
Supply voltage 5 V

Table 4.1. Characteristics of polarization controller

(in the range of 100 to 300 volts) to either of the cells, the SOP at the input of

the polarization controller can be transformed to any SOP at the output of the

controller. The input PM fiber pigtail of the polarization controller is aligned at

45 deg to the first cell, while the second cell is aligned at 45 deg with respect to

the first cell as shown in figure 4.6.

V1 V2

Input output

°90°45

Control voltages

Retardation plates ( cells)

Figure 4.6. The BATI polarization controller

Thus the SOP transformation of the first cell is orthogonal to the transforma-

tion of the second cell as shown in figure 4.7. This is due to the equal splitting of

energy between the two PSPs of the fiber which results in a circular polarization

at the input of the first cell. Similarly, varying the electric voltage applied to the

second cell, takes the SOP of the LO through the linear polarization states in the
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Poincare Sphere. Thus by a combination of applied voltages to the polarization

Linear 
Vertical

Linear 
Horizontal

Linear +45

Linear -45

Right Hand 
Circular (North 
Pole)

Left Hand 
Circular 
(South Pole)

equator

Figure 4.7. Polarization control of the SOP of the local oscillator
using two retardation plates

controller’s control inputs, the input SOP of the LO can be transformed to any

polarization state at the output of the polarization controller. It is important

to note that the angular separation on the Poincare Sphere is twice that of the

actual separation between the two frequency selected components. For instance,

the right hand circular and left hand circular polarizations that are 90 deg apart

are located at the north and south poles of the Poincare Sphere which are 180 deg

apart.

4.3.1.3 The Driver circuitry for the polarization controller

The driver circuitry for the polarization controller is an voltage transformer

circuit that tranforms a low DC voltage in the range of 1− 4 V to a high voltage

in the range of 82− 380 V. The low voltage input is supplied to the polarization
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control driver by a DAC. The DAC input voltage that is required to transform the

input SOP of the LO by 180 degress or equivalently 360 degrees in the Poincare

sphere is termed Vπ. Varying the input voltage to the driver from 1V to 4V tran-

forms the SOP of the LO by 4π on the Poincare sphere. It should be noted that

the transformation function from low to high voltage of the driver is quadratic.

Thus, for the purpose of polarization scrambling, a fairly linear portion of the

function that corresponds to the input voltage range of 2.2 V to 3.35 V is used.

This voltage range corresponds to more than 2π radians on the Poincare Sphere.

The additional voltage is used to allow for a weak dependence of Vpi on the tem-

perature. Refer table 4.2 for characteristics.

Attributes Performance
Input voltage range for driver 1 to 4 V
Output voltage range of driver 0 to 383 V

Supply current 0.7 A
Supply voltage 5 V

No of inputs and outputs 4
Repetition rate 1 KHz

Speed 30 µs

Table 4.2. Characteristics of polarization controller driver.

4.3.1.4 The Data Acquisition Device (DAQ)

The input voltage for the driver circuitry is supplied from a high speed DAQ

with simultaneous DA converters. The DAQ also has two AD converters to sample

and digitize the output of the RF power meters for normailzation and calculation.

The DAQ can be programmed using the data acquisition tool box provided by

Matlab. The DA converter output rate is set at 10 KHz. The AD converter

sample rate is set at 20KHz. The input range of the AD converter is from -10 V

to +10 V. A triangular waveform is generated on two DA output channels.The
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number of sample points per period of the DA waveform is determined by the

resolution required for the polarization scrambling. For instance, if a precision of

1 deg per point is required on the Poincare sphere, then a triangular waveform

with 360 equally spaced values from 2.2 to 2.35 V is generated for one half of the

time period is used. For the other half of the time period, another 360 values

equally spaced between 3.35 to 2.2V are generated. One of the vital characteristic

required for AD converter of the DAQ is the simultaneous sampling of the two

channels which ensures that any sample pair acquired by the DAQ occur at the

same instant in time. This is made possible by a dedicated clock source for each

of the AD converter channels. Characteristics of the DAQ are given in table 4.3

Attributes Performance
AD sampling Rate 20 KHz
No. of AD channels 2

Resolution 12 bits
AD input voltage range -10 to +10 V
DA waveform frequency 10 KHz

No. of DA channels 4
Resolution 12 bits

DA output voltage range 2.2 to 3.37 V
Simultaneous AD and DA Yes

Trigger Software trigger

Table 4.3. Characteristics of DT9832 DAQ

4.3.1.5 Low pass filter-amplifier

The filtering operation after the RF power meter is carried out by a two pole

sallen key low pass filter as shown in figure 4.8. Also the signal level is boosted

using two stages of a simple amplifier circuit using an IC741 operational amplifier.

The first stage used before the filter is an inverting amplifier because the voltage

output at the RF power meter is negative. The second stage is used so that a

48



considerable portion of the AD converter input voltage range is occupied, resulting

in better resolution. The amplifier and filter operations on the two channels are

identical as a photodiode, whose response at 15 GHz and 25 GHz is fairly similar,

is used. In the circuit the values are chosen such that, R1 = R2 = mR, C1 = nC

Vout
Vin

IC741

R3

U2

C2
C1

R5

+

_
V+

V -
10K 10K

33pF
66pF

Vout
Vin IC741

R1

U1

R2

+

_
V+

V -

4.7K
47K

R4

4.6K

(a) Non Inverting amplifier section

(b) Sallen-Key Low pass filter section

Figure 4.8. Amplifier and filter circuits used for reducing the effects
of noise

and C2 = C where R = 100 Kohm and C = 66 pF and m and n are integers

multiplication factors that determine the Q factor given in equation 4.26. Also,

choosing R1 = 100 Kohm,R2 = 100 Kohm,C1 = 132 pF and C2 = 66 pF implies

that m = 1 and n = 2. The cut-off frequency of the low pass filter is found using

the formula

fc =
1

2π
√

2RC
, (4.25)
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where the value of Q is given by

Q =

√
mn

m+ 1
. (4.26)

Using the values of m and n, the low pass filter is designed to have a fc of 15 KHz

and a Q value of 0.707 for maximally flat response.

4.3.2 Data acquisition algorithm for polarization scrambling

The basic idea of measuring PMD by polarization scrambling is to ensure that

all points in the Poincare Sphere are covered at least once during a measurement

period. The measurement period can be defined as the average time required

to extract one DGD value. One of the means of achieb the full coverage on the

Poincare sphere is to concatenate two polarization Scramblers [16].

In our system, the polarization controller can be used to achieve the same

result. The algorithm for acquiring the data after polarization scrambling is shown

in figure 4.9. The total number of points covered in a measurement period is

determined by the number of points generated for the DA. With a precision of

3 deg for every point, there are 120 points generated for the second cell per step

increment for the first cell. The DAC waveform generated for the control voltage

input of the polarization controller is shown in figure 4.10.

4.4 Polarization tracking

One of the disadvantages of using polarization scrambling is its low speed of

measurement. Also, high memory requirements for data storage and data pro-

cessing make it tedious for long time PMD monitoring in field measurements.
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Generate the DA 
waveform for controlling 

both the cells of the 
polarization controller 

Queue  the generated 
data for the DAC.

Initialize and 
Configure the 

AD and DA of the 
DAQ.

Trigger the AD and DA
converters simultaneously

Collect the data from the 
ADC outputs and write 

the data to a file with the 
time stamp

Figure 4.9. Data Acquisition algorithm for polarization scrambling

Additionally, using scrambling, it would require huge memory resources to cal-

culate DGD in real time. For this reason, we have come up with a polarization

tracking algorithm to monitor the DGD in a fiber optic link. The basic idea be-

hind tracking is that each of the retardation cells of the polarization controller

can be controlled such that the optimized voltage value of a frequency component

can be attained. This generally involves a decision feedback loop that searches for

the maximum voltage of the frequency component being monitored. In this way,

polarization of the LO can be made to continuously track the changes in SOP of

the incoming signal so that the frequnecy component is always maximized. The

voltage value of the other frequency component gives a measure of DGD. In our
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Figure 4.10. The DAC waveform generated for polarization con-
troller driver

report, for validating the tracking algorithm and also to reduce the effects of noise

in the system, we maximize and minimize both the components alternatively. As

a result one full measurement cycle of the algorithm will consist of four voltage

value pairs. After normalizing the voltage components, we can obtain four values

of DGD in a tracking period. It will be asserted in the subsequent sections that

the tracking period is shorter than the scrambling period for a given hardware

implementation. But in our tests, for comparison purposes of scrambling and

tracking algorithms, the four DGD values obtained have been averaged to have

the same number of DGD samples. The search and track algorithms used for

polarization tracking, along with its hardware implementation, are discussed in
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this section.

4.4.1 Hardware implementation for polarization tracking

The hardware setup for polarization tracking is shown in figure 4.11. The

BATI
Polarization controller

Santur tunable laser (programmable
using SPI)

Bandpass @15GHz Bandpass @25GHz

RF power meter RF power meter

Amplifier and filter Amplifier and filter

Simultaneous AD
Data Acquisition Device (DAQ) 

Voltage converter for
polarization controller 

3dB 
coupler

PD
RF amp.

Optical signal tapped from WDM
transmission link

ADC1 ADC2
DAC1
DAC2

PC for instrument control and 
algorithm

implementation using MATLAB
High speed USB for 
data transfer and 
interface for DAQ

Analog Devices Microcontroller 

ADC1 ADC2Trigger

Trigger

Figure 4.11. Hardware implementation for polarization tracking

optical and RF blocks remain the same as those used in scrambling, while the

maximum search is performed using a feedback loop by a microcontroller from

Analog Devices. Also, a wideband amplifier with very low input offset voltage (40

pV) is used to amplify the RF output.

4.4.1.1 Microcontroller Unit

The microcontroller used for feedback is equipped with high speed AD and DA.

The important charcteristics that highlight its usefulness for our implementation

is given in Table 4.4.
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Attributes Performance
AD sampling Rate 1 MHz
No of AD channels 12

Resolution 12 bits
Single ended mode voltage range 0 to 2.5 V

DA output settlign time 10µs
No of DA channels 4

Resolution 12 bits
DA voltage range 0 to 3.3 V

Clock rate 41.78 MHz

Table 4.4. Characteristics of ADuC7026 microcontroller

4.4.2 Algorithm used for polarization tracking

Two algorithms are implemented with MCU to increase DGD measurement

rate and to reduce the memory size required to store acquired data using polariza-

tion scrambling. First, a coarse search algorithm is used to find a voltage which

is close to the maximum voltage. Then, a fine search algorithm with a smaller

step size is used to reach the maximum voltage corresponding to the alignment of

the SOP of the LO with the frequency selected component that is being tracked.

Finally, a tracking algorithm is used to monitor the voltage output. If the output

voltage falls below a specified threshold, then the coarse and fine search algo-

rithms are repeated until the maximum output voltage is reached. The coarse

search algorithm is implemented in the following steps.

1. Intialize the step size for coarse search and set maximum AD value to be

zero. Also set corresponding DA value as zero.

2. Search the first cell for the maximum output voltage by scanning through

all possible control voltage values as allowed by the step size

3. For each value of j from 2.2 to 3.35 in increments of step size, where j is the
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control voltage for the cell which is being scanned

(a) Set control voltage for cell 1, i.e., DAC equal to j.

(b) Read ADC input.

(c) If ADC value > maximum, then update the maximum = ADC value

and record corresponding DA value = j.

4. Search the second cell for the maximum output voltage by repeating step 3

with the control voltage for the first cell that corresponds to the maximum

output voltage.

The two dimensional fine search algorithm is different from the coarse search in

that the smallest possible step size is used and a grid pattern of variable radius is

used for the search.The algorithm for fine search can be described as:

1. Intialize the smallest possible step size for fine search and set maximum AD

value to be the value found using coarse search.Also set corresponding DA

value for the first and the second cell as those found in coarse search.

2. For each value of i from (DA value−gridlength) to (DA value+gridlength)

in cell 1.

3. For each value of j from (DA value−gridlength) to (DA value+gridlength)

in cell 2.

(a) Set DAC for cell 1 equal to i.

(b) Set DAC for cell 2 equal to j.

(c) Read ADC input.
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(d) If ADC value > maximum, then maximum = ADC value and corre-

sponding DA value = j.

4. Search the second cell for the maximum output voltage by repeating step 3

with the DA value for the first cell that corresponds to the maximum output

voltage.

After the coarse and fine search algorithms, the output voltage is continuously

monitored. When the voltage drops below a specified threshold, the fine search

algorithm is repeated again with varying grid size until the maximum output

voltage is found. The complete algorithm for polarization tracking is described

by the flowchart in figure 4.12. It is important to note that, the magnitude of

the output voltage for the two channels in most cases are not equal. As a result,

a normalization procedure is required. This is done by tracking the maximum

output voltage of the two channels successively. Also a minimum search can also

be performed instead of the maximum search for the two cells.

4.5 Time-interleaved implementation of polarization

scrambling and tracking

In this section, the implementation of polarization scrambling and tracking us-

ing the same hardware and data acquisition algorithm is discussed. For a detailed

analysis of the performance and a comparison of the measurement techniques, a

time interleaved implementation of the two techniques is needed. The hardware

implementation of tracking is sufficient for this purpose. With minor adjustments

in the data acquisition algorithm and micro controller embedded C programming

code, a time synchronised version of polarization scrambling and tracking can be
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Configure the AD and 
DA channels of the 

MCU

Perform a coarse polarization 
search 

Perform a fine  polarization  
search

Monitor the output 
voltage 

Is the output voltage 
Greater or lesser than the maximum 

voltage by a specified threshold

Perform a fine polarization 
search 

Yes

No

Figure 4.12. Algorithm for polarization tracking

implemented. The software required for this implementation will be discussed in

this section.

4.5.1 The Microcontroller algorithm

The high speed DA of the MCU makes it possible to implement the polarization

scrambling algorithm described in section 4.3.2. The microcontroller algorithm

for implementing scrambling and tracking with time interleaving is given by the

flowchart in the figure 4.13.
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Configure the A/D,D/A 
and digital IO of the 

MCU 

Perform polarization scrambling
for one time period of the DA

waveform 

Generate the D/A 
waveform for 
scrambling 

Set a digital IO low to trigger 
the DAQ

Set the digital IO high

Perform a polarization tracking
maximizing cell 1 output voltage

Perform a polarization tracking
maximizing cell 2 output voltage

Perform a polarization tracking
minimizing cell 1 output voltage

Perform a polarization tracking
minimizing cell 2 output voltage

Figure 4.13. Microcontroller algorithm to implement time inter-
leaved implementation of scrambling and tracking
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4.5.2 The Data Acquisition algorithm

The data acquisition algorithm is shown in figure 4.14. The DT9836 simul-

taneous DAQ is triggered using the digital IO of the microcontroller. Since the

number of points in scrambling and tracking can be pre-determined, the time slots

for scrambling and tracking are fixed. As a result the DAQ can be programmed

to collect a fixed number of data points when the falling edge trigger is detected

by the DAQ.

Configure the A/D  
channels of the DAQ

Is a falling 
edge trigger 

detected by the DAQ ?

Collect a pre specified
number of samples from the

DAQ  

Write the collected data to a 
file with time stamp

Yes

No

Figure 4.14. Data acquisition algorithm for time interleaved imple-
mentation of scrambling and tracking
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4.6 Algorithm for extracting DGD information from the

acquired data

The data file acquired from PMD monitor is processed by a separate signal

processing algorithm that extracts the portion of the data that represents po-

larization scrambling or tracking. The implementation consists of one full cycle

of polarization scrambling and four cycles of polarization tracking as shown in

figure 4.15. So one can expect, one DGD value per second using polarization

scrambling and 4 values using polarization tracking given ideal conditions. How-

ever when the SOP of the incoming signal changes, the voltage obtained from the

tracking algorithm may not always reflect the maximum output voltage. This sec-

tion discusses the signal processing algorithms used to extract DGD information

from scrambling and tracking.

4.6.1 Extracting DGD information from polarization tracking

The output waveform for polarization tracking is shown in figure 4.16. The

polarization tracking algorithm consists of a maximum search and a minimum

search for each frequency component. As shown in figure 4.16, while the length

of the polarization search for the global maximum of the two cells is fixed, the

length of the fine search algorithm can vary. As a result,a stable portion of the

tracking waveform should be extracted for DGD calculation. For this purpose, the

tracking algorithm is made to last 20 ms. With a DAQ sample rate of 50 KHz, this

amounts to 1000 samples. The maximum length of fine search is calculated to be

around 500 samples. So using the constant length of the coarse search algorithm,

the exact data locations that correspond to tracking algorithm can be found.

Allowing for the worst case, the last 500 of the 1000 samples are extracted for
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Figure 4.15. Data acquisition algorithm for time interleaved imple-
mentation of scrambling and tracking

DGD calculation. These samples are then filtered using a 4 point moving average

filter. For a stable maximum or minimum, two conditions should be satisfied.

First, the standard deviation of the samples should be lesser than the threshold

specified for tracking. Secondly, the polarization scrambling algorithm yields the

reference global maximum (or minimum). The global maximum (or minimum)

found by polarization tracking should be no lesser than 98 percent of the reference

global maximum (or minimum). This is done to ensure that polarization tracking

always yields a global maximum(or minimum) rather than a local maximum (or

minimum). If and only if the two conditions are met, the samples are extracted.

Then the mean values of the samples are used as voltages that represent the DGD
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Figure 4.16. Output waveform for polarization tracking

information in the signal. Figure 4.17 shows the voltage values obtained after

the data extraction. The DGD values can then be extracted by normalizing the

volatges using the equations described by 4.27.

dgd1 =
arccos(

√
V21−V13

V11−V13
)

π ∗ 1010

dgd2 =
arccos(

√
V12−V24

V22−V24
)

π ∗ 1010

dgd3 =
arcsin(

√
V14−V13

V11−V13
)

π ∗ 1010

dgd4 =
arcsin(

√
V23−V24

V22−V24
)

π ∗ 1010
, (4.27)
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V32

V11

V12

V31

V21

V22

V41

V42

Frequency component 1

Frequency component 2

Figure 4.17. Voltage values obtained data processing and DGD ex-
traction

where 10GHz is the frequency separation between the two components, V11 is

the mean voltage obtained by maximizing the frequency component f1, V22 is

the mean voltage obtained by maximizing the frequency component f2, V13 is

the mean voltage obtained by minimizing the frequency component f1, V24 is the

mean voltage obtained by minimizing the frequency component f2. V21, V12, V23

and V24 are the corresponding mean voltages of the other frequency component

at the maximized or minimized voltages. The matlab code for DGD extraction is

given in appendix C.

4.6.2 Extracting DGD information from polarization scrambling

The algorithm for extracting DGD from the scrambling waveform is fairly

simple. The output waveform for polarization scrambling is shown in figure 4.18.

The output waveform is filtered using a digital low pass filter with cutoff frequency

of 100Hz. Then the maximum and minimum values of the two waveform are found

and the DGD value can be extracted in the same procedure as the one used for
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polarization tracking.

Figure 4.18. Output waveform for polarization scrambling

4.7 Performance analysis of polarization scrambling and

polarization tracking

A number of factors influence the characteristics of the PMD monitor and as

a result, the algorithms implemented to measure DGD using the PMD monitor.

In this section such factors are discussed qualitatively and quantitatively.
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4.7.1 Range of DGD measured by the PMD monitor

The PMD monitor measures the DGD based on the angular walk off between

two frequency selected components. As such the range of DGD value that can be

measured by the PMD monitor is limited. Assuming ideal conditions, when the

two frequency components are aligned with each other in the Poincare sphere,the

DGD is given by the equation

DGD = (
( 0

180
)

(π ∗ 1e10)
) = 0ps, (4.28)

and when they are farthest apart in the Poincare Sphere, the DGD is

DGD = (
(90π

180
)

(π ∗ 1e10)
) = 50ps. (4.29)

So, DGD values from 0 ps to 50 ps can be measured by the PMD monitor. It

should be noted that the angular separation on the Poincare Sphere is twice that

of the actual angular separation between the two components.

4.7.2 Measurement speed

The step size used for polarization tracking and scrambling determine the

measurement speed of the respective algorithms. Using the same step size for

both algorithms, their measurement speed can be calculated. The number of

DAC samples required for a scrambling is given by the product of number of

points for the first cell, NDAC1 and number of points for the second cell, NDAC2.

If fDAC is the DAC sample rate, then the measurement speed is

Speedscrambling = (NDAC1 ∗NDAC2)/fDAC . (4.30)
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For polarization scrambling, the total number of points is 14400. With a DAC

sample rate of 21.7KHz for the microcontroller, the measurement speed is about

680 ms. This means that one DGD data can be extracted from scrambling every

680 ms. It should be noted that a delay of 30 µs is introduced by the poalrization

controller’s response time. For polarization tracking, the measurement speed is

given by

Speedtracking = (2 ∗NDAC)/fDAC . (4.31)

which yields a measurement speed of 11 ms. However, using a delay of 20 µs

for every DAC sample in addition to the response time of the polarization con-

troller, the length of a polarization tracking cylce is about 64 ms. This is done

in order to reduce the jitter caused due to step size. Adding the worst case fine

search algorithm time of 20 ms, the total length of polarization tracking cylce is

84 ms. This means that 12 DGD values can be extracted every second for the

polarization tracking implementation. Though the complexity of the polarization

tracking algorithm is 2 ∗ n as compared to the polarization scrambling which is

n2, the hardware used for the research has placed restriction on the measurement

speed of polarization tracking. Use of better hardware, such as a faster polariza-

tion controller and high speed AD and DA converters the measurement speed of

polarization tracking can be increased further.

4.7.3 Accuracy of the measurement

4.7.3.1 Step size used by the DA converter

For optimum performance, keeping in mind the measurement period required

for the PMD monitor, a step size should be decided. If the step size is too small

it would mean a longer measurement period, and if it is too large, lesser accuracy.
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So, a compromise between speed and accuracy is made. For this purpose, the step

size for the DA converter dedicated to each cell of the polarization controller is set

at 3 deg. In other words, for the purpose of scrambling, the Poincare Sphere can be

visualised as being partitioned into grids whose corners are 3 degrees apart from

each other with respect to the origin of the sphere. This inherently introduces an

error of

DGD = (
(1.5π

180
)

(π ∗ 1e10)
) = 0.8333ps. (4.32)

4.7.3.2 Threshold used for validation of polarization tracking

As seen in section 4.4.2, a threshold is used to verify whether the tracking

achieves a maximum (or minimum) that is close to the reference maximum(or

minimum) found by scrambling. This threshold used for validation introduces an

error in the DGD measurement. The error is proprotional to the DGD that is being

measured. A simulation is carried out to find the error in measurement for DGD

values that can be measured by the PMD monitor. The results of the simulation

is shown in the figure 4.19. As expected the magnitude of error decreases with

increase in the DGD value being measured. This can be understood by analyzing

the arc cosine function which is steep near one and flat around zero. So to minimize

the measurement error, a 98 percent threshold is used in the microcontroller C

code.

4.7.4 Dead zone of the polarization controller

When the input fiber pigtail is aligned at 45 deg to the first cell of the po-

larization controller given that the second cell is aligned at 45 deg with respect

to the first cell, the polarization controller can transform a given incoming SOP
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Figure 4.19. Simulation results for error in the DGD measurement
due to threshold used for validating polarization tracking

of the incoming signal to any outgoing SOP in the Poincare sphere. But when

there is an alignment error, i.e., the first cell is not 45 deg to the fiber input, there

exists a portion of the Poincare sphere that is left uncovered by the polarization

controller. This unreachable region in the Poincare sphere as shown in figure 4.20

is called the dead zone.

As a result, one or both of the frequency selected component may lie in the

dead zone. Since the alignment of fiber pigtail with the first cell is fixed, the area

of the dead zone is fixed. For the polarization controller used in the PMD monitor,

the diamterically opposite points of the dead zone of the polarization controller

subtend an angle of 15 deg with the origin of the Poincare sphere. The worst case
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Figure 4.20. The dead zone of the polarization controller

error occurs when the frequency component being tracked is located at the center

of the dead zone.For the given example,the worst case error in measurement would

be

DGDerror = (
(3.75π

180
)

(π ∗ 1e10)
) = 2.08ps. (4.33)

4.7.5 Measurement period and Statistics of data collected for

extracting DGD

The amount of time required to extract one DGD data from the coherent PMD

monitor is called a measurement period. For polarization scrambling, a measure-

ment period is the time of one full DA waveform cycle shown in figure 4.10. In our

experiment, a data file consists of 4 seconds of measurement. Every second of data

consists of one full cycle of poalrization scrambling and a maximum and minimum

search for each of the two frequency components. As desribed in section 4.6.1,

although four values of DGD can be extracted from tracking, for comparative

analysis of polarization scrambling and polarization tracking, one value of DGD
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is extracted by averaging the four values obtained by the normalization in po-

larization tracking. This yields two DGD values (one each for scrambling and

tracking) per second of data collected. Allowing two seconds for writing the data

file after every four seconds, 80 DGD values can be extracted per minute.

4.7.6 Noise characteristics

The noise from optical sources present in the PMD monitor can be classified

into two categories; the shot noise due to coherent detection in the photodiode

and the relative intensity noise (RIN) from the laser diode of the local oscillator

output. Shot noise in fiber optic systems is caused by random generation of

electron hole pairs in the photodiode [1]. Mathematically, the photodiode current

can be written as

I(t) = Ip + is(t), (4.34)

where Ip is the average current and is(t) is the current fluctuation contributed

by the shot noise. Generally, the electron hole pair generation is modelled as a

Poisson process. But for simplicity shot noise can be described as a white noise

with constant power spectral density using the Gaussian approximation. Then,

the variance of the shot noise can be calculated as

σ2
s =

∫
Ss(f)df = 2qIp∆B, (4.35)

where ∆B is the effective noise bandwidth of the receiver. The input signal level,

Ps is −15dBm and the LO output power is −2dBm approximately. The output
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power,Po at 3dB coupler is given by

Po =
Ps + PL

2
=

631 + 31

2
= 330.5µW.

The responsitivity of the photodiode with a 40GHz bandwidth is 0.5A/W , so the

average photocurrent at the photodiode output, Iph is 330.5 ∗ 0.5 = 160.25µA.

Now the root mean square shot noise at 40 GHz bandwidth can be given as

σ2
s = 2 ∗ 1.6 ∗ 10−19 ∗ 160.25 ∗ 10−6 ∗ 40 ∗ 109 = 2.05pW, (4.36)

and the output current at the photodiode Io, of the coherently detected output

at the photodiode with responsitivity, ρ, is given by,

Io = 2 ∗ ρ ∗
√

(Ps ∗ PL) = 2 ∗ 0.5 ∗
√

(631 ∗ 31 ∗ 10−12) = 139µA. (4.37)

The equation 4.36 shows that noise power due to shot noise is proportional to the

bandwidth. When the optical spectrum is down converted to the RF spectrum

of 1GHz bandwidth, the contribution from shot noise is reduced. At 1 GHz

bandwidth, we can assume that the signal spectrum is assumed to be flat in the

bandwidth of interest of the signal. The signal power at 1GHz is 1/20th of the

total signal power since the signal bandwidth is 20GHz. Then the output current

can be given as

Io = 139/20µA = 6.45µA.
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After the sallen key low pass filter whose bandwidth is of the order of 15KHz, the

noise contribution due to shot noise is

σ2
s = 2 ∗ 1.6 ∗ 10−19 ∗ 160.25 ∗ 10−6 ∗ 15 ∗ 103 = 7.9 ∗ 10−19W. (4.38)

Also, it should be noted that the thermal noise places a lower limit on the LO

output power. The lowest signal power at which the thermal noise power domi-

nates the signal is when the signal power equal noise power i.e., when SNR due

to thermal noise is unity. The thermal noise for a room temperature of 300 K at

bandwidth ∆B of 40 GHz is given by,

E[n(t)2] = 4kT∆B/RL = 4∗1.38∗10−23∗300∗40∗109/50 = 1.3∗10−11W = −78.6dBm.

Here RL is the load resistance of the photodiode. For high speed optical systems,

the photodiode’s load resistance is generally 50 ohms. The RF signal power of

coherent detection is

Psig = 20log(160.25 ∗ 10−6) = −47dBm.

So the signal level is atleast 30dBm more than the thermal noise limit. At the

output of the low pass filter, the noise contribution at bandwidth ∆B of 15KHz

due to the thermal noise can be calculated as

σ2
th = 4 ∗ 1.38 ∗ 10−23 ∗ 300 ∗ 15 ∗ 103/50 = 4.96 ∗ 10−18W. (4.39)

The relative intenisty noise (RIN) occurs due to intensity fluctuations of a semi-

conductor laser. It can either be due to internal factors such as modal instablilities
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or due to extrinsic factors such as near end and far end reflections. Generally at

very high frequencies, the RIN due to intrinsic factors is not significant as the laser

will not be able to respond to such fluctuations. Only the extrinsic RIN affect the

LO. The near end reflections at the fiber interface can be reduced by antireflection

coating while the far end reflections result in peaks in the noise power spectrum.

From the manufacturer’s datasheet for the Laser, we have found that the RIN

from the laser is about −137 dB/Hz. The RIN is defined for frequencies from

0.5MHz to 10 GHz as shown in figure 4.21.

Figure 4.21. The RF spectrum at the output of the RF amplifier
without attenuating the LO output

A 15 dB attenuator is used to reduce the effect of RIN at high output power

of the LO. The RF spectrum at the RF amplifier’s output with attenuation of the

LO output is shown in the figure 4.22.

The RIN at the frequency range of interest, i.e., for 40GHz bandwidth can be

calculated as

σ2
RIN = RIN∗∆B∗P 2

L∗ρ2 = 2ε−14∗40∗109∗(631∗10−6)2 = 7.963∗10−11W. (4.40)

At the output of the low pass filter, the noise contribution at bandwidth ∆B of
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Figure 4.22. The RF spectrum at the output of the RF amplifier
with attenuation of the LO output

15KHz due to RIN is

σ2
RIN = 2ε−14 ∗ 15 ∗ 103 ∗ (631 ∗ 10−6)2 = 3 ∗ 10−17W. (4.41)

The RF detector calculates the total signal power in 1GHz bandwidth and also

the wideband noise at 1GHz. Therefore the RF equivalent signal power at the

output of the low pass filter is

So = (6.45 ∗ 10−6)2W = −73.8dBm. (4.42)

Further more, the RIN, shot noise and the thermal noise add together at the input

of the filter. By central limit theorem, it is reasonable to assume that the noise

at the input of the filter is Gaussian. From equations 4.38, 4.39, 4.41, the total

noise power can be calculated as the sum of the noise powers. Therefore, the SNR

at the output of the low pass filter is

SNR = 10log(4.16 ∗ 10−11/(3.58 ∗ 10−17)) = 60.65dB. (4.43)
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Therefore, we can conclude the noise contributions due to the optical sources is

negligible. However, the RF noise from the high speed RF amplifiers used in the

signal processing circuitry must be taken into account. Adding the Johnson noise

limit for the input of the RF amplifier to the optical noise contributions the total

noise power is,

σ2
total = 3.58 ∗ 10−17 + 4kT∆f/Rs = 3.65 ∗ 10−17W

where Rs is the load resistance of the source and ∆f is 15KHz. Therefore the

total SNR at the input of the RF amplifier is

SNRRFinput = 10log(4.16 ∗ 10−11/(3.65 ∗ 10−17)) = 60.5dB.

At the output of the first amplifier the signal power is So = −53.8dBm. With

a noise figure of 7 dB, the output noise power is given by No = F.G.Ni where F is

the noise figure of the RF amplifier, G is its gain and Ni is the noise input power

at the RF amplifier. The noise power at the output of the first RF amplifier is

No = 10log(3.65 ∗ 10−17 ∗ 107 ∗ 5.011) = −117.377dBm. (4.44)

At the output of the second RF amplifier, the noise power can be calculated as

No = 10log(1.82 ∗ 10−12 ∗ 107 ∗ 5.011) = −74.8dBm. (4.45)

Therefore the SNR at the output of the bandpass filters is −33.8−(−74.8) i.e.,41.5

dB. Hence the noise at the output of the low pass filter due to optical and RF

sources is very low.
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4.8 Advantage of polarization tracking over polarization

scrambling

In this chapter, we have seen that polarization tracking has some important ad-

vantages over scrambling. Firstly, the measurement period of polarization tracking

implementation is around 12 DGD values per second. This is many times faster

than scrambling which would yield one DGD value in two seconds. Secondly, the

amount of data collected and stored for DGD extraction is very large for scram-

bling. For instance, about 144 Gigabytes of hard disk space is required for an hour

of data. For tracking, the memory requirement reduces to about 13.4 Megabytes

of data in a hour when samples are collected for averaging. If the averaging can

be carried out in the hardware, only 1.4 Megabytes of disk space is required. A

closely related and more significant advantage of tracking is that the DGD value

can be processed in real time. In other words, the DGD can be extracted as the

data is being collected. This is not possible in scrambling as filtering and search

operations are to be carried out for every data file that is collected. The real time

implementation of tracking requires change of hardware or software that has been

used thus far, at the lightwave laboratory. As a result, with the available hard-

ware, a test has been conducted to prove the advantages of polarization tracking

over polarization scrambling. Using the OC192 transmission test set and the PM

fiber to generate an unknown but fixed DGD in the probing signal, the PMD

monitor has been used to extract the DGD information real time. This has been

made possible by the use of RS232 serial communication between the microcon-

troller and the computer. The results of the test with details of hardware and

data processing algorithms are discussed in section 5.
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Chapter 5

Experiments and Results

5.1 Measuring the DGD of a PM fiber

In this test, a polarization maintaining fiber was used as a link from a OC192-

10GHz transmission test kit to the PMD montior as shown in figure 5.1. The

data is collected and stored in time-stamped files. An optical spectrum analyzer

(OSA) is used to locate the frequency at which the peak optical power occurs.

For proper coherent detection, the optical signal power from the test kit should

be lesser than -15dB so that the wideband photodiode is not saturated. The local

oscillator output is attenuated to reduce the relative intensity noise from the LO

of the PMD monitor. Then the local oscillator frequency is changed to be within

25GHz of the optical signal frequency so that the IF terms lie within the spectrum

of commercially available bandpass filters.

Though the relative orientation of the PSPs of the PM fiber is unknown,

they are fixed with respect to the fiber axis. As a result, this test serves as a

measure of repeatablity for the PMD monitor. This experiment can be considered

an ideal experiement where the SOP change is negligible. The PM also has a
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OC 192 transmission test
kit PMD monitor Laptop

RS 232 cable

USB 
cable

PM fiber

Figure 5.1. Experimental setup for the PM fiber experiment

constant but unknown DGD. The figure 5.2 shows the plot for the DGD measured

from the fiber using polarization scrambling. The data is collected for about

Figure 5.2. Plot for DGD calculated by the PMD monitor using
polarization scrambling for the PM fiber experiment

10.5 hrs. The histogram of the DGD is shown in figure 5.3. As can be inferred

from the figure, the total width of the distribution is about 2.5ps for a mean

DGD of 13.53ps. Ideally one is expected to measure a constant DGD and as
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a result a narrower distribution. But limitations on the hadware used for the

measurement, lead to errors in the measurement. It should be noted that DGD is

a random quantity depending on factors ranging from the instrumentation to the

ambient temperature. A detailed error analysis is discussed in the later chapters.

Literature suggests there is atleast a 15 to 20 percent of error margins between

different measurement techniques [13]. The DGD measured using polarization

Figure 5.3. Histogram for DGD calculated by the PMD monitor
using polarization scrambling for the PM fiber experiment

tracking is given in figure 5.4. The total width of the distribution is about 3 ps,

which is slightly wider than that of scrambling. This is expected as the threshold

for the global maximum in tracking is 98 percent of the reference global maximum

in scrambling. For instance, using a 98 percent threshold to measure a mean DGD
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of 13.5 ps would give a mean DGD of 14.1 ps with polarization tracking. The mean

DGD of the measurement using tracking is 13.94ps. As a result there is 7 percent

error between the DGD measured by the two algorithms. The histogram for the

Figure 5.4. Plot for DGD calculated by the PMD monitor using
polarization tracking for the PM fiber experiment

DGD measured by polarization tracking is given in figure 5.5. The summary of the

DGD statistics measured using polarization scrambling and polarization tracking

is given in Table 5.1.

5.2 Measuring the DGD of a PMD emulator

For the purpose of verifying how accurately the PMD monitor measures a

known DGD value, a PMD emulator is used to introduce a known DGD in the
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Figure 5.5. Histogram for DGD calculated by the PMD monitor
using polarization tracking for the PM fiber experiment

Attributes Polarization scrambling Polarization tracking
Meausrement time 630 minutes 630 minutes

No of samples 14,748 12,220
Mean value of DGD 13.52 ps 13.94 ps

Standard deviation of DGD 0.54 ps 0.73 ps
Width of the distribution 2.56 ps 3.23 ps

Table 5.1. DGD statistics for the PM fiber experiment.
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optical signal. The experimental set up for the PMD emulator test is shown in

the figure 5.6. The optical signal is fed as an input to the PMD emulator in

OC 192 transmission test
kit PMD monitor

Laptop

RS 232 cable

USB 
cable

SM fiber

PMD emulator

Figure 5.6. Experimental setup for the PMD emulator experiment

such a way that optical power is equally divided between the two axes of the

fiber. The output from the PMD emulator is then input into the coherent PMD

montior. The PMD emulator can be used to introduce DGD ranging from 0 to

Figure 5.7. Plot for DGD calculated by the PMD montior using
polarization scrambling for the PMD emulator experiment
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1000 ps. However, as proved earlier, a maximum of 50 ps can be measured using

the PMD monitor.The PMD emulator in our experiment introduces a DGD of

25 ps. Figure 5.7 shows the plot for the measured using polarization scrambling.

The histogram of the DGD is shown in figure 5.8. The mean value of the DGD

is 25.3ps. Since the DGD introduced by the emulator is based on mechanical

vibrations and these vibrations change slowly in a lab environment we expect to

see a narrower distribution than a Rayleigh or a Maxwelliam distribution. The 3σ

with of the distribution is 10 ps. The DGD measured using polarization tracking

Figure 5.8. Histogram for DGD calculated by the PMD monitor
using polarization scrambling for the PMD emulator experiment

is given in figure 5.9. We observe a wider distribution for tracking than that of

scrambling due to the fact that the SOP is not stable. However, the mean value of

83



DGD measured by scrambling and tracking differ from each other by 9.7 percent.

The normalization procedure used for DGD calculation in tracking assumes that

the SOP does not change for one full tracking cycle. This is not the case for a

PMD emulator. So even a slow change in the SOP during the polarization tracking

Figure 5.9. Plot for DGD calculated by the PMD monitor using
polarization tracking for the PMD emulator experiment

cycle will introduce errors in the DGD extracted from the data. In general, the

faster the SOP in a link changes the less accurate is the polarization tracking for

measuring DGD in the link. The histogram for the DGD measured by polarization

tracking is given in figure 5.10. The 3σ width for polarization tracking is found

to be 15ps. The summary of the DGD statistics measured using polarization

scrambling and polarization tracking is given in Table 5.2. It should be noted
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Figure 5.10. Histogram for DGD calculated by the PMD monitor
using polarization tracking for the PMD emulator experiment

that the number of DGD samples extracted from tracking is considerably lesser

than scrambling because of changes in SOP during a measurment cycle.

Attributes Polarization scrambling Polarization tracking
Meausrement time 730 minutes 730 minutes

Mean value of DGD 25.8 ps 25.2 ps
Standard deviation of DGD 1.62 ps 2.5 ps
Width of the distribution 9.7 ps 15.3 ps

Table 5.2. DGD statistics for the PMD emulator experiment.
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5.3 PMD monitor in field measurement trial

The coherent PMD monitor was used to measure DGD in optical switch sta-

tions in Kansas City, Kansas and Sprint laboratories in San Franciso,California.

This section discusses the results of the field trials.

5.3.1 Trials in optical switch station for polarization scrambling

The field tests were conducted from the 11th to the 23rd June, 2008, in the

optical switch station at Kansas City, Kansas. The DGD was measured on the

fiber optic link from Kansas City to Chicago, IL. In the field test, the channel for

which DGD is to be monitored is chosen using a tunable filter which selects only

the frequency region of interest. Then a portion of signal is tapped from the live

traffic and an erbium doped fiber amplifier (EDFA) is used to boost the optical

signal power to -15 dB. Then the signal is fed to the PMD monitor. The frequency

of the LO is tuned so that the center frequency of the LO is offset by 25GHz to the

peak frequency of the channel. Data is then collected for a period of 1 to 10 days.

Then DGD values are extracted by post processing. The histogram for the DGD

data measured by the PMD monitor is given in figure 5.11 As proved theoretically,

the expected distribution of the measured DGD using our measurement technique

is Rayleigh and not Maxwellian. From the figure 5.11, it can be inferred that the

measured distribution is closer to a Rayleigh distrbution. The mean value of the

DGD measured by the PMD monitor is 8.83 ps. This is the apparent DGD of

the probing signal. The true DGD of the fiber is 11.42 ps which is as a result

of the multiplication factor 4/π relating the true and apparent DGD of the fiber.

The plot for the DGD collected is shown in figure 5.12. Numerical simulation

have been carried out by others for PMD induced system impairments and the
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Figure 5.11. Histogram for DGD calculated by the PMD monitor
using polarization scrambling for the KC-Chicago fiber optic link

result in [9] are very similar to the results in figure 5.11. The DGD statitics of

the measured data are given in the table 5.3

Statistics Values
No of samples 606380

Measurement speed 1 DGD value in 2 seconds
Mean of the measured DGD 8.83 ps

Mean of the true DGD 11.42 ps
Minimum value of DGD 0 ps
Maximum value of DGD 30.43ps

Correlation time of the data 28 minutes

Table 5.3. DGD statistics for the measurement trial with polariza-
tion scrambling
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Figure 5.12. Plot for DGD calculated by the PMD monitor using
polarization scrambling for the KC-Chicago fiber optic link

5.3.2 Field trial results of polarization tracking

A laboratory test with fiber spools of 700 km length was conducted in the

Sprint research laboratories in San Franciso, CA. The time interleaved implemen-

tation of polarization scrambling and tracking was used to measure DGD in this

case. The histogram for DGD data measured by the PMD monitor is given in

the figure 5.13 From the figure, the distribution of the measured DGD is closer

to a Rayleigh distribution than the Maxwellian distribution. The mean value of

DGD measured by the PMD monitor is 2.9 ps. This is the apparent DGD of the

probing signal. The true DGD of the fiber is 3.82ps. The plot for DGD data

collected for close to 14 hrs is shown in the figure 5.12 The correlation time for
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Figure 5.13. Histogram for DGD calculated by the PMD monitor
using polarization tracking

the measured data is found to be 7 minutes. Since the time for which the data is

collected is much greater than the correlation time of the measured data, a fairly

accurate distribution is achieved inside a day. Table 5.4 presents the statistics of

DGD data for the measurement trial.

5.4 DGD measurement of a scrambled input signal

In this test, the incoming signal from the WDM system is fed to a PMD

emulator that introduces a DGD of 40 ps. Also the input signal is polarization

scrambled at the rate of a few Hz. Then, this signal is launched into a fiber

spool of length of a few hundred kilometers. Thus the input signal whose DGD
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Figure 5.14. Plot for DGD calculated by the PMD monitor using
polarization tracking

Statistics Values
No of samples 26213

Measurement speed (Average) 3 DGD values/second
Mean of the measured DGD 2.9 ps

Mean of the true DGD 3.83 ps
Minimum value of DGD 0 ps
Maximum value of DGD 12.1ps

Correlation time of the data 17 minutes

Table 5.4. DGD statistics for the measurement trial with polariza-
tion tracking

90



is to be measured is unstable. So the DGD measured by the coherent PMD

monitor is the root mean square DGD and not the average DGD. The rms DGD

is proportional to DGD with the proportionality constant being the cosine square

function. As a result the mean DGD measured by the PMD monitor is the average

of the rms DGD which is equal to the true DGD divided
√

2. Hence we should

measure a mean DGD of around 40/
√

2 which is 28.2ps. Figure 5.15 shows the

DGD measured by the PMD monitor using scrambling and the figure 5.16 shows

the DGD plot for the same experiment whose DGD is measured by tracking.

Though, the test was conducted only for a period of 15 minutes, the mean DGD

measured using scrambling is 27.9ps. Hence, this test serves as another validation

of both polarization scrambling and polarization tracking. The mean value of

the polarization tracking measurement is 27.8ps. The correlation time for this

measurement is 2 seconds.

Figure 5.15. Plot for DGD calculated by the PMD monitor using
polarization scrambling for an unstable probing signal
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Figure 5.16. Plot for DGD calculated by the PMD monitor using
polarization tracking for an unstable probing signal

5.5 Run time implementation of polarization tracking

5.5.1 Hardware and Sofware used for real time DGD calculation

The need for real time data processing to extract DGD data was already

emphasized. A run time implementation will reduce the memory requirements

greatly. The hardware for implementing the polarization tracking real time is

the same as the one used for polarization tracking with the exception that the

DAQ is not required. The microcontroller is used to sample the two channels

once a global maximum is reached after the tracking algorithm. The data is

sent through a RS 232 serial port interface between the microcontroller and the

serial port of the computer. Due to the limitations of the microcontroller data

transfer protocol (RS232), the number of samples that can be acquired for a stable

global maximum is lower than when using a faster transfer protocol like the USB

in the case of DAQ board. So, three samples per acquisition are averaged per

tracking cycle. The DGD extraction algorithm is the same as the one described

in section 4.6.1. The algorithm for acquiring the data from the microcontroller

and DGD calculation is given by the flowchart in figure 5.17.
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Configure the AD and DA 
properties of the MCU

Configure RS232 settings 
Baud rate at 4800bps for

write operation

Perform a polarization coarse 
and fine search.

Is the voltage within the 
monitoring threshold?

Acquire three samples on the AD 
converter  channels

Send the data through the RS232
interface to the computer

Yes

No

(a)

Configure the serial 
port read module

Start the read process at 
4800bps and read up to 3

data frames

Check for data consistency
and average three sample

pairs to obtain voltage values

Calculate the DGD values

Write the data values in a file

(b)

Figure 5.17. Algorithm for run time extraction of DGD (a) The
MCU algorithm for tracking and (b)The software algorithm for DGD
calculation in run time

5.5.2 Test for real time implementation using polarization tracking

The run time implementation using polarization tracking has already been

described. In this section, its obvious advantages come to view. The test was

conducted for a period of 880 minutes. The histogram of the measurement is given

in figure 5.18. We can obeserve that the loss of the ability to average the samples

has in fact led to a less accurate DGD measurement of the PMD monitor. Though

the mean DGD of the PM fiber agrees with the time interleaved implementation

of scrambling and tracking and distribution is still close to a normal distribution,

the 3σ width is larger and this might lead to more error in the DGD measurement
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in field trials.The statistics of the DGD data collected is shown in the table 5.5.

Figure 5.18. Histogram for DGD calculated real time by the PMD
monitor using polarization tracking

Statistics Values
No of samples 262,566

Mean of the measured DGD 13.5ps
Measurement speed 4 values/second

Minimum value of DGD 11.1ps
Maximum value of DGD 17ps

Standard deviation 1.1 ps
Width of the distribution 4.2 ps

Table 5.5. DGD statistics for the run time implementation of the
PMD monitoring with polarization tracking
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Chapter 6

Summary

6.1 Conclusion

An in - situ PMD measurement technique has been proposed and two algo-

rithms have been implemented to measure the DGD of fiber optic links. Exper-

iments have been conducted to characterize the PMD monitor and the effective-

ness of the two algorithms in measuring PMD in different conditions has been

presented. It has also been established through analysis that DGD measured by

the PMD monitor is the apparent DGD as measured by the probing signal. An

expression for the relationship between the true DGD and the apparent DGD of

the fiber is derived. It has also been proven that the distribution of the apparent

DGD is Rayleigh unlike the true DGD which follows a Maxwellian distribution.

The theoretical analysis agree well wwith the measured DGD data for both the

algorithms. It has also been established by theory and analysis that the polar-

ization tracking is more advantageous than polarization scrambling in terms of

speed and ease of data processing. For slow changes in DGD, it has been proven

experimentally that the two algorithms agree with each other closely. As dis-

95



cussed in the PMD emulator experiment, the tracking algorithm is less accurate

than scrambling for faster changes in SOP or DGD of the incoming signal. This

report also presents a detailed discussion on polarization in lightwave systems, the

origin, causes and effects of PMD, an overview of PMD measurement techniques

and their relative effectiveness and limitations.

6.2 Future work

It should be noted that although the use of polarization tracking has been

validated by experiments and field trials, the limitations of the hardware and

software used for research have restricted the run-time implementation of the

polarization tracking for PMD monitoring in traffic carrying fibers. Herein lies

the scope for future work. The use of high speed hardware and software with

multi threading capabilites will allow the run time implementation and will further

increase the speed of DGD measurements for field trials. For instance, the use

of a faster polarization controller will allow higher loop bandwidth for tracking

algorithms. Although the tracking algorithm can yield a DGD value every 11

ms, the repetition rate of polarization controller used here is limited to 1 KHz.

Using a polarization controller with faster repetition rate and response time can

greatly increase the loop bandwidth. These upgrades would make the coherent

PMD monitor suitable for field measurements of links with faster DGD changes.
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Appendix A

Microcontroller code for

polarization tracking and

scrambling

/*************************************************************/

/* Program for polarisation tracking algorithm */

/* Sathyanarayanan Sundhararajan , Lightwave laboratory ,ITTC KU */

/*************************************************************/

#define START 0x0800

#define STOP 0x0FFF

#define DELAY 100

#define DELAY1 100

#define DELAY2 20

#define TRACKSTEPSIZE 0x005

#define SCRSTEPSIZE 0x010

#define SCRSTEPSIZE1 0x010

int poscell0,poscell1,poscell0min,poscell1min;

int globalmaximum1,globalminimum1;

#include <aduc7026.h>

void ADCpoweron(int);

void delay(int);

void initialize_AD_DA_channels();
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void initialize_UART(void);

void senddata(short);

char hex2ascii(char);

int findmax(int *,int);

int polscramble(int);

float getdata(int);

int poltracking(int);

int poltrackingmin(int);

void sendserialdata(int);

int monitor(void);

void initialize_AD_DA_channels()

{

/* INITIALISES AD AND DA CONVERTERS ON THE ADUC7026 MCU */

ADCpoweron(20000); // power on ADC

GP4DAT = 0x04000000;

REFCON = 0x01; // internal 2.5V reference

DAC0CON = 0x13;

DAC1CON= 0x13; // configuring DAC0,DAC1, DAC2, DAC3

DAC2CON= 0x13;

DAC3CON= 0x13;

}

void initialize_UART()

{

GP0CON = 0x100000; // Enable ADCbusy on P0.5

GP1CON = 0x011; // Setup tx & rx pins on P1.0 and P1.1

// Setting up UART at 9600 (CD=0)

COMCON0 = 0x80; // Setting DLAB

COMDIV0 = 0x44;

COMDIV1 = 0x00;

COMCON0 = 0x07; // Clearing DLAB

}

void ADCpoweron(int time)

{
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ADCCON = 0x620; // power-on the ADC

while (time >=0) // wait for ADC to be fully powered on

time--;

}

void delay (int length)

{

while (length >=0)

length--;

}

void senddata(short to_send)

{

while(!(0x020==(COMSTA0 & 0x020))){}

COMTX = 0xA;

while(!(0x020==(COMSTA0 & 0x020))){}

COMTX = 0xD;

while(!(0x020==(COMSTA0 & 0x020))){}

COMTX = hex2ascii ((to_send >> 8) & 0x0F);

while(!(0x020==(COMSTA0 & 0x020))){}

COMTX = hex2ascii ((to_send >> 4) & 0x0F);

while(!(0x020==(COMSTA0 & 0x020))){}

COMTX = hex2ascii (to_send & 0x0F);

}

char hex2ascii(char toconv)

{

if (toconv<0x0A)

{

toconv += 0x30;

}

else

{

toconv += 0x37;

}

return (toconv);

}

int polscramble(int k)
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{

int i,j,max=0,flag=1,data=0;

GP4DAT = 0x04040000;

GP4DAT = 0x04000000;

//GP2DAT = 0x04040000;

if (k%2==1)

{

for (i=START;i<=STOP;i+=SCRSTEPSIZE)

{

if(i%2==1)

flag=1;

else

flag=0;

DAC0DAT=(i<<16);

delay(20);

if (flag==1)

{

for(j=START;j<=STOP;j+=SCRSTEPSIZE1)

{

DAC1DAT=(j<<16);

delay(DELAY1);

}

}

if (flag==0)

{

for(j=STOP;j>=START;j-=SCRSTEPSIZE1)

{

DAC1DAT=(j<<16);

delay(DELAY1);

}

}

}

}

if (k%2==0)

{

for (i=STOP;i>=START;i-=SCRSTEPSIZE)

{

if(i%2==1)

flag=1;

else

flag=0;

DAC0DAT=(i<<16);
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delay(20);

if (flag==1)

{

for(j=START;j<=STOP;j+=SCRSTEPSIZE1)

{

DAC1DAT=(j<<16);

delay(DELAY1);

}

}

if (flag==0)

{

for(j=STOP;j>=START;j-=SCRSTEPSIZE1)

{

DAC1DAT=(j<<16);

delay(DELAY1);

}

}

}

}

return 0;

}

float getdata(int a)

{

int i;

float sum=0;

for(i=0;i<a;i++)

{

while(!ADCSTA){}

sum=sum+(ADCDAT>>16);

}

sum=sum/a;

return(sum);

}

int poltracking(int adchan)

{

int i,j,max0=0,max1=0,maxpos1=0,maxpos0=0,data0,data1;

ADCCP=adchan;

delay(100);

for(i=START;i<=STOP;i+=TRACKSTEPSIZE)

{

DAC0DAT=(i<<16);

delay(DELAY);
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data0=getdata(1);

if (data0 > max0)

{

max0=data0;

maxpos0=i;

}

}

DAC0DAT=(maxpos0<<16);

for(j=START;j<=STOP;j+=TRACKSTEPSIZE)

{

DAC1DAT=(j<<16);

delay(DELAY);

data1=getdata(1);

if (data1 > max1)

{

max1=data1;

maxpos1=j;

}

}

DAC0DAT=(maxpos0<<16);

DAC1DAT=(maxpos1<<16);

poscell0=maxpos0;

poscell1=maxpos1;

globalmaximum1=max1;

return(max1);

}

int poltrackingmin(int adchan)

{

int i,j,max0=STOP,max1=STOP,maxpos1=0,maxpos0=0,data0,data1;

ADCCP=adchan;

delay(100);

for(i=START;i<=STOP;i+=TRACKSTEPSIZE)

{

DAC0DAT=(i<<16);

delay(DELAY);

data0=getdata(1);

if (data0 <= max0)

{

max0=data0;

maxpos0=i;

}

}
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DAC0DAT=(maxpos0<<16);

for(j=START;j<=STOP;j+=TRACKSTEPSIZE)

{

DAC1DAT=(j<<16);

delay(DELAY);

data1=getdata(1);

if (data1 <= max1)

{

max1=data1;

maxpos1=j;

}

}

DAC0DAT=(maxpos0<<16);

DAC1DAT=(maxpos1<<16);

poscell0min=maxpos0;

poscell1min=maxpos1;

globalminimum1=max1;

return(max1);

}

int finetrack(int ad){

int x,i,j,k,l,threshold=0x020,a,range,flag=1,flg1=1,prevrange,z;

k = poscell0;

l = poscell1;

range=0x04;

ADCCP=ad;

delay(100);

while (range<0x40)

{

for (i=(poscell0-range); i<=(poscell0+range);i+=0x001)

{

if(i>(poscell0-prevrange) && i < (poscell0+prevrange))

{ i = poscell0+prevrange; }

DAC0DAT=(i<<16);

delay(DELAY);

while(!ADCSTA){}

if(globalmaximum1<=(ADCDAT>>16))

{

globalmaximum1=(ADCDAT>>16);

k=i;

DAC0DAT=(k<<16);

delay(30);

}
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}

poscell0=k;

DAC0DAT=(poscell0<<16);

for (j=(poscell1-range); j<=(poscell1+range);j+=0x001)

{

if(j>(poscell1-prevrange))

{ j = poscell1+prevrange; }

DAC1DAT=(j<<16);

delay(DELAY);

while(!ADCSTA){}

if(globalmaximum1<=(ADCDAT>>16))

{

globalmaximum1=(ADCDAT>>16);

l=j;

DAC1DAT=(l<<16);

delay(30);

}

}

poscell1=l;

DAC1DAT=(poscell1<<16);

while (!ADCSTA){}

x=(ADCDAT>>16);

if (!((x < (globalmaximum1 - threshold))))

{

ADCCP=0;

while(!ADCSTA){}

delay(100);

a=(ADCDAT>>16);

senddata(globalmaximum1);

senddata1(ad);

senddata1(a);

ADCCP=1;

while(!ADCSTA){}

delay(100);

z=(ADCDAT>>16);

senddata1(z);

senddata1(flg1);

ADCCP=ad;

while(!ADCSTA){}

delay(100);

x=(ADCDAT>>16);

return 0;
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}

prevrange=range;

range=range+0x004;

}

return 1;

}

int finetrackmin(int ad){

int x,i,j,k,l,threshold=0x020,a,range,flag=1,prevrange,flg1=0,z;

k = poscell0min;

l = poscell1min;

range=0x04;

ADCCP=ad;

delay(100);

while (range<0x40)

{

for (i=(poscell0min-range); i<=(poscell0min+range);i+=0x001)

{

if(i>(poscell0min-prevrange) && i < (poscell0min+prevrange))

{ i = poscell0min+prevrange; }

DAC0DAT=(i<<16);

delay(DELAY);

while(!ADCSTA){}

if(globalminimum1<=(ADCDAT>>16))

{

globalminimum1=(ADCDAT>>16);

k=i;

DAC0DAT=(k<<16);

delay(30);

}

}

poscell0min=k;

DAC0DAT=(poscell0min<<16);

for (j=(poscell1min-range); j<=(poscell1min+range);j+=0x001)

{

if(j>(poscell1min-prevrange) && j < (poscell1min+prevrange))

{ j = poscell1min+prevrange; }

DAC1DAT=(j<<16);

delay(DELAY);

while(!ADCSTA){}
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if(globalminimum1<=(ADCDAT>>16))

{

globalminimum1=(ADCDAT>>16);

l=j;

DAC1DAT=(l<<16);

delay(30);

}

}

poscell1min=l;

DAC1DAT=(poscell1min<<16);

while (!ADCSTA){}

x=(ADCDAT>>16);

if (!((x < (globalminimum1 - threshold))))

{

ADCCP=0;

while(!ADCSTA){}

delay(100);

a=(ADCDAT>>16);

senddata(globalminimum1);

senddata1(ad);

senddata1(a);

ADCCP=1;

while(!ADCSTA){}

delay(100);

z=(ADCDAT>>16);

senddata1(z);

senddata1(flg1);

ADCCP=ad;

while(!ADCSTA){}

delay(100);

x=(ADCDAT>>16);

return 0;

}

prevrange=range;

range=range+0x004;

}

return 1;

}

int main()

{

int i=0,chan=0,scr_globalmax=0,flg1,trc_globalmax=0;

long max=0x00,max1=0x02;
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initialize_AD_DA_channels();

initialize_UART();

scr_globalmax=polscramble(i);

trc_globalmax=poltracking(i);

trc_globalmax=poltracking(i);

while(1)

{

GP2DAT = 0x04040000;

scr_globalmax=polscramble(0);

GP2DAT = 0x04000000;

trc_globalmax=poltracking(0);

flg1=finetrack(0);

trc_globalmax=poltracking(1);

flg1=finetrack(1);

trc_globalmax=poltrackingmin(0);

flg1=finetrackmin(0);

trc_globalmax=poltrackingmin(1);

flg1=finetrackmin(1);

}

return 0;

}
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Appendix B

MATLAB code for acquiring data

from the PMD monitor

%-----------------------------------------------

% code for acquiring data from PMD monitor

% written by Sathyanarayanan Sundhararajan

%-----------------------------------------------

clc;

clear all;

Data_Folder=’Foldername’;

%Variables Declarations

count = 0;

% CREATE DEVICE OBJECTS

%Analog Input Object

ai = analoginput(’dtol’, 0);

ai.InputType = ’SingleEnded’;

%Digital Input Object for Status Check

dio = digitalio(’dtol’);

%ADD CHANNEL 0,1 and 2 to analoginput

addchannel(ai, 0:3); % 3 AIN channels (0 and 1)

%CONFIGURE ANALOG INPUT SUBSYSTEM

set(ai, ’SampleRate’, 50000);

set(ai, ’BufferingMode’, ’auto’);

set(ai, ’SamplesPerTrigger’, Inf);
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% External Hardware Trigger

set(ai, ’TriggerType’, ’HwDigital’);

set(ai,’TriggerRepeat’,Inf);

while(1)

data=[];

data1=[];

i=1;

while (i <=4)

start(ai);

data1 = getdata(ai,50000);

data=[data;data1];

stop(ai);

i=i+1;

end

plot(data);

StartTime=datenum(clock);

%-------------------------------

%Write data to file:

%--------------------------------

if isdir(Data_Folder) ~= true

mkdir(Data_Folder);

end

TimeStamp = datestr(StartTime,’mmm_dd_yyyy_HH-MM-SS’);

i=1;

FilePath = sprintf(’%s\\Scr_%s_%i.txt’,Data_Folder,TimeStamp,i);

fid = fopen(FilePath,’w’);

fprintf(fid,’%4.4f\t%4.4f\t%4.4f\r\n’,data’);

fclose(fid);

end
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Appendix C

MATLAB code for extracting

DGD from polarization tracking

data

%-----------------------------------------------

% code for acquiring data from PMD monitor

% data processing code written by Sathyanarayanan Sundhararajan

% file access part of the code by Peter Adany and Junfeng Jiang

%-----------------------------------------------

clc;

clear all;

%paramters:

Wavelen = 1; %select wavelength number

T = 1; %s Enter time duration of each file

NtoLoad = 1; %# files to load

NpksLoc = 50; %# peaks to find

GoBackN = 1e9;

Thresh = 0.99; % amplitude thershold value

%1) Get the list of file names from the given folder:

disp(’Getting file names...’)

Dir = uigetdir(cd, ’Please select PMD_Data folder’);

Foldr = Dir(max(regexp(Dir,’\’)+1):end);
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% cd(Dir) %% Set "Dir" as the current directory

Dir = sprintf(’%s\\’,Dir)

Ext = ’.txt’;

FilePathString = [Dir ’*’ Ext]

%get file names:

Files = dir(FilePathString);

if isempty(Files),error(’no files found!’),end;

normmatrix=[];

%2) Sort the files into chronological order

FileCnt = length(Files);

Date = zeros(FileCnt,3);

for i=1:FileCnt

NameString = Files(i).name;

Date(i,1) = i;

NameStringEnd = max(regexp(NameString,’.txt’))-3;

Date(i,2) = datenum(NameString(15:NameStringEnd))

Date(i,3) = Wavelen;

end

Date = sortrows(Date,2);

%plot dates:

%plot(Date(:,2)-Date(1,2),’.’)

ValidInd = find(Date(:,3)==Wavelen);

Date = Date(ValidInd,:)

Nfile = length(Date);

clc;

Data2=[];

mindgd=[];dgd1=[];time=[];

%3)Load up #NtoLoad files at a time

SetInd = max(Nfile-GoBackN,1):NtoLoad:Nfile;

SetLen = length(SetInd);

val=1;

for i0=1:SetLen

data=[];

FilesIndex = SetInd(i0);

%load #(NtoLoad) data sets:

i1 = FilesIndex;

i2 = min(FilesIndex+NtoLoad-1,Nfile);

y=[];

m = 1;

for k = i1:i2

DataIn = load([Dir Files(Date(k,1)).name])/1e3;

FilePath=[Dir Files(Date(FilesIndex,1)).name];
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fid = fopen(FilePath,’r’);

%%Read data in column

Data1= fscanf(fid,’%g %g %g’, [3 200000]);

s=Data1’;

fclose(fid);

m=1;

ind=[4,1];

for j=1:50000:200000

for i=j:length(s)

if (s(i,3) < 1)

break

end

end

ind(m)=i;

m=m+1;

end

data=[];

%%Extracting tracking data from the text file

for i=1:4

trackingdata=[s((ind(i):50000*i),1) s((ind(i):50000*i),2)] ;

for l=1:length(trackingdata)-3

trackingdata(l)= (trackingdata(l)+ trackingdata(l+1)+

trackingdata(l+2)+ trackingdata(l+3))/4;

end

a=sortrows(trackingdata(:,1));

b=sortrows(trackingdata(:,2));

maxthreshold=mean(a(end-20:end));

%%Extracting values for normalization

V11=mean(trackingdata((3000:3500),1));

V21=mean(trackingdata((3000:3500),2));

V22=mean(trackingdata((6800:7300),2));

V12=mean(trackingdata((6800:7300),1));

V13=mean(trackingdata((10600:11000),1));

V23=mean(trackingdata((10600:11000),2));

V14=mean(trackingdata((14400:14900),1));

V24=mean(trackingdata((14400:14900),2));

dev11=sqrt(var(trackingdata((3000:3500),1)));

dev22=sqrt(var(trackingdata((6800:7300),2)));

dev13=sqrt(var(trackingdata((10600:11000),1)));

dev24=sqrt(var(trackingdata((14400:14900),2)));

if ((V11 > 0.98*maxthreshold))

if ( (dev11 < 0.02) && (dev22 < 0.02) &&

115



(dev13 < 0.02) && (dev24 < 0.02))

dpp1=(V14-V13)/(V11-V13);

dpp2=(V23-V24)/(V22-V24);

phy=asin(0.5*(sqrt(dpp1)+sqrt(dpp2)));

dgd(val)=abs(phy/pi/1e10);

mean(dgd)

plot(dgd)

length(dgd)

timebase(val)=i0*4+i;

val=val+1;

end

end

end

end

end

figure(1)

hist(dgd.*1e12,100);

figure(2)

plot(timebase,dgd*1e12);

title(’DGD’)

%save result:

u = [timebase’ (dgd’)];

FileName1 = sprintf(’%sDGD_Data_.txt’,Foldr);

fp=fopen(FileName1,’w’);

fprintf(fp,’%3.10e\t %3.10e\r\n’,u’);
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Appendix D

MATLAB code for extracting

DGD from polarization

scrambling data

%----------------------------------------------------------------

%MATLAB code to calculate DGD from polarization scrambling data

%Peter Adany

%09/14/2007 Revised by Jiang Junfeng

%07/13/2008 Revised by Sathyanarayanan Sundhararajan

%----------------------------------------------------------------

clc;

clear all;

%paramters:

Wavelen = 1; %select wavelength number

T = 1; %s Enter time duration of each file

NtoLoad = 1; %# files to load

NpksLoc = 50; %# peaks to find

GoBackN = 1e9;

Thresh = 0.99; % amplitude thershold value

%1) Get the list of file names from the given folder:

disp(’Getting file names...’)

Dir = uigetdir(cd, ’Please select PMD_Data folder’);
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Foldr = Dir(max(regexp(Dir,’\’)+1):end);

% cd(Dir) %% Set "Dir" as the current directory

Dir = sprintf(’%s\\’,Dir)

Ext = ’.txt’;

FilePathString = [Dir ’*’ Ext]

%get file names:

Files = dir(FilePathString);

if isempty(Files),error(’no files found!’),end;

normmatrix=[];

%2) Sort the files into chronological order

FileCnt = length(Files);

Date = zeros(FileCnt,3);

for i=1:FileCnt

NameString = Files(i).name;

Date(i,1) = i;

NameStringEnd = max(regexp(NameString,’.txt’))-3;

Date(i,2) = datenum(NameString(15:NameStringEnd))

Date(i,3) = Wavelen;

end

Date = sortrows(Date,2);

%plot dates:

%plot(Date(:,2)-Date(1,2),’.’)

ValidInd = find(Date(:,3)==Wavelen);

Date = Date(ValidInd,:)

Nfile = length(Date);

clc;

Data2=[];

mindgd=[];dgd1=[];time=[];

%3)Load up #NtoLoad files at a time

SetInd = max(Nfile-GoBackN,1):NtoLoad:Nfile;

SetLen = length(SetInd);

val=1;

for i0=1:SetLen

data=[];

FilesIndex = SetInd(i0);

%load #(NtoLoad) data sets:

i1 = FilesIndex;

i2 = min(FilesIndex+NtoLoad-1,Nfile);

y=[];

m = 1;

for k = i1:i2

DataIn = load([Dir Files(Date(k,1)).name])/1e3;
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FilePath=[Dir Files(Date(FilesIndex,1)).name];

fid = fopen(FilePath,’r’);

%%Read data in column

Data1= fscanf(fid,’%g %g %g’, [3 200000]);

s=Data1’;

fclose(fid);

m=1;

%%revised by sathya

%%extracting scrambling data from text file

for start=1:50000:200000

for l=start:length(DataIn)

if (DataIn(l,3) < 1)

break

end

end

ind(m)=l;

m=m+1;

end

data=[];

val=1;

start=1;

for l=1:4

scramblingdata=[DataIn((start+2000:ind(l)-2000),1)

DataIn((start+2000:ind(l)-2000),2)] ;

start=start+50000;

y= scramblingdata;

%Get time base:

if i0==1

%Fs = length(y)/T; %%????

Fs=length(y)/(NtoLoad*T);

end

N = length(y);

t = linspace(0,N/Fs,N);

%Apply boxcar lowpass filter:

FilterSelection=1;

Nf1 = round(N/10);

yy1=(fft(y(:,1)));

yy2=(fft(y(:,2)));

yy1(Nf1:(N-Nf1))=0;

yy2(Nf1:(N-Nf1))=0;

yy11=real(ifft(yy1));

yy22=real(ifft(yy2));
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%normalize:

y1=(yy11-min(yy11))/max(yy11-min(yy11));

y2=(yy22-min(yy22))/max(yy22-min(yy22));

Flag_MaximumOrMimimum=1 ; %0-----Maximum search

%%1----------Minimum search

if Flag_MaximumOrMimimum==1

y1=1-y1;

y2=1-y2;

end

%peak search:

Athr = Thresh+0*t; %amplitue threshold

Zone1 = max(y1’,Athr)-Athr; %find peaks above level

Zone2 = max(y2’,Athr)-Athr;

%get the peak indeces:

i=0;

Peak1=[];

Ipk1=[];

while sum(Zone1.^2)>0 && i<NpksLoc

i=i+1;

[Peak1(FilesIndex,i) Ipk1(FilesIndex,i)] = max(Zone1);

Inot1 = find(y1’ < Athr);

Il1 = Inot1(max(find(Inot1 < Ipk1(i))));

Ih1 = Inot1(min(find(Inot1 > Ipk1(i))));

if isempty(Il1);Il1=1;end

%remove used-up peak from the search:

Zone1([Il1:Ih1]) = 0;

end

i=0;

Peak2=[];

Ipk2=[];

while sum(Zone2.^2)>0 && i<NpksLoc

i=i+1;

[Peak2(FilesIndex,i) Ipk2(FilesIndex,i)] = max(Zone2);

Inot2 = find(y2’ < Athr);

Il2 = Inot2(max(find(Inot2 < Ipk2(i))));

Ih2 = Inot2(min(find(Inot2 > Ipk2(i))));

if isempty(Il2);Il2=1;end

if isempty(Ih2);Ih2=1;end

%remove used-up peak from the search:

Zone2([Il2:Ih2]) = 0;

end

%%----------------------------------------
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Flag_InverseSearch=0;

if Flag_InverseSearch==1

%%-------------Inverse search again ---Minmum----Begin

y1MeanMax=mean(y1(Ipk1(FilesIndex)))

pos1 = find((y1’-y1MeanMax)>0);

y1(pos1)=0;

y1Inverse=(-y1+y1MeanMax)/y1MeanMax;

y1=y1Inverse;

y2MeanMax=mean(y2(Ipk2(FilesIndex)))

pos2 = find((y2’-y2MeanMax)>0);

y2(pos2)=0;

y2Inverse=(-y2+y2MeanMax)/y2MeanMax;

y2=y2Inverse;

%peak search:

Athr = Thresh+0*t; %amplitue threshold

Zone1 = max(y1’,Athr)-Athr;

Zone2 = max(y2’,Athr)-Athr;

%get the peak indeces:

i=0;

while sum(Zone1.^2)>0 && i<NpksLoc

i=i+1;

Peak1(FilesIndex,i) Ipk1(FilesIndex,i)] = max(Zone1);

Inot1 = find(y1’ < Athr);%find indeces below thresh

Il1 = Inot1(max(find(Inot1 < Ipk1(i))));

Ih1 = Inot1(min(find(Inot1 > Ipk1(i))));

if isempty(Il1);Il1=1;end

%remove used-up peak from the search:

Zone1([Il1:Ih1]) = 0;

end

i=0;

while sum(Zone2.^2)>0 && i<NpksLoc

i=i+1;

[Peak2(FilesIndex,i) Ipk2(FilesIndex,i)] = max(Zone2);

Inot2 = find(y2’ < Athr);

Il2 = Inot2(max(find(Inot2 < Ipk2(i))));

Ih2 = Inot2(min(find(Inot2 > Ipk2(i))));

if isempty(Il2);Il2=1;end

if isempty(Ih2);Ih2=1;end

%remove used-up peak from the search:

Zone2([Il2:Ih2]) = 0;

end
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end

%%--------------------------------------

%calculate DGD from the collected points:

dpp1 = sqrt(y1(Ipk2(FilesIndex)));

dpp2 = sqrt(y2(Ipk1(FilesIndex)));

dpp = 0.5*(mean(dpp1)+mean(dpp2));%???

phy = acos(dpp);

dgd(l) = phy/pi/1e10;

pause(.1);

end

dgd1=[dgd1 dgd];

end

end

t_d=(Date(end,2)-Date(1,2))*60*60*24;

t_d=linspace(0,t_d,length(dgd1));

figure(1)

hist(dgd1.*1e12,100);

figure(2)

plot(t_d,dgd1*1e12);

title(’DGD’)

%save result:

u = [t_d’ abs(dgd1’)];

FileName1 = sprintf(’%sDGD_Data.txt’,Foldr);

fp=fopen(FileName1,’w’);

fprintf(fp,’%30.20e\t %30.20e\r\n’,u’);

fclose(fp)
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Appendix E

Visual Studio 2005 C sharp code

for acquiring data from the PMD

monitor

using System;

using System.Collections.Generic;

using System.ComponentModel;

using System.Data;

using System.Drawing;

using System.Text;

using System.Windows.Forms;

using System.IO;

using System.IO.Ports;

using System.Net.Sockets;

using System.Net;

namespace serialtest2

{

public partial class Form1 : Form

{

SerialPort serial = new SerialPort("COM1", 9600, Parity.None);

// Defining a serial port
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Socket clientSocket = null;// creating client socket

EndPoint epServer; //Creating endpoint

StreamWriter sw;

bool b = false;

bool brk = false;

public Form1()

{

InitializeComponent();

}

private void button2_Click(object sender, EventArgs e)

{

b = true;

sw.Close();

timer1.Stop();

textBox1.Clear();//clears textbox

textBox2.Clear();//clears textbox

textBox3.Clear();//clears textbox

textBox4.Clear(); //clears textbox

textBox5.Clear(); //clears textbox

textBox6.Clear();//clear textbox

textBox7.Clear();//clears textbox

serial.Close(); // closes the port

}

public void writefile()

{

string filename = DateTime.Now.Day.ToString();

string initime = DateTime.Now.TimeOfDay.ToString();

TextWriter s = new StreamWriter("filename.txt");

bool nostart = true;

int row = 0;

int vstop = 0;

int run = 0;

double[,] arr1 = new double[4, 4];

int timecount = 0;

while (true)

{

run++;

if (brk)

break;
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string serialip = serial.ReadLine();

//s.WriteLine(serialip);

if (serialip.Length <= 8)

continue;

string stmp = serialip.Replace(’\r’, ’ ’);

String[] cols = stmp.Split(new char[] { ’\t’ });

if (nostart)

{

if (cols[2].Trim() != "001")

continue;

nostart = false;

}

if(row == 4)

{

row = 0;

double dpp1 = 0, dpp2 = 0, dgd = 0,dpp11=0,dpp22=0;

dpp1 = (arr1[3, 0] - arr1[2, 0]) / (arr1[0, 0] - arr1[2, 0]);

dpp11 = dpp1;

dpp2 = (arr1[2, 1] - arr1[3, 1]) / (arr1[1, 1] - arr1[3, 1]);

dpp22 = dpp2;

dgd = Math.Asin(0.5 * (Math.Sqrt(dpp1) +

Math.Sqrt(dpp2))) / (Math.PI * 1e10);

dgd *= 1e12;

arr1 = new double[4, 4];

timecount = 0;

}

if(row < 4)

{

for (int j = 0; j < cols.Length-2; j++)

timecount += Convert.ToInt32(cols[3].Trim(), 16);

}

row++;

}

serial.Close();

s.Close();

}

private void timer1_Tick(object sender, EventArgs e)

{

try

{
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textBox1.Text = serial.ReadLine();

sw.WriteLine(serial.ReadLine());

}

catch (Exception es)

{

MessageBox.Show(es.Message);

}

}

}

}
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