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Abstract 
 

 

The Arkansas State Highway and Transportation Department (AHTD) began 

the Interstate Rehabilitation Program (IRP) in the spring of 2000 that ultimately 

rebuilt approximately 380 miles, or 60% of Arkansas’ 655-mile Interstate system. 

While these projects were underway, a new lane closure method, the “Iowa weave,” 

or lane closure with a left-hand merge and lane shift, was introduced to AHTD to 

effectively save time ensuring that these IRP projects were completed on schedule.  

Contractors on the projects used the Iowa weave at least 50% of the time for 

each of the projects. The settings between the Iowa weave and the conventional right-

lane closure were rotated on a periodic basis depending on the work to be completed 

on each side of the lane. Construction officials in AHTD agreed that the use of the 

Iowa weave helped them to complete the rehabilitation program on time and 

improved traffic safety, as no major concerns were noted due to this new technique. 

However, the crash analysis of this weaving pattern as opposed to the conventional 

right-lane closure has not been assessed to determine which lane closure strategy has 

an advantage on the basis of actual crash experience.  

This research examined the work zone crashes in both of the lane closure 

settings by assessing them with a set of independent variables that have been known 

to be the factors that influence work zone crashes. In order to properly assess the 

comparison between the two lane closure strategies, the following primary research 

objectives were pursued: 
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• Examination of crash experience results from the two traffic control 

methods, and 

• Reexamination of the advantages and disadvantages of the Iowa weave 

method as compared to the conventional right-lane closure. 

 

This study analyzed the crash data between January 1, 2000 and December 31, 2005 

on the characteristics of lane closure strategies in Arkansas. The findings of the 

analyses were organized by: 1) Raw number of crashes (Pearson chi-square and  

One-Way ANOVA tests); 2) Crash rates (paired t-test); and Crash severity (binary 

logistic regression modeling).  

The analysis results of this study may be used for DOTs to reference the 

impressive rehabilitation work that the AHTD has completed by incorporating the use 

of the Iowa weave. The results of the statistical analyses showed that there was 

approximately a 30 percent reduction in crash rate when the Iowa weave 

configuration was used. Nonetheless, the final results of the logistic regression model 

found that the safety advantages between the Iowa weave and conventional right-lane 

closure in changing crash severity were not statistically significant. Traffic volume 

was found to be the parameter that most significantly affected crash severity in the 

logistic regression model. Also, the effects of lighting conditions and intersecting 

streets on the severity of crashes were found to be insignificant. 
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Chapter 1: Introduction 
 
 

The Arkansas State Highway and Transportation Department (AHTD) began 

the Interstate Rehabilitation Program (IRP) in the spring of 2000 that ultimately 

rebuilt approximately 380 miles, or 60% of Arkansas’ 655-mile Interstate system 

(1,2). A total of 54 projects were undertaken in a timeline of six years for this 

rehabilitation program from early 2000 to 2005. While these projects were underway, 

a new lane closure method, the “Iowa weave,” or lane closure with a left-hand merge 

and lane shift, was introduced to AHTD to effectively save time ensuring that these 

projects were completed on schedule. Prior to this introduction, Brewer’s earlier 

research on the Iowa weave has shown that this weave pattern is safe and effective in 

controlling vehicle speeds in construction work zones (3). This was subsequently 

supported by Lorscheider and Dixon (4), but they added that this weave pattern 

should be limited to rural freeways, where it is most effective in reducing speeds. In 

terms of time-saving, Lorscheider and Dixon recommended that contractors use it on 

urban freeways, where the switching from a right lane closure to a left lane closure 

can efficiently speed up the construction progress. In a more recent study, Zhu and 

Saccomanno (5) have found that the Iowa weave layout on a three-lane freeway 

segment is safer as compared to the conventional left-hand closure and right-hand 

closure on the basis of two safety indicators: uncomfortable deceleration and speed 

variances.  
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Figure 1 Side-by-side comparison between the conventional traffic control plans 

and “Iowa weave” 
 
Based on the estimate by the officials in AHTD, it was found that the AHTD 

has used the weaving pattern on 75% of their IRP projects, while the other 25% used 

conventional traffic control plans. Contractors on the projects always used the Iowa 

weave at least 50% of the time for each of the projects. The settings between the Iowa 

weave and the conventional right lane closure were rotated on a periodic basis 

depending on the work to be completed on each side of the lane. The usage of this 

Iowa weave setting was extensive, considering that this lane closure method had 

never before been used in Arkansas. After the completion of the IRP, construction 

officials in AHTD have positively agreed that the use of the Iowa weave has helped 

them to complete the rehabilitation program on time and improved traffic safety, as 

no major concerns were noted due to this new strategy. However, the crash analysis 

of this weaving pattern as opposed to the conventional right lane closure has not been 

assessed to determine which setting has an advantage on the basis of work zone 

Figure 1a. LANE CLOSURE WITH LEFT-HAND MERGE AND LANE SHIFT i.e. “IOWA WEAVE” 

Figure 1b. LANE CLOSURE WITH LEFT-HAND MERGE i.e. “CONVENTIONAL TRAFFIC CONTROL PLANS” 
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crashes. There are many factors that may influence the crash rate on a given section 

of highway, including geometry, pavement condition, traffic volume, length of work 

zone, weather, lane closure strategy, and so forth. The focus of this research is to 

continue the effort of Zhu and Saccomanno (5) by estimating the correlation between 

the Iowa weave and a conventional right-hand closure through crash data and a 

selection of variables using the binary logistic regression.  

1.1 Problem Statement  
 
Work zone safety continues to be a high priority issue for engineering 

professionals and highway agencies. The national fatality rate in work zones has been 

constantly reported at over 1000 fatalities per year since 2000. Figure 2 shows the 

nationwide statistics on work zone fatalities between 1995 and 2006 (6). It can be 

observed from this illustration that the figure has dropped slightly, but the numbers 

remain a concern for the state transportation officials. In Arkansas alone, an average 

of 28 fatalities occurs in work zone crashes each year, as shown in Figure 3 (6). After 

the implementation of IRP, an increase of 10 fatalities was observed in Arkansas’ 

annual work zone fatality rate, from an average of 22 fatalities to the current record-

high average of 32 fatalities. The increase in fatal crashes occurred during the IRP 

period, where numerous work zones were active.  

During the summers of 2000 through 2005, motorists in Arkansas encountered 

up to a maximum of 30 active work zones with a minimum of one lane closure per 

work zone (7). Figure 4 shows the locations of the IRP described. 
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Figure 2 Twelve-year (1995-2006) nationwide work zone fatality trend (6) 
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Figure 3 Work zone fatalities in Arkansas from 1995 through 2006 (6) 
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Figure 4 Interstate Rehabilitation Program from early 2000 to 2005 (1) 

 

While the IRP was underway, a new lane closure method, the Iowa weave, was 

introduced to AHTD by the contractors. Based on the observations by the 

construction officials in AHTD, this new lane closure strategy effectively assisted the 

contractors to complete the projects on schedule. Furthermore, no major concerns 

were observed in work zone crashes after the introduction of this new lane closure 

strategy. However, the crash analysis of this new method as opposed to the 

conventional right-hand closure has not been examined even though a prior study has 

shown that the Iowa weave on the three-lane freeway segment is safer than both the 

conventional left-hand closure and right-hand closure based on simulation results 
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showing uncomfortable deceleration and speed variances (5). This research examined 

the true increase of work zone crashes in both of the lane closure settings by assessing 

them with a set of independent variables that have been known to be the factors that 

influence work zone crashes. In order to accurately assess the true effect, this analysis 

requires a statistical tool that can account for the intrinsic variability of the sites (8). 

For instance, there may be an increase in crashes during the IRP, but the results can 

be biased due to the regression-to-the-mean effect (9,10), where the high crash rate is 

naively estimated using only the accident counts from the sites. Hauer, et al. (10) 

explained that the degree of precision (or the standard deviation) of a long period 

estimate where crashes occur infrequently, differ significantly from a short period 

estimation that comprise of many accidents, with both having the similar accident 

counts such as three years.     

1.2 Research Objectives and Scope   
 
In order to properly assess the comparison between the two lane closure 

strategies, the following research objectives were pursued: 

 

• Examination of crash experience results from the two traffic control 

methods, and 

• Reexamination of the advantages and disadvantages of the Iowa weave 

method as compared to the conventional right-lane closure. 
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The scope of this research was limited to the data of the whole IRP process in 

Arkansas, from 2000 to 2005 with the following exceptions: 

 

• Projects that used the conventional right-lane closure only (note: these 

projects were designed and planned before the inclusion of the Iowa 

weave in the AHTD’s specifications); 

• Bridges or interchange projects due to the short distances involved; 

• Three-lane interstate freeways in an urban setting, where two lanes 

were open instead of one lane; 

• The interstate in question had only one IRP project (e.g. I-540 had 

only one project with a total distance of 6.71 miles); 

• Mile markers or the log miles were not available, thus locating the 

work zone was not possible; 

• Traffic control plans did not have information on the weave pattern 

(due to change orders); and  

• Technology enhancement projects (e.g. the work was done on the side 

of the road and no lane closures were involved).     

 

 
A total of 24 out of 54 IRP projects were chosen through the selection 

process, including 17 projects that used median crossovers. The 24 projects consisted 

of: 
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• Seventeen projects on Interstate 40 (I-40); 

• Four projects on Interstate 55 (I-55); and 

• Three projects on Interstate 30 (I-30).  

 

1.3 Research Methodology 
 

The research objectives were achieved by the following four steps: 
 
Literature review AHTD specifications and plans, as well as other state manuals and 

standard traffic control plans were reviewed to determine the current policies 

regarding the state-of-the-art background of the Iowa weave. A comprehensive 

review of transportation engineering journals, articles and papers was conducted to 

determine previous analyses into operational and safety impacts of the Iowa weave as 

opposed to the conventional work zone lane closures.  

The review synthesized the findings from the previous literature on work zone 

lane closures-related subjects, such as characteristics and effectiveness of work zone 

lane closures, statistical analyses of work zone crashes, and work zone analyses. This 

task was essential to enable the researcher to better understand the current work zone 

lane closure research status and to carry out an innovative and feasible study. 

 

Data collection The fatal, injury and non-injury work zone crash data from 1999 to 

2005 were collected from the AHTD. The data were then reduced and recompiled 

into data files that were compatible for computer-aided statistical analysis without 

losing important information.  
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Data analyses In this section, the reduced data were statistically analyzed using the 

SPSS statistics software package, to examine the quantified effectiveness of the Iowa 

weave and the right lane closure. As a precautionary measure, the logistic regression 

in the software package of XLSTAT was utilized to verify the results obtained from 

SPSS.  

 
Conclusions and recommendations Based on the results of the statistical analyses, 

the conclusions and recommendations were drawn accordingly. The conclusions 

included important work zone crash characteristics, lane closure effectiveness, and 

work zone lane closure risk factors. In addition, work zone lane closure 

improvements and future research were also recommended in this section. 

 1.4 Thesis Organization 
 
This thesis is organized into six sections. The chapters are summarized as 

follows:  

 

Chapter 1: Introduction. This chapter provides the background to the thesis. The 

section also lists the problem statement, research objectives, and scope. 

 

Chapter 2: Literature Review. This chapter presents the findings from a 

comprehensive literature review. The literature reviewed includes federal and state 

manuals, characteristics and effectiveness of work zone lane closures, statistical 

analyses of work zone crashes, and work zone analyses techniques. 
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Chapter 3: Data Collection and Reduction. This chapter details the methodology 

adopted for this research work. This includes the detailed data collection procedure 

and the final collected data. 

 

Chapter 4: Work Zone Crash Analysis. This chapter presents the results of the data 

analyses on the characteristics of lane closure strategies. The findings of the analyses 

were organized by raw number of crashes, crash rates and crash severity. The section 

also presents the quantified effectiveness of the Iowa weave and the right-lane closure 

using the binary logistic regression method. 

 

Chapter 5: Conclusions and Recommendations. Conclusions and recommendations of 

this research are presented in this chapter. 
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Chapter 2: Literature Review 

2.1 History and Characteristics of Iowa Weave 

2.1.1 Background 
 

The term “Iowa Weave” is evidence that this lane closure method was initially 

introduced in the state of Iowa. The actual date of this introduction is not known; 

however, it was estimated to be prior to 1969 based on the literature (11). When it 

was first introduced, there were two Iowa weave lane closures setups: left-hand 

merge with lane shift, and right-hand merge with lane shift. Figure 5 shows the Iowa 

weave lane closures described. This pattern was initially designed to control speeds 

but the use was subsequently discontinued by Iowa after the introduction of median 

crossovers and two-lane, two-way operation (TLTWO) in work zone lane closures.  

 
Figure 5 Iowa weave (left -hand and right-lane merge) (11) 

 
In an earlier study, Brewer (3) conducted research to examine both the  

left-hand merge and right-hand merge Iowa weave setting on arterial roads in Des 



 12

Moines, Iowa. The unique designs of this weave pattern were often found to be an 

unaccustomed experience for drivers, was believed to be an effective method to 

control traffic speeds on freeways. The modifications of this weave pattern include 

the spacing in the advance warning area, merging taper and the weave section shown 

in Figure 5. In this research, two different methods were chosen to collect the data: 

camera observation and enoscopes (flash boxes). For the camera observation, a 16mm 

Beaulieu R-16 camera was used to record the data on weaving and merging at the 

advance warning area. In addition, the license plates of all vehicles sampled were 

recorded to classify these vehicles into different categories: Iowa same county, Iowa-

other-than-local, and out-of-state. Meanwhile, the enoscopes were placed in the work 

areas behind the barricades to collect vehicle speeds. The placement of the enoscopes 

behind the barricades was to ensure inconspicuity as the presence of this device might 

change the driving behavior of motorists. Brewer explained that this measure was to 

prevent bias in the data.        

 
The results of this research found that this weaving pattern was highly 

effective in construction sites, with more than 50% of all vehicles sampled traveling 

below the posted temporary speed limit of 30 miles per hour (mph), whereas in 

construction sites where the forced weaving was not used, the posted speed limit 

compliance of all vehicles sampled was found to be less than 20% (3). The chosen 

speed limit of 30 mph was considered by Brewer as the desirable speed where 

vehicles should be constricted. In this research, Brewer concluded that no excessive 
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driver confusion was found in the use of this weave pattern, even though three 

vehicles were found performing unusual maneuvers in the advance warning area. 

2.1.2 Federal and State Review 
 

Since the introduction of the Iowa weave, many state Departments of 

Transportation (DOTs) have experimented with this new weave pattern. Iowa, North 

Carolina, and Tennessee along with Arkansas have each used the Iowa weave lane 

closure setting on their freeways. Based on the instructional bulletin by the Tennessee 

DOT on the use of the Iowa weave (also known as lane closures with left-hand 

merge), Tennessee requires all of their interstate construction and maintenance 

projects to review and include the use of the merge left where lane closure is 

applicable (12). However, the following criteria must be fulfilled before determining 

the use:  

 

• “Projects on rural interstates should include Merge Left.”  

• “Projects on urban interstates will be reviewed for Merge Left 

considering factors such as number of lanes, interchange spacing, and 

proximity to major splits.”  

• “Other controlled access facilities will be considered on a case-by-case 

basis.”  
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In North Carolina (4), this weave pattern was first borrowed from the Iowa DOT after 

a tractor-trailer breached the approach taper and buffer zone in a work zone on I-77, 

and struck the construction personnel. This incident alerted the officials in the North 

Carolina DOT and the Iowa weave was subsequently adopted to control traffic in 

high speed, medium volume work zones. The main purpose of this adoption by the 

North Carolina DOT was to ensure the safety of construction personnel when any 

errant vehicles penetrated the closed lane, as the Iowa weave would provide an 

additional buffer space between traffic and where construction workers are actively 

working.   

2.1.3 Characteristics of Iowa Weave 
 

In the 1990s, Lorscheider and Dixon (4) examined the effect of the Iowa 

weave by evaluating the speeds at the advance warning, end of taper, weave and lane 

closure areas on both rural and urban freeways. In this study, Vehicle Magnetic 

Imaging traffic counters or analyzers were utilized to monitor the vehicle speeds in 

the project area. The only concern observed in this device was the limitation of 

detecting vehicles traveling above the upper threshold of 80 mph. The results of this 

research showed that this weave pattern was effective in reducing the speeds of 

motorists in work zones despite the authors’ anecdotal report of complaints of driver 

confusion in urban settings. Consequently, the authors recommended that the use of 

this weave pattern should be limited to rural freeways. In addition, it was found that 

the speed reduction resulting from the weave section dissipates within ¾ of a mile 
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after the advance buffer area. Nonetheless, Lorscheider and Dixon stated that this 

unique design is a great tool to protect workers as it directs motorists to drive through 

the merging taper and stabilizing zone on the left lane before channelizing them over 

to the right lane to avoid the actual work area ahead of them.  

In the paper, Lorscheider and Dixon concluded that the Iowa weave can be a 

great time saving method for contractors in construction work zones even though 

“numerous” drivers were confused by the direction of the advance signs that led them 

to the lane that was closed. Table 1 shows the results of the drivers behavior 

described. 

 
Table 1 Drivers Modifying Behavior Due to Changeable Message Sign (4) 

Type of driver 
behavior modified 

Rural below 
capacity 

Urban below 
capacity 

Urban approaching 
capacity 

Speed increase Unknown 9% 6% 
Lane switching 12% 2% 9% 

 

Depending on the size of the work zones, a lane closure involving an advance 

warning area on an urban freeway can take up to two hours to set up and remove. 

Furthermore, contractors are often permitted to have a ten-hour window at night to set 

up the lane closures. With such regulation, contractors can spend a substantial amount 

of time installing and removing the lane closures, but by using the Iowa weave, 

contractors can remove the weave section, which normally takes less than twenty 

minutes, and leave the entire length of the lane closures in an extended straight buffer 

area. The Iowa weave also helps eliminate the use of right-lane closures, which 

requires the relocation of advance warning signs and reduces driver confusion to 
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motorists that drive by the area on a routine basis. In order to ensure the safety of 

construction personnel, slow moving convoys, or “rolling roadblocks” can be used in 

the operation to switch from right lane closures to left lane closures.  

Lorscheider and Dixon also indicated that the Iowa weave can be used on 

three-lane, one-way work zones, by closing two lanes and allowing vehicles to weave 

through the center lane to the far side of the work zones. When the construction 

workers signal the need for the lane closure to be swapped to the opposite side, the 

weave section is again removed, leaving the two lane closures with an extended 

buffer (transformed to conventional lane closure). There are two additional benefits 

observed in using this method over the two-lane, one-way weave pattern. First, the 

three-lane, one-way weave pattern allows an additional buffer area between the 

workers and the open travel lane. Second, this technique also provides additional time 

for the contractors to remove the lane closure in the center lane. With proper 

attention, contractors can place the buffer zone and a weave at the midpoint of the 

work zone to facilitate two different construction activities on two separate lanes 

concurrently. For example, contractors can pave the upstream left lane (or inside lane) 

while cold milling the downstream right lane (or outside lane). However, Lorscheider 

and Dixon recommended that the three-lane work zone setup be examined with extra 

care as this type of closure increases driver confusion. Figure 6 shows the Iowa 

weave on three-lane freeway described.    
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Figure 6 Iowa weave on three-lane freeway 

 
In the most recent literature on the Iowa weave, Zhu and Saccomanno (5) 

conducted research to compare both the left-hand closure and right-hand closure, 

while proposing and comparing a more channelized lane closure layout (or the Iowa 

weave) on the three-lane freeway. The focus of this research, however, was to 

examine the safety implications of these lane closure methods by measuring two 

traffic-flow characteristics using the microlevel simulation (INTEGRATION): 

uncomfortable deceleration and speed variances. In other words, the higher values 

found in uncomfortable deceleration and speed variances denote that the lane closure 

method may be prone to higher risk for work zone collisions. Based on the simulation 

results of this research, it was found that the right hand closure appears to be safer 

than the left hand closure, whereas the proposed layout on a three-lane freeway 

segment was found to be safer than both the left-hand closure and right-hand lane 

closure. Zhu and Saccomanno also explained that the proposed layout helps to avoid 

high-risk lane changing that could occur on the higher speed left lane than the lower-

speed right lane. Also similar to Lorscheider and Dixon’s explanations, the high risks 

in merging maneuvers can be relocated to the advance warning area, which is farther 

away from the workers. In terms of positive guidance (13), Zhu and Saccomanno 
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found that this layout helps reduce the uncertainty associated with lane closure 

merging by reducing the choices that drivers will have to make in lane closures and 

increase driver awareness. However, this proposed layout, just like any other method, 

is not perfect: one possible disadvantage observed in this method is the increase in 

traffic turbulence that could occur on the lane shifting area, as vehicles would be 

required to move to open lanes before they reach the work area.  

The following are the key findings of Zhu and Saccomanno’s research: 

 

• A lower number of uncomfortable decelerations were observed in the 

advance warning area, buffer and work areas of the proposed layout 

(the Iowa weave). 

• The results in the termination area of the proposed layout were not 

statistically significant. 

• The current layout, the conventional left hand closure was found to be 

safer than the proposed layout in the transition area due to the capacity 

reduction in the downstream lane shifting area that caused the queue to 

back to the upstream transition area. 

• The results were consistent in both the flow rates of 2,800 vph and 

3,600 vph. 

• Overall, a higher number of uncomfortable decelerations was obtained 

for the current left-hand closure. 



 19

• The safety advantages of the proposed layout over the current right-

hand closure was not as significant as for the left-hand closure. 

• Significant differences were observed in speed variances between the 

proposed layout and the current left-hand closure, even though the 

results of the buffer area in the classification of 2,800 vph were found 

to be counterintuitive. 

• The proposed layout and the right-hand closure appeared to result in 

similar speed variances. 

2.1.4 Additional Iowa Weave Research 
 

The Texas Transportation Institute (TTI) has also conducted research to 

evaluate the effectiveness of various lane closure strategies for work zones on four-

lane divided highways (14). The research was focused on evaluating speed reduction 

in each work zone speed control technique instead of lane closure strategies. The 

Iowa weave lane closure strategy was stated as one of the work zone speed control 

methods in this research. However, this weave pattern was not selected as one of the 

methods for evaluation due to its lack of availability. Richards et al. (14) stated in the 

research that the overall and relative effectiveness of the work zone speed control 

methods including the Iowa weave were not known even though these techniques 

have been used by many state agencies.   
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2.2 Statistical Methods, Analysis and Evaluation  
 

Statistical methods that are used to estimate safety effects of treatment have 

improved over the years through the efforts of transportation researchers by 

uncovering pros and cons of each procedure. Prior to this, many conventional 

methods had been used to estimate the safety effects of a treatment. These methods, 

however, are often found to be ill-suited in practice (15). First, the randomness of 

entities like road sections, intersections, drivers, and vehicles has always made 

applying the treatment or measure difficult. Furthermore, the matching between the 

treated and untreated entities often caused the statistical procedure to become a 

challenging task for researchers to accomplish. Lastly, the reality that the number of 

treated entities is influenced by factors such as budget, politics, and availability and 

not by the requirements of statistical significance is another concern. The issue of 

mismatching between fulfilling the requirements of conventional methods and what 

realities can offer often are the challenges that researchers have to face when 

estimating the safety effects of a treatment. The lack of precision is one evident 

finding that can be observed from the literature, however, the magnitude of the safety 

effect is the bigger concern, as researchers often resort to common sense to estimate if 

a treatment will improve or degrade it.  
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2.2.2 Crash Analysis Background 
 

Over the years, two major statistical procedures have been frequently used for 

crash data analyses: Bayesian and non-Bayesian approaches (also known as the 

frequentist approach). The Bayesian approach has been a popular choice used among 

researchers because it takes care of the regression-to-the-mean effect (16). The 

Bayesian approach can be broken down into two different classifications: pure 

Bayesian and empirical Bayes method (16). The non-Bayesian approach can be 

classified into three different categories: before-and-after study, before-and-after 

study with yoked comparison, and before-and-after study with comparison and check 

for comparability (10). Figure 7 shows the statistical procedures described. The 

empirical Bayes approach has been the most desirable statistical method used by 

traffic safety engineers due to the effective arguments by proponents regarding its 

advantages (17). However, Carriquiry and Pawlovich (8) argued that the empirical 

Bayes method suffers a few drawbacks. The most significant one is the need to spend 

time, resources, and effort to obtain the Safety Performance Functions (SPFs), which 

are required for the empirical Bayes method. Carriquiry and Pawlovich also explained 

that the pure Bayesian approach can improve the prediction of the number of crashes 

while avoiding the need to obtain the SPFs and other quantities like Accident 

Modification Factors (AMFs).  
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Figure 7 Statistical procedure for crash data analysis 

2.2.3 Bayesian Approach: Pure Bayesian and Empirical Bayes Method 
 

The research conducted by Carriquiry and Pawlovich found that both the 

empirical Bayes and full Bayesian methods recognize that similar intersections will 

have a similar number of expected accidents but not identical. The findings of this 

research also showed that the estimate of site’s safety might be unreliable if only a 

few years of information is obtained for the study location. Thus, Carriquiry and 

Pawlovich emphasized that it is critical to ‘borrow’ information from similar 

locations to balance the scarce data. The results of this research also found that the 

empirical Bayes approach used the estimated parameters from the results of SPFs 

fitting as if they were true values and this implied that population level estimates do 
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not contribute to the uncertainty in estimating the safety of a particular research site. 

Carriquiry and Pawlovich added that it is often found that empirical Bayes analysts 

find impractically low standard errors in their estimates. In the research, Carriquiry 

and Pawlovich concluded that the pure Bayesian method is a less costly approach as 

compared to the empirical Bayes method. Additionally, it was argued that the pure 

Bayesian method is easier to implement and has the potential to provide estimates 

that are more reliable. However, Carriquiry and Pawlovich stated that practitioners 

are advised to select prior distributions of the parameters model in accordance to the 

information available prior to studying the data. The conclusions also found that 

selecting the prior distributions for the pure Bayesian method is similar to assessing 

the SPFs for the empirical Bayes method. Carriquiry and Pawlovich explained that 

the pure Bayesian method is typically tougher on deficient specifications of the prior 

distributions than the empirical Bayes estimates are to poor SPFs estimates. In 

essence, the pure Bayesian methods are often insensitive to different specifications of 

prior distribution in estimating the number of crashes as long as a significant amount 

of site information is available over a few years. However, a proper pure Bayesian 

statistical analysis should include a sensitivity assessment of different prior 

specifications. 

Many studies have shown that the empirical Bayes method is a desirable 

statistical method for safety estimation as this technique addresses two problems: 

precision of assessments and regression-to-the-mean bias (10,16). In an effort to put 

the complex theory of empirical bayes into practice, Hauer, et al. have conducted 
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tutorial research to evaluate the statistical procedure. In the research, Hauer, et al. 

showed that safety entities such as road sections, intersections, drivers, and vehicles 

are usually estimated from the history of its crash counts and the method combines 

crash counts with the history of same entities for the empirical Bayes procedure. The 

researchers added that by following the above steps, the precision of estimates is 

improved when crash records are sparse and the regression-to-the-mean concern is 

taken care of. The study also found that the precision of assessments can be further 

increased by adding the estimates of SPFs of the same entities and an estimate of 

applicable overdispersion variables. 

For the empirical Bayes method, the multivariate empirical Bayes method 

(also known as the empirical Bayes with covariates) is a preferred method over the 

conventional approaches among practitioners as it estimates the reference group crash 

experience (10, 16). This statistical procedure estimates the weights and the number 

of crashes expected at study sites similar to the treated ones by calibrating and using a 

multivariate model or safety performance function (SPF) that relates the crash 

experience, and traffic and physical characteristics of sites. However, this statistical 

method has two drawbacks: suitable reference data for calibration purposes are hard 

to locate and the calibration of multivariate models is a complex process. In order to 

overcome this, analysts can reference models and populations of similar interest 

developed by others. 
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2.2.4 Non-Bayesian Approach: Before-and-After Study 
 

For the non-Bayesian approach, many studies have been conducted in the past 

to evaluate the methodology and perhaps the most popular one is the book by Hauer 

(10). In the book, various crash related problems and the latest techniques regarding 

the before and after observations were discussed in detail. The key concept was the 

recognition to separate the changes from a treatment and other factors such as 

fluctuation of crash counts, traffic volume changes, and patterns in crash occurrence 

in order to estimate the true effect. Hauer also explained that before-and-after studies 

provide the guidance of accounting the uncertainty in the results of crash occurrence 

by considering the variation in traffic volumes.  

The non-Bayesian approach can be broken down into three categories: before-

and-after study, before-and-after study with yoked comparison and before-and-after 

study with comparison and check for comparability (10). The simple before-and-after 

study is the most common statistical procedure used by practitioners. However, this 

direct method was simply not a good estimate to evaluate the before-and-after effect 

as it does not take into account factors other than the treatment, when changes from a 

treatment should be separated from other factors such as traffic volume changes and 

patterns of crash occurrence in order to accurately assess the true effect of treatment 

(15). As compared to the simple before-and-after study, the before-and-after study 

with yoked comparison is a better option to estimate the effect of a treatment. This 

method uses four measures per treatment site, before and after at a treatment site and 

before and after at a comparison site to ensure extraneous factors other than the 
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treatment are carefully categorized. Previous in-depth studies have found that the 

before-and-after study with comparisons and check for comparability is a desirable 

statistical procedure as it reviews the compatibility of the comparison while checking 

the effect of the treatment (10). This comparability check reviews the treatment effect 

by using the crash patterns in the comparison group to match with the before and after 

period to ensure that it reduplicates to provide the ‘mirror’ effect. For instance, the 

percent decrease in crashes per year in the treatment group during the before and after 

period should be similar in order to obtain the ‘mirror’ effect.    

2.2.5 Regression-to-Mean Effect 
 

The regression-to-the-mean bias has always been a concern for practitioners in 

estimating safety improvements. The observational before-and-after evaluations are 

typically the statistical method to be affected by it, and some studies have argued that 

this methodology is always biased. In order to address this issue, Sharma and Datta 

(18) conducted a study to compare the regression-to-the-mean effect of both the 

observational before-and-after studies and empirical Bayes method (suggested by 

instrumental proponents). The study examined the regression-to-the-mean effect by 

using the before-and-after studies, before-and-after studies with control sites and two 

different variants of the empirical Bayes method, and found that the expected 

accident frequencies by all four methods do not differ significantly when 3 to 5 years 

of traffic accident data are used. The research concluded that the before-and-after 

studies and empirical Bayes method produce similar results; however, the regression-
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to-the-mean effect becomes insignificant when 3 or more years of accident data are 

used for estimation in high accident sites.  

 

2.2.6 Logistic Regression 
 

Logistic regression has been developed and used by practitioners to estimate 

safety improvements for some time. The significance of this method in the analysis of 

traffic safety has been recognized by many researchers over the past several years 

(19,20). The binary logistic regression analysis is a statistical method that identifies 

the correlation between a set of independent variables and a dichotomous response 

variable or outcome (21). In essence, this methodology uses a model to predict the 

likelihood of an outcome by identifying the causal factors (20). Similarly, like the 

Bayesian and non-Bayesian statistical approach, logistic regression also suffers a few 

drawbacks (22). This large-sample method can cause considerable bias if particular 

types of matched sets occur irregularly in the procedure or the model is comprised of 

an excessive amount of parameters. However, this sparse data bias can be avoided by 

carefully inspecting the data and scrutinizing the sensitivity of estimates to group 

boundaries, parameters in the model, and changes in those parameters. Additionally, 

the bias problem can also be resolved by resorting to statistical procedures, which are 

less sensitive to sparse data, such as the pure Bayesian and empirical-Bayes method.       

Kim, Kim and Yamashita (23) have conducted research using logistic 

regression to investigate the likelihood of alcohol impairment among crash-involved 

motorcycle riders in police reported motorcycle crashes. In this research, the 



 28

Statistical Analysis Software (SAS) was utilized to estimate the parameters of the 

logistic regression model. The model fit was assessed by testing the null hypothesis 

that the covariates have no effect on the response variable by using a likelihood ratio. 

The results of this research showed that impairment was more likely to happen among 

middle-aged riders and unlicensed riders, who did not use a helmet, and that 

impaired-related crashes are more prone to happen at night, on weekends and in rural 

areas.     

2.2.7 Other Statistical Procedures 
 

In crash analysis, many statistical procedures have been experimented and 

used by practitioners to estimate safety improvements. Whether it was to compare a 

group, quantify the association between two variables, or predict the value from 

variables, the crash data can be statistically analyzed for safety estimation using a 

suitable statistics method. However, the only limitation observed is carefully 

inspecting the type of data before identifying the appropriate statistics test. Table 2 

shows the applicable statistics tests described. 

Conventionally, researchers have used different statistical procedures to 

estimate and predict the impact of the safety improvements: binary logit models, 

linear and non-linear regression, and the Pearson chi-square test. However, just like 

any other statistical procedures, there are pros and cons in each of these techniques. 
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Table 2 Other Statistical Procedures for Data Analysis (24 ) 
 Type of Data 

Goal 
Measurement 

(from Gaussian 
Population) 

Rank, Score, or 
Measurement 

(from Non- 
Gaussian 

Population) 

Binomial 
(Two Possible 

Outcomes) 
Survival Time 

Describe one 
group Mean, SD Median, 

interquartile range Proportion Kaplan Meier 
survival curve 

Compare one 
group to a 

hypothetical 
value 

One-sample t test Wilcoxon test 
Chi-square 

or 
Binomial test 

 

Compare two 
unpaired groups Unpaired t test Mann-Whitney 

test 

Fisher's test 
(chi-square for 
large samples) 

Log-rank test or 
Mantel-Haenszel 

Compare two 
paired groups Paired t test Wilcoxon test McNemar's test 

Conditional 
proportional 

hazards 
regression 

Compare three 
or more 

unmatched 
groups 

One-way 
ANOVA 

Kruskal-Wallis 
test Chi-square test Cox proportional 

hazard regression 

Compare three 
or more matched 

groups 

Repeated-
measures 
ANOVA 

Friedman test Cochrane Q 

Conditional 
proportional 

hazards 
regression 

Quantify 
association 

between two 
variables 

Pearson 
correlation 

Spearman 
correlation 

Contingency 
coefficients  

Predict value 
from another 

measured 
variable 

Simple linear 
regression 

or 
Nonlinear 
regression 

Nonparametric 
regression 

Simple logistic 
regression 

Cox proportional 
hazard regression 

Predict value 
from several 
measured or 

binomial 
variables 

Multiple linear 
regression 

or 
Multiple nonlinear 

regression 

 Multiple logistic 
regression 

Cox proportional 
hazard regression 

 
Ouyang, et al. (25) have developed a simultaneous binary logit model to examine the 

interrelationships among the injury severity outcomes in multi vehicle collisions. The 

findings of this research showed that the model provided significant efficiency gain in 

determining the impacts of various factors such as different vehicle types, collision 
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vehicle conditions, driver and occupant factors, collision locations, and speed limits, 

and weather-related factors. The authors concluded that their simultaneous 

multinomial logit model was more efficient than traditional ones. However, the only 

downside observed in this procedure is that this statistical method can only model one 

severity at a time, which is time consuming.   

Garber and Ehrhart (26) were one of the few that have conducted safety 

improvement research using non-linear regression models. In this study, factors such 

as traffic characteristics, environmental and road conditions, and road geometry on 

two-lane highways were examined by using the Akaike Information Criterion (AIC) 

instead of R2 to determine the accuracy of regression. The key findings of this study 

showed that the four non-linear regression models could estimate real crash 

experience in terms of standard deviation of speed, flow per lane, lane width, and 

shoulder width. However, it was found that these crash prediction models were too 

sophisticated to be applicable in practice. In addition, the models could not be applied 

directly to other models as the database was limited to Virginia two-lane roads.    

The problem of large parameters has constantly been a concern among traffic 

safety practitioners. The main concern in this issue is the accuracy of assessments, 

which may be affected by this large number of factors. In order to address the issue, 

Chen and Jovanis (27) have developed a variable-selection procedure using the 

Pearson chi-square test to examine the most significant factors that affect traffic 

crashes. The researchers concluded in this study that the new procedure was superior 

in three major tasks: 
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• Truncating the number of groups by collapsing them while 

maintaining the homogeneity in each group, 

• Preventing sparse data bias, and 

• Separating the parameters that may or may not be the causal factors to 

the response variable. 

 

Similar to the simple logistic regression method, the Pearson chi-square test requires 

substantial amounts of efforts in carefully inspecting the data before running the test.   

 
2.3 Work Zone Lane Closure and Analysis 

2.3.1 Work Zone Lane Closure 
 

Lewis (28) defined a lane closure as an operation to close a traffic lane in such 

a manner that traffic is forced to move out of the closed lane and merge into the open 

lane. Generally, a long-term lane closure is used in work zones for construction work 

such as resurfacing and restoration to be undertaken in the closed lane. A typical lane 

closure consists of an advance warning area, a transition area (also known as merging 

taper), an activity area and a termination area (also known as downstream taper). The 

activity area can be broken down into two areas: buffer space and workspace. Figure 

8 shows the lane closure described.  

The advance warning area serves as an important section in the work zone, 

where the motorists get information regarding the upcoming work ahead of them. The 

placement of advance warning signs in this area may vary for different types of 
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roadways; however, for expressways or freeways the signs are generally spaced in 

longer sections to encourage uninterrupted flow. Table 3 shows the suggested 

advance warning spacing for a typical work zone lane closure. Letters A, B and C in 

table 3 denote the suggested spacing between signs in a particular lane closure 

condition.  

Table 3 Suggested Advance Warning Spacing (29) 
Distance Between Signs, meter (feet) Road Type A B C 

Urban (low speed) 30 (100) 30 (100) 30 (100) 
Urban (high speed) 100 (350) 100 (350) 100 (350) 

Rural 150 (500) 150 (500) 150 (500) 
Expressway/Freeway 300 (1000) 450 (1500) 850 (2460) 

 

The tapers for lane closure are channelizing devices to move traffic in and out 

of the regular path. In order for it to function properly, it is crucial to use appropriate 

lengths of taper for a lane closure, as longer tapers are not necessarily better than 

shorter tapers and vice versa. 
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Figure 8 Layout of a typical lane closure (29) 

 
 
The Manual on Uniform Traffic Control Devices (MUTCD) explains that extended 

tapers might encourage unnecessary delays in lane changing and sluggish operation. 

Pigman, et al. (30) echoed the MUTCD in their findings that over 95% of drivers on 
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the southern Kentucky freeway changed lanes before reaching the transition area (or 

merging taper), while the remaining 5% of drivers used the taper in the transition area 

to make the required lane changes. Table 4 shows the taper length criteria for 

temporary traffic control zones. The letter L used in Table 4 denotes the suggested 

taper length for different types of taper. The length of taper can be calculated by using 

an equation stated in the Table 5, based on the speed limit of the work zone. 

  
Table 4 Taper Length Criteria for Temporary Traffic Control Zones (29) 

Type of Taper Taper Length (L) 
Merging Taper at least L 
Shifting Taper at least 0.5L 

Shoulder Taper at least 0.33L 
One-Lane, Two-Way 

Traffic Taper 30 m (100 ft) maximum 

Downstream Taper 30 m (100 ft) per lane 
 

Table 5 Formulas for Determining the Taper Lengths (29) 
Speed Limit (S) Taper Length (L) 

Feet 
40 mph or less L = WS2/60 

45 mph or more L = WS 
  

L = taper length in meters (feet) 
W = width of in meters (feet) 
S = posted speed limit or the anticipated operating speed in 

km/h (mph) 
 

The MUTCD provides specific guidelines for the use of work zone lane 

closure. For single lane-closures on a two-lane freeway, the MUTCD recommends 

the use of the right lane closure shown in Figure 8 whereas, the left lane closure, 

which is essentially the mirror image of this illustration, is also used by many 

jurisdictions in the U.S.  However, it is believed that the right lane closure appears to 
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be safer than the left lane closure; in the left lane closure setup, vehicles in the 

acceleration lane will need to decelerate to match the average operating speeds in the 

deceleration lane on the right. The safety implications of both of these methods have 

been displayed by Zhu and Saccomonno (5) in their study.  

Many studies (31-35) in the past have shown that crash rates are generally 

higher in highways with work zones than those without. It was found that the 

presence of work zones not only causes congested traffic conditions, but creates 

potential safety hazards to motorists. There are many factors that may influence the 

crash rate in work zones such as geometry, pavement conditions, traffic volume, and 

weather. It is believed that lane closure strategy may be another factor that can 

influence the crash rate in highway work zones. Pal and Sinha (36) have conducted 

research to examine the effect of lane closure strategies and theirs crash potential in 

work zones in Indiana. In this research, two main lane closure strategies that were 

used in the project sites of the resurfacing, restoration, rehabilitation, and 

reconstruction (4R) program in Indiana were examined: crossover and partial lane 

closure (left or right lane closure).  

In a crossover setup (also known as two-lane, two way operation), the traffic 

on one direction of the highway is closed for construction activities, while two-way 

traffic is maintained side-by-side on the opposite lanes by rerouting the traffic using 

the crossovers. Figure 9 shows the two-lane, two-way operation described. Generally, 

concrete barriers are used as a safety measure to separate the rerouted traffic traveling 

in opposite directions, as no other sufficient median device is available to protect 
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drivers from high speed head-to-head traffic. Unlike the crossovers, one or more lanes 

in the partial lane closure setup are closed in one or both directions, but all of the 

lanes in one direction are not closed at any time. In this setup, however, the passing 

vehicles are very near the construction crew and equipment, and thus construction 

workers in the work area may be endangered by the proximity of passing traffic. 

 
Figure 9 Median crossover on freeway (29) 
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In the research by Pal and Sinha (36), the before-and-after study with a 

comparison group and a check for comparability was chosen as the desired statistical 

method to conduct the study as it checks the compatibility of the comparison section 

in addition to examining the safety impact of a treatment. Prior to the selection, it was 

found that the empirical Bayes method is a desirable statistical procedure to analyze 

crash data as it increases the precision of estimates and corrects the regression-to-

mean bias. However, the empirical Bayes method was not used in this research due to 

the sparsity of data and it was assumed that the regression-to-the-mean effect would 

not be significant as the project sites selected were not necessarily highway sections 

with high crash rates.  

For the data analyses, the crashes from 1988 through 1993 that occurred at 

mile markers where the crossover and partial lane closure were set up were retrieved 

from the state police record. These crashes were categorized into three main 

categories for the statistical procedures: fatal, non-fatal injury, and property damage. 

The results of the analyses showed that the average crash rate at work zones was 

significantly higher than in normal operations where there were no work zones. It was 

also found that the average crash rate in a crossover setup was not significantly higher 

than in a partial lane closure setting. In their conclusion, Pal and Sinha recommended 

state agencies create extensive databases on crashes so that more sophisticated 

models can be developed in the future. 
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2.3.2 Work Zone Analysis 
 

Congestion in work zones has been a major concern for state transportation 

agencies and local authorities. In some metropolitan areas, the traffic volumes have 

reached such levels that a relatively minor accident in a work zone can cause 

substantial delays to motorists and virtually paralyze the traffic during the peak 

period. The congestion issue that causes unproductive and wasteful delays may also 

result in hazardous conditions to motorists, where stopped vehicles in queue are 

approached by high speed vehicles upstream.  In order to address this issue, Maze, 

Schrock and Kamyab (37) conducted a study to examine the volume that can pass 

through a work zone lane closure prior to and during congested periods on rural Iowa 

interstate highways to identify related driver behaviors. The authors explained that the 

purpose of this research was to determine the rates when the queue grows and when it 

decreases in length. The key findings of this research include: 1) the capacities in 

rural Iowa work zone lane closures varied from approximately 1,400 passenger car 

equivalents per hour to 1,600; 2) queuing vehicles at lane closures presents a safety 

concern as the through queues can move backward and forward at very fast rates; 3) 

the consistency in the data collection meant that a historical database can be 

developed to predict the likelihood of congestion and implement appropriate 

strategies to mitigate it. These possible strategies include determining alternative 

routes and informing motorists well in advance.  

  Generally, work zone lane closures are only allowed during peak periods 

when reserve capacity is available. Nonetheless, in some instances, where surges of 



 39

traffic exceed beyond the capacity of a work zone, the removal of a lane closure may 

be required to alleviate the unexpected travel delays. In addition, some agencies may 

resort to closing the lane earlier than the scheduled date to take advantage of an 

extended work period. In order to better understand the risks associated with lane 

closures, Kononov and Znamenacek (38) conducted a quantitative risk analysis to 

compare the savings in the cost of construction in allowing the use of lane closure 

during peak periods, and the cost of incident-related delays in Denver, Colorado. The 

key findings of this research include:  

 

• The authors stated that it is critical to assess the delay resulting from 

potential crashes before deciding on allowing the use of a lane closure 

during the peak period; the decision should not be solely based on the 

available capacity. 

• The probability of delays and backups occurring at least once is as 

high as 93.5 percent during a typical construction project that requires 

a lane closure. 

• The authors recommended the use of a sensitivity analysis to examine 

the risk of potential crashes as it is not ascertained to assess safety 

performance characteristics such as increased number of accidents and 

its magnitude of increase. 
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• Based on the case example, cost of allowing a lane closure during a 

peak period was $305,000 whereas, the premium that state DOT can 

incur if work was allowed only at off-peak was $150,000. 

• The net societal disbenefits of allowing work during the peak period 

was $155,000. 

• Work zone lane closure during the peak period should be avoided on 

urban freeways whenever possible considering the secondary adverse 

impact such as driver frustration and negative public relations. 

 

The accuracy of estimates in safety assessment has always been a top priority 

among traffic safety researchers. However, without accurate data it is impossible to 

know whether the estimates in the performance measures are reflecting the true 

changes in the assessment or changes in external factors. Prior to 2004, the issue 

described was a concern for work zone exposure characteristics as there was no 

comprehensive data on the subject matter at the national level to aid researchers in 

calibrating their results. In 2004, these tasks were made possible for researchers when 

Ullman, et al. (39) conducted a study to explore the quality and quantity of available 

work zone data in the U.S. The methodology of this research included: 1) gathering 

and reviewing data in five regions of the country; 2) extrapolating the regional data to 

create the national estimates of several work zone exposure characteristics on the 

National Highway System (NHS); 3) examining project diaries, traffic control plans, 

and construction management databases on projects undertaken by private contractors 



 41

in these regions; 4) collecting and examining data on work zone activities that were 

performed by transportation agency personnel in each region. The following are the 

key findings of this research: 

 

• Authors estimated that 26.5 percent of the NHS (combined average of 

the five regions nationally) or 43,500 route miles experienced work 

activity of at least 1 day during 2001. 

• The average work zone contract length was extrapolated to be 5.0 mi, 

whereas the actual work area within that project length was found to 

be 1.5 mi each day. 

• Authors found that July 25, 2001 was the date of peak work activity 

for 2001 on the NHS. 4.8 percent of the NHS (or approximately 7,900 

route miles) experienced some work activity on that day while, 3.1 

percent of the NHS (or approximately 5,100 route miles) experienced 

an inactive work zone on that day. 

• Contract work zones had work activity take place within their project 

limits 3.5 times per week annually. This equates to 50 percent of all 

calendar days for a work zone contract (or approximately 77 percent of 

the five-day work week excluding holidays). 

• Authors found that “lane and shoulder closures accounted for a 

capacity loss of 41 million vehicles per day on the NHS on the peak 

day” (or 4,370 lane miles over the period of a typical work shift on a 
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typical work day), which “equates to a capacity loss of over 8.1 billion 

vehicles on the NHS during the entire calendar year.” 

• Authors estimated that “approximately 1 percent of the vehicle miles 

traveled (VMT) on the NHS (or 12 billion vehicle miles) passed an 

active work zone in 2001.” 

• Authors found that “nearly 5 percent of the VMT on the NHS (or 61 

billion vehicle miles) passed an inactive work zone.” 

• Authors estimated that “approximately 0.4 percent of the VMT on the 

NHS (5 billion VMT) occurred past inactive work zones where a lane 

closure had been left in place.” 

 

The increase in miles traveled and number of work zones on the roadway are 

two main findings that have been constantly linked with the rise in the work zone 

fatality rate. However, the numbers and percentages found in those work zone fatality 

rates often do not reflect the actual causal factors. Numerous studies in the past have 

attempted to identify those contributing factors to the work zone fatality rate. In 2000, 

Daniel, Dixon and Jared (40) reported the results of an analysis of fatal crashes at 

work zone locations in Georgia. This study was initially conducted for the Georgia 

Department of Transportation to examine the location, manner of collision, and 

construction activities that are associated with fatal crashes in work zones but was 

further expanded to compare the fatal crashes in work zones and non-work zone 

locations. The overall findings of this research showed that: 1) “work zones influence 
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the manner of collision, light conditions, truck involvement, and roadway functional 

classification under which fatal crashes occur”; 2) fatal non-work zone crashes are 

less likely to involve another vehicle than work zone crashes; 3) fatal non-work zone 

crashes are more likely to be influenced by horizontal and vertical alignment than 

work zone crashes.        

A similar fatality analysis was also carried out by the TTI in 2004. In this 

research, Schrock, et al. (41) developed a new methodology that used site reviews and 

narrative descriptions to examine crashes in Texas. The approach of this methodology 

adopted the practices of the Fatality Assessment and Control Evaluation (FACE) 

Program, to examine the work zone configuration and characteristics, which are 

generally not made available through crash database and police records. The key 

findings of this fatality analysis showed that: 

 

• Less than eight percent of the examined accidents had a direct effect 

from the work zone; 

• About four percent of the accidents involved highway personnel 

during traffic control installation or removal (or more than 40 percent 

of the total worker fatalities examined); 

• Approximately 39 percent of the examined accidents had an indirect 

effect from the work zone; and  

• About 45 percent of the examined accidents had no influence from the 

work zone (including 16 percent which happened in work zones that 
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were work zones in name only, where only project limit signs were 

present at the time of the crash).  

2.4 Summary of Literature Review 
 

For this thesis research, a comprehensive literature review was undertaken to 

synthesize the background knowledge from previous studies. Table 6 shows the key 

findings of the literature review described. 

Table 6 Key Findings of Literature Review 
Subject No. Study Location Reference 

1 Safety evaluation of IW 
 Iowa Brewer 1972 

2 Effectiveness of IW North 
Carolina 

Lorscheider & Dixon 
1995 

Characteristics 
and 

effectiveness of 
Iowa weave 

(IW) 3 Safety implications of IW 
 Ontario Zhu & Saccomanno 

2004 
Work zone 
(WZ) Lane 

Closure 
4 Lane closure strategies Indiana Pal & Sinha 1996 

 
The results of the literature review are summarized as follows: 

 

• Brewer (3) found that the Iowa weave pattern was highly effective in 

construction sites, with more than 50 percent of all vehicles sampled 

traveling below the posted temporary speed limit of 30 mph. Whereas 

in construction sites where the forced weaving was not used, the 

posted speed limit compliance of all vehicles sampled was found to be 

less than 20 percent. The author concluded that no excessive driver 

confusion was found in the use of this weave pattern, even though 
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three vehicles were found performing unusual maneuvers in the 

advance warning area. 

• Lorscheider and Dixon (4) found that this weave pattern was effective 

in reducing the speeds of motorists in work zones despite the finding 

that it increased driver confusion in the urban settings. Therefore, they 

recommended this weave pattern should be limited to rural freeways, 

where it is most effective in reducing speeds. The authors concluded 

the study that the Iowa weave can be a great time saver method for 

contractors in construction work zones even though “numerous” 

drivers were confused by the direction of the advance signs that led 

them to the lane that was closed. 

• The simulation results of Zhu and Saccomanno’s (5) research found 

that the right-hand closure appeared to be safer than the left-hand 

closure, whereas the proposed layout on a three-lane freeway segment 

(or the Iowa weave) was found to be safer than both the left-hand 

closure and right-hand lane closure. The authors explained that the 

proposed layout helps to avoid high-risk lane changing that could 

occur on the higher-speed left lane than the lower-speed right lane. 

• The results of Pal and Sinha’s (36) analyses showed that the average 

crash rate at work zones was significantly higher than in normal 

operations where there were no work zones. The authors also found 
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that the average crash rate in a crossover setup was not significantly 

higher than in a partial lane closure setting (left or right lane closure). 
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Chapter 3: Data Collection and Reduction 
 

This study focused on the fatal and injury crashes that occurred in Arkansas 

highway work zones from January 1, 2000 through December 31, 2005. The data for 

the crash model development were extracted from the AHTD, obtained from the 

Planning and Research Division. This database contains the details of all the police 

reported crashes in Arkansas IRP work zones available in two subfiles (Accident File 

and Vehicle File). In addition, construction diaries and plans involving both the Iowa 

weave and conventional setting (or the right lane closure) during the IRP were 

duplicated in order to determine the lane closure settings at each project site. In order 

to maintain the accuracy in the data, the crash data were carefully examined by 

coding the response variables in two binary values (0 and 1) in a spreadsheet before 

feeding it to the SPSS analysis tool.     

3.1 Data Collection and Reduction Procedure 

3.1.1 Data Sources and Collection 
 

A total of 54 project diaries and plans were obtained from the AHTD, 

including two projects that performed the conventional setting (or the right lane 

closure) only. These two projects, however, were not considered in the selection 

process in order to prevent bias in the data. Another four projects, which were 

identified as technology enhancement (or non-lane closure involved) projects by the 

AHTD, were not collected for this research. As the first step of the data reduction 
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procedure, the construction plans of the remaining 48 projects were scrutinized to 

ensure that lane closures-related information was available. This measure was 

intended to eliminate unnecessary data details that may have led to inaccuracies in the 

analyses, and ensure that locating and determining the lane closure setup was 

possible. After careful examination of the plans, 24 projects were identified and 

removed from the project pool. The following are the descriptions of the projects that 

were removed from the project pool:    

 

• Projects that used the conventional traffic control plans only (note: 

these projects were designed and planned before the inclusion of the 

Iowa weave in the AHTD’s specifications); 

• Bridges or interchange projects due to the short distances involved; 

• Three-lane interstate freeways in an urban setting, where two lanes 

were open instead of one lane; 

• The interstate in question had only one IRP project (e.g. I-540 had 

only one project) and was removed to prevent any bias that might be 

specific with that roadway; 

• Mile markers or the log miles were not available, thus locating the 

work zone was not possible; 

• Traffic control plans did not have information on the weave pattern 

(due to change orders); and     
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• Technology enhancement projects (note: the work was done on the 

side of the road and no lane closures were involved).     

3.1.2 Data Reduction Procedure 
 

Through the selection process, a total of 24 out of the 54 IRP projects were 

chosen for the data analyses, including 17 projects that used the median crossovers. 

These projects were identified as follows: 

 
Table 7 Project Information by Date and Mile Marker 

No. Project 
No. 

Interstate 
Route 

Work 
Start Date 

Estimated 
Completion 

Date 

Start 
Mile 

End 
Mile 

Total 
Distance 

1 B80105 I-40 2/20/2000 10/1/2002 83.64 94.52 10.88 
2 B10100 I-40 7/7/2000 9/1/2001 228.2 239.82 11.62 
3 B40103 I-40 1/19/2001 12/1/2001 31.09 38.36 7.27 
4 BX0100 I-30 1/19/2001 12/1/2001 51.41 56.41 5.00 
5 B30100 I-30 1/22/2001 9/1/2001 36.69 44.46 7.77 
6 B10107 I-55 2/28/2001 5/1/2001 15.1 23.13 8.03 
7 BX0102 I-30 3/5/2001 10/1/2002 77.97 85.96 7.99 
8 B60105 I-40 3/19/2001 6/1/2003 154.81 163.81 9.00 
9 B80103 I-40 4/17/2001 9/1/2004 53.5 59.61 6.11 

10 B40105 I-40 5/23/2001 10/1/2002 17.05 24.49 7.44 
11 BX0101 I-55 5/30/2001 5/1/2003 23.08 35.05 11.97 
12 B80104 I-40 5/30/2001 6/1/2002 71.51 76.85 5.34 
13 B80107 I-40 5/30/2001 6/1/2002 118.96 124.34 5.38 
14 B80106 I-40 7/5/2001 9/1/2003 101.15 113.15 12.00 
15 B10102 I-40 7/5/2001 11/1/2002 216.58 228.2 11.62 
16 B00100 I-55 7/6/2001 8/1/2003 52.38 58 5.62 
17 B60106 I-40 7/24/2001 6/1/2003 181.6 194.39 12.79 
18 B10103 I-40 9/10/2001 6/1/2003 264.57 277.57 13.00 
19 B60113 I-40 4/3/2002 12/1/2004 163.81 175.25 11.44 
20 B40102 I-40 4/15/2002 2/1/2004 7.04 17.05 10.01 
21 B80108 I-40 4/18/2002 9/1/2004 63.67 71.51 7.84 
22 B10106 I-55 6/9/2003 10/1/2004 4.59 0.81 3.78 
23 B80110 I-40 7/9/2003 11/1/2004 124.37 135.65 11.28 
24 B10104 I-40 7/23/2003 9/1/2004 248.1 264.57 16.47 
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Initial efforts in determining the lane closure setup revealed that detailed 

observations were required in order to accurately conclude the lane closure setup in 

each project. Hence, 11 out of the 24 projects were sampled using a random number 

generator (RNG). In addition, the lane closure setups were reviewed by another 

researcher other than the author to ensure that the accuracy and consistency in the 

data were well maintained. This measure was intended to examine whether the 

interpretation of the lane closures setup was accepted by a researcher other than the 

author and the AHTD. A total of 6,184 pages of construction diaries were reviewed 

through these 11 projects. Additionally, the language in the construction diaries was 

verified with the engineers in AHTD to mitigate any identification errors.   

3.1.3 Data Sampling 
 

The data sampling consists of two simple steps. First, the 24 projects were 

assigned with numbers as stated in Table 7. These numbers were assigned based on 

the work start dates provided by the AHTD. It was organized from the earliest work 

start date to the latest to ensure that these projects were not chosen from the similar 

IRP period and the projects were evenly distributed. As the second step of the data 

sampling, 11 projects were randomly selected through the RNG software. 

Furthermore, the “exclude duplicate numbers” (or the random without replacement) 

option in the RNG software was applied to ensure that there was no repetition in the 

selection of the projects.  
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Table 8 shows the descriptions of the RNG results generated. As shown in this 

table, the 11 projects consist of: 

• Six projects on Interstate 40 (I-40), 

• Three projects on Interstate 30 (I-30), and   

• Two projects on Interstate 55 (I-55). 

 
Table 8 Summary of the RNG Results 

No. Project 
No. 

Interstate 
Route 

Work 
Start Date 

Estimated 
Completion 

Date 

Start 
Mile 

End 
Mile 

Total 
Distance 

4 BX0100 I-30 1/19/2001 12/1/2001 51.41 56.41 5.00 
5 B30100 I-30 1/22/2001 9/1/2001 36.69 44.46 7.77 
6 B10107 I-55 2/28/2001 5/1/2001 15.1 23.13 8.03 
7 BX0102 I-30 3/5/2001 10/1/2002 77.97 85.96 7.99 
9 B80103 I-40 4/17/2001 9/1/2004 53.5 59.61 6.11 

10 B40105 I-40 5/23/2001 10/1/2002 17.05 24.49 7.44 
11 BX0101 I-55 5/30/2001 5/1/2003 23.08 35.05 11.97 
17 B60106 I-40 7/24/2001 6/1/2003 181.6 194.39 12.79 
18 B10103 I-40 9/10/2001 6/1/2003 264.57 277.57 13.00 
21 B80108 I-40 4/18/2002 9/1/2004 63.67 71.51 7.84 
24 B10104 I-40 7/23/2003 9/1/2004 248.1 264.57 16.47 

 

3.1.4 Selection of Projects 
 

For the purpose of this study, the tapers of the Iowa weave and conventional 

setting (or the right lane closure) in the merging area were assumed to remain in the 

same location throughout the project duration unless otherwise indicated in the 

construction diaries. In addition, lane closures of projects that detour the traffic to 

another route other than the interstates were not considered in this research. During 

the data reduction procedure, it was found that the projects may consist of more than 

a pair of median crossovers. In order to maintain the consistency in the data, these 
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projects were not selected to prevent extraneous details such as sophisticated lane 

closure setups. Furthermore, determining the lane closure setup of such complex 

settings required additional time, resources and efforts, yet the results may not be 

extremely useful in the latter stages of the research. Scrutiny of each selected project, 

and its construction diaries and plans indicated that project B10103 comprised of 

three pairs of median crossovers throughout the project limit. This project was not 

selected and thus reduced the total number of projects to ten.    

Other than time, resources and efforts, the determination of lane closure setup 

required detailed observations and, most importantly, technical judgment. Because 

the data were not in a format that can be readily fed into the statistical software such 

as the SPSS, the lane closure settings needed to be accurately identified through the 

construction diaries and plans before it could be incorporated into the crash records. 

Initial observations of the plans and diaries showed that the documented lane closure 

information was not reliable, as the construction observers were likely to miss the 

opportunity to document the lane closure setups for a particular project. Moreover, 

the partial lane closure operations were considered routine work or incidental as 

compared to the median crossovers (or the two-way, two-lane operation). Thus, it 

may not be regarded as a major traffic operation that required detailed documentation 

on big projects, such as 10 miles, by the construction inspectors. In order to address 

the issue, the stationing and the work location (left or right lane) can be used as good 

indicators to determine whether the traffic was allowed on that lane. By examining 
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the construction activities and the documented lane closure activities, the lane closure 

setups can be accurately determined and verified.  

3.1.5 Work Zone Terminology 
 

Similarly, like any other construction diaries, the terminologies and 

abbreviations in these documents needed to be familiarized before one can accurately 

interpret the activities. For the IRP, the AHTD used the left main lane (LML) and 

right main lane (RML) terminology as their main direction indicators for their 

projects. The nomenclature starts with the “ahead station,” which is the lower station 

number of the project. The term “ahead station” is defined as looking ahead from a 

downstream location (or station). For instance, if the project limit was from station 

900+00 to 1000+00, the “ahead station” for the project was situated at station 

900+00. With the “ahead station,” the LML and RML can be identified simply by 

judging from the downstream location, the lanes on the left are LML while the lanes 

on the right are RML. Figure 10 shows the LML and RML described.  

While the LML and RML terminology were generally used in the diaries, 

conventional wisdom on direction (north, south, east, west) was not neglected by the 

construction observers. Conventionally, construction inspectors would use the terms 

east or westbound, or north or southbound in the diaries to indicate the direction of 

traffic. As the mile markers always get larger for the traffic heading east or north 

(42), it was found that the traffic direction of RML is always either eastbound or 

northbound depending on the direction of interstate. In contrast, the traffic direction 
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of LML (opposing side) could either be westbound or southbound. Figure 10 shows 

the terminology described. Other than the main lanes (LML or RML), individual 

lanes on each side of the direction needed to be clearly stated in the diaries as well to 

indicate the work location. The left and right lanes were determined by using the 

“ahead station.” Construction observers of AHTD used the terms “outside lane” or 

“inside lane” to indicate the work or lane closure location. For instance, left lane of 

LML also means outside lane of LML, whereas left lane of RML is the inside lane of 

RML. In essence, the lanes that were closer to the median were inside lanes, whereas 

the lanes adjacent to the shoulder were outside lanes. Figure 10 shows the 

nomenclature described. 

 As the median crossovers (or two-lane, two-way operation) received 

recognition for its advantages in time saving, the AHTD realized the importance of 

integrating this preeminent feature to ensure the projects were completed on schedule. 

Consequently, many of their IRP projects that were comprised of at least 5 miles or 

longer would always incorporate the use of median crossovers to shorten the work 

duration by reducing the indispensable time for lane closure setups and traffic 

switching. As described by Lorscheider and Dixon (4) in the literature, a lane closure 

involving an advance warning area on an urban freeway can take up to two hours to 

set up and remove. In order to overcome this, the AHTD combined the use of Iowa 

weave, conventional setting (or the right lane closure), and the median crossovers to 

minimize the time that would normally be allocated to set up and remove the lane 

closure settings. Figure 11 shows the median crossovers or TLTWO described.    
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As observed in Figure 11, the traffic on one direction of the highway is closed 

for construction activities, while two-way traffic is maintained side-by-side on the 

opposite lanes by rerouting the traffic using the crossovers. In order for the traffic to 

maneuver safely into the median crossovers, this unique feature required the 

assistance of partial lane closures to merge the traffic into one single lane at the 

upstream location prior to reaching the median crossovers. Conventionally, left and 

right lane closures would be incorporated into the TLTWO before rerouting the traffic 

into the median crossovers. However, in Arkansas it is restricted to start with lane 

closures on the left and merge from left to right (from the high speed lane to the slow 

speed lane). The AHTD explained that this practice enables drivers to be better aware 

and more prepared for the lane drops ahead of them and avoid the uncertainty as to 

which lane will be closed. Furthermore, vehicles in the acceleration lane do not need 

to decelerate to match the average operating speeds in the deceleration lane on the 

right. Consequently, the Iowa weave is used as a substitute for the left lane closure in 

Arkansas. Figure 11 shows the use of Iowa weave and conventional setting (or the 

right lane closure) in TLTWO. 

For the through traffic in TLTWO, the AHTD utilized the Iowa weave to 

converge the traffic into single lane at the upstream location whereas; the 

conventional setting (or the right lane closure) is set up at the similar upstream 

location on the opposite end to merge the maneuvering traffic. For example, if the 

LML was closed for the construction activities, the Iowa weave was placed on the 

upstream RML to merge the through traffic, while the conventional setting was 
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installed at the upstream LML to converge the opposing traffic prior to maneuvering 

into the crossovers. Figure 11 shows the TLTWO described. 

 3.1.6 Crash Records 
 

As the final step of the data preparation, the lane closure setups were 

incorporated into the crash record prior to the binary coding procedure. Due to the 

crash reporting methodology in Arkansas, a vehicle subfile was extracted from the 

AHTD in order to determine the vehicle direction of travel for each crash. The 

officials in the Planning and Research Division of AHTD explained that there is no 

data in the crash database to indicate a crash that occurred 

on a certain lane was heading to certain direction. Thus, if more than one 

vehicle were involved, the direction of travel for these vehicles was classified 

individually under the same crash number. In order to prevent repetition of crashes in 

the database, a separate vehicle subfile was created to identify the direction of travel 

for each vehicle. Upon verification of vehicle direction, the crash records were 

examined again by matching the dates, mile markers, and direction of the lane closure 

setups. In addition, any accident that was identified as a secondary crash was 

eliminated from the crash records to ensure that the selected crashes were 

independent.   

For all of the lane closure, the stationing and the construction plans were 

scrutinized to identify the mile markers needed for each project. As the equivalency 

between stations and mile markers were clearly stated in each project plan, the task to 
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convert them did not pose a significant problem. The only issue observed in this task 

was the accuracy of mile markers. It was found that the use of simple calculations 

could not justify the exact location of where the mile markers were situated. In order 

to mitigate the identification problem, the stationing and mile markers of both the 

work and lane closure limits were utilized to estimate the exact location of the area of 

interest (from the first barrel of the tapers to the last barrel of the weave section or 

tangent area). For instance, in the example of project B10107, the plans showed that 

the work limit was from station 620+00 (or logmile 15.10) to station 1044+24.9 (or 

logmile 23.13), whereas the lane closure limit was from 599+40 to 1064+84.9. As the 

distance of tapers, stabilizing zone, and weave section (or the tangent areas in the 

conventional setting) were known figures, the total distance was found to be 2,060 

feet (or 0.39 mile). With that, the mile markers or the logmiles needed for the lane 

closure setting were calculated to be 14.71 (15.10 – 0.39 = 14.71) and 23.52 (23.13 + 

0.39 = 23.52). These mile markers were calculated by examining the stations of work 

and lane closure limits. The following are the calculations described: 

 

• 620+00 (logmile 15.10) - 2,060 feet = 599+40 (logmile needed or 

14.71) 

• 1044+24.9 (logmile 23.13) + 2,060 feet = 1064+84.9 (logmile needed 

or 23.52)  

 

Table 9 shows the stationing and logmiles of the project described. 
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Table 9 Stationing and Logmile of Project B10107 

Project 
No. 

B10107 

Station/
Logmile 

Lane 
Closure 
Limit 

Tapers 
(feet) 

Stabilizing 
Zone 
(feet) 

Weave 
Section/ 
Tangent 

(feet) 

Work 
Limit 

Station 599+40 840 500 720 620+00 North 
bound Logmile 14.71a  0.39  15.1 

Station 1064+84.9 840 500 720 1044+24.9 South 
bound Logmile 23.52a  0.39  23.13 

a Logmiles needed 
 

The calculation may not be applicable for all of the projects as the definitions of work 

and lane closure limits may be different. For example, the designer of the project may 

define the “lane closure limit” as the “work limit.” Nonetheless, the basic principle of 

this methodology was consistently utilized by using the lane closure limits 

information in each project. 

Over the 6-year period from 2000 to 2005 there were approximately 28,834 

crashes (fatal, injury, and property damage only) that occurred on Interstates 30, 40, 

55, and 540 in Arkansas. Initial efforts in the data reduction procedure showed that 

there were approximately 240 work zone crashes that occurred within the project 

areas. However, these crashes did not account for the underreporting issue. It is 

believed that the underreporting problem is significant whenever the police crash 

database is used. Ullman and Scriba (43) found that crash reports may “underreport 

the number of fatalities in work zones nationally by as much as 10%.” In the crash 

database obtained from the AHTD, there are data to indicate whether there were 

construction activities underway on the highway. This information, however, was not 

taken into consideration when deciding whether a crash occurred in a work zone, as 

previous findings have showed that there is a statistically significant dependence 
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between how work zones are denoted in state’s crash report form and the number of 

fatalities that are recorded as occurring in a work zone (43). In order to prevent 

judgment errors that may be caused by the enforcement officers who completed the 

crash report, 0.25 mile (or 1,320 feet) was added on both the upstream and 

downstream locations of the study area. However, as mile markers are presented in 

tenths of a mile, the adjustment was rounded to 0.3 mile (or 1,584 feet) in order to be 

consistent. Upon revision of the methodology, 44 out of the 240 crashes were found 

to be within the study area. As the final task of the data reduction procedure, these 

crashes were scrutinized again before proceeding to the binary code procedure.  

3.2 Identification of Variables Related to Iowa Weave 

3.2.1 Research Datasets 
 

As the final step in preparing the research datasets, the 44 crashes were 

programmed in a spreadsheet format prior to initiating the binary code procedure. 

This step was considered a precautionary measure to ensure that the compilation of 

each crash was completed accurately without missing any useful information. In 

addition, the task also allowed the examination of dummy variables instead of using 

the SPSS predictor to code the variables. Other than fatal, injury, and property 

damage only (PDO) crashes, other relevant data that were found in the crash records 

include: 

 

• Atmosphere conditions (rain, snow or clear); 
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• Light conditions (daylight, dark, dawn or dusk); 

• Rural or urban; 

• Roadway alignment (straight or curved); 

• Roadway profile (level, grade, hillcrest or unknown); 

• At intersecting street (yes or no – on ramp or off ramp); 

• Alcohol involved (yes or no); and  

• Annual Average Daily Traffic, AADT (16,000 – 63,000 vehicles per 

day). 

 

As observed from the list, nine independent variables including lane closure 

strategies (Iowa weave or right lane closure) were considered for the logistic 

modeling. Seven variables (atmosphere conditions, light conditions, rural or urban, 

roadway alignment, roadway profile, at intersecting street, and alcohol involved) 

were categorical or discrete, and the remaining one variable (AADT) was continuous. 

Based on the variables included in the Arkansas crash database, it was found that not 

all of them are closely related to lane closure strategies. In order to assure that the 

selected variables fulfill the rule of thumb for logistic models, i.e. to use a minimum 

of 10 events per predictor variable (EPV), while obtaining only the variables that 

related to lane closure strategies and work zone crashes (36,40), a frequency table 

was generated to examine the occurrences ensuring that the minimum number was 

met. Table 10 shows the frequency of the variables described.  
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Table 10 Frequency of Dependent and Independent Variables Considered in the 
Logistic Regression Modeling 

Variable Name Binary 
Response Interpretation Frequency 

0 Crash was not categorized as fatal crash 43 Fatal 
(Response) 1 Crash was categorized as fatal crash 1 

0 Crash was not categorized as injury crash 30 Injury 
(Response) 1 Crash was categorized as injury crash 14 

0 Crash was not categorized as non-injury 
or PDO crash 14 Non-injury 

(PDO) 
(Response) 1 Crash was categorized as non-injury 

crash 30 

0 Conventional setting was observed at 
crash location 27 Ia_wve 

(Predictor) 1 Iowa weave was observed at crash 
location 17 

0 Driver not under alcohol influence 42 AcH_Invd 
(Predictor) 1 Driver under alcohol influence 2 

0 Good weather conditions 35 RnSnw_Wther 
(Predictor) 1 Weather was not clear 9 

0 Crash was not during daylight  7 Daylight 
(Predictor) 1 Crash occurred during daylight 

conditions 37 

0 Crash occurred in urban area 7 Rural 
(Predictor) 1 Crash occurred in rural area 37 

0 Straight alignment exists at crash location 36 Cur_Algnmt 
(Predictor) 1 Curve alignment exists at crash location 8 

0 Crash location was level 36 Prfl_Nt_Lvl 
(Predictor) 1 Crash location was not level 8 

0 Crash was not at an intersecting street 37 Int_St 
(Predictor) 1 Crash occurred at an intersecting street 7 

Minimum average daily traffic 16,000 AADT 
(Predictor) Continuous Maximum average daily traffic 63,000 

 
As shown in Table 10, only two events were observed in variable of 

AcH_Invd (alcohol involved). In order to prevent bias, this low-event variable was 

not further considered in the statistical analysis. Scrutiny of each variable and its 

frequency showed that only one fatal crash out of the total 44 crashes was observed in 

the data. Because there was only one fatal crash, it was grouped with injury crashes 

for this analysis. While for PDO crashes, response variable Non_injury was not 
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considered in the modeling procedure due to the highly skewed underreporting issue. 

It is believed that the reported PDO crashes are likely to be those vehicles that were 

no longer drivable but no one was injured. Consequently, the presence and absence of 

the lane closure setup will not account for the change at which PDO crashes are 

underreported. However, the observed PDO crashes in this study were inadvertently 

included for the statistical procedure as the total number of PDO crashes in response 

variable of Injury (binary code 0) and Non_injury (binary code 1) were identical.  

The low-event observation found in variables of Fatal crashes and Ach_Invd 

(alcohol involved) presented a preview of the results. Nonetheless, it is believed that 

the numbers of fatalities in work zone crashes are underreported by as much as 10 

percent (43). Upon examination of the variables, six independent variables including 

the Iowa weave were found pertaining to the focus of this research (19,36,40) and 

thus were included for further consideration. The following shows the independent 

variables described: 

 

• Ia_wve  

(binary response 1 = Iowa weave, binary response 0 = conventional 

setting); 

• RnSnw_Wther  

(binary response 1 = rain and snow, binary response 0 = clear); 

• Daylight  
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(binary response 1 = daylight, binary response 0 = dark, dawn or 

dusk); 

• Cur_Algnmt 

(binary response 1 = curved, binary response 0 = straight); 

• Int_St   

(binary response 1 = on ramp, off ramp, binary response 0 = none); 

and 

• AADT  

(Annual Average Daily Traffic, 16,000 – 63,000 vehicles per day). 

 

As aforementioned, a total of 44 crashes (fatal, injury, and PDO) were 

selected for the statistical analysis. In order to assure the stability of the model (a ratio 

of at least 10 events per predictor variable), a variable-selection procedure was 

undertaken to determine the significant factors that affect work zone crashes. For this 

procedure, bivariate analyses were utilized to assess the significant variable 

combinations: Pearson chi-square and one-way ANOVA tests. For each of the 

Pearson chi-square and one-way ANOVA tests, the hypotheses were as follows: 

 

H0: There is no difference between variables 

HA: There is difference between variables 
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Table 11 shows the results of the Pearson chi-square and one-way ANOVA 

tests described. As shown in this table, only two pairs of variables were statistically 

significant at α = 0.05: Injury - Rain snow weather, and Iowa weave – Rain snow 

weather. In addition, the results showed that Curve alignment - AADT (p-value 0.06) 

was weakly significant at the 0.05 level. In order to eliminate the strongly correlated 

variables, while reserving the variable (AADT) that can be related to lane closure 

strategies, curve alignment was chosen to be eliminated. In an effort to search for four 

significant variables including the Iowa weave, the fourth most significant pair from 

this variable-selection results was included for the statistical analysis: Iowa weave – 

Intersecting street (p-value = 0.149). In essence, all of the independent variables 

except for curve alignment were included for further examination in the modeling 

procedure. This measure was intended to examine the non-significant variables more 

closely as these variables may be associated to lane closure settings only in certain 

conditions defined by other factors. In other words, the direct impact of these 

variables may not be statistically significant enough to be detected through the 

Pearson chi-square and one-way ANOVA tests. The following shows the variables 

described: 

 

• Ia_wve  

(binary response 1 = Iowa weave, binary response 0 = conventional 

setting); 

• RnSnw_Wther  
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(binary response 1 = rain and snow, binary response 0 = clear); 

• Daylight  

(binary response 1 = daylight, binary response 0 = dark, dawn or 

dusk); 

• Int_St   

(binary response 1 = on ramp, off ramp, binary response 0 = none); 

and 

• AADT  

(Annual Average Daily Traffic, 16,000 – 63,000 vehicles per day). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 68

 
Table 11 Results of Variable-Selection Procedure 

Procedure Variables 
 

Degree of 
Freedom 

Value 
(p-valuea) 

Sum of 
Squares 

Injury - Rain snow weather 1 5.280 
(0.022)b 

-- 
 

Injury - Daylight 1 0.040 
(0.841) -- 

Injury - Curve alignment 1 1.682 
(0.195) -- 

Injury - Intersecting street 1 1.179 
(0.277) -- 

Iowa weave – Rain snow 
weather 1 12.051 

(0.001)b -- 

Iowa weave - Daylight 1 0.063 
(0.803) -- 

Iowa weave - Curve alignment 1 0.767 
(0.381) -- 

Iowa weave - Intersecting street 1 2.082 
(0.149) -- 

Rain snow weather - Daylight 1 0.195 
(0.659) -- 

Rain snow weather - Curve 
alignment 1 0.124 

(0.725) -- 

Rain snow weather - 
Intersecting street 1 0.195 

(0.659) -- 

Daylight - Curve alignment 1 0.604 
(0.437) -- 

Daylight - Intersecting street 1 0.016 
(0.898) -- 

Pearson chi-
square 

Curve alignment - Intersecting 
street 1 0.604 

(0.437) -- 

Injury - AADT 17 0.873 
(0.607) 3.469 

Iowa weave - AADT 17 1.317 
(0.257) 4.826 

Rain snow weather - AADT 17 1.057 
(0.439) 2.925 

Daylight - AADT 17 0.741 
(0.736) 1.922 

Curve alignment - AADT 17 1.953 
(0.060)c 3.670 

One-way 
ANOVA 

Intersecting street - AADT 17 0.909 
(0.572) 2.194 

a Asymptotic p value 
b Significant variables 
c Weakly significant variables 
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3.3 Summary 
 

The data collection procedure served as a key step towards the data analyses. 

The procedure can be broken into five categories: 

 

• Data collection (obtained construction plans, diaries, crash record, and 

vehicle files from AHTD); 

• Data sampling (randomly selected 11 out of the 24 IRP projects from 

the project pool); 

• Data examination (determined the lane closure setups through the 

construction plans and diaries); 

• Data reduction (incorporated the lane closure setups into the crash 

record); and  

• Binary coding (programmed the response and predictor variables into 

binary codes).  

 

A total of 44 crashes (fatal, injury, and PDO) were identified from the 11 IRP 

projects between January 1, 2000 and December 31, 2005. In order to assure that the 

selected variables fulfill the rule of thumb for logistic models, i.e. to use a minimum 

of 10 events per predictor variable, while obtaining only the variables that related to 

lane closure strategies and work zone crashes, a frequency table and bivariate 

analyses (Pearson chi-square and one-way ANOVA tests) were conducted to 



 70

determine the significant factors. Consequently, five independent variables including 

the lane closure setups were chosen through the variable-selection procedure: Lane 

Closure Strategies, Rain Snow Weather, Annual Average Daily Traffic (AADT), 

Intersecting Street and Daylight. The final spreadsheet contained binary codes of the 

crash variables described. The next chapter presents the results of the logistic 

regression modeling.    
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Chapter 4: Work Zone Crash Analysis 

4.1 Statistical Procedure 
 

Over the years, two major statistical procedures have been frequently used for 

crash data analyses: Bayesian and non-Bayesian approach. The Bayesian approach 

can be broken into pure Bayesian and empirical Bayes methods (16), while the non-

Bayesian approach can be divided into three different categories: before-and-after 

study, before-and-after study with yoked comparison, and before-and-after study with 

comparison and check for comparability (10). As the focus of this study was to 

analyze crashes during the IRP period, the non-Bayesian approach was not further 

considered as a viable statistical procedure. In addition, it was found that there were 

insufficient lane closure data available for the examination of the before-and-after 

effect on both of the lane closure strategies even if extended outside the 6-year IRP 

period.  

As for the Bayesian approach, the empirical Bayes method was found to be a 

popular choice to analyze crash data as it takes care of the regression-to-the-mean 

effect (16). However, this statistical procedure was not used in this research as it was 

assumed that the regression-to-the-mean would not have a significant effect. The 

reason for this assumption was because the location of these IRP projects were 

chosen by the AHTD, and these locations were not necessarily sections with high 

crash rates. Furthermore, it was found that the regression-to-the-mean effect becomes 
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insignificant when 3 or more years of accident data are evaluated at high accident 

sites (18). 

Logistic regression is a suitable statistical procedure to predict the correlation 

between a set of independent variables and a dichotomous response variable or 

outcome (21). This method has been frequently used in traffic crash analyses to 

determine various influential factors in highway safety. Since the relationship 

between lane closure strategies and the explanatory factors in this study are not linear, 

logistic regression was determined to be the most suitable statistical procedure to 

identify the important factors. In addition, logistic regression, whose outcomes are of 

a discrete or categorical nature, can predict the probability of the event of interest, 

while estimating the direct impacts of each variable. Furthermore, the logit function 

of this statistical procedure has advantages of being able to be more easily interpreted. 

Consequently, logistic regression was chosen to be the most appropriate statistical 

procedure for this study to assess the correlation between the explanatory response 

and predictor variables, and crashes. In the binary response case, the logistic 

regression model has the following form:   

 
Logit (pi) = log (pi /1 - pi) = α + β`Xi                                                 (44)                       

 
Where 

pi =  prob (yi = yi │Xi is response probability, and yi is first order level of y; 

α = intercept parameter; 

β` = vector of coefficient to be estimated; and  

Xi = vector of explanatory variable. 
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4.2 Goodness-of-Fit Test  
 

As the first step of the data analyses procedure, it was essential to examine the 

underlying distributions between injury vehicle crashes (fatal and injury), and the 

Iowa weave. In order to determine whether the crash distributions were different 

based on the presence and absence of the Iowa weave lane closure setup, the Pearson 

chi-square, and Likelihood Ratio chi-square tests were conducted to test the following 

hypotheses: 

 

H0: There is no difference in the number of fatal and injury crashes based on 

the presence and absence of the Iowa weave. 

HA: There is a difference in the number of fatal and injury crashes based on 

the presence and absence of the Iowa weave. 

 

Table 12 Results of the Comparison Between Fatal and Injury Crashes Based on 
the Absence and Presence of the Iowa Weave 

 Value df p-valuea 

 
Pearson Chi-Square 0.074b 1 0.786 

Likelihood Ratio Chi-
Square 0.074 1 0.785 

No. of Valid Cases 44   
a Asymptotic p value 
b expected count less than 5 

 

The comparison of the distributions of fatal and injury crashes based on the 

absence and presence of the Iowa weave is shown in Table 12. The results of the tests 

showed that the difference between the crash distributions was not statistically 
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significant at α = 0.05, and thus the null hypothesis was not rejected. Since there are 

many factors that can influence the crash rate in work zones, the results of the tests 

were neither new nor surprising considering that prior findings on the Iowa weave 

were identical (5). Nonetheless, it is believed that association between fatal and injury 

crashes, and the Iowa weave can be accurately identified when other variables are 

factored into the equation of logistic regression.  

4.3 Crash Rate  
 

Crash rates serve as an important tool to measure and identify safety hazards 

at a particular location. This measurement combines the accident frequency with 

vehicle exposure, or the traffic volumes observed to determine the rate in crashes per 

million entering vehicles (C/MEV) (45). The following is the equation of the crash 

rate calculation described. 

 
R = A * 1,000,000                                               (45)                        

V * T 
 

Where: A = Average number of crashes at study location; 

V = Volume in the study location, ADT or AADT; and 

T = Time, number of days in the study period. 

Other than estimating the correlation between the Iowa weave and 

conventional right-hand closure, crash data, and a set of variables, it was important to 

determine the crash rate of the Iowa weave as opposed to the conventional setting in 

order to measure the impact of each lane closure setup. For this research, the annual 
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average daily traffic (AADT) maps of the selected projects were examined to identify 

the traffic volume of each crash location (46). Table 13 shows the traffic volume 

described. Scrutiny of each project and its crash rates showed that the crash rate of the 

Iowa weave (0.2204 C/MEV) was lower than the conventional setting (0.3173 

C/MEV) by a margin of 0.097. Alternatively stated, the Iowa weave setup as opposed 

to the conventional setting had approximately 30 percent lower chance to be involved 

in a work zone crash. In essence, the Iowa weave setup was found to be substantially 

safer than the conventional right-lane closure based upon the crash rates obtained (5). 

Table 13 Traffic Volume of Selected IRP Projects 
Project 

No. 
Interstate 

Route 

Lane 
Closure 
Setting  

No. of 
Crashes 

Duration of 
Project 
(day) 

AADT 
Crash 
Rate 

(C/MEV) 
C 0 0 BX0100 I-30 I 0 316 23,000 0 
C 1 0.2048 B30100 I-30 I 0 222 22,000 0 
C 2 1.1947 B10107 I-55 I 1 62 27,000 0.5974 
C 3 0.2038 BX0102 I-30 I 2 575 25,600 0.1359 
C 1 0.0893 B80103 I-40 I 1 545 20,550 0.0893 
C 5 0.2819 BX0101 I-55 I 5 701 25,300 0.2819 
C 6 0.2471 B60106 I-40 I 5 677 35,864 0.2059 
C 4 0.2293 B80108 I-40 I 1 867 20,120 0.0573 
C 4 0.3170 B10104 I-40 I 0 406 31,075 0 
C 1 0.0877 B40105 I-40 I 2 496 23,000 0.1753 

Total   44    
Average crash rate for Iowa weave              = 0.2204 C/MEV 
Average crash rate for conventional setting = 0.3173 C/MEV 
Legend: C = conventional right lane closure 

 I  = Iowa weave lane closure setup 
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Nonetheless, it was crucial to examine whether these crash rates were 

different based on the project duration and traffic volume. Thus, a paired t-test was 

conducted to test the following hypotheses: 

 

H0: There is no difference in the average crash rates of the Iowa weave and 

conventional setting. 

HA: The average crash rate of the Iowa weave is statistically less than that of a 

conventional setting.  

 

Table 14 Result of Paired t-test: Comparison of Crash Rates Based on the 
Project Duration and Traffic Volume   

Paired Differences 
 

Mean Variance Pearson 
Correlation

t df p-valuea 

 

Conventional 0.28556 0.11162 
Iowa Weave 0.1543 0.03346 0.85022 2.045 9 0.036 

a One-Tailed  
 

The results of the t-test (p-value = 0.036) showed that the difference between 

the average crash rates was statistically significant at the 0.05 level of significance 

and thus the null hypothesis was rejected. In essence, the p-value showed that the 

strength of evidence was statistically significant with 95 percent confidence given the 

alternative hypothesis that the Iowa weave has fewer injuries than the conventional 

setting (5). Since the p-value indicates that there is no difference, it can be determined 

that the results showed evidence that there was approximately 30 percent reduction in 

crash rate when the Iowa weave configuration was used.  
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4.4 Logistic Regression Model 

4.4.1 Model Specification 
 

As aforementioned, only two pairs of independent variables were found to be 

significant at the level of significance of 0.05. These variable combinations were: 

 

• Injury - Rain snow weather (Pearson chi-square, p-value = 0.022) 

• Iowa weave – Rain snow weather (Pearson chi-square, p-value = 

0.001) 

 

In an effort to obtain two more independent variables, the third (curve 

alignment - AADT, p-value = 0.06) and the fourth (Iowa weave – Intersecting street, 

p-value = 0.149) variable combinations with the next lowest p-values were included 

for further examination in the modeling procedure. As stated in the variable-selection 

procedure, this measure was to ensure that the non-significant variables were 

examined more closely, as the variables may be associated to lane closures only in 

certain conditions defined by other factors. In other words, the direct impact of these 

variables may not be statistically significant enough to be detected through the 

Pearson chi-square and one-way ANOVA tests. Scrutiny of the results found that 

curve alignment and AADT were strongly correlated. In order to prevent bias due to 

the unavailable information on interaction terms (weighted average between the 

strongly correlated independent variables); the variable curve alignment was chosen 



 78

to be eliminated from the variable-selection procedure. The reason for this 

elimination was because examination of the construction plans showed that lane 

closures are less likely to be placed on curved highway sections, while sections of 

highway with higher traffic volume (AADT) are more prone to higher risk for work 

zone collisions.  

Based on the variable-selection results, Injury (response) along with Iowa 

weave, AADT, Intersecting Street, and Rain Snow Weather (predictors) were 

identified as the most significant variables for the first logistic model. Table 15 shows 

the results of the first model described. As shown in this table, two different pseudo 

R2 (goodness of fit of a model) were obtained through the logistic model: Cox and 

Snell, and Nagelkerke. The Cox and Snell R2 are generally interpreted in multiple 

regressions. This R2 is based on the “log likelihood for the model compared to the log 

likelihood for a baseline model (21).” Due to the categorical outcomes, Cox and Snell 

R2 is considered as a conservative coefficient of determination as compared to its 

adjusted version, Nagelkerke R2, as even a perfect model will not reach the 

theoretical maximum value of 1. For the purpose of this research, Nagelkerke R2 was 

used as a measure to estimate the goodness of fit of the model on a scale of 0 to 1. 

Table 15 shows the results of the Nagelkerke R2 described. Whereas for the 

classification table (model accuracy), this function analyzes how well the model 

correctly classifies the subjects where the predicted event was observed. Alternatively 

stated, the table shows the percentage of occurrences and non-occurrences correctly 

predicted. Table 16 shows the results of the classification for the first binary model.   
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Table 15 Classifications and R2 for the Selected Binary Models 

No. Variable Pr>χ2 

(df) 

Nagelkerke 
(Cox & Snell) 

R2 

Model 
Accuracy 

Model 
Coeff.,

B 
Sig. 

Odds 
Ratio, 
Exp(B) 

Ia_wve (1) -0.298 0.747 0.742 
AADT_K 0.180 0.051 1.197 
Int_St (1) 1.313 0.271 3.717 

RnSnw_Wther(1) 20.769 0.999 1E+009 
1 

Constant 

0.001a 
(4) 

0.464b  

(0.331) 72.7% 

-26.999 0.998 0.00 
Ia_wve (1) -0.299 0.745 0.742 
AADT_K 0.183 0.057 1.201 

RnSnw_Wther(1) 20.648 0.999 9E+008 
Daylight (1) 0.225 0.829 1.252 

2 

Constant 

0.003 
(4) 

0.434 
(0.310) 75% 

-25.925 0.998 0.00 
Ia_wve (1) 0.806 0.329 2.240 
AADT_K 0.197 0.036 1.217 
Int_St (1) 1.287 0.275 3.623 

Daylight (1) 0.381 0.698 1.463 
3 

Constant 

0.015 
(4) 

0.341 
(0.244) 77.3%c 

-7.866 0.007 0.000 
a Most significant model (Probability > Chi-square) 
b Highest Cox & Snell and Nagelkerke R2 
c Highest classification table 

 
Table 16 Outcome for the First Binary Model ( Model Accuracy) 

 Predicted 
Injury No = 0 Yes = 1 Total Percentage 

correct 
No = 0 26 4 30 86.7 Observed Yes = 1 8 6 14 42.9 

Total 34 10 44 72.7 
Model Accuracy = (26+6) x 100/44 = 72.7% 

 
As observed in Table 15, a Nagelkerke R2 and classification percentage of 

0.464 and 72.7 were obtained through the first binary model. The results were 

considered somewhat satisfactory considering that there were many other variations 

in work zone crashes (47) during the IRP. However, the results of this first model 

showed that the model coefficient and odds ratio of variable, Rain Snow Weather 

were unusually high. Scrutiny of the data and the variable-selection procedure found 

that the strong correlation between variables, Iowa weave and Rain Snow Weather 

(Pearson chi-square, p-value = 0.001) may be the contributing factor to this 
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phenomenon. Circumstantial observation of the construction diaries showed that the 

lane closures may be temporarily removed during these adverse weathers in order to 

encourage safe driving. In other words, there is an interaction term between these two 

variables that should to be weighted correctly whenever the Iowa weave and Rain 

Snow Weather are included in the model. In order to verify this error, a second model 

was generated by replacing the variable, Intersecting Street with Daylight. The 

Nagelkerke R2 for this second model was reduced to 0.434 but the overall 

classification percentage was found increase to 75 percent. Similarly, the model 

coefficient and odds ratio for Rain Snow Weather were found to be unusually high, 

validating the speculated error in this independent variable.  

In an effort to locate the best model, a third model was generated by replacing 

the variable Rain Snow Weather with Intersecting Street, and keeping the variable 

Daylight in the model. The results showed that Nagelkerke R2 was reduced further to 

0.341, but the classification percentage increased to a new high of 77.3 percent. 

Consequently, the third model is deemed to be the most accurate as all of the 

independent variables except for traffic volume (AADT_K) in these three models 

were identical; i.e. not statistically significant even though the Nagelkerke R2 in the 

first model was found to be the highest. Table 15 shows the results of the three binary 

models described. 

Logit equations for all three models can be written by using the parameter 

estimates from Table 15, as follows: 
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Logit P1 = -26.999 - 0.298 (Ia_wve) + 0.180 (AADT_K) + 1.313 (Int_St) + 20.769 

(RnSnw_Wther) 

Logit P2 = -25.925 – 0.299 (Ia_wve) + 0.183 (AADT_K) + 20.648 (RnSnw_Wther) + 

0.225 (Daylight)  

Logit P3 = -7.866 + 0.806 (Ia_wve) + 0.197 (AADT_K) + 1.287 (Int_St) + 0.381 

(Daylight) 

4.4.2 Model Coefficient and Odds Ratios 
 

The results of the correlation for lane closure setups involved in fatal and 

injury crashes are presented in Table 17. The parameter estimates model summarized 

the effect of each predictor (Ia_wve, AADT_K, Int_St, and Daylight). The effect of 

variables is determined by the likelihood indicators (positive or negative sign) in the 

model coefficients. Parameters with positive coefficients indicate the increase 

likelihood of default variable (or binary coded with 1), while the negative coefficients 

in the parameters denote the decrease in likelihood (21). For instance, Ia_wve (or the 

Iowa weave) was coded as one of the default variables, the model coefficient (0.806) 

obtained denotes the increase in likelihood of this default variable.  

Odds ratio is used to measure the effect of significant predictors on the 

response variable. In essence, odds ratio quantifies the likelihood of an outcome being 

increased if the value of independent variable is subjected to a unit increase (21). For 

example, the relative effect of the Iowa weave versus the conventional right-lane 

closure setup is exp (0.806) = 2.240. If significant, the odds ratio would indicate that 
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the odds of a crash in an Iowa weave setup being severe (injury or fatal crash) are 

2.24 times higher than the odds of a crash being severe in a conventional right-lane 

closure setting. However, because in this case the parameter was not significant, there 

is no evidence that the odds of a crash being severe are different based on both of the 

lane closure setups.  

 
Table 17 Parameter Estimates: Model Coefficients and Odds Ratios 

95.0% C.I. for 
Odds Ratio  

Model 
Coeff.  

B 

Estimated 
Standard 

Errors 
df Sig. 

Odds 
Ratio 

Exp(B) Lower Upper 
Ia_wve (1) 0.806 0.826 1 0.329 2.240 0.444 11.304 
AADT_K 0.197 0.094 1 0.036* 1.217 1.013 1.463 
Daylight (1) 0.381 0.982 1 0.698 1.463 0.214 10.023 
Int_St (1) 1.287 1.180 1 0.275 3.623 0.358 36.610 
Constant -7.866 2.932 1 0.007* 0.000 -- -- 

Dependent variable: injury crashes 
-2 Log likelihood = 42.751 
Cox & Snell R Square = 0.244 
Nagelkerke R Square = 0.341 
Probability > Chi-square = 0.015 
*Significant coefficient at α = 0.05 

4.4.3 Results of the Logistic Models 
 

Interpretation of the final binary model in Table 17 shows that the likelihood 

ratio test (Probability > Chi-square) has a p-value of 0.015 (4 degree of freedom), which 

indicates that the null hypothesis is rejected or significant information is provided by 

the variables. Thus, it can be concluded that the predictor variables in the model 

affect work zone crashes where lane closures (Iowa weave or conventional right-lane 

closure) were in place. Nonetheless, all of the predictors or independent variables in 

this model except for traffic volumes (AADT_K, p-value = 0.036) were not 

statistically significant at the 0.05 level of significance. The positive coefficient 
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shown in variable AADT_K indicates those high traffic volumes increase the 

probability of having severe crash. The odds ratio of this variable shows that the odds 

of a crash in high traffic volume being severe (injury or fatal) are 1.217 times higher 

than the odds of a crash being severe in low traffic volume. Nonetheless, this 

likelihood may not be present only in work zones as non-work zone locations are 

equally likely of having severe crash in high traffic volume condition.    

The result of the Iowa weave found in this model echoed the finding in the 

Pearson Chi-square test, which showed that the correlation between fatal or injury 

crashes, and the Iowa weave was not statistically significant. Similarly, the results of 

this final model showed that Daylight and Intersecting Street were not statistically 

correlated to fatal or injury crashes. Since the variable Intersecting street (p-value = 

0.275) was the second highest significant predictor, it was desirable to discuss the 

model coefficient and odds ratio of this predictor even though it was not significant at 

the 0.05 level. If significant, the positive coefficient of the variable Intersecting Street 

would indicate that intersecting streets increase the probability of having severe crash. 

The odds ratio of this variable would show that the odds of a crash at intersecting 

streets being severe (injury or fatal) are 3.623 times higher than the odds of a crash 

being severe at non-intersecting streets.  The intersecting streets included in the 

model can be either an on ramp or an off ramp. The interpretations of these 

intersecting streets were based on the best judgment of law enforcement officers who 

complete the crash report.  



 84

On the basis of the results of the binary logistic regression analysis for lane 

closure strategies (Iowa weave and conventional right-lane closure), the selected 

model format with the estimated coefficients would be: 

Logit Pi = -7.866 + 0.197 (AADT_K) 

4.4.4 Model Estimation 
 

Due to the nature of work zone crashes, the final binary model was not 

validated. As aforementioned, only 44 out of the total of 28,834 crashes between 

January 1, 2000 and December 31, 2005 were found to be within the study area. 

These low number of work zone crashes were limited, and thus the additional model 

was not validated. In addition, the non-existence of a prior model on the subject 

matter was another reason that made the validation task more difficult.     

As a precautionary measure, the selected model was estimated by using the 

XLSTAT, statistical software for MS Excel. Table 18 through 21 shows the results of 

this model estimation procedure. As shown in Table 18, the -2 Log likelihood, Cox 

and Snell R2, and Nagelkerke R2 were identical to the values obtained in the SPSS 

statistical package: 42.751, 0.244 and 0.341. Consequently, it can be concluded that 

the final model generated through the SPSS statistical package was accurately 

executed without any errors.  
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Table 18 Goodness-of-Fit Statistics Using XLSTAT 
Statistic Independent Full 

Observations 44 44 
Sum of weights 44.000 44.000 

Degree of freedom 43 39 
-2 Log(Likelihood) 55.043 42.751 

R²(McFadden) 0.000 0.223 
R²(Cox and Snell) 0.000 0.244 

R²(Nagelkerke) 0.000 0.341 
AIC 59.043 52.751 
SBC 62.612 61.672 

Iterations 0 6 
 

Table 19 Test of the Null Hypothesis Using XLSTAT 
Statistic DF Chi-square Pr > Chi² 

-2 Log(Likelihood) 4 12.292 0.015 
Score 4 10.649 0.031 
Wald 4 6.164 0.187 

 
Table 20 Model Parameters Using XLSTAT 

Source Value Standard 
error 

Pr > 
Chi² 

Wald 
Lower 
bound 
(95%) 

Wald 
Upper 
bound 
(95%) 

Intercept -5.392 2.571 0.036 -10.430 -0.354 
Ia_wve -0.806 0.826 0.329 -2.425 0.813 

AADT_K 0.197 0.094 0.036 0.013 0.381 
Int_St -1.287 1.180 0.275 -3.600 1.026 

Daylight -0.381 0.982 0.698 -2.305 1.544 
 

Table 21 Classification Table for the Estimation Sample Using XLSTAT 
from \ to No = 0 Yes = 1 Total % correct 
No = 0 29 1 30 96.67% 
Yes = 1 9 5 14 35.71% 

Total 38 6 44 77.27% 
 

4.5 Chapter Conclusion 
 

In this chapter, a series of tests including the binary logistic regression 

modeling were evaluated to determine the correlation between lane closure setups 

(Iowa weave and conventional right-lane closure) and crashes with a set of 
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independent variables. The evaluation was intended to provide valuable information 

for determining the lane closure setup that has an advantage on the basis of work zone 

crashes.  Based on the results of the logistic regression analyses, all of the 

independent variables except for traffic volume were not statistically significant at the 

α = 0.05 level of significance. Nonetheless, the results found that traffic volume had a 

significant effect on the probability of a crash being a fatal or injury crash. It was 

found that the odds of a crash in high traffic volume being severe (injury or fatal) are 

1.217 times higher than the odds of a crash being severe in low traffic volume.  

Although the results of the regression model were not significant, the 

examination of crash rates for both of the lane closure settings provided important 

information regarding the comparison between the two setups. The results of this 

examination showed that the Iowa weave setup as opposed to the conventional setting 

had an approximately 30 percent lower chance of being involved in a work zone crash 

at the 0.05 level of significance. 
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Chapter 5: Summary and Conclusion 

5.1 Conclusion 
 

Lane closures serve as an important traffic control device to protect 

construction workers while they are actively working in a work zone. The adoption of 

the Iowa weave by DOTs has shown that this weave pattern is effective in speeding 

up the construction progress but, most importantly, safe for drivers to maneuver 

through the work zones. The idea to switch between the two lane closures setups on a 

periodic basis was observed to be a concern especially when there are non-local 

drivers that drive past the Iowa weave on Interstate highways. Prior studies (3-5) on 

the Iowa weave each reiterated that this weave pattern is safe and effective. 

Nonetheless, actual crash experience is the best way to determine the safety 

deficiencies and causal effects of this weave pattern as opposed to the conventional 

right-lane closure. This study was aimed at obtaining valuable insights regarding the 

advantages of the Iowa weave as opposed to the conventional right-lane closure on 

the basis of actual crash experience. 

Based on the results of the crash analysis, conclusions were drawn and are 

presented as follows: 

 

• The result of the paired t-test (p-value = 0.036) was statistically 

significant at the 0.05 level of significance, which indicates that there 
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was approximately 30 percent reduction in crash rate when the Iowa 

weave configuration was used. 

• Based on the final results of the logistic regression model, the safety 

advantages between the Iowa weave and conventional right-lane 

closure in changing crash severity were not significant (p-value = 

0.329).  

• Traffic volume was found to be the parameter that most significantly 

affected crash severity in the logistic regression model.  

• The odds ratio of traffic volume (AADT_K) shows that the odds of a 

crash in high traffic volume being severe (injury or fatal) are 1.217 

times higher than the odds of a crash being severe in low traffic 

volume. However, this likelihood may not be present only in work 

zones as non-work zone locations are equally likely of having severe 

crash in high traffic volume condition.    

• The effect of lighting conditions and intersecting streets on the severity 

of crashes were not significant. 

 

Based on the results of the One-Way ANOVA test, curved alignment and 

traffic volume for the selected work zones in Arkansas may be related in some way. 

Nonetheless, further investigation is needed to examine the interaction as the 

determination of curved alignment was based on the judgment of police officers that 

recorded it. The results of the t-test showed that the difference between the average 
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crash rates was statistically significant at the 0.05 level of significance, given the 

alternative hypothesis that the Iowa weave has fewer injuries than the conventional 

setting (5). Since the p-value indicates that there is no difference, it can be concluded 

that the results showed evidence that there was approximately 30 percent reduction in 

crash rate when the Iowa weave configuration was used.  

5.2 Future Work 
 

As in any research, more questions were raised than answered. Though 

substantial research has been presented in this study, there is still more that can be 

done to investigate the Iowa weave and all related variables. In continuing the 

research, it will be helpful to collect field data of the stabilizing zone and weave 

section of an Iowa weave in order to examine the driving behaviors and capacity. 

This measure is a positive step towards obtaining the real-time driving conditions of 

drivers that were not reported in the crash report. Additionally, the crash comparison 

between the Iowa weave and conventional left-hand closure can be explored in order 

to better understand the relationship. Future research may also focus on simulation 

study of TLTWO, Iowa weave and conventional right-lane closure as observations of 

the construction plans and diaries showed that there may be two pairs of active 

median crossovers on both ends of construction projects.         
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Appendices 

Appendix A: Construction Diary Sample  
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Appendix B: Pearson Chi-Square Tests 
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Appendix C: One-Way ANOVA Test 
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Appendix D: Goodness-of-Fit Test (Pearson Chi-Square) 
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Appendix E: Paired t-Test 
 

Project Conventional Iowa Weave 
B30100 0.2048 0 
B10107 1.1947 0.5974 
BX0102 0.2038 0.1359 
B80103 0.0893 0.0893 
BX0101 0.2819 0.2819 
B60106 0.2471 0.2059 
B80108 0.2293 0.0573 
B10104 0.317 0 
B40105 0.0877 0.1753 
BX0100 0 0 

   
t-Test: Paired Two Sample for Means 

   

  Conventional Iowa Weave 
Mean 0.28556 0.1543 

Variance 0.11162 0.03346 
Observations 10 10 

Pearson Correlation 0.85022 
Hypothesized Mean 

Difference 0 
df 9 

t Stat 2.04586 

P(T<=t) one-tail 0.03554 
t Critical one-tail 1.83311 
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Appendix F: Logistic Regression Model – First Model 
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Appendix G: Logistic Regression Model – Second Model 
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Appendix H: Logistic Regression Model – Third Model (Final) 
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