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Chapter 1

Introduction

In this thesis, we will discuss the matched asymptotic expansions method of solving a
singularly perturbed system and apply this method to find an approximate solution to
the steady-state Poisson-Nernst-Planck system.

1.1 The problem and mathematical model
The Poisson-Nernst-Plank (PNP) system is related to the function of cells. Cells are
protected from the world around them by their membranes. Communication with each
other and their surroundings takes place by ions that enter the cell through ion chan-
nels embedded in this membrane. The ion channels regulate the movement of specific
charged particles into and out of the cell by providing a path through the membrane.
These channels are typically gated, opening for a stimulus like electric potential or par-
ticular chemical. We will consider the problem of the flow of ions through a channel
which is open. As was stated, since the interaction between the ions and the channel is
a function of the charges and concentrations of the particles, we can consider equations
of electrodiffusion when examining their movement.

Important properties of ion channels can be described by a steady state Poisson-
Nernst-Plank system for electrodiffusion. The system is comprised of two types of
equations. The Nernst-Planck equations model the concentration of ions through the
balance of concentration gradient and electric potential, and the Poisson equation deter-
mines the electric potential from the concentration of ions. The solution to the system
gives a relation between the current and electric potential of the ions in the channel,
called the I-V curve.

Limiting the steady-state system of the PNP system to only two types of ions gives
the system below:
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ε
2 ∂ 2φ

dx2 =−(αc1−βc2 +Q(x)),

dc1

dx
+αc1

dφ

dx
=−J1,

dc2

dx
−βc2

dφ

dx
=−J2,

dJ1

dx
= 0,

dJ2

dx
= 0,

(1.1)

for x ∈ [0,1] in a channel of normalized length, where φ is the electric potential at
a point in the channel, c1 and c2 are the concentrations of the two ions, Q(x) is the
permanent charge in the channel, J1 and J2 are the flux of the two ions and α and β are
the charge valences of the ions.

We will consider the following boundary conditions:

φ(0) = ν0, c1(0) = L1, c2(0) = L2,

φ(1) = 0, c1(1) = R1, c2(1) = R2,

where L1, L2, R1, R2 are constants, and ν0 is the initial electric potential in the channel.
For simplicity, we accumulate the initial potential on the boundary at x = 0 which leaves
zero initial potential at x = 1.

Notice the singular parameter ε is very small, since it is defined as the reciprocal
of the large Debye number. Thus, this PNP system can be viewed as a singularly
perturbed boundary value problem (BVP). Typically, singularly perturbed BVP’s are
characterized by a solution with two distinguished behaviors, called singular layers
and regular layers. Singular layers can occur near the boundary, where they are called
boundary layers, or at interior points, where they are called interior layers. Regular
layers lie away from singular layers. To solve the system using asymptotic expansions,
one must first find the solution on each layer separately by scaling time as a outer and
inner variable using the singular parameter ε . Then one matches the layers together to
get a smooth solution to the problem.

We want to approximate solutions to this system explicitly for the J1 and J2, which
will give the flux. Using this result, we can find the current as the difference of the fluxes
in the ion channel, and write a relationship between the current and electric potential,
which we call ν0. This relationship, called the I-V curve, is a function of V = ν0 for
fixed L and R. The I-V curve is of interest in the field of biology. It should be noted
that the I-V curve has been observed to be nonlinear.
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1.2 Previous results
An early related treatment of the steady-state PNP system can be found in [2]. In this
paper, the authors discuss the system with Q = 0 and obtain a zeroth-order approxi-
mation to a solution, then discretize the system and use numerics to characterize their
approximation.

A response to this paper comes in [5], where the system is studied using a geomet-
ric approach. In this paper, the author tackles the same problem that will be studied in
this thesis, with two types of ions and zero permanent charge. First, the author con-
siders the slow and fast systems, known in this thesis as the inner and outer systems,
and their “limiting” systems. These are the systems when the parameter is zero. The
slow manifold, the solution set to the limiting slow system, turns out to be normally
hyperbolic, so there are singular layer at both boundaries. With the help of a complete
set of integrals for the limiting fast system, the boundary layer can be completely de-
scribed. To find the singular orbit of the solution, the author first proves that a unique
solution exists by appealing to the fact that these invariant manifolds at the boundaries
intersect transversely [7]. By the Exchange Lemma, the existence and uniqueness of a
solution near the singular orbit is established. The zeroth order solution that appears in
this paper will be rederived in this thesis.

It should be noted that both the papers above calculate solutions while assuming
the permanent charge in the channel to be identically zero. The last paper consulted,
[3], appears after [5] and solves the system with a constant permanent charge inside the
channel and a charge of zero at the endpoints x = 0 and x = 1. The authors then solve
the PNP system using the same geometric approach as in [5]. In this case, there are
3 subintervals: near x = 0, between x = 0 and x = 1 and near x = 1. In each of these
subintervals, one must consider the boundary value problem, with the slow orbit and
two fast orbits that must be connected to find the singular orbit by the same method as
in [5].

1.3 Thesis
The purpose of this thesis is to find a higher order I-V relation for the steady-state PNP
system, assuming two types of ions and zero permanent charge in the channel. We will
use the asymptotic expansion method to recover the known zeroth order solution for the
system, then use the same technique to find the first order I-V relation. In the condition
of electron-neutrality, we will derive the second and third order I-V relations.
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Chapter 2

The method of matched asymptotic expansions: an
example

In this chapter, we first describe the general procedure of matched asymptotic expan-
sions and then demonstrate the procedure using a simple example from [4]. Techniques
from [6] were also consulted.

2.1 Outer solution, Inner solution, and Matching
Consider a general singularly perturbed system:

ε ẋ(τ) = f (x,y;ε),
ẏ(τ) = g(x,y;ε).

(2.1)

It is called the outer system, and its variable, outer. By scaling time t = τ

ε
, we obtain

the so-called inner system

X ′(t) = f (X ,Y ;ε),
Y ′(t) = εg(X ,Y ;ε),

(2.2)

where X(t) = x(εt) and Y (t) = y(εt). For the zeroth and first order solutions of this
system, we consider solutions of the form

x(τ;ε) = x0(τ)+ εx1(τ), y(τ;ε) = y0(τ)+ εy1(τ)

to the outer system (2.1), and of the form

X(t;ε) = X0(t)+ εX1(t), Y (t;ε) = Y0(t)+ εY1(t)

to the inner system (2.2).
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The method of matched asymptotic expansions generally involves three steps. First,
substitute the outer expansion (x(τ;ε),y(τ;ε)) into the outer system (2.1). Then con-
sider the terms of like order and solve. Next, substitute the inner expansion (X(t;ε),Y (t;ε))
into the inner system (2.2). Solve the like-ordered terms, and impose the boundary val-
ues on the inner solutions. When we solve both systems, we get the inner and outer
solutions with undetermined constants. Lastly, we match the inner and outer solutions
to solve for these undetermined constants. We do this by substituting εt for τ in the
outer solution, and rewriting it as some new functions

x(εt;ε) = x̃0(t)+ ε x̃1(t)+O(ε2), y(εt;ε) = ỹ0(t)+ ε ỹ1(t)+O(ε2)

and match (x̃ j(t), ỹ j(t)) with (X j(t),Yj(t)) for j = 1,2 to solve for the undetermined
constants.

2.2 An example
Consider the singularly perturbed two-point boundary value problem from [4]:

ε
d2u
dx2 +

du
dx

−a−2bx = 0,u(0) = 0, u(1) = 1.

The exact solution is

u(x;ε) = (1−a−b+2εb)
1− e−

x
ε

1− e−
1
ε

+ax+bx2−2εbx.

We will illustrate the procedure of finding asymptotic expansions, and compare our
result to this exact solution.

The original system above is called the outer system. We will use this notation for
clarity.

ε ü(x) =−u̇(x)+a+2bx,

u(0) = 0, u(1) = 1.

To put the second order equation into a system of first order equations, let’s define
v(x) = ε u̇(x)+u. This is called a Lienard transformation. Notice this makes v̇ = ε ü+ u̇.
Let us also define w(x) = x to parametrize the orbit of the solution in the independent
variable x. The second-order differential equation becomes the system of first order
differential equations below:
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ε u̇ = v−u,

v̇(x) = a+2bw,

ẇ = 1,

(2.3)

with boundary conditions u(0) = w(0) = 0 and u(1) = w(1) = 1.
In general, we are looking for solutions of the form

u(x,ε) = ∑
j=0

ε
ju j(x) = u0(x)+ εu1(x)+ ε

2u2(x)+ · · · ,

v(x,ε) = ∑
j=0

ε
jv j(x) = v0(x)+ εv1(x)+ ε

2v2(x)+ · · · .

2.2.1 The Outer Solution
Let’s consider the zeroth and first order solutions u(x;ε) = u0(x) + εu1(x), v(x;ε) =
v0(x)+ εv1(x). Substituting these expansions into the outer system (2.3), we get

ε u̇0 + ε
2u̇1 = v0−u0 + ε(v1−u1),

v̇0 + ε v̇1 = a+2bw0 + ε2bw1,

ẇ0 + εẇ1 = 1.

We then write the system of equations for the terms of zeroth order in ε .

0 = v0−u0,

v̇0 = a+2bw0,

ẇ0 = 1,

which has solutions u0 = v0 = c0 +ax+bx2 and w0 = x, for some constant c0.
The first order outer system is

u̇0 = v1−u1,

v̇1 = 2bw1,

ẇ1 = 0,

which has solutions u1(x) = c1−a−2bx, v1(x) = c1, and w1 = 0, for some constant c1.
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2.2.2 The Inner Solution
We will define an inner variable ξ = x

ε
, and substitute it into the outer system (2.3). This

gives us the inner system that determines the inner system that determines the limiting
behavior of the singular layer at the boundary x = 0. More precisely, we will define

U(ξ ) = u(εξ ), V (ξ ) = v(εξ ), W (ξ ) = w(εξ )

as the solutions to the inner system. Also, as d
dx is denoted ,̇ d

dξ
is denoted ’. The inner

system is

U ′ = V −U,

V ′ = ε(a+2bW ),
W ′ = ε.

(2.4)

Expand as U = U0 + εU1, V = V0 + εV1, W = W0 + εW1, and substitute into the inner
system (2.4) to get

U ′
0 + εU ′

1 = V0−U0 + ε(V1−U1),
V ′

0 + εV ′
1 = ε(a+2bW0),

W ′
0 + εW ′

1 = ε.

As mentioned above, the boundary conditions at x = 0 implies

U(0) = U0(0)+ εU1(0) = 0 and W (0) = W0(0)+ εW1(0) = 0.

Therefore, U0(0) = U1(0) = W0(0) = W1(0) = 0.
The inner system of zeroth order terms is

U ′
0 = V0−U0,

V ′
0 = 0,

W ′
0 = 0.

Since we defined w = x, we get W = εξ , so W0 = 0. And V0 = k00, for some constant
k00. Using the variation of parameters formula, we get U0 = k00 + α0e−ξ for some
constant α0. But since U0(0) = 0, this forces α0 =−k00. At x = 0,

U0 = k00(1− e−ξ ), V0 = k00, W0 = 0.

The inner system of first order terms is
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U ′
1 = V1−U1,

V ′
1 = a+2bW0,

W ′
1 = 1.

By the same reasoning as in the zeroth order case, W1 = ξ . Notice W0(0) = 0. By
integrating, we can see V ′

1 = a =⇒ V1 = aξ + k01. Then by again using the variation
of parameters formula, we get U1 = α1e−ξ +a(ξ −1)+ k01. Notice U1(0) = α1−a+
k01 = 0 so α1 = a− k01. At x = 0,

U1 = (a− k01)e−ξ +a(ξ −1)+ k01, V1 = aξ + k01, W1 = ξ .

Now consider the inner system at the boundary x = 1. We will use the inner variable
η = x−1

ε
. Notice that this new variable has the same derivative with respect to x as the

inner variable at x = 0, so we can consider the same system we did at x = 0, but with
different constants. Notice that W0 = 1, and V0 = k10 for some constant k10. Then U0 =
k10 +β0e−η . In this case, the boundary condition is at x = 1 which makes η = 1−1

ε
= 0.

This makes β0 = 1− k10. At x = 1,

U0 = k10 +(1− k10)e−η , V0 = k10, W0 = 1.

In the first order system near x = 1, W0(1) = 1. So V ′
1 = a + 2b =⇒ V1 = (a +

2b)ξ + k11 and W1 = ξ . Now, U1 = β1e−ξ + (a + 2b)(ξ − 1) + k11. So U1(0) = 0
makes β1 = a+2b− k11. At x = 1,

U1 = (a+2b− k11)e−η +(a+2b)(η −1)+ k11, V1 = (a+2b)η + k11, W1 = η .

2.2.3 Matching
Let us first match the zeroth order solutions. We will do this by finding the constants
c0, k00, k10 that make u0(0) = U(∞) near x = 0 and u0(1) = U(−∞) near x = 1.

Notice near x = 1, the solution for U0 as η →−∞ blows up because of the e−η term.
Thus, to make this solution satisfy the boundary condition, we must have k10 = 1. Then
U0(−∞) = 1 = c0 + a + b = u0(1) makes c0 = 1− a− b. Matching near x = 0 makes
U0(∞) = k00 = c0 = u0(0), so we get the following zeroth order solutions

u0(x) = 1−a−b+ax+bx2

U0(ξ ) = (1−a−b)(1− e−ξ ), near x = 0,

U0(η) = 1, near x = 1.
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To match the first order terms, we must consider the expansion of u and U in ε .

u(x) = 1−a−b+ax+bx2 + ε(c1−a−2bx)

U(ξ ) = (1−a−b)(1− e−ξ )+ ε

(
(a− k01)e−ξ +a(ξ −1)+ k01

)
, near x = 0,

U(η) = 1+ ε
(
(a− k11)e−η +a(η −1)+ k11

)
, near x = 1.

Consider the outer solution near x = 1. We need the ε1 order terms of u(x) to equal
zero when x = 1 to satisfy the boundary condition. Thus we get

c1 = a+2b.

Now
u(x) = 1−a−b+ ε(2b−2bx).

Consider the outer solution near x = 0. Substitute the inner variable x = εξ into u(x) to
get

u(εξ ) = 1−a−b+ ε(aξ +2b).

Recall U(ξ ) = (1− a− b)(1− e−ξ ) + ε

(
(a− k01)e−ξ +a(ξ −1)+ k01

)
. Notice we

recover the zeroth order matching here when we look at x = 0 =⇒ ξ = 0. We now
want to match this with U(ξ ) near x = 0 to find k01. Notice that as ξ → ∞, the terms
e−ξ will vanish. These are called transcendental terms. Since they vanish near the
boundary in the final solution, we do not need to consider them in the matching. At
x = 0, without the transcendental terms,

U(ξ ) = 1−a−b+ ε(a(ξ −1)+ k01).

This implies aξ +2b = a(ξ −1)+ k01 =⇒ k01 = a+2b. So we get the solution near
x = 0 to be

U(ξ ) = (1−a−b)(1− e−ξ )+ ε

(
2b(1− e−ξ )+aξ

)
.

Near x = 1, we consider the outer system in the fast variable x = εη +1,

u(εη +1) = 1+ ε(a+2b)η .

Recall U(η) = 1 + ε ((a+2b− k11)e−η +(a+2b)(η −1)+ k11) at x = 1. Notice the
e−η term goes to infinity when η →−∞. This requires k11 = a + 2b. This completes
the matching, since k11 = a+2b makes the constant term equal to zero. So the solutions
follow.
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u(x) = 1−a−b+ax+bx2 + ε(2b−2bx),

U(ξ ) = (1−a−b)(1− e−ξ )+ ε

(
2b(1− e−ξ )+aξ

)
, near x = 0,

U(η) = 1+ ε(a+2b)η ; near x = 1.

It can be checked that these expansions agree with the expansions of the known
exact solution to the boundary value problem.

It should be noted that Lagerstrom, in [4], handles the problem similarly. He con-
siders the inner and outer systems in the zeroth order in ε , then uses a limiting argument
to match in the jth order of ε . He then combines the inner and outer solutions using a
difference function.
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Chapter 3

Solving the PNP system

We now apply the method of matched asymptotic expansions to the PNP system with
α = β = 1 and Q(x) = 0. Following the procedure, we will examine the outer dynamics
in Section 3.1, the inner dynamics in Section 3.2 and the matching in Section 3.3. This
chapter treats general boundary conditions with asymptotic expansions up to the first
order. In Chapter 4, we study second and third order asymptotic expansions under the
electron neutrality boundary conditions. Some of the results are reported in [1].

3.1 The Outer Dynamics
Take the simplified case of two ions with α = β = 1 and zero permanent charge, Q(x) =
0.

The system now looks like:

ε
2
φ̈ − c2 + c1 = 0,

ċ1 + c1φ̇ =−J1,

ċ2− c2φ̇ =−J2,

J̇1 = J̇2 = 0,

(3.1)

with boundary conditions

φ(0) = ν0, c1(0) = L1, c2(0) = L2,

φ(1) = 0, c1(1) = R1, c2(1) = R2.
(3.2)

We will define the reference to order to mean order in ε of a term in the asymptotic
expansion of each of these functions. This is demonstrated below:
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φ = φ(x;ε) = φ0(x)+ εφ1(x)+ ε
2
φ2(x)+ · · · ,

c1 = c1(x;ε) = c10(x)+ εc11(x)+ · · · ,
c2 = c2(x;ε) = c20(x)+ εc21(x)+ · · · ,
J1 = J10 + εJ11 + · · · , J2 = J20 + εJ21 + · · · .

Note that the current I is then given by

I = I1 + I2 + · · ·= J1− J2 = (J10− J20)+ ε(J21− J22)+ · · · . (3.3)

This system has been studied using a geometric approach in [5] for the zeroth order
approximation, but this method did not easily generalize to the higher order approxi-
mation, so we will apply the classical matched asymptotic expansions.

Rewriting the PNP system (3.1) with the expanded functions, we get the following
system:

ε
2
φ̈0 + ε

3
φ̈1 + ε

4
φ̈2 + · · ·= c20− c10 + ε(c21− c11)+ · · · ,

ċ10 + ε ċ11 + · · ·=−φ̇0c10− ε(φ̇0c11 + φ̇1c10)− J10− εJ11 + · · · ,
ċ20 + ε ċ21 + · · ·= φ̇0c20 + ε(φ̇0c21 + φ̇1c−20)− J20− εJ21 + · · · .

(3.4)

This is the outer system. It describes solutions between x = 0 and x = 1. This system
is typically also counterintuitively called the “outer system”. We can write the larger
system as systems of like-ordered terms, that is, match all the coefficients of ε0, ε1, etc.
to get “smaller” systems.

3.1.1 The Zeroth-Order Outer System
Considering the system given by the ε0 order terms of (3.4), we get:

0 = c20− c10,

ċ10 =−c10φ̇0− J10,

ċ20 = c20φ̇0− J20.

This is the limiting outer system. Notice that the high-order term φ̈ vanishes, so we
get two ordinary differential equations coupled with an algebraic equation. In general,
these solutions cannot satisfy the boundary conditions (3.2), so we will need to consider
another system besides the outer system to solve the PNP system. First, let’s attack the
zeroth-order outer system.

14



Since c10 = c20 ≡ c0, we get the equations

ċ0 + c0φ̇0 =−J10,

ċ0− c0φ̇0 =−J20.

Add and subtract the equations to get

ċ0 =−J20 + J20

2
, φ̇0 =

J20− J10

2c0
.

Integrating and substituting, we get

φ0(x) = b0 +
I0

T0
ln |a0−T0x|,

c10(x) = c20(x) =
a0−T0x

2
,

(3.5)

where a0 and b0 are constants, and I0 = J10− J20, T0 = J10 + J20.

3.1.2 The First-Order Outer System
Let’s now attack the first-order outer system. Group the ε1 order terms of (3.4) to get:

0 = c21− c11,

ċ11 =−(φ̇0c11 + φ̇1c10)− J11,

ċ21 = (φ̇0c21 + φ̇1c20)− J21.

Again, c11 = c21 ≡ c1, so we get the equations

ċ1 =−c0φ̇1− c1φ̇0− J11,

ċ1 = c0φ̇1 + c1φ̇0− J21.

Add and subtract the equations to get

ċ1 =−J21 + J21

2
, φ̇1 =

(J21− J11)−2c1φ̇0

2c0
.

Integrating and substituting, we get

φ1(x) = b1 +
T0I1− I0T1

T 2
0

ln |a0−T0x|+ I0(a1T0−a0T1)
T 2

0 (a0−T0x)
,

c11(x) = c21(x) =
a1−T1x

2
,

(3.6)
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where a1, b1 are constants, and I1 = J11− J21, T1 = J11 + J21.
Now we can determine the constants a0,b0,a1,b1 by solving the system near the

boundaries x = 0 and x = 1 and using these four degrees of freedom to match this outer
solution with the solution found at the boundaries.

3.2 The Inner Dynamics
As previously stated, we have found solutions that satisfy the system (3.1) between
x = 0 and x = 1, but don’t satisfy the boundary conditions (3.2) in general. We can
scale time in inner variable to determine a solution near the boundaries, then match the
inner solution with the outer solution we just found to find the constants.

Define the inner variable ξ in x as ξ = x
ε
. We will do a change of variables as

follows. Let’s consider the system in general, then look at the specific solutions near
x = 0 and x = 1. Notice that these solutions need not be symmetric, if only because
we chose the initial condition on φ to gather the potential ν0 at x = 0 and have zero
potential at x = 1.

Φ(ξ ) = φ(εξ ),
C1(ξ ) = c1(εξ ),
C2(ξ ) = c2(εξ ).

In the inner variable, the PNP system becomes:

Φ
′′ = C2−C1,

C′
1 =−Φ

′C1− εJ1,

C′
2 = Φ

′C2 + εJ2.

(3.7)

Considering the following expansions

Φ(ξ ,ε) = Φ0(ξ )+ εΦ1(ξ )+ · · · ,

C1(ξ ,ε) = C10(ξ )+ εΦ11(ξ )+ · · · ,

C2(ξ ,ε) = C20(ξ )+ εΦ21(ξ )+ · · · ,

the system becomes
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Φ
′′
0 + εΦ

′′
1 + ε

2
Φ
′′
2 = C20−C10 + ε(C21−C11),

C′
10 + εC′

11 =−Φ
′
0C10− ε(Φ′

0C11 +Φ
′
1C10)− εJ10− ε

2J11,

C′
20 + εC′

21 = Φ
′
0C20 + ε(Φ′

0C21 +Φ
′
1C20)− εJ20− ε

2J21.

(3.8)

We will call this the inner system. Notice that the inner system is of the same order as
the original PNP system, so we will be able to find the parts of solutions associated with
the higher order terms that were lost in the outer system when the φ̈ term vanished. For
convenience, let’s introduce a new variable U = Φ′. The inner system is then

Φ
′
0 + εΦ

′
1 + ε

2
Φ
′
2 = U0 + εU1,

U ′
0 + εU ′

1 = C20−C10 + ε(C21−C11),

C′
10 + εC′

11 =−U0C10− ε(U0C11 +U1C10)− εJ10− ε
2J11,

C′
20 + εC′

21 = U0C20 + ε(U0C21 +U1C20)− εJ20− ε
2J21.

3.2.1 The Zeroth-Order Inner System
As we did in the outer system, compare the terms of like order in ε . Matching the ε0

terms in (3.8), we get

Φ
′
0 = U0,

U ′
0 = C20−C10,

C′
10 =−U0C10,

C′
20 = U0C20.

(3.9)

This is the limiting inner system.
It is known that this system has a complete set of first integrals; that is,

Lemma 1. Lemma 1 The following functions

H1 = C20 +C10−
1
2

U2
0 ,

H2 = e−Φ0C20,

H3 = eΦ0C10,

are first integrals of the zeroth order inner system. This means if Φ0(ξ ),U0(ξ ),C10(ξ ),C20(ξ ))

is a solution, then
dHi

dξ
= 0 for i = 1,2,3.
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It can be verified that these functions are integrals for the system. Using the initial
conditions in (3.2), we get Φ0(0) = ν0 and C j0 = L j, j = 1,2, so Hi, i = 1,2,3 constant
means

C10eΦ0 = k1 ⇒C10(ξ ) = k1e−Φ0(ξ ).

At x = 0, C10 = L1 = k1e−ν0 gives k1 = L1eν0 and

C10 = L1e−(Φ0(ξ )−ν0). (3.10)

Likewise,
C20 = L2e(Φ0(ξ )−ν0). (3.11)

Substituting (3.10) and (3.11), the zeroth order system (3.9) becomes a Newtonian
system

Φ
′
0 = U0, U ′

0 =−L1e−(Φ0(ξ )−ν0) +L2e(Φ0(ξ )−ν0).

⇒ Φ
′′
0 +L1e−(Φ0(ξ )−ν0)−L2e(Φ0(ξ )−ν0) = 0.

This implies

(Φ′
0)

2

2
−L1e−(Φ0(ξ )−ν0)−L2eΦ0(ξ )−ν0 =−M

for some constant M. Let Φ0(∞) = ΦL
0 . The above equation becomes

L1e−(ΦL
0−ν0)−L2eΦL

0−ν0 = 0.

Then
Φ

L
0 = ν0 +

1
2

ln
L1

L2
, M = 2

√
L1L2.

We can solve for Φ0(ξ ), and plug into the earlier equations (3.10) and (3.11) for C10
and C20 to get

Φ0(ξ ) = ν0 +
1
2

ln
(

L1

L2

)
+ ln

(
1+ le−

√
Mξ

1− le−
√

Mξ

)2

, U0(ξ ) =− 4l
√

Me−
√

Mξ

1− l2e−2
√

Mξ
,

C10(ξ ) =
√

L1L2

(
1− le−

√
Mξ

1+ le−
√

Mξ

)2

, C20(ξ ) =
√

L1L2

(
1+ le−

√
Mξ

1− le−
√

Mξ

)2

,

(3.12)
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for l = L
1
4
2 −L

1
4
1

L
1
4
2 +L

1
4
1

and M = 2
√

L1L2. Notice this is the inner solution near x = 0.

Likewise, near x = 1, when we use the inner variable x−1 = εξ , we get

Ψ0(ξ ) =
1
2

ln
(

R1

R2

)
+ ln

(
1+ re−

√
Nξ

1− re−
√

Nξ

)2

, V0(ξ ) =
4r
√

Ne
√

Nξ

1− r2e2
√

Nξ
,

D10(ξ ) =
√

R1R2

(
1− re

√
Nξ

1+ re
√

Nξ

)2

, D20(ξ ) =
√

R1R2

(
1+ re

√
Nξ

1− re
√

Nξ

)2

,

(3.13)

where r = R
1
4
2 −R

1
4
1

R
1
4
2 +R

1
4
1

and N = 2
√

R1R2.

3.2.2 The First-Order Inner System
Matching the ε1 order terms in (3.8), we get the system

Φ
′
1 = U1,

U ′
1 = C21−C11,

C′
11 =−(C10U1 +C11U0)− J10,

C′
21 = (C20U1 +C21U0)− J20.

(3.14)

Notice that the homogeneous part of this system is the linearization of the ε0 system
(3.9). That is, we consider the zeroth order system x′ = f (x) where

f (x) =


U0

C20−C10
−U0C10
U0C20

 ,Dx f (x) =


0 1 0 0
0 0 −1 1
0 −C10 −U0 0
0 C20 0 U0

 .

If we write the first order system as a matrix equation
Φ1
U1
C11
C21


′

=


0 1 0 0
0 0 1 −1
0 −C10 −U0 0
0 C20 0 U0




Φ1
U1
C11
C21

+


0
0

−J10
−J20

 .

To solve the system, we need the following lemma.
Consider the system:

x′ = f (x), x ∈ Rn. (3.15)
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Let x0(t) be a solution of (3.1), and

z′ = D f (x0(t))z, z ∈ Rn (3.16)

be the linearization of (3.15) about x0.

Lemma 2. Suppose H(x), H : Rn → R is a first integral for system (3.15). Then, for
any solution x0, 〈5H(x0(t)),z〉 is a first integral for the linearization (3.16).

Proof. Since H(x(t)) is a first integral of system (3.15), we know that

0 = 〈5H(x), f (x)〉=
n

∑
k=1

∂H(x)
xk

fk(x) ∀x

=
n

∑
k=1

∂

∂xk

[
n

∑
j=1

∂H(x)
∂x j

f j(x)

]
∀x,∀k

=
n

∑
k=1

n

∑
j=1

∂

∂xk

[
∂H(x)

∂x j
f j(x)

]
=

n

∑
k=1

n

∑
j=1

[
∂ 2H(x)
∂x j∂xk

f j(x)+
∂H(x)

∂xk

f j(x)
∂x j

]
= 0.

To see that 〈5H(x0(t)),z〉 is a first integral of (3.16), we need to verify that d
dt 〈5H(x0(t)),z〉=

0, i.e. that the inner product gives a constant. After calculation, we get

d
dt
〈5H(x0(t)),z〉=

n

∑
j=1

z j(t)
n

∑
k=1

[
∂ 2H(x0(t))

∂x j∂xk
fk(x0(t))+

∂H(x0(t))
∂xk

∂ fk(x0(t))
∂x j

]
.

Since the sum over k has been shown to equal zero, the entire sum equals zero. There-
fore,

〈5H(x0(t)),z〉= 0,

which concludes the proof.

Note that this is presumably not a new result, but no proof was found in the litera-
ture.
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Using Lemma 2, we know

∇H1 =


∂H1
∂φ0
∂H1
∂U0
∂H1
∂C10
∂H1
∂C20

=


0

−U0
1
1

⇒ 〈∇H1,


Φ1
U1
C11
C21

〉=−U0U1 +C11 +C21 ≡ H0
1 .

Thus, we know this nonautonomous, homogeneous system has integrals given by

H0
1 = U0U1−C11−C21,

H0
2 =−C20e−Φ0Φ1 +C21e−Φ0,

H0
3 = C10eΦ0Φ1 +C11eΦ0.

So the inhomogeneous system (3.14) must have integrals as lemma 2 prescribes,
along with some inhomogeneous term.

Take H2 from the homogeneous first order system. We know

∂H0
2

∂ξ
= C′

10eΦ0Φ1 +C10eΦ0Φ
′
0Φ1 +C10eΦ0Φ

′
1 +C11eΦ0Φ

′
0 +C′

11eΦ0 = 0.

Now take our nonhomogeneous equation: C′
11 =−(C10U1 +C11U0)−J10. To make H2

into an integral for the nonhomogeneous system, we need to account for the extra term
that comes from the C′

11: −J10eΦ0 . Add on a term J10F1(ξ ) for some function F1(ξ )
that will make the integral constant in the system.

J10F1(ξ ) =
∫

ξ

0
J10eΦ0(s)ds ⇒ F1(ξ ) =

∫
ξ

0
eΦ0(s)ds.

Claim: The integrals of the nonhomogeneous ε1 system are given by

H1 = U0U1−C11−C21− (J10 + J20)ξ ,

H2 = C10eΦ0Φ1 +C11eΦ0 + J10F1(ξ ),

H3 =−C20e−Φ0Φ1 +C21e−Φ0 + J20F2(ξ ),

for some F1(ξ ),F2(ξ ) found with Φ1(0) = C11(0) = C21(0) = 0,U1(0) = ρ , for some
initial condition ρ .

We get the following three equations:
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−U0U1 +C11 +C21 +(J10 + J20)ξ = U0(0)ρ,

C10eΦ0Φ1 +C11eΦ0 + J10F1(ξ ) = 0,

−C20e−Φ0Φ1 +C21e−Φ0 + J20F2(ξ ) = 0,

which yields

U1 =
U0(0)ρ − (J10 + J20)ξ −C11−C21

−U0
,

C11 =−C10Φ1− J10e−Φ0F1(ξ ),

C21 = C20Φ1− J20eΦ0F2(ξ ).

Thus,

U1 = Φ
′
1 =

C20−C10

U0
Φ1 +

(J10 + J20)ξ − J10F1(ξ )e−Φ0 − J20F2(ξ )eΦ0 −ρU0(0)
U0

.

Notice C20−C10 = U ′
0.

We need to find the expressions for F1(ξ ),F2(ξ ) using these solutions. Since our
initial conditions (3.2) are zeroth order in ε , Φ1(0) = C11(0) = C21(0) = 0,U1(0) = ρ .
So

F1(ξ ) =
−1√

M

√
L10

L20
eν0

(
4

1− le−
√

Mξ
− 4

1− l
−
√

Mξ

)
,

F2(ξ ) =
−1√

M

√
L20

L10
e−ν0

(
4

1+ le−
√

Mξ
− 4

1+ l
−
√

Mξ

)
.

Notice that, at ξ = 0, H1 = U0(0)ρ and H2 = H3 = 0.
Plugging these functions into the equation for U1 = Φ′

1, we can use the variation of
parameters formula to get

Φ1(ξ ) = Φ1(0)
U0(ξ )
U0(0)

+U0(ξ )
∫

ξ

0

g(s)
U0(s)

ds,

with Φ1(0) = 0 and

g(s) =
(J10 + J20)s− J10F1(s)e−Φ0(s)− J20F2(s)eΦ0(s)−ρU0(0)

U0(s)
.

Therefore,

22



Φ1(ξ ) =− I0

M
ξ − 4l(T0 + lI0)

M
3
2 (1+ l)(1− l)

+O(e−
√

Mξ ),

C21(ξ ) = C11(ξ ) =−T0

2
ξ − 2l(I0 + lT0)

M
1
2 (1+ l)(1− l)

+O(e−
√

Mξ ),
(3.17)

with ρ =
J20

M(1+ l)
− J10

M(1− l)
, l = L

1
4
2 −L

1
4
1

L
1
4
2 +L

1
4
1

and M = 2
√

L1L2. Likewise, near x = 1, we

get

Ψ1(ξ ) =− I0

N
ξ − 4r(T0 + rI0)

N
3
2 (1+ r)(1− r)

+O(e−
√

Nξ ),

D21(ξ ) = D11(ξ ) =−T0

2
ξ − 2r(I0 + rT0)

N
1
2 (1+ r)(1− r)

+O(e−
√

Nξ ),
(3.18)

where r = R
1
4
2 −R

1
4
1

R
1
4
2 +R

1
4
1

and N = 2
√

R1R2.

3.3 Matching

3.3.1 Matching the zeroth order terms near x=0
Now match the inner solution (Φ0(ξ ),C10(ξ ),C20(ξ )) from (3.12) as ξ → ∞ with the
outer solution (φ0(x),c10(x),c20(x)) from (3.5) at x = 0:

a0

2
=
√

L1L2 ⇒ a0 = 2
√

L1L2,

b0 +
I0

T0
lna0 = ν0 +

1
2

ln
L1

L2
⇒ b0 = ν0 +

1
2

ln
L1

L2
− I0

T0
ln2

√
L1L2.

3.3.2 Matching the zeroth order terms near x=1
Similarly, match the inner solution (Ψ0(ξ ),D10(ξ ),D20(ξ )) from (3.13) as ξ →−∞

with the outer solution (φ0(x),c10(x),c20(x)) from (3.5) at x = 1:
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a0 = T0 +2
√

R1R2,

b0 =
1
2

ln
R1

R2
− I0

T0
ln2

√
R1R2.

Matching these a0 and b0 to the ones found at x = 0 gives two equations with which we
can solve for J10 and J20:

T0 = 2
√

L1L2−2
√

R1R2,

I0 =
2(
√

L1L2−
√

R1R2)(2ν0 + lnL1R2− lnR1L2)
lnL1L2− lnR1R2

,
(3.19)

or

J10 =
2(
√

L1L2−
√

R1R2)(lnL1− lnR1 +ν0)
lnL1L2− lnR1R2

,

J20 =
2(
√

L1L2−
√

R1R2)(lnL2− lnR2−ν0)
lnL1L2− lnR1R2

,

which gives I0 from (3.3).

3.3.3 Matching the first order terms near x=0
Near x = 0 Recall that Φ(ξ ) = Φ0(ξ ) + εΦ1(ξ ) + .... So, by (3.5) and (3.12), near
x = 0,

Φ(ξ ) = ν0 +
1
2

ln
∣∣∣∣L10

L20

∣∣∣∣+ ε

[
J20− J10

M
ξ − 4lJ10

M
3
2 (1− l)

− 4lJ20

M
3
2 (1+ l)

]
.

Notice we dropped the terms that would go to zero as ξ → ∞. These are called tran-
scendental terms, and vanish in the final solution.

Let’s match this solution for Φ(ξ ) with the outer solution φ(x). We can approximate
φ(x) near x = 0 by its Taylor expansion φ(x) = φ0(0) + φ ′0(0)x + ε[φ1(0) + φ ′1(0)x],
where φ0 and φ1 are as in (3.5) and (3.6).

We must scale the independent variable of φ before we can match the coefficients.
Consider

φ(εξ ) = φ0(0)+φ
′
0(0)εξ + ε[φ1(0)+φ

′
1(0)εξ ] = φ0(0)+ ε[φ ′0(0)ξ +φ1(0)]

when we drop the terms that are of a higher order than ε1. This expansion gives
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φ(εξ ) = b0 +
I0

T0
lna0 + ε

(
b1 +

I0

a0
ξ +

T0I1− I0T1

T 2
0

lna0 +
I0(a1T0−a0T1)

T 2
0 a0

+O(ε)
)

.

Matching the coefficients of the ξ terms and the constant terms, we get

a0 = 2
√

L1L2, (3.20)

b0 =− I0

T0
lnM +

1
2

ln
∣∣∣∣L1

L2

∣∣∣∣+ν0. (3.21)

Now, let’s match the inner Ci, i = 1,2 equations near x = 0 with the Taylor expansions
of the outer equation for c1 = c2 = c to find a1. It is worth noting that will be solving
two equations for one unknown, which may be an overdetermined system.

Unlike the calculations with φ , the outer solution for c is linear and thus we need
not do the Taylor expansion. So, from (3.5) and (3.6), get

c(x) = c0(x)+ εc1(x) =
a0

2
− T0

2
x+ ε

[
a1

2
− T1

2
x
]
.

In the inner variable ξ , when we drop the high order terms, we get

c(εξ ) = 2
√

L1L2 + ε

[
a1

2
− T0

2
ξ

]
.

Match this with the inner solutions for C1 and C2 from (3.12) and (3.17) and drop
the transcendental terms we get when plugging Φ back into the first integrals of the
inner system.

C1 =C10+εC11 = M+ε

[
−J20 + J10

2
ξ +

2lJ20√
M(1+ l)

− 2lJ10√
M(1− l)

]
=C20+εC21 =C2.

By this stroke of luck, our system is consistent, and we find

a1 =
4l√
M

[
J20

1+ l
− J10

1− l

]
. (3.22)

We can now plug these three known constants (3.20), (3.21), and (3.22) into the equa-
tion for φ and match the constant ε terms of the inner and outer equations φ and Φ. We
now have an equation for the last constant b1:

b1 =−I0(a1T0−a0T1)
T 2

0 a0
− T0I1− I0T1

T 2
0

lna0−
2l(T0 + lI0)√

L1L2M(1+ l)(1− l)
. (3.23)
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We will find these same four constants near x = 1 and then match these equations with
the ones near x = 0 to find the explicit solution for J11,J21.

3.3.4 Matching the first order terms near x=1
Near x = 1 Consider the inner variable to now be x−1 = εξ . From (3.12) and (3.17),

Ψ(ξ ) =
1
2

ln
∣∣∣∣R10

R20

∣∣∣∣+ ε

[
J20− J10

N
ξ − 4rJ10

MN 3
2(1− r)

− 4rJ20

N
3
2 (1+ r)

]
.

The Taylor expansion of the outer equation φ

φ(x) = φ0(1)+φ
′
0(1)x+ ε[φ1(1)+φ

′
1(1)x]⇒ φ(εx) = φ0(0)+ ε[φ ′0(0)ξ +φ1(0)]

is again from (3.5) and (3.6). We can match this to the inner Ψ above and get

a0 = 2
√

R1R2 +T0, (3.24)

b0 =
1
2

ln
R10

R20
− I0

T0
ln2

√
R1R2. (3.25)

To find a1, again take the the outer equation c(x) = c0(x)+ εc1(x) and substitute the
inner variable, which is now x = 1− εξ . We get the same outer c as from the system
at x = 0. Match this to the inner D1 and D2 equations from (3.13) and (3.18) which are
again equal, and without the transcendental terms, look like

D(ξ ) =
N
2

+ ε

[
−J20 + J10

2
ξ +

2rJ20√
N(1+ r)

− 2rJ10√
N(1− r)

]
.

Thus
a1 = T1 +

4rJ20√
N(1+ r)

− 4rJ10√
N(1− r)

, (3.26)

b1 =−I0(a1T0−a0T1)
2
√

R1R2T 2
0

− T0I1−T1I0

T 2
0

ln2
√

R1R2−
2rJ20√

R1R2N(1+ r)
2rJ10√

R1R2N(1− r)
.

(3.27)
Notice that the a1 near x = 0 in (3.22) did not depend on the first order currents J11, J21,
but the a1 near x = 1 in (3.26) does. Since the regular layer should connect the two
boundary layers, these constants should be equal. So, matching the two a1’s and b1’s
give us two equations in the two unknowns J11, J21 which we can solve explicitly.
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T1 =
4r(I0 + rT0)√

N(1+ r)(1− r)
− 4l(I0 + lT0)√

M(1+ l)(1− l)
,

I1 =
I0T1

T0
− I0(a1T0−a0T1)

T0(lnR1R2− lnL1L2)

(
1√

R1R2
− 1√

L1L2

)
−

4rT0(T0 + rI0)√
R1R2N(1+ r)(1− r)

+
4lT0(T0 + lI0)√

L1L2M(1+ l)(1− l)
.

(3.28)

J21 + J11 =
4l√
M

(
J20

1+ l
− J10

1− l

)
− 4r√

N

(
J20

1+ r
− J10

1− r

)
,

J11J20− J10J21 =
2(J20 + J10)2

lnM− lnN

[
r

N
3
2

(
J10

1− r
+

J20

1+ r
− J20− J10

J20 + J10

(
J20

1+ r
− J10

1− r

))
− l

M
3
2

(
J10

1− l
+

J20

1+ l
− J20− J10

J20 + J10

(
J20

1+ l
− J10

1− l

))]
.

where l = L
1
4
20−L

1
4
10

L
1
4
20+L

1
4
10

, r = R
1
4
20−R

1
4
10

R
1
4
20+R

1
4
10

, M = 2
√

L10L20, and N = 2
√

R10R20. This solves ex-

plicitly for the first order I-V relation I1 from (3.3).
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Chapter 4

Higher Order Approximations in the condition of
Electron Neutrality

Notice however, when L1 = L2 and R1 = R2, a situation that is called electron neutrality,
l and r are zero so I1 = 0. Since the I-V curve is empirically known to be nonlinear, we
can find the higher order correction in this case. Notice that the calculation is simpler,
because we can take L1 = L2 ≡ L and R1 = R2 ≡ R and because all the higher order
systems have the same homogeneous part.

4.1 Second order approximation in electron neutrality
Consider the higher order expansion of the outer system below from (3.4).

ε
2(φ̈0 + εφ̈1 + ε

2
φ̈2)− (c20 + εc21 + ε

2c22)+(c10 + εc11 + ε
2c12) = 0,

(ċ10 + ε ċ11 + ε
2ċ12) =−(φ̇0 + εφ̇1 + ε

2
φ̇2)(c10 + εc11 + ε

2c12)− J10− εJ11− ε
2J12,

(ċ20 + ε ċ21 + ε
2ċ22) = (φ̇0 + εφ̇1 + ε

2
φ̇2)(c20 + εc21 + ε

2c22)− J20− εJ21− ε
2J22.

From this system, consider the system of second order terms in ε .

φ̈0− c22 + c12 = 0,

ċ12 + c10φ̇2 + c11φ̇1 + c12φ̇0 =−J12,

ċ22− c20φ̇2− c21φ̇1− c22φ̇0 =−J22.

(4.1)

4.1.1 The Second Order Outer System
In the condition of electron neutrality, the information from the zeroth and first order
outer systems is as follows:
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a0 = 2L, b0 = ν0−
I0

T0
, c10 = c20 =

a0−T0x
2

, φ0 = b0−
I0

T0
ln |a0−T0x|,

T0 = 2(L−R), I0 =
2ν0(L−R)
lnL− lnR

, a1 = b1 = c11 = c21 = φ1 = T1 = I1 = 0.

(4.2)

So adding and subtracting the second and third equations in (4.1), we get

ċ22 + ċ12 = φ̈0φ̇0−T2,

ċ22− ċ12 = 2c10φ̇2 + φ̇0(c12 + c22)+ I2,

where T2 = J12 + J22 and I2 = J12 − J22. Notice the first equation can be integrated,
since φ0 is known. So

c22 + c12 =
1
2
(φ̇0)2 +a2−T2x =

I2
0

2(a0−T0x)2 +a2−T2x,

for some constant a2. Notice that c22 − c12 = φ̈0 = −I0T0
(a0−T0x)2 , so we can find c12 and

c22. Also, since c22 − c12 = φ̈0, the difference equation of c12 and c22 can be solved
explicitly for φ̇2, and integrated to get

φ̇2 =

...
φ 0− φ̇0

(
I2
0

2(a0−T0x)2 +a2−T2x
)
− I2

2c10
,

so we get the solutions

φ2 = b2−
4I0T 2

0 + I3
0

6T0(a0−T0x)3 +
I0(a2T0−a0T2)
T 2

0 (a0−T0x)
+

I2T0− I0T2

T 2
0

ln |a0−T0x|,

c12 =
a2−T2x

2
+

I2
0 +2I0T0

4(a0−T0x)2 ,

c22 =
a2−T2x

2
+

I2
0 −2I0T0

4(a0−T0x)2 ,

(4.3)

for some constant b2, where T2 = J12 + J22 and I2 = J12− J22.

4.1.2 The Second Order Inner System
The second order inner system is
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Φ
′
2 = U2,

U ′
2 = C22−C12,

C′
12 =−(U0C12 +U1C11 +U2C10)− J11,

C′
22 = U0C22 +U1C21 +U2C20− J21.

(4.4)

Write this system as a matrix equation.


Φ2
U2
C12
C22


′

=


0 1 0 0
0 0 1 −1
0 −C10 −U0 0
0 C20 0 U0




Φ2
U2
C12
C22

+


0
0

−J11−U1C11
−J21 +u1C21

 .

Using Lemma 2, we know that the homogeneous equation has the following inte-
grals:

H0
1 = U0U2−C12−C22,

H0
2 = C22e−Φ0 −Φ2C20e−Φ0,

H0
3 = C12eΦ0 +Φ2C10eΦ0.

By taking the derivative of these integrals with respect of ξ , we can find the inhomo-
geneous term contributed to the system (4.4) by C12 and C22. Thus the integrals to the
inhomogeneous system (4.4) are

H1 = U0U2−C12−C22−T1ξ − 1
2

U2
1 ,

H2 = C22e−Φ0 −Φ2C20e−Φ0 + J21F2(ξ )−F22(ξ ),

H3 = C12eΦ0 +Φ2C10eΦ0 + J11F1(ξ )+F21(ξ ),

where T1 = J11 + J21, F1(ξ ) =
∫ ξ

0 eΦ0(s)ds, F2(ξ ) =
∫ ξ

0 e−Φ0(s)ds as in the integrals for
the first order inner system. Also

F21 =
∫

ξ

0
C11(s)U1(s)eΦ0(s)ds, F22 =

∫
ξ

0
C21(s)U1(s)e−Φ0(s)ds.

In the condition of electron neutrality, the information from the zeroth and first order
outer systems is as follows:
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Φ0 = ν0, U0 = 0, C10 = C20 = L, F1(ξ ) = eν0ξ , F2(ξ ) = e−ν0ξ ,

Φ1 =
−I0

2L
ξ , U1 =

−I0

2L
, C11 = C21 =

−T0

2
ξ ,

F12 =
I0T0

8L
eν0ξ

2, F22 =
I0T0

8L
e−ν0ξ

2, J11 = J21 = 0.

(4.5)

With this information, the second and third integrals give that

C12 =
−I0T0

8L
ξ

2−LΦ2, C22 =
I0T0

8L
ξ

2 +LΦ2.

The third order outer system tells us that Φ′′
2 = C22 −C21, so we get the following

differential equation:

Φ
′′
2 =

I0T0

4L
ξ

2 +2LΦ2.

Solving with the method of undetermined coefficients, we get

Φ2 =
I0T0

8L3

(
e−

√
2Lξ −1

)
− I0T0

8L2 ξ
2,

C12 =
−I0T0

8L2

(
e−

√
2Lξ −1

)
, C22 =

I0T0

8L2

(
e−

√
2Lξ −1

)
.

(4.6)

Likewise, near x = 1, we get

Ψ2 =
I0T0

8R3

(
e
√

2Rξ −1
)
− I0T0

8R2 ξ
2,

D12 =
−I0T0

8R2

(
e
√

2Rξ −1
)

, D22 =
I0T0

8R2

(
e
√

2Rξ −1
)

.
(4.7)
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4.1.3 Second Order Matching
Near x=0: As in the matching of the first order terms, we will match the Taylor expan-
sion of φ(εξ ) with Φ(ξ ). Notice near x = 0,

φ(εξ ) =φ0(0)+φ
′
0(0)(εξ )+

φ ′′0 (0)
2

(εξ )2 + ε

(
φ1(0)+φ

′
1(0)(εξ )+

φ ′′1 (0)
2

(εξ )2
)

+ ε
2 (φ2(0))

=φ0(0)+ ε
(
φ1(0)+φ

′
0(0)ξ

)
+ ε

2 (
φ2(0)+φ

′
1(0)ξ +φ

′′
0 (0)ξ 2)

=b0−
I0

T0
lna0 + ε

(
I0

a0
ξ

)
+ ε

2
(

b2−
4I0T 2

0 + I3
0

6T0a3
0

+
I0(a2T0−a0T2)

T 2
0 a0

+
I2T0− I0T2

T 2
0

lna0−
I0T0

2a2
0

ξ
2
)

and

c1(εξ ) =
a0

2
− ε

T0

2
ξ + ε

2
(

a2

2
+

I2
0 +2T0I0

4a2
0

)
,

c2(εξ ) =
a0

2
− ε

T0

2
ξ + ε

2
(

a2

2
+

I2
0 −2T0I0

4a2
0

)
,

from (3.5), (3.6), and (4.3). Dropping the terms that go to 0 as ξ → ∞, from (3.12),
(3.17) and (4.6), we have

Φ(ξ ) = ν0− ε

(
I0

2L
ξ

)
− ε

2
(

I0T0

8L3 +
I0T0

8L2 ξ
2
)

,

C1(ξ ) = L− ε
T0

2
ξ + ε

2 I0T0

8L2 , C2(ξ ) = L− ε
T0

2
ξ − ε

2 I0T0

8L2 .

Near x=1: Using the Taylor expansion near x = 1 with (3.5), (3.6), and (4.3) , we have
x = εξ +1 and so find

φ(εξ +1) = φ0(1)+φ
′
0(1)(εξ +1−1)+

φ ′′0 (1)
2

(εξ +1−1)2

+ ε(φ1(1)+φ
′
1(1)(εξ +1−1)+

φ ′′1 (1)
2

(εξ +1−1)2)+ ε
2 (φ2(1))

=φ0(1)+ ε
(
φ1(1)+φ

′
0(1)ξ

)
+ ε

2 (
φ2(1)+φ

′
1(1)ξ +φ

′′
0 (1)ξ 2)

=b0 +
I0

T0
ln(a0−T0)− ε

(
I0

a0−T0
ξ

)
+ ε

2
(

b2−
4I0T 2

0 + I3
0

6T0(a0−T0)3 +
I0(a2T0−a0T2)

T 2
0 (a0−T0)

+
I2T0− I0T2

T 2
0

ln(a0−T0)−
I0T0

2(a0−T0)2 ξ
2
)

,
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and

c1(εξ +1) =
a0−T0

2
− ε

T0

2
ξ + ε

2
(

a2−T2

2
+

I2
0 +2I0T0

4(a0−T0)2

)
,

c2(εξ +1) =
a0−T0

2
− ε

T0

2
ξ + ε

2
(

a2−T2

2
+

I2
0 −2I0T0

4(a0−T0)2

)
.

From (3.13), (3.18), and (4.7), get

Ψ(ξ ) =−ε

(
I0

2R
ξ

)
− ε

2
(

I0T0

8R3 + I0T08R2
ξ

2
)

.

D1(ξ ) = R− ε
T0

2
+ ε

2 I0T0

8R2 , D2(ξ ) = R− ε
T0

2
− ε

2 I0T0

8R2 .

Comparing like ordered terms, we get

a2 =−
I2
0

8L2 , T2 =
I2
0 (L2−R2)

8L2R2 ,

T0I2− I0T2 =
I0T0(2T 2

0 + I2
0 )(L3−R3)

48L3R3(lnL− lnR)
+

I0(a2T0−a0T2)(L−R)
2LR(lnL− lnR)

.

as well as confirming the results from the zeroth and first order matchings. So

T2 =
(L−R)3(L+R)

2L2R2(lnL− lnR)2 ,

I2 =
(L−R)4(L2 +LR+R2)ν0

3L3R3(lnL− lnR)2 −

(L−R)3(L3−R3)ν3
0

3L3R3(lnL− lnR)4 +
(L−R)2(L2−R2)ν3

0
2L2R2(lnL− lnR)3 .

(4.8)

4.2 Third order approximation in electron neutrality
Consider the third order terms in ε from (3.4)

φ̈1− c23 + c13 = 0,

ċ13 + c10φ̇3 + c13φ̇0 + c12φ̇1 + c11φ̇2 =−J13,

ċ23− c20φ̇3− c23φ̇0− c22φ̇1− c21φ̇2 =−J23.

(4.9)
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4.2.1 The Third Order Outer System
In the electron neutrality condition considered in (4.2), we have c11 = c21 = φ1 = φ̇1 =
φ̈1 = 0, so we can add the last two equations of (4.9) to get

ċ13 + ċ23 = φ̇0(c23− c13)−T3,

where T3 = J13 + J23. Then the first equation from the system tells us that

ċ13 + ċ23 = φ̇0φ̈1−T3 =⇒ c13 + c23 = a3−T3x,

for some constant a3. Notice that the first equation says that c13 = c23, so we can find
c13 and c23.

Subtracting the last two equations of (4.9), we get ċ23 − ċ13 = φ̇3(c20 + c10) +
φ̇0(c23 + c13)− I3, where I3 = J13 − J23. And by the first equation of (4.9), this dif-
ference is φ̈1 = 0. So we get

φ̇3 =
0− φ̇0(c23 + c13)− I3

c20 + c10
=

I0(a3−T3x)
(a0−T0x)2 +

I3

(a0−T0x)
=

(a3I0−a0I3)+(T0I3−T3I0)x
(a0−T0x)2 .

Integrating, we get φ3. The solutions to (4.9) are

φ3 = b3 +
a3I0−a0I3

T0(a0−T0x)
+(T0I3− I0T3)

(
x

T0(a0−T0x)
+

1
T 2

0
ln |a0−T0x|

)
,

c13 = c23 =
a3−T3x

2
,

(4.10)

where a3 and b3 are constants and T3 = J13 + J23 and I3 = J13− J23.

4.2.2 The Third Order Inner System
Expanding the fast system, we get the following system of third order terms:

Φ
′′
3 = C23−C13,

C′
13 =−C10U3−C13U0−C12U1−C11U2− J12,

C′
23 = C20U3 +C23U0 +C22U1 +C21U2− J22.

As in the previous approximations, define a function U3 = Φ′
3. Consider the system
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Φ
′
3 = U3,

U ′
3 = C23−C13,

C′
13 =−C10U3−C13U0−C12U1−C11U2− J12,

C′
23 = C20U3 +C23U0 +C22U1 +C21U2− J22.

(4.11)

Clearly, this system has the same homogeneous part as the inner system of first order
terms, or the inner system of second order terms. Therefore, the homogeneous part of
the system above has the previously defined integrals: H0

1 ,H0
2 ,and H0

3 . Again, we have
to find the inhomogeneous contributions from the C13 and C23 equations. We find the
integrals to the inhomogeneous system :

H1 = U0U3−C13−C23−T2ξ +
1
2

U2
1 +

1
2

U2
2 ,

H2 = C13eΦ0 +Φ3C10eΦ0 + J12F1(ξ )+F13(ξ ),

H3 = C23e−Φ0 −Φ3C20e−Φ0 + J22F2(ξ )−F23(ξ ).

Thus we find

C13 =−LΦ3− e−ν0F13(ξ ), C23 = LΦ3 + eν0F23(ξ ),

where

F13(ξ ) =
∫

ξ

0
C11(s)U2(s)eΦ0(s) +C12(s)U1(s)eΦ0(s)ds,

F23(ξ ) =
∫

ξ

0
C21(s)U2(s)e−Φ0(s) +C22(s)U1(s)e−Φ0(s)ds.

After integrating, we find

F13 = eν0

(
I0T 2

0
24L2 ξ

3− I0T0

16L3 ξ

(
T0e−

√
2Lξ + I0

)
− I0T0(T0 + I0)

16
√

2L
7
2

(
e−

√
2Lξ −1

))
,

F23 = e−ν0

(
I0T 2

0
24L2 ξ

3− I0T0

16L3 ξ

(
T0e−

√
2Lξ − I0

)
− I0T0(T0− I0)

16
√

2L
7
2

(
e−

√
2Lξ −1

))
.

We substitute the equations from the integrals to get the following second order differ-
ential equation:

Φ
′′
3 = C23−C13 = 2LΦ3 + eΦ0F23(ξ )+ e−Φ0F13(ξ ).
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We can solve this differential equation using the method of undetermined coefficients
to find

Φ3 = k1e
√

2Lξ + k2e−
√

2Lξ +

I0T 2
0

(
−1

16
√

2L
9
2
− 1

8L4 ξ − 1
24L3 ξ

3 +
3

64L4 ξ e−
√

2Lξ +
1

32
√

2L
7
2

ξ
2e−

√
2Lξ

)
,

for constants k1 and k2. To control the e
√

2Lξ term, k1 = 0. Using the initial condition,

we get k2 = I0T 2
0

16
√

2L
9
2

, Thus we get

Φ3 =
−I0T 2

0

16
√

2L
9
2
−

I0T 2
0

8L4 ξ −
I0T 2

0
24L3 ξ

3 +
I0T 2

0

16
√

2L
9
2

e−
√

2Lξ

+
3I0T 2

0
64L4 ξ e−

√
2Lξ +

I0T 2
0

32
√

2L
7
2

ξ
2e−

√
2Lξ ,

C13 =
−I2

0 T0

16
√

2L
7
2
+

I0T0

16L3 (I0 +2T0)ξ +
I2
0 T0

16
√

2L
7
2

e−
√

2Lξ +

I0T 2
0

64L3 ξ e−
√

2Lξ −
I0T 2

0

32
√

2L
5
2

ξ
2e−

√
2Lξ ,

C23 =
−I2

0 T0

16
√

2L
7
2
+

I0T0

16L3 (I0−2T0)ξ +
I2
0 T0

16
√

2L
7
2

e−
√

2Lξ−

I0T 2
0

64L3 ξ e−
√

2Lξ +
I0T 2

0

32
√

2L
5
2

ξ
2e−

√
2Lξ .

(4.12)
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Likewise, at x = 1, with the initial condition Ψ(1) = 0, we get

Ψ3 =
−I0T 2

0

16
√

2R
9
2
−

I0T 2
0

8R4 ξ −
I0T 2

0
24R3 ξ

3 +
I0T 2

0

16
√

2R
9
2

e
√

2Rξ

+
3I0T 2

0
64R4 ξ e

√
2Rξ +

I0T 2
0

32
√

2R
7
2

ξ
2e
√

2Rξ ,

D13 =
−I2

0 T0

16
√

2R
7
2
+

I0T0

16R3 (I0 +2T0)ξ +
I2
0 T0

16
√

2R
7
2

e
√

2Rξ +

I0T 2
0

64R3 ξ e
√

2Rξ −
I0T 2

0

32
√

2R
5
2

ξ
2e
√

2Rξ ,

D23 =
−I2

0 T0

16
√

2R
7
2
+

I0T0

16R3 (I0−2T0)ξ +
I2
0 T0

16
√

2R
7
2

e
√

2Rξ−

I0T 2
0

64R3 ξ e
√

2Rξ +
I0T 2

0

32
√

2R
5
2

ξ
2e
√

2Rξ .

(4.13)

4.2.3 Third Order Matching
Near x=0: Using the process we are now familiar with, we will match the Taylor
expansion of φ(εξ ) with Φ(ξ ). Notice near x = 0,

φ(εξ ) =φ0(0)+φ
′
0(0)(εξ )+

φ ′′0 (0)
2

(εξ )2 +
φ ′′′0 (0)

6
(εξ )3+

ε

(
φ1(0)+φ

′
1(0)(εξ )+

φ ′′1 (0)
2

(εξ )2
)

+ ε
2 (

φ2(0)+φ
′
2(0)(εξ )

)
+ ε

3(φ3(0))

=φ0(0)+ ε
(
φ1(0)+φ

′
0(0)ξ

)
+ ε

2 (
φ2(0)+φ

′
1(0)ξ +φ

′′
0 (0)ξ 2)+

ε
3
(

φ3(0)+φ
′
2(0)ξ +

φ ′′1 (0)
2

ξ
2 +

φ ′′′0 (0)
6

ξ
3
)

So the coefficient of the ε3 term in φ3(εξ ) is

φ3(0)+φ
′
2(0)ξ +

φ ′′1 (0)
2

ξ
2+

φ ′′′0 (0)
6

ξ
3 =−

I0T 2
0

3a3
0

ξ
3+
(

2I0(a1T0−a0T1)−a0(T0I1− I0T1)
a2

0T0

)
ξ

2+

(
I0(a2T0−a0T2)+a0(I2T0− I0T2)

a2
0T0

−
4I0T 2

0

2a4
0

)
ξ +b3+

a3I0−a0I3

a0T0
+

T0I3− I0T3

T 2
0

ln |a0|.

And Φ(ξ ) from (3.12), (3.17), (4.6), and (4.12)with transcendental terms omitted is

Φ(ξ ) = ν0− ε

(
I0

2L
ξ

)
− ε

2
(

I0T0

8L3 +
I0T0

8L2 ξ
2
)
− ε

3
(

I0T 2
0

16
√

2L
9
2

+
I0T 2

0
8L4 ξ +

I0T 2
0

24L3 ξ
3
)

.
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We also have the equations

c1(εξ ) =
a0

2
−ε

T0

2
ξ +ε

2
(

a2

2
+

I2
0 +2T0I0

4a2
0

)
+ε

3
(

a3

2
+
(

T0(I2
0 +2I0T0)

2a3
0

− T2

2

)
ξ

)
,

c2(εξ ) =
a0

2
−ε

T0

2
ξ +ε

2
(

a2

2
+

I2
0 −2T0I0

4a2
0

)
+ε

3
(

a3

2
+
(

T0(I2
0 −2I0T0)

2a3
0

− T2

2

)
ξ

)
,

to compare with

C1(ξ ) = L− ε
T0

2
ξ + ε

2 I0T0

8L2 + ε
3
(

−I2
0 T0

16
√

2L
7
2

+
I0T0

16L3 (I0 +2T0)ξ
)

,

C2(ξ ) = L− ε
T0

2
ξ − ε

2 I0T0

8L2 + ε
3
(

−I2
0 T0

16
√

2L
7
2

+
I0T0

16L3 (I0 +2T0)ξ
)

.

Matching the C equations, we find the consistent result

a3 =
−I2

0 T0

8
√

2L
7
2
. (4.14)

Near x=1: We first match the C equations:

c(εξ +1) = c10(1)+ ε(c11(1)+ c′10(1)ξ )+ ε
2 (c12(1)+ c′11(1)ξ + c′′10(1)ξ 2)

+ε
3 (c13(1)+ c′12(1)ξ + c′′11(1)ξ 2 + c′′′10(1)ξ 3)).

Then the coefficient of the ε3 term is a3−T3
2 +

(
T0I0(I0+2T0)

2(a0−T0)
− T2

2

)
ξ , which we match

with

D(ξ ) =
−I2

0 T0

16
√

2R
7
2

+
I0T0

16R3 (I0 +2T0)ξ

to find T3 = a3 + I2
0 T0

8
√

2R
7
2

= I2
0 T0

8
√

2

(
1

R
7
2
− 1

L
7
2

)
. Now consider

φ(εξ +1) =φ0(1)+ ε
(
φ1(1)+φ

′
0(1)ξ

)
+ ε

2 (
φ2(1)+φ

′
1(1)ξ +φ

′′
0 (1)ξ 2)+

ε
3
(

φ3(1)+φ
′
2(1)ξ +

φ ′′1 (1)
2

ξ
2 +

φ ′′′0 (1)
6

ξ
3
)

.

The coefficient of ε3 in φ(εξ +1) is

φ3(1)+φ
′
2(1)ξ +

φ ′′1 (1)
2

ξ
2 +

φ ′′′0 (1)
6

ξ
3
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as in (3.5), (3.6), (4.3), and (4.10). And, with the terms that go to zero as ξ → −∞

omitted,

Ψ(ξ ) =−ε

(
I0

2R
ξ

)
− ε

2
(

I0T0

8R3 +
I0T0

8R2 ξ
2
)
− ε

3
(

I0T 2
0

16
√

2R
9
2

+
I0T 2

0
8R4 ξ +

I0T 2
0

24R3 ξ
3
)

.

Notice first that the previous matchings of zeroth, first and second order terms can be
recovered. By matching at x = 0 and x = 1, we get
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(4.15)

39



Chapter 5

Remarks and Conclusions

In general, for nonlinear systems, it is impossible to obtain any reasonable representa-
tions of solutions. For the Poisson-Nernst-Planck system studied in this thesis, it is the
special structure of the system that allows one to get an asymptotic expansion of the
boundary value problem. More precisely, due to the presence of the singular parameter
ε , we can treat the problem as a singularly perturbed problem, and by considering the
inner and outer systems, we get systems of lower order. Most importantly, this system
with specific nonlinearity has special structures described in Lemmas 1 and 2 that are
crucial for the explicit higher order asymptotic expansions of the solutions.

Recall that I(ν0;ε) = I0 + I1 + I2 + I3 + · · ·. From our calculations the I-V relation
has been found to be nonlinear, even in the condition of electron neutrality. This cor-
roborates empirical observations. Notice that I0 is linear in ν0 in (3.19), and I1 quadratic
in (3.28). Then, under electron neutrality, I2 and I3 are both cubic in ν0 in (4.8), (4.15).
It is expected that the higher order terms will depend on a higher order of ν0.

Applications of this thesis to ion channels are limited, since we considered a simpli-
fied model with two species of ions and a zero permanent charge in the channel. To gen-
eralize to n ions should not be difficult because of the symmetry in the Nernst-Planck
equations. However, even a piecewise constant non-zero permanent charge makes the
inner system nonhomogeneous. Then the system can be solved geometrically in the
zeroth order, but not with asymptotic expansions. More work on this problem could be
done in finding the integrals of the inner system with non-zero permanent charge.

The results of this thesis are related to the I-V relation in the Hodgkins-Huxley
model. Using the FitzHugh-Nagumo simplification of the Hodgkins-Huxley model, the
I-V relation of the transmembrane current over multiple cells has three roots. Although
the ion channel problem considers only one cell, the I-V relation is consistent, since I
is cubic in ν0 in higher orders.

Most likely, due to the special structures of the problem, the method could be ap-
plied to find any order approximation. One natural approach would be an automation
of the method for computers.
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