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2.4 Ground-state energies in linear solvents, R=15 Å. . . . . . . . . . . . . . . 25
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ABSTRACT

Porous materials, such as sol-gels and zeolites, contain nanometer-scale spaces in

which molecules are confined, leading to significant changes in their chemical dynam-

ics. In this dissertation, the effects of confinement on chemical behavior are stud-

ied. By understanding how the properties of a material affect functionality, the rational

design of porous materials for applications such as catalysis may be achieved. The

study of entropy and free energy of a nanoconfined model dye molecule with Monte

Carlo methods is discussed in Chapter 2. In Chapter 3, infrared spectra of a model

proton-transfer complex calculated using mixed quantum-classical molecular dynamics

are calculated. These studies indicate that charge transfer dynamics and equilibria are

spatially-dependent in nanoconfined systems. This is reflected in the time-dependent

fluorescence and infrared spectra, discussed in Chapters 2 and 3, respectively. Chap-

ter 4 describes quantum chemical studies of a carbon acid being developed for use in

Friedel-Crafts acylation as a solid acid catalyst.
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Chapter 1

Introduction

Recent advances in synthesis and characterization have led to the development of

functional materials for a number of applications, including catalysis, separations, sens-

ing, and optical materials.1–12 In this work, computational studies have been undertaken

to understand the chemistry and properties of some classes of these materials. In par-

ticular, a primary focus of this work is how nanoconfinement affects chemical behav-

ior. A number of materials, including reverse micelles, sol-gels, and zeolites, contain

nanoscale confining environments in which unique behavior takes place. By under-

standing how a confining framework influences the chemistry that takes place within,

design principles for the development of novel functional materials may be elucidated.

Properties that have been studied in this work include energetic and entropic driving

forces for time-dependent fluorescence spectra, infrared spectra of a model proton-

transfer complex, and properties and possible catalytic mechanisms of a novel carbon

acid for applications in solid acid catalysis.

1.1 Porous Materials

Porous materials, including sol-gels, zeolites, clays, and metal organic frameworks,

have been developed for a variety of applications.11 Sol-gels are porous silica glasses

formed by the hydrolysis of organosilicates.1, 13, 14 These materials have a number of

applications, including as catalysts,15 sensors,16 scaffolds for bone and tissue growth,

and in optics. For optics, they are valued for thermal and mechanical stability, excellent
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optical transmission ranging from UV to IR wavelengths, and the absence of signif-

icant defects (such as impurities or bubbles). Optics can also be made by inclusion

(impregnation) of optically active molecules in the pores. In this case, the optical prop-

erties can be tailored by changing the pore size, surface properties and volume.13 These

doped sol-gels have been shown to be good materials for solid state dye lasers and as

sensors.17

Zeolites are naturally-occurring or synthetic microporous, microcrystalline miner-

als used in catalysis. Zeolites are used most prolifically in the petroleum industry,

where they catalyze a majority of all refining processes.18 They are also used as cata-

lysts in the synthesis of small organic molecules. More detail on zeolites and their use

in Friedel-Crafts acylation reactions is given in Chapter 4, which describes studies of a

carbon acid catalyst for the acylation of 2-methoxynaphthalene.

Porous materials have also been developed for gas storage, sensing, release, and

separation. A class of microporous materials, low density three-dimensional solids of

metal cluster joints and organic linkers, called metal-organic frameworks (MOFs), has

been developed for numerous applications. A notable application of MOFs is for gas

storage: different MOFs have shown high affinities for methane19 and hydrogen20, 21

storage, which may be of use in developing the hydrogen economy and alternative en-

ergy sources. The low density of MOFs makes them attractive for portable energy stor-

age. Another MOF application with environmental emphasis is the storage of carbon

dioxide,22 which could potentially be used for carbon dioxide sequestration. In addition

to gas storage, selective gas adsorption by porous materials has proven useful for gas

separations. One such material, ETS-4, a crystalline titanosilicate that is commerically

available for separations, can discriminate between N2 and CH4 gases.23

Porous organic hosts can be functionalized by copolymerization with organic com-

pounds or metal complexes. Both have been demonstrated to have applications in solid

acid catalysis8, 24 (discussed further in Chapter 4), while the latter have demonstrated

applications for gas storage. Metal complexes immobilized in an organic host were
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shown to selectively bind NO and photolytically release the gas molecule, with poten-

tial applications for the storage and targeted release of NO for medical applications.8

Another system in which molecules experience nanoscale confinement is in reverse

micelles. Reverse micelles are spontaneously formed when surfactant molecules with a

polar head group and non-polar tail (alkylammonium carboxylates, for example)25 are

placed in a non-polar solvent, with a small amount of water (or other polar solvent).

The head group solvates the polar solvent while forming a capsule. The shape of the

capsule is dependent on the nature of the ampiphile, and can be spherical or oblong.26

Reverse micelles are of interest for a number of reasons. First, they are often used to

model biological systems, as the walls of a reverse micelle are similar to biological

membranes. Reactions in reverse micelles also may exhibit enhanced rates, similar

to those seen in enzymes, although reaction rates are often slower in these confined

systems.26 Secondly, because of their uniform size, they are considered “nanobeakers”

in which reactions can take place in polar media within a non-polar solvent system.

The size of the “nanobeakers,” and thus the size of the solvent pool within and its

corresponding confinement-influenced properties can be tuned by varying the ratio of

polar solvent to surfactant.

Studies on reverse micelles have investigated the enhancement or inhibition of rates

of chemical reactions within them.25–30 Electron transfer reaction kinetics have also

been studied; reverse micelles act as electron acceptors, forming solvated electrons in

aqueous reverse micelles.31–33 Other kinetics studies have been interested in excited-

state proton transfer reactions34–44 and the partitioning of substrates between the non-

polar solvents and the interior of reverse micelles.45, 46 Because of the similarities be-

tween reverse micelles and biological systems, these reactions are of interest in under-

standing biologically-relevant chemical processes.

The above is just a sampling of the diverse types of porous materials, each compris-

ing a wide variety of properties and functions, that have been synthesized or may be

developed in the future. What remains to be understood is how to best design materials
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for specific purposes. With this in mind, the studies reported in this dissertation have

focused on charge transfer reactions in porous media. Charge transfer reactions are

critical in many catalytic processes; one of the most basic and ubiquitous processes in

catalysis is acid-base chemistry: a charge (proton) transfer reaction. The influence of

confinement on charge transfer is a key focus of this work.

1.2 Computational Studies of Nanoconfined Solutions

In this work, several charge transfer reactions that take place in confining frame-

works are considered. Charge transfer reactions, such as electron or proton transfer, are

dependent on solvation dynamics, which are dramatically altered by confinement on

the nanometer length scale (see Sections 2.1-2.2 and references therein). The reaction

coordinate for these processes involves a collective solvent reorganization that facili-

tates the movement of charge.47–53 Specifically, at the transition state the electric field

generated by the solvent enables charge transfer. It is not one specific arrangement of

solvent molecules at a single transition state, but rather a collection of transition states

in which the solvent arrangement facilitates reaction (hence the term collective solvent

coordinate). Because the confining framework influences solvation dynamics, reac-

tions within nanoconfined spaces are influenced by solvent-framework interactions in

addition to the reaction complex-framework interactions. By understanding how con-

finement and the properties of the confining framework (such as shape, flexibility, size,

and surface chemistry) affect reactivity and solvent dynamics, the rational design of

materials for diverse applications may be achieved.

In Chapters 2 and 3, a simple confining framework, which was originally developed

as a model of reverse micelles, is used.54–56 Details of this model are given in Chapter 2;

briefly, a spherical nanocavity with smooth, hydrophobic walls is used. This nanocavity

model has been used by the Thompson group in numerous investigations57–66 to study

dynamics and properties of nanoconfined solvents and solutions. Studies of a model
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dye molecule that undergoes a significant change in dipole moment upon photoexcita-

tion are presented in Chapter 2. This is done in the context of understanding how and

why confinement affects the time-dependent fluorescence signal of the dye. Charge

transfer in the same spherical cavity is again discussed in Chapter 3, but with a model

proton transfer complex. The infrared spectra of the proton transfer complex are stud-

ied, with a focus on how chemical equilibria and proton transfer dynamics are reflected

in vibrational spectroscopies. Chapter 4 considers a carbon acid catalyst that can be

chemically modified and incorporated into a number of porous materials. In Chapters

2 and 3, the influence of the confining framework on chemical behavior is considered,

while in Chapter 4, the properties of the carbon acid and possible catalytic mechanisms

are explored.

1.3 Overview

In Chapter 2, Monte Carlo simulations are used to calculate the free energy, internal

energy, and entropy of a model dye molecule dissolved in three different nanoconfined

solvents. From the contributions to the free energies of the dye molecule in these var-

ious systems, the driving forces for the time-dependent fluorescence signal can be un-

derstood. Simulations allow for a “bird’s eye” view at the molecular level, enabling the

position-dependent free energy and entropy to be calculated as a function of the radial

distance from the cavity wall. Different components of the entropy are considered, and

rotational contributions to the entropy are calculated explicitly. It is found that solvent

packing influences rotational freedom of the solute, giving rise to a strong correlation

between the radial solvent density and the entropy and free energy. The spatial de-

pendence of such quantities provides information about how confinement influences

dynamics. In Chapter 3, mixed quantum-classical molecular dynamics simulations are

used to calculate the infrared spectra of a model proton-transfer complex in nanocon-

fined solution. The infrared spectra are shown to contain information about proton
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transfer dynamics and equilibria, providing further information about chemical reactiv-

ity in nanoconfined solutions. While pump-probe experiments have been used to study

excited-state proton transfer rates, the work in Chapter 3 indicates that ground-state pro-

ton transfer rates may be able to be determined from infrared photon-echo experiments.

Chapter 4 takes a different approach to studying charge transfer reactions in porous me-

dia, with a focus on the charge transfer agent itself through ab initio and DFT studies

of a carbon acid that can be incorporated into a variety of porous materials for use as a

solid acid. This acid is interesting in itself, since the acidic proton is bound to a carbon.

The unusual acid was calculated to have a gas-phase acidity that is stronger than many

common strong acids, such as HNO3 and HCl. The carbon acid has shown unprece-

dented regioselectivity in the Friedel-Crafts acylation of 2-methoxynaphthalene, which

is a step in the synthesis of the analgesic (S)-naproxen. The calculations indicate that

the regioselectivity arises from the ability of the acid to catalyze the formation of the

thermodynamic product. Chemical modifications can be carried out in order to incor-

porate the carbon acid into a porous material, forming a solid acid with green chemistry

applications.
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Chapter 2

Time-Dependent Fluorescence: Determining Entropic Contributions
to the Free Energy of a Dye Molecule in Nanoconfined Solvents

Spectroscopy provides a way to investigate how nanoscale confinement affects chem-

ical dynamics and reactivity. In this chapter, the molecular driving forces that give rise

to a time-dependent fluorescence signal are explored. Time-dependent fluorescence

(TDF) is a spectroscopic method used to probe solvation dynamics. In the following

chapter, infrared spectroscopy in a nanoconfined system is considered. In both cases,

investigations of charge transfer processes are undertaken. In this chapter, the system

studied is a model dye molecule, which undergoes a significant change in dipole mo-

ment upon excitation, confined in organic solvents in 10 and 15 Å radius spherical,

hydrophobic cavities.

2.1 Time-Dependent Fluorescence and Solvation Dynamics

Solvation dynamics describes the time evolution of solvent-solute interactions, and

is often measured as a solvent response to changes in the solute dipole moment. Typi-

cally, studies of solvation dynamics involve dyes that undergo a large change in dipole

moment upon photoexcitation. Other important probes of solvation dynamics involve

excited-state electron and proton transfer reactions.37–44, 62, 63, 67–80 Such charge trans-

fer processes have been shown to depend on a reaction coordinate involving solvent

reorganization that facilitates the movement of charge.47–53 In nanoconfined systems,

the confining framework can influence chemical reactions and dynamics both through

solute-framework interactions and through solvent-framework interactions that modify
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the solvation dynamics. Thus, studies of solvation dynamics in nanoconfined systems

probe how different confining frameworks influence chemical behavior and reactiv-

ity within. In addition to time-dependent fluorescence studies,56, 58, 81–107 described be-

low, and spectroscopic studies of excited-state electron68 and proton transfer,37–44, 70–76

other studies of solvation dynamics in nanoconfined systems include rotational mobility

measurements with fluorescence depolarization spectroscopy,67 and proton conductiv-

ity measurements.78–80

In time-dependent fluorescence spectroscopy, the Stokes shift as a function of time

is measured. For a chromophore in solution, before photoexcitation, the molecule is

solvated according to the ground-state distribution of charges. Instantaneously upon

excitation, according to the Franck-Condon principle, the electronic configuration of

the chromophore has changed to an excited-state charge distribution, while the solvent

nuclear degrees-of-freedom are still configured to the ground-state electronic distribu-

tion of the solute. As the solvent molecules reorient to better solvate the chromophore,

the energy gap between the excited state and ground state decreases, causing the Stokes

shift to redshift. The normalized time-dependent Stokes shift signal, called the solvent

response function C(t), is given according to Equation 2.1:

C(t) =
ω(t)− ω(∞)

ω(0)− ω(∞)
, [2.1]

where ω(t) is the time-dependent fluorescence frequency at time t, ω(0) is the instan-

taneous fluorescence frequency after excitation, and ω(∞) is the equilibrium emission

frequency. The rate of decay of the time-dependent Stokes shift provides information

about how quickly solvent reorientation takes place, which in turn provides informa-

tion about the dynamics of the solvent coordinate, upon which many charge transfer

processes rely (see above). For bulk solvent, the TDF Stokes shift signal decays expo-

nentially on a subpicosecond to picosecond timescale. As an example, TDF studies on

Coumarin 480 in bulk water show a solvent response that is nearly complete at 1 ps.108

In contrast, for nanoconfined systems, TDF measurements generally find that the flu-

orescence energy decays on multiple time scales, including ones that are significantly
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longer than those observed in bulk solvents. For instance, TDF measurements on aque-

ous Coumarin 480 trapped in a sol-gel matrix with pore diameters of 10-20 Å found

the Stokes shift decays with multiple time scales, the longest taking on the order of 15

ns.92 Clearly such substantial modification of the solvation dynamics upon nanoscale

confinement affects how a chemical reaction occurs. In order to understand how to

design nanostructured materials for desired applications, such as supports for catalysts

or molecular sensors, we need to uncover the origins of these changes in the solvation

properties. The work described in this chapter addresses one potential driving force for

the properties of nanoconfined solvents: entropy.

2.2 Time-Dependent Fluorescence Studies in Hydrophobic Cavities

Previous work in the Thompson group has involved the calculation of absorption

and fluorescence spectra of a model diatomic dye molecule in nanoconfined methyl

iodide and acetonitrile solvents in a number of sizes of hydrophobic spherical cavities,

having radii of 10, 12, 15, and 20 Å.57 The nanocavity and model dye, which are the

same system as used in the work described in this chapter, are described in detail below,

in Section 2.3. The absorption and fluorescence spectra were calculated from solvent

coordinate values acquired from Monte Carlo simulations of the dye molecule in the

ground state and excited state, respectively. The solvent coordinate, ∆E, is defined as

∆E = Eex − Egr, [2.2]

where Eex is the energy of the system with the dye in the excited state, and Egr is the

ground-state energy. The differences in the two energies arise only from the charge

interactions between the solvent and the dye molecule in the two states, plus the 2 eV

energy offset between the ground and excited states of the dye molecule.

It was found that the absorption spectra are nearly identical for all cavity sizes, while

the fluorescence spectra are blue-shifted with decreasing cavity size in both solvents.

Also, it was found that the probability distribution of the ground-state dye molecule
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is peaked near the cavity wall, while the probability distribution for the excited-state

dye molecule is bimodal, with one peak near the cavity wall and a second, larger peak

for the solute molecule located in the interior of the cavity. These results suggest that

diffusive motion of the solute toward the interior upon photoexcitation may give rise to

the long timescale of TDF signals in nanoconfined systems. To confirm this, molecular

dynamics simulations were carried out.58

Nonequilibrium molecular dynamics simulations in nanoconfined CH3I solution in

10, 12, 15 and 20 Å spherical, hydrophobic cavities were used to calculate the TDF

data for the model dye molecule. As described in Ref. 58, it was found that the sol-

vent response function, C(t) (Eq. 2.1), decayed triexponentially, fit by the following

expression:

C(t) = A1e
−t/τ1 + A2e

−t/τ2 + A3e
−t/τ3 . [2.3]

The three time scales are approximately τ1 ∼300 fs, τ2 ∼2 ps, and τ3 ∼30-40 ps for all

of the TDF signals, regardless of cavity size, with a solvent density of ∼90% the bulk

value in methyl iodide. Fluorescence spectra were calculated at different fixed distances

of the solute center-of-mass within the cavity, and it was found that the spectra redshift

and broaden as the solute position moves away from the cavity wall. Corroborating this

data is the solute diffusion toward the interior of the cavity upon photoexcitation. The

solute diffusion takes place on two timescales, fitting the expression

〈∆d(t)〉 = D(1−B1e
−t/τd1 −B2e

−t/τd2). [2.4]

There is an initial, rapid motion with τd1 ∼1.4 ps, while τd2 varies with cavity size,

ranging from ∼350 ps for the 10 Å cavity, ∼120 ps for the 12 Å cavity, to ∼70 ps for

the 15 Å cavity.

By combining the solute diffusion data, probability distributions for the ground and

excited state of the dye molecule, and the TDF spectra, one can conclude that one of

the contributions to the longest timescale observed in the TDF signal is diffusion of the

excited dye molecule toward the interior of the cavity. Clearly, spatially-dependent free
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energies/probability distributions do not arise in bulk (unconfined) solutions, suggest-

ing that this phenomenon contributes to the unique TDF spectra acquired in nanocon-

fined systems. In addition to spherical cavities, absorption and fluorescence spectra for

ellipsoidal cavities were investigated.59 It was found that, as with the spherical cavities,

the dye molecule in the ground state had high probability of being located near the cav-

ity wall. Moreover, the distribution was peaked at the “ends” of the ellipsoids. For the

excited-state solute, there was likewise a higher probability density for the solute near

the interior of the cavity.

In general, the differences in the probability distributions of the ground- and excited-

state dye molecule for the spherical and ellipsoidal cavities can be explained in terms

of effective solvent polarity: near the cavity center, the solvent is effectively more

polar, favoring solvation of the more polar excited-state solute; near the cavity wall,

the solvent is effectively less polar, favoring the relatively non-polar ground-state dye

molecule. While electrostatics clearly play an important role in the probability distri-

butions of the dye molecule in its two electronic states, the contributions of internal

energy and entropy to the free energies are considered explicitly in this work. More-

over, the influence of solvent packing effects on these contributions to the free energies

is considered.

In this Chapter, a number of systems are considered in which a model dye molecule

is confined. Three different solvents with various properties are investigated: CH3I,

CH3CN, and CH3OH. The size of the confining framework is also varied: both 10 and

15 Å radius spherical cavities are studied. The entropy, free energies, and internal

energies of the model dye molecule are calculated using Monte Carlo simulations. The

methods are described in Sections 2.3 and 2.4.2. The solvent packing of methyl iodide,

acetonitrile, and methanol solvents, which was found to be related to the energies and

entropy, is described in Section 2.5. The free and internal energies and entropy for the

linear solvents and methanol in the two cavity sizes are given in Sections 2.6 and 2.7.
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In Section 2.8, the origins of the maxima and minima in the entropy are considered,

with conclusions summarized in Section 2.9.

2.3 Methods

2.3.1 Nanocavity System

The systems studied in this work, like the earlier work of the Thompson group,

described above,57–59 involve a model diatomic dye molecule (denoted as AB) solvated

in an organic solvent enclosed in a smooth-walled hydrophobic, spherical cavity. The

dye molecule model was adapted from one developed by Carter and Hynes.109, 110 The

dye molecule interacts with other molecules through Lennard-Jones (see Eq. 3.3) and

Coulombic interactions, which are detailed in Table 2.3.1. The solute molecule is de-

scribed by a two valence-bond state model, with electronic coupling between the states

equal to 0.01 eV, such that the ground and excited states are effectively of fixed charge

character. The excited state lies 2 eV above the ground state in vacuo. In the ground

state, the solute molecule is relatively nonpolar, with A having a charge +0.1 |e| and B

a charge of −0.1 |e|, giving µ=1.44 D. In the excited state, the dipole moment is sub-

stantial: µ=7.1 D, with A/B charges of +0.5/-0.5 |e|. The solute interacts through both

Lennard-Jones and Coulombic interactions; the Lennard-Jones parameters are identical

for both A and B and are independent of the electronic state.

The hydrophobic cavity model used in this work, based on reverse micelles, was

designed by Linse and Halle,54, 55 with modified parameters by Faeder and Ladanyi.56

Here, the smooth, hydrophobic walls interact exclusively via Lennard-Jones interac-

tions; thus, the potential is only a function of the radial distance of an interaction site

from the center of the cavity. The model potential between an interaction site and the

cavity walls is calculated by assuming that the cavity is comprised of a continuum of

sites at constant density. The resulting cavity model potential is of the 3-9 form with
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curvature corrections that depend on the cavity radius. Thus, the potential is given as

U = 8πρhc ε σ3

[(
σ

R

)9

F (z, 6)−
(

σ

R

)3

F (z, 3)

]
, [2.5]

where ρhc is the density of the hydrocarbon interaction sites on the cavity walls, ε and

σ are Lennard-Jones parameters, and R is the radius of the cavity. The quantity z is

defined as a function of the cavity size and the distance r of the interaction site from

the center of the cavity:

z =
r

R
. [2.6]

The functions F (z, n) are calculated by integrating over all points of the hydrocarbon

exterior of the cavity:

F (z, n) =
∫ ∞
0

dy
∫ 1

−1
dx

[
y2

(z2 + y2 − 2xyz)n

]
[2.7]

Thus,

F (z, 3) =
2

3(1− z2)3
[2.8]

and

F (z, 6) =
2(5 + 45z2 + 63z4 + 15z6)

45(1− z2)9
. [2.9]

In the limit of R →∞, the 3-9 potential between a flat hydrocarbon surface and the in-

teraction site is recovered. In this work, spherical cavities of two different sizes, radius

R=10 and 15 Å , were studied. With the parameters used by Faeder and Ladanyi,56, 106, 107

the expression in Eq. 2.5 simplifies to

U(z) = 18
√

3 εwall

[(
15

2

)(
σwall

R

)9

F (z, 6)−
(

σwall

R

)3

F (z, 3)

]
. [2.10]

The Lennard-Jones parameters used here are the same as in Refs. 56, 106 and 107:

σwall= 2.5 Å and εwall= 0.46 kcal/mol.

Three solvents were investigated in this work: methyl iodide, acetonitrile, and

methanol. For all three cases, rigid molecule models of CH3I,111 CH3CN,112 and

CH3OH113, 114 were employed; all models feature a “unified atom” (single interaction
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site) to describe the methyl groups. The two effectively linear solvents, CH3I (ε=6.97)

and CH3CN (ε=36.64),115 were chosen because of their similarity in size but differing

polarities. Methanol, a nonlinear solvent with a dielectric constant (ε=33.0) similar

to acetonitrile,115 is a slightly smaller molecule that exhibits hydrogen bonding inter-

actions, and provides a contrast to the solvent packing motif displayed by CH3I and

CH3CN (see below). The proton in methanol is treated as a point charge in the model

used here. The parameters for interactions of the solute, solvents, and cavity wall are

summarized in Table 2.3.1.

2.4 Monte Carlo Simulations

The aim of this work was to determine the entropy, ∆S, as a function of the solute

radial position in spherical nanocavities. To do so, the Helmholtz free energy, ∆A, and

internal energy, ∆U , were calculated using Monte Carlo methods.

2.4.1 Calculation of Entropy, Free and Internal Energies

Helmholtz free energies were calculated by thermodynamic integration.116, 117 In

this approach, the solute center-of-mass position (at distance r from the cavity center)

is held fixed and the average radial force, 〈F (r)〉, on the solute center-of-mass,

〈F (r)〉 =

〈
−∂U

∂r

〉
=

∫
dq

∫
dp

(
−∂U
∂r

)
e−βH(p,q)∫

dq
∫

dp e−βH(p,q)
. [2.11]

is calculated. Free energies are a measure of work, and thermodynamic integration here

calculates the free energy as force times distance. In this work, the free energy, A(r),

is obtained by integrating the average radial force over the solute radial distance, r:

∆A(r) ≡ A(r)− A(r0) = −
∫ r

r0

dr 〈F (r)〉. [2.12]

The integration was carried out with a simple integration scheme: using the trapezoidal

rule. Other integration methods were tested for comparison, and they yielded similar

results.
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Table 2.1 Interaction Parameters for Solute, Solvents, and Nanocavity.

Site ε(kcal/mol) σ(Å) q(|e|) rij(Å)

Solute

Ground State

A 0.3976 3.5 +0.1

B 0.3976 3.5 -0.1 3.0

Excited State

A 0.3976 3.5 +0.5

B 0.3976 3.5 -0.5 3.0

Solvents

CH3I111

CH3 0.2378 3.77 +0.25

I 0.5985 3.83 -0.25 2.16

CH3CN112

CH3 0.207 3.775 +0.15

C 0.150 3.65 +0.28 1.458

N 0.170 3.2 -0.43 1.157

CH3OH113, 114

CH3 0.2071 3.775 +0.265

O 0.1701 3.071 -0.7 1.4246

H 0.0 0.0 +0.435 0.9451

6 COH=108.5◦
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In addition to the free energy obtained by thermodynamic integration, the internal

energy was calculated as a function of radial distance. In each simulation for a fixed

r, the average internal energy, U(r), is obtained by straightforward averaging of the

potential energy, U(r) = 〈Vr〉, and then

∆U(r) ≡ U(r)− U(r0) = 〈Vr〉 − 〈Vr0〉. [2.13]

The value of r0 is arbitrary since we are only concerned about relative energies; in

all cases, it was taken to be r0= 0.25 Å, the smallest radial position considered. The

solute center-of-mass position was fixed in increments of 0.25 Å; for each position, a

full Monte Carlo simulation was carried out, in which radial forces and internal energy

data were collected.

From the difference in internal and free energies, the entropy was calculated as

∆S(r) =
∆U(r)−∆A(r)

T
. [2.14]

The temperature, T , for all simulations in this work is 298 K.

Errors were calculated by block averaging the forces and internal energies over

40 blocks; data is reported with a 95% confidence interval using the Student t distri-

bution.118 Errors in the free energies were relatively low (generally ≤ 0.2 kcal/mol),

while errors in the internal energy were higher (ranging from ≤ 0.2 kcal/mol in CH3I

to ∼0.7 kcal/mol in CH3OH, despite an increased number of Monte Carlo cycles for

the latter solvent). Thus, the largest contribution to the error in the entropy comes from

the internal energy, resulting in uncertainties in the entropies of ∼0.5-1 cal/(mol·K) in

CH3I up to ∼2-3 cal/(mol·K) in CH3OH.

2.4.2 Simulation Details

All Monte Carlo simulations were carried out in the canonical (NVT) ensemble at

a temperature of 298 K. Configurations within the cavity were initiated with a warmup
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cycle in which the initial positions of the solute and solvent were placed on a face-

centered cubic lattice. For each solute radial position required for thermodynamic in-

tegration, the cavity coordinates were chosen such that the solute center-of-mass was

placed at the desired radial distance from the center of the cavity. The number of

molecules, Nmol, in the simulation was determined from the specified density (here,

90% of the bulk liquid density at 298 K) and the cavity size. Note that the volume

used in the density calculations accounts for the excluded volume of the cavity walls:

the cavity radius was reduced by 0.5 σwall. Initially, a spherical cavity large enough to

include all of the desired molecules was created. The molecules were then allowed to

equilibrate, with the cavity radius shrinking by 0.1 Å every 100 cycles (1 cycle=Nmol

steps) until the specified cavity size was reached. Afterwards, the equilibration was

continued to reach a total of 4 × 105 Monte Carlo cycles as a warmup, followed by

a longer data collection period (see below). For solvent molecules, the center-of-mass

position was translated and the molecule was rotated in each step. For a step involv-

ing the solute, only rotation was allowed, as the center-of-mass position was fixed in

order to carry out thermodynamic integration (see above). Each move was accepted

or rejected according to the Metropolis method.119 With the Metropolis method, each

random move is always accepted if it results in a lower energy. If the move results in

a higher energy, the move is accepted if the Boltzmann factor of the change in energy,

∆E, is greater than a randomly generated number , Nran, between 0 and 1:

e
− ∆E

kBT > Nran. [2.15]

Data was collected over a run of 4 × 106 Monte Carlo cycles for methyl iodide and

acetonitrile solvents, and 6 × 106 Monte Carlo cycles for methanol. Table 2.2 lists the

number of molecules for the systems studied.
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2.5 Solvent Packing

The free energies and entropies were found to be related to solvent packing, so a

brief discussion of this is useful for interpreting the results. Compared to bulk liq-

uids, solvent organization if considerably more ordered upon confinement. Clearly,

the solvent ordering may impact chemistry in nanoconfined systems and contribute to

differences between chemistry in nanocavities versus bulk systems.

Two linear solvents, methyl iodide and acetonitrile, were studied. Although the

two solvents have quite different polarities (εCH3I=6.97, εCH3CN=36.64),115 they are

similar in size and were found to pack in a similar fashion. The rod-shaped molecules

lay parallel to the wall, forming layers. For the 10 Å cavity, there are two layers or

spherical shells of solvent. For the 15 Å cavity, there are three layers, with one or

two solvent molecules located in the center within the layered structure. The solvent

density of CH3I and CH3CN in the R=10 Å cavities is shown in Figure 2.1; the density

is plotted both as a function of atomic density and total solvent density, illustrating

the orientation of the solvent parallel to the cavity wall. The packing of the layers

is governed by the van der Waals radii of the atoms. As can be seen in Figure 2.1, in

acetonitrile, the distance between the peak atomic solvent density in the first and second

layers is ∼3.85 Å for the methyl groups (σCH3= 3.775 Å), ∼3.65 Å for the carbon

atoms (σC= 3.65 Å), and ∼3.4 Å for nitrogen (σN= 3.2 Å). Likewise, in methyl iodide

the spacing is∼3.9 Å for both the methyl groups (σCH3= 3.775 Å) and the iodine atoms

(σI= 3.83 Å). The atomic solvent densities combine to form the total solvent density,

resulting in two peaks located at distances d ∼3.4 Å and d ∼7.25 Å from the cavity

wall. The solvent density in the R=15 Å cavities is similar to the R=10 Å cavities in

that the solvent layering of CH3I and CH3CN in the R=15 Å cavities is dominated by

packing effects.

Methanol, a non-linear solvent that displays hydrogen bonding, has a somewhat

different solvent packing motif than the linear solvents. While the linear solvents pack
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2.2

Table 2.2 Densities of Bulk Solvents and Number of Solvent Molecules per Simulation.

Solvent Density (g/cm3)115 Molar density R=10 Å R=15 Å

at 298 K (mol/cm3)

CH3I 2.2789 0.01606 23 93

CH3CN 0.7825 0.01915 27 111

CH3OH 0.7925 0.02447 36 144

3 4 5 6 7 8
distance from cavity wall, d (Å)

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

ρ(
d)

a

2 4 6 8
distance from cavity wall, d (Å)

0

0.02

0.04

0.06

0.08

0.1

0.12

ρ(
d)

b

Figure 2.1 The atomic solvent densities in R=10 Å cavities for a) CH3I: CH3 (black
line), I (red line) and b) CH3CN: CH3 (black line), C (red line), N (blue line). The total
solvent densities are also given (dashed red line).
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in layers parallel to the cavity wall, methanol packs in a more perpendicular fashion.

This is illustrated in Figure 2.2, which shows the individual atomic solvent densities

for “CH3”, O, and H in methanol along with the total solvent densities in the R=10

and R=15 Å cavities. In bulk CH3OH, there is a greater number of molecules per

unit volume (0.02447 mol/ml) than in CH3CN (0.01915 mol/ml) and CH3I (0.01606

mol/ml);115 thus, there are more CH3OH solvent molecules contained in the cavities

than there are for the linear solvents, as indicated in Table 2.2. Methanol packs with two

solvent layers in the 10 Å cavity; the first layer has the methyl groups oriented toward

the hydrophobic wall, with the oxygen of the hydroxyl group pointing inward toward

the center of the cavity. The second layer packs with the hydroxyl groups pointing

in toward the first layer to capitalize on hydrogen bonding interactions. In the R=15

Å cavity, the first two solvent layers pack in the same manner as those in the 10 Å

cavity; a third layer is less oriented, with one or two solvent molecules at the center

within the three solvent layers. Note, however, that the peaks in the methyl density

are separated by 3.85 Å, which is close to the CH3 Lennard-Jones diameter of 3.775

Å (see Table 2.3.1). Thus, while hydrogen bonding influences the arrangement of the

hydroxyl groups in the solvent layer, packing effects dominate the arrangement of the

CH3 groups in methanol.

2.6 Linear Solvents: Acetonitrile and Methyl Iodide

The entropy and free and internal energies were shown to be related to solvent

packing. As the linear solvents, acetonitrile and methyl iodide, were found to pack in a

similar fashion, the results for the two solvents are presented and discussed together in

this section. In order to understand the driving forces for the time-dependent fluores-

cence signal, ∆A(d), ∆U(d), and ∆S(d) were calculated for the model dye molecule

in both the ground and excited states.
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Figure 2.2 The atomic solvent densities: CH3 (black line), O (red line), and H (blue
line) for CH3OH in the a) R=10 and b) R=15 Å cavities. The summed atomic densities
give the total solvent density (dashed red line).
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2.6.1 Ground-state Solute in Linear Solvents:
Free and Internal Energies

The relative free energies and internal energies for the nanoconfined CH3I and

CH3CN systems have been calculated as a function of the solute center-of-mass po-

sition in the cavity, as described in Section 2.4. The results for the ground-state solute

are plotted as a function of the solute center-of-mass distance from the cavity wall, d,

for R=10 Å and 15 Å in Figures 2.3 and 2.4, respectively. Note that the free and in-

ternal energies are set to zero by convention (equations 2.12 and 2.13) for the position

nearest to the cavity center, at d=9.75 and 14.75 for the R=10 and 15 Å cavities, re-

spectively. For both cavity sizes and solvents, the free energy global minimum is near

the cavity wall, at d=3.5 Å. In the smaller R=10 Å cavity, there is a difference of ∼0.4

kcal/mol between the free energy minimum near the cavity wall and the free energy of

the solute located near the cavity center, around d=7.5 Å. A comparison with the sol-

vent radial density shows that both of these free energy minima correspond to distances

where the solute center-of-mass is located within a solvent layer. In addition, there is

a local free energy minimum for both solvents in the R=10 Å cavity between the two

solvent layers, near d∼4.5 Å. There is a free energy maximum in both linear solvents

around d=6 Å that gives rise to a barrier of ∼2.4 kcal/mol for the ground-state solute

to move from the free energy minimum near the cavity wall to the local minimum in

the second solvent shell.

In comparison to the R=10 Å cavities, the free energy curves for the ground-state

solute in the R=15 Å cavities are much shallower, as seen in Figure 2.4, with differ-

ences between maxima and minima of ∼1 kcal/mol. For the R=15 Å cavities, all of

the minima in the free energies correspond to a solute center-of-mass position located

within a solvent layer. The global minimum in ∆A(d) is located at d=3.5 Å in both

solvents, with local free energy minima located in the second layer of solvent, at d=

7.5 (7.75) Å in CH3I (CH3CN) and within the third solvent layer, at d=11.75 (11.0) Å.
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Thus, in all cases, the free energies are at a minimum in locations where solvent density

is at or near a maximum.

The internal energies, on the other hand, are distinct from the free energies in the

location of minima and their relationship to the solvent density. For the 10 Å cavities,

the global minimum is located at d=4.75 Å (4.5 Å) in methyl iodide (acetonitrile).

This corresponds to a position between the two solvent layers, i.e., the solute molecule

has one atom in each solvent layer such that the solute center-of-mass lies in between.

Other local minima in ∆U(d) for R=10 Å are located at d=3.5 (3.75) Å, around the free

energy global minimum within the first solvent layer, and at d=7.75 (7.25) Å, toward the

interior of the cavity, with the solute center-of-mass slightly inside of the second solvent

layer in CH3I (CH3CN). For the R=15 Å cavities, the internal energy curves shown in

Figure 2.4 are more difficult to interpret because the magnitude of the fluctuations in

internal energy is not much larger than the statistical error. However, there are two

discernible minima near the cavity wall, within the first solvent layer (around d∼3.5

Å), and between the first two solvent layers (d ∼5 Å), with a small barrier between the

two at d=4.5 (4.25) Å for CH3I (CH3CN).

The differences between the free and internal energies are naturally due to entropic

effects as indicated by Eq. 2.14. The large size of these differences indicate that entropy

has a strong influence in determining the most likely position for the solute within the

cavity.

2.6.2 Excited-state Solute in Linear Solvents:
Free and Internal Energies

By understanding the differences between the energetic and entropic driving forces

for the ground-state and excited-state solute, we can better understand the processes

exhibited in the time-dependent fluorescence spectra. The salient difference between

the free energies in the excited state and the ground state is that the global minimum

is located near the center of the cavity for the solute in the excited state, whereas the
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Figure 2.3 The free (blue line) and internal (black line) energies for the ground-state
solute in a) CH3I and b) CH3CN in the 10 Å cavity. The scaled and shifted total solvent
density is overlaid (dashed red line).
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Figure 2.4 The free (blue line) and internal (black line) energies for the ground-state
solute in a) CH3I and b) CH3CN in the 15 Å cavity. The scaled and shifted total solvent
density is overlaid (dashed red line).
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solute in the ground state has a global minimum near the cavity wall. The position of

the free energy minimum for the two electronic states is a reflection of the position-

dependent solvent polarity within the cavity. The solvent layer adjacent to the cavity

wall is effectively less polar, and this is the favored position for the relatively non-

polar solute in its ground electronic state. Upon excitation, the solute has a significant

dipole moment, and is better solvated toward the interior of the cavity where the solvent

is effectively more polar. In spite of the differences in the location of the free energy

global minima for the two electronic states of the solute, the radial positions of the local

minima are at approximately the same distances from the cavity wall for the ground and

excited states, as can be seen by comparing Figs. 2.3 and 2.5 for R=10 Å, and Figs. 2.4

and 2.6 for R=15 Å.

Figure 2.5 shows the free and internal energies for the solute in the excited elec-

tronic state in CH3I and CH3CN solvents in the 10 Å cavity; the solvent density is also

plotted in these figures. As seen in Figure 2.5a, in CH3I the two lowest free energy

minima lie at the peaks of the solvent density: at d=3.5 and 7.5 Å. The global mini-

mum in ∆A(d) for the excited-state solute, located at d=7.5 Å, lies 1.1 kcal/mol lower

than the minimum next to the cavity wall, where the ground-state solute is at its global

minimum in free energy. A local maximum at d=6.0 Å results in a free energy barrier

of 1.8 kcal/mol for the solute to move from the inside of the cavity toward the wall.

The barrier height is ∼0.7 kcal/mol for the excited-state solute to move away from the

cavity wall toward the global free energy minimum at d=7.5 Å.

As seen in Figure 2.5a, there are notable differences in the free and internal energies,

indicating a significant contribution from entropy to the free energy. Overall, energy

differences in ∆U(d) are smaller than ∆A(d). In methyl iodide, two local minima in

the internal energy lie at d=5.5 and 7.75 Å; the internal energies at these two points

are equal within the statistical error. The minimum at 5.5 Å lies between the solvent

layers, and corresponds to a region of relatively high free energy, indicating that solute

positioned in this region is entropically disfavored (see Section 2.6.3 below).
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Figure 2.5 The free (blue line) and internal (black line) energies for the excited-state
solute in a) CH3I and b) CH3CN in the 10 Å cavity. The scaled and shifted total solvent
density is overlaid (dashed red line).
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For acetonitrile in the 10 Å radius cavity, the global minimum in free energy is at

d=7.75 Å; it is 1.0 kcal/mol lower in energy than another local minimum near the wall

at 3.5 Å, as seen in Figure 2.5b. As in the case of CH3I, there is a local maximum in

∆A(d) at d=6.0 Å in CH3CN, with a barrier of 1.7 kcal/mol to move from the interior

toward the cavity wall (the barrier is ∼0.7 kcal/mol when approached from the cavity

wall toward the interior). It is interesting to note that the barrier heights are nearly

identical for the two linear solvents. Also like the methyl iodide system, the internal

energy in acetonitrile is relatively shallow from d=3.25-7.75 Å, with the exception of a

local maximum at d=6.5-6.75 Å. It is notable that the barrier in the free energy is at a

region where the internal energy is near its minimum, indicating a large entropic barrier

for solute motion between positions in the first and second solvent layers.

The free and internal energies for the linear solvents CH3I and CH3CN in the R=15

Å cavity are plotted in Figure 2.6; the scaled and shifted solvent density is overlaid

for comparison. Figure 2.6a shows that the solute in CH3I has two minima in the free

energy at d∼7.5 Å and 12 Å. These two minima correspond to positions within the

second and third solvent layers. As with the methyl iodide system in the ground state,

the internal energy is relatively featureless. There is a broad minimum from d∼5 Å to

the inside of the cavity (d=14.75 Å); the region near the cavity wall (d∼3.5=5 Å) is

energetically less favorable. In this way, the excited-state internal energy differs from

that of the ground state, which has a minimum in ∆U(d) near the cavity wall. While

the internal energy differences are rather small in methyl iodide, this is not the case

for acetonitrile, however, as can be seen in Figure 2.6b. The internal energy of the

excited state solute in CH3CN (R=15 Å) has a sharp global minimum at d=13.5 Å.

This position also corresponds to a minimum in free energy. Other free energy minima

lie around d=7.0 and 11.0 Å , at positions within the second and third solvent layers,

respectively. As was seen for the ground-state solute, the magnitudes of the variations

in ∆U(d) and ∆A(d) are much smaller for R=15 Å than for R=10 Å. In general, the

energy differences are ∼1 kcal/mol, with the notable exception of the internal energy
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Figure 2.6 The free (blue line) and internal (black line) energies for the excited-state
solute in a) CH3I and b) CH3CN in the 15 Å cavity. The scaled and shifted total solvent
density is overlaid (dashed red line).
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in acetonitrile, where the global minimum at d=13.5 Å is ∼2 kcal/mol below the next

lowest local minima and ∼3 kcal/mol lower than the area next to the cavity wall.

2.6.3 Linear Solvents: Entropy

Clearly, the differences between ∆A(d) and ∆U(d), seen in Figs. 2.3-2.6 and dis-

cussed above, indicate an important role for entropic effects. Plots of ∆S(d) for the

solute in both the ground and excited electronic states are given in Figure 2.7 for CH3I

and CH3CN in the R=10 Å cavities. The entropy of the methyl iodide solution in the

R=10 Å cavity is qualitatively identical for the solute in the ground state and excited

state, as seen in Figure 2.7a. There are two maxima in ∆S(d) near the two positions of

lowest free energy: next to the cavity wall, at d=3.25 Å, and within the second layer of

solvent, at d∼7.5 Å. Entropy is lowest between the two solvent layers, d=5-6 Å. The

total differences between the maxima and minima of ∆S(d) are slightly larger for the

solute in the excited state.

In acetonitrile for R=10 Å, the entropy appears to be relatively independent of solute

electronic state, as most values of ∆S(d) for the excited-state solute are the same within

statistical error as those for the ground-state solute. As in CH3I, the overall entropy

differences in CH3CN between the global minimum, located between the two solvent

layers (d∼5-6 Å), and the two maxima, where the solute is located within a solvent

layer (d∼3 and 7 Å), appear to be slightly greater when the solute is in the excited state,

though here they are within the statistical error. By comparing Figs. 2.7a and 2.7b, it

can be seen that the entropy in CH3CN differs from the entropy in CH3I in that there

is a region of high entropy from d=6.5-9.75 Å in CH3CN, corresponding to the region

from the second solvent layer inward to the center of the cavity, whereas for CH3I,

the entropy decreases for values greater than d=7.5 Å. The magnitude of the entropy

changes in the 10 Å cavities are ∼6-7 cal/(mol·K), with ∆S(d) differences slightly

larger in CH3CN than in CH3I. These differences correspond to entropic contributions

to the relative free energy of T∆S≈1.8-2.1 kcal/mol.
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Figure 2.7 The entropy for a) CH3I and b) CH3CN solution in the 10 Å cavity, when
the solute is in the ground state (blue line) and the excited state (black line). The solvent
density is overlaid (dashed red line).
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The entropy in CH3I in the R=15 Å cavity is plotted in Figure 2.8a; it can be seen

that ∆S(d) for the solute molecule in both electronic states has a maximum near the

cavity wall (d=3.0-3.75), with minima near the cavity center and around d=6.0 Å. The

peaks in entropy coincide with regions of high solvent density, while areas between

solvent layers correspond to minima in ∆S(d). The region between d=7 and 13 Å is

higher than the minima by∼3 cal/(mol·K) except around d=10 Å, where there is a local

minimum. As with the R=10 Å cavities, the differences in ∆S(d) from the maximum

near the cavity wall to the minimum between the two solvent layers is slightly greater

for the solute in the excited state. In the 15 Å cavities, these entropy differences are

somewhat greater: on the order of 8-9 cal/(mol·K) (T∆S≈2.4-2.7 kcal/mol) for the

excited state and 5-6 cal/(mol·K) (T∆S≈1.5-1.8 kcal/mol) for the ground state, with

larger entropy differences between the electronic states seen in the more polar acetoni-

trile solvent.

While the entropies are similar for the solute in both the ground and excited states

in CH3I for R=10 and 15 Å, there is a dependence on electronic state in the entropy of

the acetonitrile solution in the 15 Å cavity, as shown in Figure 2.8b. For both electronic

states, there is a maximum near the cavity wall, with a minimum between the first two

solvent layers. However, for the ground-state solute, there is a region of relatively

higher entropy from d=6.75 Å to the center of the cavity, with slight dips around d=9.0

and 13.25. In contrast, when the solute is in the excited state, there is a marked drop

in entropy in the region from d=12.25-14.25 Å. Thus, the free energy local minimum

observed around d=13.5 Å for the excited-state solute in acetonitrile arises from the

favorability of the internal energy, which has a global minimum at this position, as

discussed above in Section 2.6.2 and seen in Figure 2.6.

2.7 Nonlinear Solvent: Methanol

For the linear solvents, it was found that entropy is at a maximum at radial positions

where the solvent density is also at a maximum. Likewise, the free energy is generally at
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Figure 2.8 The entropy for a) CH3I and b) CH3CN solution in the 15 Å cavity, when
the solute is in the ground state (blue line) and the excited state (black line). The solvent
density is overlaid (dashed red line).
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a minimum in the regions of maximum entropy and solvent density. The linear solvents,

which have very similar solvent packing, also show similar trends for the entropy and

free energy as a function of radial distance from the cavity wall. As discussed above in

Section 2.5, methanol packs in a different manner than the linear solvents: the hydroxyl

groups of the two outer solvent layers are oriented toward one another via hydrogen

bonding interactions, while the methyl group layering is determined by packing effects.

Given the differences in solvent packing, one might expect the entropy and free and

internal energies of the ground- and excited-state solute in methanol to differ from

those of the linear solvents.

2.7.1 Ground-state Solute in Methanol: Free and Internal Energies

The free and internal energies were calculated for the ground-state solute molecule

in CH3OH solvent in the R=10 and 15 Å cavities. These are plotted in Figure 2.9 along

with the total solvent density. In methanol, the solute in the ground state has a global

free energy minimum near the cavity wall within the first solvent layer, at d=3.5 Å, for

both the R=10 and 15 Å cavities. In the 10 Å cavity the global minimum near the wall

lies 1.7 kcal/mol lower in energy than a local minimum at d=7.25 Å; there is a free

energy barrier located at d=6.25 Å that is 3 kcal/mol higher than the minimum near the

cavity wall.

Figure 2.9b shows that the free energy differences are smaller in the R=15 Å cavity

than those seen in the R=10 Å cavity (Figure 2.9a). It can be seen that the free energy

local minima for R=15 Å are ∼1 kcal/mol higher in energy than the global minimum

near the cavity wall and are located at the center of the cavity and around d=7.5 and

10.75 Å. The latter two minima correspond to positions within the second and third

solvent layers, respectively. As in the R=10 cavity, the free energy barrier in the R=15

Å cavity is located between solvent layers, at d=6.25 Å. This local maximum is 1.8

kcal/mol higher than the global minimum in ∆A(d), located near the cavity wall.
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The internal energy in the 15 Å cavity is fairly shallow, but there is a discernible

minimum at d∼5.0 Å and a maximum around 12 Å. The minimum in ∆U(d) corre-

sponds to a position between the first two solvent layers. In the R=10 Å cavity, the

internal energy differences are more pronounced, as seen in Figure 2.9a, and there is

a global minimum in ∆U(d) centered around d=5 Å, at a location between the two

layers of methyl groups of CH3OH and at a position where the hydroxyl groups are

at maximum density (cf. Figure 2.2). The global minimum in ∆U(d) in the R=10 Å

cavity corresponds to an area where ∆A(d) is higher than its global minimum by over

1 kcal/mol. This indicates that the region between the two solvent layers is entropically

disfavored.

2.7.2 Excited-state Solute in Methanol: Free and Internal Energies

Plots of ∆A(d) and ∆U(d) for the excited-state solute are presented in Figure 2.10

for the R=10 and 15 Å cavities. As in the linear solvents, the more polar excited-state

solute is better solvated toward the interior of the cavity. In the 10 Å cavity, the free

energy has a global minimum at d=7.25 Å, with a local minimum at 5.0 Å, as seen

in Figure 2.10a. Figure 2.10b shows that the solute in the R=15 Å cavity also has

free energy minima located around those same two positions, with additional ones at

d∼11.0 Å and at the cavity center (14.75 Å). Like the ground- and excited-state solute

free energies in the linear solvents and the ground-state solute in methanol (Sections

2.6.1, 2.6.2, and 2.7.1), the free energy minima of the excited-state solute in CH3OH

correspond to regions of maximum solvent density.

As with the other R=15 Å cavities, the energy differences are smaller (∼2 kcal/mol)

than those in the R=10 Å cavities and the internal energy is relatively shallow. There

is, however, a minimum in ∆U(d) around d=5 Å and a maximum at 12 Å (see Figure

2.10b) for R=15 Å, in the same positions as the extrema in ∆U(d) for the ground-

state solute in CH3OH, R=15 Å (cf. Figure 2.9b). In the R=10 Å cavity, ∆U(d)

has a minimum at d=4.75-5.0 Å, where the solute center-of-mass is nested within the
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Figure 2.9 The free (blue line) and internal (black line) energies for the solute in the
ground state in CH3OH in the a) 10 Å and b) 15 Å cavity. The scaled and shifted total
solvent density is overlaid (dashed red line).
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hydroxyl groups of both layers of solvent. This significant minimum in internal energy

results in a local minimum in free energy at d=5.0 Å, but does not give rise to a global

minimum in ∆A(d). Hence, it can be seen from comparing ∆U(d) and ∆A(d) in

Figure 2.10a that the global minimum in free energy in the R=10 Å cavity at d=7.25 is

entropically favored.

2.7.3 Methanol: Entropy

For the linear solvents, the entropies of the R=10 Å cavities were nearly identical,

regardless of solute electronic state. In methanol, however, the entropy is different

for solute ground and excited states, as shown in Figure 2.11a. The global maxima

in entropy are located at the same radial distance as the respective free energy global

minima of the two electronic states. Thus, for the ground-state solute, entropy is at

a maximum near the cavity wall (d=2.75-3.5 Å) in the first layer of solvent, near the

peak solvent density of the methyl groups. There is a local maximum in ∆S(d) when

the solute center-of-mass is located in the second solvent layer, at d∼7.5 Å. The global

minimum is located at d=5.25-6.0 Å and is ∼10 cal/(mol·K) (T∆S∼3 kcal/mol) lower

in entropy than the global maximum. The excited state likewise has a global minimum

in entropy in the region between the two solvent layers where solvent density is low

(d=4.5-5.5 Å). This corresponds to the region where ∆U(d) is at its global minimum

(see Figs. 2.9a and 2.10a), which indicates that entropy makes significant contributions

in determining the most probable radial positions of the dye molecule in both the ground

and excited states. For the excited-state solute, the entropy is at a global maximum from

d∼7-8 Å that is ∼12 cal/(mol·K) higher in entropy than the global minimum. Another

local maximum is in the region near the cavity wall (d=3.0-3.75). As with the entropies

of the linear solvents, the magnitude of differences in ∆S(d) are somewhat greater

when the solute is in the excited state than in the ground state.

In the 15 Å cavities, differences in the radial entropy due to solute electronic state

are less marked. The entropy in CH3OH for R=15 Å is plotted in Figure 2.11b, where
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Figure 2.10 The free (blue line) and internal (black line) energies for the solute in the
excited state in CH3OH in the a) 10 Å and b) 15 Å cavity. The scaled and shifted total
solvent density is overlaid (dashed red line).
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Figure 2.11 The entropy for CH3OH and solution in the a) 10 Å and b) 15 Å cavity,
when the solute is in the ground state (blue line) and the excited state (black line). The
solvent density is overlaid (dashed red line).
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it can be seen that for the ground-state solute, ∆S(d) has a global minimum at d∼5-

6.5 Å, when the solute center-of-mass is located between the first two solvent layers.

This region corresponds to a barrier in ∆A(d), but a minimum in ∆U(d), as can be

seen in Figure 2.9b. Thus, the free energy barrier for ground-state solute movement

away from the cavity wall in the R=15 Å cavity is an entropic one. There is another

region of lower entropy for the ground-state solute at d=12.5-13.25 Å, near the center

of the cavity. Entropy is at a maximum near the cavity wall and around d=11-14 Å;

statistical errors lead to a broad maximum in ∆S(d) in the interior of the cavity. For

the excited-state solute, the global minimum in entropy is located around d=5.25 and

is 5-8 cal/(mol·K) (T∆S∼1.5-2.4 kcal/mol) lower than other radial positions. This

global minimum in ∆S(d) corresponds to a global minimum in ∆U(d), with the solute

center-of-mass located between the two solvent layers. At other regions in the cavity,

fluctuations in the entropy are within 2-3 cal/(mol·K) (T∆S<1 kcal/mol). Although the

entropy appears relatively featureless between d=6-14.75 Å the unfavorable entropy at

the position of minimum ∆U(d) (d≈4.5-5.5 Å) indicates that entropy is the dominant

factor in determining the locations of the free energy minima (see Figure 2.10b), which

are located within the second and third solvent layers and in the center of the cavity.

2.8 Discussion

The results presented in Sections 2.6 and 2.7 demonstrate that entropy has a large

influence on the free energy of the diatomic solute in solution: minima in free energy

are located where entropy is at a maximum, and are distinct from the global minima

in internal energy. A general trend in the radially-dependent energies, shown in Figs.

2.3-2.6, 2.9, and 2.10, is that ∆U(d) is typically at a minimum between solvent lay-

ers, while ∆A(d) is almost always at a minimum when the solute molecule is located

within a solvent layer. The exceptions to free energies being located within solvent lay-

ers arise for the excited-state solute in CH3OH and CH3CN in 15 Å cavities, in which

there is a free energy minimum near the center of the cavity, where the solute molecule
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is surrounded by the third solvent shell. Because the entropy is at a maximum when the

solute center-of-mass is located within a solvent layer, entropy makes the largest con-

tributions to the free energy at these locations, leading to a strong correlation between

solvent density and the free energy and entropy of all the systems studied.

In CH3I and CH3CN solvents for both the R=10 and R=15 Å cavities, the entropy

has a local maximum within 0.5 Å of where the total solvent density is at its peak.

On the other hand, while there is a correlation between entropy and solvent packing in

CH3OH, a non-linear solvent, the maxima in entropy to do not correspond as directly

to solvent density peaks. As can be seen from Figure 2.11, the first ∆S(d) maximum

next to the cavity wall correlates with the methyl density in the first solvent layer, but

the other maximum lies closer to the interior of the cavity than the peak solvent density

of the innermost layer. Nonetheless, entropy is at a global minimum in both the 10

and 15 Å cavities between the first two solvent layers where the solvent density is at

a minimum. While the present work shows a strong relationship between the position-

dependent entropy and local density, simulations by Mittal, Errington, and Truskett of

hard sphere fluids in one- and two-dimensional confinement showed that total excess

entropy of a confined hard sphere fluid generally has no dependence on local density

profiles (fluid packing), but a strong dependence on the average (total) density of the

fluid.120

Because of the relationship between solvent packing and ∆S(d), the origin of the

solvent packing was explored. In addition, to investigate what governs ∆S(d) at the

molecular level, several factors were considered. First, the translational entropy with a

free volume model was considered,121 but it did not match the qualitative trends in the

calculated values of ∆S(d). Other possible sources to describe the molecular origins of

the entropy that were explored include electrostatic interactions and contributions due

to solute orientation. These are discussed below.
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2.8.1 Electrostatic Effects

The similarities in entropy between the ground state and excited state solute molecule

in every system studied, as seen in Figs. 2.7, 2.8, and 2.11, indicate that electrostatic

effects - at least in the solute-solvent interactions - do not make significant contribu-

tions to the entropy. However, electrostatics may play a role in the way that solvent

molecules pack in the cavity, which in turn is related to the entropy. Therefore, the ef-

fect of electrostatics was calculated directly, and the origin of the solvent packing motif

in the linear solvents was explored.

To determine how charge and geometry influence solvent packing and entropy in

CH3I, simulations in the R=10 Å cavity were run with the solvent charges set to zero.

The free and internal energies for this are plotted in Figure 2.12a along with the corre-

sponding charged ground-state solute energies in CH3I. With no charges on the solvent

molecules, the solvent density profile of CH3I did not change distinguishably, indi-

cating the solvent density is determined by packing effects rather than electrostatics.

Moreover, the free energy is very similar to that of the ground-state solute in CH3I; see

Figure 2.12a. Thus, the resulting entropy shown in Figure 2.12b has the same shape,

with maxima and minima in the same locations, as the ground- and excited-state en-

tropies. The magnitude of ∆S(d), as with the ground state, is slightly smaller than

that of the excited state, though the differences are close to the statistical error. The

entropy of the system, then, in the linear solvents, like the solvent density, appears to

be primarily influenced by the molecular geometry and packing of the solvent rather

than interactions due to the charges.

2.8.2 Solute Orientation

In order to investigate the relationship between solvent packing, entropy, and solute

orientation, two-dimensional plots of solute free energy and solute orientation were

made, assuming separability of the two coordinates. Specifically, during the Monte

Carlo simulations, solute atomic positions were recorded 80,000 times at even intervals
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Figure 2.12 a) The shifted free (blue line) and internal (black line) energies for the
solute in CH3I with solvent charges turned off, compared to the free (blue, dot-dash) and
internal (black, dot-dash) energies of the ground-state solute in CH3I. b) The entropy
in CH3I when there are no charges in the solvent (red), compared to the ground-state
solute (blue line) and excited-state solute (black line).
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Figure 2.13 Free energy surface for the ground-state solute in CH3OH for R=10 Å.
The rotational free energy is calculated as a function of cos θ, and the free energy is
plotted versus distance from the cavity wall, d.

over the course of each run. The angle, θ, between the solute molecular axis and the

radial vector between the solute center-of-mass and the cavity center was calculated.

Orientational probabilities from histograms of cos θ with bin widths of 0.1 were used

to calculate rotational free energies (∆A(d, cos θ)=-RT ln P (d,cosθ)
P0

). Figure 2.13 shows

the free energy surface for the excited-state solute in CH3OH in the 10 Å cavity.122

The free energy surfaces indicate that the solute molecule is primarily oriented par-

allel to the cavity wall when it is located within solvent layers. In the parallel ori-

entation, the area in which the molecule can rotate around the azimuthal angle, φ, is

maximized. On the other hand, when the solute molecule is located between solvent

layers, it has a higher probability of being oriented perpendicular to the wall. In such an

orientation, the volume through which the solute molecule rotates about the azimuthal

angle φ is minimized. This gives a qualitative explanation why entropy may be at a

maximum within solvent layers and next to the cavity wall. A more quantitative calcu-

lation of rotational entropy was carried out, using123

∆Srot(d) = −kB

∫
P (θ, d) ln P (θ, d) sin θ dθ [2.16]
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as a measure of the rotational entropy.

Rotational entropies, using Eq. 2.16, were calculated for the various solvents and

cavity sizes. Two examples of the rotational entropies, in CH3OH, R=10 Å and CH3CN,

R=15 Å, are plotted along with the total entropies in Figs. 2.14 and 2.15. The rota-

tional entropies for the ground- and excited-state solute in CH3OH are identical to each

other. As seen in Figure 2.14, the rotational entropies have a global minimum, located

between the methyl group solvent density peaks at d∼4.5-5.5 Å (cf. Figure 2.2a and

2.11a), that coincides with the global minimum in the total entropy. The maxima in

∆Srot(d), located around d=4 Å and from d∼6.5-9 Å, also correspond to regions of

high total entropy. However, while the location of the global maximum in ∆S(d) is de-

pendent on solute electronic state, the maxima in rotational entropy are independent of

electronic state. Also, the differences in maxima and minima in the rotational entropy

are not as pronounced as the apparent differences in the total ∆S(d), which have rather

larger uncertainties due to statistical errors.

Like the entropy in CH3OH solvent in the R=10 Å cavity, the total ∆S(d) in

CH3CN solvent in the R=15 Å cavity is dependent on the solute electronic state. In

CH3CN, R=15 Å, there is a global minimum in ∆S(d) located at d∼13 Å for the

excited-state solute (coinciding with a sharp minimum in ∆U(d), as seen in Figure

2.6b), whereas for the ground-state solute, entropy in this location is just at a local

minimum. As can be seen in Figure 2.15, the rotational entropies in CH3CN, R=15 Å

are very similar to the total entropies. The magnitude of the differences in ∆Srot(d)

and total ∆S(d) are comparable, and the maxima and minima coincide. Remark-

ably, the rotational entropy qualitatively reproduces the electronic-state dependence in

∆S(d) around d=13 Å, although the magnitude of the entropy differences are somewhat

smaller. The only region where there are noticeable differences between the rotational

and total entropies is in the region near the cavity wall, around d=3 Å.

Rotational entropy, like the total entropy, is at a minimum between the solvent lay-

ers, where there is higher probability that the solvent lies perpendicular to the cavity
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Figure 2.14 The total (black error bars) and shifted rotational (solid black line) en-
tropies for the a) ground- and b) excited-state solute in CH3OH, R=10 Å.
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Figure 2.15 The total (black error bars) and shifted rotational (solid black line) en-
tropies for the a) ground- and b) excited-state solute in CH3CN, R=15 Å.
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wall. With Eq. 2.16, entropy is maximized when the probability is high for the solute

to be oriented parallel to the wall. Although the calculated total entropy is highest near

the wall, very few values of θ are probable, and so the rotational entropy is lower rel-

ative to other regions in the cavity where a greater range of θ values are accessible to

the solute. The discrepancies between the total and rotational entropy at distances very

near the cavity wall may be due to insufficient sampling in the repulsive region, d≤3.0

Å, and/or other entropic contributions that give rise to higher values of total entropy. In

fact, the rotational entropy is at a maximum within 0.5 Å of the free energy minimum

near the cavity wall, which can be seen by comparing Figs. 2.14 and 2.15 with Figs.

2.10 and 2.4, respectively. Meanwhile, the total entropy has a maximum around d=3

Å, where the free and internal energies are high due to repulsive interactions with the

wall. Except for very small values of d, the rotational entropies describe the trend of the

overall entropy well. The magnitude of differences in ∆Srot(d) are generally somewhat

smaller than the magnitude of those in the total ∆S(d), though the magnitude in ∆S(d)

is somewhat indefinite due to statistical errors. Moreover, the rotational entropy calcu-

lated by Eq. 2.16 is a crude measure of rotational entropy, and assumes separability

between θ and the azimuthal angle φ. Given these considerations, there is remarkable

agreement between the total and rotational entropies, indicating that rotational contri-

butions are the dominant factor in the total ∆S(d).

2.9 Conclusions

Monte Carlo simulations were used to calculate free energies, internal energies, and

entropies of a model dye molecule in its ground and excited states in CH3I, CH3CN,

and CH3OH solvents confined in 10 and 15 Å radius spherical, hydrophobic cavities.

The primary conclusions of this work are: 1.) Global minima in ∆A(d) are distinct

from global minima of ∆U(d), indicating that the most likely position for the solute

molecule is governed by entropy. 2.) Free energy global minima correspond to regions

of maximum entropy. 3.) Entropy is at a maximum when the solute center-of-mass
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is located in a region of high solvent density. 4.) When the solute center-of-mass is

located in a solvent layer, the solute has a higher probability of being oriented parallel to

the wall; thus, rotational entropy makes substantial contributions to the total calculated

∆S(d). 5.) Electrostatic interactions and translational entropy were found to have little

effect on the total entropy.

Entropic contributions to free energy are significant in determining the most prob-

able position of the solute. In these systems, the more polar excited-state model dye

molecule is better solvated toward the center of the cavity, where the solvent is more

polar. In fact, the magnitudes of differences in ∆S(d) within the cavities were greater

in solvents with higher “bulk” polarity. We have shown that the position-dependent

solvent polarity in the nanoconfined solvents, as manifested in the different locations

for ground- and excited-state solutes, exhibits an interplay between charge interactions

and entropic effects. Electrostatic interactions, which can be straightforwardly seen

in ∆U(d), are most favorable when the solute center-of-mass is between two solvent

layers, with one atom of the diatomic dye model in each solvent layer. It is entropic

considerations that minimize the free energy at positions where the solute center-of-

mass is in the solvent layers, but the internal energy ultimately determines in which

solvent layer the global free energy minimum is located. At the positions of high en-

tropy located within a solvent layer, the solute molecule has a high probability of being

oriented parallel to the cavity wall. In such an orientation, rotation of the solute is

maximized; the increased solute rotational freedom is the primary source of the higher

entropies observed when the solute center-of-mass is positioned within a solvent layer.

The free energies of the ground-state and excited-state solute were previously shown

to rationalize the longer time scales in time-dependent fluorescence spectra of this

model dye in nanocavities.57, 58 Namely, shorter time scales in the normalized Stokes

shift are due to inertial motion and solvent reorientation, while the longest time scale

can be attributed to diffusion of the more polar excited-state molecule away from the

cavity wall toward the interior. This study explored the driving force for the diffusive
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time scale, indicating that entropy strongly influences solvation dynamics in charge-

transfer processes in nanoconfined solvents.
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Chapter 3

Infrared Spectra of a Proton-Transfer Complex in Nanoconfined Methyl
Chloride Solution

The previous chapter explored the driving forces behind one spectroscopic method

used to probe confining frameworks, time-dependent fluorescence. In this chapter, the

same confining framework, a spherical, hydrophobic cavity, is considered, but a differ-

ent spectroscopic method is explored: infrared absorption spectroscopy. In this case, a

model proton transfer complex in methyl chloride solution confined in a 12 Å radius

cavity is studied. The instantaneous frequencies and infrared spectra are calculated us-

ing mixed quantum-classical dynamics for 5 different cases of the model, in which the

energy offset was varied such that a number of different proton transfer equilibrium

reaction free energy values were afforded.

A model proton transfer complex is used in this work. Proton transfer reactions

are of considerable interest as they are ubiquitous in chemistry, physics, and biology.

Their importance also extends to catalysis, including efforts to develop microporous

and mesoporous materials, for example, as solid acid catalysts (see Chapter 4). Our

understanding of proton transfer reactions in such porous materials is currently limited,

with only a small number of experimental37–41, 41, 43, 44, 68, 70, 71, 76 and theoretical62, 63, 77, 124

studies having addressed the issue. By studying the effect that confining environments

have on proton- and charge transfer reactions, the development of new catalysts can be

guided.
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3.1 Spectroscopic Studies of Proton Transfer

A variety of spectroscopic methods are used to probe proton transfer processes

in confining environments. Experimental studies have focused almost completely on

excited-state proton transfer since the reaction can be straightforwardly initiated. Pump-

probe experiments67, 70 of optical chromophores in reverse micelles37–39, 41, 41, 43, 44, 68, 76

and sol-gels70, 71 found that deprotonation rates decreased with decreasing pore size,

and overall were slower than in neat solvent. These excited-state proton-transfer dy-

namics experiments provide information about the confining framework and its effects

on solvation.

Although experimental studies of proton transfer in nanoconfined solvents have

considered excited-state proton transfer almost exclusively, most proton transfer re-

actions important in catalysis occur in the ground electronic state. The dynamics of

such ground-state proton transfer reactions are more difficult to probe spectroscopi-

cally; however, linear and/or nonlinear vibrational spectroscopies have some promise

for addressing this issue. In particular, vibrational spectroscopies are sensitive to lo-

cal environments, and have already been shown to provide extensive information about

liquid structure and hydrogen bonding dynamics. Spectral diffusion data reflect the

microscopic dynamics and can be probed by infrared photon echo experiments. Re-

cent studies of numerous properties of condensed phases, including hydrogen-bond

strength,125–128 structure,129–132 and dynamics,133–135 as well as reorientational,125, 136

solvation,135, 137, 138 and proton transfer139–142 dynamics, have been carried out with lin-

ear and non-linear143 vibrational spectroscopies. Several examples of such work have

been carried out on nanoconfined liquid systems.136, 144–146

In addition to the studies of proton transfer discussed above, infrared spectra in gen-

eral are frequently used to characterize confined solvent systems, including those with a

solute vibrational chromophore.147–156 Thus, it is useful to consider what the vibrational

spectra of a ground-state proton transfer reaction complex can tell us about the reaction
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equilibrium and dynamic properties. Experimental measurements of the infrared spec-

tra of proton transfer complexes in bulk solvents have revealed a number of interesting

features. For example, Zundel and co-workers have found that for a large number of

systems a broad background appears generally in the range of 3000-800 cm−1 when

proton transfer is possible.157 The width and location of these “infrared continuum”

(also called “Zundel polarization”) bands vary by system, and are attributed to the pro-

ton polarizability of the hydrogen bond in the reaction complex. These features have

also been found in simulations of an excess proton in water.139, 142, 158–164 and a Mannich

base system.165 This work involves the calculation of ground-state vibrational spectra

of a model proton transfer complex based on a hydrogen-bonded phenol-amine com-

plex that undergoes intermolecular proton transfer.

3.2 Proton Transfer in Nanocavities

Previous work by the Thompson group on the model proton transfer complex in

nanoconfined solvent have involved Monte Carlo studies on the reaction free energies

as a function of solute position62 and molecular dynamics simulations to probe the

proton transfer mechanism and dynamics in the vibrationally adiabatic limit.63 Like the

work in this chapter, these two studies involved the proton transfer complex in nanocon-

fined CH3Cl solution in spherical, hydrophobic cavities. In the Monte Carlo study, the

probability distribution of products and reactants was determined by constraining the

proton to a bond length characteristic of either products or reactants, then sampling the

position of the complex within both the R=10 Å and R=15 Å nanocavities. It was

found that in the R=10 Å cavity, the less polar reactants had a distribution centered

around d=3.5 Å, where d is the distance from the cavity wall. Meanwhile, the more

polar products were distributed closer to the interior of the cavity, around d=7 Å. In

the larger R=15 Å cavities, the reactants likewise had a distribution peaked around

d=4 Å. However, the products had a bimodal distribution in the cavity interior, with a

larger peak around d=7.5 and a smaller one at d=11 Å. The probability distributions
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for the proton transfer complex are qualitatively similar to those seen for the model dye

molecule, discussed in Chapter 2, in which the ground-state dye molecule is prefer-

entially solvated in the first solvent layer near the cavity wall, while the excited-state

solute has lower free energy toward the middle of the cavity, in the inner solvent layers.

Using Monte Carlo methods (Ref. 62), the reaction free energies of the complex

located at different distances, d, within the cavity were calculated. It was found that,

at reaction complex positions near the cavity wall, the free energy of proton transfer

is endothermic. Meanwhile, for positions near the interior of the cavity, the free en-

ergy of reaction is exothermic. This corroborates the probability distributions found

for products and reactants. Whether solvent reorganization (for the proton transfer re-

action) takes place before solute diffusion toward the interior/exterior or vice-versa, or

as a concerted mechanism, was explored with non-equilibrium molecular dynamics in

Ref. 63. It was found that all three mechanisms take place, with a concerted mecha-

nism being the least probable. This work also explored the effect of cavity size on the

proton transfer reaction (using R=10, 12, and 15 Å cavities), and concluded that the

free energy of reaction becomes more exothermic as cavity size increases; furthermore,

the proton transfer rates increase with larger cavity sizes. In this work, only one cavity

size, R=12 Å was considered. Equilibrium molecular dynamics trajectories were used

to calculate the infrared spectra of the proton transfer complex in CH3Cl solution. The

methods are detailed below in Section 3.3. Results for the five proton transfer cases

considered are presented in Section 3.4. A discussion of spectral features, approxima-

tions and contributions to the spectra, and proton transfer equilibria and rates follows.

3.3 Methods

3.3.1 System

The proton transfer reaction complex studied in this work is a simplified model of

a phenol-amine system, based on a model developed by Borgis.166, 167 In this work,

the electronic structure of the reaction complex is represented by a two valence bond
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Table 3.1 Parameters for the in Vacuo Potentials of the Neutral and Ionic Valence Bond
States for the Proton Transfer Complex.

Parameter Neutral (N) Ionic (I)

DN/I (eV) 5.1 4.2

bN/I Å−1 1.568 1.5

req
N/I Å 0.9572 0.90

BN/I (eV) 0.04 0.05

(VB) state model composed of reactant- and product-like fixed-charge VB states.62 The

potential energy of the proton in the neutral valence bond state (reactants), V 0
N is given

by

V 0
N(rOH ; RON) = DN

[
1− e−bN (rOH−req

N )
]2

+
BN

r6
HN

. [3.1]

The O-H-N angle is held linear, and the heavy atom (O–N) bond distance is fixed

at RO−N = 2.7 Å, effectively modeling a rigid intramolecular proton transfer system.

Thus, the H-N distance is a function of the O-N and O-H distances: rHN = RON−rOH .

The potential energy of the proton in the ionic valence bond state (reactants), V 0
I is

given by

V 0
I (rOH ; RON) = ∆V0 + DI

[
1− e−bI(rHN−req

I )
]2

+
BI

r6
OH

. [3.2]

Both valence bond potentials (Eqs. 3.1 and 3.2) involve a Morse potential term that

describes the proton-oxygen (proton-nitrogen) bond for reactants (products) and a B
r6

repulsive term as the proton approaches the opposite atom - nitrogen (oxygen) in the

case of reactants (products); ∆V0 describes the gas-phase offset (see below). The pa-

rameters for the potentials V 0
N and V 0

I are given in Table 3.1.

Within this model, the equilibrium constant for the reaction in solution can be

“tuned” by changing the gas-phase offset, ∆V0, the energy difference between the two

VB states. The central case (PT ) considered is based on a value of ∆V0 = 0.7 eV

that permits significant proton transfer over the simulation time scale and for which

reactants and products are nearly equal in free energy. However, data obtained using a
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Table 3.2 Energy Offsets, Reaction Free Energies, and Equilibrium Constants for the
Five Proton Transfer Reaction Complex Cases.

Case Description ∆V0 ∆G0 Keq

(eV) (kcal/mol)

P Products only 0.45 – –

PTP Products Favored 0.65 -1.0± 0.3 ∼7

PT 0.7 0.1± 0.2 0.8

PTR Reactants Favored 0.75 0.8± 0.3 0.2

R Reactants only 0.95 – –

number of other gas phase offsets, ∆V0 = 0.45, 0.65, 0.75, and 0.95 eV, were also stud-

ied in this work, in order to determine how the spectrum depends on the equilibrium

constant and chemical exchange, as discussed in Section 3.4. The energy offsets used

in this work are summarized in Table 3.2; Figure 3.1 shows the gas phase potentials as

a function of O-H distance for the various cases considered.

The solvent and solute molecules interact through Lennard-Jones and Coulombic

interactions; the parameters for both the proton transfer complex and CH3Cl solvent

are detailed in Table 3.3. The Lennard-Jones potential, Vij , between two interaction

sites i and j is given by:

Vij = 4εij

(σij

rij

)12

−
(

σij

rij

)6
+

qi qj

rij

. [3.3]

The reaction complex and solvent molecules interact with the spherical cavity only

through Lennard-Jones interactions integrated over the infinite region surrounding the

cavity,54, 55 as detailed in Chapter 2 and given in Eq. 2.5. For these calculations, one

reaction complex was dissolved in the CH3Cl solvent confined in a spherical hydropho-

bic cavity of radius R = 12 Å. The density of the confined solution was taken to be ρ '

0.8 g/cm3 (ρCH3Cl,bulk=0.911115 g/cm3), resulting in a total of 49 molecules (including

the reaction complex).
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Figure 3.1 The gas phase electronic ground-state proton potential energy curves for the
different cases considered are plotted as a function of O-H distance. Results are shown
for, from bottom to top, P (∆V0 = 0.45 eV), PTP (∆V0 = 0.65 eV), PT (∆V0 = 0.7
eV), PTR (∆V0 = 0.75 eV), and R (∆V0 = 0.95 eV).

Table 3.3 Charges and Lennard-Jones Parameters for Proton Transfer Complex and
CH3Cl Solvent.

site ε (kcal/mol) σ (Å) q (|e|) rij (Å)

CH3Cl

CH3 0.2364 3.775 +0.25

Cl 0.4145 3.48 -0.25 1.781

Proton Transfer Complex: neutral state

Ph-O 0.09495 3.5 -0.5

H 0.0 +0.5 variable

NR3 0.09495 3.5 0.0 2.7

Proton Transfer Complex: ionic state

Ph-O 0.09495 3.5 -1.0

H 0.0 +0.5 variable

NR3 0.09495 3.5 +0.5 2.7
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3.3.2 Simulation Details

Vibrationally adiabatic mixed quantum-classical molecular dynamics simulations

were used to calculate the infrared spectrum of the proton transfer complex. In this

approach, the motions of the solvent molecules and solute heavy atoms are governed

by the classical Hamiltonian

Hn(P,Q,pe, e) =
∑

i

P2
i

2mi

+
∑

i

p2
e,i

2Ii

+ En(Q, e), [3.4]

where Qi and ei are the center-of-mass coordinates and orientational unit vector of

molecule i with conjugate momenta Pi and pe,i, respectively. The molecule i mass and

moment of inertia are denoted by mi and Ii, respectively. The potential term, En(Q, e),

is the vibrationally adiabatic energy obtained by solving the one-dimensional proton

vibrational Schrödinger equation

ĥrφn(r;Q, e) = En(Q, e)φn(r;Q, e) [3.5]

for fixed Q and e at every time step. Here, the proton Hamiltonian is given by

ĥr(Q, e) =
p̂2

r

2mH

+ Vg(r̂,Q, e), [3.6]

where r is the O-H distance and Vg(r̂,Q, e) is the electronic ground-state potential

energy of the system.

The Schrödinger equation is solved using the Lanczos algorithm,168, 169 where the

three lowest vibrational states were converged. A sinc-function discrete variable rep-

resentation basis170 was used with a grid spacing of δr = 0.0284 Å and a potential

cutoff of 3.5 eV, giving 49-50 grid points. For each value of the gas phase offset, four

or eight 15 ns trajectories (see Section 3.4) were run for data collection with a time

step116 of 1 fs. The temperature was maintained by a Nosé-Poincare thermostat;171 the

average temperature was ∼ 260 K. The data collection run was preceded by a two-

stage warmup consisting of a period of classical dynamics alone followed by a mixed

quantum-classical equilibration; the temperature was maintained using velocity rescal-

ing for the first half of each warmup stage. Different initial conditions were achieved
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by varying the length of the warmup periods: between 0.5-1 ns for the classical equili-

bration and 0.2-0.8 ns for the mixed quantum-classical warmup.

3.3.3 Diabatic States and Calculation of Infrared Spectra

It was found that both the n = 0 → n = 1 and n = 0 → n = 2 vibrational

transitions contribute to the O-H and N-H stretches in the characteristic ranges (3300-

3450 cm−1). This is discussed in further detail in Section 3.4. Briefly, for different

ranges of the solvent coordinate, either the n = 1 or n = 2 eigenstate is localized in

the same product/reactant well as the ground state, while the other is localized in the

opposite well. This is illustrated in Figure 3.2, which shows the instantaneous proton

potentials along with eigenvalues and eigenfunctions of the n = 0, n = 1, and n = 2

states for the reaction complex in the reactants well at two different values of the solvent

coordinate, ∆E, defined below in Eq. 3.12. At higher absolute values of the solvent

coordinate (-9.5 kcal/mol < ∆E < 10.4 kcal/mol, as seen below in Figure 3.3), the

n = 1 vibrational state is localized in the same well as the ground state, while for

solvent coordinate values of lower magnitude, the n = 1 and n = 2 states change

character and the n = 2 vibrational state is localized above the ground state. Thus, the

n = 0 → n = 1 and n = 0 → n = 2 vibrational transitions combine to form diabatic

surfaces; the surfaces are plotted in Figure 3.3 from data of the instantaneous transition

frequencies as a function of solvent coordinate.

Infrared absorption is dependent on the magnitude of the dipole moment: the os-

cillator strength, which is a measure of absorption intensity, is directly proportional to

the square of the transition dipole moments. In the case of these diabatic states, the

transition dipole moments are greatest for transitions from the ground state (n = 0) to

the diabatic state located in the same well, which we shall call D1 (represented by the

solid lines in Figure 3.3). On the other hand, the transition dipole moments from the

ground state to the diabatic state located in the opposite well, which we shall call D2,

〈D2|µ|0〉, are quite small: typically ∼10−3 times smaller than 〈D1|µ|0〉.
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Figure 3.2 The instantaneous proton potentials (solid black line), eigenvalues (dashed
black lines), and eigenfunctions are plotted as a function of the O − H distance for
two solvent coordinate values for the PT case (energies are in cm−1). Top panel:
∆E = −13.0 kcal/mol. Bottom panel: ∆E = −6.0 kcal/mol.
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Figure 3.3 A schematic of the n = 0 → n = 1 (black lines) and n = 0 → n = 2
(red lines) transition frequencies as a function of solvent coordinate, ∆E. The diabatic
surface D1 is represented by solid lines, while the dashed lines illustrate the diabatic
surface D2.
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In cases where non-adiabatic excited-state dynamics are possible, one has to pay

particular attention in calculating the spectra.172–174 The problem is simplified if the

excited-state dynamics are in either the adiabatic or diabatic limit. In this work, the

adiabatic limit is one in which, upon absorption to the n=1 (n=2) state, the excited state

remains in the n=1 (n=2) vibrationally excited state, even as it changes character as the

solvent coordinate evolves. In contrast, the diabatic limit is the one in which the excited-

state wavefunction maintains its character (localization in product/reactant well), even

as the vibrational state changes from n = 1 to n = 2 as the solvent coordinate evolves

at the “crossing points” or dividing surface, located for this system at ∆E= -9.5 and

10.4 kcal/mol.

To determine the extent of diabaticity/adiabaticity for the present system, the rates

of transition from one diabatic state to another were estimated using a Landau-Zener

surface hopping probability,175–178

PLZ = 1− e
−

2πW2
12

h̄v⊥|∆F⊥| , [3.7]

where W12 is the coupling between diabatic surfaces D1 and D2, |∆F⊥| is the difference

in slopes between the two surfaces, and v⊥ is the velocity in the solvent coordinate at

the dividing surface. For this system, the intersections of the diabatic surfaces are

assumed to be of the form ∆E=constant. This is reasonable based on Figure 3.3: for

reactants, ∆E= -9.5 kcal/mol; for products, ∆E=10.4 kcal/mol. The Landau-Zener

probabilities were calculated from non-equilibrium molecular dynamics trajectories,

where the system was first equilibrated in the ground state, then promoted to the n = 1

or n = 2 excited state. Values of PLZ for the n = 1 state were calculated from one

hundred 10 ps trajectories. The n = 1 trajectories had few re-crossings, as the system

rapidly moved to low values of the solvent coordinate (toward chemical exchange) once

the dividing surface was crossed. For the n = 2 state, PLZ values were calculated from

four 500 ps trajectories in which the dividing surfaces were crossed ∼750 times. For

trajectories originating in the n = 1 or n = 2 states, the calculated probabilities to hop

between the D1 and D2 surfaces in both products and reactants were never greater than
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0.3%. Therefore, this system appears to be strongly in the diabatic limit and all excited-

state trajectories are assumed to remain on the same diabatic surface. Thus, the infrared

spectra were calculated using only the vibrational transitions from the ground state to

the diabatic surface D1 (n = 0 → D1). The diabatic surface D1, as seen in Figure 3.3,

is the one that has vibrational frequencies in the characteristic ranges of O-H and N-H

stretches, ∼3250-3400 cm−1 and ∼3350-3500 cm−1, respectively.

In order to calculate the infrared spectrum, the instantaneous transition frequen-

cies for the n = 1 and n = 2 states, ωn0(t), and the transition dipole moment, µ
n0

(t)

were calculated and collected at intervals of 5 fs. From this data, the vibrational state

(n = 1 or n = 2) that corresponds to the diabatic state D1 is selected for calculation

of the infrared spectrum based on which n vibrationally-excited state has values that

fall within the characteristic ranges of the transition dipole moments (∼ 0.2) and in-

stantaneous transition frequencies(∼3250-3500 cm−1). The infrared spectrum is then

obtained as the Fourier transform of a function comprised of the dipole-dipole time cor-

relation function and the fluctuating frequency, according to the following semiclassical

approximation from linear response theory:179–181

I(Ω) ∼ 1

2π

∫ ∞
−∞

dt e−iΩt φ(t). [3.8]

The function φ(t) is given by

φ(t) =
〈
µ

d10
(0) · µ

d10
(t) ei

∫ t

0
dτ δωd10

(τ)
〉

, [3.9]

where µ
d10

(t) = 〈D1(t)|µ̂|0(t)〉 is the transition dipole moment matrix element at time

t between the ground vibrational state and state D1 and δωd10(t) = ωd10(t)−ωd10 is the

instantaneous frequency fluctuation.

In the calculation of vibrational spectra, various approximations, such as the Con-

don approximation, are sometimes used. While the Condon approximation has been

shown in some work to reproduce experimental spectral features of HOD in D2O182

and hydrated HCl and KOH183 (both exhibit strong hydrogen-bonding), other work has
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indicated that non-Condon effects can be significant in strongly hydrogen-bonded sys-

tems.184, 185 Thus, for proton transfer reactions, it may be expected that the Condon

approximation is insufficient to describe the vibrational lineshapes of such systems. It

is therefore interesting to explore the effectiveness of the Condon approximation in the

calculation of vibrational spectra of a model proton transfer complex. Approximations

to Eq. 3.9 that can be useful in understanding the origin of the spectral features are

discussed in Section 3.5.2.

3.4 Results

In this Section, simulated infrared spectra, vibrational frequency distributions, and

solvent coordinate free energy surfaces are presented for the model phenol-amine sys-

tem in nanoconfined CH3Cl. To investigate the role of the reactant and product species

and the effects of chemical exchange, five values of the gas phase offset have been

examined as discussed in Section 3.3.1 and Table 3.2. The cases consist of instances

in which there are products exclusively (P), products are favored (PTP ), the reaction

free energy is nearly zero (PT ), reactants are favored (PTR), and reactants are found

exclusively (R), respectively. The infrared spectra of the proton transfer complex were

calculated according to Eq. 3.8 from data acquired in eight 15 ns trajectories for the

PTP , PT , and PTR cases and from data acquired in four 15 ns trajectories for the P

and R cases.

3.4.1 PT Case

The distribution of instantaneous frequency shifts and the infrared spectrum for the

PT case (∆V0 = 0.7 eV) are shown in Figure 3.4. In the distribution of instantaneous

frequencies, the contributions from the n = 0 → n = 1 and n = 0 → n = 2 transitions

are also plotted separately. Note that the frequency distribution has two large peaks,

one corresponding to the reactants (O − H · · ·N ) centered at 3339 cm−1 and another

corresponding to products (O− · · ·H − N+) at 3427 cm−1, as well as long tails on
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Figure 3.4 Results for the PT (∆V0 = 0.7 eV) case. Top: The distribution of instanta-
neous vibrational transition frequencies for n = 0 → n = 1 (blue line), n = 0 → n = 2
(red line), and the total (black line). Bottom: The infrared spectrum (violet line) along
with the total instantaneous frequency distribution (black line).
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both the low and high frequency sides. The low and high frequency tails correspond to

frequencies from the D2 surface. Note that the D2 transition frequency and transition

dipole moment values are not included in the calculation of the IR spectrum in this

work, as given by Eq. 3.8, nor would they have significant contributions if they were

included, due to the negligible values of µ
d10

(t) . Both the reactant and product peaks

of the frequency distribution are Gaussian in shape, and are composed of a sum of

contributions from the n = 0 → n = 1 and n = 0 → n = 2 frequencies, arising from

transitions between the ground state and the diabatic surface D1.

It is interesting to note that the lower frequencies within each Gaussian peak of the

product and reactant frequency distributions are from the n = 0 → n = 2 transition.

Specifically, those low frequencies correspond to cases, for example, where the n =

0 vibrational state is localized in the reactant well but the n = 1 state is primarily

in the product well, as illustrated in Figure 3.2. When this occurs, the n = 2 state

assumes the physical character of a first-excited state localized in the reactants (that of

diabatic state D1). Hence, solvent configurations that allow the n = 1 state to access

the product well lead to quite low 0 → 1 transition frequencies, robbing the lower

part of the reactant peak in the distribution of frequencies; however, this is replaced by

the contributions from the n = 2 state which takes on the same physical character, as

discussed previously in Section 3.3.3 and seen in Figure 3.2. Significant contributions

to the frequency distribution and the IR spectra are made from n = 0 → n = 2

transitions when the collective solvent coordinate has low absolute magnitude (as seen

in Figure 3.3).

The infrared spectrum, like the instantaneous frequency distribution, has two peaks

centered around the O-H and N-H absorption frequencies, at 3336 and 3424 cm−1, re-

spectively, while the average frequency including both reactant and product peaks,

i. e., of the 0 → D1 transitions, ωd10 , is 3377 cm−1. The O-H peak has a full-width half

maximum (fwhm) of 28 cm−1, while the N-H peak has a fwhm of 18 cm−1. Clearly,
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the spectral peaks are motionally narrowed, as the absorption spectrum exhibits signif-

icantly narrower peaks than the instantaneous frequency distribution. This is discussed

in further detail in Section 3.5.3.

To understand the origin of the spectral features, it is useful to consider how the

equilibrium properties of the system are manifest in the vibrational absorption spectra.

To do so, the infrared spectra were fit to an analytical expression. The spectral peaks

appear to have a Lorentzian shape; thus, the function φ(t) from Eq. 3.9 was fit to the

general equation

φ(t) = χRe−kRtei∆ωRt + χP e−kP tei∆ωP t. [3.10]

The Fourier transform of this function is sum of two Lorentzian distributions. The

expression for a Lorentzian distribution is as follows:

I(ω) ∝ 1

π

k

(ω − ω̄)2 + k2
. [3.11]

The frequencies ∆ωR and ∆ωP were found by taking the difference between the aver-

age transition frequency , ωd10 , and the frequency of maximum intensity for the respec-

tive reactant and product peaks in the infrared spectrum. The mole fractions, χR and

χP were calculated by integrating the reactant and product peaks in the instantaneous

frequency distribution. The values fit to φ(t) using Eq. 3.10 are in excellent agreement

with the IR spectrum for the PT case, and indeed give rise to two Lorentzian peaks

arising from the contributions of the products and reactants; the Fourier transform of

the analytical expression of φ(t) along with the full spectrum are shown in Figure 3.5.

For the PT case, the fit values for Eq. 3.10 were χR=0.54, χP =0.46; kR=0.45

ps−1=15.0 cm−1, kP =0.26 ps−1=8.7 cm−1; ∆ωR=-1.258 ps−1=-42 cm−1, ∆ωP =1.37

ps−1=45.7 cm−1. The mole fractions χR and χP give rise to an equilibrium constant of

0.85, which agrees within statistical error with the value of Keq=0.8, calculated from

values of ∆A, given in Table 3.2. It is notable that the difference in transition dipole

moment between products and reactants does not factor into the fitting for φ(t). Al-

though the reactants and products have disparate dipole moments (∼2 and ∼9 Debye,
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Figure 3.5 The analytical fit parameters for reactants (red line), products (blue line),
and the combined analytically fit spectrum (black line). The full PT case infrared
spectrum (violet line) is given for comparison.
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respectively), the transition dipole moments are virtually identical: between 0.2 and

0.21 for both reactants and products. The product peak in the infrared spectrum shown

in Figure 3.4 exhibits a higher intensity than the reactant peak, even though the equilib-

rium constant slightly favors reactants for the PT case. This is due to the smaller value

of kP , which gives rise to the narrower peak width in products (as shown in Eq. 3.11).

The values of kR and kP are related to the dipole-dipole time correlation functions,

which will be discussed in Section 3.5.2. The fact that the equilibrium composition

of reactants and products is reflected in the infrared spectrum arises from the mapping

of the transition frequencies onto the solvent coordinate, as discussed in Section 3.5.1,

and the similarities in transition dipole moments of the products and reactants. This

suggests that the infrared spectra for this system can be predicted from data acquired

from equilibrium simulations and conversely, that the spectra provide direct informa-

tion about the chemical equilibrium. This may not be the case for systems with fast

chemical exchange or different product and reactant transition dipole moments.

3.4.2 PTP and PTR Cases

To investigate how the reaction equilibrium affects the spectrum, the gas phase

offset was decreased and increased slightly from the PT case. For the PTP case

(∆V0 = 0.65 eV), the products are favored over reactants by approximately 7:1. On

the other hand, in the PTR case, the reactants are favored over the products by roughly

5:1 (∆V0 = 0.75 eV). The distribution of transition frequencies and the IR spectrum

for the PTP case are shown in Figure 3.6; the frequency distribution and spectrum for

the PTR case are shown in Figure 3.7.

For the PTP case in which products are favored, the distribution of transition fre-

quencies is qualitatively similar to that for the PT case, except that the lower-frequency

peak corresponding to reactants is diminished in intensity. This can be seen by com-

paring Figure 3.6 to Figure 3.4. The peak corresponding to reactants for the PTP case

is located at ∼ 3333 cm−1 and that for products is centered near 3432 cm−1, giving an
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Figure 3.6 Same as Figure 3.4 but for the PTP (∆V0 = 0.65 eV) case.
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Figure 3.7 Same as Figure 3.4 but for the PTR (∆V0 = 0.75 eV) case.
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average transition frequency, ωd10 , of 3418 cm−1. Each peak has a contribution from

both the n = 0 → n = 1 and n = 0 → n = 2 transitions (on the D1 diabatic surface),

with the former comprising a larger part of the product peak and the latter a greater

part of the reactant peak. Note that the average frequencies for the product and reac-

tant peaks in the PTP case differ from those for the PT case. These differences arise

from different probability distributions in the solvent coordinate, which are a result of

the different gas phase offsets for the five cases. The relationship between transition

frequencies and solvent coordinate values, as well as the solvent coordinate probability

distributions for the five cases, are discussed further in Section 3.5.1.

As with the PT case, the PTP spectrum exhibits two Lorentzian-shaped peaks for

the reactants and products; both absorption peaks are narrower than the frequency dis-

tribution. The fwhm of the reactant peak, centered at 3330 cm−1, is 27 cm−1. For the

product peak, centered at 3430 cm−1, the fwhm is 16 cm−1. Like the PT case, the

spectrum is well fit by two Lorentzian peaks according to Eq. 3.10. The fit results in

the following values: χR= 0.12, χP =0.88; kR=0.51 ps−1=17.0 cm−1, kP =0.23 ps−1=7.7

cm−1; ∆ωR=-2.64 ps−1=-88 cm−1, ∆ωP =0.36 ps−1=12.0 cm−1. Note that the coeffi-

cients χR and χP give an estimate of the equilibrium constant, based on the spectrum,

of Keq ∼ 7.3. This is in excellent agreement with the value of Keq ∼ 7 given in Table

3.2, which was calculated using the solvent coordinate values.

The PTR case has a distribution of transition frequencies, shown in Figure 3.7,

that is in many ways the reverse of the PTP case: both reactant and product peaks

are observed, with the reactant peak significantly larger than that for products. The

reactant peak is centered near 3347 cm−1, while the product peak is around 3420 cm−1;

the average value for the n = 0 → D1 transition, ∆ωd10 , is 3352.5 cm−1. The n = 0 →

n = 1 transition accounts for a greater part of the reactant peak while the n = 0 →

n = 2 transition is the larger contributor to the product peak. It was seen that for both

the PTP and PTR cases, the predominant species (products and reactants, respectively

for these cases) has more contributions from the n = 1 state, while the minor species
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(reactants and products, respectively) has greater contributions from the n = 2 state.

This is the case because higher absolute values of the solvent coordinate are sampled

when the reaction complex is in the predominant species, while lower absolute values

of the solvent coordinate arise for the minor species.

As with the PT and PTP cases, the infrared spectrum for the PTR case has two

motionally-narrowed peaks for reactants and products. The reactant peak is centered at

3341.5 cm−1 with a fwhm of 28 cm−1, while the product peak has a fwhm of 18 cm−1,

centered at 3417 cm−1. The fitting of the PTR spectrum using Eq. 3.10 resulted in the

following values: χR= 0.86, χP =0.14 (giving Keq ∼0.16); kR=0.425 ps−1=14.2 cm−1,

kP =0.27 ps−1=9.0 cm−1; ∆ωR=-0.337 ps−1=-11.2 cm−1, ∆ωP =1.93 ps−1=64.4 cm−1.

Thus, like the cases discussed previously, the PTR spectrum is described well as the

sum of two Lorentzian peaks.

3.4.3 P and R Cases – No Proton Transfer

The P and R cases exhibited no proton transfer over the course of four 15 ns trajec-

tories. Thus, they provide an interesting comparison with the PT , PTP , and PTR cases

for which chemical exchange, or an equilibrium between the reactants and products, is

observed in the simulations.

The distribution of transition frequencies for the P (∆V0 = 0.45 eV) case is shown

along with the IR spectrum in Figure 3.8, while the analogous data for the R (∆V0 =

0.95 eV) case is presented in Figure 3.9.

The distribution of transition frequencies for the P case consists of a single peak

centered around 3455 cm−1. The distribution results almost completely from the n =

0 → n = 1 transition, with a small contribution on the low frequency side from the

n = 0 → n = 2 transition. This is accompanied by a significantly diminished tail on

the low frequency side compared to the frequency distributions for the PT , PTP , and

PTR cases. The significant contributions from n = 0 → n = 1 transitions and the

negligible amount of low frequencies in the frequency distribution can all be attributed
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Figure 3.8 Same as Figure 3.4 but for the P (∆V0 = 0.45 eV) case.
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Figure 3.9 Same as Figure 3.4 but for the R (∆V0 = 0.95 eV) case.
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to the fact that high values of the solvent coordinate are sampled almost exclusively in

the P case; lower values of ∆E give rise to n = 0 → n = 2 contributions to the D1

surface, and also have low frequencies in the n = 0 → n = 1 transitions (to the D2

surface), as can be seen in Figure 3.3.

The infrared spectrum for the P case, similar to the frequency distribution, is a

single peak centered at 3453 cm−1. When compared to the three cases that exhibit

proton transfer, the P spectrum is even narrower, with a fwhm of 14 cm−1. In contrast,

for the distribution of frequencies the fwhm is 53 cm−1. This motional narrowing is

discussed in greater detail in Section 3.5.3.

The frequency distribution and infrared spectrum for the R case shown in Figure

3.9 are qualitatively the same as for the P case. Specifically, the frequency distribution

is a single peak associated almost completely with the n = 0 → n = 1 transition

with a small contribution from the n = 0 → n = 2 contribution on the low frequency

side. The low frequency tail of the distribution is quite small. The primary difference

in the distributions for the P and R cases is the shift in frequency: for the R case, the

distribution is centered near 3369 cm−1. The R case infrared spectrum is also only

quantitatively different than that for the P case, consisting of a single peak. Like the

frequency distribution, the spectrum is shifted to lower frequencies compared to the P

case and is centered at 3366 cm−1. In addition, the spectrum is motionally narrowed

with a fwhm of 22.5 cm−1 compared to the fwhm of 53 cm−1 for the frequency distri-

bution (see Section 3.5.3).

3.4.4 Comparison of the Cases

It is useful to compare the distributions of transition frequencies and calculated

spectra for the five cases considered; these are presented in Figure 3.10. To facilitate

comparison, the frequency distributions have been normalized. In the frequency dis-

tributions, peaks corresponding to reactants and products are clearly resolved with the

reactant (product) peak increasing (decreasing) in magnitude as ∆V0 is increased. For
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the three cases exhibiting proton transfer, PT , PTP , and PTR, there is a nearly isos-

bestic point at ∼3388 cm−1. The distributions for the P and R cases do not intersect

the other curves at this point. This indicates that the anharmonicity of the reactant and

product wells are affected by the overall exoergonicity of the reaction. That is, the

more endoergonic the reaction is, the higher the reactant vibrational frequencies and

the more exoergonic the reaction, the higher the product vibrational frequencies. This

also corresponds to higher absolute values of the solvent coordinate that are sampled

as exo-/endoergonicity increases, as discussed above in Sections 3.4.2 and 3.4.3 and in

further detail in Section 3.5.1. The shift in the reactant and product frequencies leads

to non-isosbestic behavior as the reaction equilibrium is shifted. However, it appears

that if the changes in exoergonicity are sufficiently small, such as for the PT , PTP ,

and PTR cases, the reactant and product frequency shifts are relatively minor, nearly

preserving an isosbestic point. This issue is discussed further in Section 3.5.1.

The comparison of the infrared spectra for the five cases shown in Figure 3.10

illustrates a nearly isosbestic point at 3394 cm−1 for the cases where proton transfer

is observed (PT , PTP , and PTR), as also seen in the frequency distribution. It is only

slightly shifted due to the motional narrowing of the spectra. While the PT , PTP , and

PTR have nearly identical fwhm values for the product (fwhm∼18 cm−1) and reactant

(fwhm∼28 cm−1) peaks, the P and R cases exhibit slightly narrower peak widths of

fwhm=14 and 22.5 cm−1, respectively. The origins of the differences in the fwhm of

the P and R cases are discussed in more detail in Section 3.5.3.

3.5 Discussion

This Section discusses the analysis carried out to understand the features of the

frequency distributions and infrared spectra presented in Section 3.4. In particular,

the role of a collective solvent coordinate, the Condon and other approximations to

the spectra, motional narrowing, and connections to proton transfer rate constants are

considered.
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Figure 3.10 Results comparing the five cases, P (violet line), PTP (blue line), PT
(black line), PTR (red line), and R (green line) are shown. Top: Normalized total
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3.5.1 Solvent Coordinate and Frequency Distributions

Since the frequency fluctuations arise through coupling to the solvent, it is instruc-

tive to examine the strong relationship between a collective solvent coordinate and the

proton vibrational frequency. We define the solvent coordinate as

∆E(Q, e) = Vg(rP ,Q, e)− Vg(rR,Q, e), [3.12]

where rP and rR are values of the O-H distance characteristic of the reactants (rOH=0.95

Å) and products (rOH=1.8 Å), respectively. A plot of the instantaneous transition fre-

quencies, ω10 and ω20, versus ∆E is given in Figure 3.11 for the PT case (data pre-

sented in the figure is collected from 6,000 evenly spaced points in one 15 ns trajectory).

Note that ∆E < 0 corresponds to reactant configurations while ∆E > 0 implies prod-

ucts. It is clear from this data that there is a remarkably strong correlation between ωn0

and ∆E, indicating that the solvent coordinate can be used to quite accurately predict

the frequency distributions. Specifically, the solvent coordinate distributions, plotted in

Figure 3.12 for the five cases considered, can be directly mapped using the relationship

given in Figure 3.11 to determine the total frequency distributions, the relative contri-

butions of the products and reactants, and the n = 0 → n = 1 and n = 0 → n = 2

transitions to the diabatic state D1 (cf. Figure 3.3). The dividing surfaces for the di-

abatic states D1 and D2 are located in the solvent coordinate at ∆E=-9.5 kcal/mol for

reactants and at ∆E=10.4 kcal/mol for products.

A strong relationship between frequency distribution and solvent coordinate was

found for all of the cases considered. Moreover, the quantitative relationships between

the transition frequencies (ω10, ω20) and ∆E evident in Figure 3.11 are the same for

all five cases considered. The differences in the frequency distributions among the five

cases arise from variations in the distribution of solvent coordinate values. Thus, by

combining data from the solvent coordinate distributions with the multilinear relation-

ships between the solvent coordinate, ∆E, and the diabatic surface potentials D1 and

D2 (likewise, the n = 0 → n = 1 and n = 0 → n = 2 transitions), the frequency
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Figure 3.11 A scatter plot of the n = 0 → n = 1 (black circles) and n = 0 →
n = 2 (red circles) instantaneous transition frequencies versus the collective solvent
coordinate (Eq. 3.12) for the PT case.
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distributions can be determined. For example, the blueshifting of the reactant and prod-

uct frequencies in the R and P cases relative to the chemical exchange cases can be

understood based on the solvent coordinate distributions in Figure 3.12. Specifically,

the distributions for the R and P cases are centered at larger absolute values of ∆E,

which correspond to higher vibrational frequencies as seen in Figure 3.11. The free

energies for the PTP , PT , and PTR cases are also shown as a function of the solvent

coordinate in Figure 3.12. The errors in the free energies were calculated by block av-

eraging, using the student t-distribution, and are reported at the 95% confidence level118

The shifting reactant-product equilibrium with ∆V0 is clear from this plot. Note that

the minima of the reactant and product wells (and hence also the peaks in the solvent

coordinate distributions) shift with the reaction exoergonicity. This indicates that the

peaks in the frequency distributions associated with reactants and products also shift

between the PTP , PT , and PTR cases, though this is somewhat more difficult to see

from Figure 3.10.

The correlation between solvent coordinate and frequency distribution suggests

that, once the relationship is determined, calculations may be simplified. Rather than

calculating the vibrational energy levels at every time step, the solvent coordinate can

be calculated instead, and from that, the instantaneous frequencies can be determined.

3.5.2 Condon and Other Approximations

Skinner and co-workers have recently demonstrated the failure of the Condon ap-

proximation to describe the infrared, Raman, and nonlinear spectra of HOD in H2O

and D2O.184, 185 The Condon approximation assumes that the transition dipole moment

is a constant, independent of the environment of the mode of interest. Thus, φ(t) is

approximated as

φ(t) ' φC(t) =
〈
|µ

d10
|2
〉 〈

e(0) · e(t) ei
∫ t

0
dτ δωd10

(τ)
〉

, [3.13]
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Figure 3.12 Top: The normalized solvent coordinate probability distribution for the P
(violet line), PTP (blue line), PT (black line), PTR (red line), and R (green line) cases.
Bottom: The free energies in the solvent coordinate for the PTP (blue line), PT (black
line), and PTR (red line) cases.
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where e(t) is the orientational unit vector at time t, as seen above in Eq. 3.4. Clearly,

such an assumption is a priori suspect for a proton transfer reaction complex (since the

infrared spectrum has contributions from two chemical species) and it is interesting to

examine it for the system considered here.

Infrared spectra, obtained from the Fourier transform of the Condon approximation

expression given in Eq. 3.13 were calculated for all 5 cases and compared with the full

expression for the infrared spectra obtained using Eq. 3.9. The results for all five cases

are presented in Figs. 3.13 and 3.14. For the PT , PTP , P , and R cases, the agreement

is excellent, as the full and approximated spectra for each case appear essentially iden-

tical. It is not surprising that the cases with no chemical exchange (P and R) would

give the best agreement with the Condon approximation, as there is only one chemical

species present. In the PTR case, the Condon approximation closely matches the in-

frared spectra obtained using the full expression, except that the intensity of the reactant

species is slightly overestimated relative to that of the products. The average transition

dipole moment, µ̄
d10

, taken from the P and R cases is 0.207 Debye for products and

0.210 Debye for reactants. Thus, one would predict that the Condon approximation,

using an average dipole value in the case of chemical exchange, would, if anything,

lead to an overestimate of the product peak intensity and an underestimate of the re-

actant peak intensity. However, the opposite trend is observed for the PTR case. In

general, though, the similarities in product and reactant transition dipole moments lend

themselves toward good approximation with the Condon expression, since the value of

µ̄
d10

is similar to both individual values µ
d10

.

Generally, the Condon approximation gives very good agreement with the full ex-

pression for the infrared spectra. It is worth noting that the model phenol-amine proton

transfer complex considered here may favor the applicability of the Condon approxi-

mation to some degree. For example, the O · · ·N distance is held fixed. This distance,

when not held fixed, is affected by changes in the solvent coordinate, i.e., it can be

modulated by the electric field exerted on the complex by the solvent molecules,186 and
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Figure 3.13 Results for the Condon approximation, φC(t), compared with the infrared
spectra calculated from the full expression for φ(t). Top: The full spectrum (black line)
and the Condon approximation (red line) for the PTR case. Bottom: The full spectra
(black lines) and Condon approximations (red lines) for the PTP (solid lines) and R
cases (dashed lines).
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Figure 3.14 The full spectrum (black line), Condon approximation (dashed red line),
φµ̄(t) approximation (blue line), and φδω(t) approximation (green line) for the PT and
P cases. Top: Spectra for the PT case. Bottom: Spectra for the P case.
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thus when unconstrained would be expected to lead to additional non-Condon effects.

A similar argument may be made that constraining the O · · ·H · · ·N angle to be linear,

as is done here, may reduce the non-Condon effects. Therefore, the deviations from the

Condon approximation are likely to be larger for more realistic proton transfer complex

models.

In addition to the Condon approximation, several other approximations to the spec-

tra were considered, as discussed in the work of Skinner and Lawrence.181 If one as-

sumes separability between the dipole-dipole correlation function and the fluctuating

frequency, φ(t) can be approximated as

φ(t) ≈ φµ̄(t) =
〈
µ

d10
(0) · µ

d10
(t)
〉 〈

ei
∫ t

0
dτ δωd10

(τ)
〉

. [3.14]

Moreover, if one assumes the decay of the dipole autocorrelation function to be suffi-

ciently slow relative to the fluctuations in frequency, φ(t) can simply be approximated

as

φ(t) ≈ φδω(t) =
〈

ei
∫ t

0
dτ δωd10

(τ)
〉

. [3.15]

The approximations given in Eqs. 3.14 and 3.15 were applied to all fives cases and

compared with the infrared spectra calculated from the full expression for φ(t). For

the cases with chemical exchange, PT , PTP and PTR, the spectra from φµ̄(t) (Eq.

3.14) led to enhanced intensity of the reactant peaks relative to the products. Results

for spectra obtained from the φµ̄(t) and φδω(t) approximations, compared with the full

infrared spectra, are given for the PTR, PTP , and R cases in Figure 3.15.

For the P and R cases with no chemical exchange, the linewidths and intensities

of the φµ̄(t) approximation are in good agreement with the full spectra. However, for

all of the cases considered, spectra obtained with thethe φδω(t) approximation deviate

from the infrared spectra estimated using the full expression for φ(t). Specifically, the

linewidths are narrower, while the maximum of the reactant peak is enhanced relative to

the product peak. Although none of the five cases gave good agreement with the φδω(t)

approximation, better agreement is found for the PTP and P cases. This, along with
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Figure 3.15 Results for the approximations φµ̄(t) and φδω(t), compared with the in-
frared spectra calculated from the full expression for φ(t). Top: The full spectrum
(black line), φµ̄(t) approximation (blue line), and φδω(t) approximation (green line),
for the PTR case. Bottom: The full spectra (black lines), φµ̄(t) approximations (blue
lines), and φδω(t) approximations (green lines), for the PTP (solid lines) and R (dashed
lines) cases.
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the extent of agreement of the φµ̄(t) approximation, can be understood by examining

the dipole-dipole time correlation functions.

The normalized dipole autocorrelation functions for the five cases considered are

given in Figure 3.16. It should be mentioned the the dipole and rotational, 〈e(t) · e(0)〉,

autocorrelation functions are essentially identical to each other for all of the cases. This

indicates that the dipole-dipole time correlation functions (TCFs) are dominated by

reorientation, rather than fluctuations in the transition dipole moment values. As can be

seen in Figure 3.16, the reactants only R case has the fastest reorientation time, while

the products only P case has the slowest reorientation time. The reorientation times are

affected by differences in the charge distributions, but the differences in reorientation

times may be partially attributed to the different probability distributions of the products

and reactants. As mentioned previously, earlier Monte Carlo studies of the system62

showed that the more polar products are more likely located in the interior of the cavity,

while the reactants are distributed near the walls of the nanocavity. Thus, the differences

in product and reactant reorientation times may be augmented by confinement effects.
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The dipole-dipole time correlation functions of the P and R cases can be fit with

a single exponential function. The PTP , PT , and PTR cases with chemical exchange

have intermediate values for the decay of the dipole autocorrelation functions, and are,

in fact, linear combinations of the R and P dipole-dipole time correlation functions.

The dipole/rotational autocorrelation functions of the cases with chemical exchange

can be predicted with good agreement from the known dipole-dipole TCFs of the P

and R cases and the respective mole fractions of products and reactants in the PT ,

PTP , and PTR cases. This is a reflection of the “slow” chemical exchange, which

generally takes place on a timescale that is slower than the reorientation times.

The reorientation times of the five cases can be used to understand the extent of

agreement of the φδω(t) approximation, which neglects contributions from the dipole-

dipole TCF. One can see by comparing the full expression for the infrared spectrum (Eq.

3.9) with the expression for φδω(t) (Eq. 3.15) and the resulting spectra from the two

expressions, that it is the rapid reorientational times of the reactants that leads to line

broadening, and thus poorer agreement of the approximation for the R, PTR, and PT

cases. As the reorientation times slow (for cases with a higher reaction composition of

products), the contributions to the spectra from the dipole-dipole TCF are diminished

and the approximation of φδω(t) is in better agreement with the full spectra of the

PTP and P cases. The broadening of linewidths from fast reorientation also leads to

a reduced intensity for reactants in the full infrared spectra, as the kR values are larger

than the kP values in the analytical fits according to Eq. 3.10; for Lorentzian (Cauchy)

distributions, larger k values lead to broader, shorter peaks (as shown in Eq. 3.11).

The degree to which the approximation φµ̄(t) agrees with the infrared spectra can be

explained in a similar fashion. Since φµ̄(t) averages the dipole-dipole TCF for both

products and reactants, any contributions to the spectral features due to differences in

reorientation times for the two species are lost. For products, the lifetime, τ , describing

exponential decay, e−t/τ , is ∼5 times longer than that for reactants. Because of the
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Table 3.4 Motional Narrowing Parameters for the P and R Cases.

Case τc ∆ α

(ps) (ps−1)

P 0.77 0.69 0.53

R 0.52 0.67 0.35

significant difference in reorientation times of the product and reactant species, the

approximation φµ̄(t) is poorest for the cases featuring chemical exchange.

3.5.3 Linewidths and Motional Narrowing

For all of the cases considered, the linewidths observed in the spectra, shown in

Figs. 3.4-3.9, are narrower than their respective frequency distributions. This indicates

that the spectra are in the motional narrowing regime.179 Motional narrowing results

when the parameter α is less than one, where α = ∆ · τc and the correlation time, τc, is

defined as179

τc =
1

〈δω2〉

∫ ∞
0
〈δω(0)δω(t)〉 dt. [3.16]

The quantity ∆ is the root mean square deviation of the frequency modulation, ∆ =√
〈δω2〉. The motional narrowing parameter α was examined for the P and R cases,

and the values of the motional narrowing parameters τc, ∆, and α are given in Table

3.4. From the values calculated, it is clear that α < 1 for both the P and R cases,

indicating a motionally-narrowed spectrum. It can be seen that the two cases have

similar values of ∆, which is expected based on the similar fwhm observed for the

frequency distributions shown in Figs. 3.8 and 3.9. Thus, it is the dynamical properties

reflected in τc and the dipole autocorrelation functions that govern the differences in

peakwidths of the P and R cases. The value of τc is smaller for the R case than the

P case, giving the R case a lower value of α, indicating more significant motional

narrowing due to frequency fluctuations. However, as evident from the underestimation

of the spectral linewidths using the φδω(t) approximation (Eq. 3.15, cf. Section 3.5.2),
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some broadening of the spectral peaks arises from rapid reorientation, most notably in

the reactant peaks. Hence, the deciding factor that gives rise to a broader fwhm in the

reactant peaks relative to the product peaks is not the motional narrowing parameters,

but the line broadening from the more rapid reorientation time of the reactants (see

Figure 3.16). Clearly, the reorientation times are not factored into the expression for

motional narrowing as described by the α parameter.

In the PT , PTP , and PTR cases, the distributions of frequencies for the product and

reactant peaks are somewhat broader than for the cases with no chemical exchange,

indicating larger values of ∆. This is a reflection of the differences in the solvent

coordinate free energy curves for these cases, as discussed in Section 3.5.1. Even so,

the spectra of the PT , PTP , and PTR cases are clearly motionally narrowed - the

spectral peaks are significantly narrower than the frequency distributions. The higher

fwhm values of the absorption peaks for the chemical exchange cases, relative to the P

and R cases, can be attributed to these larger values of ∆.

3.5.4 Proton Transfer Rate Constants

It is interesting to consider what information the infrared spectra provide about the

proton transfer reaction rate constants. Such information is not easily extracted from

the linear IR absorption spectra presented here, e.g., through analysis of the lineshapes.

However, nonlinear IR spectroscopies can probe more dynamical quantities, such as the

frequency autocorrelation function, more directly. Therefore, the relationship between

the frequency-frequency time correlation function and proton transfer rate constants is

discussed here.

The frequency autocorrelation functions of the PT , PTR and PTP cases, shown

in Figure 3.17, have a long time decay tail, while those of the P and R cases do not,

with nearly complete decay by 5 ps. This suggests that chemical exchange gives rise

to the long-time tail. To examine reaction rate constants in the context of equilibrium

dynamics, the autocorrelation functions of the fluctuation of the reaction composition,
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δn(t) = nr(t)− 〈nr〉, were calculated.187 Here, nr is a variable describing whether the

reaction complex is in the reactant form and is defined as

nr(t) =

 1, ∆E(t) < 0

0, ∆E(t) > 0.
[3.17]

Then, 〈nr〉 is the fraction of reactants present at equilibrium. Note that the analogous

variable related to products, np(t), could also be used; since nr(t) = 1 − np(t), the

same result is obtained. The reaction composition autocorrelation functions for all of

the cases involving chemical exchange are given in Figure 3.17.

As expected,187 the functions fit the form e−t/τ , where τ is the lifetime and a func-

tion of the forward and backward rate constants, kf and kb, such that τ = (kf + kb)
−1.

As can be seen, the lifetime is longest for the PT case, τPT = 388 ps, which has for-

ward and backward rate constants that are approximately equal, since Keq ≈ 1. The

lifetimes of the PTR and PTP cases, τPTR
= 220 ps and τPTP

= 204 ps, are dominated

by the relatively fast values of kb and kf , respectively, which correspond to chemical

exchange out of the energetically disfavored species (products for PTR, reactants for

PTP ). The error bars for the τ values are within 10-15%.

The long-time tail of the frequency autocorrelation functions, Cδω(t), of the PT ,

PTP , and PTR cases, like the reaction composition autocorrelation functions, fit the

form e−t/τ . The following values were obtained for τ from Cδω(t): τPT = 357 ps,

τPTR
= 217 ps, and τPTP

= 207 ps. The lifetimes obtained for Cδω(t) follow the same

trend as those for Cn(t), and are the same within statistical error. This suggests that the

long-time decay of Cδω(t) is related to the rate of proton transfer.

The relationship between the frequency autocorrelation function and reaction rates

can be seen directly for the simpler case where the product and reactant forms of the

reaction complex each have a single distinct frequency, ωp and ωr respectively. In this

case, the instantaneous frequency is given by

ω(t) = ωr nr(t) + ωp np(t) = (ωr − ωp) nr(t) + ωp, [3.18]
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Figure 3.17 Top: The frequency-frequency time correlation function, Cδω(t)=
〈δω(0)δω(t)〉, for the PT (black line), PTP (blue line), PTR (red line), P (violet line),
and R (green line) cases. Bottom: Time correlation functions of the reaction composi-
tion δn, Cn(t)= 〈δn(0)δn(t)〉, for the PT (black line), PTP (blue line), and PTR (red
line) cases.
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since np(t) = 1−nr(t). The average frequency at equilibrium is given by an analogous

expression, 〈ω〉 = (ωr − ωp) 〈nr〉+ ωp, so that the instantaneous frequency fluctuation

is

δω(t) = ω(t)− 〈ω〉 = δn(t) (ωr − ωp). [3.19]

Here, δn(t) = nr(t) − 〈nr〉 as above. Then, it is clear that the frequency and reaction

composition correlation functions are directly related as

Cδω(t) =
〈δω(0)δω(t)〉
〈δω(0)2〉

=
〈δn(0)δn(t)〉 (ωr − ωp)

2

〈δn(0)2〉(ωr − ωp)2
,

= Cn(t). [3.20]

Thus, in this simplified model, the frequency autocorrelation function provides direct

information about the reaction rate constants, since

Cδω(t) = Cn(t) ∝ e−t/τ , [3.21]

with τ = (kf +kb)
−1. Clearly, this result for Cδω(t) provides insight into the connection

with reaction rate constant information, but strictly applies only when the simplifying

assumptions are valid. The system in this work consists of a distribution of frequencies

for products and reactants, a small portion of which consists of overlapping frequen-

cies. However, the relationship between Cδω(t) and Cn(t) in Eq. 3.20 and the agreement

between the two correlation functions calculated in this work and presented in Figure

3.17 suggest that the two are related for more complex systems. Because frequency

autocorrelation functions can be extracted from the results of IR photon echo exper-

iments,188–194 this indicates the potential for obtaining rate constants for ground-state

proton transfer reactions from such spectroscopic measurements.
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3.6 Conclusion

The infrared spectra for a model proton transfer complex dissolved in CH3Cl sol-

vent in a 12 Å spherical hydrophobic cavity have been calculated with mixed quantum-

classical molecular dynamics simulations. The gas phase energy offset was adjusted so

that cases with varying degrees of proton transfer (chemical exchange) were explored.

The primary conclusions of this work are: 1.) In addition to the n = 0 → n = 1 vibra-

tional transitions, the n = 0 → n = 2 vibrational transitions contribute to the infrared

absorption spectra, as the two sets of vibrational transitions combine to form diabatic

surfaces, labeled D1 and D2. The diabatic surface D1 carries the oscillator strength;

thus, transitions from the ground state to D1 give rise to the infrared absorption spec-

tra. 2.) There is a strong relationship between a collective solvent coordinate and the

instantaneous vibrational transition frequency, such that the frequency distribution is

determined by the sampling of different values of the solvent coordinate. 3.) The spec-

tral linewidths are narrower than the instantaneous frequency distributions, indicating

that the absorption spectra are motionally narrowed by the rapid frequency fluctuations

of large magnitude. Narrowing of the absorption peaks also has contributions from the

decay of the transition dipole autocorrelation functions. 4.) The infrared spectra can

be obtained from equilibrium simulations, with the frequency distribution determined

from the solvent coordinate. The dipole-dipole time correlation function can be pre-

dicted as a linear combination of the product and reactant TCFs based on the relative

ratios of products and reactants. 5.) The Condon approximation, which assumes that

the transition dipole moment is constant, generally gives very good agreement with the

infrared spectra. Other approximations to the function φ(t) have varying degrees of

agreement with the calculated spectra, with the discrepancies in intensity and linewidth

generally attributable to different reorientation times for products and reactants. 6.)

The frequency autocorrelation function displays a long-time decay tail that appears to

contain information about the ground-state proton transfer reaction rate constants.
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A simplified proton transfer model of a phenol-amine complex was used in this

work, in which the O − N distance is held fixed, and the O · · ·H · · ·N angle is con-

strained to be linear. While the results indicate that vibrational spectroscopies should

provide useful probes of ground-state proton transfer reaction systems in nanoconfined

solvents, additional work is required to understand the effect of a realistic treatment of

the hydrogen bond distance and angle as well as the impact of more realistic confining

framework interactions.
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Chapter 4

Ab Initio Studies of a Carbon Acid for Potential Use as a Friedel-Crafts
Acylation Solid Acid Catalyst

In the previous chapters, effects of confinement on chemical behavior were studied

directly. The results provide information about how a confining framework affects

chemical dynamics and reactivity, in order to elucidate design principles for functional

materials. In the work described in this chapter, a novel catalytic system is modeled

in order to understand the catalytic mechanism and selectivity. Although these studies

are predominantly on homogeneous catalysis, the catalyst has the potential of being

incorporated into a variety of porous materials for use as a solid acid. With the results

described herein, one may be able to interpret future experimental observations derived

from heterogeneous systems. Thus, the approach in this chapter provides a different

means for understanding and designing functional materials.

4.1 Introduction

In this work, ab initio studies of a carbon acid catalyst and its role in the Friedel-

Crafts acylation of 2-methoxynaphthalene (2-MN) were carried out in collaboration

with the research group of Professor Mikhail V. Barybin. Most of the experimental

work focused on the acid as a homogeneous catalyst. The acid is notable in that the

acidic proton is bound to a carbon atom. The acidity of the carbon atom is derived

from the presence of strongly electron-withdrawing groups: two triflate groups and a

fluorinated phenyl ring. The structure of the acid, pentafluorophenylbis(triflyl)methane

(hereafter referred to as Acid1), is given in Figure 4.1.
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The phenyl ring substituent can be modified in order to incorporate the acid into a

material for heterogeneous catalysis. For instance, the synthesis of polystyrene-bound

tetrafluorophenylbis(triflyl)methane has been reported,24 in which Acid1 was modified

by addition of a styryl group at the para position. The resulting acid (styryl-Acid1)

was incorporated into an organic-solvent-swellable polystyrene bead for use as a solid

acid. Other chemical modifications attempted have included the addition of alkylsilanol

groups for inclusion of the acid into a sol-gel (silica) matrix. Figure 4.2 illustrates these

two chemical modifications to Acid1 that can adapt it for applications in heterogeneous

catalysis. Heterogeneous solid acid catalysts are a focus of green chemistry efforts.

4.2 Solid Acids in Green Chemistry

The work described in this chapter was done in conjunction with the Center for

Environmentally Beneficial Catalysis, a National Science Foundation Engineering Re-

search Center at the University of Kansas. The strong Brønsted acid (Acid1) was

investigated for its use both as a homogeneous catalyst and as a solid acid catalyst.

Solid acids are heterogeneous catalytic materials that are sought after for green chem-

istry applications. Green chemistry has a number of guiding principles.195 Some of

these include: the prevention of chemical waste, rather than a focus on cleanup of

chemical waste after it is generated; promoting atom economy/efficiency, in part by

reducing/eliminating solvents, separating agents, and protecting groups; reducing the
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Figure 4.2 Chemical modifications of Acid1 for incorporation into solid materials for
heterogeneous catalysis. Left: styryl-Acid1.
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toxicity of products and byproducts; the use of renewable feedstocks; seeking reac-

tions that take place at ambient temperature and pressure in order to reduce energy

use; and choosing substances that minimize the potential for chemical accidents. Many

of these green chemistry principles are addressed in the development and use of solid

acids. Solid acids can be used to replace corrosive and toxic Lewis and Brønsted acids,

such as AlCl3 and HF, currently used in large-scale chemical syntheses, thereby in-

creasing the safety of manufacture and generating less waste. In addition to replacing

undesirable conventional acid reagents, solid acids have the benefits of being reusable,

non-corrosive, highly selective, easily separable from reaction mixtures, and generating

fewer hazardous byproducts.196, 197 For instance, in conventional acidic (and alkali) sys-

tems, large amounts of waste are generated by use of a water quench for neutralization,

whereas for solid acid systems, the acid can be readily removed by filtration/separation

of phases.

There are a number of different materials currently being researched and used as

solid acids.

Zeolites

Zeolites are microcrystalline, microporous (pores <2 nm in diameter) solids of the

form xM2/nO·xAl2O3·ySiO2·wH2O, where x, y, and w are stoichiometric coefficients,

and M is a group IA or IIA metal cation.198 Zeolites, prized for the high internal surface

area of their pores, are used as size and shape-selective catalysts, and can be either

naturally-occurring minerals or synthetic aluminosilicate materials.197, 199 Due to their

microporosity, the utility of zeolites suffers from deactivation due to clogging of pores

and size limitations for catalytic transformations of larger organic molecules. However,

zeolites are generally highly thermally stable and can be regenerated through heating.

They are broadly used in petroleum refining. An example of shape-selective catalysis

in zeolites is the isomerization of xylene: only para-xylene can diffuse rapidly through

the pores of zeolite HZSM5, such that mixtures of xylenes reacted in the zeolite afford

complete conversion to p-xylene.197 The ratio of SiO2:Al2O3 and the Brønsted acidity,
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in addition to the pore structure, affects catalytic activity, but zeolites have been found

to promote Friedel-Crafts acylation reactions by the ability to form a complex between

the zeolite and an acylium-ion-like cation.196

Zeotypes/molecular sieves/mesoporous solids

Zeotypes describe materials that are not aluminosilicates, but have porous structures

similar to zeolites. Often, such materials are mesoporous (having pores 2-50 nm in di-

ameter) and have larger pores than zeolites, increasing their utility in the synthesis of

larger pharmaceutical and specialty chemicals. Examples of mesoporous solids include

MCMs (developed at Mobil: Mobil composition of matter) and hexagonal mesoporous

silicas (HMS), also called micelle-templated silicas (MTS). Both MCM and HMS ma-

terials are synthesized based on a micelle template, so that the pore size can be var-

ied.197, 200, 201 MCMs are mesoporous aluminosilicates that act as mild acids. Porous

silica and MCM materials have been used as scaffolds for the addition of Brønsted

acid groups, typically sulfonic acids. This allows for easy recovery and handling of the

acids, with less risk to human tissue. For example, sulfonic acid-treated mesoporous

silica gel showed good activity and selectivity for esterification of glycerol.202 Lewis

acids can also be incorporated into mesoporous materials; silica-supported AlCl3 was

shown to be successful in catalyzing alkene polymerization and benzene alkylation.200

In fact, silica-supported AlCl3 showed the same activity with enhanced selectivity over

homogeneous AlCl3 toward the monoalkylation of benzene.203 A promising prospect in

the development of novel mesoporous HMS-supported solid acid catalysts is that more

than one group can be incorporated, such that both catalytically active sites and groups

to modify the polarity or affinity of the pores can be added.

Resin/polymer-supported acids

Sulfonic acid groups can be added to a variety of substrates, including carbon,

cross-linked styrene polymers, and commercial resins, such as Dowex 50 and Am-

berlite resins to afford solid Brønsted acids.204 These materials can also be treated with

AlCl3 to incorporated Lewis acids. A drawback of polymer-supported acids, however,
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is that they easily suffer thermal and chemical damage.200 On such material, DuPont’s

Nafion, is inert and chemically robust; Nafion is a copolymer of perfluorinated epox-

ide and vinylsulfonic acid, and is an effective heterogeneous catalyst for acylation with

aroyl chlorides and anhydrides.204 In an effort to create a solid acid with higher surface

area, nanoparticles of Nafion have been entrapped in silica. One example of this, the

DuPont product SAC 13, was used to acylate anisole and other aromatic compounds;

the silica-supported Nafion catalyst produced higher yields and selectivity than either

the reactions with unsupported Nafion or with AlCl3.205

Clays

Clays consist of negatively-charged crystalline aluminosilicate layers. They contain

“defects” in the aluminosilicate structure, with Al3+ and Mg2+ substitutions for Si4+

and Al3+, respectively, and Na+, K+, and Ca2+ cations situated in a hydrated environ-

ment between the layers. Clays can be treated for cation exchange or modified with

Lewis or Brønsted acids. They have been shown to be effective catalysts for direct

acylation reactions, including reactions with carboxylic acids serving as mild acylating

reagents.196 Clays have also been used for the microwave oxidation of isopropanol to

acetone, in lieu of less environmentally-benign reagents such as CrO3 and KMnO4.195

Metal oxides and sulfated metal oxides

Sulfated zirconia is a highly acidic, mesoporous material that is thermally stable. It

has been used as a solid acid to prepare linear alkyl benzenes for use in detergents.200

Greener syntheses of these surfactants, including the use of sulfated zirconia and HMS-

supported AlCl3, offer substantial environmental benefits over mass-production with

hydrofluoric acid or aluminum chloride.197 Other metal oxides that have been explored

for their use as solid acids include sulfated titania-alumina, zirconia-alumina, and iron

oxide-alumina.196 In addition to sulfation treatment to increase Brønsted acidity, metal

oxides have been treated with Lewis acids, such as SbF5 and AlCl3 to afford solid Lewis

acid catalysts. For example, complexes of SbF5-treated titania and mixed titania-oxides

serve as solid superacid catalysts for the skeletal isomerization of alkanes.204
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Heteropoly acids

Heteropoly acids (HPAs) are highly acidic metal complexes with two different types

of oxoanions,198, 206 and can be used for both homogeneous and heterogeneous catal-

ysis, depending on the solvent polarity and temperature at which reactions are run.

In the latter case, supported HPAs (on mesoporous silica or metal oxides) have in-

creased surface area and efficacy as heterogeneous catalysts.206 Heteropoly acids and

acid-treated metal oxides are effective catalysts for Friedel-Crafts acylations, as they

stabilitze cationic intermediates such as benzoyl cations.196

In summary, solid acids are capable of catalyzing a broad range of chemical trans-

formations, including esterification, isomerizations, alkylation and dealkylation of aro-

matics and olefins, dehydration of alcohols, and halogenation reactions. In order to

design new solid acids, an understanding of the effects of the confining frameworks

on catalytic selectivity should be developed. A number of the solid acids mentioned

in this section have been effective as catalysts for Friedel-Crafts acylation. In the

following section, Section 4.3, solid acids that have been used in the acylation of 2-

methoxynaphthalene are detailed, as this reaction is the focus of this chapter. As ex-

plained below, solid acids have shown some promise in the regioselective acylation of

2-methoxynaphthalene. However, the reactions generally are run with an excess of 2-

MN, so that the yields are reported with respect to the acylating agent. With this in

mind, none of the solid acid catalysts used in the acylation of 2-MN are ideal green

chemistry replacements for the currently-used manufacturing process for 2-methoxy-

6-acetylnaphthalene synthesis in the production of (S)-naproxen. The design of new

solid acids for selective chemical transformations is an area of active research. The

carbon acid Acid1 has shown promise as a regioselective homogeneous catalyst; the

incorporation of Acid1 into a solid support is an area of current and future research.



104

4.3 Acylation of 2-methoxynaphthalene

The carbon acid, Acid1, was tested for its ability to regioselectively catalyze the

Friedel-Crafts acylation of 2-methoxynaphthalene (2-MN). This reaction is of inter-

est because the regioisomer 2-methoxy-6-acetylnapththalene (2,6-AMN) is a precur-

sor in the synthesis of the anti-inflammatory analgesic (S)-naproxen. Figure 4.3 gives

chemical structures for 2-MN, (S)-naproxen, and the three major acylated regioisomers

of 2-MN: 1-acetyl-2-methoxynaphthalene (1,2-AMN), 2-methoxy-6-acetylnaphthalene

(2,6-AMN), and 1-acetyl-7-methoxynaphthalene (1,7-AMN).

The current method for Friedel-Crafts acylation of 2-MN for the manufacture of

pharmaceuticals and fine chemicals involves the use of Lewis acid reagents, namely

AlCl3 in nitrobenzene or BF3 in HF with acid chlorides as the acylating reagents.207

The Lewis acids are often referred to as “catalysts”. However, they are required in

greater than stoichiometric amounts, and, strictly speaking, should not be termed cat-

alysts. Drawbacks to such Friedel-Crafts syntheses include poor regioselectivity and

corrosive reaction mixtures. Moreover, there is considerable waste generated, as the

Lewis acids must be present in excess of two molar equivalents. The use of AlCl3, for

instance, generates greater than four chloride ions per molecule of acylated 2-MN.208

This is because the aryl ketone product forms a 1:1 adduct with AlCl3, requiring a hy-

drolysis step in the workup. In addition, the methoxy group, which acts as an activator

toward electrophilic aromatic substitution and a directing group (for ortho/para sub-

stitution in benzene rings), is a good donor site for the Lewis acid, thus reducing the

activity of both reagent and “catalyst”.196 Because of these drawbacks, and in light of

the large amount of waste generated in the manufacture, the regioselective synthesis of

2,6-AMN has been the focus of green chemistry methodological efforts, with a consid-

erable thrust toward the development of solid acid catalysts with “greener” acylating

reagents such as acids and acid anhydrides for regioselective Friedel-Crafts acylation.
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Figure 4.3 Chemical structures of 2-methoxynaphthalene, the three major acylated
products of 2-MN, and (S)-naproxen.
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As mentioned above in Section 4.2, solid acids are prized in green chemistry for their

ease of separation and the potential to be regenerated and reused.

Nearly all of the previous and current work on solid acid catalysts for Friedel-Crafts

acylation has focused on the use of zeolites as Lewis and Brønsted acid catalysts. A

number of different zeolites have been investigated. For reactions with HBEA zeo-

lite, it was found that 1-acetyl-2-methoxynaphthalene (1,2-AMN) forms initially and

then disappears, with a final product composition of primarily 2,6-AMN (87%) with

a small amount of 1-acetyl-7-methoxylnaphthalene (1,7-AMN) (13%).196, 208 The re-

action conditions for which the HBEA15 catalyst gave the best yield are nitrobenzene

solvent, heating at 170 ◦C for 4 h, 5 equivalents 2-MN and 1 equivalent acetic anhy-

dride (Ac2O), with a total yield (with respect to concentration of the acylating reagent)

of 76.3%. At lower temperatures (120 ◦C, 50 h), the reaction gave a higher overall yield,

90%, with a different distribution of products: 68% 2,6-AMN, 8% 1,7-AMN, and 23%

1,2-AMN. It should be noted when considering the yields that these conditions require

a large excess of starting material. Studies by the same authors on modifications of

various commercially-available zeolites found that dealumination of HBEA zeolites re-

duced the number of Lewis acidic sites while increasing the Brønsted acidity. This

led to increased yields of 2,6-AMN relative to the non-treated zeolites.209 Experiments

with the zeolite HBEA773 (400 K, 24 h, 2:1 2-MN:Ac2O in nitrobenzene) gave 40%

conversion with 71% selectivity toward 2,6-AMN, 25% toward 1,2-AMN, and 4.5%

toward 1,7-AMN. It was also found that thermal pretreatment of the zeolite HBEA773

could increase the selectivity of the catalyst toward 2,6-AMN.210

In addition to zeolites, mesoporous materials were investigated for catalytic activity

in the Friedel-Crafts acylation of 2-MN. The mesoporous molecular sieve MCM-41

is an aluminosilicate material with uniformly sized pores. Both Brønsted acidic (H-

MCM-41) and Lewis acidic (Zn-MCM-41) modifications of the molecular sieves have

been studied.211 The reactions were run with a 2:1 excess of 2-MN to acylating reagent;

thus, the yields are reported with respect to concentration of acylating reagent. It was
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found that H-MCM-41 exhibited high regioselectivity in the acylation of 2-MN with

acetic anhydride to form 1,2-AMN (97% regioselectivity, 40% conversion) at 100 ◦C.

In contrast, the Lewis-acidic Zn-MCM-41 gave regioselective acylation of 2-MN with

acetyl chloride to form 2,6-AMN with 81% selectivity and 28.9% conversion . In both

cases, the catalyst could be successfully regenerated with treatment at 450 ◦C for 2 days.

However, regenerated Zn-MCM-41 catalyst led to increasing yields of 1,2-AMN.211

The selectivity of HBEA zeolites toward acylation of 2-MN has been investigated

in a number of studies. Heinichen and Hölderich concluded, through modifications of

HBEA pores and subsequent studies of the catalytic activity of the modified zeolites,

that the bulkier regioisomer 1,2-AMN is formed by reactions occurring on the surface

of the zeolite catalyst, while acylation to form the more linear regioisomer 2,6-AMN

arises from reactions that take place within the interior of the zeolites. Thus, it is the

size/shape preference of the porous material that gives rise to the catalytic regioselectiv-

ity.212 Further study of the acylation mechanism by Fromentin, Coustard, and Guisnet

found that HBEA zeolite catalyzes the isomerization of 1,2-AMN to 2,6- and 1,7-AMN

by a number of mechanisms: through deacylation of 1,2-AMN and transacylation of

1,2- to 2,6-AMN in the presence of excess 2-MN. While a small amount of intramolec-

ular isomerization takes place, it rarely occurs for the 1,2- to 2,6-AMN isomerization,

although it is intramolecular rearrangement of 1,2-AMN that gives rise to the 1,7-AMN

regioisomer.213 The zeolite is hypothesized to participate in the transacylation, isomer-

ization, and deacylation reactions by transferring a proton and forming an adduct with

the resulting cationic sigma-complex. See Section 4.7 below for further explanation of

the proposed mechanism of Friedel-Crafts acylation reactions. A computational study

of the catalytic selectivity of large-pore zeolites supported the role of size selectivity of

zeolitic pores on the regioselectivity of the acylation of 2-MN. Molecular modeling of

the diffusion of 2-MN, 1,2-AMN, and 2,6-AMN in four different zeolite pores showed

that 2-MN and 2,6-AMN diffuse most rapidly through the pores, while 1,2-AMN dif-

fusion was hindered due to its bulky shape. It was also found that Brønsted acidity
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modeled by hybrid quantum mechanics/molecular mechanics methods (QM/MM) af-

fected overall catalytic activity, but not regioselectivity. Hence, the authors suggest

that pores giving rise to the largest difference in diffusion rates between 1,2-AMN and

2,6-AMN would lead to the highest regioselectivity.214

Research in the Barybin group on the Friedel-Crafts acylation of 2-MN with Acid1

has initially focused primarily on homogeneous catalysis. However, as mentioned pre-

viously in Section 4.2, Acid1 can be modified for inclusion in a number of solid sup-

ports for heterogeneous catalysis. As detailed in the following section, Acid1 shows

excellent regioselectivity that is solvent-dependent, so that reaction conditions can be

chosen to selectively afford either 2,6-AMN or 1,2-AMN.

4.4 Regioselective Friedel-Crafts Acylation with Acid1:
Experimental Results

Experiments carried out in the Barybin group with Acid1 showed solvent-dependent

regioselective acylation of 2-MN. For reactions in CH3NO2 at 100 ◦C, a mixture of 2-

MN with 9% Acid1 catalyst resulted in a 60% total yield of acylated methoxynaphtha-

lene. The total products consisted of a mixture of 90% 2,6-AMN and 10% 1,7-AMN.

For similar reaction conditions in CH3NO2 with only 1% acid, the only product ob-

tained is 1,2-AMN. This suggests that extra amounts of catalyst are required to deacy-

late the kinetic product 1,2-AMN in order to form the more thermodynamically-stable

1,7- and 2,6-AMN products. This is discussed in detail in Section 4.7 below. Acylation

of 2-MN was also carried out in hexanes solvent. With 1% catalyst loading at 100 ◦C,

100% yield of 1,2-AMN was obtained. No formation of other AMN regiomers was

documented upon increasing the catalyst loading to ca. 10 mol %. The possible origins

of this solvent-dependent regioselectivity are discussed further in Section 4.7.

Computational methods were used to explore possible catalytic mechanisms, and to

rationalize the regioselectivity of Acid1. The methods for the calculations are detailed

below in Section 4.5. Thermodynamic factors in the homogeneous catalytic process
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are discussed in Section 4.6, while kinetic factors are addressed in Section 4.7. Chem-

ical modifications to Acid1 for incorporation into a solid support for heterogeneous

catalysis are considered in Section 4.8. Finally, conclusions are offered in Section 4.9.

4.5 Ab Initio and Density Functional Theory Calculations: Methods

Geometries for all regioisomers of acylated 2-methoxynaphthalene were obtained

with Density Functional Theory (DFT) calculations at the B3LYP/6-31+G* level using

the Gaussian 98 and Gaussian 03 computational programs.215, 216 A number of start-

ing geometries were used for the optimizations in order to increase the likelihood of

finding the global minimum, rather than optimizing a structure that is at a local energy

minimum. Frequency calculations were carried out on the optimized structures of low-

est energy; in all cases, positive frequencies indicated that a minimized structure was

found. For the experimentally-observed regioisomers (1,2-, 2,6-, and 1,7-AMN), higher

level second-order perturbation theory (MP2) energies with the 6-31+G* basis set were

calculated using the DFT optimized structures as starting input. Solvation energies

were calculated using the Polarized Continuum Model.217 Enthalpy and entropy values

for the free energy differences of the three observed regioisomers were calculated from

the vibrational frequencies. Atomic charges were calculated using the Natural Bond

Orbital (NBO) program.218 Optimized geometries and vibrational frequencies for the

Acid1 and the corresponding conjugate base were obtained with B3LYP/6-31+G* cal-

culations. For the styryl modification of Acid1, styryl-Acid1, reported in Ref. 24, the

reported crystal structure219 was used as a starting input for the geometry optimization.

4.6 Thermodynamic Control

In order to explore the origins of the regioselectivity of Friedel-Crafts acylation

of 2-MN with Acid1, the relative energies of all possible monoacylated products were

calculated. Optimized geometries and vibrational frequencies for the regioisomers were
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obtained at the B3LYP/6-31+G* level, as detailed in Section 4.5. The relative energies

with PCM calculations in CH3NO2 solvent are reported in Table 4.1.220 The numbering

scheme for the carbon atoms of 2-methoxynaphthalene, used below in Tables 4.1 and

4.3, is given in Figure 4.4.

Table 4.1 Relative Electronic Energies (B3LYP/6-31+G*)
for Optimized Geometries of the Regioisomers of Acylated
2-methoxynaphthalene.

Acylated Carbon Relative Energy

(kcal/mol)

1 9.16

3 4.83

4 5.68

5 4.89

6 0.00

7 0.73

8 4.13

As seen in Table 4.1, the lowest-energy regioisomer is 2,6-AMN (from acylation at

the 6 carbon), which is the desired acylated product of 2-MN for the manufacture of

naproxen. One regioisomer, 2-methoxy-7-acetylnaphthalene (from acylation at the 7

carbon), lies close in energy (< 1 kcal/mol) to the thermodynamic product, 2,6-AMN.

However, as discussed below in Section 4.7, this regioisomer is not kinetically accessi-

ble, because of the position of the methoxy directing group. Many of the regioisomers

have calculated relative energies 4-6 kcal/mol higher than that of 2,6-AMN. The highest

energy form, 1,2-AMN (from acylation at the 1 carbon), is calculated to be considerably

higher in energy than 2,6-AMN, at 9.2 kcal/mol.

In order to compare with experimental yields, free energies were calculated for the

three observed regioisomers: 1,2-AMN, 1,7-AMN, and 2,6-AMN. The free energies

were calculated from MP2 (Second-order Møller-Plesset Perturbation Theory) energies
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Figure 4.4 2-methoxynaphthalene: carbon numbers

with the 6-31+G* basis set, using the PCM solvent model with nitromethane solvent.

These more expensive calculations were used because they generally give better relative

energy differences. An enthalpic correction to the electronic energies was calculated

from the vibrational partition function, qvib, where

qvib =
3n−5∏
j=1

e
−

hνj
2kbT

1− e
−

hνj
kbT

. [4.1]

Using the harmonic oscillator approximation, the vibrational enthalpy is defined as:221

Hvib = NkbT
2∂ ln qvib

∂T
= Nkb

3n−5∑
j=1

hνj

2kb

+
hνje

−
hνj
kbT

1− e
−

hνj
kbT

 . [4.2]

In Eqs. 4.1-4.3, kb is the Boltzmann constant, N is the total number of particles, and

n is the number of atoms in the molecule. Likewise, the vibrational frequencies were

used to calculate the entropy term for each of the regioisomers, using Equation 4.3:

Svib =
Hvib

T
+ Nkb ln qvib. [4.3]

Note that rotational contributions to the enthalpy and entropy were neglected, as rota-

tions are hindered in solution. Moreover, differences in the translational contributions

were assumed to be negligible as well.

The free energies in CH3NO2 at 373 K of the three experimentally-observed re-

gioisomers, 1,2-AMN, 1,7-AMN, and 2,6-AMN, are reported in Table 4.2, along with

the predicted composition at equilibrium and the experimentally-observed yields (also

in nitromethane at 373 K). As can be seen when comparing the free energies given in
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Table 4.2 Relative Free Energies at 373 K of Experimentally-observed
Regioisomers of Acylated 2-MN (MP2/6-31+G*) in CH3NO2.

Calculated ∆G Predicted Experimental

(kcal/mol) Yield Yield

2,6-AMN 0.0 97.6% 90%

1,7-AMN 2.8 2.3% 10%

1,2-AMN 4.9 0.1% 0%

Table 4.2 with the electronic energy values reported in Table 4.1, the relative energy

differences are smaller for the calculated free energies. The regioisomer 2,6-AMN is

the thermodynamic product, more stable than 1,7-AMN by 2.8 kcal/mol, and more

stable than the isomer 1,2-AMN by 4.9 kcal/mol. From the free energy differences,

yields were calculated assuming the reaction goes to equilibrium. The predicted yields

(97.6% 2,6-AMN, 2.3% 1,7-AMN, 0.1% 1,2-AMN) are in good agreement with the ex-

perimental yields of 90% 2,6-AMN and 10% 1,7-AMN (with no amount of 1,2-AMN

detected). The good agreement between the predicted and experimental yields indi-

cates that the calculated free energy differences reasonably describe the experimental

situation, and that the experimental reaction conditions (100 ◦C in CH3NO2) allow the

reaction to reach equilibrium or near-equilibrium. The fact that equilibrium is reached

(or approached) indicates that the catalyst enables reversibility of the reaction, since the

kinetic product is 1,2-AMN, as discussed in detail below in the next section (Section

4.7).

4.7 Kinetic Factors

Friedel-Crafts acylation,222 which involves formation of a carbon-carbon bond by

addition of an acyl group to an aromatic ring to form an aryl ketone or aldehyde, is

proposed to go through the following general mechanism:223 1. Generation of a reactive

acyl group by addition of a Lewis or strong protic acid to an acylating agent (typically,
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Figure 4.5 Proposed mechanism for Friedel-Crafts acylation 2-methoxynaphthalene
with acetic anhydride and a generic Brønsted acid. Step 1: generation of a reactive acyl
group; Step 2: formation of the sigma intermediate; Step 3: deprotonation

an acyl halide, acid anhydride, ester, or carboxylic acid). The reactive acyl group may

be a cationic acylium ion (R-C=O+), or a complex formed between the carbonyl group

and the Lewis/Brønsted acid. 2. Addition of the acyl group to the aromatic ring to form

a cationic sigma intermediate. 3. Deprotonation of the sigma intermediate to form the

final acylated product. This mechanism is illustrated in Figure 4.5 for the acylation of

2-methoxynaphthalene with acetic anhydride with a generic acid, HA.

The methoxy group of 2-MN is an ortho/para directing group for the electrophilic

aromatic substitution (EAS) of phenyl rings; it acts in a similar fashion as a directing

group in EAS reactions of naphthalene. This is a factor of kinetic control in determining

the regioselectivity of the acylation reaction. For example, it can be seen in Table

4.1 that some of the products at deactivated carbons are more stable than some of the

isomers of acylated 2-MN that are acylated at activated carbons. Population analysis

through the NBO charges shows that the 4, 5, 7 and 8 carbons are less activated for

electrophilic aromatic substitution . Charges of the carbon atoms and the associated
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hydrogens in 2-methoxynaphthalene are summarized in Table 4.3. The carbon atoms at

Table 4.3 Calculated NBO Charges for 2-methoxynaphthalene
(B3LYP/6-31+G* optimized geometry).

Carbon Number Charge on Carbon Charge on Hydrogen C-H Total Charge

1 -0.31 0.24 -0.07

2 0.32 N/A

3 -0.26 0.25 -0.01

4 -0.20 0.24 0.04

5 -0.20 0.23 0.03

6 -0.25 0.24 -0.01

7 -0.23 0.24 0.01

8 -0.22 0.23 0.01

the 1, 3, and 6 positions are more highly charged, thus providing a kinetic aspect to the

regioselectivity. Note that acylation at the 3 carbon is not observed, while acylation at

carbon 8 is, so that the NBO charges are not entirely predictive of which regioisomers

are observed.

If all regioisomers were kinetically accessible, one would predict a detectable amount

of substitution at the inactivated carbons at equilibrium, since several of these isomers

are close in energy (see Table 4.1) to 1,7-AMN: 1-acetyl-3-methoxynaphthalene and

1-acetyl-6-methoxynaphthalene from acylation of carbons 4 and 5, respectively. Even

more notable is that the isomer 2-methoxy-7-acetylnaphthalene, from acylation at the 7

carbon, lies very close in energy (0.73 kcal/mol higher) to the thermodynamic and ob-

served major product in CH3NO2 solvent, 2,6-AMN. Thus, the NBO charges verify the

resonance structures of 2-MN, both of which explain the kinetic selectivity provided by

the methoxy directing group.
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Another factor to explore in the kinetic selectivity of the acylation of 2-MN is the

relative stabilities of the sigma intermediates. Optimized geometries of the sigma in-

termediates were obtained at the B3LYP/6-31+G* levels, and frequency calculations

were used to verify that the structures constitute local minima. Solvation effects were

calculated from single point energies using the PCM model. For comparison with the

experimental results, nitromethane and heptane solvents were used; experiments in the

Barybin group were carried out in nitromethane and hexanes, as described above in

Section 4.4. Since there is no model in the Gaussian computational package for PCM

calculations in hexanes, heptane (ε=1.9) was selected instead, as the molecular sizes

and dielectric constants of the two solvents are similar. The relative energies of the

sigma intermediates are given in Table 4.4 for the three observed regioisomers of acetyl-

methoxynaphthalene: 1,2-AMN, 1,7-AMN, and 2,6-AMN.

Table 4.4 Relative Energies of Sigma Complex Intermediates (B3LYP/6-31+G* single
point PCM calculations).

Sigma Intermediate Relative Energy in Heptane Relative Energy in Nitromethane

(kcal/mol) (kcal/mol)

1,2-AMN 0.0 0.0

1,7-AMN 6.21 5.09

2,6-AMN 7.34 6.06

The sigma intermediate of the 1,2-AMN isomer has the lowest energy in both sol-

vents, while that of the thermodynamic product 2,6-AMN has the highest energy. Ex-

periments in hexanes at 100 ◦C yielded the 1,2-AMN isomer exclusively, while acy-

lation of 2-MN in more polar nitromethane solvent yielded primarily 2,6-AMN (90%

selectivity), with small amounts of 1,7-AMN (10% selectivity). The relative stabilities

of the sigma complexes, as given in Table 4.4 may help rationalize this observation.

In heptane, the energy differences between the intermediates for 1,2-AMN and 2,6-

AMN (1,7-AMN) are larger than those in nitromethane. Specifically, in nitromethane
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the energy difference between the σ intermediates for 1,2-AMN and 2,6-AMN (1,7-

AMN) is 6.06 kcal/mol (5.09 kcal/mol), while in heptane the energy difference is 7.34

kcal/mol (6.06 kcal/mol). The differences in relative stabilities of the intermediates in

the two solvents is equal to ∼2kbT at 100 ◦C, enough that the sigma intermediates of

the more stable products may not be kinetically accessible in hexanes. Alternatively,

the observed solvent-dependent regioselectivity may be attributed to the reversibility of

the reactions, i.e., deacylation via the 1,2-AMN sigma intermediate may be kinetically

accessible in CH3NO2, whereas it may not be in hexanes. In fact, it is likely that the

ability of the catalyst to deacylate 1,2-AMN, the kinetic product in both polar and non-

polar solvent, is key to the regioselective formation of 2,6-AMN, the thermodynamic

product, in CH3NO2 with Acid1.

4.8 Chemical Modifications of Acid1: Effects on Acidity

The gas phase acidities of Acid1 and styryl-Acid1 were calculated using the dif-

ference between the B3LYP/6-31+G* calculated energies (as described in Section 4.5)

of the acids and the corresponding conjugate bases. The gas phase acidity for Acid1 is

295 kcal/mol, while that of styryl-Acid1 is 307 kcal/mol. In order to benchmark the

quantum chemistry calculations, the gas phase acidities of a number of acids, including

a set of carbon acids, were calculated and compared to the experimentally-determined

values. In general, the calculated gas phase acidities were in reasonable agreement

with the experimental values. Although the calculations are not always in quantitative

agreement with experiment, the calculated values generally agreed with the experimen-

tal gas phase acidities within 5 kcal/mol. The results are given in Table 4.5. As can be

seen, the gas phase acidity of Acid1 is higher than those of a number of strong acids.

The solution-phase acidity is more challenging to calculate by ab initio methods, as

solvent effects on proton transfer are hard to calculate without explicit treatment of the

solvent. The PCM calculations that were used with the 2-MN derivatives were carried
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out on the acids and conjugate bases, but calculations of absolute pKa values for in-

termolecular proton transfer reactions with continuum solvation models are generally

unreliable.225 The gas phase acidity of styryl-Acid1 is still quite strong, though not

as favorable as that of Acid1, which acts as a homogeneous catalyst. Furthermore,

one would expect solvation effects to favor proton transfer from the smaller, homoge-

neous catalyst Acid1, thus making Acid1 a stronger acid than its solid analogue based

on styryl-Acid1. However, while incorporation into a solid support may reduce the

acidity, it may actually increase the catalytic activity for some reactions. In work with

sulfonic superacids, Harmer and co-workers found that highly polar liquid superacids

were essentially inactive in the isomerization and oligomerization of 1-dodecene. After

incorporation into sol-gel and silica supports, miscibility issues were overcome, and the

solid acids showed high catalytic activity for the reaction.226

4.9 Conclusions

Quantum chemistry calculations were used to find the optimized geometries and

relative energies of Acid1, its styryl modification, regioisomers of acylated 2-methoxy-

naphthalene, and their related sigma intermediates. The primary conclusions are: 1.

The desired acylated product for the synthesis of (S)-naproxen, 2,6-AMN is the ther-

modynamic product in the acylation of 2-methoxynaphthalene. 2. The regioisomer

1,2-AMN is the kinetic product; it has the lowest energy σ intermediates. 3. The gas

phase acidity of Acid1 is stronger than that of many strong acids. 4. The efficacy

of Acid1 in the regioselective acylation of 2-MN can likely be attributed to its ability

to catalyze both the forward and reverse (deacylation) reactions, thereby affording the

thermodynamic product.

The carbon acid, Acid1, shows promise as a greener acid in Friedel-Crafts acyla-

tion, both as a homogeneous catalyst and as a solid acid. Future directions involve

studies to determine the best porous materials in which to incorporate Acid1 for solid

acid catalysis.
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Table 4.5 Experimental and Calculated Gas Phase Acidities.

Acid Experimental224 Calculated (B3LYP/6-31+G*)

∆H0
acid ∆E0

acid

(kcal/mol) (kcal/mol)

CH3OH 378.02 ± 2.5, 381.4 ± 1.7 385

HF 371.3 ± 2.9 366

pyrrole 359.2, 360.7 ± 2 365

acetic acid 348.5 ± 2 349

C6H5SH 338.9 ± 3.4 340

HCl 333.3 ± 0.3 328

HNO3 324.6 ± 1 323

HBr 323.6 ± 0.3 321

Carbon Acids

HCF3 377.6 ± 2.5 381

CH3CN 371.3 ± 2.9 380

C6H5SO2CH3 363.1 ± 2 373

CH3COF 359 ± 6 365

p-NO2C6H4CH3 353.1 ± 2 356

HCN 349.3 ± 2.4 353

styryl-Acid1 307

Acid1 295
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Chapter 5

Conclusions

5.1 Overview and Future Directions

In this dissertation, charge transfer reactions that take place in porous media were

studied. In Chapter 2, the driving forces behind solute diffusion upon photoexcitation

were studied in 10 and 15 Å spherical nanocavities. In prior research carried out by the

Thompson group, it was found that a long-time tail in the time-dependent fluorescence

signal correlated to solvent diffusion away from the nanocavity wall toward the interior

of the pore. The free and internal energies and entropies were calculated for the model

dye molecule in a variety of solvents: methyl iodide, acetonitrile, and methanol. It was

found that the entropy is at a maximum at radial distances where the solvent density

is highest. The entropy maxima also correspond to minima in the free energy; thus, it

is entropy that drives the solute to be located within a solvent layer. In contrast, the

internal energy is maximized at locations where the solute center-of-mass is located

between the solvent layers (with one atom each in a solvent layer). The rotational

free energies/probability distributions as a function of solute radial distance suggest

that the rotational entropy is minimized at these positions between solvent layers, but

maximized when located near the cavity wall, and within a solvent layer. In the latter

cases, more solute orientations are possible, and rotation through the azimuthal angle

is maximized when the solute is oriented perpendicular to the wall. Although entropy

directs the solute to positions within the solvent layers, it is the internal energy (electro-

static interactions) that ultimately decides the position of the ground/excited state dye

molecule: the less polar ground-state solute has lower internal energy in locations near
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the cavity wall, within the first solvent layer, while the more polar excited-state solute

has lower internal energy within the second solvent layer or closer to the cavity interior

where the solvent is effectively more polar.

In the spherical, hydrophobic nanocavities, less polar solutes are located near the

cavity wall, while more polar solutes are located near the interior. This has implications

in the design of nanoporous catalysts. If a less polar substrate is reacting at the surface

to form a more polar reactant, a material with these properties is ideal. However, for

the opposite case (polar substrate, less polar reactants), a different environment would

be required to maximize reactivity and diffusion of products away from catalytic active

sites. In Chapter 3, a reaction that is critical in many catalytic processes, proton transfer,

was studied in CH3Cl solvent in a 12 Å radius spherical, hydrophobic cavity. The

model proton transfer complex is based on a phenol-amine intermolecular reaction.

The infrared spectra of this proton transfer complex were calculated for a number of

different cases in which the proton transfer equilibria were varied. It was found that the

infrared absorption spectra contain information about chemical equilibria; furthermore,

the frequency-frequency time correlation functions, which can be obtained with non-

linear vibrational spectroscopy, contain information about the rate of proton transfer.

Specifically, by fitting the function φ, which is Fourier transformed to the absorption

spectrum, with an analytical expression that describes two Lorentzian peaks, the ratio

of the products to reactants can be found. The proton transfer model used here does lend

itself to such a fitting, since the transition dipole moments for products and reactants

are nearly identical. Another consequence of having similar values of µ
d10

(t) is that the

dipole-dipole time correlation functions are identical to the rotational autocorrelation

function. The widths of the product and reactant peaks in the absorption spectra are

related to the solute dipole autocorrelation/reorientation times (wider peaks indicate

faster reorientation). The spectral peaks also display motional narrowing due to rapid

frequency fluctuations. Because of the slow chemical exchange, it was found that the

orientational TCF of the products with chemical exchange could be predicted as a linear



121

function of the products only and reactants only reorientation times, with the ratios

coming from the respective mole fraction of each species.

Future directions for this work involve using a proton transfer model in which the

nitrogen-oxygen distance can vary. This could be achieved by adding a Morse or

harmonic potential to the heavy atoms. One would expect that the varying N-O dis-

tance would result in different transition dipole moments for products and reactants; it

would then be interesting to revisit the analytical expressions for the infrared spectra

and the dipole-dipole autocorrelation functions to see what information about chemical

equilibria and relative reorientation times can be found in the infrared spectrum for a

more realistic (or, at least, more general) system. It would also be instructive to revisit

the Condon and other linear response approximations with the revised proton transfer

model.

Another interesting result of the work in Chapter 3 is the implications it has for

finding proton transfer rate constants from IR photon echo experiments. This work

suggests that the long-time decay rate, τ , of the frequency-frequency time correlation

function is equal to (kf + kb)
−1. If Keq is known, the proton transfer rate contstants

can be found, since Keq =
kf

kb
. Thus, ground-state proton transfer rate constants may

be found with nonlinear vibrational spectroscopy. Previously, vibrational spectroscopy

has been used to find excited-state proton transfer rates. Excited-state proton transfer

dynamics provide useful data regarding the effects of confinement on chemical reac-

tivity, but do not provide information on the dynamics of ground-state proton transfer,

which is more relevant for understanding and designing nanoporous catalysts.

In Chapter 4, a carbon acid catalyst (Acid1) and its role in the Friedel-Crafts acyla-

tion of 2-methoxynaphthalene (2-MN) were studied. This reaction is of interest because

2,6-acetylmethoxynaphthalene (2,6-AMN), one of the acylation products of 2-MN, is

a precursor in the manufacture of the analgesic (S)-naproxen. The conventional acyla-

tion reaction protocol is carried out using Lewis acids such as AlCl3, and the desired

regioisomer is a minor product at best. Thus, an improvement in the regioselectivity
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of this process would be environmentally beneficial, with less need for separation and

purification, and less generation of hazardous waste. When AlCl3 is used as a Lewis

acid, it is not done catalytically, but in excess of stoichiometric amounts. Moreover, if

the carbon acid is immobilized in a porous host, it can be used as a solid acid, which

can, in principle, be removed from the reaction mixture, regenerated, and reused.

By calculating the relative energies of the acylated products of 2-MN, it was found

that the desired product, 2,6-AMN, is the thermodynamic product. The major product

in most catalyzed acylations of 2-MN, 1,2-AMN, was shown to be the kinetic product,

as the sigma intermediate of this product is lower in energy than the sigma complexes of

the other acylation products. Thus, the carbon acid achieves regioselectivity by forming

the thermodynamic product, most likely by catalyzing the deacylation of 1,2-AMN to

2-MN so that 2,6-AMN may eventually be formed as the predominant product. The

gas phase acidity of Acid1 and modifications to the acid that allow for incorporation

thereof into porous materials were calculated. It was found that the gas phase acidity is

higher than those of many strong acids, and that para-modification reduces the acidity

only slightly. Of course, the gas phase acidity does not take into account solvation

effects, which play a significant role in acid-base chemistry. Future work in this area

may involve calculating the acidities in solution or developing a model of the acid and

simulating it in a confined system.

Most of the research described herein involves a very simple confining framework:

a spherical, smooth-walled nanocavity. Future directions involve using a more realistic

confining framework, such as one with atomic detail/roughness. Work has been done in

the Thompson group with a library of sol-gel pores,227 and carrying out studies in these

pores is a natural direction in extending this work. However, the simplifications offered

by the spherical nanocavities do offer some advantages. Without atomic roughness, it

is easy to define properties as a function of radial distance from the wall. Also, the

volume is easily defined, so that concentration can be calculated in a straightforward

manner.
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This work contributes to the body of knowledge regarding confinement effects in

materials. Clearly, there are innumerable discoveries still to be made in the area. With

the vast variety of materials that can be synthesized, the interplay between theoretical

and experimental chemistry in the rational design of functional materials looks to be a

promising area of research for many years to come.
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5781–5791.

[102] Baumann, R.; Ferrante, C.; Kneuper, E.; Deeg, F. W.; Bräuchle, C. J. Phys.
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