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Abstract

Neutrino oscillation experiments rely on the knowledge of neutrino-nucleus

cross-sections. Generally, just one scattering process is used to model these

cross-sections. However, it is not sufficient to describe the cross-sections by

only one scattering process. In the region of momentum transfers Q2 �

105 MeV, there are two dominant processes, charged-current quasi-elastic scat-

tering and charged-current whole-nucleus scattering. Both of these processes

must be accounted for in the analysis.

Determining the neutrino cross-sections experimentally is difficult. In most

experiments, only the scattering angle and energy of the charged lepton in the

final state are known, although neither the recoiled target nor the energy of

the incoming neutrino are measured.

The Multi-Beam Strategy presented in this dissertation is a novel data-

based analysis tool. It can incorporate several nuclear processes in the analysis

and simultaneously reduce the model-dependence of the analysis.
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Chapter 1

Introduction and Motivation

1.1 The Standard Model

In the current era, physicists have arrived at what is called the Standard Model

of particle physics. The Standard Model takes into account three of the four

fundamental forces: the electromagnetic force, the weak force, and the strong

force. Only the fourth force, gravitation, is not a part of the Standard Model.

In the Standard Model, the forces are transmitted by gauge bosons: pho-

tons for the electromagnetic force, W and Z bosons for the weak force, and

gluons for the strong force. The Standard Model also contains Higgs bosons,

which have not yet been observed experimentally.

In addition to the gauge bosons, the Standard Model includes fermions.

The fermions are divided into quarks and leptons. Quarks interact via all the

three forces in the Standard Model and come in six “flavors”: down and up,

strange and charm, bottom and top. Leptons are divided into charged leptons

and neutrinos, and come in three families: the electron and electron neutrino,

the muon and muon neutrino, and the tau and tau neutrino. The charged

leptons have one unit of elementary charge and interact via the electromagnetic

1



force as well as the weak force. The neutrinos, on the other hand, carry no

electric charge and interact only via the weak force. And while the masses of

the charged leptons range from 511 keV for the electron to 1777 MeV for the

tau, the neutrinos are massless in the Standard Model.

1.2 Standard Model vs. Experiment

The predictions of the Standard Model have been tested in many experiments,

overall with great success: the predictions for the muon magnetic moment

anomaly, for example, agree with experimental data within just a few parts

per billion (see, e.g. Ref. [1]).

Neutrino physics, which is discussed in this dissertation, is far less accurate

than the above example: as we will see in Section 1.6, only the order of

magnitude is known for some of the values. This lack of extremely accurate

experimental data can be attributed to the fact that neutrinos interact only via

the weak interaction, which is very weak – hence the name. Due to the small

cross-sections associated with the weak interaction, there are two requirements

for a successful neutrino experiment: a large flux and a large detector volume.

Fulfilling these two requirements, however, makes it experimentally difficult to

achieve very accurate data.

Aside from experimental accuracy, physicists have been puzzled by the

largest neutrino facility in our local vicinity, the Sun. The Sun produces more

than 1038 neutrinos every second, which yields a flux of more than 1014 neu-

trinos per square-meter per second at the location of the Earth. However,
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experiments detected fewer neutrinos than predicted by the best solar mod-

els at the time (see, e.g. the discussion in Ref. [2]). This led to the theory

of neutrino oscillations, which are a sign for “physics beyond the Standard

Model”.

1.3 Neutrino Oscillations

Neutrino oscillations can explain the deficiency in the observed solar neutrino

flux as follows. On their way from the Sun to the Earth, electron neutri-

nos converted into muon or tau neutrinos. Since the detector measured only

electron neutrinos, this could explain the experimental data.

Strong evidence for the neutrino oscillation theory as an explanation for the

Solar neutrino problem came in 2002 from the Sudbury Neutrino Observatory,

SNO [3]. SNO measured both electron neutrinos from the Sun, and neutrinos

from the Sun of all families combined. It was then clearly shown that by adding

the muon and tau neutrinos, the total neutrino flux from the Sun agreed well

with the predictions from the solar models.

Among the other experiments that strongly indicated neutrino oscillations

are Super-Kamiokande [4], KamLAND [5] and K2K [6]. Refs. [3, 4, 5] and [6]

have well more than 500 citations each, indicating the great interest in this

field.
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1.4 Overview

In this dissertation, we discuss the neutrino-nucleus cross-sections, with focus

on the kinematic region of momentum transfer Q2 � 105 MeV2, our kinematic

region of interest. A good understanding of these cross-sections is essential

for the success of neutrino oscillation experiments. However, we have noticed

that the experimental groups use insufficient models to describe the neutrino-

nucleus cross-sections. Therefore, we present a data-driven method to reduce

the model-dependence of neutrino oscillation experiments. This method, called

“Multi-Beam Strategy” can greatly improve the neutrino experiments.

Our intention is to show a proof of principle for the Multi-Beam Strategy.

Doing a detailed re-evaluation of experimental data requires the knowledge of

experimental details, such as detector acceptance, and lies beyond the scope

of this dissertation.

We proceed as follows. In Sections 1.5 and 1.6, we complete the intro-

duction by presenting the theoretical framework of neutrino oscillations and

providing the current experimental status of the oscillation parameters. In

Chapter 2, we discuss the neutrino-nucleus cross-sections and the models that

are used to describe these cross-sections. Chapter 3 then provides a detailed

analysis of the kinematics of the neutrino-nucleus scattering processes. The

kinematics are a crucial element in the Multi-Beam Strategy. We present the

Multi-Beam Strategy in Chapter 4, using the models and kinematics devel-

oped in Chapters 2 and 3, respectively. After discussing the principle of the

Multi-Beam Strategy in Section 4.1, we describe how we implemented it in
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C++ code in Section 4.2. The C++ code itself can be found in the Appendix.

In Chapter 5, we present the LSND and MiniBooNE experiments, which have

a significant number of events in the kinematic region of interest and can

greatly benefit from the Multi-Beam Strategy. In Chapter 6, we then show

the proof of principle for the Multi-Beam Strategy by re-analyzing data from

the MiniBooNE experiment. Finally, Chapter 7 will contain some concluding

remarks.

1.5 Oscillation Theory

To start the discussion of the oscillation theory, let us first consider only two

families of neutrinos, the electron and muon neutrinos. Including the tau

neutrinos later on will be straightforward. For oscillations to happen, two re-

quirements have to be fulfilled: First, the neutrinos in the flavor basis (that is,

their different families when undergoing weak interactions) must be a mixture

of the neutrinos in the mass basis. We will denote the flavor eigenstates by

νe and νµ for the electron and muon neutrino, respectively, and the two mass

eigenstates by ν1 and ν2. Then we have neutrino mixing as follows, with a

mixing angle θ:


 ν1

ν2




mass

=


 cos θ sin θ

− sin θ cos θ





 νe

νµ




flavor

. (1.1)

Second, the mass eigenstates need to have different masses, in order for the

neutrino oscillations to occur. Any non-zero neutrino mass is in contradiction
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to the Standard Model, where the neutrinos have no mass, and is therefore

one sign of “physics beyond the Standard Model”.

Neutrino oscillations work as follows. A neutrino is produced in a weak in-

teraction in a flavor eigenstate. It then propagates through space as a mixture

of mass eigenstates. Since the mass eigenstates have different masses, they get

out of phase as they propagate. Finally, the neutrino is detected in a weak

interaction, therefore in its flavor eigenstate. But since the mass eigenstates

got out of phase, the detection flavor can be different from the production

flavor: a neutrino oscillation occurred.

As an example, let us start with an electron neutrino, ν = (1, 0)flavor in the

flavor basis, or ν = (cos θ,− sin θ)mass in the mass basis. Neutrinos propagate

as waves proportional to ei(Et−p·x), which simplifies to ei(Et−px) if we assume

propagation in the x-direction. Here, the energy E is related to the momentum

p by E2 − p2 = m2. Since neutrino masses turn out to be small compared to

their energies, this equation can be approximated by p = E−m2/2E. We find

for the propagating neutrino:

ν =


 cos θ ei(Et−(E−m2

1/2E)x)

− sin θ ei(Et−(E−m2
2/2E)x)




mass

= ei(Et−(E−m2
1/2E)x)


 cos θ

− sin θ ei(m2
2−m2

1)x/2E




mass

. (1.2)

Disregarding the overall phase and writing ∆m2 = m2
2−m2

1, we can transform
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back into the flavor basis:

ν =


 cos2 θ + sin2 θ ei∆m2x/2E

cos θ sin θ(1 − ei∆m2x/2E)




flavor

. (1.3)

Squaring the νµ component of the neutrino vector in Eq. (1.3) gives us the

probability that an electron neutrino oscillates into a muon neutrino:

P (νe → νµ) =
∣∣∣cos θ sin θ(1 − ei∆m2x/2E)

∣∣∣2
=

1

2
sin2 2θ

(
1 − cos

(
∆m2x

2E

))
. (1.4)

The probability that an electron neutrino stays an electron neutrino is, of

course, P (νe → νe) = 1 − P (νe → νµ).

The generalization to three neutrino flavors and masses is, as mentioned

earlier, straightforward. The mixing matrix is called Maki-Nakagawa-Sakata

matrix, or short MNS matrix [7]. Instead of only one mixing angle, we now

have three mixing angles and one complex phase. Two further complex phases

are not important for neutrino oscillations and will not be shown here. A

common parameterization of the mixing matrix, U , is (see, e.g. Ref. [8]):

U =




1 0 0

0 c23 s23

0 −s23 c23







c13 0 s13e
−iδ

0 1 0

−s13e
iδ 0 c13







c12 s12 0

−s12 c12 0

0 0 1


 , (1.5)

where c23 = cos θ23, s23 = sin θ23, and so on.
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1.6 Experimental Status

The mixing parameters introduced above have to be measured experimentally,

especially since there is no convincing theory that predicts the mixing param-

eters. Also, there are two mass squared differences to be determined (since the

third mass squared difference is just the difference between the other two). Ex-

periments use several different neutrino sources. Solar neutrinos are produced

in fusion processes in the Sun. Atmospheric neutrinos come mostly from the

decay of charged pions and kaons in cosmic ray showers. Reactor neutrinos

are produced in the radioactive decays in nuclear reactors. Finally, accelerator

neutrinos are produced when a high energy particle beam from an accelerator

gets dumped in a target, hadronizes, and the charged pions and kaons decay

to neutrinos.

Combining results from all these experiments, the currently best values

are, according to Ref. [9]:

sin2 2θ12 = 0.86+0.03
−0.04

sin2 2θ23 > 0.92

sin2 2θ13 < 0.19

∆m2
21 = (8.0 ± 0.3) 10−5 eV2

∆m2
32 = ±(1.9 to 3.0) 10−3 eV2.

Please note that these experimental values have two potential weaknesses.

First, the inital neutrino flux has to be known. The results will therefore de-
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pend on how good the models for the specific production processes are, such

as the Solar models, or the models for cosmic ray evolution. Second, the

final neutrino detection needs to be known. The number of detected neutri-

nos is directly proportional to the neutrino cross-section, thus a mistake in

the cross-sections will directly translate into a mistake in neutrino oscillation

parameters.

A good knowledge of the neutrino cross-sections, with as little model de-

pendence as possible, is therefore invaluable for neutrino experiments. As a

prerequisite for the Multi-Beam Strategy, which reduces the model depen-

dence, we review these neutrino cross-sections in the next Chapter.
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Chapter 2

Neutrino Cross-Sections

As we have argued in Section 1.6, a good understanding of neutrino cross-

sections is crucial for neutrino oscillation experiments. In this chapter, we

discuss the neutrino-nucleus cross-sections. After presenting the most gen-

eral description, we study two special processes, the charged-current quasi-

elastic scattering (CCQE) and the charged-current whole-nucleus scattering

(CCWN). We have chosen these two processes over many other models because

current experiments happen to favor them, making them central whether or

not they are credible. Moreover, the model details are not essential for the

Multi-Beam Strategy.

2.1 General Description

In this general description, we treat the scattering of neutrinos on a nuclear

target, here called T . The discussion can be easily extended to anti-neutrinos.

The reaction on the neutrino side is easy: the neutrino exchanges a W boson

and becomes a charged lepton. On the target side, however, things are not so

easy: we know that the target interacts with the W , and that the target final

10



ν l

T X

W

Figure 2.1: Feynman diagram for the general process of a neutrino ν undergoing
charged-current scattering off a target T .

state will gain one unit of electric charge. We will also assume that the target is

at rest initially, which is accurate neglecting some negligible Brownian motion.

But there are many different final states possible, so we will call the target

final state X. A Feynman diagram of the process can be seen in Fig. 2.1.

To denote the variables, let us use νµ, lµ, T µ and Xµ for the four-vectors

of the neutrino, charged lepton, target and target final state, respectively.

The four-momentum transfer is then qµ = νµ − lµ = Xµ − T µ, and Q2 =

−q2 = −qµqµ, as usual. And the invariant mass of the target final state is

mX =
√

XµXµ.

The amplitude for this process is

|M(νT → lX)| =
gw

2
√

2
[ū(l)γµ(1 − γ5)u(ν)]

gµν − qµqν

m2
W

q2 − m2
W

gw

2
√

2
〈X| Jν |T 〉 , (2.1)

where gw is the weak coupling constant, and mW the mass of the W boson.

The matrix element 〈X| Jν |T 〉 is undetermined yet. Since mW � q2, we can
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neglect terms of the order O(q2/m2
W ), and the amplitude simplifies to

|M(νT → lX)| =
GF√

2
[ū(l)γµ(1 − γ5)u(ν)] 〈X| Jµ |T 〉 . (2.2)

Here, we have used the Fermi constant, GF =
√

2g2
w/8m2

W . As usual, the

cross-section is given by

dσ =

〈|M|2〉dpsn

2λ1/2(s, m2
ν , m

2
T )(2π)3n−4

. (2.3)

Here, dpsn stands for the n-body phase-space differential, and λ is given by

λ(a, b, c) = a2 + b2 + c2 − 2ab − 2ac − 2bc. The neutrino mass is so small that

we can neglect it, and we find in the lab frame: λ1/2(s, m2
ν , m

2
T ) = 2EνmT . We

can write the phase-space differential as

dpsn =
d3pl

2El
dpsm, (2.4)

where m = n − 1 is the number of bodies in the final state X. Then, the

cross-section is

El
dσ

d3pl
=

G2
F

64π2EνmT
([ū(l)γµ(1 − γ5)u(ν)] [ū(ν)γν(1 − γ5)u(l)]×

n−1
spins 〈X| Jµ |C〉 〈X| Jν |C〉∗ dpsm(2π)3−3m

)
, (2.5)

where nspins is the number of spins of the target. At this point, it is convenient

to define the lepton tensor Lµν and the hadron tensor Wµν (see, e.g. [10]). The
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lepton tensor is

Lµν =
1

4
[ū(l)γµ(1 − γ5)u(ν)] [ū(ν)γν(1 − γ5)u(l)]

=
1

4
Tr

[
(/pl

+ ml)γ
µ(1 − γ5)/νγν(1 − γ5)

]
= 2

(
νµlν + lµνν − gµνν · l + iεµνλρνλlρ

)
, (2.6)

and the hadron tensor is given by

Wµν =
1

nspins

∑
spins

dpsm

2mT

〈X| Jµ |T 〉 〈X| Jν |T 〉∗ (2π)3−3m. (2.7)

With these definitions, we can write the cross-section as

El
dσ

d3pl
=

G2
F

8π2Eν
LµνWµν . (2.8)

The big unknown in this equation is the hadron tensor. If we have no

information about the matrix elements 〈X| Jµ |T 〉, then we can write Wµν in

terms of the six Lorentz invariants gµν , qµqν , TµTν , qµTν , Tµqν and εµνλρq
λT ρ.

Neglecting terms of order O(m2
l ), Wµν can be written in terms of only three

structure functions, W1, W2, and W3:

Wµν = −gµνW1 +
TµTν

m2
T

W2 − iεµνλρT
λqρ

2m2
T

W3. (2.9)

However, no matter what the number of structure functions is, they have

to be measured! Measurements are difficult in neutrino experiments, as will
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be shown in detail in Chapter 5. It has therefore become standard practice in

neutrino physics to use nuclear models as inputs, and then measure and adjust

maybe one or two parameters.

Many neutrino scattering processes have only one body in the target final

state, so we will have a closer look at these processes. For this case, it is

convenient to define the one-body hadron tensor W̃µν :

W̃µν =
1

nspins

∑
spins

〈X| Jµ |T 〉 〈X| Jν |T 〉∗ . (2.10)

The cross-section is then

El
dσ

d3pl

=
G2

F

8π2Eν

dps1

2mT

LµνW̃µν , (2.11)

or, after some algebra,

dσ

dq2
=

G2
F

32πE2
νm

2
T

LµνW̃µν . (2.12)

Before we apply the equations that we have just developed to specific pro-

cesses, we give an overview over the different processes in neutrino-nucleus

scattering.

2.2 Neutrino-Nucleus Scattering Processes

The most important processes are charged-current whole-nucleus scattering,

charged-current quasi-elastic scattering, one-pion production and deep inelas-
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tic scattering. CCWN and CCQE are described in Sections 2.4 and 2.3, re-

spectively. One-pion production includes all processes in which the final state

consists of the charged lepton, the recoiled nuclear target and one additional

pion. And deep inelastic scattering summarizes the processes in which the

neutrino scatters off single quarks rather than nucleons or nuclei.

The contributions to the total neutrino-nucleus cross section from these

different processes is shown in Fig. 2.2. The figure from Ref. [11] neglects,

however, the whole-nucleus scattering at low neutrino energies. Quasi-elastic

scattering provides the single largest contribution to the cross-section esti-

mated in Fig. 2.2 in the kinematic region of interest, and therefore has to be

included. One-pion production gets significant at higher neutrino energies and

momentum transfers, and should be included for analyses that are sensitive to

the higher energy events, like the measurement of the axial mass.

Here, however, we are concerned with the lower momentum transfer events

and choose to not include one-pion-production processes. In favor of this

decision, it can also be argued that the charged, or neutral, pion would decay

to a muon and νµ, or two photons, respectively, which would be detected and

disqualify this event as CCQE neutrino event. To which degree it is possible

to distinguish a one-pion production event from a CCQE event depends on

details of the experiment, and lies beyond the scope of this dissertation.

Finally, at even higher neutrino energies, deep inelastic scattering takes

over. However, the influence of DIS on the kinematic region of interest is

negligible.
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Figure 2.2: Charged-current νµ cross-sections as a function of neutrino energy, from
Ref. [11]. The cross-sections shown are for the inclusive process (Total CC), quasi-
elastic scattering (qel), one-pion production (1π) and deep inelastic scattering (DIS).

In the following, we will discuss in more detail the two processes that are

important for the kinematic region of interest, Q2 � 105 MeV2: charged-

current quasi-elastic scattering and charged-current whole-nucleus scattering.

2.3 Charged-Current Quasi-Elastic Scattering

Charged-current quasi-elastic scattering describes the scattering in which the

W boson (from the ν → l side of the reaction) interacts with a single neutron

in the nucleus. This neutron then becomes a proton and gets knocked out of

the nucleus.

This process is usually treated in the impulse approximation, meaning that

the remainder of the nucleus does not participate in the reaction, except for

providing a binding energy for that one nucleon. The impulse approximation
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is not ideal for nuclear reactions, since the nucleons in the nucleus are all

very close together and interact strongly. However, an inclusion of nucleon-

nucleon interactions inside the nucleus would make the problem much more

complicated. Therefore, we will accept the impulse approximation for this

discussion.

The model for the nuclear part that we will choose is the relativistic Fermi

gas model (RFG) [12]. This choice has two motivations: First, it is the model

chosen by the several current neutrino experiments, and we will therefore not

differ in this point of their analysis. Second, the RFG is still simple enough

not to require a whole nuclear model machinery behind the calculations. Shell

model calculations, as another possible example, would require input, such as

the exact nuclear potentials to be used, from external experts and it would

require a lot more time to get the models up and running. Since the purpose of

this dissertation is to show a proof of principle, rather than provide accurate

numerical results, it is acceptable to use the RFG, even though it is more

than 35 years old and has its limitations. Our approach (Chapter 4) has been

designed so that more detailed calculations can always be done later when the

level of experimental detail needed for these calculations is at hand.

In the initial state, the relativistic Fermi gas model assumes the nucleons to

be evenly distributed in momentum space, up to a certain Fermi momentum.

For 12C, a popular nuclear target for accelerator neutrino experiments, the

nominal Fermi momentum is pF = 220 MeV. Also, the nucleons are bound by

a binding energy of Eb = −34 MeV [13].
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For the interaction, the neutrons are now treated as free particles except

for the binding energy. To calculate the cross-section, we make use of the

formalism developed in Section 2.1. Since the initial state is a neutron, the

number of spins in Eq. (2.10) will be nspins = 2. Neutrons and protons have

been studied in electron scattering experiments, so we actually have some good

information on the matrix element 〈p| Jµ |n〉. Neglecting the pseudoscalar form

factor, the matrix element can be written as [14]

〈p| Jµ |n〉 = cos θC ū(p)Γµu(n), (2.13)

where θC is the Cabbibo angle and the vertex is given by

Γµ = γµF
1
V (q2) +

iσµνq
νξF 2

V (q2)

2mn

+ γµγ5FA(q2). (2.14)

We use this matrix element in Eq. (2.10) and the one-body hadron tensor

in Eq. (2.12) to get the differential cross section. After some algebra, we find

dσ

dq2
=

m2
nG2

F cos2 θC

8πE2
ν

(
A(q2) − B(q2)

s − u

m2
n

+ C(q2)
(s − u)2

m4
n

)
, (2.15)

where mn is the neutron mass, GF the Fermi constant, Eν the neutrino energy,

s and u the usual Mandelstam variables with (s−u) = 4Eνmn + q2 −m2
l , and

A(q2), B(q2) and C(q2) are given by

A(q2) =
m2

l − q2

4m2
n

[(
4 − q2

m2
n

)
|FA|2 −

(
4 +

q2

m2
n

)
|F 1

V |2 −
q2

m2
n

|ξF 2
V |2
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×
(

1 +
q2

4m2
n

)
− 4q2F 1

V ξF 2
V

m2
n

− m2
l

m2
n

((F 1
V + ξF 2

V )2 + |FA|2
]

,

B(q2) =
q2

m2
n

((F 1
V + ξF 2

V )FA),

C(q2) =
1

4

(
|FA|2 + |F 1

V |2 −
q2

4m2
n

|ξF 2
V |2

)
. (2.16)

The form factors F 1
V and F 2

V can be expressed in terms of the electric and

magnetic form factors of the proton and neutron (the so-called Sachs form

factors), Gp
E, Gn

E, Gp
M , and Gn

M , respectively:

F 1
V (q2) =

(
1 − q2

4m2
n

)−1 [
Gp

E(q2) − Gn
E(q2) − q2

4m2
n

(Gp
M(q2) − Gn

M(q2))

]

ξF 2
V (q2) =

(
1 − q2

4m2
n

)−1 [
Gp

M(q2) − Gn
M(q2) − Gp

E(q2) + Gn
E(q2)

]
. (2.17)

The Sachs form factors are well measured from electron scattering experiments.

We will use the parameterization of these form factors shown in Ref. [15]. The

form factors are parameterized by

G(Q2) =

∑
k=0 ak(Q

2/4m2
n)k

1 +
∑

k=1 bk(Q2/4m2
n)k

, (2.18)

where the values for ak and bk are shown in Table 2.1.

The axial form factor FA is approximated as a dipole,

FA(q2) = − gA

(1 − q2/m2
A)2

, (2.19)

with gA = 1.2720. The axial mass, mA, is treated as a free parameter and will
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Form Factor a0 a1 a2 b1 b2 b3 b4

Gp
E 1 -0.0578 11.1 13.6 33.0

Gp
M 1 0.150 11.1 19.6 7.54

Gn
E 0 1.25 1.30 -9.86 305. -758. 802

Gn
M 1 1.81 14.1 20.7 68.7

Table 2.1: Values for the parameterization of the form factors, Eq. (2.18), from
Ref. [15].

be fit to data.

Now the final state has to be considered. Since nucleons are fermions, they

have to obey the Pauli exclusion principle. This leads to what is referred to as

Pauli blocking: if the scattered nucleon has a momentum less than the Fermi

momentum, then it would be in a state that is already occupied by a nucleon,

which is forbidden according to the Pauli exclusion principle. In that case,

the reaction would simply not happen at all. Mathematically, in terms of the

energy of the scattered nucleon, E ′, this requirement is:

E ′ >
√

m2
p + p2

F . (2.20)

At this point in the model, an ad hoc Pauli blocking parameter κ is intro-

duced (see, e.g. Ref. [16]). It modifies Eq. (2.20) to

E ′ > κ
√

m2
p + p2

F . (2.21)

For κ > 1, scattered nucleons that barely made it out before will now be

blocked. There is not much theoretical motivation to the Pauli blocking pa-
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rameter other than patching up a basic model with parameters to make agree-

ment with experimental data better.

2.4 Charged-Current Whole-Nucleus Scattering

A contribution to the neutrino-nucleus cross-section that has been neglected

(or overlooked) both by many experiments as well as by Lipari et al. is the

charged-current whole-nucleus scattering (CCWN). This is the reaction where

the W converts the target nucleus into a different nucleus. In the popular case

of charged-current reactions of neutrinos on 12C, the reaction would be

ν +12 C → l− +12 N. (2.22)

If one considers only the exclusive reaction with the ground state of ni-

trogen, 12Ng.s. in the final state, then the cross-section would indeed be very

small, and neglecting it compared to CCQE would be justified.

If one considers, however, the inclusive reaction, with all excited states

of nitrogen, 12N∗, allowed in the final state, then the CCWN cross-section

is actually comparable to the CCQE cross-section, at neutrino energies of

300 MeV, for example. Cross-section results from model calculations and

data, illustrating these claims, are shown in Table 2.2.

The state-of-the-art way to calculate these reactions is with Shell Model

calculations, or calculations closely related to Shell Model calculations, such

as the Random Phase Approximation. The gist of Shell Model calculations is
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σ/cm2
Model used Ref.

νe νµ

CCWN, exlusive to 12Ng.s.

8 10−41 Continuum Random Phase Approximation [17]
RPA, one-body transitions densities,

8 10−41 6 10−41

elementary particle treatment a [18]

8 10−41 8 10−41 Form factors from experiment b [19]
9 10−41 Model-invariant, directly from data c [20]

CCWN, inclusive to 12N∗

2 10−38 Continuum Random Phase Approximation [17]
1 10−39 1 10−39 Particle-hole model [21]

CCQE

From data; scattering is mostly quasi-elastic
2 10−39

in this region
[11]

Quasi-elastic, local density approximation,
includes Pauli blocking, Fermi motion,

2 10−38 2 10−38 strong interaction renormalization; [22]
the results are within a factor of two
compared to Fermi gas models

Table 2.2: Neutrino cross-sections for neutrinos of energy 300 MeV, except for
a 250 MeV, b > 125 MeV for νe and > 150 MeV for νµ, c 100 MeV. While σ for
exclusive CCWN scattering is about two orders of magnitude below σ for CCQE, σ
for inclusive CCWN scattering is comparable to σ for CCQE.

22



that they calculate the wavefunctions of the nucleons inside the nucleus in the

different shells – much like the orbitals for electrons in an atom. A nuclear

reaction is then calculated from the overlap of the initial wavefunction and the

final wavefunction (see, e.g. Ref. [23]). Unlike the case with electrons around

atoms, the nuclear potential inside the nucleus is not known a priori: the

potential has to be found by fitting it to data.

While Shell Model calculations are state-of-the-art, there is no great ad-

vantage to get a Shell Model code up and running. First, the uncertainties

of the calculations are still too large, and different calculations do not agree.

Second, many calculations are “proprietary ”, making it difficult to judge the

accuracy and validity of the results. Finally, Shell Model calculations use an

impulse approximation that neglects interactions from the event, thus the re-

sults cannot be exact. Nevertheless, we designed the Multi-Beam Strategy

(Chapter 4) so that, in principle, contributions from Shell Model calculations

can be incorporated.

Let us return to the formalism developed in Section 2.1. Due to the sparse

amount of data, we must limit ourselves to a single structure function. Gauge

invariantly, we can write for the nuclear matrix element

〈X| Jµ |T 〉 ∝ Tµ − qµ
T · q
q2

. (2.23)

The matrix element in Eq. (2.23) depends on the size of the nucleus, thus

we include a form factor

F (q2) = ebq2

, (2.24)
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with b = r2/6, for the radius of the nucleus, r. The radius is usually approxi-

mated by r = r0A
1/3, where r0 = 1.25 fm, and A is the atomic mass number.

In the case of 12C, we nominally have r = 2.86 fm. However, we will leave r

as a free parameter to account for deviations from this approximation.

Finally, we introduce a multiplicative free parameter, A, and get

〈X| Jµ |T 〉 = AF (q2)

(
Tµ − qµ

T · q
q2

)
. (2.25)

We plug this result into Eq. (2.10) and find the one-body hadron tensor:

W̃µν = A2F (q2)2

(
Tµ − qµ

T · q
q2

) (
Tν − qν

T · q
q2

)
. (2.26)

Using this one-body hadron tensor in Eq. (2.12), we get, after some algebra:

dσ

dq2
=

G2
F

32πE2
νm

2
T

A2F 2(q2)

(
4m2

T E2
ν +

[
q2 − m2

l

] [
2EνmT + m2

T − m2
l

4

])
.

(2.27)

A plot of the differential cross-section for a 12C target for different values of

the neutrino energy is shown in Fig. 2.3.

In the next Chapter we review the kinematics of our kinematic region

of interest. This will complete the background needed for the Multi-Beam

Strategy, which follows in Chapter 4.
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Figure 2.3: CCWN differential cross-section dσ/dq2 for muon neutrinos scattering
off a 12C target as a function of Q2 for different neutrino energies: 200 MeV (red),
300 MeV (green) and 800 MeV (blue).
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Chapter 3

Kinematics

In the previous Chapter we have seen some of the processes that occur in

neutrino-nucleus scattering. It is not an easy task to experimentally distin-

guish one process from the other. One way to do this is to measure the recoiled

target, but that is experimentally very difficult in the kinematic region of in-

terest. More about the experimental difficulty of measuring the recoiled target

can be found in Section 5.5. And even if the recoiled target could be measured,

it does not necessarily point back to one specific process, as we will see shortly.

The next best option to measuring the recoil target is to have the full

kinematic information about the incoming neutrino and the outgoing charged

lepton. This case will be discussed in section 3.1. The rest of the chapter then

discusses the kinematics of the even more difficult case – the reality – in which

not even the neutrino energy is known.

3.1 Kinematics with known Eν

If the energy of the incoming neutrino were known, and we measured the

energy of the outgoing lepton and its scattering angle, we would know the
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complete kinematics on the lepton side. In particular, we could calculate the

momentum transfer qµ = νµ − lµ = (ν,q), where ν is the energy transfer.

If the reaction were elastic scattering off a target initially at rest, the case

would be easy: the recoil target four-vector would be (mT + ν,q), and its

invariant mass still has to be mT . From this, we find the well-known equation

mT =
Q2

2ν
, (3.1)

where Q2 = −q2 = −qµqµ.

The processes discussed in Chapter 2, however, are not elastic scattering

off a target initially at rest. In charged-current whole-nucleus scattering, the

target (e.g. 12C) is initially at rest, yet the recoil target (e.g. 12N∗) has a greater

mass than the target. If the mass of the recoil target is mX = mT + ε, where

mT is once again the target mass, then we find the following relationship:

ν = ε +
ε2

2mT
+

Q2

2mT
. (3.2)

Knowing ν and Q2 therefore does not uniquely determine the target mass. In

the Q2 − ν-plot, Fig. 3.1, this results in a band rather than one single line.

For charged-current quasi-elastic scattering, things are even more difficult:

not only is there a binding energy, Eb, but the nucleons can have an initial

momentum, pn. This yields the following equation to be solved:

2EnEb + E2
b + 2Enν + 2Ebν − 2pn

√
ν2 + Q2 cos ζ = Q2. (3.3)
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Figure 3.1: Q2 − ν-plot for CCWN (blue), CCQE (red) and one-pion-production
(green). The regions where CCWN and CCQE, and CCQE and one-pion-production
overlap are shown in purple and yellow, respectively.

Here, En =
√

m2
n + p2

n is the energy of the initial nucleon, and ζ is the angle

between pn and q. In the Q2 − ν plot, Fig. 3.1, this results in a large area, for

all the different values that pn can take.

The overlap of the CCWN and CCQE areas in Fig. 3.1 covers almost the

whole CCWN band in the kinematic region of interest. In the overlap region,

it is impossible to distinguish CCWN from CCQE processes based solely on

information from the lepton side. However, even if the recoil target could be

detected, it would not necessarily be possible to distinguish between CCWN

and CCQE: the main decay channel of 12N∗ is by proton emission [24]. So

whether the detected proton was knocked out in a CCQE reaction, or was a

decay proton from an excited nitrogen nucleus, cannot be determined. In fact,
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we must acknowledge that in this kinematic region, both models describe the

same physical process. This is in no way a flaw of the models, but it makes us

aware that they are just models.

Finally, we discuss the lowest lying of the other possible processes in

Fig. 3.1, the one-pion-production. Kinematically, it is given by the target

nucleus of mass mT initially at rest. The lower bound for the final state in-

variant mass is mT + mπ, where mπ is the mass of the pion. This just means

that the recoil target and the produced pion do not move with respect to one

another. This lower bound is given, similarly to Eq. 3.2, by:

ν = mπ +
m2

π

2mT
+

Q2

2mT
. (3.4)

There is no upper bound for the kinematics, but it is obvious that other

reactions will take over at higher energy transfers.

The overlap of the CCQE and one-pion-production channels in Fig. 3.1

shows that it is impossible to distinguish between these two processes just

from knowing the lepton side. However, if the target final state was measured,

it would be no problem to distinguish between a proton and a pion.

3.2 General Kinematics

In neutrino experiments, the amount of data per event is actually very small:

the direction of the neutrino beam is know, and the active ingredient in the

target is known. Besides some negligible Brownian motion, the target is ini-
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tially at rest. Then, the angle of the charged lepton with respect to the

neutrino beam and the charged lepton’s energy are measured. A priori, noth-

ing is known about the recoiled target. For now, we will just assume that its

invariant mass is mX .

Without loss of generality, we can then let the neutrino momentum be in

positive x-direction, and the scattered charged lepton move in the x−y-plane.

The four-vector equation then is




Eν

Eν

0

0




+




mT

0

0

0




=




El

pl cos θ

pl sin θ

0




+




EX

Eν − pl cos θ

−pl sin θ

0




, (3.5)

where we have already written the three-momentum of the recoil target to

fulfill the equality. With EX =
√

m2
X + (Eν − pl cos θ)2 + (pl sin θ)2, we can

then solve for the energy of the incoming neutrino:

Eν =
m2

X − m2
T + 2mT El − m2

l

2(mT − El + pl cos θ)
. (3.6)

The big unknown in this equation is mX , and we need to go back to our specific

nuclear models to determine it.
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3.3 Simplified Models

Let us first discuss the charged-current quasi-elastic scattering. For simplicity,

we will assume that the neutron that gets struck by the W is initially at rest.

If we define nµ
R = (mn, 0, 0, 0) for one nucleon at rest, with nucleon mass

mn (we neglect the small difference between proton and neutron mass), then

the initial state is of course T µ = AT nµ
R, where AT is the mass number of

the target nucleus. In a reaction with momentum transfer qµ, we then find

Xµ = AT nµ
R + qµ. So mX is given by

m2
X = XµXµ = A2

T m2
n + 2AT nR · q + q2 = m2

T + 2AT nR · q + q2. (3.7)

We also know that the scattered proton will be on-shell, so

m2
n = (nµ

R + qµ)(nRµ + qµ) = m2
n + 2nR · q + q2. (3.8)

Combining these equations, we find

mX =
√

m2
T − (AT − 1)Q2. (3.9)

An easier way to approach this problem is to just think of this process as

scattering off a free nucleon. The other A − 1 nucleons do not participate in

the reaction anyway. For this we can recycle Eq. 3.6, with the substitutions

mT → mn + Eb and mX → mn. Here, we have even taken care of the binding
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energy. The result is

Eν =
−2mnEb − E2

b + 2mnEl + 2EbEl − m2
l

2(mn + Eb − El + pl cos θ)
. (3.10)

The treatment of charged-current whole-nucleus scattering is even easier:

in the initial state, we have a nuclear target with mass mT , and in the final

state, we have the recoiled target with mass mX = mT + ε, where ε is the

energy of the respective nuclear level above the target mass. For our popular

example, 12Ng.s., ε = 17.338 MeV [25]. We can therefore find Eν from

Eν =
2mT ε + ε2 + 2mT El − m2

l

2(mT − El + pl cos θ)
. (3.11)

We note that the kinematics for CCWN differ from those for CCQE.

The different form of Eν , depending on the underlying process, is shown in

Fig. 3.2(a). We have chosen El and cos θ as the axes, since these are the quan-

tities measured in the experiment, and do not depend on the nuclear model

used. The different forms of Eν imply different forms of Q2, which are shown

in Fig. 3.2(b).

For neutrino experiments, this means the following: given a certain charged

lepton energy and angle, it is not possible to determine the energy of the neu-

trino that caused this event. It is also not possible to determine the momentum

transfer in a particular reaction. This means that neither flux nor cross-section

for any events are known. “Reconstructing” Eν and Q2, assuming that the

reaction was CCQE, does not do the CCWN events justice: not only is the
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(a) Lines of constant neutrino energy: 200 MeV (red), 350 MeV (green),
500 MeV (blue).
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(b) Lines of constant Q2: (105 MeV)2 (red), (140 MeV)2 (green),
(176 MeV)2 (blue).

Figure 3.2: cos θ-Eµ-plots for CCQE (solid lines) and CCWN (dashed).

33



cross-section different, but the reconstructed values point back to a different

neutrino flux and momentum transfer.

3.4 Detailed Models

Before we proceed, let us fill in the model details that we have neglected in

the above discussion. For the CCQE kinematics, we assumed that the nucleon

was initially at rest. However, the Fermi gas model tells us that the nucleons

have a momentum up to pF inside the nucleus. If we take this into account,

the mathematical description of the kinematics gets lengthy, and is not shown

here. The lines from Fig. 3.2(a) will now become areas, and are shown in

Fig. 3.3.

Similarly, the plots for the CCWN process shown in Fig. 3.2 show only

the transition to the ground state of the recoiled target. However, we argued

earlier that not only the ground state contributes to CCWN scattering, but

also excited states of the recoiled target. The mathematical description is easy,

since only the value of the excitation energy ε in Eq. (3.11) has to be updated.

The resulting plots are also shown in Fig. 3.3.

In this and the previous Chapter, we have seen that CCWN and CCQE

are completely different processes. The practice of many experiments to keep

one and neglect the other is therefore not justified. In the next Chapter, we

will suggest a better way to proceed.
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Figure 3.3: cos θ-Eµ-plots for CCQE (solid areas) and CCWN (dashed). Shown are
regions of constant neutrino energy: 200 MeV (red), 350 MeV (green), 500 MeV
(blue). The overlap between the 350 MeV area and 500 MeV area for CCQE is
shown in turquoise. For CCQE, pF = 110 MeV was used instead of pF = 220 MeV
to keep the figure from being too cluttered.
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Chapter 4

The Multi-Beam Strategy

In Chapters 2 and 3, we have seen how different the cross-sections and kinemat-

ics of CCWN and CCQE processes are. In order to create better experiments,

it is therefore essential to take both the CCWN and CCQE processes into ac-

count. In this Chapter we present a method that can take both processes into

account using standard technology. We call this method Multi-Beam Strategy.

The Multi-Beam Strategy also has the desirable feature of reducing model-

dependence.

After introducing the principle of the Multi-Beam Strategy, we will describe

the C++ software that we wrote for our analysis. The C++ source code itself

can be found in the Appendix. In Chapter 6, we will show our results, fitting

the models to experimental data. More precisely, we have chosen the LSND

and MiniBooNE experiments to show the proof of principle for the Multi-Beam

Strategy. Chapter 5 will provide the necessary experimental background to

help understand our analysis.

However, we urge the reader to take our results with a grain of salt: while

we know the neutrino flux and model the cross-sections, we do not have enough
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information to take care of the MiniBooNE detector acceptance. It is to be

assumed that the acceptance is greater at higher energies of the charged lepton,

but the details are unknown to us. So while our analysis and results provide a

proof of principle for the Multi-Beam Strategy, the results may not represent

the final numerical value. Finding the exact numerical results, however, could

be easily done with information known to the MiniBooNE collaboration, since

they already have all the machinery necessary to describe detector acceptance

and other experimental details.

4.1 Principle

As will be discussed in more detail in Chapter 5, there are two major experi-

mental difficulties for neutrino experiments: the inability to measure the recoil

target and the unavailability of monochromatic neutrino beams. While we do

not deal with the former here, the Multi-Beam Strategy will provide a solu-

tion for the latter problem. The primary requirement is two (or more) neutrino

beams with different neutrino energy spectra. With many accelerator-based

neutrino experiments in existence, fulfilling this requirement is not hard.

We will actually make use of the fact that the different processes have

different kinematics. To introduce the strategy, we will use the kinematics for

the simplified models of Section 3.3. We will then generalize the strategy to

the more detailed models, and use it for our analysis.

In the simplified models, the neutrino energy can be uniquely calculated

from the charged lepton energy, El, and angle, θ, provided that one knows
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whether the reaction was CCQE or CCWN. This had been done in Eqs. (3.10)

and (3.11), respectively. We will denote these neutrino energies by EQE
ν (El, θ)

and EWN
ν (El, θ), respectively. Having Eν , we can then find q2 from q2 =

m2
l − 2Eν(El − pl cos θ). We will denote these q2 values by q2

QE(El, θ) and

q2
WN(El, θ), respectively. Then, the neutrino reaction rate R that produces a

charged lepton in a small bin around El and θ is given by

RY (El, θ) =
dσQE

dq2
(El, θ)f

Y (EQE
ν (El, θ))+

dσWN

dq2
(El, θ)f

Y (EWN
ν (El, θ)), (4.1)

where f is the neutrino flux. The index Y stands for one particular neutrino

beam, with a specific neutrino energy spectrum. Of course, the same experi-

ment can be done with another neutrino beam, with a different neutrino energy

spectrum, which we will call Z. Just as above, we then get

RZ(El, θ) =
dσQE

dq2
(El, θ)f

Z(EQE
ν (El, θ))+

dσWN

dq2
(El, θ)f

Z(EWN
ν (El, θ)). (4.2)

In Eqs. (4.1) and (4.2), the neutrino fluxes fY and fZ are known, and the rates

RY and RZ are measured. We then have two equations for the two unknowns

dσQE/dq2 and dσWN/dq2. We can solve for these two cross-sections if the two

equations are linearly independent; that is, if

fY (EQE
ν )fZ(EWN

ν ) − fY (EWN
ν )fZ(EQE

ν ) �= 0. (4.3)

This condition is just the mathematical description for the requirement that
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the neutrino fluxes be different. If condition (4.3) is fulfilled, we can solve for

the unknowns:

dσQE

dq2
(El, θ) =

RY fZ(EWN
ν ) − RZfY (EWN

ν )

fY (EQE
ν )fZ(EWN

ν ) − fY (EWN
ν )fZ(EQE

ν )

dσWN

dq2
(El, θ) =

RZfY (EQE
ν ) − RY fZ(EQE

ν )

fY (EQE
ν )fZ(EWN

ν ) − fY (EWN
ν )fZ(EQE

ν )
. (4.4)

This simple result is a bit astounding: it is possible to determine the differential

cross-section, with the only model dependence being in the kinematics.

The above technique has one problem, though: since the neutrino cross-

sections are so small, there will be very few events in each (El, θ) bin, unless

the bins are large. This will affect the statistics, and finally put large un-

certainties on the cross section measurements. In order to avoid these large

statistical uncertainties, we will have to make the bins larger, or add up sev-

eral small bins. That, however, will make it impossible to directly measure

the differential cross-section as a function of momentum transfer. We have

to re-introduce some model dependence to find the cross-sections. There can

– and should – be free parameters in the models, though, that can then be

fixed by experimental data. We can parameterize the differential cross-sections

by dσQE/dq2(El, θ; αQE) and dσWN/dq2(El, θ; αWN), where αQE and αWN are

the (multi-dimensional) parameters for the CCQE and CCWN models, re-

spectively. Integrated over a range of (El, θ) values Ω, the rate is then given
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by

∫
Ω

dEldθRY,Z(El, θ) =

∫
Ω

dEldθ

[
dσQE

dq2
(El, θ; αQE)fY,Z(EQE

ν (El, θ))

+
dσWN

dq2
(El, θ; αWN)fY,Z(EWN

ν (El, θ))

]
. (4.5)

If the total number of parameters (CCQE and CCWN combined) is equal

to the number of (El, θ) ranges chosen, then the parameters can be uniquely

determined. If the number of parameters is less than the number (El, θ) ranges,

then the parameters can be determined in a best-fit way, leaving extra exper-

imental data to determine the goodness of the fit, and therefore the goodness

of the models underlying these calculations.

Thus far, we have considered the simplified models, that had one unique

kinematic expression. Now we are ready to move to the more detailed models.

While the analytic expressions for the neutrino energy as a function of El

and θ become very lengthy for the CCQE case, we can in principle write

Eν as a function of El, θ and reaction parameters βQE or βWN. For quasi-

elastic scattering, βQE will be a three-dimensional parameter, for the three

components of momentum that the initial nucleon can have. The case of

whole-nucleus scattering is easier, since βWN will be only one-dimensional, for

the excitation energy that the recoiled target will have in the final state. To

find the rate, we will then have to integrate over the reaction parameters:

∫
Ω

dEldθRY,Z(El, θ) =
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∫
Ω

dEldθ

[∫
dβQE

dσQE

dq2
(El, θ; αQE; βQE)fY,Z(EQE

ν (El, θ; βQE))

+

∫
dβWN

dσWN

dq2
(El, θ; αWN; βWN)fY,Z(EWN

ν (El, θ; βWN))

]
. (4.6)

In this equation, the differential cross-section depends on β through the q2-

dependence on β.

It should be mentioned that, since the reaction parameters are integrated

out, the number of free parameters is not increased by the reaction parameters.

The number of free parameters is therefore still determined only by the αQE

and αWN.

4.2 Implementation

In this section we present how we have implemented the Multi-Beam Strategy

in our C ++ software, the source code of which can be found in the Appendix.

The software is not optimized for ultimate speed, but that is not necessary,

since it takes only a few seconds computing time on a personal computer per

set of parameters (αQE, αWN). Even a relatively large range of parameters can

be explored this way.

As previously noted, the integrand in Eq. (4.6) becomes very lengthy, and

explicitly performing these integrals seemed like an overly hard way to pro-

ceed. We have therefore decided to perform the calculations as in an “event-

generator”: neutrinos are generated weighted by their spectrum. They un-

dergo CCQE and CCWN reactions, and produce charged leptons in the final

state. For each of these charged lepton events, the lepton four-vectors and a
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production rate are recorded. Later, these events can be binned to whichever

El, θ ranges are desired.

The spectra for the neutrino beams from the MiniBooNE experiment and

the Los Alamos neutrino beam have been parameterized based on the spectra

shown in Fig. 5.1 and Ref. [26], respectively. Flux modeling has been done

for both the νe and νµ beams. The event generator then goes through these

spectra at certain Eν intervals. The neutrino flux at each energy will then be

a multiplicative factor for the resulting events.

The next step is the nuclear reaction. This is relatively easy for the CCWN

case, since the target is assumed to be initially at rest. First, the code checks

whether there is enough energy to make the reaction happen. If the center-of-

mass energy is greater or equal than the mass of the charged lepton and mass

of the final nuclear state, then the reaction is allowed.

Boosting into the center-of-mass system makes the whole scattering process

easier to handle. Once in the center-of-mass system, it is straight-forward to

find the momentum p of the two products after the reaction:

p =

√
λ (E2

c.m., m
2
l , (mT + ε)2)

2Ec.m.

, (4.7)

where λ(a, b, c) = a2 + b2 + c2 − 2ab− 2ac− 2bc and Ec.m. is the center-of-mass

energy. Once the momentum is found, a scattering angle is assigned for the

scattered lepton. Without loss of generality, the four-vector of the scattered

lepton in the center-of-mass system is then pµ
l =

(√
m2

l + p2, p cos θ, p sin θ, 0
)
.

Several events will be created with cos θ covering the whole range from −1 to
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+1, and the differential cross-section for the reactions will be applied as

dσ

d cos θ
=

dσ

dq2

dq2

d cos θ
. (4.8)

The last step is to boost the charged lepton back into the lab frame. The

four-momentum of the charged lepton and the rate (flux multiplied by cross-

section) are recorded in a file, to be binned and sorted at a later time. This

whole process gets repeated for the different possible excitation energies for

the recoiled target.

For the CCQE process, the procedure is a little bit more difficult than

for the CCWN process, but in principle very similar. The four-vector for the

nucleon in the initial state in the lab frame is pµ
n = (En, pn cos η, pn sin η, 0).

Here, En =
√

m2
n + p2

n + Eb, taking care of the binding energy. The initial

momenta range from 0 to the Fermi momentum pF . After boosting into the

center-of-mass frame, the charged lepton momentum will be distributed over

the whole sphere: pµ
l =

(√
m2

l + p2, p cos θ, p sin θ cos φ, p sin θ sin φ
)
. After

assigning the cross-section and boosting back to the center-of-mass frame, the

code checks whether the reaction is actually allowed to happen, or whether it

is Pauli-blocked. If the reaction was allowed, then the charged lepton four-

momentum and the production rate get recorded in the file.

Binning the events is then an easy procedure. The charged lepton four-

vectors have been recorded, and are readily available to be binned into whichever

bins have been chosen. The corresponding rates then just have to be added

up.
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Before we apply the Multi-Beam Strategy to real data in Chapter 6, we

have a closer look at the neutrino experiments in the next Chapter.
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Chapter 5

Neutrino Oscillation Experiments

Current experiments in our kinematic region of interest include the LSND and

MiniBooNE experiments. Incidentally, the neutrino spectra of these two ex-

periments are such that they complement one another perfectly for the Multi-

Beam Strategy. In this Chapter, we will have a closer look at the experimental

details of LSND and MiniBooNE.

5.1 The LSND Experiment

LSND [26] stands for the Liquid Scintillator Neutrino Detector developed for

the experiment conducted at the Los Alamos National Laboratory. The ex-

periment attempted to measure the oscillation parameter θ12 and the mass

squared difference ∆m2
12 for a relatively short oscillation length.

The experimental set-up was as follows: LSND used the proton beam at

the Los Alamos Neutron Science Center, at an energy of 798 MeV. This beam

was dumped in a beam stop, creating charged pions. A magnetic field filtered

out the π− and left only the π+. The latter then decayed, either in flight or at

rest. The decay products are νµ and µ+. The muons then decay to positrons,
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ν̄µ and νe.

Thirty meters downstream, the neutrinos were detected by a detector filled

with mineral oil (12CH2) and scintillator. The reaction that was sought was

ν̄e + p → e+ + n. Since there were no ν̄e in the original neutrino beam, any

detection of ν̄e would be a sign of oscillations or other new physics.

And indeed, LSND observed 88 events consistent with a ν̄e in excess of

the expected background. In order to get this number of events from neutrino

oscillations, mass squared differences on the order of 0.2 − 10 eV2 would be

needed, in strong disagreement with the values from all other neutrino oscil-

lation experiments that we quoted in Section 1.6. This discrepancy between

the oscillation parameters that could explain the LSND results and the os-

cillation parameters from other neutrino oscillation experiments demanded a

new experiment that should confirm or reject the results seen in the LSND

experiment.

5.2 MiniBooNE Experiment

This new experiment, which is located at the Fermi National Accelerator Lab-

oratory, is called MiniBooNE [13]. MiniBooNE was designed to measure oscil-

lation parameters equivalent to LSND, so a simultaneous scaling of neutrino

energies and oscillation length was planned. Multiplying both the energy and

the oscillation length by the same factor will yield no change in the argument

of the cosine in Eq. (1.4).

For MiniBooNE, both the oscillation length and neutrino energy were in-
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Figure 5.1: MiniBooNE neutrino flux, from Ref. [27]. The νµ and νe fluxes are
shown, together with the dominant production channels.

creased, keeping E/L at about the same value that LSND claimed to measure.

In order to produce the neutrinos, the 8 GeV Fermilab Booster proton beam

was dumped on an Beryllium target. Charged pions and kaons were produced

in that process. While being focused in a horn, a magnetic field separated out

the negatively charged mesons. The positive pions and kaons decayed to νµ

and µ+, with the latter decaying to e+, νe and ν̄µ. Since these decays happen

at a forward boost, the flux of the primary νµ, which peak at around 700 MeV,

is a lot greater than that of the secondary νe and ν̄µ. This is shown in Fig. 5.1.

The neutrinos then travel 500 m downstream before they hit the detector.

The detector looks for the appearance of νe in the beam of mostly νµ. While

there are some νe in the original beam, they will be treated as background.

The neutrinos are detected via the reaction νl → l− + W+ for either lepton,
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l = e, µ. However, no measurements are taken on the target side.

The detector is a spherical tank of 800 t of mineral oil, 12CH2, divided

into an inner and an outer volume. There are photo multiplier tubes (PMTs)

on the outside of the inner volume and around the outer volume. The outer

volume just serves as a veto for any events that did not happen inside the

inner volume, such as neutrino events happening outside the inner volume,

or cosmic rays. As the charged lepton is produced and travels through the

mineral oil, it creates an electromagnetic shower. This electromagnetic shower

makes Cherenkov radiation, which is detected by the PMTs.

The experimental signatures to distinguish electrons from muons, and

therefore electron neutrinos from muon neutrinos, are shown in Fig. 5.2. Muons,

being highly penetrating, move through the tank on an essentially straight

line. The circles of Cherenkov cones intersecting the photomultiplier tubes

get smaller and smaller until they are filled. Electrons, on the other hand,

have a much shorter radiation length. Therefore the electromagnetic shower

usually starts and ends within the tank, creating only a Cherenkov circle on

the PMTs, and not a filled circle. Also, since the electrons are lighter than

the muons, they tend to have a zig-zaggy path, making the Cherenkov circle

fuzzier than the muon circle.

Backgrounds to electron signals are plentiful. The greatest background

comes from neutral pion decay. The π0 get produced, for example, in neutral

current reactions like the one shown in Fig. 5.3. They decay to two photons,

each of which starts an electromagnetic shower similar to the one started by
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Figure 5.2: Electron, muon and π0 signatures in the MiniBooNE detector, from
Ref. [13].

ν

n,p
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n,p

Figure 5.3: Neutral pion production by ∆ resonances.

an electron. The π0 → γγ signal is also shown in Fig. 5.2. If one of the

two photons gets absorbed, or goes undetected for whichever reason, only one

photon remains, and its electromagnetic shower makes it look like an electron.

Other backgrounds are from misidentified muons, neutral current νµ - electron

scattering, and dirt events that escaped the outer tank veto.
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5.3 MiniBooNE Analysis

For the analysis, the MiniBooNE collaboration assumed that the neutrino

reaction was charged-current quasi-elastic scattering (CCQE), which we dis-

cussed in Section 2.3. To describe the nuclear reactions, MiniBooNE used the

relativistic Fermi gas model, with the free parameters mA (axial mass) and κ

(Pauli-blocking parameter).

In order to fix the free parameters, the muon data was used. This is be-

cause there were many muon neutrinos in the beam, and a small neutrino

oscillation (which is the most that would be expected) would not make a sig-

nificant difference. The number of νµ events was plotted versus reconstructed

momentum transfer, Q2
rec. Then the values of the free parameters were varied

to find the best agreement (least χ2) of the data to a Monte Carlo calculation

using these parameters. The results of this fit are shown in Fig. 5.4.

The values of the Pauli-blocking parameter and axial mass were then used

to determine the expected background of electron neutrino events from the νe

contamination in the beam.

5.4 MiniBooNE Results

The results from the MiniBooNE experiment were shown and published in

2007. At first, only data for reconstructed νe energies of greater or equal than

475 MeV was supposed to be presented, since this was the energy region that

the MiniBooNE collaboration had confidence in. However, in the end, data all

the way down to 200 MeV was released. The results of νe signals as a function
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Figure 5.4: νµ events as a function of Q2 in MiniBooNE, from Ref. [16]. The inlay
shows the error ellipses for the parameters κ and mA.

of reconstructed energy are shown in Fig. 5.5.

Above 475 MeV, the data agrees very well with the prediction for no neu-

trino oscillations (with the accepted neutrino oscillation parameters, almost

no oscillations would be expected). This is in contradiction to the LSND

experiment, which had seen oscillations with these L/E parameters.

However, below 475 MeV, an excess of νe - like events has been seen.

Explaining this excess with neutrino oscillations would yield mass squared

differences much higher than the accepted values, and with ∆m2
21 explaining

the < 475 MeV data, the ≥ 475 MeV data would turn out wrong.
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Figure 5.5: MiniBooNE νe events as a function of reconstructed neutrino energy,
from Ref. [27].
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5.5 Consequences

As a consequence, many attempts to explain the MiniBooNE low energy ex-

cess have been made. One of them is the idea of the existence of additional

neutrinos, the so-called “sterile neutrinos” [28, 29, 30]. While sterile neutrinos

do not interact via the weak interaction, they take part in the neutrino mix-

ing. Therefore, e, µ, or τ neutrinos can oscillate to sterile neutrinos. “3 + 1”

models, with only one sterile neutrino, have been ruled out beforehand, and

“3 + 2” and “3 + 3” models could not explain the low energy excess either.

Other ideas include neutrinos that take short-cuts through extra dimen-

sions [31], Lorentz-violating neutrinos [32, 33], and neutrinos that decay to final

states with unparticles [34]. None of these ideas could convincingly explain

the low energy excess, though. Usually, the parameters that would explain

the MiniBooNE data would yield results in disagreement with other neutrino

oscillation experiments.

There was also an attempt to explain the excess by including a process

that had been overlooked by MiniBooNE: muon internal bremsstrahlung [35].

The MiniBooNE collaboration, however, replied that this effect would not be

sufficient to explain the low energy excess [36].

In addition there is the question whether all the backgrounds have been

correctly understood. In order to get the π0 → γγ background under control,

a new experiment has been suggested: MicroBooNE [37]. It would use the

same Fermilab booster proton beam and Beryllium target, but would use a

Liquid Argon time projection chamber (LArTPC) as detector. The LArTPC
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Figure 5.6: Distribution of the angular difference between the calculated and mea-
sured trajectory of the recoiled proton, from Ref. [38]. The shaded region is the
CCQE prediction, and the cut-off to distinguish CCQE-events from non-CCQE-
events is chosen to be 25◦.

is claimed to be able to distinguish an electron induced electromagnetic shower

from a photon induced shower. This would significantly reduce the background

for low neutrino energies, therefore making for a better experiment.

Another experimental improvement could be made by measuring the re-

coiled target in the final state. Unfortunately, this seems to be technically

unfeasible at the moment, at least within certain financial margins. The K2K

experiment in Japan [38] is similar to MiniBooNE. K2K operates at somewhat

higher neutrino energies, and uses 16O as a target, instead of 12C. Higher en-

ergies make it naturally easier to measure the recoil target, but even K2K’s

results, shown in Fig. 5.6, are not convincing. At even lower energies, the

results will be even less significant.
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Yet another improvement could be achieved if a monochromatic neutrino

source was used: fixing the neutrino energy at a certain value would allow

one to use the neutrino energy as an input for the analysis. However, in the

current experimental setup, with a continuous neutrino spectrum, the neutrino

energy has to be reconstructed from the other data, making it an output.

Unfortunately, monochromatic neutrino beams are not readily available, at

least not in the energy region at hand. One source of monochromatic electron

(anti)neutrinos are nuclear reactions with electron (positron) capture. These

are responsible, for example, for the 7Be and pep lines in the solar neutrino

spectrum. However, the energy for neutrinos like these is limited to a few MeV.

A source of monochromatic muon neutrinos is the decay of monochromatic

charged pions. The decay of pions at rest actually provided the 30 MeV

neutrino line for the LSND experiment. To achieve higher neutrino energies,

the pions would have to be boosted. While the charged pion lifetime should be

long enough to allow a beam of charged pions to pass through a Wien velocity

filter, for example, and filter out a certain pion energy from a pion energy

spectrum, this filtering would greatly reduce the neutrino flux.

Finally, we have argued in Chapters 2 and 3 that both CCWN and CCQE

processes ought to be taken into account. However, the MiniBooNE collab-

oration has neglected the charged-current whole-nucleus scattering. This is

therefore an excellent opportunity to apply the Multi-Beam Strategy that we

developed in Chapter 4. Our analysis and results are presented in the next

Chapter.
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Chapter 6

Analysis and Results

Here we re-analyze the MiniBooNE data with the computer code described in

Section 4.2 and shown in the Appendix. In order to apply the Multi-Beam

Strategy, we need data from a second neutrino beam. The spectrum from

the neutrino beam at Los Alamos National Laboratory, which was used for

the LSND experiment, is ideally suited to complement the spectrum from the

Fermilab Booster beam, which was used for MiniBooNE.

In fact, we could just use the data taken by the LSND experiment and cor-

rect for the differences between the LSND and MiniBooNE detectors. However,

there are two problems with this approach. First, the LSND collaboration has

not published data that is binned such that it can be readily used for our anal-

ysis [26]. Second, correcting for the differences between the detectors would

require detailed information about the detectors, and lies beyond the task of

providing a proof of principle.

Therefore, we will use projected data in our analysis, assuming that the

MiniBooNE detector took data in the Los Alamos neutrino beam. We will

refer to this as “LosAlaBooNE”.
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We would also like to remind the reader of the limitations of our analysis

that we discussed at the beginning of Chapter 4. Since information about

detector acceptance is something only available to collaboration members, the

results presented in this Chapter may not be the final numerical results. How-

ever, the proof of principle can be beautifully shown, and including detailed

detector information in this analysis at a later time will just be a trivial com-

plication.

6.1 CCQE only

The MiniBooNE data that we fit is the Q2-data for muon neutrinos, shown in

Fig. 5.4. This is the data chosen by the MiniBooNE collaboration, and has

the advantage that there are plenty of events available, making the statistical

errors minimal. The MiniBooNE collaboration has chosen this data to fit the

axial mass mA and the Pauli-blocking parameter κ. The results of this fit are

shown in the inlay in Fig. 5.4. In addition to these two parameters, we also

have one overall normalization α for the CCQE processes as a free parameter.

This is necessary, to compensate for the lack of information about the detector.

The Q2 in the above data is the “reconstructed Q2”, assuming that the

underlying reaction was CCQE with the initial nucleon being at rest. Knowing

the charged lepton energy and scattering angle, this can be easily calculated

from Q2 = 2Eν(El − pl cos θ) − m2
l , with the reconstructed neutrino energy

from Eq. (3.10). We find the reconstructed momentum transfer when we bin

our simulation data, being well aware that this has little to do with the real
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Q2 in the reaction.

First, we re-fit the MiniBooNE data with CCQE only. For each pair of

mA and κ values, we determine α to minimize χ2. If we denote the Mini-

BooNE data vector by d, and our charged-current quasi-elastic simulation by

qe(mA, κ), then χ2 is

χ2 = (α qe(mA, κ) − d).w.(α qe(mA, κ) − d), (6.1)

where w is the weight-matrix, w = diag(1/σ2
1, 1/σ

2
2, . . .), and the σi are the

uncertainties for the ith data-point. Minimizing χ2 leads to

α =
qe(mA, κ).w.d

qe(mA, κ).w.qe(mA, κ)
. (6.2)

Using this value of α, we then find the χ2 for the given parameters mA and

κ. We show our results for χ2/dof in Fig. 6.1, where the number of degrees of

freedom is 32 (the number of data points) minus the number of free parameters,

3. The best fit was found for mA = 1850 MeV and κ = 1.038, with χ2
min/dof =

0.1094.

The very low values of χ2/dof need to be discussed. They could indicate

that the MiniBooNE collaboration has significantly over-estimated their un-

certainties, but we want to give them the benefit of the doubt, and assume

that the uncertainties are indeed correct. However, we are unable to tell to

which degree the uncertainties are correlated. The correlated uncertainties

would then have to be treated as such, and the overall χ2/dof would turn out
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Figure 6.1: χ2 contour plot for mA and κ. The contour lines are χ2
min/2 apart from

one another.

greater than found in our analysis.

The values found for mA and κ differ significantly from the MiniBooNE

analysis, which found mA = 1230 MeV and κ = 1.019. Even though our result

for κ differs by only 2% from the MiniBooNE result, this difference has to

be considered significant, because the results are very sensitive to even small

variations of κ, as can be seen in Fig. 6.1. The discrepancy in mA and κ

exists even though the same model has been used for the MiniBooNE analysis

and our analysis. Assuming that the MiniBooNE analysis has been performed

correctly, we have to attribute this discrepancy to our lack of information of

detector details. In particular, the different acceptance of charged leptons for

different energies can explain the difference between our and MiniBooNE’s

results: it is reasonable to assume that the acceptance is greater at greater
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lepton energies, producing less events at lower energies and more events at

higher energies. This means that MiniBooNE will detect less events at lower

Q2 and more events at higher Q2 than our simulation would predict. In order

to make up for this, we need to increase the Pauli blocking and the axial mass

in our simulation, which is exactly the trend that we see.

6.2 CCQE and CCWN combined

Now let us add the charged-current whole-nucleus scattering to the analysis.

This also introduces two new parameters. A2 acts as an overall factor for

CCWN, and b is related to the radius-squared of the nucleus, as shown in

Section 2.4. This brings the total number of parameters to 5, and dof =

32 − 5 = 27. χ2 is now

χ2 = (α qe + A2 wn − d).w.(α qe + A2 wn − d), (6.3)

where wn stands for the CCWN simulation vector, and A2 has been pulled out

of the CCWN cross-section, since it is a linear variable and it is more conve-

nient to handle it this way. Also, the parameter dependence of the simulation

vectors is implied.

We can minimize χ2 with respect to α and A2:

∂χ2

∂α
= 0 =

∂χ2

∂A2
, (6.4)
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and then solve for the best-fit values of α and A2:

α =
qe.w.d wn.w.wn − qe.w.wn wn.w.d

qe.w.qe wn.w.wn − qe.w.wn wn.w.qe

A2 =
qe.w.qe wn.w.d − qe.w.d wn.w.qe

qe.w.qe wn.w.wn − qe.w.wn wn.w.qe
. (6.5)

This leaves the three parameters mA, κ and b to be fit in a parameter

search. The least χ2 was found for mA = 1826 MeV, κ = 1.0407 and b =

2.30 10−5 MeV−2. For these values, χ2
min/dof = 0.1031, slightly better than

without the CCWN contribution.

When we look at the Q2-dependence of the CCWN contribution, we see

that the slight improvement in χ2
min/dof is actually a satisfactory result: com-

pared to the CCQE contribution, the CCWN contribution is only numerically

significant in the first two data bins. And since these two data bins have large

uncertainties, we did not expect a huge improvement in χ2
min/dof by including

CCWN.

The dependence of χ2 on each of the parameters mA, κ, and b, with the

other two being fixed, is shown in Fig. 6.2. While the plots for mA and

κ, in Figs. 6.2(a) and 6.2(b), respectively, look as one might have expected,

the dependence of χ2 on b, as shown in Fig. 6.2(c), is relatively small. This

behavior is directly related to the relatively small improvement that we gained

by including CCWN. χ2 is already good without charged-current whole-nucleus

scattering, and the worst possible χ2 that could be obtained by varying b is

the χ2 with CCQE only.
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Figure 6.2: χ2 plots for mA, κ and b, while keeping the other two parameters fixed.
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One combination of parameters that we find especially interesting are A2

and κ. To show the A2 − κ-plot, we keep mA and b fixed at their best-

fit values, and adjust α for the least χ2 at each A2 − κ-point. Ideally, we

would also adjust mA and b to yield the least χ2, but that would greatly

increase the computing time, while providing only limited additional insight.

The resulting A2 − κ-plot is shown in Fig. 6.3. The elongated error ellipses

illustrate that there is a parameter degeneracy between A2 and κ: increasing

the Pauli-blocking parameter κ, and simultaneously increasing the CCWN

factor yields little change in χ2. This behavior also makes sense when looking

at what the changes in these parameters mean. Increasing κ makes it harder

for processes to happen when the final state nucleon has little momentum,

which then implies that processes at low Q2 are suppressed. CCWN, on the

other hand, is dominant at low Q2. Therefore, increasing the contribution of

CCWN makes up for the events that were lost by increasing the Pauli-blocking

parameter.

6.3 Multi-Beam Strategy

In order to resolve the above mentioned parameter degeneracy, we will use

the Multi-Beam Strategy. To “create” the LosAlaBooNE data set, we use the

best-fit values from the fit to the MiniBooNE data and run them with the Los

Alamos neutrino spectrum. The error bars of the LosAlaBooNE data have

been assumed to be equal to the square root of the value of the data points.

Using the same procedure as outlined in the previous section, we find the A2-κ
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Figure 6.3: χ2 contour plot for A2 and κ for MiniBooNE. The contour lines are
χ2

min/2 apart from one another.

– χ2-plot, Fig. 6.4.

This error ellipse shows us that LosAlaBooNE is indeed a perfect com-

panion to MiniBooNE: the error ellipses of these two experiments are almost

perpendicular to one another, allowing us to resolve the parameter degeneracy.

A combined plot, with added χ2 values, illustrates this and is shown in Fig. 6.5.

By fixing free parameters to experimental values, we also effectively reduce the

dependence on the particular models that are involved in the analysis.

6.4 MiniBooNE νe excess

Having determined the model parameters with the Multi-Beam Strategy, we

now use these model parameters and re-analyze the MiniBooNE neutrino os-

64



0 2 4 6 8 10
1.03

1.035

1.04

1.045

1.05

A2

Κ

Figure 6.4: χ2 contour plot for A2 and κ for LosAlaBooNE. The contour lines are
χ2

min/2 apart from one another.
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Figure 6.5: χ2 contour plot for A2 and κ. The colored areas show the combined χ2,
and the black contour lines are from the individual plots.
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cillation data. To do so, the software is set to compute electron neutrinos, with

the MiniBooNE electron neutrino flux. We bin the resulting data in recon-

structed neutrino energy bins, so that we can compare it to the MiniBooNE

results.

Unfortunately, we again face the different detector acceptance at different

charged lepton energies. To take this into account, we proceed as follows: We

first calculate our predictions for the electron neutrino events in the CCQE

only case, with the parameters determined in Section 6.1. From these, we

then determine scaling factors for every neutrino energy bin to match the

MiniBooNE data. Then, we redo the calculation with CCQE and CCWN

combined, with the parameters that we determined in Section 6.2. Once we

have this, we apply the scaling factors that we had just determined. In Fig. 5.5,

the new results would be barely distinguishable from the original graph: the

data in the lowest energy bin is less than 10% greater than without including

CCWN, and the difference in the other bins is smaller yet. We repeat this

procedure using values for A and κ that are one standard deviation from

the best fit, while maximizing A. One standard deviation is still perfectly

reasonable – however, only a LosAlaBooNE experiment could tell. The results

of this calculation are shown in Fig. 6.6.

We see that neither of the above calculations is able to explain the Mini-

BooNE low-energy νe excess. That rules CCWN out as a possible explanation

for the MiniBooNE excess. While it is still possible that other processes or a

misunderstanding of the detector caused the excess, this result brings us closer
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Figure 6.6: MiniBooNE νe events as a function of reconstructed neutrino energy;
the results when including CCWN are shown as dashed lines.
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to claiming that MiniBooNE has actually observed a signal of new physics be-

yond the standard neutrino oscillation model.

The main reason that the inclusion of CCWN cannot explain the Mini-

BooNE low energy excess is that the electron neutrino flux is small to begin

with, and that electron neutrinos are responsible for only a relatively small

fraction of the expected signal at low neutrino energies. So even though the in-

clusion of charged-current whole-nucleus scattering increases the real electron

neutrino events by 30%, this makes only a small difference, since the back-

ground from other events that look νe-like is so large. A significant amount of

these background events is due to misidentified photons, which would no longer

be a problem for the proposed MicroBooNE experiment. Thus, in the Micro-

BooNE experiment, the expected signal would highly depend on the actual

neutrino events, and the inclusion of CCWN will be essential to adequately

describing the neutrino-nucleus cross-sections.
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Chapter 7

Conclusions

A good understanding of neutrino-nucleus cross-sections is essential for the

success of neutrino oscillation experiments. However, experimental groups

have not yet paid adequate attention to these cross-sections. Instead, the

trend seems to be that if one experiment produces data inconsistent with

other data, a new experiment will be built. This has happened with LSND

and MiniBooNE, and might happen again with MiniBooNE and MicroBooNE.

While we think that new experimental techniques are valuable, this prac-

tice of building new experiments without fixing the theoretical foundations is

a waste of time and taxpayers’ money. New experiments can only do so much

without having a solid theoretical foundation. However, when a solid theoreti-

cal foundation is added to technically sound experiments, amazing results can

happen.

In this dissertation, we have discussed the neutrino-nucleus cross-sections.

They are among the most important parts of a neutrino experiment, yet they

are one of the weakest links. Due to the lack of precise and correct nuclear

models, a data-driven way to obtain the neutrino-nucleus cross-sections is in
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order.

The Multi-Beam Strategy, as presented in Chapter 4 and applied in Chap-

ter 6 provides an excellent approach to determining cross-sections from data. It

does not require new experimental techniques, and can be easily implemented

in the analysis of an experiment.

We predict that the future of neutrino experiments will rest on three pil-

lars. First, technically sound and inventive experiments. The proposed Mi-

croBooNE experiment, for example, seems to be a right step in this direction.

By reducing backgrounds that were not very well known to begin with, the

experimental data can be greatly improved.

Second, improved nuclear models that are actually used for the analysis.

While there already exist models better than the relativistic Fermi gas model,

for example, these models have to be used in the data analysis. And a contin-

ued effort on the theorists’ side to develop robust and accurate models will be

valuable.

Finally, there needs to be a connection between theory and experiment.

It seems highly unlikely that nuclear models will be perfectly accurate and

parameter-free in the near future. The values of the parameters will then have

to be determined by experiments. Since there is a lack of monochromatic

neutrino sources, the Multi-Beam Strategy presented in this dissertation can

provide the needed link between theory and experiment.
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Appendix A

The C++ Code

A.1 main.cpp

#include<fstream>

#include<iostream>

#include<stdlib>

#include<cstdlib>

#include<math.h>

#include"boonies.h"

using namespace std;

double sigmawn( double q2, double s, parameters &params )

// CCWN differential cross-section

{

double ff = exp( params.wnff( ) * q2 );

double enu = ( s - sq( massC ) ) / 2 / massC;

return sq( ff ) * ( 4 + (q2 - sq( params.massLep( ))) * (2 /

massC / enu + 1 / sq( enu ) - sq( params.massLep( )) /

4 / sq( enu ) / sq( massC)) );

}

double gep( double t )

// Electric Proton Form Factor

{

return ( 1. - 0.0578 * t ) / ( 1. + 11.1 * t + 13.6 *

sq( t ) + 33. * t * sq( t ));

}
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double gmp( double t )

// Magnetic Proton Form Factor

{

return ( 1. + .15 * t ) / ( 1. + 11.1 * t + 19.6 * sq( t ) +

7.54 * t * sq( t ) );

}

double gen( double t )

// Electric Neutron Form Factor

{

return ( 1.25 * t + 1.3 * sq( t ) ) / ( 1 - 9.86 * t + 305 *

sq( t ) - 758 * t * sq( t ) + 802 * sq( sq( t ) ) );

}

double gmn( double t )

// Magnetic Neutron Form Factor

{

return ( 1. + 1.81 * t ) / ( 1 + 14.1 * t + 20.7 * sq( t ) +

68.7 * t * sq( t ) );

}

double f1( double q2 )

// F1 Form Factor

{

double t = - q2 / 4. / sq( massP );

return 1. / ( 1. - q2 / 4. / sq( massP ) ) * ( gep( t ) -

gen( t ) - q2 / 4. / sq( massP ) * ( gmp( t ) -

gmn( t )));

}

double f2( double q2 )

// F2 Form Factor

{

double t = - q2 / 4 / sq( massP );

return 1. / ( 1. - q2 / 4. / sq( massP ) ) * ( gmp( t ) -

gmn( t ) - gep( t ) + gen( t ));

}
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double fa( double q2, parameters &params )

// Axial Form Factor

{

return -1.272 / sq( 1. - q2 / params.maxial2( ));

}

double bigA( double q2, parameters &params )

// A in cross section equation

{

return ( sq( params.massLep( )) - q2) / 4 / sq( massP ) *

( ( 4. - q2 / sq( massP ) ) * sq( fa( q2, params ) ) -

( 4. + q2 / sq( massP ) ) * sq( f1( q2 )) - q2 /

sq( massP ) * sq( f2( q2 )) * ( 1. + q2 / 4 /

sq( massP )) - 4 * q2 * f1( q2 ) * f2( q2 ) /

sq( massP ) - sq( params.massLep( )) / sq( massP ) *

( sq( f1( q2 ) + f2( q2 )) + sq( fa( q2, params ))) );

}

double bigB( double q2, parameters &params )

// B in cross section equation

{

return q2 / sq( massP ) * (( f1( q2 ) + f2( q2 )) *

fa( q2, params ));

}

double bigC( double q2, parameters &params )

// C in cross section equation

{

return .25 * ( sq( fa( q2, params )) + sq( f1( q2 )) - q2 /

4 / sq( massP ) * sq( f2( q2 )));

}

double sigmaqe( double q2, double s, parameters &params )

// CCQE differential cross-section

{

double enu2 = sq(( s - sq( massP ))) / 4. / sq( massP );

double sminusu = 2 * s + q2 - 2 * sq( massP ) -
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sq( params.massLep( ));

double dsigdq2 = sq( massP ) / enu2 * ( bigA( q2, params ) -

bigB( q2, params ) * sminusu / sq( massP ) +

bigC( q2, params ) * sq( sminusu / sq( massP )));

return dsigdq2;

}

double minimuspec( double eneu )

// Muon spectrum for MiniBooNE beam

{

return exp( 2.49 * sin( 1.479 * ( eneu + 375 ) / 1000 ) -

4.873);

}

double minielespec( double eneu )

// Electron spectrum for MiniBooNE beam

{

return 5.0e-4 * exp( - eneu / 1655 - sq( eneu ) / 5.1e6 );

}

double lsndmuspec( double eneu )

// Muon spectrum for LosAlaBooNE beam

{

return ( eneu + 10 ) * exp( - sq( eneu + 10 ) / 10000 ) / 40;

}

double lsndelespec( double eneu )

// Electron spectrum for LosAlaBooNE beam

{

return ( eneu + 10 ) * exp( - sq( eneu + 10 ) / 10000 ) /

40000;

}

void wnevents( std::ofstream &outfile, double neue, parameters

&params, double factor, double excite )

// CCWN scattering event generator

{

boosty booster;
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double arg, pcm, cth, q2, events;

fourvec neu( neue ); // Neutrino

fourvec tar( massC, 0, 0, 0 ); // Target

fourvec muon( params.massLep( ), 0, 0, 0 );

tar.add( neu ); // ’in’

// check whether reaction works kinematically

if( tar.minv( ) >= params.massLep( ) + massC + excite )

{

arg = lambda( sq( tar.minv( )), sq( params.massLep( )),

sq( massC + excite ));

pcm = sqrt( arg ) / 2 / tar.minv( );

booster = tar.givebooster( ); // get boost of ’in’

neu.cmboost( booster ); // boost neutrino to CM

for( cth = - 1. + 1. / params.cthsteps( ); cth < 1; cth +=

2. / params.cthsteps( ))

{

muon.newvals( params.massLep( ), pcm * cth, pcm *

sqrt( 1. - sq( cth )), 0 );

q2 = sq( params.massLep( )) - 2. * neu.dot( muon );

events = factor * sigmawn( q2, sq( tar.minv( )), params )

* 2. * neu.givet( ) * pcm / params.cthsteps( );

muon.labboost( booster );

outfile << muon.givet( ) << ’\t’ << muon.givex( ) << ’\t’

<< muon.givey( ) << ’\t’ << muon.givez( ) << ’\t’

<< events << ’\n’;

}

}

}

void qeevents( ofstream &outfile, double neue, parameters

&params, double factor, double pauli )

// CCQE scattering event generator

{

boosty booster;

double arg, pcm, cth, q2, events, pini;

fourvec neu( neue );

fourvec tar( massP, 0, 0, 0 );

fourvec muon( params.massLep( ), 0, 0, 0 );
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fourvec recoil( massP, 0, 0, 0 );

for( long inic = 0; inic < 5; inic++ )

{

switch( inic )

{

case 0: pini = 96.5; break;

case 1: pini = 146.7; break;

case 2: pini = 174.3; break;

case 3: pini = 195.2; break;

case 4: pini = 212.3; break;

}

for( long i = 0; i < params.tarsteps( ); i++ )

{

neu.newvals( neue ); // Make neutrino

// Make target

tar.newvals( massP, pini * cos( (i + 1 / 2) * pi /

params.tarsteps( ) ), pini * sin( (i + 1 / 2)

* pi / params.tarsteps( ) ), 0 );

tar.bind( eBind ); // Bind target

tar.add( neu ); // ’in’

// Check whether reaction works

if( tar.minv( ) >= params.massLep( ) + massP )

{

arg = lambda( sq( tar.minv( )), sq( params.massLep( )),

sq( massP ));

pcm = sqrt( arg ) / 2 / tar.minv( );

booster = tar.givebooster( ); // Find boost of ’in’

neu.cmboost( booster ); // Boost neutrino to CM

for( cth = - 1. + 1. / params.cthsteps( ); cth < 1; cth

+= 2. / params.cthsteps( ))

{

for( long j = 0; j < params.fisteps( ); j++ )

{

recoil.newvals( massP, - pcm * cth, - pcm * sqrt( 1.

- sq( cth )) * cos( ( j + 1 / 2) * pi

/ params.fisteps( ) ), - pcm * sqrt(

1. - sq( cth )) * sin( (j + 1 / 2) *

pi / params.fisteps( ) ) );
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recoil.labboost( booster );

if( recoil.givet( ) > pauli * 963.45 )

{

muon.newvals( params.massLep( ), pcm * cth, pcm *

sqrt( 1. - sq( cth )) * cos( ( j + 1 /

2) * pi / params.fisteps( ) ), pcm *

sqrt( 1. - sq( cth )) * sin( (j + 1 /

2) * pi / params.fisteps( ) ) );

q2 = sq( params.massLep( )) - 2. * neu.dot( muon );

events = factor * sigmaqe( q2, sq( tar.minv( )),

params ) * 2. * neu.givet( ) * pcm /

params.cthsteps( ) / 5 /

params.fisteps( ) / params.tarsteps( );

muon.labboost( booster );

outfile << muon.givet( ) << ’\t’ << muon.givex( )

<< ’\t’ << muon.givey( ) << ’\t’

<< muon.givez( ) << ’\t’ << events << ’\n’;

}

}

}

}

}

}

}

void wngen( parameters &params )

// Outer structure for CCWN events

{

ofstream wnfile( "wnevents.txt" );

wnfile.precision( 8 );

for( double excite = eExc; excite < params.maxcite( ); excite

+= params.stepcite( ) )

{

switch( params.enedist( ) )

{

case 0:

case 3: wnevents( wnfile, params.enesteps( ), params, 1.,

excite );
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break;

case 1: for( double energy = 100; energy < 3000; energy +=

params.enesteps( ) )

wnevents( wnfile, energy, params,

minimuspec( energy ), excite );

break;

case 2: for( double energy = 100; energy < 3000; energy +=

params.enesteps( ) )

wnevents( wnfile, energy, params,

lsndmuspec( energy ), excite );

break;

case 4: for( double energy = 100; energy < 3000; energy +=

params.enesteps( ) )

wnevents( wnfile, energy, params,

minielespec( energy ), excite );

break;

case 5: for( double energy = 100; energy < 3000; energy +=

params.enesteps( ) )

wnevents( wnfile, energy, params,

lsndelespec( energy ), excite );

break;

}

}

}

void qegen( parameters &params, double pauli )

// Outer structure for CCQE events

{

ofstream qefile( "qeevents.txt" );

qefile.precision( 8 );

switch( params.enedist( ) )

{

case 0:

case 3: qeevents( qefile, params.enesteps( ), params, 1.,

pauli );

break;

case 1: for( double energy = 100; energy < 3000; energy +=
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params.enesteps( ) )

qeevents( qefile, energy, params,

minimuspec( energy ), pauli );

break;

case 2: for( double energy = 100; energy < 3000; energy +=

params.enesteps( ) )

qeevents( qefile, energy, params,

lsndmuspec( energy ), pauli );

break;

case 4: for( double energy = 100; energy < 3000; energy +=

params.enesteps( ) )

qeevents( qefile, energy, params,

minielespec( energy ), pauli );

break;

case 5: for( double energy = 100; energy < 3000; energy +=

params.enesteps( ) )

qeevents( qefile, energy, params,

lsndelespec( energy ), pauli );

break;

}

}

void binnyq2( ifstream &infile, ofstream &q2write,

parameters &params )

// Binning procedure for q2 bins

{

double e, px, py, pz, p, ev, enurec, q2rec;

long mybin;

double bins[32];

for( long i = 0; i < 32; i++ )

{

bins[i] = 0;

}

char line[100];

char* rem;

while( !infile.getline(line, 100).eof() )

{
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e = strtod( line, &rem );

px = strtod( rem, &rem );

py = strtod( rem, &rem );

pz = strtod( rem, &rem );

ev = strtod( rem, NULL );

enurec = ((massP + eBind) * e - (2 * massP * eBind +

sq( eBind ) + sq( params.massLep( ))) / 2) /

(massP + eBind - e + px);

q2rec = - sq( params.massLep( )) + 2 * enurec * (e - px);

mybin = 32. * q2rec / 1.e6;

if( mybin >= 0 && mybin < 32 )

{

bins[mybin] += ev;

}

}

for( long i = 0; i < 31; i++ )

{

q2write << bins[i] << " ";

}

q2write << bins[31];

}

void binnye( ifstream &infile, ofstream &ewrite, parameters

&params )

// Binning procedure for Energy bins

{

double e, px, py, pz, ev, enurec;

double bins[11];

for( long i = 0; i < 11; i++ )

{

bins[i] = 0;

}

char line[100];

char* rem;

while( !infile.getline(line, 100).eof() )

{

e = strtod( line, &rem );

px = strtod( rem, &rem );
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py = strtod( rem, &rem );

pz = strtod( rem, &rem );

ev = strtod( rem, NULL );

enurec = ((massP + eBind) * e - (2 * massP * eBind +

sq( eBind ) + sq( params.massLep( ))) / 2) /

(massP + eBind - e + px);

if( enurec >= 200. )

{

if( enurec < 300 )

{

bins[0] += ev;

}

else if( enurec < 375 )

{

bins[1] += ev;

}

else if( enurec < 475 )

{

bins[2] += ev;

}

else if( enurec < 550 )

{

bins[3] += ev;

}

else if( enurec < 675 )

{

bins[4] += ev;

}

else if( enurec < 800 )

{

bins[5] += ev;

}

else if( enurec < 950 )

{

bins[6] += ev;

}

else if( enurec < 1100 )

{
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bins[7] += ev;

}

else if( enurec < 1300 )

{

bins[8] += ev;

}

else if( enurec < 1500 )

{

bins[9] += ev;

}

else if( enurec < 3000 )

{

bins[10] += ev;

}

}

}

for( long i = 0; i < 11; i++ )

{

ewrite << bins[i] << " ";

}

}

void qeloop( parameters &params )

// Loop for CCQE events with varying Pauli blocking parameter

{

ofstream qeq2write( "pauliq2bins.txt" );

for( double pauli = params.paulii( ); pauli <

params.paulif( ); pauli += params.paulis( ) )

{

qegen( params, pauli );

ifstream qeread( "qeevents.txt" );

binnyq2( qeread, qeq2write, params );

qeq2write << ’\n’;

qeread.close( );

}

}
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void wnbinq2( parameters &params )

// Outer structure to bin CCWN events

{

ifstream wnread( "wnevents.txt" );

ofstream wnq2write( "wnq2bins.txt" );

binnyq2( wnread, wnq2write, params );

}

void wnbine( parameters &params )

// Outer structure to bin CCWN events

{

ifstream wnread( "wnevents.txt" );

ofstream wnewrite( "wnebins.txt" );

binnye( wnread, wnewrite, params );

}

void qebine( parameters &params )

// Outer structure to bin CCQE events

{

ifstream qeread( "qeevents.txt" );

ofstream qeewrite( "qeebins.txt" );

binnye( qeread, qeewrite, params );

}

void qebinq2( parameters &params )

// Outer structure to bin incoherent events

{

ifstream qeread( "qeevents.txt" );

ofstream qeq2write( "qeq2bins.txt" );

binnyq2( qeread, qeq2write, params );

}

int main( int argc, char* argv[] )

{

long userinp;

int argi = 0;

parameters params;

for(;;)
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{

if( argc == 1 )

{

cout << "What would you like to do?\n";

cout << "(1) Generate CCWN events\n";

cout << "(2) Bin CCWN events by rec. Q2\n";

cout << "(3) Bin CCWN events by rec. E\n";

cout << "(4) Generate CCQE events\n";

cout << "(5) Bin CCQE events by rec. Q2\n";

cout << "(6) Bin CCQE events by rec. E\n";

cout << "(7) Run CCQE Pauli blocking loop\n";

cout << "(9) Edit parameters\n";

cout << "(0) Exit\n";

cin >> userinp;

}

else

{

argi += 1;

if( argi == argc )

return 0;

userinp = strtol( argv[argi], NULL, 0 );

}

switch( userinp )

{

case 0: return 0;

case 1: wngen( params );

break;

case 2: wnbinq2( params );

break;

case 3: wnbine( params );

break;

case 4: qegen( params, params.paulii( ) );

break;

case 5: qebinq2( params );

break;

case 6: qebine( params );

break;

case 7: qeloop( params );
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break;

case 9: params.editparams( );

break;

}

}

}

A.2 boonies.h

using namespace std;

const double massE = 0.511;

const double massMu = 105.;

const double massP = 938.;

const double massC = 12 * massP;

const double eBind = - 34.;

const double eExc = 17.338;

const double pi = 3.1415926;

double sq( double x )

{

return x * x;

}

struct boosty

// Boost and rotation variables: boost in x, rotation around z,

// around x

{

double rotz1c, rotz1s, boostxc, boostxs, rotz2c, rotz2s;

};

class fourvec

// Four-vector class

{

double t, x, y, z;

public:

fourvec( double enu );
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fourvec( double mass, double xx, double yy, double zz );

void bind( double eb );

double givet( );

double givex( );

double givey( );

double givez( );

double minv( );

double givep( );

double dot( fourvec ff );

boosty givebooster( );

void boostx( double ch, double sh );

void rotz( double co, double si );

void labboost( boosty booster );

void cmboost( boosty booster );

void add( fourvec ff );

void newvals( double mass, double xx, double yy, double zz );

void newvals( double enu );

};

fourvec::fourvec( double enu )

// Create a massless four-vector, momentum in x-direction

{

t = enu;

x = enu;

y = 0;

z = 0;

}

fourvec::fourvec( double mass, double xx, double yy, double zz )

// Create a four-vector, with given mass and 3-momentum

{

t = sqrt( sq( mass ) + sq( xx ) + sq( yy ) + sq( zz ) );

x = xx;

y = yy;

z = zz;

}

void fourvec::newvals( double enu )
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// Renew values for massless four-vector

{

t = enu;

x = enu;

y = 0;

z = 0;

}

void fourvec::newvals( double mass, double xx, double yy,

double zz )

// Renew values for four-vector with mass

{

t = sqrt( sq( mass ) + sq( xx ) + sq( yy ) + sq( zz ) );

x = xx;

y = yy;

z = zz;

}

void fourvec::bind( double eb )

// Apply binding energy to four-vector

{

t += eb;

}

double fourvec::givet( )

// Return t-component

{

return t;

}

double fourvec::givex( )

// Return x-component

{

return x;

}

double fourvec::givey( )

// Return y-component
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{

return y;

}

double fourvec::givez( )

// Return z-component

{

return z;

}

void fourvec::boostx( double ch, double sh )

// Boost four-vector along x-axis

{

double oldt = t;

double oldx = x;

t = ch * oldt + sh * oldx;

x = sh * oldt + ch * oldx;

}

void fourvec::rotz( double co, double si )

// Rotate four-vector around z-axis

{

double oldx = x;

double oldy = y;

x = co * oldx - si * oldy;

y = si * oldx + co * oldy;

}

void fourvec::labboost( boosty booster )

{

// Boost four-vector from CM frame to lab frame

this->rotz( booster.rotz1c, booster.rotz1s );

this->boostx( booster.boostxc, booster.boostxs );

this->rotz( booster.rotz2c, booster.rotz2s );

}

void fourvec::cmboost( boosty booster )

{
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// Boost four-vector from lab frame to CM frame

this->rotz( booster.rotz2c, - booster.rotz2s );

this->boostx( booster.boostxc, - booster.boostxs );

this->rotz( booster.rotz1c, - booster.rotz1s );

}

void fourvec::add( fourvec ff )

// Add four-vectors

{

t += ff.givet( );

x += ff.givex( );

y += ff.givey( );

z += ff.givez( );

}

double fourvec::minv( )

// Return invariant mass of a four-vector

{

double arg = sq( t ) - sq( x ) - sq( y ) - sq( z );

return sqrt( arg );

}

double fourvec::givep( )

// Return magnitude of 3-momentum of a four-vector

{

return sqrt( sq( x ) + sq( y ) + sq( z ) );

}

double fourvec::dot( fourvec ff )

// Return the dot product

{

return t * ff.givet( ) - x * ff.givex( ) - y * ff.givey( ) -

z * ff.givez( );

}

boosty fourvec::givebooster( )

// Give the full boost and rotation variables that lead to a

// given four-vector
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{

boosty booster;

booster.boostxc = t / this->minv( );

booster.boostxs = this->givep( ) / this->minv( );

booster.rotz2c = x / this->givep( );

booster.rotz2s = y / this->givep( );

double deno = sqrt( sq( booster.boostxc * booster.rotz2c -

booster.boostxs ) + sq( booster.rotz2s ) );

booster.rotz1c = (booster.boostxc * booster.rotz2c -

booster.boostxs) / deno;

booster.rotz1s = - booster.rotz2s / deno;

return booster;

}

class parameters

// Class that handles all the parameters

{

long icthsteps, ifisteps, itarsteps, ienedist;

double ienesteps, imaxcite, istepcite, ipaulii, ipaulif;

double ipaulis, iwnff, imaxial;

public:

parameters( );

void writeparams( );

void editparams( );

long cthsteps( );

long fisteps( );

long tarsteps( );

long enedist( );

double enesteps( );

double maxcite( );

double stepcite( );

double paulii( );

double paulif( );

double paulis( );

double massLep( );

double wnff( );

double maxial2( );
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};

parameters::parameters( )

// Initialize parameters by reading from file

{

ifstream params( "parameters.txt" );

if( params.fail( ) == 0 )

{

char line[100];

double getty;

params.getline(line, 100);

icthsteps = strtol( line, NULL, 0 );

params.getline(line, 100);

ifisteps = strtol( line, NULL, 0 );

params.getline(line, 100);

itarsteps = strtol( line, NULL, 0 );

params.getline(line, 100);

ienedist = strtol( line, NULL, 0 );

params.getline(line, 100);

ienesteps = strtod( line, NULL );

params.getline(line, 100);

imaxcite = strtod( line, NULL );

params.getline(line, 100);

istepcite = strtod( line, NULL );

params.getline(line, 100);

ipaulii = strtod( line, NULL );

params.getline(line, 100);

ipaulif = strtod( line, NULL );

params.getline(line, 100);

ipaulis = strtod( line, NULL );

params.getline(line, 100);

iwnff = strtod( line, NULL );

params.getline(line, 100);

imaxial = strtod( line, NULL );

}

else

{
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icthsteps = 32;

ifisteps = 8;

itarsteps = 6;

ienedist = 0;

ienesteps = 400;

imaxcite = eExc + 11.;

istepcite = 2.1;

ipaulii = 1.;

ipaulif = 1.5;

ipaulis = 0.05;

iwnff = 32.;

imaxial = 1000.0;

this->writeparams( );

}

}

void parameters::writeparams( )

// Write parameters to file

{

ofstream para( "parameters.txt" );

para << icthsteps << ’\n’ << ifisteps << ’\n’ << itarsteps

<< ’\n’ << ienedist << ’\n’ << ienesteps << ’\n’

<< imaxcite << ’\n’ << istepcite << ’\n’ << ipaulii

<< ’\n’ << ipaulif << ’\n’ << ipaulis << ’\n’ << iwnff

<< ’\n’ << imaxial;

}

void parameters::editparams( )

// Edit Parameters

{

long userinp, user2;

long loopy = 0;

while( loopy == 0 )

{

cout << "Please choose the parameter you want to edit\n";

cout << "( 1) Cos theta steps ( " << icthsteps << " )\n";

cout << "( 2) Phi steps ( " << ifisteps << " )\n";

cout << "( 3) Target steps ( " << itarsteps << " )\n";
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switch( ienedist )

{

case 0: cout << "( 4) Monochromatic Muon Beam\n";

cout << "( 5) Energy ( " << ienesteps << " )\n";

break;

case 1: cout << "( 4) MiniBooNE Muon Spectrum\n";

cout << "( 5) Energy steps ( " << ienesteps

<< " )\n";

break;

case 2: cout << "( 4) LosAlaBooNE Muon Spectrum\n";

cout << "( 5) Energy steps ( " << ienesteps

<< " )\n";

break;

case 3: cout << "( 4) Monochromatic Electron Beam\n";

cout << "( 5) Energy ( " << ienesteps << " )\n";

break;

case 4: cout << "( 4) MiniBooNE Electron Spectrum\n";

cout << "( 5) Energy steps ( " << ienesteps

<< " )\n";

break;

case 5: cout << "( 4) LosAlaBooNE Electron Spectrum\n";

cout << "( 5) Energy steps ( " << ienesteps

<< " )\n";

break;

}

cout << "( 6) Maximal Excitation Energy ( " << imaxcite

<< " )\n";

cout << "( 7) Excitation Energy Step ( " << istepcite

<< " )\n";

cout << "( 8) Pauli Blocking Parameter (initial for loop)( "

<< ipaulii << " )\n";

cout << "( 9) Pauli Blocking Parameter, final ( "

<< ipaulif << " )\n";

cout << "(10) Pauli Blocking Parameter, step ( " << ipaulis

<< " )\n";

cout << "(11) CCWN Form Factor ( " << iwnff << " )\n";

cout << "(12) Axial Mass ( " << imaxial << " )\n";

cout << "( 0) Done\n";
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cin >> userinp;

switch( userinp )

{

case 0: loopy = 1;

break;

case 1: cout << "Currently, Cos theta steps is "

<< icthsteps << ’\n’;

cout << "Please enter the new value for Cos theta"

<< " steps: ";

cin >> icthsteps;

break;

case 2: cout << "Currently, Phi steps is " << ifisteps

<< ’\n’;

cout << "Please enter the new value for Phi "

<< "steps: ";

cin >> ifisteps;

break;

case 3: cout << "Currently, Target steps is "

<< itarsteps << ’\n’;

cout << "Please enter the new value for Target "

<< "steps: ";

cin >> itarsteps;

break;

case 4: cout << "Please choose from the following:\n";

cout << "(0) Monochromatic Muon Beam\n";

cout << "(1) MiniBooNE Muon Spectrum\n";

cout << "(2) LosAlaBooNE Muon Spectrum\n";

cout << "(3) Monochromatic Electron Beam\n";

cout << "(4) MiniBooNE Electron Spectrum\n";

cout << "(5) LosAlaBooNE Electron Spectrum\n";

cin >> ienedist;

if( ienedist == 0 || ienedist == 3 )

ienesteps = 400;

else

ienesteps = 25;

break;

case 5: if( ienedist == 0 || ienedist == 3 )

{
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cout << "Currently, the monochromatic energy "

<< "is " << ienesteps << ’\n’;

cout << "Please enter the new value for the "

<< "monochromatic energy: ";

}

else

{

cout << "Currently, the energy step size is "

<< ienesteps << ’\n’;

cout << "Please enter the new value for the "

<< "energy step size: ";

}

cin >> ienesteps;

break;

case 6: cout << "Currently, Maximal Excitation Energy is "

<< imaxcite << ’\n’;

cout << "Please enter the new value for Maximal "

<< "Excitation Energy: ";

cin >> imaxcite;

break;

case 7: cout << "Currently, Excitation Energy Stepsize"

<< " is " << istepcite << ’\n’;

cout << "Please enter the new value for "

<< "Excitation Energy Stepsize\n";

cout << "(choose it greater than Max Exc Ene if "

<< "you only want the ground state): ";

cin >> istepcite;

break;

case 8: cout << "Currently, Pauli Blocking is "

<< ipaulii << ’\n’;

cout << "(This is also the inital value for the"

<< " Pauli loop)\n";

cout << "Please enter the new value for Pauli "

<< "Blocking: ";

cin >> ipaulii;

break;

case 9: cout << "Currently, the final value for the Pauli"

<< " Blocking Loop is " << ipaulif << ’\n’;
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cout << "Please enter the new value for the final"

<< " PB parameter: ";

cin >> ipaulif;

break;

case 10: cout << "Currently, the Pauli Blocking Step Size"

<< " is " << ipaulis << ’\n’;

cout << "Please enter the new value for the PB "

<< "step size: ";

cin >> ipaulis;

break;

case 11: cout << "Currently, the CCWN Form Factor is "

<< iwnff << ’\n’;

cout << "Please enter the new value for the CCWN"

<< " form factor: ";

cin >> iwnff;

break;

case 12: cout << "Currently, the Axial Mass is "

<< imaxial << ’\n’;

cout << "Please enter the new value for the"

<< " axial mass: ";

cin >> imaxial;

break;

}

}

this->writeparams( );

}

long parameters::cthsteps( )

{

return icthsteps;

}

long parameters::fisteps( )

{

return ifisteps;

}

long parameters::tarsteps( )
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{

return itarsteps;

}

long parameters::enedist( )

{

return ienedist;

}

double parameters::enesteps( )

{

return ienesteps;

}

double parameters::maxcite( )

{

return imaxcite;

}

double parameters::stepcite( )

{

return istepcite;

}

double parameters::paulii( )

{

return ipaulii;

}

double parameters::paulif( )

{

return ipaulif;

}

double parameters::paulis( )

{

return ipaulis;

}
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double parameters::wnff( )

{

return 1.0e-6 * iwnff;

}

double parameters::maxial2( )

{

return sq( imaxial );

}

double parameters::massLep( )

{

if( ienedist < 3 )

return massMu;

else

return massE;

}

double eofp( double p, double m )

// Calculate energy as function of momentum and mass

{

return sqrt( sq( p ) + sq( m ) );

}

double lambda( double x, double y, double z )

// The lambda function, l(x, y, z) = x^2 + y^2 + z^2 - 2xy -

// 2xz - 2yz

{

return sq( x ) + sq( y ) + sq( z ) - 2 * x * y - 2 * x * z -

2 * y * z;

}
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