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Abstract 

This dissertation describes two unrelated threads of research.  The first is a 
study of cross validation (CV), which is a data resampling method.  CV is used for 
model ranking in model selection and for estimating expected prediction error of a 
model.  A review of three resampling methods is provided in Chapter 1.  Chapter 2 
contains results from simulations that examine various properties of CV, in particular 
the use of CV for model selection in small sample settings as well as the expected 
value of the delete-d cross validation statistic. 

The second research thread is described in Chapter 3, where a new, 
physically-based computational model (called FLDPLN, or “Floodplain”) for 
mapping potential inundation extents (floodplains) using gridded topographic data is 
introduced.  Due to the parametric economy of FLDPLN, this model has significant 
advantages over existing methods such as hydrodynamic models.  The model is 
validated using imagery from an actual flood event. 
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Chapter 1. A Review of Resampling Methods 
 

Chapter Summary 

In model selection, the primary task is to assign competing models a “fitness” 

value by which the models can be ranked and superior models identified.  As more 

models are considered, competition bias becomes more of a problem in that chance 

can increasingly influence the outcome.  Bolstered by theoretical and empirical 

results, robust data resampling methods have become popular in model selection to 

mitigate the effects of competition bias.  Resampling methods find another (not 

unrelated) area of applicability in the general statistical modeling situation when 

sample size gets small and distributional uncertainty increases, and robust estimates 

for prediction error are needed.  The bootstrap and cross validation, preceded in 

development by the jackknife, are two of the most commonly employed resampling 

methods when addressing problems of the nature just described.  In this context, the 

bootstrap involves repeatedly drawing (with replacement) new samples from the data 

and computing the statistic of interest to obtain an approximate empirical distribution 

(from which inferences can be made) for that statistic.  Cross validation involves 

repeated systematic splitting of the data into two subsets, building a statistical model 

using one subset and evaluating predictive ability of the model using the other subset.  

The jackknife uses a regimented resampling approach similar to cross validation but 

otherwise is like the bootstrap in design.  This chapter provides an introduction to the 

jackknife, the bootstrap, and cross validation in the context of ordinary least squares 

linear regression modeling. 



 5

1.1. Introduction 

With the advent of high-speed computers, data reuse methods have come into 

favor in the statistical modeling community.  In particular, difficult questions such as 

model selection (which requires ranking competing models) and small sample model 

evaluation are being addressed using methods such as the bootstrap and cross 

validation.  Both tasks require a robust method for assessing general model predictive 

ability, and are related for this reason (Davison & Hinkley 1997, p.290).  

Distributional assumptions become more dubious as (i) more models are considered, 

leading to greater chance of competition bias when ranking competing models using 

some pre-specified “fitness” measure; and (ii) sample size gets smaller, leading to 

increased variance of the sample itself when considering it as a draw from the 

underlying distribution.  Both of these situations promote the tendency toward results 

that overfit the data, which occurs when noise, or unexplained variation in the 

dependent variable, excessively influences model parameter estimation through 

chance correspondence with variation in the independent variable(s).  That said, as all 

theoretical results to be discussed are asymptotic1 in nature, the “small sample” 

questions will have to remain in the background, with scant illumination, while model 

selection comes to the forefront. 

In recent decades, practitioners forced to deal with the problems mentioned 

above frequently turn to robust methods that are more data driven than reliant on 

computations explicitly dependent on distributional assumptions.  The jackknife, the 

                                                 
1 In applied statistics, “asymptotic results” typically refer to theoretical findings that depend on 
unlimited sample size, i.e., n → ∞. 
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bootstrap, and cross validation are three of the most frequently encountered robust 

resampling methods.  Though the jackknife is less frequently used in the context of 

data modeling in favor of one of the other two methods, it did provide the foundation 

from which the other two methods were spawned, and warrants presentation for this 

reason. 

The interest of the author in resampling strategies involves their use in 

statistical modeling, so that will be the framework in which the methods are 

presented.  In spite of this restriction, the general applicability of the methods for 

parameter or model characterization should remain clear.  Furthermore, the author 

also has an interest in small sample modeling (n ∈ {4,…,20}, say), where ordinary 

least squares (OLS) linear regression remains the most commonly used modeling 

tool.  Thus the presentation framework is further constrained to the OLS regression 

modeling arena, but this also happens to be one of the more heavily explored contexts 

with respect to the resampling methods that comprise the focus of this chapter. 

What immediately follows is mathematical stage-setting regarding OLS 

regression modeling, as it typically appears in both theory and practice.  Much of the 

text regarding the comparison between errors (ε) and residuals (e) that appears in the 

next section is lifted nearly verbatim or paraphrased from Cook & Weisberg (1982, 

pp.10-11).  After presenting the basics of OLS regression modeling, three resampling 

methods are introduced in the following order: the jackknife, the bootstrap, and cross 

validation.  Some theoretical and practical aspects of the methods will be highlighted 
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as the methods are presented.  The chapter concludes with a summary of the 

presentation. 

 

1.2. Basics of Ordinary Least Squares Linear Regression Modeling 

The following is the typical set-up surrounding OLS linear regression 

modeling in the context of parametric theory, at least in cases where model errors are 

presumed to be second order independent and identically distributed (IID).  Let p ≤ n 

be positive integers (n = sample size, p = number of model parameters) and let In (or 

just I, dropping the subscript) denote the identity matrix. 

Let Y = Xβ + ε be the general linear statistical model, where ε ~ (0, σ2I) [or 

equivalently Y ~ (Xβ, σ2I)].  Assume that: 

• X ∈ nxp is of full rank (this condition will be made more stringent below), 

with each row corresponding to an observation of the p explanatory variables 

• Y ∈ nx1 = n-vector of responses (observations of the dependent variable) 

• β ∈ px1 = p-vector of responses (unobservable “true” model parameters) 

• ε ∈ nx1 = n-vector of unobservable errors with the indicated distributional 

properties 
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1.2.1. Linear Algebra 

Let X and Y be defined as above.  Assume that X, sometimes referred to as the 

design matrix, has the property that all p-row submatrices of X (say XS, where S ⊆ N 

={1,…,n}, |S| = p) are linearly independent.  Note that this is more restrictive than the 

above assertion that X be of full rank.  This condition will be convenient in the 

context of resampling methods in the OLS regression setting.  Let ||·|| denote the l2 

norm in nx1, so that ||a||2 =  aTa for a ∈ nx1. 

Consider the orthogonal decomposition Y = Ŷ + e = VY + (I – V)Y, where Ŷ =  

X(XTX)-1XTY = Xβ ˆ = VY is the projection of Y onto the column space of X [Col(X)] 

and e = Y – Ŷ = Y – VY = (I – V)Y the projection of Y onto the null space of XT 

[Null(XT)]. 

Projection matrix V = X(XTX)-1XT ∈ nxn is often referred to as the “hat” 

matrix for X (because it maps Y into Ŷ), and β ˆ = (XTX)-1XTY ∈ px1 is the least-squares 

regression parameter vector.  β ˆ provides an estimate for the unknown β defined 

above.  Likewise, e (residuals) will serve as a proxy for ε (errors), which is also 

unknown. 
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1.2.2. Statistics 

The above material outlines the standard OLS linear regression modeling 

setup.  Each row of the system [X Y] corresponds to a single observation of 

independent (X) and dependent (Y) variable values.  Each column of X corresponds to 

a particular independent variable, which may or may not have predictive power when 

estimating Y. 

In order to make inferences about the expected accuracy of the linear model Y 

≈ Xβ ˆ, two assumptions regarding ε have been imposed.  First it is assumed that E[ε] = 

0, implying that fluctuations of Y about Xβ have 0 mean.  This indicates the model Xβ 

is unbiased for Y (i.e., E[Xβ] = E[Y]).  The second assumption is that Var[ε] = σ2In, 

which says that the elements of ε are of constant variance and are statistically 

independent (have 0 covariance).  Together, these conditions indicate that the 

elements of ε are IID up to second order, i.e., ε ~ (0, σ2In). 

Under these error assumptions, it can be shown that E[β ˆ] = β and Var[β ˆ] = 

σ2(XTX)-1.  The latter equation is a generalization of the standard formula for variance 

about the mean, which states that Var[Y ¯] = σ2/n (define X to be a column vector of 

ones to obtain the mean model β ˆ =Y ¯).  In fact, β ˆ can be shown to be the best linear 

unbiased estimate for β (Seber & Lee 2003; pp.42-43).  If we further tighten our 

restrictions to ε ~ N(0, σ2I), then β ˆ is the maximum likelihood estimate as well as the 

most efficient estimate for β (Seber & Lee 2003; pp.49-50). 

To determine the appropriateness of the linear regression model for a given 

problem, it is necessary to determine if the assumptions about the errors are 
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reasonable.  Since the error vector ε is unobservable, this must be done indirectly 

using residual vector e. 

 

From above, we have: 

 

e = Y – Ŷ = Y – VY = (I – V)Y. 

 

Substituting Xβ + ε for Y, we get 

 

e = (I – V)(Xβ + ε) = (I – V)ε.       (1.1) 

 

Thus if ε ~ (0, σ2I), then e ~ (0, σ2(I - V)) [(I - V) is idempotent], and the variation in e 

is controlled by V. 

Note that V ∈ nxn is symmetric (V = VT) and idempotent (V = V2), and is the 

linear transform that orthogonally projects any n-vector onto Col(X).  (I – V) has the 

same properties, except that it orthogonally projects any n-vector onto Null(XT).  

Since V is idempotent and symmetric it follows that V is invariant (up to 

rearrangement of columns) under non-singular reparametrizations, which are 

equivalent to changing the basis of Col(X).  This property implies that, aside from 

computational concerns, collinearity between the columns of X is irrelevant to 

understanding how V (and thus e) behaves.  On the other hand, such collinearity can 

have undesirable effects if one is trying to evaluate the statistical behavior of β ˆ since 
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Var[β ˆ] = σ2(XTX)-1.  See Cook & Weisberg (1982, pp.12-15) for a succinct discussion 

regarding how the elements of V can be used to reveal point-specific data 

characteristics that can possibly influence model performance (e.g., outlier detection).  

For a much broader perspective on applied linear regression analysis in general, two 

excellent reference texts are Draper & Smith (1998) and Seber & Lee (2003). 

If a variable (column) is added to X, then almost always we find eTe, the 

squared length of the projection of Y onto Null(XT), gets smaller.  If we remove a 

column, then eTe generally gets larger.  However, when considering the first and 

second order statistics of the linear regression model, adding a variable will generally 

decrease the bias and increase the variance of future predicted values (Miller 2002, 

p.5; Seber & Lee 2003, pp.394-397).  The tradeoff between these two quantities (bias 

and variance of prediction) underlies much of the uncertainty in linear regression 

modeling. 

The above discussion helps detail some of the low-order statistical behavior of 

the standard linear regression situation under the assumption of second order IID 

errors.  A large body of linear regression modeling theory hangs on the ability to use 

e to make inferences regarding model efficacy, through its connection to ε.  However, 

as effective degrees of freedom decrease (i.e., when more models are considered 

during a model selection exercise, or when sample size decreases in the general 

situation), uncertainty in this connection increases as effects of model overfitting 

begin to creep in and e increasingly strays from ε.  This situation leads practitioners to 

seek alternative, robust methods for assessing model efficacy that do not depend so 
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heavily on the distributional assumptions regarding ε, which generally can never be 

known.  Data resampling provides one particular framework for developing such 

methods.  Shortly we will turn our attention to resampling methods, but first we must 

introduce some basic concepts in regression error. 

 

1.2.3. Regression Error 

Define the mean squared error of regression (MSE), which is the maximum 

likelihood estimate of error variance (σ2) under normal error assumptions: 

 

MSE = (1/n)||Y – Xβ ˆ||2 = (1/n)||e||2 = (eTe)/n. 

 

The least squares regression estimate β ˆ for β minimizes MSE, which 

frequently underlies ordering statistics used for ranking competing models.  Upon 

accounting for parameter estimation bias (i.e., the almost inevitable overfitting of the 

sample data by β ˆ during regression), we can define the expected error of regression 

(REG), which provides an unbiased estimate of error variance (σ2) under the standard, 

second-order IID error assumptions: 

 

REG = (n/(n – p))MSE = (1/(n – p))||Y – Xβ ˆ||2. 

 



 13

We now prove that REG provides an unbiased estimate for σ2 in our setting.  

This proof is a simplification of the proof appearing in Seber & Lee (2003; Theorem 

3.3, pp.44-45). 

 

THEOREM 1.1:  Let X, Y, V, ε, and e be defined as above, with E(ε) = 0 and Var(ε) = 

σ2I.  Then E[REG] = σ2. 

 

PROOF:  From (1.1) we have e = (I – V)ε.  Since (I – V) is symmetric and 

idempotent, we have: 

 

REG = (eTe)/(n – p) = (εT(I – V)T(I – V)ε)/(n – p) = (εT(I – V)ε)/(n – p). 

 

A special case of Theorem 1.5 in Seber & Lee (2003, p.9) is now needed.  This 

theorem states that if W is an n-by-1 vector of random variables such that E[W] = 0 

and Var[W] = σ2I, and A is an n-by-n symmetric matrix, then E[WTAW] = σ2tr(A).  In 

light of this result, we have 

 

E[εT(I – V)ε] = σ2tr(I – V). 

 

Proposition (A.6.2) in Seber & Lee (2003, p.464) states that if P is a projection 

matrix, then tr(P) = rank(P).  Thus we have tr(I – V) = (n – p), from which it follows 

that 
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E[REG] = E[εT(I – V)ε]/(n – p) = σ2(n – p)/(n – p) = σ2. QED 

 

Both MSE and REG are multiples of eTe, which is the sum of squared errors 

of the regression.  Since eTe almost always decreases when additional variables are 

included in a model, using MSE for model ranking almost always favors the higher 

dimensional model.  Though the unbiasedness of REG mitigates this problem, it is 

still easily influenced by overfitting (i.e., chance covariation of the error vector ε with 

one or more variables in X) when engaging in either model optimization or model 

selection.  Such behavior suggests that better model selection criteria (of which many 

are presently available) are needed beyond these standard estimates of model error 

variance. 

 

1.3. Resampling Methods 

Resampling methods involve data reuse.  In the present context, the sample at 

hand is used to define an empirical distribution function (EDF), with each point 

assigned the same probability mass.  This EDF is presumed to be a proxy for the 

underlying probability distribution function (PDF) from which the initial sample was 

taken.  This presumption underlies the “plug-in principle” that is often mentioned in 

bootstrapping texts, and obviously loses legitimacy with decreasing sample size just 

like other asymptotically motivated results. 
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We will look at three resampling strategies, in the following order: (i) the 

jackknife, (ii) the bootstrap, and (iii) cross validation.  As will be discussed, the 

bootstrap is essentially a useful generalization of the jackknife.  Cross validation 

(CV) has similarities with the jackknife in its resampling strategy, but fundamentally 

departs from both the jackknife and the bootstrap in that it is grounded in prediction 

rather than parameter estimation.  Thus we discuss CV last, even though CV preceded 

the bootstrap in the literature.  Due to the prevalence of both the bootstrap and CV in 

practical settings, more attention will be given to these two methods than to the 

jackknife. 

The formal history of the jackknife extends back to the mid-1900s 

(Quenouille 1949 and 1956; Tukey 1958; Gray & Schucany 1972).  Cross validation 

was introduced in the mid-1970s (Allen 1974; Stone 1974; Geisser 1975), first as a 

special case (delete-1 CV) and then in its more general form (delete-d CV).  Shortly 

thereafter, in the late 1970s the bootstrap was conceptually formalized (Efron 1979 

and 1982). 

As will be explained, the jackknife and CV sample the EDF without 

replacement in order to define “new” samples.  The bootstrap, on the other hand, will 

define “new” samples by sampling the EDF with replacement.  CV is the only 

method of the three that attempts to simulate out-of-sample behavior, an important 

trait when attempting to assess model predictive properties. 
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1.3.1. The Jackknife 

The jackknife statistic (a moniker coined by Tukey) was introduced by 

Quenouille (1949) for the purpose of reducing bias when estimating serial correlation 

in time series.  Later, Quenouille (1956) somewhat generalized the definition so that 

it served the purpose of reducing bias of some desired parameter estimate.  Tukey 

(1958) was the first to apply the concept to variance estimation.  Gray & Schucany 

(1972) proposed a more fully generalized statistical concept and provided the first 

comprehensive overview.  Shao & Tu (1995), working from an alternative 

generalization of the jackknife, present a more contemporary, thorough examination 

of the subject, largely from a measure-theortic perspective. 

Let 1̂θ  and 2̂θ  be two estimates for statistic θ, and suppose R ≠ 1.  The general 

form (Gray & Schucany 1972. p.2) for the jackknife estimate of θ obtained from 1̂θ  

and 2̂θ  is given by ( )G
R
R

,θ θ
θ θ

1 2
1 2

1
=

−
−

.  The parameter R is dependent on the 

statistic being estimated as well as its distribution.  However, it is also a function of 

sample size n. 

Define ( )
ˆ

jθ  to be the estimate for θ obtained by excluding the jth data point.  

Then, in the case where θ θ1 =  is an estimate for θ derived from the full sample, and 

( ) ( )
1

2
1

ˆ ˆ ˆ
n

n j
j

θ θ θ⋅
=

= = ∑  is the average of the “leave one out” estimates for θ, then it is 

common to set ( )R n
n

n
=

− 1
.  This gives the bias-reduced jackknife estimator of θ: 



 17

 

( ) ( ) ( ) ( )1 2 .
ˆ ˆ ˆ ˆ ˆ, 1nG J n nθ θ θ θ θ= = − − .    (1.2) 

 

This specification, which was first described in Quenouille (1956), can be 

shown to eliminate first order bias in the 1/n power series representation for θ (Gray 

& Schucany 1972, p.7; Efron 1982, p.5-6; Shao & Tu 1995, p.5).  For instance, 

suppose we are estimating population variance from a sample {x1,…,xn}, where the xj 

are IID N(μ, σ2), using the biased maximum likelihood estimate ( )σ 2 1
2

1
= −

=
∑n j
j

n

x x  

for σ2.  Then, evaluating (1.2) using this formula we obtain ( ) ( )J x xn j
j

n

σ 2 1
1

2

1
= −−

=
∑ , 

which is the unique minimum variance unbiased estimate (UMVUE) of σ2. 

Shao & Tu (1995), building from work found primarily in Wu (1986, 1990) 

and Shao & Wu (1989), generalize (1.2) to a resampling procedure involving data 

subsets (drawn without replacement) of size less than or equal to n – 1.  Using the 

regression setup and notation from above, with SC as the complement of index set S ⊂ 

N = {1,…,n}, statistics of the form ( ),
ˆ ˆ ˆ [ ] , C

n d S n d jX Y j Sθ θ θ− −= = ∈  are repeatedly 

computed and used.  Here we see that θ  is estimated using the r = n – d observations 

that remain after observations indexed by set S are removed.  The formula for the 

delete-d jackknife variance estimator for θ  (Shao & Tu 1995, p.50) is given by 
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( )Jd
r

n
d d r S n

d
r R

R N
R d

S N
S d

, ,θ θ θ= −
⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟⎛

⎝⎜
⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟ ⊂

=
⊂

=

∑∑ 1

2

.   (1.3) 

 

Setting d = 1, the delete-1 jackknife variance estimator for θ  is given by 

 

( ) ( ) ( )J n
n j n k

k

n

j

n

1
1 1

1

2

1
θ θ θ= −

⎛
⎝
⎜

⎞
⎠
⎟−

==
∑∑ .    (1.4) 

 

Note that we can write (1.2) as ( ) ( )( )J n nn j
j

n

n j
j

n ~
( )θ θ θ θ= − − =

= =
∑ ∑1

1

1

1
1 , where the ~θ j  

are referred to as the jackknife pseudovalues.  Treating the ~θ j  as IID sample points 

(Shao & Tu 1995, pp.6-7), and assuming that ~θ j  has approximately the same 

variance as nθ  (Shao & Tu 1995, p.6 and p.68), we can estimate the variance of θ  

by ( ) ( ) ( ) ( )( )J Jn n j
j

n

1
1

1

2

1

~θ θ θ= −−
=

∑ .  This equation can be rearranged to give (1.4). 

( )J1 θ  does not always provide a consistent estimator2.  A classic example of 

this situation involves using (1.4) to estimate the population median (Efron 1982, 

p.16).  Generally speaking, the less smooth (i.e., continuously variable with n) the 

sample statistic, the larger the value for d is required for consistency of (1.3) (Shao & 

Wu 1989; Shao & Tu 1995, p.69). 

                                                 
2 An estimator n̂θ  for θ is consistent if, for all ε > 0, we have [ ]ˆlim 1

n
nP θ θ ε

→∞
− < = . 
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The appearance of inconsistencies among delete-1 jackknife estimators 

provided some motivation for the development of the bootstrap, which alleviates 

some of these problems.  In the context of linear statistics, the jackknife can even be 

considered as a linear approximation to the bootstrap (Efron & Tibshirani 1993, 

p.146).  The bootstrap is itself a rather intuitive device that is easily implemented and 

broadly applicable to numerous situations in applied statistics.  Its emergence onto the 

scene following the development of the jackknife is quite logical. 

 

1.3.2. The Bootstrap 

Development of the bootstrap is primarily attributed to statistician Bradley 

Efron (1979, 1982).  Since that time, numerous papers and texts have emerged 

centered on this topic.  For a general, comprehensive overview of the subject, see 

Efron & Tibshirani (1993).  See Shao & Tu (1995) for an intense, measure-theortic 

examination of the bootstrap.  Davison & Hinkley (1997) is a useful text that explores 

a number of characteristics and variants of the bootstrap largely from a practical 

perspective. 

As previously mentioned, the bootstrap is premised on the plug-in principle, 

which says that statistics (or parameters) calculated using resamples from the 

empirical distribution function (EDF) defined by a sample provide estimates for 

sample statistics that might be obtained from the probability distribution function 

(PDF) of the population from which the sample was drawn.  Assign a probability 

mass of 1/n to each observation [X Y]j, which is a row of [X Y].  One then repeatedly 
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resamples from the EDF, estimating the statistic of interest at each so-called bootstrap 

sample (typically these consist of n points, like the original sample).  After 

sufficiently many bootstrap samples have been evaluated, an approximated EDF for 

the desired statistic is obtained.  Statistical properties (e.g., mean, variance, 

confidence intervals) associated with the statistic of interest are then estimated using 

the EDF emerging from the bootstrap exercise. 

Let ( )* * * * * *

1T Tˆ
S S S S S S

Y X X X X Y
−

= , where S* is a length-n index set drawn with 

replacement from N.  To ensure unique computability of *Y
S

, S* must contain at least 

p distinct values.  Ignoring this last comment, the nonparametric bootstrap estimate 

for the variance of ε is given by  
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2
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2 2

1 1

ˆ ˆ,
n n

n n
j kS S

j k
BS X Y Y Y

= =

= −∑ ∑ .    (1.5) 

 

This equation is referred to as the ideal bootstrap.  The Sj
* each refer to a 

particular (though not necessarily unique) bootstrap sample.  Alternatively, (1.5) can 

be expressed as 
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In this definition (which can be found in Efron & Tibshirani (1993, p.49)), the 

weight ωj is the multinomial probability of occurrence of the jth distinct sample.  The 

Sj
* now each refer to a particular unique bootstrap sample.  It is easy to show that the 

number of possible unique bootstrap samples S* of size n that can be drawn from N is 

2 1n
n
−⎛

⎝
⎜

⎞
⎠
⎟  (Feller 1957, II.5). 

To implement (1.6) so that all of the *Y
S

 are well defined, one would have to 

exclude all bootstrap samples that contain fewer than p unique elements.  Due to 

effects of model overfit in situations where S* contains only p or slightly more than p 

unique elements, one might also consider discarding these bootstrap samples as well.  

See Shao & Tu (1995, p.291) for a simple rule designed to address bootstrap 

sampling concerns in the context of regression modeling.  The exhaustive bootstrap 

of (1.6) is largely a theoretical construct that is rarely implemented in practice due to 

the intense computation required and diminishing returns observed as one increases 

the number of bootstrap samples considered.  Questions regarding restrictions on S* 

are typically not addressed in the literature beyond imposing some sort of 

representational balance of the data points among the S*
 considered. 

In applications, (1.6) is typically approximated by  

 

( ) * *

2
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ˆ ˆ,
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b b

b bS S
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= =
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where b is some arbitrary number of index sets S* typically numbering in the 10s-

1000s.  Also, (1.7) is commonly multiplied by b/(b – 1) to conform to the usual 

unbiased estimate of variance (Efron & Tibshirani 1993, p.47)). 

Suppose that all the β ˆj
* (the bootstrap estimate for β using the bootstrap 

sample indexed by Sj
*) are calculated and retained.  The set {β ˆj

*} forms an empirical 

distribution for β ˆ*, i.e., the plug-in estimate for the actual distribution of β, which can 

be used for confidence interval estimation for the model parameters.  For example, 

after sorting the individual (β ˆj
*)k (the bootstrap estimates for the kth parameter of β), 

one can locate the values at 5% and 95% (known as bootstrap percentiles; Efron & 

Tibshirani 1993, p.168) to set the endpoints for a 90% confidence interval for (β ˆ*)k, 

which is presumed to reflect the same information regarding (β)k based on the plug-in 

principle. 

So far the discussion has centered on the bootstrap approach known as 

bootstrapping pairs, as in data pairs [X Y]j, where [X Y]j is the jth row of the system 

[X Y].  There is another procedure referred to as bootstrapping residuals that uses the 

values of e to define an empirical distribution, drawn from (with replacement) to form 

e*.  The e* are added to the original Xβ ˆ to form “new” observations of the dependent 

variable:  Y* = Xβ ˆ + e*.  The system [X Y*] is then treated as data and modeled as 

before, relevant model statistics are retained, and the procedure is iterated until a 

sufficiently resolved EDF appears for the quantities of interest.  Sometimes the 
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residuals are “standardized” beforehand to mitigate effects of bias in e as well as 

potential heteroscedasticity of the errors (Wu 1986; Shao 1996; Miller 2002, p.152). 

The definition of *Y
S

 given above reveals that the bootstrap estimate for error 

variance given in (1.7) is an in-sample statistic, and thus has a downward bias (called 

expected excess error) as an estimate for σ2.  Also, just like with MSE and REG, 

higher dimensional models automatically will be favored if one uses (1.7) by itself for 

model ranking.  Fortunately the situation can be addressed, as the expected excess 

error can be estimated and partially accounted for via a simple adjustment to (1.7).  

Let β ˆ* denote the bootstrap estimate for β.  Then compute 

 

E[(Y* – X*β ˆ*)T(Y* – X*β ˆ*) – (Y – Xβ ˆ*)T(Y – Xβ ˆ*)]/n.   (1.8) 

 

This expression provides an estimate for the bias of the bootstrap estimate of error 

variance.  In (1.8), the bootstrap coefficients are being applied to both the original 

data and the bootstrap sample, and the difference between MSE values calculated 

from these two model applications provides an “observation” of expected excess 

error.  After processing all of the bootstrap samples, (1.8) can be estimated.  To 

reduce the bias of the bootstrap from (1.7), one then subtracts (1.8) from (1.7) (Efron 

& Tibshirani 1993, p.132; Shao & Tu 1995, p.304; Davison & Hinkley 1997, p.296).  

Due to negative effects of potential imbalance of the data observations among the 

bootstrap samples, Efron & Tibshirani (1993, p.132) present a modification (referred 

to as the better bootstrap bias estimate) to (1.8) to generally help stabilize the 
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outcome without compromising accuracy.  In Shao (1996), the author uses the second 

term of equation (1.8) (namely, E[(Y – Xβ ˆ*)T(Y – Xβ ˆ*)]/n) to rank competing models 

(for more on this result, look ahead to footnote 6). 

It is remarkable how many variations on the bootstrap theme exist in the 

literature, which is a testament to its flexibility and general usefulness as a tool in 

applied statistics.  However, when it comes to matters of model selection and small 

sample predictive modeling, it is still somewhat lacking in appeal due to its “in-

sample” features:  the data used to estimate model parameters are also used to assess 

the accuracy of the estimated model.  Thus bootstrap estimates are subject to selection 

bias, a concept discussed thoroughly in Miller (2002).  There have been attempts to 

remedy this situation.  In particular, there is “the .632 estimator” of Efron (1983) and 

the later modification that is “the .632+ estimator” introduced in Efron & Tibshirani 

(1997).  However, these methods stray heavily from the standard bootstrap that is 

presented here (merely borrowing the bootstrap resampling strategy), and actually 

incorporate aspects of delete-1 cross validation to achieve the goal of better 

estimating the error rate of prediction.  On that note, we now turn our attention to 

cross validation. 

 

1.3.3. Delete-d Cross Validation 

The method of cross validation is a systemization of the more general concept 

known as data splitting.  Data splitting entails splitting a data set into two parts, one 

to be used for model parameter estimation (learning) and the other to be used for 
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model performance evaluation (testing).3  The sizes of the two data subsets depend on 

sample size as well as model complexity, but no precise theoretical guidelines are 

available to assist the practitioner in making the decision of how to split the data. 

Cross validation sprang from the statistical philosophy of predictivism, the 

fundamental tenet of which purports that the primary assessment of a model should 

be based on the model’s predictive capabilities.  Model parameters, which serve as 

the primary analytical focus in many studies, take a back seat to model performance. 

Three papers provided some of the early groundwork for cross validation.  

Allen (1974) introduced the prediction sum of squares (PRESS) statistic, which 

involves sequential prediction of single observations using models estimated from the 

full data absent the data point to be predicted.  This method is frequently referred to 

as “hold one out”, or “delete-1” cross validation.  Stone (1974) examined the use of 

delete-1 cross validation (CV(1)) methods for regression coefficient “shrinker” 

estimation.  Geisser (1975) presented one of the first introductions of a multiple 

observation holdout sample reuse method similar to delete-d cross validation (CV(d)), 

which is a generalization of CV(1).4  One of the first major practical implementations 

of CV appeared in Breiman et al. (1984), where “V-fold cross validation” is offered 

as a way to assess accuracy during optimization of classification and regression tree 

                                                 
3 Some in the artificial neural network community (and elsewhere where iterative model optimization 
is required) have taken the notion of data splitting one step further by partitioning the data into three 
subsets—one used for model estimation, one used for halting the optimization routine, and one used 
for post-optimization model evaluation. 
4 Geisser’s “radical” suggestion to consider holding out more than one sample at a time was met with 
skepticism even among those in his own camp.  Stone, in his rejoinder to the discussion following 
Stone (1974), dismisses Geisser’s approach:  “For my swan-song of independent thought, however, I 
conjecture that Geisser is on the wrong track in leaving out more than one item at a time, that 
whatever diluted optimality theorems exist in this area will require the n – 1 split.” 
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models.  Generally applicable only when sample size is large, this involves 

partitioning the dataset into V subsets of nearly equal size, and then sequentially 

treating each subset as a holdout set in a CV exercise. 

Define ( ) ( ) 1T Tˆˆ
C C C C

C
S S S S S S S

Y X S X X X X Yβ
−

= = , where index set S is drawn 

from N = {1,…,n} without replacement, and SC = N \ S.  Note that in this definition, 

observations of Y indexed by S are being “predicted” with a model constructed using 

only observations indexed by SC.  Define the delete-d cross validation estimate for the 

variance of ε to be the quantity 

 

( ) ( ) ( )T 2
1 1ˆ ˆ ˆ

S S S S S Sn n
d dS N S Nd dS d S d

CV d Y Y Y Y Y Y
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⊂ ⊂
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This formula can be found in Zhang (1993), McQuarrie & Tsai (1998, p.255), and 

Seber & Lee (2003, p.405).  With β ˆ = (X TX)-1X TY, and applying the Sherman-

Morrison-Woodbury formula to obtain the relationship 

( )( ) ( )
11T T ˆˆ

S S S S S SY Y I X X X X Y X β
−−

− = − − , we can write (1.9) as 
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Note that (1.10) does not require the calculation of ŶS, and overall is much less 

computationally expensive than (1.9) (Zhang 1993). 

It is instructive to demonstrate a simple application of CV.  Let us evaluate the 

expected value of the CV(1) estimate for sample variance, which is the same as 

estimating σ2 using the mean model (X = column of ones, so that β ˆ = Y ¯) in the OLS 

regression context. 

For j = 1,…,n, let yj ~ (μ, σ2) be independent observations of some random 

variable.  Define the “hold one out” sample mean y yj n i
i j

= −
≠
∑1

1 .  Using the formula 

for variance about the mean, we have y j  ~ (μ, σ2/(n – 1)).  Since yj and y j  are 

independent random variables, we have CV(1) residuals 

~ (0,Var( ) Var( ))j j j j je y y y y= − + , which implies that 

 

E[CV(1)] = 2Var( )
1j

ne
n

σ=
−

. 

 

Not surprisingly, we find the CV(1) estimate for sample variance to be 

upwardly biased due to its ‘out-of-sample’ character.  Due to the statistical 

complexity of (1.9), however, no one has yet derived a general formula for E[CV(d)] 

like the one above. 

Some asymptotic properties for CV(d) have been established (Zhang 1993; 

Shao 1993 and 1997).  Besides these studies, theoretical results have been largely 
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confined to the case d = 1, which is more mathematically tractable than cases for 

which d > 1.  Numerous authors have discussed and examined the properties of 

CV(1) specifically in the context of model selection (e.g., Hjorth 1994; McQuarrie & 

Tsai 1998; Miller 2002).  These studies and others have shown that in spite of the 

merits of using CV(1), this method does not always give rise to good estimates of 

prediction error, nor does it always perform well in optimal model identification 

simulation studies when compared to other direct methods such as information 

criteria5 (e.g., McQuarrie & Tsai 1998).  The consensus is that CV(1) has a tendency 

in many situations toward selection of overly complex models, i.e., it does not 

sufficiently penalize for overfitting. 

The inconsistency of CV(1) in a general model selection scenario has been 

shown in Shao (1993).  In this work, a pool of candidate predictors (columns of X ∈ 

nxp, p ≤ n, p fixed) is given, along with the quantity to be predicted (Y).  Some of the 

predictors in X may not be related to Y, and these predictors would be expected to 

have 0 coefficients in β when included in a linear model.  Define the optimal model to 

be the column subset of X containing only the predictors with non-zero coefficients in 

β, and rank the different models using CV(d).  Under some fairly weak asymptotic 

assumptions, the requirements that d/n → 1 and n – d → ∞ as n → ∞ are shown to be 

necessary and sufficient for the asymptotic consistency of using CV(d) for optimal 

                                                 
5 “Information criteria” generally consist of a log-likelihood function and complexity penalty 
parameter. 
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model selection in this situation6, assuming that the optimal model is not the full 

model (the one constructed using all of the predictors).  The second condition (n – d 

→ ∞) is needed to ensure that a correct model (i.e., one containing all of the 

predictors with non-zero coefficients) is selected, while the first condition (d/n → 1) 

is needed so that the model selected is of minimal size.  The conclusion to be drawn 

from Shao (1993) is that for model ranking in model selection, a value for d that is an 

appreciable fraction of sample size n is preferred.  However, no specific guidance is 

provided, as the finite sample situation is inconsequential to the asymptotic result.  

For example, setting d = ceil[n – nα], 0 < α < 1, satisfies Shao’s two conditions, yet 

imposes no certain constraint on what values for d are desirable. 

Fixing d = d0 but letting n grow, we witness the basis of much of the 

asymptotic theory, namely that CV(d0) becomes numerically indistinguishable from 

CV(1), which eventually becomes indistinguishable from REG and MSE as n 

increases and the so-called “error curve” defined by CV(d) gets flatter near d0.  As 

discussed in Shao (1993, 1996), asymptotic equivalence of CV(1) to the delete-1 

jackknife, the standard bootstrap, and other model selection methods such as 

Mallows’s Cp (Mallows 1973) and the Akaike information criteria (Akaike 1973), has 

also been established.  By allowing d to increase at a rate d/n → a < 1, Zhang (1993) 

shows that CV(d) and a particular form of the mean squared prediction error (Shibata 

                                                 
6 Shao later proved a similar consistency result for the bootstrap in the same model selection context 
(Shao 1996), after demonstrating the inconsistency of using E[(Y – Xβ ˆ*)T(Y – Xβ ˆ*)] for optimal model 
selection with bootstrap samples of size n.  The author showed that if bootstrap sample size m was 
selected so that   m → ∞ and m/n → 0, these conditions were necessary and sufficient to ensure 
asymptotic consistency for optimal model selection. 
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1984; this is a generalization of the “final prediction error” of Akaike 1970) are 

asymptotically equivalent under certain constraints. 

Shao (1997) summarizes most of the above findings by developing a general 

framework from which to view the situation, resulting in three classes of methods 

characterized by asymptotic behavior.  With respect to CV(d), Shao (1997) shows (i) 

that the condition d/n → 0 is useful in situations where there do not exist fixed 

dimension correct models; (ii) that the condition d/n → 1 is useful in situations where 

there do exist fixed dimension correct models; and (iii) that the condition d/n → a ∈ 

(0,1) is a compromise between the other two conditions, but that its asymptotic 

performance is not as good as the other conditions in their respectively appropriate 

situations. 

 

1.4. Conclusion 

We have introduced three resampling methods, primarily in the context of 

OLS linear regression modeling.  The jackknife was developed as a tool for bias 

reduction and variance estimation.  The bootstrap, characterized by a more general 

resampling strategy than the jackknife, presents an improvement over the jackknife, 

as it can accommodate more situations than the jackknife.  Cross validation provides 

an alternative resampling method premised on out-of-sample prediction. 

Attention was given to the presented resampling methods due to their 

robustness and subsequent applicability in model selection as well as in the general 

small sample statistical modeling situation.  Ultimately, model characterization 
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involves balancing model generality and model specificity (or simplicity and 

complexity, or parsimony and goodness-of-fit, or variability and bias, etc.).  

Asymptotic theory indicates that when using cross validation or the bootstrap for 

model ranking, the smaller the data subsets that are used for parameter estimation 

during resampling, then the former properties are emphasized (generality, simplicity, 

parsimony, less variability).  On the other hand, if models are based on larger subsets 

of the data during resampling, then results will generally favor the latter properties 

(specificity, complexity, goodness-of-fit, less bias). 
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Chapter 2. Testing Properties of Cross Validation with Simulation 
 

Chapter Summary 

Despite numerous empirical studies and theoretical developments exploring 

properties of delete-d cross validation, the small sample behavior of the CV(d) 

statistic is largely undocumented.  Using simulation, estimates for the unknown 

quantity E[CV(d)] are examined.  Simulation results suggest general formulas for 

E[CV(d)] involving rational scalar multiples of σ2, with the scalar values increasing 

with model complexity.  Also, a two-point instability in the E[CV(d)] error curve is 

observed in all examined situations involving a model that includes at least one 

random-valued predictor.  This phenomenon, which is compatible with the inferred 

formulas for E[CV(d)], introduces two points of increasing instability at the two 

largest possible d values.  Finally, results from the E[CV(d)] simulation are connected 

back to theory. 

“All possible subsets” and “fixed dimension” model selection simulations are 

then used to demonstrate that one important asymptotic model selection result 

involving linear regression and CV(d) is influential already in the smallest sample 

setting.  During these simulations, a few other statistics useful for model selection are 

also examined to provide a gauge for CV(d) model selection rates.  Considering the 

results obtained from these model selection simulations, a “divide and conquer” 

model selection strategy is proposed for general “all possible subsets” model 

selection problems. 
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2.1. A Difficult Modeling Problem 

Suppose a practitioner is faced with the following modeling problem setup: 

- Small sample of independent observations (n < 20) 

- Each observation consists of values from some fixed, large number (O(102)) 

of candidate predictors and a single response value 

- High correlation between most candidate predictor pairs 

- No obvious way to eliminate candidate predictors from consideration 

 

As a means for expressing relationships between predictors and response, the 

practitioner will use the following standard linear statistical model forms: 

 

 F1:  Ŷ1 = β ˆ01 + β ˆ11X11  

 F2:  Ŷ2 = β ˆ02 + β ˆ12X12 + β ˆ22X22  

 

The immediate task for this practitioner is to identify some small number (tens 

to hundreds) of 1- and 2-predictor subsets from the candidate predictor set that will 

produce the “best” models of the forms F1 and F2 above, using ordinary least squares 

(OLS) regression to estimate parameter values.  For this application, “best” models 

are those that have the smallest expected mean-squared prediction error when used to 

make a single response prediction at some unknown future observation of the 

predictor values.  Once this future observation of the predictor values is realized, 

these best models are individually evaluated at the future observation to create a set of 
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response predictions.  Next, the practitioner computes the average prediction from 

this set of response predictions.1  This average prediction is then released to the 

public well in advance of measurement of the actual response. 

Now suppose the practitioner must independently repeat this model selection 

and implementation exercise 11,000 times per year, using a different data set for each 

repetition.  This describes the modeling problem that the author has faced annually 

since 2002 as sole administrator of the nationwide crop yield forecasting program at 

the Kansas Applied Remote Sensing (KARS) Program.  For the KARS crop yield 

forecasting program, response values are annual, final estimated harvested crop yield 

values generated and distributed by the United States Department of Agriculture 

(USDA).  Candidate predictors (available going back to 1989) are derived from 

biweekly time-series satellite data collected prior to and during each crop’s respective 

growing season.  KARS issues crop yield predictions at multiple times during the 

year, for multiple crops and multiple spatial scales, resulting in approximately 11,000 

unique crop yield forecasts per year. 

More than 130,000 models of form F2 must be examined during final season 

predictions for each (crop, region)-pairing, which is indicative of the author’s need 

for an automated, judicious method of model ranking to identify best models.  The 

author must be assured that only in a marginal number of instances might models be 

selected that will produce illogical predictions (unbelievably small or large crop 

                                                 
1 The practitioner is using a “combined forecasting” approach, whereby forecasts from multiple best 
models are averaged to create a single forecast.  This technique is used to help reduce the error 
variance of the released forecast. 
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yield).  Additionally, the author must estimate in advance a general “expected error” 

for each eventual state-level forecast that will be made, to provide reasonable “+/- one 

standard deviation” confidence intervals for these forthcoming predictions.  Since 

program inception, the author has used delete-d cross validation for both model 

selection and estimation of expected prediction error. 

Cross validation (CV) is a data resampling method that uses data splitting.  

To describe data splitting, suppose that each data observation consists of a response 

value (the dependent variable) and its corresponding predictor values (the 

independent variables) that will be used in some specified model for the response.  

The data observations are split into two subsets.  One subset (the training set) is used 

for model parameter estimation.  The complementary subset (the testing set) is then 

used to compute an “out-of-sample” model accuracy statistic, typically mean squared 

error.  For delete-d cross validation, all possible data splits with testing sets that 

contain d observations are evaluated.  The statistic that results from this 

computational effort is denoted CV(d). 

For example, suppose the sample size is n = 10, and we want to evaluate 

CV(d) values for a particular two-parameter model using two pre-specified 

predictors.  Then dmax = n – p = 8 is the largest d value for which CV(d) can be 

computed, because one needs at least two observations in each training set to estimate 

the two model parameters.  For testing set size d = 1, there are 10-choose-1 = 10 

possible unique data splits that must be evaluated to compute CV(1).  There are 10-

choose-2 = 45 possible splits when d = 2, 10-choose-3 = 120 possible splits when d = 
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3, and so on.  Consider the case with d = 3.  For each split, the two model parameters 

are estimated using the seven observations in the training set.  The model is then used 

to generate an “out-of-sample” prediction for each of the three observations in the 

testing set.  These predictions are differenced from their respective observed values, 

and the squared error is computed and retained from each prediction.  After 

performing the necessary computations for each of the 120 unique splits, this results 

in 3*120 = 360 out-of-sample predictions, with equal representation for each data 

observation (360/10 = 36 out-of-sample predictions per observation). 

The “out-of-sample” aspect of CV(d) is relevant to any modeling problem 

where overfitting is a concern, such as small sample problems and other problems 

with low degrees of freedom.  Overfitting refers to the phenomenon by which model 

parameter values are influenced by chance (i.e., non-systematic) covariation between 

predictor values and response values, typically associated with system noise or other 

sources of non-pertinent variation in the data.  The effect of overfitting is an illusory 

reduction of the estimated error variance of the model while simultaneously reducing 

the model’s general utility for prediction.  This effect can produce a bias toward 

selection of higher dimensioned models, which are generally more susceptible to 

overfitting.  This is not meant to imply that CV(d) completely overcomes overfitting, 

but it seems to mitigate this problem.  For example, see Kastens et al. (2005), where 

even CV(1) demonstrates an ability to identify two dimensional models as generally 

preferable to three dimensional models in a rigorous crop yield forecasting exercise 

with sample size n = 11.  Other research (e.g., Zhang 1993, Shao 1993) indicates that 
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using d > 1 (but not too large) might be generally preferable to d = 1.  Consequently, 

the user’s choice for which d to use constitutes an important question. 

Turning attention back to the KARS crop yield forecasting program, the 

reader might ask, “Why must the author go through all this trouble?”  First, KARS 

had a strong need for a fully generalized, purely automated statistical forecasting 

procedure, so that the program could be confidently and efficiently maintained (and 

possibly expanded) into the future without requiring a great deal of administrator 

oversight.  Second, in order to build a reliable forecasting “track record” to establish 

program credibility, it was important that objective, repeatable methods were used 

that could be applied consistently year after year.  Indeed, the program has been 

successful.  Without going into detail, the six-year (2002-2007) accuracy of KARS 

predictions released almost one month in advance of comparable USDA forecasts is 

on par with the accuracy of those later-released USDA forecasts (e.g., see Watts et al. 

2005 for some three-year accuracy statistics). 

In addition to the above constraints, important details regarding the use of 

satellite imagery for crop yield forecasting have not been described, and these details 

affected the choice of statistical methods on which the program could be based.  

Elaboration on the full breadth of the program is beyond the scope of this thesis, since 

the program is being used merely as an example illustrating the author’s motivation 

for studying CV(d).  For more information on the use of satellite data for crop yield 

forecasting, the reader is referred to Kastens et al. (2005). 
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As noted above, an important question facing the author (as well as other 

practitioners using CV(d) for either prediction error estimation or model selection) 

regards which choice of d should be used.  Due to the evident success of the CV(d) 

methodology used in the KARS crop yield forecasting program, initially the author’s 

intent was to use the large attendant databases to investigate this question in a small 

sample setting.  If one could identify some statistical tendencies of CV(d) using real 

data (preferred d for model selection or prediction error estimation), such results 

could provide generally useful heuristic recommendations.  However, the many 

complexities of the data and the yield modeling problem precluded this possibility in 

any convenient, meaningful fashion.  Rather, computer simulation was used instead to 

investigate small-sample tendencies of the statistic in idealized settings.  The 

principal question to be addressed is the effect of different choices of d on prediction 

error estimation and model selection. 

 

2.2. Previous Research 

Three popular papers provided some of the early groundwork for cross 

validation.  Allen (1974) introduced the prediction sum of squares (PRESS) statistic, 

which involves sequential prediction of single observations using models estimated 

from the full data absent the data point to be predicted.  Stone (1974) examined the 

use of delete-1 cross validation methods for regression coefficient “shrinker” 

estimation.  Geisser (1975) presented one of the first introductions of a multiple 

observation holdout sample reuse method similar to delete-d cross validation.  One of 
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the first major practical implementations of CV appeared in Breiman et al. (1984), 

where “V-fold cross validation” is offered as a way to internally estimate model 

accuracy during optimization of classification and regression tree models.  Generally 

applicable only when sample size is large, this involves partitioning the dataset into V 

subsets of nearly equal size, and then sequentially treating each subset as a holdout 

set in a CV computation. 

Numerous authors have discussed and examined the properties of CV(1) 

specifically in the context of model selection (e.g., Hjorth 1994; McQuarrie & Tsai 

1998; Miller 2002).  These studies and others have established that, in spite of the 

merits of using CV(1), this method does not always perform well in optimal model 

identification studies when compared to other direct methods such as information 

criteria (e.g., McQuarrie & Tsai 1998).  The consensus is that CV(1) has a tendency 

in many situations to select overly complex models; i.e., it does not sufficiently 

penalize for overfitting (Davison & Hinkley 1997, p. 303). 

Asymptotic equivalence of CV(1) to the delete-1 jackknife, the standard 

bootstrap, and other model selection methods such as Mallows’s Cp (Mallows 1973) 

and the Akaike information criteria (AIC; Akaike 1973), has been established (see 

Shao 1993, 1997 and references therein).  By allowing d to increase at a rate d/n → a 

< 1, Zhang (1993) shows that CV(d) and a particular form of the mean squared 

prediction error (Shibata 1984; this is a generalization of the “final prediction error” 

of Akaike 1970) are asymptotically equivalent under certain constraints. 
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The inconsistency of CV(1) in a general model selection scenario has been 

shown in Shao (1993).  Many researchers have explored CV(d) for one or more d 

values for actual and simulated case studies involving model selection (e.g., Zhang 

1993; Shao 1993; McQuarrie & Tsai 1998), but not to the extent of exposing any 

general, finite-sample statistical tendencies of CV(d) as a function of d. 

 

2.3. Delete-d Cross Validation in Ordinary Least Squares Regression 

To define the CV(d) statistic used in OLS linear regression settings, let p < n 

be positive integers and let Ik denote the k-by-k identity matrix.  Let X ∈ nxp, Y ∈ 

nx1, β ∈ px1, and ε ∈ nx1, where β and ε are unknown and ε ~ (0, σ2In).  Also, let β 

and ε be such that Y = Xβ + ε is the “true” linear statistical model relating response 

values in Y to predictor values in X.  As usual in these problems, each row of the 

matrix [X Y] corresponds to a data observation (p predictors and one response), and 

each column of X corresponds to a particular predictor.  Assume that each p-row 

submatrix of X has full rank, a necessary condition for CV(d) to be computable for all 

d = 1,…,n – p.  This is a reasonable assumption when data observations are presumed 

to be independently sampled.  Let S be an arbitrary subset of N = {1,2,…,n}, and let 

SC = N \ S.  Let XS denote the row subset of X indexed by S, and define ( )ˆ Sβ  to be 

the OLS parameter vector estimated using XS (just β ˆ if XS = X).  Define 
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( ) ( ) 1T Tˆˆ
C C C C

C
S S S S S S S

Y X S X X X X Yβ
−

= = .  Let ||·|| denote the l2 norm and let |·| denote 

set cardinality.  Then the delete-d cross validation statistic is given by 

 

( )
1 21 ˆCV S S

S d

n
d

d d Y Y
−

−

=

⎛ ⎞= −⎜ ⎟
⎝ ⎠ ∑ .   (2.1) 

 

This equation can be found in Zhang (1993), McQuarrie & Tsai (1998, p. 

255), and Seber & Lee (2003, p. 405).  As can be seen from (2.1), the form of CV(d) 

is that of a “mean squared error”, which is common for error variance estimators. 

The distinguishing feature of CV(d) is that all model predictions (entries of 

ŶS) used in the formula are technically generated “out-of-sample”.  Indeed, this is the 

primary appeal of CV(d) for practitioners, that with this attribute it will provide a 

more believable general estimate for expected prediction error of the model (whose 

final parameters are estimated using all of the observations) than traditional “in-

sample” error variance estimators.  The best known such “in-sample” estimator is the 

expected error of regression, which is given by 

 

  REG = ||Y – Xβ ˆ ||2/(n – p)    (2.2) 

 

and has the property that E[REG] = σ2. 
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The motive behind using CV(d) for model ranking is now apparent:  If an 

estimator provides a useful estimate for expected prediction error, then it makes sense 

to rank models according to this statistic, giving preference to models with smaller 

CV(d) values for a particular user-determined d. 

As previously noted, the principal question when using CV(d) for either 

prediction error estimation or model selection regards which value for d should be 

used.  From a practical perspective, existing theoretical developments (all of which 

pertain to asymptotic behavior as n → ∞) are at best marginally useful in resolving 

this question for small sample settings.  Here is the dilemma:  Use of small d values 

in CV(d) can lead to overly optimistic prediction error assessment and bias toward 

selection of higher-dimensioned models; use of large d values can lead to overly 

pessimistic prediction error assessment and bias toward selection of lower-

dimensioned models. 

The hope is that for a given modeling problem, there is some “optimal d” to 

use for generally even-handed prediction error assessment, or which most fairly 

compares models of various dimension.  However, there is no guarantee that such a d 

value even exists.  Furthermore, if it does exist, it is not necessary that “optimal d” 

will be the same for the related but distinct tasks of prediction error estimation and 

model ranking.  Finally, even if a single “optimal d” exists applicable for both 

prediction error estimation and model selection, this value could well exhibit 

substantial dependence on the distributional structure of the data, enough so that 

making any general recommendations for “which d should be used” is not possible. 
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The previous paragraph raises big questions regarding the use of CV(d) in 

applied statistics, questions for which we may never obtain satisfactory answers.  

Certainly these matters will not be resolved in this thesis.  The fact is that we know 

almost nothing about the small sample use of the statistic, not even its expected value.  

With scant direction on how one should begin to study this situation, it is a bit like the 

proverbial eating of the elephant:  “How do you eat an elephant?  One bite at a time.”  

In the following sections, the author attempts to take a few bites using simulation 

studies. 

The objective of the first simulation is to estimate values for E[CV(d)] in an 

attempt to expose general expressions for this statistic, in terms of n, p, d, and σ2.  

Theorists have so far been unsuccessful in identifying any such equation.  Results 

from this simulation have indirect relevance for the prediction error estimation 

problem.  Generally speaking, it is reasonable to assume that prediction error is a 

dilation of σ2, which characterizes the identified forms for E[CV(d)] uncovered by the 

author.  The resulting equations are then linked back to theory. 

In the second simulation, optimal model selection rates using CV(d) for model 

ranking are simulated in a contrived, small sample setting.  The objective is to 

determine, for different sample sizes, which d values produce CV(d) that are most 

successful at optimal model identification.  In particular, the author wishes to 

determine if small sample results exhibit behavior reflective of the most interesting 

asymptotic model selection result from the literature. 
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2.4. Simulating the Expected Value for CV(d) 

2.4.1. Problem Background 

As previously noted, there is no general formula for E[CV(d)] as a function of 

n, p, d, and σ2.  In fact, only one attempt has been made at hypothesizing an 

approximate equation of this nature (Shao & Tu 1995, p.309).  Here the authors 

suggest that 

 

[ ] 2 2ˆE CV( ) E 1n d
pd

n d
σ σ−

⎛ ⎞⎡ ⎤≈ = +⎜ ⎟⎣ ⎦ −⎝ ⎠
.   (2.3) 

 

This expression implies that CV(d) provides an estimate for 2ˆn dσ − , where 2ˆn dσ −  refers 

to the squared prediction error when making a prediction for a future observation at a 

design point (row of predictor matrix X) and X contains n – d independent 

observations (rows). 

To explain the equality in (2.3), let xf be some new observation of predictor 

values, where xf is identical to some row of predictor matrix X.  Suppose Y  ~ N(Xβ, 

σ2In), and let yf be the future observation of the dependent variable at xf.  Then we 

have  

 

  ( )2 12 2 T T
f f f f

ˆE y x x X X xβ σ σ
−⎡ ⎤− = +⎢ ⎥⎣ ⎦

   (2.4) 
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The source for the second term on the RHS of (2.4) is sample bias attributable to xf as 

a single observation from sample X.  If we compute the average of (2.4) over all rows 

in X, then we obtain the formula on the RHS of (2.3) (Shao & Tu 1995, p307). 

Simulation results described in this section indicate that the approximation for 

E[CV(d)] in (2.3) is exact for the (somewhat) trivial mean model.  Further simulation 

results reveal that this approximation is incorrect when the model contains a random 

valued predictor, and becomes worse as an increasing number of random valued 

predictors are included in the model. 

Those studying asymptotic properties for CV(d) generally fail to distinguish 

cases in which one of the predictors is an intercept, which characterizes the vast 

majority of applied linear models.  The intercept is typically represented in X as a 

column of ones, and its presence allows a model to not have to pass through the 

origin (i.e., Ŷ does not have to be 0 when all of the independent variable values are 0).  

Perhaps this neglect is permissible in asymptotic studies where p is free to grow 

unbounded along with n (such as in Shao 1993), if one assumes that the distinct 

effects of using an intercept generally become negligible as p increases.  Theoretical 

developments applicable for small samples cannot be afforded this luxury, and two 

cases must be considered—those that include an intercept as a predictor, and those 

that do not.  Simulation results for E[CV(d)] clearly indicate the necessity for this 

dichotomy. 
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2.4.2. Results 

Using the normal random number generator in MATLAB®, values for CV(d) 

were simulated for numerous cases with n ∈ {4,…,20}, p ∈ {1,…,n-2}, error εj ~IID 

N(0, σ2) and Xj ~IID N(0, Σ), where Σ = diag(σ1
2,…, σp

2) and j ∈ {1,…,n}.  All σ and 

σk were independently and randomly sampled from the truncated distribution 10N(0,1) 

∩ [10-3,103], with 10N(0,1) sample values outside the interval [10-3,103] snapped to the 

appropriate interval endpoint.  Separate cases were considered using models with and 

without an intercept as a predictor.  For a particular (n,p), after simulating 

approximately 20,000-100,000 values for CV(d) for all possible d, average simulated 

CV(d) values were computed to provide simulated E[CV(d)].  Upon inspection, 

simulated E[CV(d)] were found to follow rational number pattern sequences clear 

enough to conjecture general formulas for E[CV(d)] dependent on n, p, d, and σ2. 

An apparently related outcome is the identification of a two-point region of 

instability of the E[CV(d)] error curve for any tested model that includes a random 

valued predictor.  Specifically, simulation results reveal two points of increasing 

instability at E[CV(dmax – 1)] and E[CV(dmax)], where dmax = n – p.  This distinct 

result was unexpected, nowhere anticipated in the CV(d) literature.  The term 

“increasing instability” is apt because the coefficient of variation ( = standard 

deviation / mean) calculated for the simulated CV(d) values is stable for d < dmax – 1, 

but increasingly blows up (along with E[CV(d)]) at d = dmax – 1 and d = dmax.  The 

reason for this phenomenon is, at present, an interesting open question.  These 
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simulation results are consistent with the mathematical breakdown of the E[CV(d)] 

formulas given in Conjectures 2.1 and 2.2 at the two largest d values. 

To gauge the accuracy of the conjectured formulas for E[CV(d)], the author 

used an absolute percent error statistic defined by 

 

simulated E[CV( )] predicted E[CV( )]
APE 100*

simulated E[CV( )]
d d

d
−

=   (2.5) 

 

Begin with the simplest case, where the only predictor is the intercept.  

Suppose X = 1nx1 (an n-vector of ones), so that the linear regression model under 

investigation is the mean model (so called because Ŷ = β ˆ = Y ¯).  Then the function 

underlying the mean squared model error is (1/n)||Y – Ŷ ||2 ≈ E[(y – E[y])2] = Var[y], 

where y is a random variable with the response distribution.  The true expected value 

for (2.1) under the mean model is given in 

 

THEOREM 2.1:  Suppose X = 1nx1, and let Y = [yj] ∈ nx1 be such that the yj ~IID (μ, 

σ2).  Then, for d = 1,…, dmax, the expected value for CV(d) is given by 

 

( ) 2 1E CV 1d
n d

σ ⎛ ⎞⎡ ⎤ = +⎜ ⎟⎣ ⎦ −⎝ ⎠
.    (2.6) 
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PROOF:  Define ( )ˆˆ C
S SY X Sβ= , where |S| = d.  Then, for d = 1,…, dmax, we will 

show that the expected value for a single summand term of (2.1) is given by  

 

2 21 1ˆE 1σ ⎛ ⎞⎡ ⎤− = +⎜ ⎟⎢ ⎥⎣ ⎦ −⎝ ⎠
S Sd Y Y

n d
. 

 

The d-by-1 vector YS – ŶS has components of the form yj – Y ¯SC, where yj is a “deleted” 

observation (entry in YS) and Y ¯SC is the sample mean of (n – d) Y-values in YSC that 

were not deleted.  Since yj and Y ¯SC are statistically independent and have the same 

expected value (μ), we have 

 

( ) ( )
22 2 2ˆE E Var Var VarC C Cj S j j jS S S

y Y y Y y Y y Y
n d
σσ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤− = − = − = + = +⎣ ⎦⎣ ⎦ ⎣ ⎦⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦ −

. 

 

Since yj is an arbitrary element of hold-out set YS, we have  

 

( ) ( ) ( )
2 2 2 2 1ˆE E E 1σ −

∈ ∈

⎡ ⎤⎡ ⎤ ⎡ ⎤− = − = − = +⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦ ⎣ ⎦
∑ ∑C CS S j j n dS S
j S j S

Y Y y Y y Y d . 

 

Because of the linearity of E[·], (2.6) immediately follows from this derivation, 

which applies to an arbitrary split of the dataset.  QED 
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Different results appear when simulating models that include at least one 

random valued predictor.  Two findings are notable: (a) distinct but related patterns 

for E[CV(d)] emerge when considering models consisting entirely of random valued 

predictors and those that use an intercept; and (b) two points of increasing instability 

appear at E[CV(dmax – 1)] and E[CV(dmax)].  The existence of the two-point 

instability appears to be robust to increasing dimensionality.  Result (a) is expressed 

in the Conjectures 2.1 and 2.2, which also happen to provide implicit support for the 

observation stated in (b) via their singularities at d = dmax – 1.  For Conjectures 2.1 

and 2.2, suppose that Y  ~ N(Xβ, σ2In), with β the assumed “true” linear model 

coefficient vector. 

 

CONJECTURE 2.1:  Let X be the n-by-p design matrix, where p < n – 2.  Let Xj (the 

jth row of X) be such that Xj ~IID N(0, Σ), where Σ = diag(σ1
2,…, σp

2) and j ∈ 

{1,…,n}.  Then, for d = 1,…, dmax – 2, the expected value for CV(d) is given by 

 

( ) 2E CV 1
1

pd
n d p

σ
⎛ ⎞

⎡ ⎤ = +⎜ ⎟⎣ ⎦ − − −⎝ ⎠
.   (2.7) 

 

In the search for this equation, the author scrutinized simulated values for 

E[CV(d)], examining a variety of cases.  Using the approximation in (2.3) as a 

starting point for exploring possible forms for the RHS of (2.7), the author eventually 

arrived at (2.7) through trial and error. 



 51

At d = dmax – 2 = n – p – 2 (the largest d value for which Conjecture 2.1 

applies), (2.7) reduces to E[CV(dmax – 2)] = σ2(1 + p).  At d = dmax – 1 (the first point 

of the two-point instability in the CV(d) error curve), (2.7) has a singularity.  Though 

(2.7) and (2.3) are similar, the inclusion of -p in the denominator of the dilation factor 

in (2.7) presents an obvious disagreement that becomes increasingly substantial as p 

increases.  For example, the largest value that (2.3) can achieve is 2σ2, realized at d = 

dmax.  Compare this to the maximum E[CV(d)] value σ2(1 + p), realized by (2.7) at d = 

dmax – 2. 

Figure 2.1 shows results for the case (n,p) = (10,1), with a single random 

valued predictor used in the model.  The simulated E[CV(d)] error curve is displayed 

along with corresponding predicted E[CV(d)] error curves obtained using (2.7) and 

(2.3), so that all three error curves can be examined simultaneously.  Note the 

congruity between simulated E[CV(d)] and predicted E[CV(d)] from Conjecture 2.1, 

and the widening (with d) disparity between simulated E[CV(d)] and predicted 

E[CV(d)] from the approximation provided in (2.3).  Also note the blow-up in 

simulated E[CV(d)] at the two largest d values, reflecting the previously described 

two-point instability of the E[CV(d)] error curve when at least one random valued 

predictor is used in the model. 

Figure 2.2(a) shows results for the case (n,p) = (10,2), using a model with two 

random valued predictors.  Figure 2.3(a) shows results for the case with (n,p) = 

(20,8), using a model with eight random valued predictors.  The same observations 

noted above for Figure 2.1 apply to Figure 2.2(a) and 2.3(a). 
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Now consider the case where an intercept is included in the linear model. 

 

CONJECTURE 2.2:  Let X = [1 XRV] be the n-by-p design matrix, where p < n – 2, 

and the first column of X is an intercept.  Let Xj (the jth row of XRV) be such that Xj 

~IID N(0, Σ), where Σ = diag(σ1
2,…, σp-1

2) and j ∈ {1,…,n}.  Then, for d = 1,…, dmax 

– 2, the expected value for CV(d) is given by 

 

( ) 2 1 2E CV 1 1
1

pd
n d p n d p

σ
⎛ ⎞⎛ ⎞

⎡ ⎤ = + ⋅ − ⋅⎜ ⎟⎜ ⎟⎣ ⎦ − − − −⎝ ⎠⎝ ⎠
.  (2.8) 

 

In the search for this equation, the author once again scrutinized simulated 

values for E[CV(d)], examining a variety of cases.  This time, (2.7) was used as a 

starting point for exploring possible forms for the RHS of (2.8).  Specifically, the 

author reasoned that substitution of an intercept for a random valued predictor 

reduces overall model complexity, suggesting that the E[CV(d)] expression for 

models that include an intercept might take the form of a dampened version of (2.7).  

Indeed, after much trial and error, this was found to be the case once the RHS of (2.8) 

was “discovered”. 

Like equation (2.7), at d = dmax – 1, (2.8) has a singularity.  Note that (2.8) 

constitutes a downward adjustment of (2.7).  Apparently, the 1/(n-d) term provides an 

adjustment for the reduced model complexity when substituting an intercept for a 
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random-valued predictor.  The 2/p term dampens the adjustment as p gets larger and 

the general effect of this substitution on the model becomes less pronounced. 

Figure 2.2(b) shows results for the case (n,p) = (10,2), using a model with an 

intercept and one random valued predictor.  Figure 2.3(b) shows results for the case 

(n,p) = (20,8), using a model with an intercept and seven random valued predictors.  

The same general observations noted above for Figure 2.1 apply to Figures 2.2(b) and 

2.3(b). 

Simulation strongly supports the validity of the Conjectures.  Graphical 

evidence for this assertion can be seen in Figures 2.1-2.3.  APE values (2.5) computed 

comparing (2.7) and (2.8) to corresponding simulated E[CV(d)] were generally   

O(10-2) to O(10-1).  To provide a gauge for these error magnitudes, E[REG] values 

were also simulated and compared to the known value of σ2.  APE values from this 

comparison were also generally O(10-2) to O(10-1), indicating that rounding error was 

solely responsible for the slight differences observed between simulated E[CV(d)] 

and predicted E[CV(d)] from (2.7) and (2.8). 

As a final note, unlike E[CV(d)], CV(d) values from a single data sample will 

not necessarily be increasing in d.  However, simulation results indicate that such 

behavior is exceptional.  For example, testing 20,000 iterations with (n,p) = (20,8) 

and no intercept resulted in three cases with CV(2)<CV(1).  One of these cases even 

exhibited decreasing CV(d) from d = 1 to 4. 
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2.4.3. Connecting Simulation Results Back to Theory 

Equation (2.3) was examined because it was the only explicitly stated estimate 

for E[CV(d)] found in the literature.  This expression gives the mean squared error of 

prediction (MSEP) for using a linear regression model to make a prediction for some 

future observation at a design point.  However, this is not an accurate characterization 

for CV(d), which is clear from the E[CV(d)] simulation results.  Rather, the random 

subset design used for making “out-of-sample” predictions when computing the 

CV(d) statistic is more logically associated with the MSEP for using a linear 

regression model to make a prediction for some future observation at a random X 

value. 

  In Miller (2002), an expression is derived for the MSEP in the random X 

case, using a model with an intercept and predictor variables independently sampled 

from some fixed multivariate normal distribution.  Miller credits this result to Stein 

(1960), but uses a derivation from Bendel (1973).  Let row vector xf contain the 

predictor values for some random future observation, with response value yf.  With 

this setup, we have Var[β ˆ ] = σ2(X TX)-1, and we can write MSEP as 

 

2 22ˆ ˆβ β β β⎡ ⎤ ⎡ ⎤⎡ ⎤= − = − + −⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦f f f f f fMSEP E y x E y x E x x
 

        ( ) 12 2 T Tσ σ
−⎡ ⎤= + ⎢ ⎥⎣ ⎦f fE x X X x  

        ( )( )12 T T11σ
−⎡ ⎤= + + ⎢ ⎥⎣ ⎦f fn E x X X x .  (2.9) 
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In (2.9), “~” denotes that sample means have been removed, and predictor 

vectors are of length p –1.  The “1/n” term in the dilation factor accounts for the 

variance of the intercept parameter estimated in the model. 

Let Σ denote the covariance matrix for the X variables, so that the variance of 

future x~f ’s will be (1+1/n)Σ after removing the sample means.  We can estimate Σ by 

 

( ) ( )/ 1= −TV X X n ,    (2.10) 

 

which gives us 

 

   ( ) ( )
1T T 1 T1

1
− −+

=
−f f

nx X X x tV t
n n

. 

 

In this expression, t is a vector of statistics with zero mean and covariance matrix Σ.  

tV-1t is a Hotelling T2-statistic, which is a generalization of Student’s t-statistic that is 

used in multivariate hypothesis testing.  The quantity 

 

   (n – p + 1)T2/((p – 1)(n – 1)) 

 

is known to follow an F-distribution given by F(p – 1, n – p + 1).  Using the fact that 

the expected value of F(v1,v2) is v2/(v2 – 2), Miller (2002) obtains 
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 ( ) ( )
( )( ) ( )( )

( )
T T 1 1 1 11 1

1 1 1 1
− − + −+ − +⎡ ⎤ = ⋅ ⋅ =⎣ ⎦ − − + − − − −f f

n p n pn n pE x X X x
n n n p n p n n p

. 

 

Substituting this expression into (2.9), we get 

 

( )( )
( )

2 1 111
1

σ
⎛ ⎞+ −

= + +⎜ ⎟⎜ ⎟− −⎝ ⎠

n p
MSEP

n n n p
.    (2.11) 

 

If we replace n – d with n in (2.8), then it is easy to show that (2.11) and (2.8) are 

equivalent. 

Following Miller’s derivation for the case using a model with an intercept, we 

can also derive an expression equivalent to (2.7) from Conjecture 2.1 (i.e., the “no 

intercept” case).  First, the “1/n” term in (2.9) is no longer needed because all 

predictor and response variables are distributed with 0 mean, and no intercept is used 

in the model.  Second, the expression used to estimate the covariance matrix V in 

(2.10) should be divided by n rather than n – 1.  With these changes, we now have 

 

( ) 1T T 1 T1− −=f fx X X x tV t
n

, 

 

where t = xf and the T2-statistic tV-1tT is such that (n – p + 1)T2/(pn) ~ F(p, n – p + 1).  

Using this setup, we determine that 
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( ) 1T T 1 1
1 1 1

− − +⎡ ⎤ = ⋅ ⋅ =⎢ ⎥⎣ ⎦ − + − − − −f f
np n p pE x X X x

n n p n p n p
. 

 

Substituting this result into the intermediate expression on the second line of (2.9), we 

get 

 

2 1
1

σ
⎛ ⎞

= +⎜ ⎟− −⎝ ⎠

pMSEP
n p

.    (2.12) 

 

(2.12) is identical to (2.7), if we substitute n for n – d in (2.7). 

 

2.4.4. Conclusions and Future Directions 

Conjectures 2.1 and 2.2 constitute the first proposed general formulas for 

E[CV(d)].  The link established between (2.7) and (2.8) and the random-X MSEP 

described in Miller (2002) indicates that Conjectures 2.1 and 2.2 generalize to 

multivariate normal X and ε ~ (0, σ2).  In support of the error generalization, 

simulations using ε ~ U(-a,a), with a ∈ [10-3,103], produce APE values on the same 

order as those observed using normally distributed ε. 

Regarding the normality constraint on X, if we independently sample predictor 

values from U(-√12/2,√12/2), then simulated E[CV(d)] values are less than the 

conjectured values.  For example, with (n,p) = (20,8) and no intercept, E[CV(d)] 

values range from 2.8%-9.6% smaller than the conjectured formula in (2.7) as d 
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increases from 1 to (dmax–2), but simulated E[REG] values are unchanged (as 

expected, since E[REG] is independent of predictor distribution).  Therefore, unlike 

some of the more general properties for OLS linear regression, E[CV(d)] depends on 

predictor distribution.  Further theoretical development and additional simulation 

work would help expose this dependency. 

Finally, the two-point instability phenomenon (which did not depend on 

predictor distribution) also warrants serious investigation, one that should begin by 

examining the development of the Hotelling T2-statistic.  The two-point instability 

indicates that OLS linear regression models fit using just 1 or 0 degrees of freedom 

must be unique in some way, compared to models fit using 2 or more degrees of 

freedom. 

 

2.5. Simulating Optimal Model Selection Rates for CV(d) 

2.5.1. Problem Background 

The most groundbreaking result using CV(d) for asymptotic model selection 

appeared in Shao (1993).  In this work, a pool of candidate predictors (columns of X 

∈ nxp, for some fixed p) is given, along with the quantity to be predicted (Y).  Some 

of the predictors in X may not be related to Y, and these predictors would be expected 

to have 0 coefficients in β when included in a linear model.  Associating models with 

column subsets of X, define the optimal model to be the column subset of X 

containing only the predictors with non-zero coefficients in β, and rank the different 

possible models using CV(d).  Under some reasonable assumptions, the requirements 
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that d/n → 1 and n – d → ∞ as n → ∞ are shown in Shao (1993) to be necessary and 

sufficient for the consistency of using CV(d) for optimal model selection, assuming 

that the optimal model is not the full model (the one constructed using all of the 

predictors). 

The conclusion to be drawn from Shao (1993) is that when using CV(d) for 

model ranking in model selection, and a finite dimension optimal model is assumed 

(Shao 1997), a value for d that is an appreciable fraction of sample size n is preferred.  

Shao’s result was interesting because it countered conventional wisdom of the time 

(largely driven by computational pragmatism) that heavily favored study of CV(1).  

However, no specific guidance is provided for practitioners using CV(d) for model 

selection, because the finite sample situation is inconsequential to the asymptotic 

result.  For example, setting d = ceil[n – nα], 0 < α < 1, satisfies Shao’s two 

asymptotic criteria (namely, d/n → 1 and n – d → ∞ as n → ∞), yet imposes no 

certain constraint on what values for d are desirable.  The objective of the next 

simulation was to see if behavior reflective of Shao’s criteria is indeed observable in 

the smallest sample setting. 

 

2.5.2. “All Possible Subsets” Model Selection 

Consider the equation y = β0 + β1x1 + β2x2 + ε, with x1, x2, ε ~IID N(0,1) and βj 

∈ Z2 = {0,1} for j = 0,1,2.  Assume that at least one βj ≠ 0, so that there are seven 

unique coefficient vectors β = [β0 β1 β2]T.  This setup is used to simulate data 
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observations [x1 x2 y] for each of these particular coefficient vectors.  n such 

observations using a particular coefficient vector are used to fill rows of the n-by-3 

matrix [X1 X2 Y], using sample sizes n = 4,…,20.  The resulting matrix provides a 

simulated data sample associated with the particular coefficient vector. 

It is helpful to adopt the following naming convention to identify which 

coefficient vector is being used to simulate data samples (the “D” stands for data): 

 

D1:  β = [1 0 0]T 

D2:  β = [0 1 0]T 

D3:  β = [0 0 1]T 

D4:  β = [1 1 0]T 

D5:  β = [1 0 1]T 

D6:  β = [0 1 1]T 

D7:  β = [1 1 1]T 

 

Define the pool of candidate predictors to be XPOOL = {1, X1, X2}, where the 

first element represents an intercept.  XPOOL has seven unique non-empty subsets, 

each of which characterizes a candidate model (i.e., models defined using “all 

possible subsets” of candidate predictors are being considered).  Let Xα be the 

predictor matrix associated with candidate model α, where α ∈ Z2
3 is a binary-valued 

3-vector indicating inclusion (1) or exclusion (0) of the individual members of XPOOL 
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in Xα.  For example, α = (1,0,1) implies that Xα = [1 X2].  It is helpful to adopt the 

following naming convention to identify which predictors are being used in a model 

(the “M” stands for model): 

 

M1:  α = (1,0,0) 

M2:  α = (0,1,0) 

M3:  α = (0,0,1) 

M4:  α = (1,1,0) 

M5:  α = (1,0,1) 

M6:  α = (0,1,1) 

M7:  α = (1,1,1) 

 

Note the obvious correspondence between the data labels and the model labels.  

Using the labels provided above, consider the following data-model array: 

 

D1:  M1, M2, M3, M4, M5, M6, M7 

D2:  M1, M2, M3, M4, M5, M6, M7 

D4:  M1, M2, M3, M4, M5, M6, M7 

D6:  M1, M2, M3, M4, M5, M6, M7 

D7:  M1, M2, M3, M4, M5, M6, M7 
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Each row of the array is associated with a particular data type, indicated on 

the left side of the array.  Due to the distributional indistinction between X1 and X2, 

D3 and D5 cases are (for all practical purposes) redundant with D2 and D4 cases, 

respectively, and are thus excluded from direct consideration.  Models outlined with a 

box denote correct models with respect to the specified data type (i.e., models that 

include all predictors in XPOOL contributing to Y).  Correct models are “Class II” 

models in accordance with Shao (1993).  The boxed model with bold, italicized text 

denotes the optimal model, which is the correct model with the smallest dimension 

(i.e., it includes only predictors in XPOOL contributing to Y).  Models not outlined fall 

in Class I, which contains all incorrect models (i.e., models missing at least one 

predictor in XPOOL contributing to Y). 

For each simulated data type, the author sought to determine the d-specific 

rates of optimal model selection using CV(d) to rank the seven candidate models, for 

sample sizes n = 4,…,20.  Call the d value exhibiting the highest rate of optimal 

model selection optimal d, or dopt.  The objective was to track the movement of dopt as 

n increases, first for each particular data type, and then for arbitrary data type.  Then, 

a qualitative assessment can be made regarding whether or not dopt varies with n in a 

manner reflective of the asymptotic model selection criteria identified in Shao (1993) 

(namely, d/n → 1 and n – d → ∞ as n → ∞).  This behavior is referred to as “fall 

back”, considering that one would like to observe dopt generally increasing at the 

same rate as n (reflecting the criterion d/n → 1 as n → ∞), but with occasional bouts 
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of “fall back” where dopt is non-increasing for consecutive n values (reflecting the 

criterion n – d → ∞ as n → ∞). 

 

2.5.3. Results and Key Findings 

Model selection histograms (MSHs) are displayed in Figure 2.4.  Each colored 

curve in Figure 2.4 is a MSH, which shows simulated optimal model selection rates 

(probabilities) plotted against d.  Optimal model selection rates using REG for model 

ranking also were simulated to provide a familiar comparative gauge for optimal 

model selection rates using CV(d).  For convenience, REG results are plotted at d = 0.  

To obtain these curves, 12,000-40,000 iterations were evaluated for each sample size, 

for each of the five non-redundant data types. 

Figures 2.4(a)-(e) show results obtained using specific optimal model types, 

ordered by increasing optimal model complexity.  One model is more complex than 

another if it (i) has a larger p or (ii) has the same p but the less complex model 

includes an intercept and the more complex model includes only random-valued 

predictors.  In particular, note the trajectories for dopt (identified by diamond-framed 

black dots) in each subplot as n increases. 

When minimally complex M1 is the optimal model (Figure 2.4(a)), dopt = dmax 

for all n.  This “mean model” case is not specifically exempted in Shao (1993), and 

the non-conformity of dopt to the finite-sample “fall back” criteria described in the 

previous section may be cause for concern.  However, the author believes that this 

result is more likely due to the lack of consideration of the intercept as a predictor that 
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is characteristic of asymptotic studies (including Shao 1993).  When maximally 

complex M7 is the optimal model (Figure 2.4(e)), dopt = 1 for all n.  This “full model” 

case is specifically exempted in Shao (1993), and thus the non-conformity of dopt to 

the finite-sample “fall back” criteria does not present a conflict.  Otherwise, “fall 

back” behavior generally can be observed for the remaining cases M2-M6 (Figures 

2.4(b)-(d)), with an increased amount of “fall back” occurring as optimal model 

complexity increases. 

More interesting than the optimal model-specific results is the average result, 

whereby any one of the seven candidate models is equally likely to be optimal.  

MSHs for this more general situation are shown in Figure 2.4(f).  The observation of 

“fall back” behavior of dopt as n increases in Figure 2.4(f) provides a convincing 

illustration that the asymptotic model selection criteria identified in Shao (1993) are 

indeed influential already in this smallest sample setting. 

To test the robustness of the results shown in Figure 2.4(f), the linear 

independence assumption of x1 and x2 was relaxed.  Simulation results were recreated 

using x1 and x2 such that both were N(0,1) but Corr[x1, x2] ≈ 0.8.  The average MSH 

across all seven data types is shown in Figure 2.5.  Using correlated random valued 

predictors (i) leads to a pronounced decrease in optimal model selection rates using 

REG or CV(d); (ii) markedly flattens the CV(d) optimal model selection rate curves, 

reducing the advantage exhibited by CV(dopt) and points nearby; and (iii) expedites 

the “fall back” effect characterizing the best d as n increases.  Most of the loss 

summarized in observations (i) and (ii) is attributable to the very poor performance 
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(not shown) of CV(d) for cases when M6 or M7 is the optimal model, which are the 

two models that include both X1 and X2. 

In addition to the focus on the behavior of dopt with respect to the asymptotic 

model selection criteria found in Shao (1993), optimal model selection rates for REG 

were simulated for comparison to CV(d) optimal model selection rates.  As a matter 

of convenience, optimal model selection rates for REG are plotted at d = 0 in Figure 

2.4(a)-(f).  If one observed REG generally outperforming CV(d), then this would 

provide evidence that CV(d) provides no better tool for model ranking than REG, 

which is better understood and much easier to compute.  This was not found to be the 

case.  REG tended to perform better than CV(d) for the smallest sample sizes, for 

cases where one of the higher dimensioned models was the optimal model (Figures 

2.4(c)-(e)).  However, when each of the seven candidate models was equally likely to 

be the optimal model (which was the most general situation studied), then for every 

sample size at least CV(dopt) was better at identifying the optimal model than REG 

(Figure 2.4(f)).  This observation also held when examining correlated predictors 

(Figure 2.5).  Furthermore, the gap between optimal model selection rates using 

CV(dopt) and REG widened with increasing sample size, with an increasing number of 

d values resulting in CV(d) that outperformed REG. 

 

2.5.4. Fixed Dimension Model Selection 

Implicit to the “all possible subsets” model selection problem is the fixed 

dimension model selection (FDMS) problem, which refers to the problem of ranking 
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models with the same dimension.  Fewer statistics are available for resolving FDMS 

problems than “all possible subsets” model selection problems because such statistics 

can no longer utilize differences in dimensionality to assist with model assessment. 

In this section, we use simulation to test whether or not Shao’s “all possible 

subsets” model selection result manifests itself in small sample FDMS problems in a 

manner similar to the “all possible subsets” simulation examined earlier.  We also 

examine results from a similar FDMS simulation that allows for consideration of 

another statistic that can be used for FDMS problems, which we now describe. 

Let Ŷ denote the “full model” response predictions for Y, and let Ŷα denote the 

response predictions using some candidate model labeled by α, and which has p 

predictors.  Let Xα denote the predictor matrix for candidate model α.  Besides CV(d), 

few other statistics are available that can be applied to FDMS problems and possibly 

produce a ranking distinct from simple l2 model fit (sum of squared errors, or SSE).  

For example, Mallows’ Cp  
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and the Akaike information criterion (AIC) 
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are equivalent to SSE in FDMS, because their model complexity penalty parameters 

(the last term in each expression) are constant for fixed p.  The same is true for most 

other information criteria, such as the Beyesian information criterion (BIC; Schwarz 

1978) and the corrected AIC (AICc; McQuarrie & Tsai 1998).  The exception with the 

simplest form is the Fisher information criterion (FIC; Wei 1992), which uses a data-

dependent complexity penalty parameter.  The FIC for model α is given by 

 

( )( )
2

T
2

ˆ
ln det

ˆ

Y Y
FIC X X

Y Y

α
α α

−
= +

−
.   (2.13) 

 

Like many other information criteria, the FIC requires an estimate for “full 

model” error (see the denominator of the fraction in (2.13)), so that the FIC is only 

applicable for model selection problems where the number of candidate predictors 

(pool size v) is less than the number of observations (n).  This presents a pool size 

constraint for model selection problems that use the FIC. 

We describe results from two related FDMS simulation studies, denoted 

FDMS-3 and FDMS-2.  In FDMS-3, small sample optimal model selection rates 

using SSE, FIC, and CV(d) are simulated and compared to determine which of these 

statistics is best capable of optimal model identification when the model dimension is 

fixed.  This simulation is subject to the pool size constraint (namely, v<n) imposed by 

the FIC (see the “FIC Applicable” region in Table 2.1).  The FDMS-2 simulation is 
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an extension of the FDMS-3, dropping consideration of the FIC so that the pool size 

constraint could be ignored.  All (n,v)-pairs represented in Table 2.1 were examined 

for FDMS-2.  The distributional constraints imposed on the X variables and errors ε 

during the main “all possible subsets” simulation were used here.  Approximately 

12,000 model selection iterations were evaluated for each (n,v,p) case, both with and 

without an intercept. 

Six different optimal model forms were examined that contained from 1 to 3 

random valued predictors, with or without an intercept, so that p ranged from 1 to 4: 

 

{x1, 1+x1, x1+x2, 1+x1+x2, x1+x2+x3, 1+ x1+x2+x3}. 

 

Let p denote model dimension, and define the number of random valued predictors in 

the model as pRV = p-1 or p, depending on whether or not an intercept is used.  Given 

a particular optimal model form and simulated data set (predictor pool {X1, X2, … Xv} 

and error ε), the first pRV predictors were substituted into the optimal model form and 

added to ε to provide simulated response values Y.  For these simulations, use of the 

intercept was fixed so that either an intercept was used in the optimal model and all 

candidate models, or it was not used at all.  When no intercept was used, this allowed 

the maximum pool size to be increased by one considered (see “RV” entries in Table 

2.1). 

A variety of small sample sizes (n = 6:14), candidate predictor pool sizes (v = 

4:16), and model dimensions (p = 1:4) were considered for these FDMS studies.  For 
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example, if v = 14 and pRV = 3, then there are 14-choose-3 = 364 candidate models to 

evaluate (which includes the one “correct” model). 

To look for “fall back” behavior, we must obtain a single dopt value for each n 

and examine the trajectory of dopt as n increases.  Therefore, it was necessary to 

aggregate results across different pool size values v.  Simple averaging was used for 

this purpose.  Pool size has the obvious influence that optimal model selection rates 

decline as pool size increases.  This is because more models must be considered, 

which increases competition bias.  For example, the FDMS-2 MSHs shown in Figure 

2.6 generally portray lower model selection rates than the FDMS-3 MSHs shown in 

Figure 2.7.  This is because in FDMS-2, in addition to considering the same pool 

sizes used in FDMS-3, larger pool sizes were also evaluated (see Table 2.1). 

An examination of the simulation results displayed as MSHs in Figures 2.6 

and 2.7 leads to the following observations: 

• [FDMS-2 and FDMS-3]  Shao’s “fall back” behavior for dopt is observed to 

some degree for each optimal model form, except the simplest one (x1; see 

Figures 2.6(a) and 2.7(a)).  The condition d/n → 1 as n → ∞ becomes more 

pronounced with increasing model complexity. 

• [FDMS-2 and FDMS-3]  SSE outperforms CV(dopt) in every instance.  

Looking at ratios of optimal model selection rates (Figure 2.8), there is no 

indication that CV(dopt) will eventually overtake SSE as sample size increases, 

regardless of model complexity.  However, looking at differences in optimal 
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model selection rates (Figure 2.9), CV(dopt) rates may eventually catch up to 

(i.e., become indistinguishable from) SSE rates as n increases. 

• [FDMS-3]  SSE outperforms FIC in nearly every instance (Figure 2.7).  As 

model complexity increases, FIC begins to outperform SSE for the very 

smallest sample sizes.  Looking at the trend in the ratio (Figure 2.8) and 

difference (Figure 2.9) between these two model selection rates, it appears 

that SSE will maintain its dominance over FIC indefinitely as sample size 

increases, regardless of model complexity. 

• [FDMS-3]  As sample size increases, CV(dopt) eventually outperforms FIC.    

For the smallest sample sizes, FIC outperforms CV(d).  The more complex the 

model form, the greater the n at which CV(dopt) first outperforms FIC.  See 

Figures 2.6-2.9. 

 

2.5.5. Conclusions and Future Directions 

The main objective of the model selection simulations was to see if small 

sample behavior of dopt reflected the asymptotic model selection criteria identified in 

Shao (1993).  This was achieved.  Consequently, practitioners may want to consider d 

values that are an appreciable fraction of n when faced with “all possible subsets” or 

“fixed dimension” model selection problems.  Additional simulations using larger 

sample sizes, alternative predictor and error distributions, and larger predictor pools 

(more candidate models) would help expose the general small-sample behavior of the 

CV(d) statistic when used for model selection.  Also, it would be useful to simulate 
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model selection rates of alternative model selection statistics (such as various 

information criteria) in the “all possible subsets” simulation framework examined 

here, to compare against the model selection rates observed using CV(d). 

The other notable result from the “all possible subsets” model selection 

simulation was that using CV(d) for model ranking is generally preferable to using 

REG, so long as a judicious choice of d is made.  On the other hand, when 

considering FDMS problems, SSE was generally found to provide the most effective 

model selection statistic when compared to FIC or CV(d).  Considering these two 

outcomes, this suggests that a “divide and conquer” strategy might be more effective 

in resolving an “all possible subsets” problem than directly competing all possible 

models.  By “divide and conquer”, it is meant to subdivide the “all possible subsets” 

problem into a collection of FDMS sub-problems.  Use simple SSE to select the best 

model within each FDMS sub-problem, and then use a different statistic (such as 

CV(d) or some information criterion) to select among the resulting set of differently 

dimensioned, “best” models to identify the overall optimal model. 
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Figure 2.1.  A comparison between simulated and predicted E[CV(d)] error curves 
using the linear model with a single random valued predictor X1, for sample size n 
= 10.  Note the good correspondence between the simulated E[CV(d)] values and 
the predicted values from Conjecture 2.1.  Also note how simulated E[CV(d)] 
values blow up at d = dmax – 1 = 8 and d = dmax = 9.  This abrupt behavior change 
in simulated E[CV(d)] is compatible with the d-value limitations of Conjectures 
2.1 and 2.2, which are both inapplicable for the two largest d values. 
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Figure 2.2.  A comparison between simulated and predicted E[CV(d)] error curves 
using the linear model with predictors (a) [X1 X2] and (b) [1 X1], for sample size n 
= 10.  Note the good correspondence between the simulated E[CV(d)] values and 
the predicted values from Conjectures 2.1 and 2.2.  Also visible is the two-point 
instability, with simulated E[CV(d)] blowing up at d = dmax – 1 = 7 and d = dmax = 
8. 

(a) 

(b) 
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Figure 2.3.  A comparison between simulated and predicted E[CV(d)] error curves 
using the linear model with predictors (a) [X1 … X8] and (b) [1 X1 … X7], for 
sample size n = 20.  Note the good correspondence between the simulated 
E[CV(d)] values and the predicted values from Conjectures 2.1 and 2.2.  Also 
visible is the two-point instability, with simulated E[CV(d)] blowing up at d = dmax
– 1 = 11 and d = dmax = 12. 

(a)

(b)
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Figure 2.4.  The Model Selection Histograms (MSHs) for n = 4,…,20 are shown, 
using results obtained from the “all possible subsets” model selection simulation 
with optimal model (a) M1, (b) M2 or M3, (c) M4 or M5, (d) M6, or (e) M7.  
Subplot (f) shows the general MSHs averaged across the seven different optimal 
model types, reflecting the case whereby any one of the seven models is equally 
likely to be the optimal model. 
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Figure 2.5.  The colored lines show, for n = 4,…,20, the average MSHs that result 
when any one of the seven models is equally likely to be the optimal model.  For 
these MSHs, x1 and x2 were simulated such that Corr[x1, x2] ≈ 0.8.  Data from the 
uncorrelated case (see Figure 2.4(f)) are shown in light gray for comparison. 
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Table 2.1.  Examined (n,v) = (sample size, pool size) pairs for the FDMS 
simulations.  When considering the FIC (simulation FDMS-3), only cases 
to the upper right of the diagonal divider (v<n) could be considered due to 
the pool size constraint imposed by the form of the FIC.  All cases were 
considered when comparing just CV(d) and SSE (simulation FDMS-2). 

v\n 6 7 8 9 10 11 12 13 14 
4          
5 RV*         
6  RV        
7   RV       
8    RV      
9     RV     
10      RV    
11       RV   
12        RV  
13         RV 
14          
15          
16          

* “RV” denotes cases where FIC is applicable only for model forms with 
no intercept. 

 

FIC Applicable 

FIC Not Applicable
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Figure 2.6.  Model selection histograms for FDMS-2.  In each subplot, results are 
shown for n = 6 (shortest curve) to n = 14 (longest).  Each curve depicts the 
average MSH observed over the pool size range v = 4:16.  The number of terms in 
the “optimal model form” shown in each subplot gives the model dimension p of 
the FDMS problem at hand, explaining the scaling of d in each plot (recall that the 
upper bound for d is dmax = n – p).  For convenience, REG results are plotted at d = 
0. 
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Figure 2.7.  Model selection histograms for FDMS-3.  In each subplot, results are 
shown for n = 6 (shortest curve) to n = 14 (longest).  Each curve depicts the 
average MSH observed over the available “FIC Applicable” pool size range shown 
in Table 2.1.  For convenience, REG results are plotted at d = 0 and FIC results are 
plotted at d = -1. 
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Figure 2.8.  To examine the relative asymptotic tendencies of the optimal model 
selection rates (denoted P(·) in the legend) of the different statistics used for model 
selection, several ratios of these rates were computed and plotted here.  Each of the 
black curves depicts a specific optimal model selection probability ratio computed 
using results shown in Figure 2.7.  The curve labeled “FDMS-2” uses the ratio 
P(SSE)/P(CV(dopt)) determined from the values shown in Figure 2.6.  Note that 
FIC probabilities are surpassed by REG and CV(dopt) probabilities as sample size 
grows.  Also, SSE probabilities are always better than CV(dopt) probabilities, but 
the gap closes as sample size increases. 
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Figure 2.9.  Same as Figure 2.8, but differences between (rather than ratios of) 
optimal model selection rates are shown.  These differences exhibit the same 
general patterns as the ratios shown in Figure 2.7.  Note that FIC probabilities are 
surpassed by REG and CV(dopt) probabilities as sample size grows.  That the 
difference between SSE and CV(dopt) rates is generally decreasing for larger 
sample sizes provides evidence that these quantities might be asymptotically 
consistent with respect to optimal model selection rate. 
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Chapter 3. A New Method for Floodplain Modeling 
 

Chapter Summary 

Based on simplistic pixel-level surface flow properties derived from gridded 

elevation data, the FLDPLN (“floodplain”) model was developed to estimate 

floodplain extent as a function of floodwater depth.  The FLDPLN model is described 

in this paper.  The model has significant advantages over existing methods such as 

traditional hydrodynamic models.  For example, the FLDPLN model is nearly 

automated and has few input requirements.  FLDPLN can be used to identify and map 

historic floodplains (river valleys), a capability demonstrated using several examples.  

Also, FLDPLN can be used to estimate inundation extent for major, sustained flood 

events.  This is demonstrated in a validation study in which the FLDPLN model was 

used to analyze 130 km of stream length from a forked river network in western 

Missouri that experienced extreme flooding in 2007.  Using the maximum mean daily 

water surface elevation values recorded at three gaging stations during flood crest 

(one from each branch of the forked system), the model predicted the flood extent 

with 87.2% accuracy.  This result is outstanding compared to similar studies reported 

in the literature using hydrodynamic models. 
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3.1. Introduction 

The delineation1 of floodplains and flood prone areas within them for major 

river reaches is necessary and desirable at some level of accuracy to address a number 

of needs.  Floodplain areas adjacent to and within nearly all major municipalities have 

been mapped using Federal Emergency Management Agency (FEMA) methods, other 

hydrologic and hydraulic methods, or Natural Resources Conservation Service soils 

maps.  FEMA maps are often dated and restricted to very localized floodplain areas 

because of their high cost.  More rapid and affordable methods are necessary to 

identify flood prone areas over extensive river reaches to provide information about 

flood potentials that can affect floodplain development by individuals, and private 

and public organizations. 

All rivers reside within a floodplain that contains the extent of their historical 

meanders and bank overflows.  For rivers in shallow-slope landscapes that are prone 

to periodic flooding (such as those occurring in Kansas), the floodplain usually 

appears as a topographically distinct landscape feature commonly referred to as a 

“river valley”.  The river valley is a slowly evolving (and therefore relatively static) 

landscape feature, the result of the integration over time of fluvial (flowing water) 

erosion processes that contributed to the valley’s formation.  In light of this 

description, the term “historic floodplain” will be used synonymously with “river 

valley”. 

                                                 
1  In flood mapping, “delineation” always refers to the two-dimensional, “flat map” representation (i.e., 
the xy-projection) of the areal extent. 
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In this paper, the term “floodplain” will also be used in reference to a more 

detailed definition, whereby a particular floodplain extent is associated with a 

particular floodwater depth.  The “floodwater depth” (or “flood depth”, or “water 

depth”, or later, “depth to flood”) value assigned to an off-stream point refers to the 

depth of water required above normal local stream flow to inundate that off-stream 

point.  Given some flood depth h, the subset of the historic floodplain with floodwater 

depth values ≤ h comprises the floodplain associated with flood depth h. 

 

3.2. Existing Methods 

Identifying a floodplain for a particular stream (or river) using topographic 

data is complicated by local topographic variability and the downhill trajectory of the 

stream course.  While the historic floodplains of many rivers (especially large rivers) 

are visually recognizable in most aerial photography and digital images, the actual 

delineation of floodplains and flood-prone areas is achieved using one of three 

methods: (i) manual delineation (visual interpretation); (ii) statistical topographic 

detrending; and (iii) evaluating a hydrodynamic model.  We now provide brief 

descriptions for these methods. 

 

3.2.1. Manual Floodplain Delineation 

Option (i) is only possible in cases where sufficient (for the user’s purposes) 

portions of the floodplain boundary corresponding to upland valley walls are visibly 

recognizable in the topographic map.  The historic floodplain is generally the area 
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contained by the upland valley walls, and as such can be defined by drawing or 

digitizing the most visual breaks between the flat lowland adjacent the river course 

and the upland areas.  Figure 3.1 shows two examples with topographically distinct 

river valleys.  This graphic delineation process is often facilitated by rather abrupt 

lowland to upland changes in land cover and topography.  However, this procedure is 

imprecise and difficult to replicate due to frequent interpretational uncertainties (such 

as what to do at floodplain confluences and other flat areas). 

 

3.2.2. Detrending Topographic Data for Floodplain Identification 

Option (ii) refers to applied statistical approaches for detrending the 

topographic map near a stream, so that off-stream elevation values are made relative 

to nearby stream elevation.  If one assigns an elevation value of zero to all points on 

the stream, then relative elevation values from nearby off-stream points can be 

assumed to reflect the floodwater depth above normal flow required for inundation of 

these points. 

This approach is popular in ecological studies, where relative elevation 

provides a potentially useful explanatory variable (e.g., see Lea & Diamond 2006, 

Turner et al. 2004, Poole et al. 2000).  In these and other studies, relative elevation is 

used as an indicator of fluvial “connectedness” of off-stream points to the stream or 

stream network under investigation.  Since flood frequency varies inversely with 

floodwater depth, locations with smaller relative elevation values are expected to be 

more frequently “reconnected” with the nearby stream via floodwaters.  Connectivity 
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information is useful for the study of nutrient cycling and other processes 

characteristic of river-floodplain ecosystems, along with the study of the effects of 

disturbance (and restoration) of such systems caused by human activity (Sparks et al. 

1990, Bayley 1995, Buijse et al. 2002, Tockner et al. 2002). 

The advantage of purely statistical detrending approaches is that they are easy 

to apply and can produce useful, visually appealing results.  In addition to providing a 

hydrologic connectivity index, the floodplain extent for various floodwater depth 

values can be estimated using level sets from the relative elevation map.  The 

disadvantage is that these approaches are highly subjective and do not consider any 

topographic information beyond spatial proximity and elevation.  The output will 

depend heavily on how the reference stream elevation values are spatially 

extrapolated for subtraction from the elevation map, a process that becomes 

increasingly indeterminate for locations farther from the set of reference points.  

Proper study area delineation is also necessary, to confine the analysis to regions that 

drain into the target stream.  Otherwise, areas that do not drain into the target stream 

will be assigned meaningless relative elevations values.  For example, a previously 

delineated river valley boundary was used to define the study area in Lea & Diamond 

(2006).  Because no actual surface flow information is used, output from this method 

is of limited utility for use in surface hydrology studies. 
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3.2.3. Hydrodynamic Flood Extent and Floodplain Estimation 

Option (iii) refers to the various, widely used hydrologic and hydraulic 

models, which require numerous input variables and boundary condition 

specifications.  First, a hydrologic model is used to simulate local stream discharge 

rates.  These discharge rates are then fed into a hydraulic model, which is used for 

flood extent estimation.  Due to the physical basis and implementation success of 

hydrodynamic models, professionals and governmental agencies concerned with 

estimating observed or potential flood extents use such models almost exclusively.  

The cost for such detailed studies can be more than $8000 per mile (Lear et al. 2000), 

and thus the mapping of long stream segments can become prohibitively expensive.  

Successful implementation of hydraulic models is greatly facilitated by detailed 

geometric information obtained from manual ground surveys at floodplain cross 

sections.  However, the recent and increasing availability of high resolution elevation 

data (≤ 2 m horizontal resolution, with ± 10 cm vertical accuracy) should help 

alleviate the need for ground survey data, helping to reduce the overall cost for such 

models. 

To better understand the complexities associated with the hydrodynamic 

modeling approach to the flood extent estimation problem, it is helpful to describe, 

using general terms, how such a solution is typically obtained.  First the user 

designates a study area containing a stream segment for which a particular flood 

extent or general floodplain is to be estimated.  A hydrologic surface runoff response 

model (e.g., the U.S. Army Corps of Engineer’s Hydrologic Engineering Center’s 
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Hydrologic Modeling System, or HEC-HMS; see USACE HEC 2000 for technical 

details) is then evaluated using precipitation intensity and duration parameters 

describing some recorded storm or a hypothetical design storm.  The output from the 

hydrologic model is an estimate for the stream hydrograph, which shows stream 

discharge rate as a function of time for some location on the stream.  For example, the 

“100-year” design storm should produce a maximum stream discharge rate that is 

expected to have a 1% annual probability of being observed or exceeded.  Lateral 

(from the stream channel) floodwater extent is then estimated using a hydraulic 

model, for which the hydrograph provides necessary boundary condition information.  

If the flood extent for a particular storm event is desired, then the entire hydrograph is 

used as a time-dependent, variable flow boundary condition representing rising and 

falling floodwaters.  If a general floodplain (e.g, the “100-year floodplain”) is desired, 

then the peak discharge from the hydrograph provides a constant flow boundary 

condition.  The latter approach is typically used for most engineering applications, 

including design implementation and FEMA flood studies. 

The U.S. Army Corps of Engineer’s Hydrologic Engineering Center’s River 

Analysis System (HEC-RAS) software is commonly used for hydraulic modeling in 

the U.S. (see USACE HEC 2002 for technical details).  In fact, use of the HEC-RAS 

model is currently a requirement for flood studies approved by FEMA.  HEC-RAS 

employs one-dimensional, open channel flow models (in open channel flow, gravity 

is the only force that can cause flow).  These models are parametrized and solved for 

a sequence of coupled, strategically positioned, user-specified, piecewise linear 
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floodplain cross sections.  Cross sections should be roughly orthogonal to elevation 

contour lines, and thus approximately will follow elevation gradient lines.2  The cross 

sections should partition the floodplain into regions of constant flow regime, which 

refers to the steady-state behavior of the longitudinal (as opposed to cross-sectional) 

water surface profile within each particular region.  Three flow regimes are generally 

considered, each requiring an increasingly complex hydraulic model solution:  (1) 

uniform flow (water depth and velocity are constant), (2) gradually varied flow (water 

depth and velocity change gradually with distance), and (3) rapidly varied flow (RVF; 

water depth and velocity change abruptly with distance).  RVF is sometimes 

observed, for example, at abrupt flow path constrictions/expansions (e.g., near weirs 

and other partial impoundments), at hydraulic jumps (e.g., at the bases of dam 

spillways and waterfalls, where high flow velocity and relatively shallow depth meets 

low flow velocity and large depth), and at river confluences.  Rivers exhibiting more 

frequent variations in flow regime require the specification of more cross sections for 

accurate representation. 

With respect to the dynamic quantities upon which hydraulic models are 

based, the cross sections are coupled by scalar equations reflecting conservation of 

mass (i.e., discharge continuity, or “discharge in = discharge out”; this is a 

consequence of fluid incompressibility) and conservation of energy (USACE HEC 

2002, p.2-2).  Friction and other energy loss terms are also typically considered.  The 

                                                 
2 Ideally, cross sections will correspond to elevation contours on the floodwater surface to be modeled.  
This is because the water surface elevation is treated as a constant in the hydraulic model solution for 
each cross section. 
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more complicated, vector-based momentum equation (USACE HEC 2002, p.2-16) is 

used as needed, especially between cross sections bounding RVF flow regimes 

(USACE HEC 2002, p.1-2). 

Both the energy and momentum equations originate from Newton’s second 

law of motion (Henderson 1966, p.5).  In particular, hydrodynamic equations for open 

channel (or free surface) flow are most generally developed using Navier-Stokes 

equations (Hervouet 2007, Section 2.2).  Finally, the more tractable, depth-averaged 

version of these equations (which are known as St. Venant’s equations; Hervouet 

2007, Section 2.3) are widely used in 1-D open channel flow models including HEC-

RAS and the U.S. National Weather Service’s FLDWAV model (Fread & Lewis 

1988, Fread 1993).  To justify the depth averaging, fluid flow is assumed to be 

characterized by “long wave-shallow depth”, which has the unfortunate effect that 

swelling is not well represented using St. Venant’s equations (Hervouet 2007, p.25). 

In addition to the physical equations, other empirical equations (i.e., stage-

discharge relationships based on direct measurement) are also used where needed, to 

provide simple, reasonable approximations to expected flow behavior near structures 

such as weirs, culverts, and bridge supports.  After all of the boundary conditions 

have been specified, solutions are worked upstream from cross section to cross 

section in the case of subcritical flow (i.e., where gravitational forces exceed inertial 

forces).  Likewise, solutions are worked downstream in the case of supercritical flow 

(i.e., where inertial forces exceed gravitational forces). 
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After solving the system of coupled cross-section equations, a single 

floodwater surface elevation value for each cross section is returned by the model 

(Figure 3.2).  Each floodwater surface elevation value is then used to estimate the 

floodwater extent at its respective cross section, by identifying the portion of the cross 

section with elevation values below the estimated water surface elevation.  

Graphically in 3, each of these cross section-specific, floodwater surface extent 

estimates generally will appear as a piecewise linear segment with z coordinate equal 

to the floodwater surface elevation.  Next, the cross-sectional floodwater surface 

extent estimates are spatially interpolated between cross sections.  The resulting, 

three-dimensional floodwater surface then is overlaid on the available topographic 

data.  The portion of the estimated floodwater surface where floodwater elevation 

exceeds terrain elevation defines the flood extent estimate, so that portions of the 

estimated floodwater surface occurring below the terrain are discarded.  If the user 

determines that the result is unsatisfactory, then the boundary conditions are amended 

and the model is re-evaluated.  This process is repeated as needed until the user 

determines that the model has produced an acceptable, physically reasonable result.  

If the peak hydrograph value from the 100-year design storm was used for hydraulic 

model development, then the extent of the inundated area predicted by the model is 

defined to be the 100-year floodplain. 

Prior to the current release, HEC-RAS modeling software was incapable of 

directly solving problems involving unsteady flows.  “Unsteady flow” refers to cases 

where flow velocity and depth vary with time, such as occurs with the passage of a 
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flood wave through the system.  Instead, users relied (and still largely do) on iterative 

steady flow approximations at different constant flow values, reasoning that velocity 

and depth changes are sufficiently slow to permit this approach.  This is done to 

approximate unsteady flow situations like floods or dam breaches.  Otherwise, most 

applications are only concerned with the maximum possible inundation extents, so 

analysis at only the peak flow is necessary. 

Topographically driven, two-dimensional diffusion wave models recently 

have been proposed for use in flood modeling.  One example is the LISFLOOD-FP 

model (Bates & de Roo 2000, Horritt & Bates 2001).  LISFLOOD-FP uses a 1-D 

hydrodynamic representation of channel flow linked to a simple model for flow 

between spatial grid cells in the floodplain between cross sections.  The JFLOW 

model, which has a similar design, was introduced in Bradbrook et al. (2004), and 

was further examined and described in Bradbrook et al. (2005) and Bradbrook 

(2006).  These quasi-2-D hydrodynamic models are less constrained than pure 1-D 

hydrodynamic models, and instead better utilize the full resolution of the available 

topographic information.  In Bradbrook (2006), the author indicates that JFLOW can 

help improve 1-D hydrodynamic models when the two approaches are used in 

tandem. 

Hydrodynamic models are used to estimate the temporal evolution of 

floodwater extent given a set of boundary conditions characterizing a particular flood 

scenario.  The floodplain, however, is a relatively static landscape feature, the result 

of the integration over time of fluvial processes that contributed to the floodplain’s 
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formation.  Consequently, there is no reason why floodplain identification should 

necessarily require hydrodynamic model evaluation (a similar conclusion is reached 

in Bates & De Roo 2000).  On the other hand, though the floodplain is viewed 

statically in options (i) [manual delineation] and (ii) [statistical topographic 

detrending], both approaches are highly subjective and neither directly considers 

surface hydrology.  In this chapter, the author introduces a physically-based, static 

model for floodplain identification that overcomes the problems of options (i) and 

(ii), yet avoids the many complexities of hydrodynamic modeling. 

There is not yet any clear connection between the new model developed by 

the author, dubbed the FLDPLN (“floodplain”) model, and dynamic open channel 

flow models.  The FLDPLN model was specifically designed for application to 

discrete elevation data sampled on a regular grid, and does not, to the author’s 

knowledge, correspond to a discretization of some prior theoretical model. 

 

3.3. A New Method to Address User Needs 

Over the past several years, the author has developed a new computational 

model for the purpose of estimating steady state flood (or floodplain) extent as a 

function of water depth.  This model (FLDPLN) is referred to as “computational” 

because it is actually an iterative algorithm designed specifically to apply to gridded 

elevation data.  Besides producing detailed, useful, and accurate results, the most 

exciting characteristics of the FLDPLN model are that it is nearly automated and has 

few input requirements.  The FLDPLN model is a substantial extension of Jenson & 



 96

Domingue (1988), where the authors introduced conceptually simple methods for 

gradient approximation and stream network delineation using gridded elevation data. 

This research is motivated by three distinct needs of the end-user community, 

for which existing methods are generally insufficient in some capacity.  Foremost is 

the need among State agencies for rapid flood extent estimation during and following 

a flood event, which would greatly assist emergency response activities.  There is also 

a need among State agencies for inexpensive estimation of potential dam breach 

inundation extent, for general hazard assessment.  Finally, there is a need among the 

ecology research community for identification and detailed mapping of historic 

floodplain extents and the provision of a meaningful hydrologic connectivity index.  

 

3.3.1. The Need for Rapid Flood Extent Estimation 

Record rainfall events in Southeast Kansas in late June-early July of 2007 

caused severe, widespread flooding that led to Federal disaster declarations in 20 

counties.  In addition to confirming the value of myriad geographic information 

system data layers and pre- and post-flooding satellite and aerial imagery, these 

events highlighted deficiencies in available information.  One key layer that is 

necessary for effective disaster preparedness and response is inundation extent for a 

given water level.  Although accurate and useful inundation extent information 

derived from Landsat and ASTER satellite data was produced by scientists from the 

Kansas Applied Remote Sensing Program (KARS) for some of the affected area, 

coverage was limited by the timing and location of the satellites’ orbital paths.  Also, 
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over a week had passed before satellite imagery could be acquired and processed, and 

that can be considered a favorable scenario given potential orbital constraints and 

cloud cover. 

Simultaneous to the State-coordinated, image-based assessment of the flooded 

area, hydrologists at the United States Geological Survey (USGS) were using an ad 

hoc method based on local level-sets to estimate the flood extent3.  Reasonable flood 

extent estimates were released more than a week after flood crest, but covered only 

select portions of the affected area.  In October 2007, a detailed study supported by 

the USACE to analyze the flood event was released.  This report contained an 

estimate for the flood perimeter that was based on surveyed high water marks and 

digital elevation contours (USACE 2007, p.4-1).  To the author’s knowledge, no one 

has attempted to model the inundation extent from this major flood event using 

hydrodynamic methods.  

Officials from the Kansas Department of Emergency Management and The 

Adjutant General’s Department (which oversees the Kansas National Guard) have 

since met with KARS scientists (including the author) and indicated that real-time 

flood extent estimation would greatly benefit their flood assessment and response 

activities.4  Such estimates would assist State emergency response planning and 

                                                 
3 Personal communication May 2008, Kevin Dobbs of KARS with Carol Mladinich of the USGS 
Rocky Mountain Geographic Science Center in Lakewood, CO. 
4 Toward this end, in January 2008 the Kansas GIS Policy Board funded a KARS proposal 
(http://da.ks.gov/gis/documents/KARS-KBS_Inundation_Proposal_18dec07.pdf) to use the FLDPLN 
model to create a floodplain database covering the 20 counties in southeast Kansas that received 
Federal disaster declarations due to extensive flooding in Summer 2007.  Upon completion, this 
database can be used to generate real-time flood extent estimates using as little information as a single 
point location from the floodwater’s edge.  Expansion of this project is pending. 
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actions, allowing for more efficient allocation of resources to areas where they are 

most needed (such as where to direct National Guard assistance and emergency 

supplies).  Additionally, real-time flood extent estimates can be overlaid on existing 

spatial population and structure data layers to allow for precise and immediate 

estimates of human and property impact.  Such impact estimates are useful for 

decision-making regarding disaster response and resource allocation, as well as for 

determining State and Federal disaster declarations, which are based on human and 

monetary thresholds. 

 

3.3.2. The Need for Inexpensive Dam Breach Inundation Modeling 

Final developments for the FLDPLN model were motivated by the recent 

push within the Kansas Water Office (KWO) to obtain reasonable estimates for 

potential dam breach inundation extent for the state’s many impoundments (5,784 

recorded in the USACE National Inventory of Dams).  Though hydrodynamic models 

have been extended for this purpose, KWO has funded pilot studies exploring this 

option and determined that a more cost-effective solution is needed.  Using reservoir 

volume information and output from the FLDPLN model, the author has developed a 

simple method for detailed estimation of dam breach inundation extent.  This 

development was possible because the model outputs are sufficient to propagate a 

wave front down the set of stream pixels, using downstream spatial steps as a proxy 

for time steps and a water volume conservation constraint. 
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The FLDPLN model assigns to each point in the floodplain a flood source 

pixel (FSP).  The FSP for a floodplain pixel is the stream pixel from which 

floodwaters originate that would inundate that pixel at the shallowest floodwater 

depth (this is the depth to flood, or DTF, value that the model determines for each 

floodplain pixel).  Floodplain pixels thus can be binned by FSP value.  Using these 

bins and pixel-level DTF information to estimate water column volume above each 

pixel as a function of flood depth, a histogram can be generated for each stream pixel 

that shows floodplain volume as a function of flood depth.  With knowledge of a 

reservoir’s volume, and making some simple assumptions about maximum depth, 

wave front decay, and flood wave propagation, the author was able to develop a dam 

breach inundation model using the information contained in these histograms.  

Detailed description of this method is beyond the scope of this thesis, and will be 

presented in a forthcoming journal article. 

 

3.3.3. The Need for Floodplain Mapping in Ecology Studies 

While recent, final developments for the FLDPLN model were motivated by 

practical needs of State agencies, initial model developments were motivated by 

academic research needs.  In 2004, Environmental Protection Agency (EPA) funding 

was approved for a proposed research project at the Central Plains Center for 

Bioassessment (CPCB)5 to assess wetlands for water quality and biological diversity.  

The focus of the study was on wetlands occurring in approximately 850 km of the 

                                                 
5 Like KARS, CPCB is a research subunit at the Kansas Biological Survey (KBS), which is located at 
the University of Kansas. 
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Missouri River valley between Sioux City, IA, and St. Louis, MO.  Don Huggins was 

the Principle Investigator on this project, which is still ongoing. 

For the project, CPCB scientists required a delineation of the boundary of the 

Missouri River valley in the study area.  By spatially intersecting the bounded area 

with the National Wetlands Inventory database6, CPCB researchers could then 

identify which wetlands should be considered for the study.  Dr. Huggins was aware 

of the substantial difficulties and uncertainties associated with using existing methods 

for identifying historic floodplain extent for a study area of this large magnitude.  

Through prior collaboration with the author, Dr. Huggins also was aware that the 

author then had just completed initial developments for the FLDPLN model.  

Consequently, Dr. Huggins contacted the author to see if he could apply the FLDPLN 

model to the study area, to supply the CPCB research team with this much-needed 

data layer.  The application was successful, and the resulting floodplain map is still 

being used for ongoing project studies. 

Besides delineating the boundary of the historic floodplain, the CPCB project 

has also benefited from the physically-based flood depth values assigned to 

floodplain pixels during implementation of the FLDPLN model.  Currently CPCB 

researchers are using this information as a hydrologic “connectivity index” relating 

floodplain locations with the main flow channel, in a manner similar to that described 

in Section 3.1.2. 

 

                                                 
6 http://wetlandsfws.er.usgs.gov/nwi/ 
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3.3.4. Some General Remarks about the New Method 

Unlike traditional hydrodynamic models, FLDPLN has no dynamic, or time 

dependence.  Rather, it is a static model driven purely by topographic data.  It just so 

happens that a static floodplain characterized by a particular floodwater depth is not 

much different from the inundation extent from a sustained flood event that realizes 

the same floodwater depth.  This observation is demonstrated in a validation study, 

which establishes the utility of FLDPLN for flood extent estimation.  The validation 

study examines a major flood event from Summer 2007 in extreme eastern Kansas 

and western Missouri, spanning 130 km of river length. 

The author has established an asymptotic convergence theorem (described in 

the Appendix) for the principle design feature of the model (namely, backfill 

flooding) for an idealized flow channel.  The author also was able to establish a 

“nested floodplain” property for the full FLDPLN model.  To test implementation of 

the full model, several examples were evaluated using FLDPLN for historic 

floodplain identification using real topographic data.  The algorithm, the theorems, 

the examples, and the validation study are presented in this chapter. 

 

3.4. Elements of the FLDPLN Model: Backfill and Spillover Flooding 

The FLDPLN model is based on the assumption that the floodwater path from 

floodwater source point P to floodplain point Q can be characterized using two 

fundamental components (illustrated in Figure 3.3):  backfill flooding and spillover 

flooding.  Backfill flooding approximates floodwater swelling, and is based on the 
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simplistic notion that “water seeks its own level”.  Nearly all of the floodplain area 

identified in FLDPLN is specified using backfill flooding.  Spillover flooding 

establishes new floodwater routes in the floodplain, and is based on the simplistic 

notion that “water flows downhill”.  Floodwater rerouting occurs when floodwaters 

breach a topographic flow divide (often a ridgeline), spilling across the divide (over 

the ridge) to define a new floodwater flow path. 

Figures 3.4-3.6 show how backfill and spillover flooding occur at the pixel 

level.  Backfill flooding is determined using the gradient direction field to “back into” 

a pixel’s upstream watershed (Figure 3.4).  However, without a method for defining 

new floodwater routes, backfill flooding hangs up whenever floodwaters encounter a 

flow divide.  We can remedy this problem by implementing spillover flooding to 

breach flow divides (such as ridgelines) and create new floodwater propagation paths 

(Figure 3.5).  If floodwaters encounter multiple flow divides, sometimes multiple 

spillover flooding steps are required to properly specify the new floodwater route 

(Figure 3.6).  Figure 3.7 shows a plan view diagram illustrating instances of backfill 

and spillover flooding.  The strategy underlying the FLDPLN model is to backfill 

flood using small flood depth increments (to simulate floodwater swelling), 

applying spillover flooding between each step (to simulate floodwater rerouting). 

Consider the lateral floodplain cross section diagram shown in Figure 3.8.  

Figure 3.9(a) shows how a traditional hydrodynamic solution might appear for this 

cross section.  Figure 3.9(b) shows how this cross section would be flooded one-
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dimensionally using backfill and spillover flooding7.  An appealing attribute of the 

FLDPLN model is that it is isotropic, operating independently of stream or floodplain 

orientation.  For example, the conceptual, one-dimensional behavior of the FLDPLN 

model along a longitudinal floodplain cross section (Figure 3.10) is identical to its 

behavior along a lateral floodplain cross section (Figure 3.9(b)). 

To gain a static (time independent), two-dimensional perspective of the 

floodplain, it is helpful to consider the notion of potential flood extent (PFE) for an 

idealized channel.  Consider the pitched channel (surface S) shown in Figure 3.11(a).  

Here we see two half-planes forming a V-shaped drainage channel.  To create S, two 

planes P1 and P2 parallel to the y-axis but such that (∂z/∂x)P1 = 1 = –(∂z/∂x)P2 were 

used to construct horizontal channel surface C = max{P1,P2} (Figure 3.11(b)).  Next, 

a plane L (the landscape plane; Figure 3.11(c)) parallel to the x-axis and such that 

∂z/∂y = 1/2 was added to C to construct S = C + L.  The slope of S in the x direction 

defines the local topography gradient (detail scale).  The slope of S in the y direction 

defines the landscape gradient (trend scale). 

Let r be a point along the channel bottom of S.  Let zr be the elevation at r, 

and let h be some flood depth at r.  Construct a channel-wide dam running along the 

two cross-sectional elevation gradient lines emanating from r, such that the top of the 

dam is at elevation zr + h.  Let the reservoir fill completely, and then consider the 

extent (surface area) of the reservoir formed behind the dam (Figure 3.12).  The 

                                                 
7 The DTF contours will largely level out when upstream and downstream stream points are also 
considered and FLDPLN is applied in two dimensions.  This will increase the cross-sectional 
resemblance between FLDPLN model solutions and hydrodynamic model solutions. 
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reservoir boundary away from the dam will coincide with the elevation contour at zr + 

h.  The reservoir extent (surface area) provides a reasonable characterization for the 

upstream limit of potential swelling (backwater effects, or backfilling) realized by a 

flood with depth h at r.  We will call this type of flooding backfill flooding.  Using 

topographic data and an estimated gradient direction field, the proposed backfill flood 

algorithm (BFA) is designed to estimate the extent of the reservoir just described.  

The BFA is a critical component of the FLDPLN model. 

Now instantly remove the dam, releasing the waters trapped behind it.  

Gravity-induced flow will distribute these waters laterally and downstream from r.  

We will call this type of flooding spillover flooding.  In this event, the spillover flood 

extent will inevitably converge on the downstream drainage channel.  The rate of 

convergence will depend on the landscape roughness and local topography gradients, 

but this dependence is not clearly defined.  Define the potential flood extent for point 

r at depth h, or PFEr(h), to be the area surrounding r generated by taking the union of 

the reservoir extent and the spillover flood extent realized upon removal of the dam.  

See Figures 3.13(a)-(b) for possible extents for PFEr(h), using different flood depths 

and different rates of convergence for the spillover flood extent. The FLDPLN model, 

applied to r using flood depth h, provides an estimate for PFEr(h). 

Suppose one can estimate the PFE for each point from a sequence of points 

along a stream segment R.  Compute the union of the point-specific PFEs, retaining 

the minimum flood depth value in areas where point-specific PFEs overlap.  The 

result is the PFER(h), which is the potential flood extent for segment R at depth h.  
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Then PFER(h) provides a reasonable conceptual definition for the floodplain of R 

associated with water depth h.  See Figures 3.13(c)-(d) for possible extents for 

PFER(h), using different flood depths and different rates of convergence for the point-

specific, spillover flood extent estimates.  The FLDPLN model, applied to R using 

flood depth h, provides an estimate for PFER(h). 

It is useful to provide a non-technical description of the FLPLN algorithm at 

this point: 

i) Initialize the depth-0 floodplain to be the stream segment.  Initialize flood 

depth h = dh, for some depth increment dh.  

ii) Use the topography and the gradient direction field to backfill flood outward 

from the floodplain boundary to depth h.  Add these points to the current 

floodplain. 

iii) Locate points on the current floodplain boundary where spillover flooding 

will occur.  Determine the “spillover flood depth” for each spillover point. 

iv) Use the gradient direction field to determine new floodwater routes 

originating from the spillover flood points.  Halt each route when it returns 

to the main channel downstream, or when it returns to the current 

floodplain, or when it reaches the study area boundary, whichever comes 

first. 

v) Backfill flood each new floodwater route to its respective spillover flood 

depth. 
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vi) Add the newly flooded points to the current floodplain.  Since these new 

points largely will have resulted from backfill flooding, it is possible that 

additional points will now be present on the floodplain boundary that require 

spillover flooding. 

vii) Repeat steps (iii) – (vi) until the steady-state is reached. 

viii) Increase h if necessary, and go back to step (ii). 

 

3.5. Definitions and Pixel-Level Parameters 

A raster is rectangular array of square grid cells (pixels) to which scalar 

values are assigned.  For example, a digital image is a raster.  Each pixel has four 

edges and four vertices.  Pixels that share an edge or vertex are called neighboring 

pixels, so that a pixel can have up to eight neighbors (four adjacent and four 

diagonal).  A raster topographic dataset is generally referred to as a digital elevation 

model, or DEM.  Pixel values in a DEM typically represent bare-Earth (i.e., ground 

surface) elevation, which will be the case here.  The FLDPLN model specifically is 

designed to use DEM data.  For a succinct discussion about the problems associated 

with digital topographic representation, see Carter (1988). 

A path through a raster is an ordered sequence (list) of pixels such that (i) a 

pixel can only appear one time on the list (i.e., the path is not self-intersecting), and 

(ii) any two consecutive pixels in the sequence are neighboring pixels.  A subset P of 

a raster is connected if for any two pixels p1, p2 ∈ P, there is a path between p1 and p2 

contained in P. 
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Additional definitions: 

• The neighborhood N(p0) for pixel p0 ∈ P (where P is a connected subset of a 

raster) is the set of pixels in {P \ {p0}} that neighbor p0.  Thus |N(p0)| can vary 

from 1 to 8, assuming P consists of more than one pixel. 

• For subset Z ⊂ P, define the interior boundary ∂IZ for Z in P to be the set of 

pixels p ∈ Z such that {N(p) ∩ {P \ Z}} ≠ ∅.  I.e., pixels in Z that share an edge or 

vertex with a pixel in P \ Z comprise the interior boundary for Z. 

• For subset Z ⊂ P, define the exterior boundary ∂EZ for Z in P to be the set of 

pixels p ∈ P \ Z such that {N(p) ∩ Z} ≠ ∅.  I.e., pixels in P \ Z that share an edge 

or vertex with a pixel in Z comprise the exterior boundary for Z. 

 

3.5.1. Existing Hydrologic Pixel-Level Parameters 

In Jenson & Domingue (1988), the authors describe methods for gradient 

estimation and stream network identification based solely on pixel-level calculations 

using a DEM.  First, they introduce the concept of a filled, or depressionless, DEM, 

whereby all depressions (sinks) of the DEM are identified, and all of the pixel 

elevation values from each sink are replaced with the elevation value of the lowest 

pixel immediately bordering (sharing an edge or vertex with) the sink (i.e., sinks are 
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filled to the elevation of their spill point).  See Figure 3.14 for an example showing a 

DEM before filling and after filling. 

Sink filling is a deterministic operation that eliminates all strict local minima 

from the DEM with the least manipulation of DEM values.  This operation simplifies 

the analysis of global surface flow.  In surface flow analyses, these sinks serve as 

static storage areas.  Until they overtop, such features typically do not factor into the 

spatial dynamics of traditional flow propagation models such as HEC-RAS.  Thus the 

fill operation is assumed to have little impact on global surface flow analysis.  Unless 

specifically noted, all future references to DEMs and DEM values used in this paper 

refer to the filled DEM.  The elevation for a pixel p in a filled DEM will be denoted 

E(p). 

Using the filled DEM, the following two pixel-level parameters are then 

introduced in Jenson & Domingue (1988):  flow direction and flow accumulation.  

The flow direction for a pixel p in a DEM provides an estimate for the topographic 

gradient direction at p, if we associate the gradient with the direction of maximum 

descent.  The flow accumulation for a pixel p in a DEM provides an estimate for the 

size of the catchment for p contained within the DEM.  The catchment (or watershed) 

for p is the area upstream from p from which surface waters drain through p.  More 

detailed descriptions for flow direction and flow accumulation are warranted. 

FLOW DIRECTION—This is the direction of the minimum local directional 

derivative among the eight simple local directional derivatives that can be estimated 

using a pixel’s eight neighboring cells (four adjacent, four diagonal) and the 
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difference quotient ∆E/∆x.  Suppose that p0 is the pixel of interest, and pixel p is one 

of its neighbors.  Then ∆E = E(p) – E(p0), and ∆x = 1 if p0 and p are adjacent, or ∆x = 

√2 if they are diagonal.  Logical decision rules apply in the event of a tie or if a flat 

region (such as a lake surface) is encountered, so that each pixel is assigned a single 

flow direction.  In a flat area, all flow is routed toward the spill point(s) of the flat 

area.  The resulting flow direction map, or FDR, is a raster dataset that provides a 

discrete approximation to the gradient direction field, if we associate the gradient 

with the direction of maximum descent.  Figure 3.15 shows an example DEM, and 

Figure 3.16 shows the FDR for this DEM.  The Mud Creek study area depicted in this 

series of graphics is a subset from a larger area that was actually processed, so that 

edge effects of the DEM processing can be ignored throughout the discussion. 

Using pixel-to-pixel movements indicated by the FDR, every pixel obtains a 

unique, non-increasing (in elevation) exit path, or trajectory, out of the study area.  

Exit paths will necessarily be non-increasing (in elevation) as a consequence of using 

the filled DEM, which ensures that no uphill flow directions need be specified 

because all strict local minima have been removed from the original DEM. 

FLOW ACCUMULATION—Based on the FDR, a pixel’s flow accumulation 

value is the number of pixels with exit paths that pass through the pixel.  The flow 

accumulation value is thus proportional to the size of a pixel’s upstream watershed 

(catchment) within the study area.  Pixels with large flow accumulation values occur 

at drainage channel bottoms of the DEM, generally coinciding with actual in-stream 

locations on the Earth’s surface.  Thus simple thresholding of the resulting raster flow 
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accumulation map, or FAC, can produce a reasonably accurate delineation of the 

study area drainage channel network.  To “threshold”, one identifies the set of pixels 

with FAC values greater than some threshold value specified by the user.  The set of 

pixels identified through FAC thresholding is called the synthetic stream network (or 

just stream network). 

Figure 3.17 shows the FAC derived using the FDR shown in Figure 3.16.  

Figure 3.18 shows the stream network obtained from the FAC, using a threshold of 

105 pixels.  To facilitate display, the stream network is shown as a thickened polyline 

(i.e., a set of connected straight line segments) approximating the actual pixelated 

stream network.  Also indicated in Figure 3.18 is the Mud Creek segment (shown in 

blue) from the stream network, which will be used in later examples.  For an 

examination of the effects of DEM resolution and accuracy on drainage area and 

runoff volume estimation, see Kenward et al. (2000).  DEM filling and calculation of 

the FDR and FAC can all be achieved using existing software.  In particular, the 

author used the ArcHydro extension8 (Maidment 2002) for ESRI ArcMap 9.2.  All 

additional data processing required for the proposed algorithms was coded by the 

author using MATLAB, because no existing software has these capabilities in-built. 

With the introduction of the FDR and the concept of an “exit path”, two 

additional definitions can now be described: 

• The trajectory T(p0) for pixel p0 ∈ P is the ordered set of pixels in P along the exit 

path for p0, which is uniquely determined using movements dictated by the FDR.  

                                                 
8 http://support.esri.com/index.cfm?fa=downloads.dataModels.filteredGateway&dmid=15 
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A subspan of a trajectory is called a segment, or stream segment if the trajectory is 

part of a stream network. 

• The depth h backfill watershed B(p0,h) for pixel p0 is the set of pixels p ∈ P such 

that p0 ∈ T(p) and p is such that elevation E(p) ≤ E(p0) + h, for some h > 0.  

Denote this set by B(p0,h).  Because all paths are non-increasing in elevation, 

B(p0,h) will be connected.  B(p0,h) values are used in the backfill flood algorithm 

(BFA). 

 

3.5.2. Proposed Hydrologic Pixel-Level Parameters 

Building from the work of Jenson & Domingue (1988), the author proposes 

two new pixel-level parameters related to floodplain mapping and analysis.  The first 

parameter is depth to flood (DTF), which specifies the minimum flood depth required 

to inundate a floodplain pixel with floodwater originating from the stream segment 

(or stream network) in question.  The second parameter is flood source pixel (FSP), 

which specifies the stream pixel from which floodwaters can originate that inundate 

the floodplain pixel at that minimum flood depth.  Pixel-level DTF and FSP values 

are determined computationally using the FLDPLN model, and thus are described 

only vaguely here. 

The DTF map essentially provides a replica of floodplain topography, but 

with the stream surface slope removed using hydrologic surface flow information.  

The DTF map is distinguished from the local statistical models described in Section 
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3.1.1 in that DTF values are dictated by hydrologic connectivity (as expressed in the 

DEM and FDR) rather than by using a purely statistical spatial extrapolation of 

stream elevation for detrending.  Because of this attribute, FSP and DTF information 

allows for the simulation of flood wave propagation by using progression down an 

ordered set of FSPs as a proxy for time progression.  This concept, used in 

conjunction with release volume, underlies the author’s dam breach inundation model 

that was described in Section 3.3.2. 

To compute DTF and FSP values, we introduce the floodplain algorithm as 

the basis for the FLDPLN model.  To implement the algorithm, the only requirements 

are a DEM, a list of stream pixels for which the floodplain is sought, a maximum 

flood depth value (h), and one free parameter (dh).  Modularity of the algorithm is 

demonstrated in the validation study, where three different h values are used to 

seamlessly flood three different (but connected) stream segments to different depths.  

As noted above, the FDR is also required, but this is determined from the DEM.  The 

FAC (determined from the FDR) is required only for identifying stream network 

pixels.  The maximum flood depth value h is provided by the user or can be 

determined using observed water surface elevation data (such as recorded during or 

predicted for a flood event). 

As will be described, the free parameter dh is necessary to allow for warranted 

ridge violations by floodwaters.  Ridges in the DEM can present false discontinuities 

in the DTF map if not properly addressed.  The magnitude of dh, which satisfies 

0<dh≤h, affects the model output.  If dh is too large, this can result in more and larger 
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erroneous discontinuities in the DTF map (i.e., discontinuities in excess of DEM 

discontinuity).  If dh is too small, then this increases the chance that too much 

spillover flooding will occur downstream from the stream pixels under study, which 

may not accurately reflect downstream flooding characteristics.  This can undermine 

the real-time use of the model’s output for flood extent estimation. 

 

3.6. The Backfill Flood Algorithm (BFA) 

 The first algorithm is the backfill flood algorithm (BFA).  The BFA requires 

the filled DEM, the FDR, and a set of flood source pixels X = {xj} to backfill flood.  X 

can be a stream segment or network, or it can be any set of pixels.  Each xj is assigned 

a maximum flood height hj, stored in H = {hj}.  By design, upon algorithm 

completion, we will have FSP(p) ∈ X for all pixels p in the identified backfill 

floodplain Z.  For all pjk  ∈ Z such that FSP(pjk) = xj, we will have 0 ≤ DTF(pjk) ≤ hj.  

Here is the precise specification of the BFA: 

 

1) Determine the backfill watershed Bj = B(xj,hj) for each pixel xj ∈ X. 

 

2) For each pixel pjk ∈ Bj, for all j, define DTFj(pjk) := E(pjk) – E(xj) and FSPj(pjk) := 

xj. 
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3) Define Z(X,H) := ∪Bj.  For each pixel p ∈ Z, define DTFZ(p) := min
k {DTFk(p) | p ∈ 

Bk}.  Also define FSPZ(p) := {xj ∈ X | DTFj(p) = min
k {DTFk(p) | p ∈ Bk}}.  Because 

Bk’s determined for xk’s that do not occur on a single trajectory will necessarily be 

disjoint, there can be more than one such xj satisfying the condition in the 

definition for FSPZ(p) only if those xj’s occur along a single trajectory.  In this 

case, define FSPZ(p) to be the xj that is most upstream in the trajectory. 

 

Z(X,H) is the backfill floodplain for pixel set X using corresponding maximum 

flood depths from H.  Each pixel in Z has a DTF and FSP value, determined in Step 3 

of the BFA.  If a uniform flood height h is used for all pixels in X, then denote the 

backfill floodplain by Z(X,h). 

The BFA is a deterministic computational model that provides the engine for 

the FLDPLN model.  In the FLDPLN model, X will consist of either a trajectory or a 

trajectory subspan, or X will be the interior boundary for some intermediate 

floodplain determined in the course of determining the final floodplain.  

 

3.6.1. Violating the Gradient:  The Need for Spillover Flooding 

Using a maximum flood depth of 10 m, the BFA was applied to all pixels 

along the Mud Creek stream segment in the larger Mud Creek study.  The 10-m 

backfill floodplain DTF map is depicted in Figure 3.19, for the same study area subset 

used in Figures 3.15-3.18.  Several erroneous DTF discontinuities (i.e., discontinuity 
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in excess of underlying DEM discontinuity) are visible.  Two of the most severe DTF 

discontinuities are highlighted, the top one also resulting in a notable floodplain 

underestimation.  Paralleling of tributary-specific watersheds with the main flow 

channel is generally the source of this problem. To illustrate this point, trajectories to 

Mud Creek are shown in Figure 3.19 for sample floodplain pixels on each side of the 

two featured flow divides.  The reason for the problem is diagramed in Figure 3.7.  If 

both backfill and spillover flooding are used, point Q1 apparently will be inundated by 

floodwaters originating from the upper flood source point at a lower flood depth than 

if just backfill flooding is used to inundate Q1 with floodwaters originating from the 

lower flood source point. 

DTF discontinuity problems arise due to flow divides in the FDR, which 

generally correspond to actual ridgelines in the DEM.  Ridgelines, which need not be 

greatly pronounced with respect to landscape relief, correspond to watershed 

boundaries at some watershed scale.  Flow divides present flow barriers when backfill 

flooding using the FDR.  Fortunately, a simple (though computationally intensive) 

solution exists to largely fix this problem.  Specifically, we allow for possible 

spillover flooding to occur on the portions of the backfill boundary where pixel DTF 

values are less than the maximum flood depth, and apply this procedure along with 

the BFA in an iterative algorithm.  Using 0.5-m BFA iterations and accounting for 

spillover flooding on the floodplain boundary between iterations, we obtain the 

steady-state floodplain DTF map shown in Figure 3.20.  This map was created using 

the FLDPLN model. 
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3.7. The Floodplain Algorithm (the FLDPLN Model) 

The floodplain algorithm requires the DEM, the FDR, a set of stream pixels R 

to serve as possible FSPs, and a maximum flood depth h.  As previously noted, the 

BFA provides the engine for the FLDPLN model.  The critical additional feature of 

FLDPLN is the use of spillover flooding, whereby floodwaters are allowed to breach 

ridges in the FDR whenever the flood depth necessary for this to occur is exceeded.  

The algorithm is made iterative so that spillover flooding effects are properly 

modeled at increasing flood depths.  Thus successive, nested floodplain extents are 

estimated using increasing flood depth values until the maximum flood depth h is 

reached. 

Due to its iterative design, FLDPLN requires a user-specified flood depth 

increment value dh ≤ h, which is the only free parameter required by the algorithm.  

With this iterative strategy, the magnitude of erroneous discontinuities in the final 

floodplain DTF map cannot exceed dh.  Parameter h is also user-determined and thus 

“free” in some sense, but variations in the output from the algorithm essentially can 

be caused only by the choice for dh.  For example, the floodplain determined by 

FLDPLN using maximum flood depth = h will be the identical to the floodplain 

determined using maximum flood depth = 2h after discarding all points with flood 

depth > h, if a single dh value commensurable with h (i.e., h = c·dh, for some c ∈ Z+) 

is used for both model implementations. 
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Initialize starting flood depth h0 = dh, and initialize total floodplain F = R for 

some stream segment (trajectory or trajectory subspan) R.  Also, initialize floodplain 

interior boundary X = ∂IF = R.  Let TD(R) = T(R)\R denote the set of pixels in the 

study area comprising the downstream trajectory of R, but excluding pixels in R.  

TD(R) represents the “main channel” downstream from R, and is used to reasonably 

constrain spillover flooding if R does not extend to the study area boundary.  Every 

pixel in F has two attributes, DTF and FSP.  To start, define DTF(p) := 0 and FSP(p) 

:= p for all p ∈ F (= R).  DTF provides an estimate of the minimum local flood depth 

required to inundate a particular floodplain pixel, and FSP indicates the stream pixel 

in R from which floodwaters can originate capable of inundating that floodplain pixel 

at the minimum flood depth.  Subscripts on DTF and FSP indicate values associated 

with particular intermediate floodplain evaluations, some of which must be 

temporarily defined prior to assimilation into the total floodplain F = F(R,h,dh).  DTF 

and FSP values with no subscript are associated with the total floodplain F.  By 

design, upon algorithm completion, we will have 0 ≤ DTF(p) ≤ h and FSP(p) ∈ R for 

all pixels p ∈ F. 

The following is a precise, step-by-step description of the floodplain 

algorithm.  With the exception of h, h0, and dh, lower case variables refer to 

individual pixels.  Also, FSP(·) refers to individual pixels.  Upper case variables refer 

to sets of pixels.  In addition to DTF(·), Greek letters refer to computed scalar values. 
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1) [Apply the BFA to interior boundary pixels X of F]  Determine the temporary 

backfill floodplain Z = Z(X,H), where H = h0 – DTF(X) = {h0 – DTF(x1), h0 – 

DTF(x2),…}.  Redefine Z := Z \ {Z ∩ F}. 

 

NOTES:  Due to algorithm design, backfill floodplain pixels determined in this 

step that already occur in F will produce assimilated DTF values (determined in 

Step 2) not less than the DTF value that is already assigned to them in F.  

Consequently, we can immediately exclude pixels in {Z ∩ F} from consideration 

at this point. 

 

2) [Assimilate backfill floodplain Z into F]  For all pixels p ∈ Z, define DTF and 

FSP values such that DTF(p) := DTFZ(p) + DTF(FSPZ(p)) and FSP(p) : = 

FSP(FSPZ(p)).  Redefine F := F ∪ Z. 

 

NOTES:  DTF(p) is the sum of the backfill flood depth for p determined in Step 1 

plus the previously determined flood depth for the interior boundary point of F 

that provided the source of floodwaters that inundated p using the BFA.  FSP(p) is 

the pixel in R from which floodwaters originated that inundated the interior 

boundary point of F that was identified as FSPZ(p) in Step 1. 
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3) [Identify interior and exterior boundary pixels for F]  Identify the current 

floodplain interior boundary pixels xj ∈ X = ∂IF and exterior boundary pixels yk ∈ 

Y = ∂EF \ TD(R). 

 

NOTES:  TD(R) is excluded from the exterior boundary set Y so that spillover 

flooding cannot apply directly to points in the main channel downstream from R.  

This restriction provides a reasonable, practical constraint for spillover flooding. 

 

4) [Identify exterior boundary pixels in Y where spillover flooding will occur]  For 

each yk ∈ Y, determine if there are neighboring interior boundary pixels wki ∈ X ∩ 

N(yk) such that E(yk) ≤ E(wki) + h0 – DTF(wki).  Redefine Y := {yk | {wki} ≠ ∅}.  

Define scalar values υki := E(wki) + h0 – DTF(wki) – E(yk). 

 

NOTES:  The maximum υki value will be identified in Step 5 to determine which 

of the wki provides the best option for spillover flooding.  The expression for υki 

will favor wki that provide the maximum spillover depth.  If more than one wki 

have spillover depth equal to the maximum available spillover depth h0 – 

DTF(wki) (which can occur whenever E(yk) ≤ E(wki), characterizing downhill 
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spillover; see Figure 3.5(a)), then the expression for υki will favor the wki with the 

largest elevation value, and thus the largest elevation drop between wki and yk. 

 

5) [Determine the spillover flood depth for each pixel in Y]  For each yk ∈ Y, define 

wk : = {wkg : υkg = max
i  {υki}}1 (NOTE: the subscript “1” indicates to take the 

(random) first element of this set, in case multiple wkg meet this criterion).  Define 

φk := h0 – DTF(wk) – max{0, E(yk) – E(wk)}.  φk is the spillover flood depth for yk. 

 

NOTES:  If E(yk) ≤ E(wk), then the spillover flood depth φk equals its maximum 

possible value h0 – DTF(wk) (“downhill spillover”; e.g., see Figure 3.5(a)).  

Otherwise, if E(yk) > E(wk), then the difference E(yk) – E(wk) is subtracted from h0 

– DTF(wk) to obtain the spillover flood depth because an additional flood depth of 

E(yk) – E(wk) is required for floodwaters from wk to reach yk (“uphill spillover”; 

e.g., see Figure 3.5(b)). 

 

6) [Sort Y in a suitable manner to facilitate spillover flooding]  Sort the yk so that 

they are decreasing in spillover flood depth φk.  If necessary, perform a secondary 

sort so that yk’s that have identical φk values are decreasing in elevation.  With this 

operation, spillover flooding will occur first for pixels in Y with the largest 

spillover depth, and which are higher up on the landscape for pixels in Y that have 

the same spillover depth.  This assures that spillover flooding of pixels in Y will 

occur in a logical progression that will help limit redundant processing. 
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For each yk ∈ Y: 

a. [Determine the trajectory for yk]  Determine T(yk).  Halt the growth of T(yk) if 

a pixel p ∈ T(yk) is encountered such that either (1) p ∈ F and DTF(p) ≤ h0 – 

φk = DTF(wk) + max{0, E(yk) – E(wk)} (i.e., a floodplain pixel is encountered 

that has a DTF value less than or equal to the DTF value that would be 

assigned during this spillover flooding operation), or (2) p ∈ TD(R) (i.e., a 

pixel is encountered that is in the main channel downstream from R).  If 

criterion (1) is first satisfied, then let the final pixel included in T(yk) be the 

pixel just upstream from p.  If criterion (2) is first satisfied, then let p be the 

final pixel included in T(yk).  If neither criteria is met, then use the complete 

trajectory for T(yk). 

 

NOTES:  Criterion (1) is imposed to limit redundant processing.  Criterion (2) 

occurs when the new floodwater route returns to the main channel 

downstream from R. 

 

b. [Apply the BFA to T(yk)]  Determine the temporary backfill floodplain Z = 

Z(T(yk),φk). 

 



 122

c. [Prepare Z for assimilation into F]  For all pixels p ∈ Z, redefine DTFZ(p) := 

DTFZ(p) + h0 – φk and FSPZ(p) := FSP(wk). 

 

NOTES:  DTFZ(p) is now the sum of the backfill flood depth for p determined 

in Step 6(b) plus the flood depth required to produce spillover at yk.  FSPZ(p) 

is now the pixel in R from which floodwaters originated to produce spillover 

at yk. 

 

d. [Overwrite existing floodplain pixels in F as necessary]  For all pixels p ∈ Z 

∩ F, if DTFZ(p) < DTF(p), then redefine DTF(p) := DTFZ(p) and FSP(p) := 

FSPZ(p). 

 

e. [Assimilate new floodplain pixels into F]  Redefine F : = F ∪ {Z \ {Z ∩ F}}.  

For all new floodplain pixels p ∈ {Z \ {Z ∩ F}}, define DTF(p) := DTFZ(p) 

and FSP(p) := FSPZ(p). 

 

7) [OPTIONAL STEP:  Perform spillover flooding until F converges]  Repeat 

Steps 3-6 until no new pixels are added to F. 
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NOTES:  Convergence of F is assured because either (i) the presence of 

downstream tributaries flowing into the main channel will inhibit additional 

spillover flooding (i.e., the current flood depth will be insufficient to spill over the 

ridge on the downstream side of some downstream tributary channel), or (ii) the 

study area boundary will be reached.  Because of this convergence, when Step 7 is 

used in the FLDPLN model, the output will be referred to as the steady state 

floodplain. 

 

Step 7 is optional for coarse resolution (≥ 30 m pixel size, say) DEM data.  This is 

because once floodwaters reach a pixel, the pixel is presumed to be 100% 

inundated.  For higher resolution DEM data (≤ 10 m pixel size, say), this 

assumption is increasingly likely to hold.  In addition to representing smaller 

areas, variations in sub-pixel elevation values generally will become small in 

magnitude as pixel size gets smaller.  Thus smaller pixel size reduces the 

likelihood that individual pixels will contain hidden ridgelines that inhibit 

spillover.  However, for larger pixels, this may not be the case, and the risk of 

excess, erroneous spillover flooding will increase with pixel size if Steps 3-6 are 

repeated until F converges. 

 

The possible negative effects of not using Step 7 are that (i) the floodplain extent 

may be underestimated, and (ii) the resulting floodplain DTF map may exhibit 

erroneous discontinuities in excess of dh.  However, these factors may be offset 
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by the risk of overestimating the floodplain extent when using Step 7 with coarse 

resolution DEM data.  Consequently, the user must consider the limitations of 

their data when deciding whether or not to apply Step 7. 

 

8) [Identify interior boundary pixels for F]  If h0 < h, redefine h0 := h0 + min{dh, h 

– h0}, identify the floodplain interior boundary X = ∂IF, and go back to Step 1.  

Otherwise, if h0 = h, then exit the algorithm. 

 

When computed using the same dh value, steady-state floodplains determined using 

FLDPLN have the logical property of being nested.  This is described in the 

following theorem. 

 

THEOREM 3.1:  [Steady state floodplains produced by FLDPLN are nested] Let R 

be a segment, and fix c ∈ Z+ and dh ∈ R+.  Compute steady state floodplains F1 = 

F(R, cdh, dh) and F2 = F(R, (c+1)dh, dh) using the FLDPLN model.  Define 

floodplain subset G2 := {p ∈ F2 | DTFF2(p) ≤ cdh}.  Then G2 = F1, and DTFG2(p) = 

DTFF1(p) and FSPG2(p) = FSPF1(p). 

 

PROOF:  F1 is the output from the first iteration of FLDPLN when determining F2.  

Clearly we will have F1 ⊂ G2, because assigned DTF values never increase in future 
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iterations of algorithm.  We need to establish two properties: (i) G2 ⊂ F1 (which will 

establish that G2 = F1); and (ii) DTFG2(p) = DTFF1(p) for all pixels p ∈ G2. 

(i) Due to the “steady state” design of the algorithm, all pixels q ∈ ∂eF1 will 

necessarily require a flood depth > cdh to be flooded using backfill or 

spillover flooding from pixels in ∂iF1.   

 

Define F21 := F2\F1, which is the subset of F2 not included in F1.  Suppose 

G2 ⊄ F1, so that there exists a pixel p0 ∈ F21 (i.e., p0 ∈ F2 and p0 ∉ F1) such 

that DTFF2(p0) = c0 ≤ cdh.  Let q0 ∈ ∂eF1 be the pixel on the exterior boundary 

of F1 that served as the intermediate flood source pixel for p0 during the 

calculation of F2.  Backfill and spillover flooding processes used in FLDPLN 

can never assign to a floodplain pixel a DTF value lower than the DTF value 

from the input pixel acting as the floodwater source.  Consequently, we must 

have DTFF2(q0) ≤ c0 ≤ cdh.  This contradicts the above observation that all 

pixels in ∂eF1 require a flood depth > cdh.  Therefore no such p0 can exist, 

and we have G2 ⊆ F1. 

 

(ii) From property (i), it follows that DTFF2(p) > cdh for all p ∈ F21.  Because 

neither backfill nor spillover flooding of pixels in F21 can result in DTF 
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values < cdh, it follows that no pixels in F1 (which all have DTF ≤ cdh) will 

be overwritten during the iteration with maximum flood depth (c+1)dh that 

determines F2.  Therefore DTFG2(p) = DTFF1(p) and FSPG2(p) = FSPF1(p) for 

all pixels p ∈ G2.  QED 

 

3.7.1. Sensitivity of the FLDPLN Model to Free Parameter ‘dh’ 

Here we show the effects of using different dh values in the FLDPLN model 

with two examples.  We first look at the effect on the floodplain estimated for a single 

FSP, and then on an actual flood extent estimate using a set of stream segments.  The 

first example uses units in meters, and the second example uses meters and feet 

(conversion:  1 ft = 0.3048 m). 

Figure 3.21(a)-(b) show, respectively, the floodplains determined using 

FLDPLN with (h,dh) = (5,5) and (h,dh) = (5,1), applied to a single FSP from the Mud 

Creek stream segment.  The floodplains are depicted as DTF maps.  Imagine dividing 

these floodplains into backfill and spillover areas using the cross section line through 

the FSP.  Note the similarity between the backfill areas to the north of the cross 

section, and the difference between the spillover areas to the south. 

Note the resemblance between this actual example and the conceptual PFE’s 

shown in Figure 3.13(a)-(b).  This example illustrates how the choice for dh can 

greatly affect the spillover area while exerting almost no influence on the backfill 

area.  Of course, using dh = h (as in Figure 3.21(a)) is an extreme case (recall that 

0<dh≤h).  In practice, dh typically would be made reasonably small to limit spatial 
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discontinuity in DTF values.  The next example compares flood extent estimates 

generated using FLDPLN with two relatively small values for dh. 

In late June-early July 2007, a major flood event occurred along the Verdigris 

River in southeast Kansas.  The portion of the Verdigris River that we will examine 

runs through Montgomery County, KS, south into Oklahoma.  In particular, consider 

the river reach between Independence, KS, and Coffeyville, KS, shown in Figure 

3.22.  To add context, an oil refinery on the northeast edge of Coffeyville was the site 

of a major oil spill that occurred during this flood event.  DEM data with 10-m spatial 

resolution were acquired from the National Elevation Dataset (NED, 

http://ned.usgs.gov/; Gesch et al. 2002) and used for the analysis. 

Prior to examining flood extent estimates, we call attention to the span of the 

Verdigris River on which the National Weather Service (NWS) stream gage is 

positioned (the circled area in Figure 3.22).  Note that the DEM-derived channel does 

not follow the Verdigris River in this area, but instead flows east into Big Hill Creek, 

following an actual pre-confluence fluvial connection between the Verdigris River 

and this tributary.  This connection is along the upper right edge of the circled area.  

The DEM-derived channel then rejoins with the Verdigris just north of Coffeyville, at 

the confluence between Big Hill Creek and the Verdigris River (lower right quadrant 

of the circled area).  This large channel placement discrepancy is not a processing 

error, but rather is the result of a single flow direction value redirecting the Verdigris 

River flow into the pre-confluence connection with Big Hill Creek.  Fortunately, the 

FLDPLN model is robust to such mistakes.  Because the FLDPLN model utilizes 
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hydrologic connectivity information, a complete floodwater route was identified 

through the actual Verdigris channel using a flood depth of only 1.01 ft (0.308-m).  

To illustrate this, the 2-ft floodplain generated using the DEM-derived channel is 

shown in Figures 3.22 and 3.23, though it is obscured largely by the DEM-derived 

channel where the two coincide. 

Figure 3.23 shows the study area as it appeared in an ASTER satellite image 

acquired on July 7, 2007, which was five days after flood crest in the area.  Though 

floodwaters had substantially receded by this date, most of the peak floodwater 

“footprint” is still visible in this image.  The image is shown as a false-color 

composite, using a combination of color and infrared bands that maximize the 

contrast between wet and dry areas9.  The peak floodwater surface elevation recorded 

during this flood event is shown (as a DTF value) for each of the three regularly 

monitored stream gages in the study area.  Note that the peak flood DTF value 

declines more than 3 m between the USGS gage at Independence and the NWS gage 

at Coffeyville, indicating the presence of different flow regimes between these gaging 

stations. 

During the stream network delineation phase of the DEM pre-processing, the 

Verdigris River reach between Independence and Coffeyville was partitioned into 10 

stream segments.  For each of these 10 segments, two peak flood extent estimates 

were generated using the steady-state FLDPLN model, one using dh = 1 m and one 

                                                 
9 In the ASTER image, red areas correspond with healthy vegetation.  Flood-damaged vegetation has a 
general blue-gray appearance.  Most of the healthy vegetation visible within the apparent flood extent 
corresponds with unaffected tree canopies. 
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using dh = 0.3048 m (1 ft).  The maximum flood depth for each segment was 

determined using the peak gage height values recorded during the flood.  Each 

segment harboring a gaging station was flooded to that station’s peak DTF value 

shown in Figure 3.23.  These peak DTF values were linearly interpolated to 

determine maximum DTF values for segments in between gaging stations.  Two area-

wide flood extent estimates (corresponding to dh = 1 m and dh = 1 ft) were then 

generated by taking the union of the segment-specific flood extent estimates.  The 

boundaries for these two area-wide estimates are shown in Figure 3.24. 

The two flood extent estimates are, for all practical purposes, nearly 

indistinguishable.  This outcome demonstrates the robustness (stability) of the 

FLDPLN model to moderately-sized variations in dh.  The largest discrepancy in the 

study area occurs within the city limits of Coffeyville (Figure 3.25).  A USACE 

floodwater extent estimate10 is shown as a reference, illustrating that either of the two 

FLDPLN flood extent estimates is reasonable in this area.  This example for the 

Verdigris River illustrates how output from the FLDPLN model can be used with 

stream gage data for real-time flood extent estimation, the need for which was 

described in Section 3.3.1. 

 

                                                 
10 The USACE  (USACE 2007, p.4-1) estimate was released in October 2007, months after the event.  
This estimate was created using records of high water marks and spatial interpolation.  Interestingly, 
no extent estimate has been produced for this catastrophic flood event using hydrodynamic models. 
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3.7.2. Examples Using the FLDPLN Model 

It is helpful to see some examples demonstrating the capability of the 

FLDPLN model for historic floodplain identification.  Two examples are provided in 

which higher resolution DEM data are used to determine the steady-state floodplain.  

Two other examples are provided in which lower resolution DEM data are used to 

determine the floodplain, but without employing optional Step 7.  To the author’s 

knowledge, no one has ever attempted such comprehensive, detailed floodplain 

identification and mapping for rivers of large magnitude like those considered in the 

last three examples. 

In the first example, FLDPLN was used to determine the 10-m, steady-state 

floodplain for approximately 10 km of the Mud Creek stream reach between Lake 

Dabinawa in Jefferson County, KS, almost to the point where Mud Creek enters the 

Kansas River Valley.  2-m resolution LIDAR DEM data (obtained from 

http://www.kansasgis.org/) were used to estimate the floodplain.  The FLDPLN 

model was applied using (h,dh) = (10,0.5).  The result is shown in Figure 3.26. 

In the second example, FLDPLN was used to determine the 10-m, steady-state 

floodplain for approximately 100 km of continuous stream reach beginning with the 

Big Blue River below Tuttle Creek Lake in northeast Kansas.  The Big Blue River 

empties into the Kansas River, which comprises the remainder of the examined 

stream reach.  10-m resolution DEM data from the NED were used to estimate the 

floodplain.  The FLDPLN model was applied using (h,dh) = (10,1).  The result is 

shown in Figure 3.27. 
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In the third example, FLDPLN was used to determine the 16-m floodplain for 

approximately 500 km of the Missouri River in the central U.S.  30-m resolution 

DEM data from the NED were used to estimate the floodplain.  The FLDPLN model 

was applied using (h,dh) = (16,2), without using optional Step 7.  Only the boundary 

of the resulting floodplain is shown in Figure 3.28, to more clearly demonstrate the 

ability of the FLDPLN model for historic floodplain (river valley) identification. 

In the fourth example, FLDPLN was used to determine the 25-m floodplain 

for approximately 1700 km of the Amazon River in Brazil.  90-m resolution DEM 

data from the NED were used to estimate the floodplain.  The FLDPLN model was 

applied using (h,dh) = (25,5), without using optional Step 7.  The resulting floodplain 

is shown in Figure 3.29.  In addition to being the largest capacity river in the world, 

the Amazon River also has one of the most complex floodplains due to the extremely 

low grade of the stream course and the regular occurrence of major, annual flood 

events. 

 

3.8. Validation Study 

The previous examples clearly demonstrate that the FLDPLN model can be 

used for identification of historic floodplains, examining a variety of rivers using 

different resolution elevation datasets.  The question remains regarding whether or 

not output from the model can be used for actual flood extent estimation, i.e., whether 

or not DTF values produced by the model are accurate.  The Verdigris River example 

presented earlier provided some qualitative evidence in support of this assertion, but a 
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quantitative study would be more convincing.  Toward this end, we examine a recent 

flood event that occurred in early July 2007 in extreme eastern Kansas and western 

Missouri.  This flood produced record or near-record flood depths in the study area, 

with near-crest values persisting for 2-4 days.  The flood extent (flood footprint) was 

visible in a Landsat-5 scene (which has 30-m resolution) from 7/7/07, even though 

this was 3-6 days after crest.  Computations were performed for a region larger than 

the study area, so that the study area extraction did not suffer edge effects.  30-m 

DEM data were used in the analysis, obtained on August 15, 2007, from the NED.  

Considering the 30-m resolution of the DEM, the FLDPLN model was implemented 

without using Step 7. 

 

3.8.1. Study Area 

Ignoring small-scale meanders, the study area is spanned by a 50 km segment 

of the Marais des Cygnes River, a 20 km segment of the Little Osage River, and a 60 

km segment of the Osage River.  The Osage River begins at the confluence of the 

Marais des Cygnes and the Little Osage.  The upstream boundary of the study area is 

determined by gaging station locations on the Marais des Cygnes and the Little 

Osage, and the downstream boundary is approximately 1 km west of the entry of the 

Osage River into Harry S. Truman Reservoir (see Figure 3.30).  Background imagery 

used in Figure 3.30 reflects non-flood conditions.  These data, which are shown in 

true color and have 1-m spatial resolution, are from the 2006 National Agricultural 
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Imagery Program (NAIP), and were obtained from http://www.kansasgis.org/ (for 

Kansas imagery) and http://www.msdis.missouri.edu/ (for Missouri imagery).   

Processing a region larger than the study area and using a flow accumulation 

value of 200,000 pixels, points on the Marais des Cygnes and Little Osage Rivers 

upstream from the study area were identified, and then propagated through the study 

area to provide the network of stream pixels that served as FSPs.  Again, see Figure 

3.30. 

 

3.8.2. Gage #1 (Marais des Cygnes River) 

Gaging station #1 (USGS 06916600, Trading Post, KS) is located on the 

Marais des Cygnes River at (37.2225 N, 94.6678 W).  Gage information was obtained 

from http://waterdata.usgs.gov/mo/nwis/uv?site_no=06916600.  Dr. Don Huggins 

obtained provisional gage height data from the USGS via personal correspondence in 

September 2007. 

The datum (reference elevation) for gage #1 is 230.75 m above sea level.  

Floodwater crest with respect to the mean daily gage height was 12.12 m on 7/2/07, 

indicating a water surface elevation of 242.87 m. 

The value of the 30-m filled DEM at the pixel where the gaging station is 

located is 237.69 m.  This pixel is adjacent to a stream pixel, which has elevation 

233.29 m in the filled DEM.  Thus the expected optimal floodplain determined for 

this location should have a maximum DTF value of 242.87 – 233.29 = 9.58 m. 
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3.8.3. Gage #2 (Little Osage River) 

Gaging station #2 (USGS 06917060, Horton, MO) is located on the Little 

Osage River at (37.9948 N, 94.3693 W).  Gage information and provisional gage 

height data were retrieved in September 2007 from the USGS’s website at 

http://waterdata.usgs.gov/mo/nwis/uv?site_no=06917060. 

The datum for gage #2 is 213.36 m above sea level.  Floodwater crest with 

respect to the mean daily gage height was 16.36 m on 7/1/07, indicating a water 

surface elevation 229.72 m. 

The value of the 30-m filled DEM at the pixel where the gaging station is 

located is 230.71 m.  This pixel is two pixels from the nearest stream pixel, which has 

elevation 224.67 m in the filled DEM.  Thus the expected optimal floodplain 

determined for this location should have a maximum DTF value of 229.72 – 224.67 = 

5.05 m. 

 

3.8.4. Gage #3 (Osage River) 

Gaging station #3 (USGS 06918070; Schnell City, MO) is located on the 

Osage River at (38.0559 N, 94.1454 W).  Gage information and provisional gage 

height data were retrieved in September 2007 from the USGS’s website at 

http://waterdata.usgs.gov/mo/nwis/uv?site_no=06918070. 

The datum for gage #3 is 213.36 m above sea level.  Floodwater crest with 

respect to the mean daily gage height was 14.90 m on 7/4/07, indicating a water 

surface elevation of 228.26 m. 
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The value of the 30-m filled DEM at the pixel where the gaging station is 

located is 219.24 m.  This pixel is adjacent to a stream pixel that has the same 

elevation.  Thus the expected optimal floodplain determined for this location should 

have a maximum DTF value of 228.26 – 219.24 = 9.02 m. 

 

3.8.5. Results 

Using the respective maximum flood depths described above, the FLDPLN 

model was applied to each of the three stream segments comprising the study area, 

using dh = 1 m.  The extents from these applications are shown in Figure 3.31(a) as a 

red-green-blue (RGB) three color composite image, so that areas of overlap can be 

seen in addition to the combined extent.  The union of the predicted, segment-specific 

flood extents provided an estimate for the total flood extent in the study area.  

Ignoring interior holes (potential islands in the floodwater expanse), the exterior flood 

extent boundary was identified.  This predicted flood extent is shown in Figure 

3.31(b), overlaid on Landsat-5 image collected 2-5 days after regional flood crest. 

Using the Landsat-5 image, Kevin Dobbs of KARS manually digitized the 

exterior flood extent boundary.  Mr. Dobbs has considerable experience creating 

manual digitizations of this sort, and was not shown the estimated extent from the 

FLDPLN model.  Consequently, the delineated area produced by Mr. Dobbs can be 

considered to be both reasonably accurate and objectively determined.  The manually 

delineated extent for a subset of the study area is shown in Figure 3.32(a).  The 

modeled extent for the same subset is presented in Figure 3.32(b). 
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Considering the 30-m resolution of both the Landsat-5 image and the DEM 

used in the FLDPLN model, the modeled and manually delineated extents were 

sampled to the same 30-m grid.  The resulting raster layers were used for accuracy 

assessment.  The manually delineated extent indicated that 659,170 pixels (593.25 

km2) were inundated in the study area.  Call this set MAN.  The modeled extent 

indicated that 658,737 pixels (592.86 km2) were inundated in the study area.  Call this 

set MOD.  With respect to total estimated flood area, the percent bias was computed 

for the modeled extent, given by 

 

#MOD #MAN
percent bias 100

#MAN
−

= ⋅ .   (3.1) 

 

In (3.1), |·| denotes absolute value and # is set cardinality.  A value of zero for percent 

bias occurs when the sizes of the modeled and manually delineated extents are the 

same, which suggests that the model does not demonstrate a tendency to either 

underestimate or overestimate total inundation area.  Using (3.1), the percent bias for 

the modeled extent was 0.066%, indicating that the model produced a largely 

unbiased prediction for total inundation extent in the validation study area. 

To assess the accuracy of the model prediction, the author used the equation 

for percent accuracy given by 

 

{ }
{ }

# MAN MOD
percent accuracy 100

# MAN MOD
∩

= ⋅
∪

.   (3.2) 
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Equation (3.2), which is also used in Bates & De Roo (2000), provides a simple, 

rigorous measure of model accuracy.  If there is total agreement between the model 

and the manual delineation, the percent accuracy would be 100%.  If there is no 

agreement at all (i.e., no overlap) between the model and the manual delineation, the 

percent accuracy would be 0%.  Using (3.2), the percent accuracy for the modeled 

extent was determined to be 87.2%.  For comparison, the largest percent accuracy 

achieved with any of the 1-D and 2-D hydrodynamic models tested in Bates & De 

Roo (2000) was 81.6%, in a validation study examining a major flood event occurring 

along 35 km of stream reach of the River Meuse in the Netherlands and Belgium. 

Few other studies provide a similar validation study comparing modeled and 

observed flood extents (Bates & De Roo 2000).  Another such study appears in 

Bradbrook et al. (2004), where the authors compare multiple 1-D and 2-D 

hydrodynamic model variants to estimate inundation area for a flood occurring on 4 

km of river reach for the River Thames in England.  Using an alternative, less robust 

accuracy statistic11 that includes consideration for pixels “predicted” to not be flooded 

(i.e., dry pixels; this clearly will depend on the total size of the study area), the 

authors consistently achieved accuracies ranging from 81% to 84%.  Using this same 

measure, the FLDPLN model demonstrated an accuracy of 93.2% in the validation 

study area shown in Figures 3.30-3.31. 

                                                 
11 The authors themselves acknowledge that “This statistic is not necessarily a good means of model 
validation,” and are using it simply to “maintain comparability” with Horritt and Bates (2001). 
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Finally, it should be noted using photo or image interpretation for manual 

delineation of actual flood extent is an error-prone procedure.  This observation was 

also highlighted in Bates & De Roo (2000).  In the present validation study, 

inspection of the manually delineated floodwater perimeter indicated that 10%-20% 

of this boundary abutted or passed through heavily wooded areas, which will occlude 

the actual floodwater boundary visible from above and possibly result in delineation 

errors (e.g., see the circled areas in Figure 3.32).  Consequently, even if a model’s 

output was 100% correct, percent accuracy values in the 80-90% range may be near 

the upper limit on achievable accuracy using this means of validation in many cases. 

 

3.9. Conclusions and Future Directions 

In this chapter, a new method (the FLDPLN model) for depth-dependent 

floodplain delineation was described.  Compared to traditional hydrodynamic 

modeling methods, FLDPLN has several important advantages: 

(i) The model has the utmost parametric economy, requiring DEM data and 

just two user-specified parameters (namely, h and dh) for general 

implementation. 

(ii) The model is automated, and the output (namely, DTF and FSP values) is 

deterministic up to the choice of free parameter dh. 

(iii) DTF values generated by the model can be used to provide a range of 

depth-dependent floodplain or flood extent estimates up to maximum flood 

depth h.  Thus, with suitably chosen h and dh values, output from the 
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model can be used to develop a database that can be used for rapid 

estimation of local flood extent, given at least one coordinate from the 

floodwater surface or shoreline.  Also, DTF values provide a meaningful 

index of hydrologic connectivity between floodplain locations and the main 

flow channel. 

 

The FLDPLN model was developed to address some broad user needs for 

which current methods are generally incapable or prohibitive to implement.  

Examples of such needs are historic floodplain identification and rapid flood extent 

estimation.  In other applications such as floodplain mapping for property zoning 

purposes (e.g., demarcating 100-year floodplains, i.e., areas where property 

development is constrained due to flood risk, or where the purchase of flood 

insurance is required by homeowners), FLDPLN may provide a low-cost alternative 

to hydrodynamic models if the local relationship between flood depth and flood 

frequency can be adequately estimated.  Alternatively, FLDPLN may provide 

complementary information that can aid hydrodynamic model evaluation.  For 

example, output from FLDPLN may facilitate more accurate spatial interpolation of 

the hydrodynamic model solution between cross sections.  However, FLDPLN will 

never fully replace hydrodynamic models, which can provide additional outputs 

useful for studies in areas such as geomorphology and landform evolution.  For 

example, output from hydrodynamic models also can include estimates for flow 
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velocity, discharge, and other physical parameters that are useful for simulating the 

processes of erosion and sedimentation (USACE HEC 2002, p.1-3). 

The greatest practical shortcoming of the FLDPLN model is that it is 

computationally intensive, especially when implemented in steady-state form (i.e., 

when optional Step 7 from the FLDPLN algorithm is used).  For example, 27 Mud 

Creek stream segments were processed to estimate the Mud Creek floodplain shown 

in Figure 3.20.  This effort required approximately 200 CPU hours running 

MATLAB® on a 3.0 GHz desktop computer.12  Though the author has already 

invested several hundred hours in FLDPLN code development, likely there are ways 

to increase algorithm efficiency that have not yet been considered.  Future 

developments toward this end are desirable and potentially necessary, if the FLDPLN 

model gains acceptance and the author continues to obtain funding for large area 

floodplain mapping projects.  However, due to ever-increasing desktop computing 

speeds, as well as the increasing availability of high-speed computing clusters, this 

problem is viewed as both temporary and ultimately inconsequential.  Further, CPU 

time is essentially a one-time implementation cost, because once an appropriate 

database is constructed for the user’s purposes (even if the purpose is rapid flood 

extent estimation for unknown future flood events), then no more model calculations 

need be performed. 

                                                 
12 This time would have been reduced by 50%-75% had the entire Mud Creek stream reach been 
processed all at once.  However, the author was using this dataset to test a recently developed version 
of the code that can be generally applied to large study areas without concern for memory limitations. 
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Several examples were presented to firmly establish the use of FLDPLN for 

historic floodplain identification and mapping, examining a variety of DEM 

resolutions and river sizes.  Also, two examples examining the sensitivity of the 

FLDPLN model output to different choices for dh were described, helping to 

illustrate the behavior of the model and establishing the robustness of the model as it 

might be used for real-time flood extent estimation. 

A validation study was presented to test the capability of the model for actual 

flood event estimation, which also provided assurance that the algorithm indeed 

functions as intended.  For this study, inundation area was examined from a major 

flood event along 130 km of stream reach in a forked stream system situated mostly 

in eastern Missouri.  Using just three water surface elevation values and 30-m DEM 

data, the FLDPLN model was able to predict inundation extent covering nearly 600 

km2 with 87.2% accuracy. 

Compared to the few other studies that have also attempted model validation 

in this manner, this accuracy is outstanding.  This result is even more impressive 

considering the large scope of the study area, the examination of a forked stream 

reach with many inflowing tributaries of various sizes, the general spatial complexity 

of the floodwater boundary, and the fact that the automated FLDPLN model 

prediction was based on just three floodwater surface elevation values.  That said, the 

event examined was certainly “extreme”; calculations by scientists at the USGS 

estimated the revisit time for a flood of this magnitude to exceed 1000 years at some 

locations in the study area.  Consequently, it is likely that this was a “valley full”, or 
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“wall-to-wall” flood, which can be easier to model.13  Also, the shallow landscape 

gradient across the study area (there is only a 22 m change in elevation between the 

DEM stream points at the western and eastern edges of the study area) generally 

makes this study site amenable to the uniform flow assumption underlying the 

segment-specific FLDPLN model evaluations.  All things considered, however, the 

validation study provides strong support for the validity and utility of the FLDPLN 

model. 

Similar validation studies should be undertaken to more thoroughly assess the 

validity and expose the limitations of the FLDPLN model for event-specific 

estimation of inundated area.  Such studies would be enhanced if hydrodynamic 

model predictions could be compared side-by-side with predictions from FLDPLN.  

One concern the author has regards the accuracy of FLDPLN model predictions for 

more frequent (lower depth) flood events, where topographic considerations alone 

may not be sufficient for accurately estimating floodwater spread (e.g., where friction 

and inertial forces are more likely to have a substantial influence).  If the FLDPLN 

model can be validated for a variety of flood magnitudes at a variety of locations, this 

would reduce concerns regarding the general “correctness” of the computational 

model itself, facilitating acceptance by hydrologists and adoption by private and 

public agencies concerned with floodplain mapping and flood extent estimation. 

                                                 
13 On the other hand, ground survey data in the U.S. are rarely collected beyond expanses expected for 
100- or 500-year flood events, so that necessary data are not generally readily available for 
hydrodynamic model estimation of extreme (i.e., > 500 year) flood events.  This exposes a need for a 
tool generally capable of extreme flood modeling, such as FLDPLN. 
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Appendix:  Asymptotic Consistency of Backfill Flooding with Planar Flooding 

In Section 3.2.3, it was noted that floodplain cross sections used in 

hydrodynamic models are typically drawn orthogonal to elevation contours, and thus 

roughly follow topographic gradient lines.  It was also noted (in a footnote) that 

hydrodynamic model solutions assume a constant water surface elevation along each 

cross section.  Consequently, elevation contours from a 3-dimensional floodwater 

surface estimated using a hydrodynamic model will roughly coincide (in the 

horizontal planar projection) with cross-sectional topographic gradient lines.  The 

same can be said for the “potential flood extent (PFE) for a stream segment” concept 

described in Section 3.4, which helped illustrate the objective of the FLDPLN model.  

If the distance between cross sections (which correspond to hypothetical dam 

faces in the PFE setup) is allowed to become arbitrarily small, then the limiting 

floodwater surface is comprised entirely by elevation contours that follow cross-

sectional topographic gradient lines.  Because of this, the water surface profile along 

cross sections orthogonal to a pitched flow channel like that shown in Figure 3.11(a) 

will increase in elevation toward the middle of the channel.  In other words, an 

observer on the shore looking straight across the floodwater surface would see water 

“mounding up” near the center of the channel, resulting in a ridge (or crest) of water 

running down the length of the floodwater surface.  The author is unsure whether or 

not this “crested floodwater surface” provides an accurate representation of actual 

pitched channel flow, and needs to further investigate this matter. 
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As an alternative, one can obtain a “planar floodwater surface” by specifying 

floodplain cross sections orthogonal to the flow channel instead of orthogonal to 

topographic contours.  In this case, an observer on the shore looking straight across 

the floodwater surface would be looking along a water surface contour, and thus 

would see a horizontal (uniform elevation) water surface.  This representation may be 

more realistic than the “crested floodwater surface” obtained using gradient-based 

cross sections.  Regardless, it seems likely that actual stream behavior generally will 

reflect one of these two characterizations, or something in between.  Consequently, it 

is beneficial to understand the mathematical relationship between these two 

specifications. 

Because the spillover portion of the PFE cannot be precisely defined, for 

simplicity we consider only the backfill portion of the PFE, which will be referred to 

as the backfill PFE.   Using the idealized pitched channel depicted in Figure 3.11(a), 

the geometry for the alternative backfill PFE representation (which uses a 

hypothetical dam face that is orthogonal to the channel) is shown in Figure A3.1, 

overlaid on the original backfill PFE geometry depicted in Figure 3.12.  Note the 

difference in cross section width. 

 For the pitched channel, the “planar water surface” is the simplest water 

surface to mathematically characterize.  Define the simple flood extent at flood depth 

h (SFE(h)) for the pitched channel S using the plane Lh = L + h, where L is the 

landscape plane shown in Figure 3.11(c).  The portion of Lh that lies above S defines 

the extent of SFE(h).  Figure A3.2(a) shows SFE(h) for pitched channel surface S.  
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Figure A3.2(b) shows the SFE and the PFE (with the latter evaluated for a sequence 

of points along the channel bottom) in the horizontal planar projection, so that the two 

inundation extent estimates can be directly compared. 

Define the surface pitch to be P = |∂z/∂y|/|∂z/∂x|, so that P = 1/2 for pitched 

channel S used in Figures 3.1-3.13 and Figures A3.1-A3.2.  We will show that the 

backfill PFE constructed using a sequence of points along the bottom of the pitched 

channel converges to the SFE as P → 0. 

Consider the geometry of the backfill PFE in the pitched channel shown 

Figure A3.3.  Since the only quantity of interest is areal flood extent, all quantities to 

be discussed refer to projections in the horizontal plane.  Let D be the length of the 

channel segment under study.  Assume the channel bottom points constituting stream 

segment R are uniformly spaced, and let d be the distance between consecutive 

points.  Since the geometry is symmetric about the channel bottom, derivations are 

needed only from one side of the pitched channel.  WLOG, assume d is small enough 

so that consecutive, point-specific backfill PFEs overlap.  As channel pitch P → 0 

and the point-specific backfill PFEs elongate in the y direction, this is assured to be 

the case regardless of d, so this assumption imposes no constraint on the upcoming 

asymptotic analysis. 

WLOG, assume that the denominator of P (i.e., |∂z/∂x|) remains constant, and 

that variations in P are attributed to changes in the numerator (i.e., |∂z/∂y|, the 

absolute slope of landscape plane L (see Figure 3.2(c)).  With this setup, the areal 

extent of the SFE for a given flood depth will be constant as P → 0.   Consequently, 
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we can normalize the problem geometry so that the constant half-width of the SFE is 

equal to one (see Figure A3.3).  For convenience, denote by SFE the areal extent of 

the SFE. 

Denote the areal extent of the backfill PFE by PFE(d,P), since the backfill 

PFE is dependent on both point spacing and channel pitch.  Define the error 

 

Err(d,P) := SFE – PFE(d,P).     (A3.1) 

 

Due to its construction in the pitched channel, the PFE necessarily will be 

contained in the SFE (see Figure A3.1).  Thus we will have Err(d,P) ≥ 0. 

Due to the d-periodic errors between the SFE and PFE(d,P), from the 

geometry in Figure A3.3 we can construct the following inequality: 

 

Err(d,P) ≤ 2 ⎡D/d⎤ (A1(d,P)+A2(d,P)).    (A3.2) 

 

The sum of A1 and A2 comprises the fundamental unit of error between PFE(d,P) and 

SFE.  The ⎡D/d⎤ coefficient provides an upper bound on the number of fundamental 

error units occurring on one side of the length-D channel, and the “2” coefficient 

doubles the error bound for the two sides of the channel. 

Consider the acute angle θ between the y-axis (parallel to <0,-1>) and a 

contour.  WLOG, suppose the right-hand half-plane comprising the pitched channel is 
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given by z = nx + my, where n > 0 and m ≥ 0.  Then contours on that half of the 

pitched channel are parallel to <m,-n>, and it follows that tan(θ) = m/n.  Since channel 

pitch P = |∂z/∂y|/|∂z/∂x| = m/n, we have the relationship θ = θ(P) = tan-1(P). 

From the geometry of the problem shown in Figure A3.3, we can determine 

the equation for A1.  In particular, we have s1 = dsinθ and s2 = dcosθ.  Thus we have 

 

A1(d,P) = s1s2/2 = (d2/2)sin(θ(P))cos(θ(P)).   (A3.3) 

 

Also, we can determine the equation for A2.  Using trigonometric 

relationships of similar triangles (see the dashed line triangles below A1 and A2 in 

Figure A3.3), it is easy to show that w = sin2θ.  Then the equation for A2 is given by 

 

A2(d,P) = dw = dsin2(θ(P)).     (A3.4) 

 

From equations (A3.3) and (A3.4), we obtain the following properties: 

(a) A1 → 0 as P → 0 

(b) A2 → 0 as P → 0 

 

THEOREM A3.1:  Err → 0 as P → 0. 

PROOF:  This follows from properties (a) and (b), the error bound from (A3.2), and 

the non-negativity of Err.  QED 
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Theorem A3.1 establishes that for the pitched channel, PFE(d,P) is a consistent 

estimator for SFE as P → 0. 

 

Now suppose P is fixed, but we are able to arbitrarily decrease channel bottom point 

spacing.  Then we have the following theorem: 

 

THEOREM A3.2:  Err → 2Dsin2θ as d → 0. 

PROOF:  We can specify slightly different upper and lower bounding inequalities for 

Err:  

 

2(D/d–1)(A1(d,P) + A2(d,P)) ≤ Err(d,P) ≤ 2(D/d+1)(A1(d,P) + A2(d,P)) 

⇔2(D –d)(A1(d,P)/d + A2(d,P)/d) ≤ Err(d,P) ≤ 2(D+d)(A1(d,P)/d + A2(d,P)/d) 

 

Substituting equations (A3.3) and (A3.4) for A1 and A2, respectively, we get 

 

(D –d)(dsinθcosθ + 2sin2θ) ≤ Err(d,P) ≤ (D+d)(dsinθcosθ + 2sin2θ) 

 

Letting d → 0, this inequality becomes 2Dsin2(θ(P)) ≤ Err(P) ≤ 2Dsin2(θ(P)), 

establishing the theorem.  QED 

 

With channel bottom points spaced finely enough that the cumulative A1 error is 

negligible, by Theorem A3.2, the underestimation error w between the PFE width and 



 149

the SFE width will be Err/D ≈ 2sin2θ = 2sin2(tan-1P).  Thus for P<<1, we have Err/D 

≈ 2(tan-1P)2 ≈ 2P2, indicating that the underestimation error between the PFE and the 

SFE will be small in such cases. 
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Figure 3.1.  Digital elevation model (DEM) data are shown for two different 
stream segments.  (a) High resolution (2-m) DEM data derived from aerial 
measurements using a LIght Detection And Ranging (LIDAR) instrument are 
shown in hillshade relief format.  These data cover a portion of Mud Creek below 
Lake Dabinawa, located approximately nine miles north of Lawrence, KS.  (b) 
Low resolution (90-m) DEM data derived from data collected during the Shuttle 
Radar Topography Mission (SRTM) are shown for a portion of the Amazon River 
in Brazil.  The DEM-derived main flow channel is indicated in each subplot using 
a blue line.  Though topographically distinct river valleys (i.e., historic 
floodplains) are generally visible in both plots, precise manual delineation of the 
floodplain boundary would be difficult in either case. 

(a) 

(b) 
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Figure 3.3.  The proposed FLDPLN model is based on the assumption that there are 
two distinct ways for floodwaters originating from point P to inundate point Q, 
dependent on the position of P relative to Q.  Backfill flooding (Q uphill from P) 
describes swelling processes, and spillover flooding (Q downhill from P) describes 
overland flow processes. 
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Figure 3.2.  Simple diagram of a floodplain cross section used in hydrodynamic 
modeling. 
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Figure 3.4.  Backfill flooding models floodwater swelling effects.  A shortcoming 
of backfill flooding is that it hangs up whenever a flow divide is encountered in the 
flow direction map (gradient direction field). 
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Figure 3.5.  Spillover flooding resolves the ridgeline problem of backfill flooding 
by introducing new floodwater routes.  Two types of spillover can occur, (a) 
downhill spillover and (b) uphill spillover.  Depending on the break of ridge top 
pixels, part of the potential floodwater spillover depth sometimes must be subtracted 
to allow for uphill spillover. 
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Figure 3.6.  Sometimes multiple spillover steps are necessary. 
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Figure 3.7.  Plan view of spillover and backfill flooding.  R denotes some stream 
segment for which the floodplain is being determined. 
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Figure 3.8.  Diagram of a lateral floodplain cross section. 
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Figure 3.9.  (a) Possible floodwater surface solutions obtained using a traditional 
hydrodynamic modeling approach.  (b) Possible floodwater surface solutions 
obtained using the FLDPLN model. 
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Figure 3.10.  The FLDPLN model solution exhibits the same general behavior 
along any floodplain cross section.  Each time floodwaters reach a tributary channel, 
the available spillover flood depth decays as floodwaters have to rise to breach the 
next downstream ridgeline. 
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Figure 3.11.  (a) Grayscale contour map of a pitched channel (surface S) with 
|∂z/∂x| = 1 and |∂z/∂y| = 1/2.  Along the x-axis is the local topography gradient 
(detail scale), and along the y-axis is the landscape gradient (trend scale).  Planar 
components are used to construct S = C + L.  Horizontal channel C (constructed 
from planes P1 and P2) is shown in (b), and landscape plane L is shown in (c). 

(a)

(b) 
(c)
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Figure 3.12.  Hypothetical reservoir depicting the potential backfill flood area 
realized with a flood with depth h at channel bottom point r.  A hypothetical dam 
is constructed along the sidewall gradient trajectories through r.  The gradient field 
and elevation contours for pitched channel S are shown in the background.  All 
gradient arrows indicate downhill directions. 
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Figure 3.13.  (a) Possible extents for PFEr(h), where r is a single point along the 
channel bottom of pitched channel S.  Extents are shown for four flood depths h1 < 
h2 < h3 < h4.  Subplot (b) shows alternative PFEr(h) extents, differing from (a) with 
respect to the spillover flood extent following dam removal.  Note that the backfill 
(reservoir) portion of PFEr is determined entirely by contour lines and gradient 
lines through r, and is thus identical in (a) and (b).  Suppose stream segment R is 
comprised by the channel bottom points shown in (c) and (d).  Then (c) shows 
possible extents for PFER(h), obtained by taking the minimum flood depth union 
of point-specific PFEs of the form shown in (a) for each point in R.  Subplot (d) is 
identical to (c), except that point-specific PFEs of the form shown in (b) were 
used.  Comparing (c) and (d), the process of combining multiple point-specific 
PFEs overcomes much of the difference between (a) and (b). 

(a) 

(c) 

(b)

(d)
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Figure 3.14.  A DEM subset is shown for a portion of Mud Creek in Jefferson 
County, KS.  Subplot (a) shows the original DEM acquired from 
http://www.kansasgis.org/.  The filled DEM is shown in (b).  Six depressions 
(sinks) are circled, five of which correspond to small, impounded ponds, and one 
from the high side of a ravine road overpass.  Comparing circled areas, the effects 
of sink filling can be seen.  A road cut is also highlighted, an intended 
consequence of the data processing methods used during DEM production.  
Removing obstructions over waterways in the DEM facilitates hydrologic studies 
and reduces the need for sink filling. 

road
ccuutt

(a) 

(b) 

road
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Figure 3.15.  The filled DEM is shown in hillshade relief format for a different 
Mud Creek study area.  The depicted extent is centered roughly at (39.092 N, 
95.255 W).  These DEM data, which have 2-m pixel size, are considered “high 
resolution”.  The pond required filling to reach its spill point on the upper side of 
the dam, and thus its water surface has constant elevation.  This pond will be 
referenced in Figure 3.16. 

pond



 164

 
Figure 3.16.  The flow direction map (FDR) is shown for the Mud Creek study 
area used in Figure 3.15.  Each pixel is colored according to its flow direction (see 
the legend graphic in the upper right).  The FDR provides a discrete approximation 
for the gradient direction field.  Pixel-level flow directions are somewhat noisy, 
especially in the flat areas of the floodplain.  On the uplands where there is more 
relief, it is fairly easy to identify features such as ridges and ravines by inspecting 
the general color patterns and matching these with the legend graphic.  The semi-
regular linear features visible on the right side of the image correspond with 
agricultural terraces.  Flow through the pond is generally routed toward a single 
diagonal flow trajectory in the middle of the pond, which occurs at the interface 
between the blue and red areas but cannot be seen at this zoom level.  The diagonal
trajectory empties at the spill point on the upper side of the dam.  

pond
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Figure 3.17.  The flow accumulation map (FAC) is shown for the Mud Creek 
study area used in Figure 3.15.  Pixel-level flow accumulation values are indicated 
using light to dark shades of blue.  Note that the only pixels in the scene with 
distinctly large flow accumulation values occur along the bottoms of the drainage 
channels visible in the DEM shown in Figure 3.15. 
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Figure 3.18.  Pixels with catchments (FAC values) larger than 105 pixels were 
retained to define a synthetic stream network.  The extent of this stream network is 
shown here, indicated by green and blue lines overlaid on the DEM.  The blue line 
corresponds with the Mud Creek stream segment, which is specifically highlighted 
because it will be used for demonstration of the proposed floodplain mapping 
algorithms.  Note the generally good correspondence between the stream network 
and the actual main drainage channels visible in the DEM. 
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Figure 3.19.  The 10-m backfill floodplain DTF map is shown for the Mud Creek 
study area used in Figures 3.15-3.18.  This floodplain was determined using the 
Mud Creek segment shown in Figure 3.18.  The BFA is unable to simulate the 
breaching of ridgelines (which correspond to flow divides in the FDR) by 
floodwaters.  This shortcoming can result in (potentially large) erroneous 
discontinuities in DTF values and underestimation of the floodplain.  Two severe 
discontinuities are identified above.  Example trajectories are shown for floodplain 
pixels on both sides of the highlighted flow divides.  As can be seen from these 
examples, discontinuity problems are a regular occurrence when tributary-specific 
watersheds run parallel with the main flow channel and only backfill flooding is 
used. 

Flow divides 
in the FDR 
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Figure 3.20.  The 10-m steady-state floodplain DTF map is shown for the Mud 
Creek study area used in Figure 3.15-3.19.  This floodplain was determined using 
the FLDPLN model with dh = 0.5.  Compare this floodplain estimate to the BFA 
floodplain shown in Figure 3.19.  Note that the DTF discontinuities visible in the 
BFA floodplain are no longer apparent in this map. 
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Figure 3.21.  The steady state floodplain is shown, computed for a single stream 
pixel using the FLDPLN model with (a) (h,dh) = (5,5) and (b) (h,dh) = (5,1).  
Imagine bisecting these floodplains using the cross-section line through the FSP, 
so that the backfill area is to the north and the spillover area is to the south of this 
line.  Note the difference between the spillover areas of the floodplain (i.e., 
downstream from the FSP).  The spillover area gets larger as dh gets smaller.  The 
backfill areas (upstream from the FSP) are almost identical.  This example bears 
resemblance to the two conceptual PFE’s shown in Figure 3.13(a)-(b). 

flood source pixel 

flood source pixel 

(a) 

(b) 
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Figure 3.22.  Montgomery County, KS, study area.  The towns of Independence 
and Coffeyville are labeled.  The backdrop is aerial imagery from the 2005 
National Agricultural Imagery Program (NAIP).  Three stream gages on the 
Verdigris River are shown.  The circled area is described in the text. 
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Figure 3.23.  Same as Figure 3.22, but the backdrop is now a color-infrared 
ASTER satellite image captured on July 7, 2007, five days after flood crest.  The 
peak flood “footprint” (floodwater extent) is generally visible in this image.  The 
peak flood height for each gage is indicated, transformed to a DTF value. 

DTF = 13.46 m 
(44.17 ft)

DTF = 10.7 m 
(35.11 ft) 

DTF = 10.41 m 
(34.16 ft)
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Figure 3.24.  Using peak gage height data from three gaging stations, two flood 
extents estimates were generated, one using FLDPLN with dh = 0.3048 m (1 ft) 
and one with dh = 1 m.  The boxed area contains one of the largest discrepancies 
between the two estimates, and is shown in Figure 3.25. 
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Figure 3.25.  Three peak flood extent estimates for the Coffeyville area are shown, 
along with some contextual information regarding the oil spill that occurred on 
June 30, 2007, during this flood event.  The FLDPLN (dh = 1 ft) estimate indicates 
that more of Coffeyville was inundated by floodwaters than the FLDPLN (dh = 1 
m) estimate.  Shown merely as a reference, the USACE estimate (which was 
developed using a sparse sampling of high water marks recorded during and after 
the flood event) splits the difference between the two FLDPLN estimates in the 
area where the two FLDPLN estimates differ the most. 
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Figure 3.26.  The 10-m steady-state floodplain is shown for roughly 10 km of the 
Mud Creek stream reach.  This floodplain was created using the FLDPLN model 
with (h,dh) = (10,0.5) applied to 2-m resolution LIDAR DEM data. 

Study Area Location 

KANSAS 



 175

 
Figure 3.27.  The 10-m steady-state floodplain is shown for approximately 100 
km of continuous stream reach of the Big Blue River and the Kansas River below 
Tuttle Creek Lake.  This floodplain was created using the FLDPLN model with 
(h,dh) = (10,1) applied to 10-m resolution DEM data from the NED.  Green lines 
denote Kansas county boundaries.  The hole in the floodplain near the right edge 
of the study area shows the effects of the levy in Topeka as a flood deterrent. 

KANSAS 
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Figure 3.28.  The 16-m floodplain boundary is shown for approximately 500 km 
of the Missouri River in the central U.S.  This floodplain was created using the 
FLDPLN model with (h,dh) = (16,2) applied to 30-m resolution DEM data from 
the NED.  Due to the relatively coarse resolution of the DEM data, Step 7 was not 
used in this application of FLDPLN.  Only the floodplain boundary is shown in 
this example to illustrate the utility of FLDPLN for historic floodplain 
identification.  The river valley for this part of the Missouri River is the visibly 
distinct, dark band enveloping the river course, and appears to be well delineated 
by the 16-m floodplain. 

 

Study Area
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Figure 3.29.  The 25-m floodplain boundary is shown for approximately 1700 km 
of the Amazon River in the Brazil.  This floodplain was created using the 
FLDPLN model with (h,dh) = (25,5) applied to 90-m resolution DEM data from 
the NED.  Due to the coarse resolution of the DEM data, Step 7 was not used in 
this application of FLDPLN.  According to the DEM data, there is only a 17-m 
drop in elevation of the river surface from the western edge to the eastern edge of 
the study area.  Due to this low relief, the floodplain is quite complex, especially 
on the west side of the study area. 

South America 
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Figure 3.30.  The validation study area is shown.  Background imagery (shown in 
true color) is from the 2006 NAIP image archive. 
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Figure 3.31.  (a) Composite image of the three, segment-specific flood zone extents 
(color bands coincide with RGB stream segment colors).  Each extent was generated 
using the FLDPLN model with dh = 1, using the crest mean daily gage height 
measured at each respective gaging station to set the segment-specific maximum 
flood depth values (h values).  30-m resolution DEM data from the NED provided 
the topographic data for the analysis, and consequently Step 7 from the FLDPLN 
algorithm was not used.  Subplot (b) shows a post-flood, color infrared (false color 
RGB using Landsat-5 spectral bands 4-3-2) image collected by Landsat-5, which 
also has 30-m resolution.  The exterior perimeter of the merged flood zone extent is 
shown in yellow.  The modeled flood extent had 87.2% accuracy when compared to 
a manual delineation of the extent using the Landsat-5 image.  The boxed area is 
used in Figure 3.32. 

(a) 

(b) 
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Figure 3.32.  A subset of the flooded area from the validation study is shown.  The 
manually delineated flood boundary is depicted in (a), and the boundary predicted 
using the FLDPLN model is depicted in (b).  Dark red regions in the Landsat-5 
color image correspond to forested areas, which can inhibit visual identification of 
floodwater boundaries (e.g., see the two circled areas).  Consequently, the modeled 
extent could more accurately represent the floodwater boundary in these areas than 
the manually delineated extent. 
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Figure A3.1.  Two backfill PFEs are shown for a single point at the bottom of 
pitched channel S.  The “original backfill PFE” reflects the original specification 
from Section 3.4, with the downstream reservoir boundary (i.e., the hypothetical 
dam face) following topographic gradient lines.  The dam face for the “alternate 
backfill PFE” is instead orthogonal to the flow channel.  Note that the alternate 
specification results in a wider PFE. 
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Figure A3.2.  The simple flood extent at flood depth h (SFE(h)) for pitched channel 
S is shown in (a).  Subplot (b) shows the areal extent comparison between the SFE 
and the backfill PFE at the same flood depth. 

(a) 

(b) 
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Figure A3.3.  The normalized SFE for the pitched channel is shown, with 
corresponding PFE(d,P) overlaid.  The error between the SFE and PFE(d,P) is 
periodic with the evenly spaced points along the channel bottom, and the error is 
symmetric about the channel bottom.  Consequently, the error analysis can be 
reduced to an examination of areas A1 and A2. 
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