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Targeted drug delivery to leukocytes with ICAM-1 derived peptides 

 

Sumit Majumdar 

The University of Kansas, 2008 

 

Intercellular adhesion molecule-1 (ICAM-1) derived cyclic peptide cIBR 

[cyclo(1,12)PenPRGGSVLVTGC] showed high affinity for leukocyte function 

associated antigen-1 (LFA-1) receptor and was internalized into the MOLT-3 T-cells. 

Therefore, the objective of the dissertation was to explore the possibility of 

selectively delivering drugs to leukocytes using ICAM-1 derived peptides. 

Fluorescein isothiocyanate conjugated cIBR (FITC-cIBR) and doxorubicin 

conjugated cIBR (DOX-cIBR) entered the HL-60 cells by receptor mediated 

endocytosis and passive diffusion, respectively.  High hydrophobicity of DOX-cIBR 

was proposed to be responsible for its energy-independent entry (chapter 2). To check 

the effect of hydrophobicity on internalization, two relatively more hydrophilic cIBR-

derived peptides were conjugated to DOX. However, both the DOX-peptide 

conjugates were internalized passively (chapter 3). Degradation mechanism of 

methotrexate conjugate of cIBR (MTX-cIBR) was studied and suitable formulation 

conditions were developed. Stability of MTX-cIBR was assessed with in vitro 

biological matrices to determine optimum dosing regimen for in vivo studies (chapter 

4). 
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1.1 Introduction 
 
 

Targeted drug delivery methods to improve drug efficacy and lower side effects 

by directing the drug to a specific cell type have been explored. To date, many 

strategies have been investigated to accomplish this goal, and some of these strategies 

rely on the differences between the cellular compositions of the targeted cells and 

those of the non-targeted cells. These differences could be in the expressed surface 

receptors (i.e., the absence or presence of certain receptors), the metabolism profiles 

(i.e., different enzyme expression or intracellular trafficking), the site/location of the 

cells (i.e., circulating in blood stream vs. organ), and the nature of the cells (i.e., 

normal vs. cancerous). For example, tumor cells have certain upregulated receptors, 

enzymes, and other metabolic features that are not present in normal cells in the body. 

These differences can be used to discriminate the delivery of a drug to diseased cells 

rather than to normal cells. Furthermore, the differences in cellular trafficking profiles 

and the pH of endosomes between normal and cancer cells have also been exploited 

for selective drug delivery to a specific compartment in the intracellular space of 

cancer vs. normal cells.1  

Peptides (e.g., Arg-Gly-Asp (RGD) peptides,2 poly-Arg peptides,3,4 proteins (e.g., 

antibodies,5 transport proteins, and transferrin6), and small molecules (e.g., folate7) 

have been used to selectively direct drugs to cancer cells with upregulated receptors 

by forming drug-carrier conjugates (Figure 1.1). However, none of the drug-peptide  



 3

 

Figure 1.1 The structure of a drug-linker-peptide conjugate. X and Y represent the 
common functional groups used to connect either the drug or the peptide to the linker. 
X may be similar to or different than Y. Here, the primary focus is on the nature of 
the X bond, and the drug peptide conjugation chemistry has been classified according 
to the nature of the X bond: i) amide, ii) thioether, iii) carbamate ester, iv) carboxylic 
acid ester, and v) hydrazone bond. 
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conjugates has successfully reached the market; this may be due to various factors, 

including (a) the difficulty in developing the appropriate ligand for the targeted 

receptor(s) on the cell surface, (b) the lack of understanding of the receptor recycling 

and trafficking mechanisms, (c) insufficient information on the mechanisms of uptake 

and disposition of the ligand inside the cells, (d) a lack of understanding of the 

pharmacokinetic and pharmacodynamic profiles of the drug-peptide conjugate, and 

(e) the limited number of systematic studies on the relationships between the 

physicochemical and transport properties of the conjugates. Thus, there is a need to 

study these aspects of the drug-peptide conjugates to increase the probability of 

success of these molecules in clinical settings. Ideally, conjugation of the drug to the 

targeting peptide should not interfere with the recognition of the peptide by its 

receptor(s). In addition, the pharmacologic or cytotoxic property of the drug should 

be maintained when the drug is conjugated to the carrier molecules.  

This review illustrates the chemistry, biology, and utilization of small drug-

peptide conjugates for selectively delivering the drugs to a specific group of cells 

(Figure 1.1). The first section discusses the attributes of an ideal peptide carrier and 

the drug. Emphasis will be placed on cyclic peptides and their possible conjugation 

sites. The second section explores the chemistry behind the drug-peptide conjugation 

via different types of chemical bonds, including carboxylic acid ester, amide, 

carbamate ester, hydrazone, and enzymatically-cleavable bonds. The presence of a 

spacer between the drug and the peptide carrier may be necessary to ensure 

recognition of the carrier by the receptor. The third section focuses on the families of 
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peptides that have been conjugated to drugs and their evaluation in in vitro and in 

vivo biological systems. 

Drug-peptide conjugates are most often administered via the parenteral route 

because they cannot be efficiently delivered orally. The physicochemical properties 

of peptides (i.e., size, hydrophilicity, and hydrogen-bonding potential) make it 

difficult for them to cross the intestinal mucosal barriers. In addition, proteases on the 

surface of intestinal mucosa brush border membranes rapidly metabolize the peptide 

carrier into fragments. In parenteral delivery, the conjugates travel through the 

systemic circulation and are distributed to the small capillaries that carry them to the 

target cells. Upon peptide-receptor interaction, the conjugate can potentially undergo 

receptor-mediated endocytosis, in which the conjugate may move through the early 

and late endosomes and finally into the lysosome (Figure 1.2). The receptors are 

either separated from the conjugates in the early sorting endosomes or move to the 

lysosomes along with the conjugate. After separation from the conjugates, the 

receptors may be recycled onto the cell surface for the next round of transport. There 

is a significant drop in pH in the lysosome that may affect the binding between the 

conjugate and the receptor. It can also affect the linkage between the drug and the 

peptide (Figure 1.2). As an example, the transferrin receptors bind and carry the 

transferrin protein to transport iron into the cells and, after pH change in the 

endosomes, the transferrin releases iron and the receptor is recycled back to the cell 

surface.8 The mechanisms of receptor uptake can occur via clathrin coat-9 or 

caveolin-mediated endocytosis (i.e., CD11a/CD18).10  
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1.2 Drug-Peptide Conjugates 

1.2.1 Peptide Carrier 

There are several important requirements for using peptides as carrier molecules. 

First, the peptide should selectively bind to the cell surface receptors on the target 

cells. Second, the receptor should be expressed only on the target cells or the 

expression should be higher in the target cells than in the non-targeted cells. Third, 

the peptide carrier should be sufficiently stable in the systemic circulation to reach the 

target cells at an effective concentration. Fourth, selection of the site of conjugation 

on the peptide is critical for retaining its binding properties to the receptor because 

drug conjugation may impose a steric hindrance that interferes with receptor 

recognition. 

 Peptides as carriers may offer some advantages over proteins because peptides 

are relatively easy to modify for generating derivatives and to produce in large 

quantities. The drug-peptide conjugate is easier to analyze than a drug-protein 

conjugate. Due to the absence of tertiary structure in peptides, they often do not 

undergo physical degradation as do proteins. In addition, the number of drug 

molecules and their conjugation regioselectivity can be controlled; in contrast, it is 

difficult to control the number and regioselectivity of the conjugated drugs on a 

protein. Because the drugs are often conjugated to the side chains of reactive residues 

(e.g. Lys or Asp), the conjugates consist of a distribution of products with various 

numbers of drugs attached to various sites of individual protein molecules. Thus, the 

formation of the conjugates may be difficult to reproduce, and the resulting products 
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can also be difficult to analyze. In addition, peptide-drug conjugates may have lower 

immunogenicity than protein-drug conjugates.11 The immunogenicity of protein-drug 

conjugates may arise from the presence of non-native protein conformers or protein 

aggregates upon drug conjugation. 

 

1.2.1.1 Cyclic Peptides and Different Sites of Conjugation 

In many cases, cyclic peptides have higher selectivity for the receptor than do the 

parent linear peptides because cyclic peptides have more restricted conformations. 

However, it is still possible that the formation of the cyclic peptide may force the 

adoption of an unfavorable conformation for binding to the receptor. Cyclic peptides 

are prepared by three different cyclization methods: (1) backbone-to-backbone, (2) 

backbone-to-side chain, and (3) side chain-to-side chain (Figure 1.3). The backbone-

to-backbone cyclization is formed using an amide bond between the N- and C-termini 

(Conjugates 1 and 2). In this case, the side chain of Lys, Asp, or Glu is utilized as the 

conjugation point between the drug and the peptide (Conjugates 1 and 2). It is 

preferable that the amino acid for conjugation site should not be part of the receptor 

recognition sequence. The backbone-to-side chain cyclization is formed by 

connecting the N-terminus with the carboxylic acid side chain of Asp or Glu residue 

by an amide bond, and the drug is conjugated to the C-terminus of the peptide 

(Conjugate 3). Alternatively, the peptide C-terminus is linked to the side chain of the 

Lys residue, while the drug is conjugated to the N-terminus of the peptide (Conjugate 

4). Finally, the side chain-to-side chain cyclization can be formed by using an amide 
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Figure 1.3 (a) Conjugates 1 and 2: Cyclic peptides formed by backbone-to-backbone 
cyclization with side chains of Lys and Asp available for drug conjugation. (b) 
Conjugates 3 and 4: Cyclic peptides formed by backbone-to-side chain cyclization. 
N- and C- termini of the peptide can be conjugated to the Asp and Lys side chains, 
respectively. Free C- and N-termini can then be conjugated to the drug. (c) 
Conjugates 5 and 6: Cyclic peptides formed by side chain-to-side chain cyclization 
via amide bond. Side chains of Lys and Asp can be conjugated, and the free C- and 
N-termini can be used for drug conjugation. (d) Conjugates 7, 8, and 9: Cyclic 
peptides formed by side chain-to-side chain cyclization. Cysteine side chains can be 
conjugated via disulfide bond. Free N-terminal, C-terminal and free Cys present in 
the sequence can be used for drug conjugation. 
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bond or a disulfide bond. A peptide bond between the Asp side chain and the amino 

group of a Lys residue produces a cyclic peptide with an open C- or N-terminus that 

can be utilized  to conjugate the drug (Conjugates 5 and 6). A cyclic peptide is also 

made by linking the side chains of two Cys residues to make a disulfide bond and the 

drug is conjugated to either the N- (Conjugate 7) or C-terminus (Conjugate 8). A Cys 

residue can be inserted within the sequence of a cyclic peptide, and the thiol group of 

the Cys residue can be utilized for linking the drug to the peptide (Conjugate 9). 

 

1.2.2 Examples of Drug Molecules 

The drug molecules described here are classified as cytotoxic small molecules 

such as doxorubicin (DOX), methotrexate (MTX), and camptothecin (CPT). These 

molecules have side effects because they are taken up by both cancerous and normal 

cells. Due to the physicochemical properties of DOX and CPT, these drugs enter the 

cells via a passive diffusion mechanism by readily partitioning into the cell 

membranes. On the other hand, methotrexate (MTX) enters the cell using uptake 

transporters such as reduced folate carrier (RFC) and membrane folate binding 

protein (MFBP).12 The selectivity of MTX for cancer cells over normal cells occurs 

because cancer cells have upregulated expression of MFBP. Nonetheless, MTX can 

still be internalized by normal cells to produce side effects. Thus, conjugation of any 

of these drugs (i.e., DOX, CPT, or MTX) to a peptide carrier may direct them to a 

specific population of cells and lower the drug side effects. As in peptides, the site of 

conjugation on the drug molecule is an important consideration for maintaining the 
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drug activity. If the conjugation has to be done at the active functional group, a 

cleavable prodrug moiety may be used to link the drug to the peptide so that the free 

drug can be released from the carrier. One potential drawback of using a labile linker 

is that the drug may be released prematurely before reaching the target cells. 

 

1.2.2.1 Doxorubicin (DOX) 

DOX is widely used as a model drug for conjugation to different carriers such as 

peptides, antibodies,13,14 polymers,15,16 proteins,17,18 and polymer beads.19 The 

primary mechanism of action of DOX is DNA-intercalation and inhibition of 

topoisomerase II during DNA synthesis.20 DOX can also exert cell toxicity through 

the generation of hydrogen peroxide, which damages the membranes of 

mitochondria.21 For its activity as a DNA intercalator, it is necessary for the DOX 

molecule to enter the nucleus; ideally, the targeting system should carry the drug into 

the nucleus. However, conjugation of DOX to the carrier peptide may prevent DOX 

from entering the nucleus.22 To overcome this problem, DOX has been conjugated to 

the carrier through a cleavable linker, which allows the drug to be released from the 

conjugate.  

Several functional groups on the DOX molecule have been used for conjugation 

to the carrier molecules. The primary amine of the sugar moiety can be directly linked 

to a carboxylic acid group of the C-terminal or the Asp side chain on the peptide 

carrier. To provide a spacer between the DOX and the peptide carrier, the amino 

group is reacted with succinic or glutaric anhydride to give a product with a free 
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carboxylic acid group, which can be linked to a free amino group on the peptide. The 

primary alcohol at the C14 of DOX has been linked to a carboxylic acid group on the 

carrier molecule via an ester bond. The C13 ketone group on DOX is also reacted to 

hydrazine to form a hydrazone spacer that is linked to the peptide carrier.   

 

1.2.2.2 Methotrexate (MTX) 

Many studies have been done to conjugate MTX to different carriers for 

improving its delivery and efficacy. This drug is used for the treatment of rheumatoid 

arthritis and several different carcinomas, including acute lymphocytic leukemia, 

lymphomas, and choriocarcinoma. The effectiveness of this drug depends on the 

efficiency of the active transporters on the target cell. One of the mechanisms of 

action of MTX is inhibition of the activity of dihydrofolate reductase (DHFR) 

enzyme that subsequently blocks thymidine synthase for DNA synthesis. In addition, 

the MTX is trapped inside the cell by forming MTX polyglutamate adducts. In many 

cases of cancer therapy, MTX therapy is ineffective at low doses; at high doses this 

drug is effective but generates side effects due to its cytotoxicity to normal cells.  

Targeting of MTX using antibodies and peptides has been explored to increase its 

effectiveness.23 The MTX molecule is conjugated to the carrier molecule through the 

γ-carboxylic acid group of the glutamic acid residue to maintain its activity.24 The α-

carboxylic acid of MTX is necessary for binding to DHFR; thus, conjugation via the 

α-carboxylic acid is not desirable. To conjugate MTX to the carrier molecule, the α-

carboxylic acid of the Glu residue is protected to give MTX-α-OtBu. After coupling 
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of the γ-carboxylic acid with the N-terminal of the peptide carrier, the tertiary-butyl 

protecting group can be removed to give the desired conjugate. 24  

 

1.3 Chemistry of Drug-Peptide Conjugation 

Different approaches have been used to conjugate carrier peptides to cytotoxic 

drugs. The chemistry of conjugation has a profound impact on the stability of the 

conjugate. Each functional group to link the peptide and the drug has both advantages 

and disadvantages. Thus, this section explores common conjugation methods that 

have been used to make drug-peptide conjugates. The chemical bonds between the 

drug and the spacer will be discussed. The same chemical bonds are normally used to 

link the spacer and the peptide carrier or to link the drug directly to the peptide 

without a spacer. 

 

1.3.1 Amide Bond 

Drug-peptide conjugation via an amide bond is carried out by linking the 

carboxylic acid of the drug and primary amine of the spacer/peptide. The chemistry of 

the amide bond formation is straightforward, and the bond has relatively high 

chemical stability. Because the enzymatic cleavage of the amide bond between the 

drug and the peptide may be slow, there is a high probability that the conjugate will 

reach the target site with minor degradation. In this case, the drug portion of the 

conjugate may be active while it is attached to the peptide carrier. If the drug is 

attached through a functional group that is necessary for its activity, a cleavable 
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promoiety can be incorporated between the drug and the peptide, by which the drug 

can be released from the carrier peptide by pH change or enzymatic reaction (i.e., 

esterase). For amide bond formation, the carboxylic acid on the spacer, peptide, or the 

drug can be activated with O-benzotriazole-N,N,N΄,N΄-tetramethyl-uronium-

hexafluoro-phosphate (HBTU) or a mixture of 1-ethyl-3-(3-dimethylaminopropyl) 

carbodiimide hydrochloride (EDC) and  N-hydroxybenzotriazole (HOBT). The 

activated carboxylic acid is then reacted with an amine group of the counterpart (i.e., 

drug or peptide) in the presence of strong base (i.e., diisopropylethylamine or 

triethylamine) in different solvents, including dimethylformamide (DMF) or 

dimethylsulfoxide (DMSO) to give the desired conjugate. 

DOX has been conjugated to different peptides, including cIBR 

[cyclo(1,12)PenPRGGSVLVTGC],25 human calcitonin (hCT)-derived peptides,26 and 

Vectocell peptides using an amide bond.27 For conjugation to cIBR peptide, the DOX 

was modified to DOX-hemisuccinate by reacting the amino group of DOX with 

succinic anhydride to generate free carboxylic acid (Figure 1.4, pathway a). The free 

carboxylic acid of DOX-hemisuccinate was activated and reacted with the N-terminus 

of cIBR peptide to produce DOX-cIBR conjugate. The in-vitro stability of DOX-

cIBR in human promyelocytic HL-60 cells showed that DOX-cIBR conjugate was 

stable; only 15% degradation was observed over a 24-h period, indicating the high 

stability of the amide conjugation method.25 DOX was also conjugated to human 

calcitonin (hCT(9–32); CLGTYTQDFNKFHTFPQTAIGVGAP-NH2) through a  
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maleimido-benzoic acid spacer. The amino group of DOX formed an amide bond 

with the carboxyl group of the maleimido-benzoic acid spacer. Then, nucleophilic 

attack of the double bond of the maleimide group by the thiol of the Cys1 residue on 

hCT(9–32) peptide produced the desired conjugate.26 A similar approach was used for 

conjugation of DOX to Vectocell peptides (i.e., CVKRGLKLRHVRPRVTRMDV 

and SRRARRSPRHLGSGC) by amide bond formation with the carboxylic acid 

group of maleimidobutyric acid.27  

 

1.3.2 Carboxylic Acid Ester Bond 

The ester linkage is commonly used to conjugate drug to peptide because it can be 

hydrolyzed chemically or enzymatically (i.e., esterase) to release the drug. However, 

due to the instability of the ester bond, the drug may be released before reaching the 

target tissues. Different analogs of luteinizing hormone-releasing hormone (LHRH) 

peptide were conjugated via an ester bond to various cytotoxic agents, including 

DOX and its derivatives. To conjugate DOX to LHRH peptide (Glp-HWSYkLRPG-

NH2), C14 of DOX was modified with glutaric ester and the other carboxylic acid of 

the glutarate was linked to the side-chain amino group of D-Lys on LHRH peptide to 

give DOX-LHRH conjugate (Figure 1.4, pathway b).28,29 The DOX-LHRH was quite 

stable in biological media and retained the cytotoxic property of DOX while 

maintaining its binding affinity to pituitary LHRH receptors.30,31 The C14 position of 

DOX was also conjugated via a glutaric acid spacer to the cyclic peptide CNGRC 

using an ester bond to target the aminopeptidase N/CD13 receptor on the cell 
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surface.28 In this case, the stability of DOX-CNGRC conjugate was dependent on the 

incubation matrix, which suggests that the DOX might be released before reaching 

the target tissue.32 Thus, it is necessary to evaluate the stability of the ester drug-

peptide conjugate in different biological matrices to ensure that the conjugate will 

reach the target tissue before releasing the drug component. 

 

1.3.3 Hydrazone Bond 

A hydrazone linkage can be utilized as an acid-labile bond for releasing the drug 

molecule from the conjugate upon a decrease in pH in tumor extracellular 

environments and in the lysosomes. Daunorubicin (DNR) and DOX with a ketone 

functional group at C-13 were derivatized with hydrazine maleimido spacers (i.e., m-

maleimidobenzoic acid hydrazine or p-maleimidophenylacetic acid hydrazine) to give 

hydrazide intermediates (Figure 1.4 pathway c). These maleimide intermediates were 

reacted with the thiol group of the Cys residue in neuropeptide Y 

(YPSKPDNPGEDAPACDLARYYSALRHYINLITRQRY-NH2 or NPY) to give the 

respective conjugates.33 The presence of an aromatic ring on the spacer provided the 

possibility to regulate the stability of the hydrazone bond.33 This hydrazone linker 

released less than 10% of the free drug at pH 7.4 compared to 35–40% at pH 5.0 over 

a 24-h period. In contrast, the amide bond linkage showed very little drug released at 

either pH value.34 Using the hydrazide bond, DOX was also conjugated to thermally 

responsive elastin-like-polypeptide (ELP) in an effort to utilize the enhanced 
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permeability and retention (EPR) effect;35 the optimum release kinetics were 

controlled by changing the length and hydrophobicity of the spacer.36 

 

1.3.4 Enzymatically Cleavable Bond  

For enzymatic release of the drug, a specific peptide sequence may be utilized as 

a cleavable spacer between the drug and the carrier. One of the most widely used 

spacer sequences is a specific peptide substrate for the prostate-specific-antigen 

(PSA), a serine protease enzyme that is expressed at high levels by prostate tumors.37 

PSA is known to mediate hydrolysis of semenogelin-I with high specificity by 

cleaving the peptide bond between Gln349 and Ser350.38-40 After mutation studies, 

several peptide sequences were specifically cleaved by PSA at the Gln-Ser or Gln-

Leu peptide bond; thus, two peptide spacers (Glutaryl-Hyp-Ala-Ser-Chg-Gln-Ser-

Leu-OH40  and Mu-His-Ser-Ser-Lys-Leu-Gln41) were used to link between DOX and 

the carrier peptide (Figure 1.5, pathways a and b). These conjugates were highly toxic 

due to the release of Leu-DOX and DOX (Figure 1.5, pathways a and b).40,41  Leu-

DOX had cytotoxicity against cancer cell lines with fewer side effects such as cardiac 

toxicity.42 It is noted that the direct conjugation of the amino group of DOX to Gln 

carboxylic acid (i.e., without the Ser or Lue residue at the C-terminal) failed to 

release free DOX by hydrolysis. It was also suggested that the presence of the carrier 

peptide might affect the specificity of the spacer for the proteolytic enzymes.  
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1.3.5 Thioether Bond 

The thioether bond is chemically stable like the amide bond and, as a result, the 

release of free drug is impeded by this conjugation process. Peptides containing a free 

thiol group such as Vectocell peptides (i.e., CVKRGLKLRHVRPRVTRMDV and 

SRRARRSPRHLGSGC) have been conjugated with drugs using a thioether linkage 

because these peptides are translocated across the cell membranes in an energy-

dependent manner. Vectocell peptides were conjugated to DNR through nucleophilic 

displacement of the halogen on DNR to make a thioether link (Figure 1.5, pathway c). 

These conjugates have been found to be significantly less cytotoxic than the free 

drug.27 This may be due to several factors. First, the presence of the peptide carrier 

may prevent the recognition of DOX. Second, the DOX-Vectocell bond is very 

stable; therefore, DOX cannot be released from the carrier. It is also possible that the 

peptide cannot be effectively digested in the lysosomes to release all the delivered 

DOX. Third, although the DOX is structurally exposed for activity, the intact 

conjugate may not be able to enter the nucleus.  

A thioether bond was used to conjugate oligodeoxynucleotides (ODNs) to peptide 

carriers to improve their cellular uptake. In this case, 5΄-thiol-derivatized 

phosphorothioate-ODNs against the protooncogene bcl-2 was conjugated to a cyclic 

somatostatin analog with a maleimide group at the N-terminus (maleimide-

cyclo(2,7)-fCYwKTCT)) to form the thioether conjugate.43 A thioether linkage was 

used to conjugate hydroxymethylacylfulvene (HMAF), an alkylating antitumor agent, 

to a cysteine-containing peptide (Figure 1.6a). Through a thiol-displacement reaction,  
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HMAF was first conjugated to N-acetylcysteine, and then the carboxylic acid of the 

N-acetylcysteine was activated and reacted with the N-terminus of the carrier peptide 

for targeting tumor cells.44  

 

1.3.6 Carbamate Ester Bond 

 A carbamate bond has higher stability in plasma than an ester bond, providing a 

higher probability of the conjugate reaching the target site.45 Camptothecin (CPT), 

and combretastatin (CBT) were conjugated to somatostatin analog peptides using a 

carbamate bond between the drug and the spacer (Figure 1.6b for CPT).46 The spacer 

contained a methyl-aminoethyl moiety that was attached to the carbamate nitrogen as 

a “built-in-nucleophile assisted releasing” (BINAR) moiety, which acted as a 

nucleophile to release CPT.  This secondary amine of the BINAR moiety attacked the 

carbonyl carbon of the carbamate group to form a five-membered ring urea on the 

spacer; this was followed by the release the drug into the medium. In this case, the 

pKa value of the hydroxyl group of the drug influenced the rate of drug release from 

this conjugate. For example, CBT conjugate was highly unstable compared to CPT 

conjugate due to the pKa of the alcohol in each drug. The CPT conjugate (Figure 

1.6b) was highly cytotoxic to the human neuroblastoma cell line IMR32 with a high 

expression of somatostatin receptor and the conjugate had half-lives about 123 h and 

18 h in phosphate buffer and rat serum, respectively. Modification of the length of the 

spacer influenced the stability of the conjugate. Although this approach has promise 
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for selective delivery with adjustable rate of release, it can only be used for drugs 

with a hydroxyl group.46,47  

 

1.4 In vitro and in vivo Biology of Drug-Peptide Conjugates 

1.4.1 Drug-Bombesin Analog Peptide Conjugates 

 Among the bombesin (BN) receptor subtypes, bombesin receptor type 2 (also 

known as gastrin-releasing peptide (GRP) receptor) may be the best choice for cancer 

cell targeted delivery because it is upregulated in breast, prostate, small cell lung, and 

pancreatic cancers48. Bombesin peptides have been conjugated to different drugs for 

targeting cancer cells. Receptor antagonist (RC-3095) and agonist (RC-3094) of 

bombesin receptors have been conjugated to DOX and 2-pyrrolino-DOX via a 

glutaric acid spacer (Figure 1.7 a,b). RC-3095 had higher binding affinity to the target 

receptor than RC-3094 on Swiss 3T3 cells; this is due to the presence of a 

hydrophobic D-Tpi residue on RC-3095 peptidomimetic. Conjugation of DOX or 2-

pyrrolino-DOX to the less hydrophobic RC-3094 increased the conjugate binding 

affinity to the receptor about 1000 times. In contrast, conjugation of DOX to the 

hydrophobic antagonist RC-3095 lowered its binding affinity to the receptor about 

two times. Nonetheless, DOX-RC-3095 conjugate preserved the DOX activity to 

inhibit cell growth of several human cancer cells, including human pancreatic cancer 

(CFPAC-1), human SCLC (DMS-53), human prostate cancer (PC-3), and the human 

gastric cancer cell line (MKN-45).49 The conjugate between RC-3094 and 2- 

pyrrolino-DOX showed significant antitumor activity with reduced toxicity in in vivo 
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hamster nitrosamine-induced pancreatic cancer.49 The conjugate activity could be 

inhibited by the parent peptide/peptidomimetic, suggesting that the conjugate bound 

to bombesin receptor. However, the selectivity of the conjugate for cells that express 

bombesin receptor over the cells that do not express the receptor has not been 

evaluated. This study suggests that peptide-drug conjugation may influence the 

receptor-binding properties of the conjugate.  

 

1.4.2 Drug- LHRH (GnRH) Analog Peptide Conjugates 

Overexpression of LHRH receptors in breast, ovarian, endometrial, and prostate 

cancers provides an excellent opportunity to target drugs to these cancer cells using 

LHRH peptides.50,51  Short LHRH peptides have been designed as receptor agonists 

and antagonists for releasing luteinizing hormone.52,53 DOX and 2-pyrrolino-DOX 

have also been conjugated to LHRH agonist and antagonist peptides for selectively 

targeting cancer cells (Figure 1.7c,d).28 The presence of D-Lys at position 6 in LHRH 

peptide was necessary for high receptor binding affinity and agonistic activity (Figure 

1.7c); on the other hand, the hydrophobic tripeptide sequence at the N-terminal region 

of LHRH was necessary for the antagonist activity (Figure 1.7d).52,53 Conjugation of 

DOX and 2-pyrrolino-DOX to the agonist maintained the binding affinity to the 

LHRH receptors. However, conjugation of the same drugs to the antagonist peptide 

lowered the binding affinity to the receptor about four fold, suggesting that the drug 

moiety might interfere with the recognition of the peptide by the receptor. 

Nonetheless, the ability of LHRH-DOX conjugate to inhibit cancer cell growth (i.e., 
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breast, prostate, mammary, and ovarian cancer cells) was comparable to that of the 

corresponding individual drugs.28 In vivo studies indicated that the drug-agonist 

conjugates are less toxic and more potent than the corresponding individual drugs 

(i.e., DOX and 2-pyrrolino-DOX); this may be due to the selectivity of the conjugate 

to target cancer cells.  

Polyethylene glycol (PEG; Mw ~5000) has been utilized to link LHRH peptides 

and camptothecin (CPT) to give CPT-PEG-LHRH for increasing conjugate solubility 

and retention in the systemic circulation.54 CPT-PEG-LHRH conjugate was prepared 

by reacting the side chain of the Lys residue of LHRH peptide with N-

hydroxysuccinimide-activated PEG containing vinylsulfone (NHS-PEG-VS) (Figure 

1.8). To conjugate the drug, CPT was converted to CPT-Cys, and the thiol group on 

the Cys residue was reacted to the vinylsulfone to form the desired conjugate (Figure 

1.8). The CPT-PEG-LHRH conjugate had a lower IC50 than the CPT-PEG conjugate 

without LHRH peptide against A7280 human ovarian carcinoma cells.54  

 

1.4.3 Drug-Somatostatin Analog Peptide Conjugates 

Somatostatin peptides (RC 121 and RC 160) were conjugated to DOX and 2-

pyrrolino-DOX at the C14 position via a glutaric acid spacer (Figure 1.9a,b). Through 

a series of substitution studies, it was established that the C- and N-termini residues 

are important for their binding affinity by stabilizing the peptide conformation. Both 

RC 121 and RC 160 peptides showed binding affinities to the somatostatin receptor 

on rat pituitary membrane homogenates in the nanomolar (below 2 nM) range.  
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Figure 1.8 Camptothecin (CPT) was conjugated to an LHRH analog peptide using a 
polyethylene glycol (PEG) linker. CPT was conjugated to Cys to generate CPT-Cys. 
LHRH analog peptide was separately conjugated to NHS-PEG-VS (VS: 
vinylsulfone). CPT-Cys was then conjugated to LHRH-PEG-VS using thioether 
linking strategy (ref 53). 
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However, conjugation to DOX lowered the binding affinity to the target receptors. 

The effect on binding affinity may be due to interference with the peptide binding site 

by the drug. In in vivo studies, the conjugate of 2-pyrrolino-DOX to RC-121 had 

better activity and less toxicity than the drug itself in inhibiting the growth of mouse 

and human mammary cancers in nude mice.55  MTX was also conjugated via its γ-

carboxylic acid to the N-terminal of RC-121 to give MTX-RC-121 (Figure 1.6c) with 

retained binding affinity to somatostatin receptors on rat cortex.24,29,56 Furthermore, 

MTX-RC-121 conjugate inhibited the growth of MIA PaCa-2 human pancreatic 

cancer in nude mice. By contrast, neither the drug nor the peptide had an effect on 

inhibiting in vivo cancer growth. 

 

1.4.4 Drug-RGD Peptide Conjugates 
 

Arg-Gly-Asp (RGD) peptides are the best studied peptides for targeting a specific 

type of cell. The RGD sequence is found in many extracellular matrix (ECM) 

proteins, including fibronectin, collagen, laminin, and fibrinogen. The RGD sequence 

is responsible for the binding of ECM proteins to the integrin family of receptors, 

including αvβ3, αvβ5, αvβ6, αvβ8, α5β1, αIIBβ3, α8β1 receptors on the cell surface.57-60 

Cyclic RGD peptides, CDCRGDCFC (RGD-4C) and cyclo-(N-Me-VRGDf), 

selectively bind to αvβ3 and αvβ5 integrins, which are upregulated in tumors during 

angiogenesis. These cyclic peptides were conjugated to a formaldehyde adduct of 

DOX called doxsaliform via a short hydroxylamine ether linker, which acts as a 

prodrug linker that can release the drug via N-Mannich base hydrolysis (Figure 1.10). 
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The half-life of the drug release process was about 60 min, which allowed the 

conjugate sufficient time to accumulate in the tumors. Both drug-RGD peptide 

conjugates showed high binding affinity to integrin receptors in a vitronectin cell 

adhesion assay, and they also inhibited the growth of MDA-MB435 breast cancer in 

vivo.2 In addition, paclitaxel was conjugated to a bicyclic RGD peptide 

(c(RGDyK)]2), and the conjugate inhibited proliferation of MDA-MB435 cells. 

Although the conjugate had slightly lower binding affinity than the peptide itself, it 

had integrin-specific accumulation in vivo.61 These results suggest that RGD peptides 

have promise in delivering drugs to cells with upregulated integrin receptors. 

 

1.4.5 Drug-ICAM-1 Peptide Conjugates 

Peptides derived from intercellular adhesion molecule-1 (ICAM-1) constitute a 

separate class of promising cell adhesion peptides that have the potential to target 

drugs to leukocytes. These peptides inhibited homotypic and heterotypic leukocyte 

adhesion mediated by leukocyte function-associated antigen-1 (LFA-1)/ICAM-1 

interactions. The LFA-1/ICAM-1-mediated leukocyte adhesion can be modulated by 

anti-CD11a antibodies.62 An ICAM-1-derived cyclic peptide called cIBR 

(cyclo(1,12)PenPRGGSVLVTGC) binds LFA-1 via the I-domain of the α-subunit of 

LFA-1 and can be internalized by LFA-1-expressing leukocytes. The entry of 

fluorescence isothiocyanate- (FITC)-labeled cIBR peptide into T-cells was followed 

by confocal microscopy and flow cytometry.63-65  Therefore, cIBR peptide is an 

attractive molecule for targeting cytotoxic drugs to leukocytes. 
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To utilize cIBR peptide to target leukocytes, it was conjugated to MTX and DOX 

to give MTX-cIBR and DOX-cIBR respectively. MTX-cIBR retained its binding 

affinity for LFA-1 receptors on MOLT-3 T-cells. The conjugate also showed 

concentration-dependent inhibition of binding of anti-LFA-1 antibody to PMA-

activated MOLT-3 T-cells.66 The MTX-cIBR conjugate was effective in inhibiting 

the progression of rheumatoid arthritis in the rat adjuvant model and collagen-induced 

arthritis (CIA) mouse model. Efforts are underway to develop a stable formulation of 

the MTX-cIBR conjugate and to understand the in vivo stability of the conjugate.  

The mechanism of entry of DOX-cIBR conjugate in to human leukemic cell HL-

60 is via the energy-independent pathway instead of the receptor-mediated 

endocytosis pathway. The lack of receptor-mediated entry of DOX-cIBR conjugate is 

presumably due to its high hydrophobicity.25 Recently, a new derivative called cIBR7 

(cyclo(1,8)CPRGGSVC) has been developed that is more hydrophilic than cIBR and 

has higher binding affinity to the I-domain of LFA-1. However, although the DOX-

cIBR7 conjugate is more hydrophilic than DOX-cIBR, the new DOX-cIBR7 

conjugate still enters HL-60 cells by passive diffusion. To further increase the 

hydrophilicity of the conjugate, 11-amino-3,6,9-trioxaundecanoic was used to link 

DOX molecule to cIBR7 to form the DOX-PEG-cIBR7 conjugate, which is more 

hydrophilic than DOX-cIBR7. Despite the increase in hydrophilicity of DOX-PEG-

cIBR7, this conjugate enters HL-60 cells via passive diffusion. Thus, it is necessary to 

re-investigate the mechanisms of cellular entry of conjugates of peptides with DOX. 

Recently, the general applicability of ICAM-1 peptides to deliver different drug 
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molecules with various hydrophilicities are being investigated for their selective 

delivery to leukocytes.   

 
1.5 Conclusion 
 

There has been increasing interest in using peptides to selectively deliver drugs to 

cancer cells, and promising results have been shown in both in vitro and in vivo 

studies. However, many aspects of drug-peptide conjugates have not been 

systematically elucidated, including (a) the effect of physicochemical properties of 

the drug on the uptake properties of the conjugate, (b) the mechanism of trafficking of 

the conjugate inside the cell, (c) the role of the spacer on receptor recognition and 

uptake of the conjugate, and (d) structural and binding properties of the conjugate vs. 

the peptide carrier to the cell surface receptors. There is also increasing success in 

targeting liposomes and nanoparticles to a specific type of cell by decorating the 

surface with peptides. Paclitaxel-peptide conjugates are currently undergoing phase I 

clinical trials for effective delivery to treat brain tumors. In the future, more data on 

drug-peptide conjugates will emerge to show the utility of carrier peptides in lowering 

the side effects of toxic drugs. 
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Chapter 2 

Mechanism of internalization of an ICAM-1-derived peptide by human leukemic 

cell line HL-60: influence of physicochemical properties on targeted drug 

delivery 
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2.1 Introduction  

Most chemotherapeutic agents are cytotoxic to cells; they eliminate tumor 

cells based on the rapid growth of these cells compared to normal cells. 

Unfortunately, it is difficult to avoid drug toxicity against normal cells, which leads to 

drug side effects. Thus, any method that lowers the side effects of antitumor agents 

can be of benefit to cancer patients during chemotherapy. One way to lower drug side 

effects is to selectively target the drug to tumor cells by utilizing the upregulated 

and/or activated receptors on the surface of tumor cells. In this case, the ligand for the 

upregulated receptor is used to selectively direct and carry the drug into tumor cells 

by covalently conjugating the drug to the ligand.1-3 For example, the increased 

expression of folate receptors in tumor cells has been successfully used to target 

antitumor agents to tumor cells using drug-folate conjugates.3-5 Due to the higher 

expression of transferrin receptors in tumor cells than in normal cells, transferrin 

protein and transferrin-receptor-antibody have been conjugated to cytotoxic 

molecules (i.e., ricin, doxorubicin) for selectively eliminating tumor cells.6-10 Other 

methods for selectively delivering drugs to tumor cells have been investigated, 

including the use of biodegradable polymers, nanoparticles, peptides, and 

carbohydrates. 

In recent years, cell surface adhesion molecules have been investigated for 

targeting drugs to tumor cells.2 Integrins have been shown to undergo endocytosis 

from the cell surface, and they have been utilized by viruses for infecting the host 

cells.11 In cancer cells, there is a selective upregulation of certain integrin receptors. 
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Upregulation of αvβ3 and αvβ5 integrins on the vascular endothelial cells of solid 

tumors during angiogenesis has been exploited to halt angiogenesis or for tumor 

diagnosis.2,12 In this case, RGD sequence containing cyclic peptides (CDCRGDCFC12 

and E[c(RGDyK)]2
13 ) that are selective for αvβ3 and αvβ5 receptors were conjugated 

to a cytotoxic agent such as doxorubicin (DOX) or taxol for selectively eliminating 

tumor cells.12,13 For example, a conjugate between CDCRGDCFC peptide and DOX 

(DOX-RGD) was shown to improve the survival of mice bearing human breast 

carcinoma cells (MDA-MB-435).12 At equivalent doses the DOX-RGD conjugate is 

more selective towards the tumor and less toxic than free DOX in this mouse model, 

suggesting that the conjugate targets the upregulated αvβ3 and αvβ5 in tumor cells. 

However, the internalization and localization processes of RGD peptide conjugates 

by integrins have not been fully characterized; understanding these processes will 

provide a better method of selecting a more effective drug to conjugate to the peptide.   

In this work, we studied the internalization and localization of an ICAM-1-

derived peptide called cIBR [cyclo(1,12)PenPRGGSVLVTGC] that has been shown 

to bind to isolated αLβ2 integrin (LFA-1) on the surface of T cells.14,15 Because LFA-1 

is expressed only on leukocytes and not on other types of cells (i.e., epithelial and 

endothelial), this peptide could be used to target drugs to leukocytes for treating 

leukocyte-related disorders such as leukemia and autoimmune diseases. To follow the 

mechanism of binding and internalization of cIBR peptide, its N-terminus was 

conjugated with fluorescein isothiocyanate (FITC) and DOX to give FITC-cIBR and 

DOX-cIBR conjugates, respectively. For the synthesis of DOX-cIBR conjugate 
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primary amine of DOX was conjugated to succinic anhydride linker by amide bond. 

Amide bond linking strategy was chosen as it is a stable bond. For understanding the 

internalization mechanism of DOX-cIBR, stability of the conjugate was an important 

factor. The mechanisms of internalization of these conjugates were compared in LFA-

1-expressing leukemic cells (i.e., HL-60) and LFA-1-deficient cells (i.e., HUVEC). 

Results from this study may be used to select a better drug-cIBR conjugate to 

selectively target leukocytes. 

 

2.2 Experimental  

2.2.1 Cells and Chemicals  

The human acute promyeloid leukemic cell line HL-60 was kindly provided 

by Dr. Yueshang Zhang (Arizona Cancer Center, University of Arizona). Cells were 

grown in RPMI 1640 medium supplemented with 10% fetal bovine serum, 100 

units/ml of penicillin G sodium, 100 µg/ml of streptomycin sulfate, and 2.0 g/l 

NaHCO3. Cells were maintained at a density of 1 × 106 cells/ml to 2 × 106 cells/ml at 

37 °C in a humidified 5% CO2 atmosphere. HUVEC was purchased from ATCC 

(Manassas, VA) and grown in DMEM supplemented with 10% fetal bovine serum, 

100 units/ml of penicillin G sodium, 100 µg/ml of streptomycin sulfate, 2.0 g/l 

NaHCO3, 1.42 g/l HEPES-Na, 1% glutamine, and 1% nonessential amino acids. 

Doxorubicin hydrochloride, succinic anhydride, and diisopropylethyl amine were 

obtained from Sigma Chemicals, Inc. (St. Louis, MO). Solvents used in peptide 

synthesis were of pure analytical grade. All reagents, resins, and Fmoc-protected 
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amino acids for peptide syntheses were purchased from Peptides International, Inc. 

(Louisville, KY), Advanced ChemTech (Louisville, KY), and Applied Biosystems 

(Foster City, CA).  

 

2.2.2 Peptide Synthesis  

Synthesis of linear IBR peptide (PenPRGGSVLVTGC) was performed on a Pioneer 

peptide synthesizer (PerSeptive Biosystems, CA) using the standard Fmoc solid-

phase strategy with O-(7-azabenzotriazole-1-yl)-N,N,N',N'-tetramethyluronium 

hexafluorophosphate (HATU) as the activating agent. Extended coupling cycles were 

employed. The resin-containing peptide was washed several times with methylene 

chloride and then with methanol followed by vacuum drying. A cleavage cocktail 

containing trifluoroacetic acid (TFA, 90%), 1,2-ethane dithiol (3%), anisole (2%), 

and thioanisole (5%) was used during peptide cleavage from the solid support 

followed by precipitation in ice-cold diethyl ether. Diethyl ether solution was allowed 

to stand overnight at 4 °C for maturation of the precipitate. Subsequently, the 

precipitate of peptide was separated from ether-containing scavengers by 

centrifugation. The crude linear peptide was purified by semi-preparative C18 

reversed-phase HPLC. The cyclization of the linear peptide to give cIBR peptide was 

carried out by bubbling air for 2 h into the peptide solution (0.06 mM) containing 

ammonium bicarbonate (0.05 M) and ammonium hydroxide at pH 8.5. The solution 

was lyophilized and crude cIBR was purified by semi-preparative C18 reversed-phase 

HPLC. The molecular weight of cIBR peptide was determined by electrospray  
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Figure 2.1(a) Structure and synthetic steps to make FITC-cIBR 
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Figure 2.1(b) Structure and synthetic steps to make DOX-cIBR.  
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ionization mass spectrometry (M+1 = 1174.5 amu).  

 

2.2.3 Conjugation of FITC with cIBR Peptide 

Conjugation of FITC with cIBR was done according to our previously 

published method (Figure 2.1a).16 Briefly, pure cIBR peptide (0.04 mmol) was 

dissolved in 5 ml of Nanopure water; 0.08 mmol fluorescein-5-isothiocyanate 

(Sigma) was added to the peptide solution and the pH was adjusted to 10 by addition 

of 1.0 N NaOH solution. After stirring for 1 h with a magnetic stirrer, the reaction 

mixture was neutralized by the addition of 10% v/v acetic acid solution. The solution 

 was lyophilized and the resulting crude product of FITC-cIBR was purified by semi-

preparative C18 reversed-phase HPLC. The pure FITC-cIBR was analyzed by 

analytical C18 reversed-phase HPLC and identified by electrospray ionization mass 

spectrometry (M+1 = 1563.4 amu). 

 

2.2.4 Conjugation of Doxorubicin (DOX) with cIBR Peptide 

In this case, the amino group in the sugar moiety of DOX was reacted with 

succinic anhydride in dimethyl formamide (DMF) in the presence of diisopropylethyl 

amine to give DOX-hemisuccinate (M+1 = 643 amu) (Figure 2.1b). Subsequently, 

DOX-hemisuccinate was reacted with the N-terminus of cIBR in the presence of 

HBTU in DMF to give the DOX-cIBR. The progress of the reaction was monitored 

with C18 reversed-phase analytical HPLC. The DOX-cIBR was purified using semi-
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preparative HPLC with a C18 column; the molecular weight of the final product was 

confirmed by mass spectrometry (M+1 = 1799 amu). 

 

2.2.5 Internalization Studies of FITC-cIBR, DOX-cIBR and DOX using HL-60 

         Cells 

2.2.5.1 Temperature-dependent Internalization Studies  

HL-60 cells were centrifuged and re-suspended in RPMI-1640 at a concentration of  

1 × 106 cells/ml. 250 µl of the cell suspension was plated in two different tissue 

culture plates; then, 250 µl of a solution of FITC-cIBR (100 µM), DOX-cIBR (5 µM), 

DOX (5 µM), and FITC-dextran (200 µM, MW 10,000, Molecular Probes™, Eugene, 

OR) was added to the respective wells. The cells were incubated at 37 °C and 4 °C 

for 1 h while protected from light, and were then transferred into 1.5 ml Eppendorf 

tubes and centrifuged at 1000 rpm for 2 min. The cells were washed three times with 

ice-cold phosphate buffered saline (PBS) and finally suspended in 20 µl of PBS. Final 

cell density used for the microscopic observation was 12.5 x 106 cells/ml. 10 µl of 

that suspension was put on the slide for observation. Control cells without any 

compound added were treated the same way. A Nikon Eclipse 80i microscope 

equipped for epifluoroscence was used to view the cells, and the fluorescence 

emissions of DOX and FITC were observed using rhodamine and FITC filter sets, 

respectively. Untreated cells were viewed with both set of filters to check for their 

autofluorescence. The images were captured using an Orca ER camera (Hamamatsu, 
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Inc., Bridgewater, NJ) controlled by the Metamorph program (Version 6.2, Universal 

Imaging Corp., West Chester, PA). 

 

2.2.5.2 ATP Requirement for Internalization Studies  

Cells were centrifuged and resuspended in 250 µl solution of either RPMI 

1640 or PBS containing 50 mM 2-deoxy-D-glucose and 25 mM sodium azide and 

were incubated for 45 min at 37 °C in 5% CO2.17 Next, the cells were incubated for 1 

h with 250 µl solutions of FITC-cIBR (100 µM), DOX-cIBR (5 µM), DOX (5 µM), 

and FITC-dextran (MW. 10,000, 200 µM). The cells were then washed three times 

with ice-cold PBS and finally suspended in 20 µl of PBS for microscopic observation.  

 

2.2.5.3 Microtubule Disruption Studies  

Cells were plated as indicated above and were incubated with 50 µM 

Nocodazole in DMSO (0.5% in PBS) for 4 h prior to addition of 250 µl of FITC-

cIBR (100 µM), DOX-cIBR (5 µM), DOX (5 µM), FITC-dextran (MW. 10,000), and 

Oregon Green (5 µM, Molecular Probes™, Eugene, OR) into the wells.18 Cells were 

treated with 250 µl of solution of 0.5% DMSO in PBS to check the effect of DMSO 

on the cells. Washing and microscopic observations were carried out in the same 

manner as described above. 

 

2.2.6 Stability Study of DOX-cIBR Conjugate using HL-60 Cells 
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Exponentially growing HL-60 cells were centrifuged and resuspended in 

RPMI 1640 at a concentration of 2 × 106 cells/ml. 250 µl of cell suspension was 

distributed into a 48-well tissue culture plate (BD Biosciences, San Jose, CA). Then, 

250 µl of 100 µM DOX-cIBR solution in PBS at pH 7.4 was added to each of the 

wells over different time periods (0, 1, 2, 14, 18, and 24 h) and the cells were 

incubated in a humidified atmosphere with 5% CO2. Three samples of cell suspension 

along with the compound solution at each time point were transferred to 1.5 ml 

Eppendorf tubes and 500 µl of acetonitrile was added. Samples were vortexed for 2 

min followed by sonication at 37 °C for 30 min. After sonication, the samples were 

vortexed again for 2 min and centrifuged at 14,000 rpm for 10 min. Aliquots from the 

supernatant (20 µl) were mixed with 20 µl of solvent (52:48 ratio of acetonitrile and 

water in the presence of 0.05% TFA). Each sample (20 µl) was injected into the 

analytical reversed-phase HPLC with a C18 column and detected at 480 nm 

absorption wavelength. The elution system was performed using a gradient program 

involving solvent A (95% water containing 0.1% TFA and 5% acetonitrile) and 

solvent B (acetonitrile). A linear gradient program from 100% A to 100% B over a 

period of 18 min was used with a flow rate of 1 ml/min.  

 

2.2.7 Determination of Octanol/Aqueous Buffer Distribution Ratio 

1.0 ml of n-octanol (Fisher) was added to 10 ml of PBS (pH 7.4) containing 

2.0 µM of DOX-cIBR or FITC-cIBR in a separatory funnel and shaken for 30 min. 

The two phases were allowed to equilibrate for 24 h while protected from light. The 
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concentration of DOX-cIBR or FITC-cIBR in each phase was determined using a 

fluorescence spectrophotometer (RF5000U, Shimadzu Inc., Kyoto, Japan). The 

fluorescence intensity of DOX-cIBR or FITC-cIBR in aqueous buffer solutions was 

measured at different concentrations, and a calibration curve was generated using 

Microcal Origin version 6.0. 

 

2.2.8 Internalization Studies with HUVEC 

HUVECs were grown to confluency in 75 cm2 tissue culture flask. Confluent 

cells were trypsinized and resuspended in 20 ml of fresh DMEM. Sterile coverslips 

were placed in 6-well plates and 2 ml of the cell suspension were added to each of the 

wells. Cells were allowed to grow for 24 hours. Before the experiment, coverslips 

were checked for cell attachment and each coverslip was washed three times to 

remove the unattached cells. Coverslips with relatively similar cell attachment were 

used for the experiment. 500 µl of fresh DMEM was added to each well followed by 

500 µl of FITC-cIBR (100 µM), DOX-cIBR (5 µM), FITC-dextran (MW. 10,000, 200 

µM). Cells were incubated with the compounds for 1 h, washed 3 times with ice-cold 

PBS and observed under a microscope. 

 

2.3 Results 

2.3.1 Evaluation of the Mechanism of the Cellular Entry of FITC-cIBR using HL- 

         60 Cells 

The mechanism of endocytosis of FITC-cIBR was compared to that of FITC- 
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dextran using HL-60 cells under different conditions (Figure 2.2). FITC-dextran, 

which has been used as a marker for fluid phase endocytosis, was used as a positive 

control.19-21 To evaluate the effect of cellular metabolism on the internalization of 

FITC-cIBR, it was incubated at two different temperatures, 37 °C (Figure 2.2a) and 

4 °C (Figure 2.2b). At 37 °C, punctate fluorescence stains of FITC-cIBR (Figure 

2.2a) were found in the HL-60 cells suggesting that FITC-cIBR was localized in the 

endocytic compartments similar to FITC-dextran (Figure 2.2c). In contrast, there was 

no fluorescence stain when the cells were incubated with FITC-cIBR (Figure 2.2b) 

and FITC-dextran (Figure 2.2d) at 4 °C. This suggests the possibility of receptor-

mediated uptake of FITC-cIBR. Incubation at 4 °C knocks out the endocytic uptake 

pathway and therefore molecules taken up by this process (e.g. dextran) can not enter 

the cell. However, molecules that interact with the cell surface receptors may still 

bind without internalization. However, FITC-cIBR binding was not observed at 4 °C 

suggesting that the target receptor in this cell line was not in high affinity 

conformation for binding the ligand at this temperature.  

Sodium azide is an inhibitor of mitochondrial ATPase.22 2-deoxy-D-glucose 

inhibits glucose meatolism.23 Incubation of the cells with these compounds inhibits 

the energy dependent uptake mechanism. To evaluate whether there was a difference 

between the mechanisms of endocytosis of FITC-cIBR and FITC-dextran, HL-60 

cells were incubated with these ATP synthesis inhibitors prior to incubation with 

FITC-cIBR and FITC-dextran. In absence of the inhibitors, FITC-cIBR (Figure 2.2e) 
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Figure 2.2(a-d) FITC-cIBR showed temperature dependent entry into HL-60 cell line 
and was localized into distinct endocytic compartments inside the cells. Panel (a) 
shows internalization and intracellular distribution profile of FITC-cIBR at 37 °C. 
Panel (b) shows the cells incubated with FITC-cIBR at 4 °C. The lack of energy of 
the cells at 4 °C prevented the receptor binding and cellular entry of FITC-cIBR. 
Internalization and intracellular distribution profiles of a fluid phase endocytosis 
marker, FITC-dextran were compared at (c) 37 °C and (d) 4 °C as control. 

 

 

 

 

4°C

FITC-cIBR

37°C

(c)

(d)

(a)

FITC-Dextran

(b)



 60

 

 
 
 
Figure 2.2(e-h) FITC-cIBR entry into the HL-60 cells was affected by ATP synthesis 
inhibitors sodium azide and 2-deoxy-D-glucose. Panel (e) shows FITC-cIBR 
internalization and intracellular distribution without the inhibitors. Panel (f) shows the 
FITC-cIBR internalization profile for the cells treated with the inhibitors. FITC-cIBR 
entry into the cells was inhibited by these compounds with the punctate stains 
localized possibly in the early endocytic compartments closer to the cell membrane. 
As a control FITC-dextran internalization profiles were compared in the (g) absence 
and (h) presence of sodium azide and 2-deoxy-D-glucose. These compounds 
completely blocked the entry of this fluid phase endocytosis marker into the HL-60 
cells. There was difference between the internalization mechanisms of FITC-cIBR 
and FITC-dextran.  
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and FITC-dextran (Figure 2.2g) followed endocytic uptake pathway. The presence of 

ATP synthesis inhibitors affected the endocytosis of both FITC-cIBR (Figure 2.2f) 

and FITC-dextran (Figure 2.2h). However, the cells treated with FITC-cIBR in the 

presence of the inhibitors showed punctate staining possibly in the early endosomal 

compartments nearer to the cell membranes (Figure 2.2f) and FITC-dextran-treated 

cells did not (Figure 2.2h). The localization of cluster of dots in the early endosomal 

compartments suggested the possibility of receptor mediated entry as the marker for 

fluid phase endocytosis did not enter the cells. There was a clear difference between 

the internalization of FITC-cIBR and FITC-dextran, which implied that FITC-cIBR 

was internalized by a receptor-mediated process and not via fluid phase endocytosis. 

Next, the effect of a microtubule disrupting agent, nocodazole, on the cellular 

uptake of FITC-cIBR was compared to its effect on the uptake of FITC-dextran and 

Oregon Green (Figure 2.3). Nocodazole blocked the cellular entry of FITC-cIBR 

(Figures 2.3a,b) as well as FITC-dextran (Figures 2.3c,d); however, it did not block 

the entry of Oregon Green (Figures 2.3e,f). Nocodazole depolymerizes the 

microtubule network and affects the cellular entry of compounds taken up by both 

receptor mediated endocytosis and fluid phase endocytosis. However, the effect of 

nocodazole on endocytic uptake pathway depends on the cell type.21 Inhibition of 

uptake of FITC-cIBR and FITC-dextran by this compound suggested that the intact 

microtubule network was necessary for the receptor-mediated uptake of FITC-cIBR  
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Figure 2.3(a-d) FITC-cIBR entry into HL-60 cells was blocked by a microtubule 
disrupting agent, nocodazole. Panel (a) represents the internalization of FITC-cIBR 
into HL-60 cells without nocodazole. Panel (b) shows that FITC-cIBR entry into the 
cells was blocked by the disruption of microtubules by nocodazole. Internalization 
profiles of FITC-dextran in the (c) absence and (d) presence of nocodazole were 
compared as control. 

 

 

 

 

FITC-cIBR FITC-dextran

(d)

(a)

(b)

Without 
Nocodazole

With 
Nocodazole

(c)



 63

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3(e-f) Entry of Oregon Green in HL-60 cells was not affected by the 
disruption of microtubule network by nocodazole. Panel (e) shows the uptake of 
Oregon Green in absence of nocodazole. Panel (f) shows the fluorescence intensity 
and distribution pattern of Oregon Green inside the cells were not affected by 
nocodazole.  
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as well as the fluid phase uptake of FITC-dextran by HL-60 cells.       

 

2.3.2 Comparison of Intracellular Distribution of DOX and DOX-cIBR using HL- 

         60 Cells 

The possibility of utilizing cIBR peptide to target DOX to HL-60 cells was 

evaluated using DOX-cIBR conjugate. The intracellular distributions of DOX-cIBR 

were compared to those of DOX alone by observing the fluorescence of DOX at 

emission λ of 540 nm after excitation at λ of 480 nm. Because DOX is toxic, the 

viability of cells at the concentration used for uptake studies was evaluated using 

Trypan blue staining to ensure that DOX did not induce cell death during the study. 

Neither DOX nor DOX-cIBR killed HL-60 cells under the conditions used for the 

uptake studies (data not shown). At 37 °C, DOX-cIBR was found primarily in the 

cytoplasm, and there was no apparent distribution of the molecules in the endosomes 

or nucleus (Figure 2.4a).  Although there was a decrease in the intensity of DOX-

cIBR in the cytoplasm of HL-60 cells when cells were incubated at 4 °C, there was no 

inhibition of uptake of DOX-cIBR (Figure 2.4b). This suggests that conjugation of 

DOX to cIBR altered the receptor-mediated endocytic uptake of cIBR (see above). 

DOX incubated at 37 °C showed a high distribution in the nucleus with lower 

distribution in the cytoplasm (Figure 2.4c). Migration of DOX into the nucleus has 

been shown to be time- and concentration-dependent.24 Lowering the incubation 

temperature from 37 °C to 4 °C inhibited the uptake of DOX to some degree, and its 

distribution was shown in the nucleus as well as the cytoplasm (Figure 2.4d). The 
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Figure 2.4(a-d) DOX-cIBR entry into the HL-60 cells was not affected by 
temperature. Panel (a) shows the diffuse cytoplasmic fluorescence distribution pattern 
of DOX-cIBR at 37 °C inside HL-60 cells. Absence of punctate fluorescence pattern 
was indicative of non-endocytic uptake pathway. Panel (b) shows uptake of DOX-
cIBR by the cells when incubated at 4 °C. Incubation at 4 °C did not prevent the 
conjugate entry or change its intracellular distribution pattern. As a control DOX 
uptake profiles were compared at (c) 37 °C and (d) 4 °C 
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Figure 2.4(e-h) DOX-cIBR entry into HL-60 cells was not affected by the ATP 
synthesis inhibitors sodium azide and 2-deoxy-D-glucose. Panel (e) shows the diffuse 
cytoplasmic distribution profile of DOX-cIBR in absence of these compounds. In 
presence of the inhibitors there was no change in the distribution profile or the 
intensity of fluorescence of DOX-cIBR inside the cell as shown in Panel (f). For 
comparison, DOX internalization profiles are shown in (g) absence and (h) presence 
of sodium azide and 2-deoxy-D-glucose. 
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Figure 2.4(i-l) Depolymerization of microtubule assembly by nocodazole did not 
inhibit the entry of DOX-cIBR into the HL-60 cells. Panel (i) shows the fluorescence 
micrograph of the cells incubated with DOX-cIBR conjugate in absence of 
nocodazole. Panel (j) shows that the cells incubated with nocodazole did not show 
any change in fluorescence distribution pattern or intensity. Nocodazole did not have 
any effect on the internalization of the passively permeating DOX as shown in Panels 
(k) and (l). 
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effect of the energy-dependent process on DOX-cIBR uptake was evaluated by 

incubating the HL-60 cells with sodium azide and 2-deoxy-D-glucose for 1 h prior to 

incubation with DOX-cIBR. The results showed that there was no difference in the 

cell cytoplasmic fluorescence from DOX-cIBR on untreated (Figure 2.4e) and treated 

(Figure 2.4f) cells. This suggests that DOX-cIBR could still enter the cell cytosol in 

the absence of ATP. Similarly, DOX alone was also not affected by the inhibition of 

energy-dependent processes (Figures 2.4g,h). As shown previously, FITC-dextran 

cell entry was blocked by the inhibitors. These results may suggest that the major 

route of DOX-cIBR entry into HL-60 cells was via passive diffusion rather than the 

receptor-mediated endocytosis process. 

HL-60 cells were also incubated with nocodazole to evaluate the effect of 

microtubule disruption on the entry of DOX-cIBR compared to that of DOX. The 

fluorescence intensity of DOX-cIBR in the cell cytoplasm was not distinguishable in 

the absence (Figure 2.4i) and presence (Figure 2.4j) of nocodazole, suggesting that 

DOX-cIBR internalization did not involve microtubule formation. Similarly, the 

fluorescence intensity in the cells incubated with DOX appeared to be similar in the 

presence (Figure 2.4l) and absence (Figure 2.4k) of nocodazole. Taken together, these 

results suggested that the major route of cellular uptake of DOX-cIBR and DOX was 

not via a receptor-mediated endocytic process but via passive diffusion. 

 

2.3.3 Comparison of Uptake of FITC-cIBR and DOX-cIBR using HUVEC  
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LFA-1 receptor deficient cell line HUVEC was used as a model system in 

order to further explore the internalization profiles of FITC-cIBR and DOX-cIBR. It 

was expected that HUVEC might show difference in internalization profiles for the 

two conjugates as it lacks the target receptor that recognizes the cIBR peptide. DOX-

cIBR entered the HL-60 cells by passive diffusion and as such its entry into the cell 

would not be inhibited by the lack of LFA-1 receptor in a cell line. FITC-dextran 

would be able to enter these cells as it enters by fluid phase endocytosis. Comparison 

of the panels (a) and (c) of Figure 2.5 shows that FITC-cIBR entry in HUVEC was 

inhibited compared to that of FITC-dextran. The reduced fluorescence intensity of 

FITC-cIBR inside the cell possibly reflected the requirement of LFA-1 receptor for its 

internalization. Ideally, FITC-cIBR should also be taken up by the HUVEC by non 

specific endocytosis like FITC-dextran. It was possible that some fraction of FITC-

cIBR entered into these cells by non-specific endocytosis. However, it was difficult to 

observe the fluorescence from intracellular FITC-cIBR possibly because of the 

association of FITC with external cell adhering glass surface which produced high 

background fluorescence.  DOX-cIBR was found inside the HUVECs (Figure 2.5b) 

with high fluorescence intensity.  

 

2.3.4 Physicochemical Properties of DOX-cIBR and FITC-cIBR 

The stability of DOX-cIBR was evaluated in the presence of HL-60 cells 

using the same conditions as those in the experiments for endocytic uptake process. 

This was done to make sure that the presence of fluorescence in the cytoplasm of HL-  
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Figure 2.5(a-c) FITC-cIBR entry in HUVEC was inhibited compared to FITC-
dextran and DOX-cIBR. Panel (a) shows the cells incubated with FITC-cIBR. 
Intracellular fluorescence of FITC-cIBR was low suggesting inhibited entry of the 
compound. The small amount of compound entering the cell might be the result of 
fluid phase endocytosis.  Panel (b) shows that DOX-cIBR entered these cells as the 
mechanism of entry for this compound is passive diffusion. Panel (c) shows the 
cellular entry and intracellular distribution profile for FITC-dextran in HUVEC. 
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60 cells was due to the intact DOX-cIBR and not to its degradation products (e.g., 

free DOX). DOX-cIBR was incubated for 24 h with HL-60 cells, and the cells were 

isolated and lysed with acetonitrile at different time points. After removal of the cell 

debris by centrifugation, the acetonitrile supernatant solution was injected into an 

analytical HPLC with a C18 column. The disappearance of DOX-cIBR and the 

appearance of new peaks due to the degradation of DOX-cIBR were monitored at 480 

nm to avoid interference from the proteins derived from the medium and cells. The 

area under the curve from the DOX-cIBR peak was integrated as a function of time 

(Figure 2.6). The results showed that 11.5% degradation of DOX-cIBR was observed 

in the first 2 h of incubation; prolonged incubation up to 24 h produced only 15% 

degradation. The results suggest that that the majority of DOX-cIBR was intact 

during the 24-h incubation in endocytic studies and that the fluorescence stains found 

inside the cell are due to the DOX-cIBR. 

To compare the difference in lipophilicity between FITC-cIBR and DOX-cIBR 

conjugates, the octanol/water distribution ratios for both compounds were determined 

to predict the possibility of the conjugates entering the cells via passive diffusion 

(Table 2.1). Normally, small molecules with high lipophilicity (Log D between 1 and 

3, pH 7.4) can readily partition into cell membranes and enter cells via passive 

diffusion. The results show that FITC-cIBR (Log D = 0.58, pH 7.4) is more 

hydrophilic than DOX-cIBR (Log D = 1.14, pH 7.4) but FITC-cIBR is less 

hydrophilic than DOX (Log D = 0.08, pH 7.4). The high hydrophobicity of DOX-

cIBR explains its effective partitioning into the cell membranes and passive  
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Figure 2.6  Time-dependent stability of DOX-cIBR in medium containing HL-60 cell 
line was determined by C18 reverse phase HPLC. The percent of DOX-cIBR 
remaining was determined by integrating the area under the curve for DOX-cIBR at a 
detection wavelength of 480 nm.  



 73

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2.1   Experimentally determined distribution ratio for DOX-cIBR and 
FITC-cIBR with 1-octanol/ aqueous buffer at pH 7.4. 

 
Compounds Distribution ratio (D) Log D 

DOX-cIBR 14.1 1.15 

FITC-cIBR 3.8 0.58 

DOX 1.2 (1.2*) 0.08 

*Value in parenthesis is from reference 30 
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permeation into the cell. Although FITC-cIBR is more hydrophobic than DOX, it 

does not partition into the membrane compared to DOX possibly due to its higher 

hydrogen-bonding potential with water. 

 

2.4 Discussion 

We have shown that FITC-cIBR was internalized by HL-60 via receptor-

mediated endocytosis. The endocytosis may be due to the presence of LFA-1 on the 

HL-60 cells and binding properties of the FITC-cIBR to LFA-1, since LFA-1 

receptors have been shown to be internalized and recycled by leukocytes.25 In 

addition, internalization of FITC-cIBR was inhibited in the LFA-1-deficient HUVEC. 

FITC-cIBR peptide had been shown to bind to isolated LFA-1 and LFA-1 on the 

surface of T cells. This binding process could be inhibited by unlabeled cIBR peptide 

as well as antibodies to the I-domain of LFA-1.14  FITC-cIBR could co-localize with 

anti-β2-antibodies on the surface of T cells, suggesting that this peptide binds β2-

integrins such as LFA-1.14 MOLT-3 and SKW T-cells could take up FITC-cIBR; 

however, due to the size of T cells, it was difficult to study the intracellular 

trafficking of FITC-cIBR in T cells compared to that in HL-60 cells.14,16 The binding 

site of FITC-cIBR is at the L-site and a possible second binding site is at the MIDAS 

region of the LFA-1 I-domain.15 Due to leukocyte selectivity of FITC-cIBR, the 

possibility of using cIBR peptide to target the anticancer drug DOX to leukemic cells 

(i.e., HL-60 cells, MOLT-3 T cells) was investigated. DOX has been shown to be a 

good model drug for conjugation of carrier molecules (i.e., peptides, proteins, 
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carbohydrates, polymers) for targeted drug delivery because its entry into the cell can 

be monitored by fluorescence microscopy. Thus, the endocytosis mechanism of 

DOX-cIBR was compared to that of FITC-cIBR with the expectation that both 

molecules would be internalized via a receptor-mediated endocytosis process. 

It was interesting to find that DOX-cIBR passively diffused through the cell 

membrane of HL-60 cells, which was contrary to FITC-cIBR. The change in 

internalization behavior of these two conjugates may be due to many different factors. 

First, the high hydrophobicity of DOX-cIBR compared to FITC-cIBR (Table 2.1) 

may alter its mechanism of entry into the cells. It is possible that a small fraction of 

DOX-cIBR was internalized via a receptor-mediated process; however, due to the 

high fraction that partition into the cell membranes, the receptor-mediated process 

was overwhelmed by the passive diffusion mechanism (Figure 2.7). Secondly, the 

conjugation of DOX to cIBR may dramatically change the conformation of cIBR 

peptide compared to the conjugation of FITC to cIBR. The dramatic change in 

conformation of cIBR prevents the recognition of the cIBR fragment of DOX-cIBR 

by the receptor (i.e., LFA-1) on the cell surface. Our previous studies have shown that 

the recognition site of cIBR peptide is at the Pro-Arg-Gly-Gly (PRGG) sequence, 

which resides at the N-terminus.26 The PRGG sequence is in a stable β-turn structure 

as determined by NMR.27 Conjugation of the N-terminus with another drug, 

methotrexate, did not change the β-turn conformation of this recognition site. Finally,  
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Figure 2.7. Schematic representation of the cellular entry mechanism of FITC-cIBR, 
FITC-dextran, DOX-cIBR, and DOX in HL-60 cells. FITC-cIBR enters the cells via a 
receptor-mediated process into the endosomes while FITC-dextran enters the 
endosomes via fluid-phase endocytosis. On the other hand, DOX-cIBR passively 
permeates through the cell membranes and resides in the cytoplasm, and DOX enters 
the cell via passive diffusion and finally resides in the nucleus. 

 
 
 
 
 

= FITC-cIBR

= DOX-cIBR

= DOX
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it is also possible that the DOX fragment imposes steric hindrance on the recognition 

site of cIBR peptide as compared to that of the FITC fragment in FITC-cIBR. 

Because both DOX and FITC are conjugated to the N-terminus, there is a high 

probability that conjugation of a moiety to the N-terminus may interfere with the 

recognition of cIBR. Therefore, further structural studies will be carried out to 

elucidate the effect of DOX conjugation to the cIBR structure. 

Normally, the passive diffusion mechanism is used by small hydrophobic 

drugs such as doxorubicin with molecular weights of 500 daltons following 

Lipinski’s rules.28 These molecules readily partition into cell membranes to cross the 

lipid bilayers. In contrast, large hydrophilic peptides with a high hydrogen-bonding 

potential are not readily partitioned into the cell membranes because it is energetically 

unfavorable to expel hydrogen-bonded water molecules.28 However, DOX-cIBR has 

a very high octanol/water distribution ratio (pH 7.4) compared to FITC-cIBR and 

DOX (Table 2.1). The high distribution ratio of DOX-cIBR could explain the high 

propensity of DOX-cIBR to partition to cell membranes for passive diffusion. It is 

possible that conjugating DOX to cIBR peptide causes altered conformation of the 

conjugate to produce low hydrogen-bonding potential to water molecules. Based on 

the magnitude of the distribution ratio alone, FITC-cIBR should passively diffuse 

more readily than DOX alone. Instead, FITC-cIBR is internalized by a receptor-

mediated process and DOX enters the cell mainly via passive diffusion. We propose 

that a balance exists between passive diffusion and the receptor-mediated mechanism, 

depending on the moiety or drug molecule that is attached to the cIBR peptide (Figure 
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2.7). If this is the case, the choice of drug molecule that can be conjugated to cIBR to 

maintain the receptor-mediated internalization properties may be limited to drugs that 

do not dramatically change the octanol/water distribution ratio. In other words, the 

distribution ratio of the conjugate should be at least similar to or lower than that of 

FITC-cIBR for receptor-mediated entry into the cells. 

Others have conjugated DOX to peptides, proteins, oligonucleotides, and 

other type of carriers. A reported conjugate of DOX with a cell-penetrating peptide 

showed cytoplasmic distribution of the conjugate similar to that in DOX-cIBR. 

Unfortunately, it is not clear whether the DOX conjugate with cell-penetrating 

peptides enters the cell via passive diffusion or via receptor-mediated endocytosis.29 

In another study, DOX was also conjugated to a cyclic pentapeptide (CNGRC) to 

give DOX-CNGRC conjugate for targeting CD13 on the surface of the SK-UT-1 cell 

line.30 Similar to our DOX-cIBR, the DOX-CNGRC conjugate was found in the cell 

cytoplasm. It has been suggested that the uptake of DOX-CNGRC is not via receptor-

mediated but via passive diffusion because DOX-CNGRC has a high octanol/water 

distribution ratio (5.3, pH 7.4).30 This distribution ratio is in between those of DOX-

cIBR (14.1, pH 7.4) and FITC-cIBR (3.8, pH 7.4). It was also surprising to find that a 

DOX-transferrin conjugate was distributed in the cytoplasm and its entry into the 

cells could not be blocked by transferrin or lower temperature.9,31 These results 

suggest that this conjugate entry was not mediated by the transferrin receptor. 

Because transferrin is a large molecule, it is difficult to envision that this conjugate 

could penetrate the cell membrane through passive diffusion. Another possible 
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explanation is that conjugation of the molecule to DOX may alter the conjugate 

physical properties and induce the formation of a molecular association that promotes 

partitioning into the cell membrane and permeation into the cytoplasm. Regen et al. 

have proposed possible mechanisms (i.e., umbrella mechanism) of membrane 

partitioning of a conjugate between a sugar molecule and an oligonucleotide or 

peptide that led to cell membrane permeation.32-34 Because DOX contains an amino 

sugar moiety, DOX-peptide conjugates may follow the umbrella mechanism to enter 

the cells via the passive route. Thus, DOX rather than the peptide becomes the 

important molecule for membrane partitioning; however, further studies need to be 

done to elucidate this possible mechanism.  

The uptake of DOX-cIBR and DOX was affected by temperature; lower 

fluorescence intensities of these molecules were found in the cytoplasm at 4 °C than 

at 37 °C. It has been suggested that lower diffusion of DOX at 4 °C than 37 °C is due 

to the increase in self-association of DOX at 4 °C via the formation of π-

interactions.35 The effect of temperature on the uptake of DOX-cIBR could also be 

caused by the self-association of the conjugate at 4 °C. Alternatively, DOX-cIBR 

could enter the cell via a combination of passive and active transport at 37 °C but 

only via passive permeation at 4 °C. A similar hypothesis has been suggested for the 

internalization of the DOX-transferrin conjugate.9 Due to the high octanol/water 

distribution ratio observed of DOX-cIBR, the passive diffusion pathway overwhelms 

the receptor-mediated transport of DOX-cIBR at 37 °C (Figure 2.7). As seen for 

FITC-cIBR, cIBR peptide did not show any cell surface staining when incubated at 
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4 °C, suggesting that the binding of cIBR peptide to LFA-1 was low at low 

temperature. An alternative explanation is that the cells may have a higher population 

of LFA-1 in a conformation with low affinity for the ligand at 4 °C. Similarly, DOX-

cIBR did not show any cell surface staining at 4 °C, suggesting that it did not bind to 

the cell surface receptors. Unfortunately, unlike FITC-cIBR, it was difficult to 

differentiate between the cytoplasmic and cell surface staining when HL-60 cells are 

treated with DOX-cIBR in the presence of ATP inhibitors at 37 °C. 

 

2.5 Conclusions 

We have shown that FITC-cIBR peptide can be internalized via a receptor-

mediated pathway, suggesting that cIBR peptide may be internalized by the LFA-1 

receptor on HL-60 cells. The use of hydrophobic drugs such as DOX in the DOX-

cIBR conjugate may change receptor-mediated transport to passive diffusion 

transport. This study has shown the importance of the physicochemical properties of 

the drug-peptide conjugate when considering the use of the peptide for cell-specific 

targeted drug delivery. We postulate that, to maintain the receptor-mediated endocytic 

pathway, a hydrophilic drug should be used to conjugate to cIBR peptide and that the 

octanol/water distribution ratio of the conjugate should be at least the same as or 

lower than the distribution ratio of FITC-cIBR. Another way to improve the 

internalization is to modify the peptide to make it more hydrophilic while retaining 

the binding site to the target receptor. Future work will explore this possibility by 

conjugating modified cIBR peptide to DOX. If a more hydrophilic conjugate of DOX 
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can be synthesized then it might be possible to change the internalization mechanism 

of DOX-peptide conjugate from an energy independent pathway to a receptor 

mediated process. 
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Chapter 3 

 

 

Effect of modification of the physicochemical properties of ICAM-1-derived 

peptides on internalization and intracellular distribution in the human leukemic 

cell line HL-60  
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3.1 Introduction 

Targeted drug delivery methods have been exploited to improve the delivery of 

cytotoxic drugs to lower their side effects. These delivery methods normally take 

advantage of the special features of the target cells compared to other cells in the 

body. One of these features is the upregulation or selective expression of certain cell 

surface receptors in many types of cancers compared to the normal cells.1-3 

Furthermore, certain types of cells (leukocytes) express leukocyte function-associated 

antigen-1 (LFA-1) receptors, which are not expressed in other cell types.4,5 Thus, the 

LFA-1 receptor is an attractive target receptor for improving delivery of drugs to 

leukocytes. In general, peptides6, proteins,7,8 and antibodies9 have been employed as 

carriers of many cytotoxic drugs to target a specific cell surface receptor with some 

success in in vitro and in vivo model systems. 

Doxorubicin (DOX) is an anticancer agent with cardiotoxicity as one of its side 

effects. To lower side effect, DOX has been conjugated to different carrier molecules 

such as peptides,10 proteins11 and other macromolecular carriers.12 In addition, DOX 

has fluorescence properties that can be used to follow the distribution of the conjugate 

in cells and in in vivo systems. The cytotoxicity of DOX is due to its intercalation of 

DNA in the nucleus. DOX structure can be divided into three functional domains: (1) 

the hydrophobic anthraquinone moiety is for DNA intercalation, (2) several 

substituents on the cyclohexyl ring are involved in H-bonding with the DNA bases, 

and (3) the daunosamine sugar moiety can bind to the minor groove of DNA.13 DOX 

has been conjugated to carrier molecules through the primary amine of the 
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daunosamine sugar,14 C13 ketone functionality,15 and C14 alcoholic hydroxyl 

functionality.10 Among these conjugation sites, the primary amine of the daunosamine 

sugar moiety has been used to conjugate DOX to many different peptides.14,16,17 

Previously, we have conjugated DOX to cIBR peptide 

cyclo(1,12)PenPRGGSVLVTGC  to produce DOX-cIBR conjugate. This conjugate 

entered into the human leukemic cell line, HL-60, in an energy-independent manner 

(e.g., passive diffusion) and showed a diffuse fluorescence distribution pattern in the 

cytosol instead the punctate distribution pattern that was expected for a molecule 

internalized by receptor-mediated endocytosis. The passive diffusion uptake behavior 

of DOX-cIBR could be due to the hydrophobicity of the conjugate because the 

octanol/aqueous buffer distribution ratio (pH 7.4) determination indicated that DOX-

cIBR conjugate is highly hydrophobic. Therefore, we hypothesize that the 

hydrophobicity of the conjugate is one of the factors contributing to passive diffusion 

of the conjugate over the receptor-mediated entry of the conjugate.14 A DOX 

conjugate with CNGRC cyclic peptide (DOX-CNGRC) for targeting CD-13 receptor 

has high hydrophobicity and showed a distribution similar to the DOX-cIBR.10 

The present work is designed to test the hypothesis that increasing the 

hydrophilicity of the conjugates may alter the entry mechanisms of DOX-cIBR-

derivatives into HL-60 cells from passive diffusion to receptor-mediated uptake. Two 

approaches were used to change the physicochemical properties of the conjugate. The 

first was to change the hydrophobicity of the peptide by eliminating the hydrophobic 

residue at the C-terminus of cIBR. In this case, we have modified cIBR peptide to 
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cIBR7 peptide (cyclo(1,8)CPRGGSVC) by eliminating four hydrophobic residues at 

C-terminal of cIBR and by replacing the Pen1 residue with a Cys residue (Figure 

3.1a,b). It is interesting to find that cIBR7 peptide has better activity to inhibit 

heterotypic T-cell adhesion than that of the parent cIBR peptide, suggesting that 

cIBR7 binds more selectively to the I-domain of LFA-1 than does cIBR peptide.18 

The second method was to incorporate 11-amino-3,6,9-trioxaundecanate linker 

between DOX and cIBR7 peptide to further increase the hydrophilicity of the 

conjugate to give DOX-PEGcIBR7 (Figure 3.1c). Fluorescein isothiocyanate (FITC) 

was also conjugated to cIBR7 peptide to give FITC-cIBR7 to check for endocytic 

uptake as was observed for FITC-labeled cIBR (FITC-cIBR).14 In this work, we 

compared the entry mechanisms and the intracellular disposition of DOX-cIBR7, 

DOX-PEGcIBR7, and FITC-cIBR7 in HL-60 cells. The results from these studies 

will allow us to test whether the changes in the physicochemical properties of the 

conjugates influence their entry mechanism.  

 

3.2 Experimental  

3.2.1 Cells and Chemicals  

The human acute promyeloid leukemic cell line HL-60 was kindly provided by 

Dr. Yueshang Zhang (Arizona Cancer Center, University of Arizona). Cells were 

grown in RPMI 1640 medium supplemented with 10% fetal bovine serum, 100 

units/mL of penicillin G sodium, 100 µg/mL of streptomycin sulfate, and 2.0 g/L of  



 92

 

 

Figure 3.1 Modification of the cIBR peptide for conjugation with DOX-
hemisuccinate adduct. (a) cIBR [cyclo(1,12)PenPRGGSVLVTGC] peptide (b) cIBR7 
[cyclo(1,8)CPRGGSVC] peptide was synthesized by removing ‘LVTG’ from the C-
terminal of cIBR peptide. Pen1 in cIBR was replaced by Cys1 in cIBR7 (c) PEGIBR7 
peptide was synthesized by conjugating 11-amino-3,6,9-Trioxaundecanoic acid to the 
N-terminal of the IBR7 peptide by the solid phase method. PEGIBR7 was cyclized to 
obtain PEGcIBR7. 
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NaHCO3. Cells were maintained at a density of 1 × 106 to 2 × 106 cells/mL at 37 °C 

in a humidified 5% CO2 atmosphere. Doxorubicin hydrochloride, succinic anhydride, 

and diisopropylethyl amine were obtained from Sigma Chemicals (St. Louis, MO). 

Solvents used in peptide synthesis were of pure analytical grade. All reagents, resins, 

and Fmoc-protected amino acids for peptide syntheses were purchased from Peptides 

International (Louisville, KY), Advanced ChemTech (Louisville, KY), and Applied 

Biosystems (Foster City, CA). Fmoc-11-amino-3,6,9-trioxaundecanoic acid (Fmoc-

mini-PEG-3™) was purchased from Peptides International (Louisville, KY) and 

FITC-dextran (MW 10,000) was from Molecular Probes™ (Eugene, OR). 

 

3.2.2 Peptide Synthesis 

 Syntheses of linear IBR7 (CPRGGSVC) and PEGIBR7 (H2N-(CH2CH2-O-)3-

CPRGGSVC) peptides were performed on a Pioneer peptide synthesizer (PerSeptive 

Biosystems, CA) using the standard Fmoc solid-phase strategy with O-(7-

azabenzotriazole-1-yl)-N,N,N',N'-tetramethyluronium hexafluorophosphate (HATU) 

as the activating agent. Extended coupling cycles were employed. The resin-

containing peptide was washed several times with methylene chloride and then with 

methanol followed by vacuum drying. A cleavage cocktail containing trifluoroacetic 

acid (TFA, 90%), 1,2-ethane dithiol (3%), anisole (2%), and thioanisole (5%) was 

used during peptide cleavage from the solid support followed by precipitation in ice-

cold diethyl ether. Diethyl ether solution was allowed to stand overnight at 4 °C for 

maturation of the precipitate. Subsequently, the peptide precipitate was separated 
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from ether-containing scavengers by centrifugation. The crude linear peptides were 

purified by semi-preparative C18 reversed-phase HPLC. The cyclization of the linear 

peptides to give cIBR7 or PEGcIBR7 was carried out by bubbling air overnight into 

the peptide solution (0.06 mM) containing ammonium bicarbonate (0.05 M) and 

ammonium hydroxide at pH 8.5. The solution was lyophilized and crude cyclic 

peptides were purified by semi-preparative C18 reversed-phase HPLC. The molecular 

weights of cIBR7 (M+1 = 776.3 amu) and PEGcIBR7 (M+1 = 965.4 amu) peptides 

were confirmed by electrospray ionization mass spectrometry. 

 

3.2.3 Conjugation of Doxorubicin (DOX) with cIBR7 and PEGcIBR7 Peptides 

This reaction was performed according to the previously published method.14 

Briefly, the amino group in the sugar moiety of DOX was reacted with succinic 

anhydride in dimethyl formamide (DMF) in the presence of diisopropylethyl amine to 

give DOX-hemisuccinate (M+1 = 643 amu). Subsequently, DOX-hemisuccinate was 

reacted with the N-terminus of cIBR7 or PEGcIBR7 peptide in the presence of HBTU 

(O-benzotriazole-N,N,N´,N´-tetramethyl-uronium-hexafluoro-phosphate) in DMF to 

give DOX-cIBR7 or DOX-PEGcIBR7, respectively (Figure 3.2a,b). The progress of 

the reaction was monitored with C18 reversed-phase analytical HPLC. Both of the 

DOX-conjugates were purified using semi-preparative HPLC with a C18 column; the 

molecular weights of the DOX-cIBR7 (M+1 = 1401.5 amu) and DOX-PEGcIBR7 

(M+1 = 1590.6 amu) were confirmed by mass spectrometry. 
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3.2.4 Conjugation of FITC with cIBR7 and cIBR Peptides 

Conjugation of FITC with cIBR7 was done according to our previously published 

method.14,19 Briefly, pure cIBR7 peptide (0.06 mmol) was dissolved in 5 mL of 

Nanopure water; 0.12 mmol fluorescein-5-isothiocyanate (Sigma) was added to the 

peptide solution and the pH was adjusted to 10 by addition of 1.0 N NaOH solution. 

After stirring for 2 h with a magnetic stirrer, the reaction mixture was neutralized by 

the addition of 10% v/v acetic acid solution (Figure 3.3). The solution was 

lyophilized and the resulting crude product of FITC-cIBR7 was purified by semi-

preparative C18 reversed-phase HPLC. The pure FITC-cIBR7 was analyzed by 

analytical C18 reversed-phase HPLC and identified by electrospray ionization mass 

spectrometry (M+1 = 1165.3). Conjugation of FITC with cIBR was done in an 

identical manner and is described elsewhere.14 

 

3.2.5 Determination of Octanol/Aqueous Buffer Distribution Ratios (pH 7.4) for 

DOX-cIBR7 and DOX-PEGcIBR7 Conjugates 

1.0 mL of n-octanol (Fisher) was added to 10 mL of PBS (pH 7.4) containing 2.0 

µM of DOX-cIBR7 or DOX-PEGcIBR7 in a separatory funnel and was mixed for 30 

min. The two phases were allowed to equilibrate for 24 h while protected from light. 

The concentration of DOX-cIBR7 or DOX-PEGcIBR7 in each phase was determined 

using a fluorescence spectrophotometer (RF5000U, Shimadzu Inc., Kyoto, Japan). 

The fluorescence intensity of DOX-cIBR7 or DOX-PEGcIBR7 in aqueous buffer  
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solutions (pH 7.4) was measured at different concentrations, and individual 

calibration curves were generated using Microcal Origin version 6.0. 

 

3.2.6 Temperature-Dependent Internalization Studies of DOX-cIBR7, DOX-

PEGcIBR7 and DOX using HL-60 Cells 

 HL-60 cells were centrifuged and re-suspended in RPMI 1640 medium at a 

concentration of 2 × 106 cells/mL. 250 µl of the cell suspension was added separately 

to 250 µl of a solution of DOX-cIBR7, DOX-PEGcIBR7, and DOX to reach a final 

conjugate or drug concentration of 10 µM. Cell viability during incubation at this 

concentration of the compounds was confirmed separately using Trypan Blue staining 

(data not shown). The cells were incubated at 37 °C and 4 °C for 1 h while protected 

from light, and then centrifuged at 1000 rpm for 2 min. The cells were washed three 

times with ice-cold phosphate-buffered saline (PBS) and suspended in 20 µL of PBS. 

Final cell density used for the microscopic observation was 25 × 106 cells/mL. 10 µL 

of the cell suspension in PBS was put on a slide for observation. A Nikon Eclipse 80i 

microscope equipped for epifluorescence was used to view the cells, and the 

fluorescence emissions of DOX were observed using a rhodamine filter set. Untreated 

cells were viewed with the same filter to check for autofluorescence. The images 

were captured using an Orca ER camera (Hamamatsu, Inc., Bridgewater, NJ) 

controlled by the Metamorph program (Version 6.2, Universal Imaging Corp., West 

Chester, PA). 
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3.2.7 Temperature-Dependent Internalization Studies of FITC-cIBR7 using HL-60 

Cells 

HL-60 cells were incubated in PBS at a cell density of 5 × 105 cells/mL for 10 

min at 37 °C and resuspended in PBS at a cell density of 2 × 106 cells/mL. 250 µL of 

cell suspension was added separately to 250 µl of FITC-cIBR7 (125 µM, in PBS) and 

250 µL of FITC-dextran (200 µM, in PBS). Cells were incubated at 37 °C and at 4 °C 

in the dark for 1 h. After the incubation, cells were treated as described above (3.2.6). 

Control cells without any compound were treated and prepared in the same manner. 

Cells were observed using a Yokugawa-type spinning disk confocal microscope. 

Images were captured using an EM-CCD camera (Hamamatsu) controlled by the 

SlideBook program (version 4.1, Intelligent Imaging Innovations, Denver, CO). 

 

3.2.8 Colocalization Studies of FITC-cIBR and FITC-cIBR7 with Alexa 647-

Dextran using HL-60 Cells 

For the colocalization studies, HL-60 cells were washed with PBS and 

resuspended in PBS at a cell density of 2 × 106 cells/mL. 5 × 105 cells were incubated 

with 25 µM Alexa-647- conjugated dextran (dextran, Alexa Fluor® 647; 10,000 MW, 

anionic, fixable; Molecular Probes®, Eugene, OR) and 125 µM FITC-cIBR or FITC-

cIBR7 for 1 h at 37 °C. At the end of the incubation, cells were washed three times 

with ice-cold PBS and finally resuspended in 20 µL of PBS. 10 µL of the cell 

suspension in PBS was placed on a slide for microscopic observation. Untreated cells 

were also viewed under the same conditions to check for autofluorescence. Cells were 
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observed using a Yokugawa-type spinning disk confocal microscope. Images were 

captured using an EM-CCD camera (Hamamatsu) controlled by the SlideBook 

program (version 4.1).  

 
 
3.3 Results 
 
3.3.1 Syntheses of DOX-cIBR7, DOX-PEGcIBR7, FITC-cIBR7 and FITC-cIBR 

The linear peptides IBR7 and PEGIBR7 were synthesized by the solid phase 

method using Fmoc chemistry and were purified by semi-preparative HPLC. Both 

linear peptides were cyclized by air oxidation in high dilution conditions to give 

cIBR7 and PEGcIBR7. Then, cIBR7 and PEGcIBR7 cyclic peptides were conjugated 

to DOX-hemisuccinate to yield DOX-cIBR7 and DOX-PEGcIBR7 (Figure 3.2). 

FITC-cIBR7 and FITC-cIBR were also synthesized and purified using semi-

preparative HPLC (Figure 3.3).  

 

3.3.2 Determination of Octanol/Aqueous Buffer Distribution Ratios (pH 7.4) for 

DOX-cIBR7 and DOX-PEGcIBR7 Conjugates 

The results from the octanol/aqueous buffer distribution ratio studies are 

presented in Table 3.1. It is clear that DOX-cIBR7 conjugate is more hydrophilic 

(distribution ratio = 4.3, pH 7.4) than DOX-cIBR (distribution ration = 14.1, pH 

7.4),14 indicating that removal of the C-terminal hydrophobic amino acid residues 

(i.e., LVTG) had a significant effect on the physicochemical properties of the 
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Table 3.1 Octanol/aqueous buffer  (pH 7.4) distribution ratios for DOX-

cIBR7 and DOX-PEGcIBR7 and comparison with DOX-cIBR from 

reference 14 

Compound Distribution Ratio (D) Log D 

DOX-cIBR7 4.3 0.63 

DOX-PEGcIBR7 0.9 -0.04 

DOX-cIBR 14.1 1.14 
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conjugate. As expected, incorporating a hydrophilic linker into DOX-PEGcIBR7 

further enhanced its hydrophilicity to a distribution ratio of 0.9 at pH 7.4 (Table 3.1). 

As expected, the changes in the structure of the conjugates alter their 

physicochemical properties for high hydrophobic DOX-cIBR to a more hydrophilic 

DOX-PEGcIBR7 conjugate. 

 

3.3.3 Temperature-Dependent Internalization of DOX-cIBR7, DOX-PEGcIBR7 in 

Comparison with DOX using HL-60 Cells 

Because the receptor-mediated entry processes are energy dependent, reduction of 

temperature suppresses the endocytic uptake pathway. Therefore, the internalization 

mechanisms of DOX-cIBR7, DOX-PEGcIBR7, and DOX were evaluated at 37 °C 

and 4 °C. Both DOX-cIBR7 (Figure 3.4) and DOX-PEGcIBR7 (Figure 3.5) 

conjugates showed a diffuse fluorescence distribution pattern in the cellular 

cytoplasm at 37 °C (Figures 3.4a and 3.5a). There were no punctate endocytic 

fluorescence localization patterns inside the cells. Similar fluorescence pattern was 

seen for DOX-cIBR. The internalization of DOX-cIBR7 and DOX-PEGcIBR7 

conjugates at 4 °C produced a diffuse fluorescence of the conjugates inside the cell 

cytosol (Figures 3.4b and 3.5b) without any apparent difference from the 

internalization at 37 °C. These results suggest that the entry of DOX-cIBR7 and 

DOX-PEGcIBR7 conjugates was not via endocytic pathway but via passive diffusion. 

As observed previously, DOX itself was localized inside the nucleus when incubated 

at 37 °C with the cells for 1 h (Figures 3.4c and 3.5c). Lowering the temperature 
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Figure 3.4 DOX-cIBR7 conjugate entry into the HL-60 cells was not affected by 
change in temperature. Panel (a) shows that DOX-cIBR7 showed diffuse 
fluorescence distribution in the cell cytoplasm after incubation at 37 °C. It did not 
show the punctate intracellular stain indicative of endocytosis. Panel (b) shows that 
incubation at 4 °C did not inhibit the conjugate entry or change the distribution 
pattern. For comparison, profiles of the cells incubated with DOX at 37 °C and 4 °C 
are shown in panels (c) and (d), respectively. 

 

 

37 °C

4 °C

DOX-cIBR7 DOX

a) c)

d)b)
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Figure 3.5 An increase in hydrophilicity of the DOX-PEGcIBR7 conjugate did not 
change the cellular entry mechanism or the distribution pattern compared to DOX-
cIBR7 in HL-60 cells. Panel (a) shows cells incubated with DOX-PEGcIBR7 at 
37 °C. Panel (b) shows cells incubated with DOX-PEGcIBR7 at 4 °C. Under both 
conditions, the conjugate showed a diffuse cytoplasmic fluorescence distribution 
patterns. Profiles of the cells incubated with DOX at 37 °C and 4 °C are shown in 
panels (c) and (d), respectively. 

 

 

DOX-PEGcIBR7 DOX

d)

c)a)

b)

37 °C

4 °C
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to 4 °C reduced the fluorescence intensity of DOX, indicating that the uptake of DOX 

was suppressed and the distribution was no longer completely localized in the cell 

nucleus (Figures 3.4d and 3.5d). Instead, DOX was distributed throughout the cell, 

including the cell cytoplasm as described previously.14 Temperature-dependent entry 

of DOX has been proposed to be due to the aggregation of DOX molecules.20 

Increasing the hydrophilicity of the conjugates did not change the mode of entry of 

DOX-cIBR7 and DOX-PEGcIBR7 conjugates from passive diffusion to receptor-

mediated endocytosis. It is possible that the DOX portion of the conjugate has more 

impact than the peptide fragment on the uptake behavior. 

 

3.3.4 Temperature-Dependent Internalization of FITC-cIBR7 using HL-60 Cells 

To evaluate whether cIBR7 can be internalized via a receptor-mediated pathway, 

FITC-cIBR7 was synthesized and evaluated for its internalization properties in a 

temperature-dependent manner. FITC-dextran was used as a positive control  because 

it is known to enter the cells by fluid phase non-specific endocytosis.21 When 

incubated at 37 °C for 1 h, FITC-cIBR7 localized inside the HL-60 cells in the form 

of punctate stains (Figure 3.6a) suggesting that it was located in the endocytic 

compartments. It did not show a diffuse cytoplasmic distribution pattern as did the 

DOX-peptide conjugates. FITC-dextran also showed endosomal punctate localization 

after incubation at 37 °C (Figure 3.6c). When the temperature was reduced to 4 °C, 

no fluorescence associated with cells incubated with FITC-cIBR7 (Figure 3.6b) or 

FITC-dextran (Figure 3.6d) was seen. Thus, lowering the temperature to 4 °C knocks  
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Figure 3.6 FITC-cIBR7 showed temperature-dependent internalization in HL-60 
cells. Panel (a) shows cells incubated with FITC-cIBR7 at 37 °C. Distinct localization 
of FITC-cIBR7 is indicative of an endocytic uptake pathway. (b) Incubation of the 
cells at 4 °C prevented the endocytic uptake of FITC-cIBR7, suggesting that the entry 
was energy-dependent. As a control, FITC-dextran internalization profiles at 37 °C 
and 4 °C are shown in panels (c) and (d), respectively. 

 

 

a)

d)b)

c)

FITC-cIBR7 FITC-dextran

37 °C

4 °C
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out the endocytic uptake pathway. These results suggested that FITC-cIBR7 entry 

into the HL-60 cells took place via the endocytic uptake pathway, and this entry was 

energy dependent. 

 

3.3.5 Colocalization Studies of FITC-cIBR and FITC-cIBR7 with Alexa 647-

Dextran using HL-60 Cells 

To understand the intracellular distribution and destination of the conjugates, cells 

were incubated with Alexa-647-dextran and either FITC-cIBR or FITC-cIBR7. The 

excitation and emission maxima for FITC are at 494 nm and 521 nm, respectively, 

while the excitation and emission maxima for Alexa-647 are at 650 nm and 668 nm, 

respectively. Alexa-647-dextran was used to avoid the artifacts of bleed-through or 

crossover of the fluorescence emission. The endocytosis of the dextran molecules is 

via a non-specific, fluid-phase endocytic pathway, and these molecules move 

gradually through the early endosomes, the late endosomes and finally into the 

lysosomes after entering the cells.21 Therefore, colocalization of the FITC-labeled 

peptides with dextran molecules would indicate that the FITC-labeled peptides 

followed a pathway similar to that of dextran into the lysosomes. The results showed 

that FITC-cIBR did not completely colocalize the with dextran molecules after 

incubation for 1 h (Figure 3.7). Even though, there was a general trend of localization 

of FITC-cIBR and dextran molecules in the similar areas of the individual cells, they 

did not completely superimpose. Differences in the uptake of these two molecules can 

be observed and is a possible reason for this different distribution (Figure 3.7 a,b) 
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It may also suggest localization of some fractions of the peptide in other cellular 

compartments. Distribution profile of FITC-cIBR7 with dextran molecules was 

similar to that between FITC-cIBR and dextran (Figure 3.8). These observations 

suggested that both FITC-cIBR and FITC-cIBR7 might follow a pathway different 

from that of dextran inside the cell. It may also indicate that 1 h time period was not 

enough to allow for the molecules to reach their intracellular destination. 

 

3.4 Discussion 

Previously, we have shown that FITC-cIBR conjugate enters the HL-60 and Molt-

3 cells via an energy-dependent pathway.14 In addition, FITC-cIBR colocalizes with 

anti-LFA-1 antibody on MOLT-3 T-cells, indicating that it binds to the I-domain of 

LFA-1.22 Recently, cIBR peptide was shown (by antibody inhibition and NMR 

studies) to bind to the I-domain of LFA-1.23,24 Using mutation studies, smaller linear 

and cyclic derivatives of cIBR peptide have been found to have similar or better 

activity than parent cIBR to inhibit ICAM-1/LFA-1-mediated heterotypic T-cell 

adhesion.18,25 During these studies, we found that cIBR7 cyclic peptide has better 

activity than cIBR to inhibit heterotypic T-cell adhesion, and the binding affinity of 

cIBR7 to the isolated I-domain is higher than that of cIBR peptide. However, the 

internalization properties of cIBR7 have not been elucidated until now. 

Mutation and alanine-scanning studies indicated that the recognition sequence in 

cIBR peptide is at the Pro-Arg-Gly-Gly (PRGG)25 and this sequence is in a β-turn  
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conformation as determined by NMR studies.26 The importance of the “PRGG” 

sequence and its β-turn conformation was further demonstrated by the efficiency of 

linear hexapeptide LH7 (PRGGSV) in inhibiting the heterotypic T-cell adhesion to 

Caco-2 monolayers. LH7 peptide was cyclized (to generate CH7) using the N- and C- 

termini, which resulted in stabilization of the β-turn structure at the PRGG sequence. 

However, N- to C-terminal conjugation did not leave any suitable chemical 

functionality in the peptide for conjugation with drugs. In addition, introduction of the 

Lys5 in place of Ser5 to give cyclo(1,6)PRGGKV for providing a drug conjugation 

site resulted in lower peptide activity.25 Therefore, the cyclization method was altered 

by using a disulfide bond to produce cIBR7 (cyclo(1,8)CPRGGSVC), which has free 

N- and C- termini that can be conjugated to drugs. As mentioned previously, this 

peptide has better binding properties to LFA-1 than the parent cIBR. In addition, due 

to the removal of the C-terminal hydrophobic residues (‘LVTG’) from the parent 

cIBR peptide, cIBR7 is more hydrophilic than cIBR and offers an attractive 

opportunity to explore the influence of the physicochemical properties on the 

internalization of the DOX-peptide conjugates.  

To evaluate the effect of conjugate hydrophilicity on its uptake properties, we 

have synthesized DOX-cIBR7, DOX-PEGcIBR7, and DOX-cIBR. DOX-cIBR7 

conjugate was, indeed, more hydrophilic than DOX-cIBR. Addition of a more 

hydrophilic linker in DOX-PEGcIBR7 produced a conjugate that was more 

hydrophilic than DOX-cIBR7. Unfortunately, both DOX-cIBR7 and DOX-

PEGcIBR7 conjugates entered the HL-60 cells by an energy-independent pathway. 
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Reduction of the temperature from 37 °C to 4 °C failed to inhibit the entry of the 

conjugates inside the cells. In addition, the distribution profile of the conjugates 

inside the cell cytosol was indicative of the non-endocytic uptake pathway. The 

conjugates did not show localization into distinct endocytic compartments. The 

results indicated that the change in hydrophobicity of the DOX-peptide conjugates 

does not influence their internalization behavior. 

There are some possible explanations for the internalization behavior of the DOX-

peptide conjugates. First, there is a possibility that the DOX segment of the conjugate 

interacts with the DOX segments of other molecules via anthraquinone stacking to 

form aggregates. These aggregates can readily partition into the lipid bilayer in spite 

of the presence of the targeting peptide. Second, the formation of aggregates can 

impose steric hindrance to the recognition site of the peptide by the LFA-1 receptors 

on the cell surface. Third, the DOX-segment of the conjugate has a high affinity for 

the membrane components, which would make it difficult for the remaining part of 

the conjugate (i.e., peptide portion) to bind to LFA-1 and control the internalization 

process of the conjugate. 

Aggregation of DOX molecules in aqueous solution has been observed and was 

proposed as the reason for the saturation kinetics and temperature-dependent entry of 

DOX into human red blood cells. At normal physiological pH and temperature, DOX 

molecules exist in both neutral and charged forms; however, only the neutral form 

partitions into the cell membrane. Random association of the molecules through 

hydrophobic interactions leads to formation of aggregates with associated charges. 
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Only the uncharged monomer form can permeate the cell. Reduction of temperature 

leads to lower permeation into the cell as it increases aggregate because of lower 

Brownian motion.20 Similarly, dimer and tetramer formation for DOX and 

daunorubicin (DNR) in aqueous solution have also been reported. These aggregation 

reactions take place through self-association of the planar aromatic ring systems.27 

DNR molecules were found to dimerize below 50 nM concentration; at higher 

concentration the dimers were proposed to self associate leading to a much more 

complex association scheme.28 The possibility of transporter-mediated uptake for 

DOX has also been suggested. Structural modification of anthracycline antibiotics 

produced tremendously different cellular entry behavior into Ehrlich ascites tumor 

cells. DOX, DNR, and rubidazone (RBD) showed a saturable, biphasic uptake pattern 

into these cell lines with the initial rate of uptake being influenced by the structural 

modifications. DOX, DNR, and RBD showed temperature-dependent uptake. 

Moreover, unlabeled DNR inhibited the uptake of [3H]-DNR into these cells. All 

these properties are characteristics of transporter-mediated uptake.29 Although there is 

no proof of any carrier-mediated transport for DOX in HL-60 cells, this idea may still 

be plausible for the uptake of DOX in addition to passive diffusion. It is not 

surprising that DOX and DNR have high affinity toward the cell membrane as there 

are membrane proteins with aromatic amino acids that can form molecular 

associations with the drug molecules through pi-electron interaction. 

The aromatic doxomycinone moiety in DOX is responsible for its hydrophobic 

nature.13 Similar to DOX-cIBR, DOX conjugates with other peptides could have 
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higher hydrophobicity than DOX itself.10 For example, DOX-CNGRC conjugate was 

internalized to a similar extent into the cells with different levels of expression of the 

target receptor, indicating that this conjugate was not internalized via a receptor-

mediated pathway.10 DOX-cIBR also entered the HL-60 cells in the absence of 

energy-dependent mechanism and showed diffuse cytoplasmic distribution. 

Hydrophobicity of the DOX-cIBR conjugate was proposed to be the reason for its 

energy-independent cytosolic entry into the HL-60 cells. A similar hypothesis was 

proposed for the cytosolic, non-specific entry of DOX-CNGRC conjugate into the 

cells.10 Our previous14 and present studies clearly demonstrate that the hydrophobicity 

of the DOX-peptide conjugates is not the only factor in determining their 

internalization behavior. The distribution ratio for DOX-CNGRC (5.3, pH 7.4) is 

similar to our DOX-cIBR7 (distribution ratio 4.3, pH 7.4). DOX-PEGcIBR7 has a 

distribution ratio of 0.9 at pH 7.4, which is comparable to DOX (distribution ratio 1.2, 

pH 7.410,14). However, DOX-PEGcIBR7 has internalization properties similar to the 

other DOX conjugates. These results suggested that the entry of DOX-peptide 

conjugates may not be influenced by hydrophobicity or the targeting moiety of the 

conjugate but may be driven by the physical properties of the DOX fragment of the 

conjugate. Although there are several proposals on how DOX enters the cells, there 

have been no systematic studies to elucidate the mechanism(s) of DOX entry into the 

cells. 

The hypothesis that the discrepancy in the internalization behavior of the DOX-

peptide conjugates was due to the properties of the DOX molecule or the final 
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conjugate was demonstrated by the energy-dependent uptake of FITC-cIBR7 peptide. 

If this were due to the properties of cIBR7 peptide, FITC-cIBR7 would also show 

energy-independent internalization properties. However, FITC-cIBR7 showed a 

temperature-dependent endocytic entry into the HL-60 cells similar to that of FITC-

cIBR.14  Similarly, FITC-labeled transferrin protein showed energy-dependent uptake 

into L929 cells, whereas the DOX-conjugate of transferrin protein (TRF-DOX) 

showed energy-independent cellular entry into the same cells. In addition, the uptake 

of the TRF-DOX conjugate could not be blocked by excess TRF.8  

Colocalization study of both FITC-cIBR and FITC-cIBR7 with dextran molecules 

suggested the different cellular localization of the peptides compared to the dextran 

molecules. These peptides might take a different route inside the cells after their 

endocytic entry compared to dextran. It is also possible that the peptides were 

captured on their way to the final intracellular destination. Target receptor (LFA-1) 

for these peptides was shown to undergo caveolin mediated endocytosis. In human 

polymorphonuclear neutrophils LFA-1 receptor did not colocalize with LAMP-1 (a 

marker for late endosome or lysosome). In CHO cells LFA-1 never colocalized with 

clathrin coated pits.30  Molecules internalized by the clathrin coat mediated pathway 

are often finally localized in the cellular lysosomes. Molecules internalized by 

caveolin mediated endocytosis are also known to be finally localized in the cellular 

golgi compartment.31 All of these observations suggested that cIBR7 peptide, like 

cIBR peptide, has the potential to target drugs to leukocytes. Identification of the 

possible digestion product of the FITC-labeled peptides will help design a specific 
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conjugation approach to release the free drug for interaction with intracellular targets. 

As an alternative method to deliver DOX, this drug can be encapsulated in 

nanoparticles or liposomes that are decorated with targeting peptides to avoid non-

specific delivery of DOX as shown above. The objective would be to prevent the 

formation of DOX aggregates followed by direct interaction of DOX and its 

aggregates with cell membranes. Decorating the surfaces of nanoparticles with cIBR 

or cIBR7 peptide may allow internalization of these carriers by LFA-1-expressing 

leukocytes to carry the loaded drugs into the cells. 

 

3.5 Conclusions 

In conclusion, we have shown that internalization of DOX-peptide conjugates is 

not influenced by the physicochemical properties of the conjugate. Irrespective of the 

size or hydrophobicity of the conjugates, they retain the energy-independent cellular 

entry. Unlike DOX-cIBR7 conjugates, the FITC-cIBR7 peptides showed energy-

dependent cellular entry into the cells, suggesting that these two conjugates have 

different internalization mechanisms. The FITC-labeled peptides showed different 

intracellular distribution compared to dextran molecules inside the cells. Although 

DOX is a highly effective anticancer agent, this molecule presents a unique challenge 

for targeted drug delivery. Currently, we are conjugating cIBR7 peptide with 

anticancer drugs having different physicochemical properties (i.e., hydrophilicity) for 

selective delivery to leukemic cells. The hope is that the drug-cIBR/cIBR7 conjugate 

will enter via LFA-1-mediated endocytosis similar to the entry of FITC-cIBR/cIBR7.  
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Chemical and in vitro biological stability analyses of methotrexate conjugate of 

cIBR peptide  
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4.1 Introduction 

Peptides that are derived from the intercellular adhesion molecule-1 (ICAM-1) 

and leukocyte function-associated antigen-1 (LFA-1) receptors have been shown to 

inhibit ICAM-1/LFA-1-mediated homotypic and heterotypic T-cell adhesion.1-5 

Cyclic peptide cIBR, cyclo(1,12)PenPRGGSVLVTGC, has a sequence derived from 

the D1 domain of the ICAM-1 and is an efficient inhibitor of T-cell adhesion.6 This 

peptide binds to the LFA-1 receptor on the surface of the leukocytes (i.e., T cells) and 

is subsequently internalized into the cell.6,7 Antibody inhibition8 and NMR  binding9 

studies indicate that cIBR peptide binds to the I-domain of LFA-1. Because the 

peptide is internalized into leukocytes via a receptor-mediated process, it is an 

attractive molecule for selective delivery of cytotoxic drugs to the leukocytes. 

Utilizing cIBR peptide as a targeting molecule can be accomplished by conjugating 

the drug to cIBR peptide to make drug-cIBR conjugates. Thus, we have conjugated 

cIBR peptide to fluorescein isothiocyanate (FITC) and doxorubicin (DOX) to produce 

FITC-cIBR and DOX-cIBR conjugates for selective delivery of these molecules to 

the human leukemic cell line, HL-60.10 It was interesting to find that FITC-cIBR 

entered the HL-60 cells via receptor-mediated endocytosis while DOX-cIBR entered 

the cells by another process.10  As a control, the uptake of FITC-cIBR and DOX-cIBR 

was evaluated using human umbilical vein endothelial cells (HUVEC). The results 

showed that DOX-cIBR entered into HUVEC but FITC-cIBR entry was inhibited, 

suggesting that FITC-cIBR is internalized by LFA-1-expressing cells by a receptor-

mediated pathway, but DOX-cIBR enters the cells via a non-receptor-mediated 
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pathway (i.e., passive diffusion).10 Perhaps due to the hydrophobic nature of the 

DOX-cIBR conjugate, it entered both the LFA-1-positive (HL-60) and LFA-1-

negative (HUVEC) cells via an energy-independent pathway or passive diffusion.10  

We have conjugated the cIBR peptide to methotrexate (MTX) to produce MTX-

cIBR for selective delivery of MTX to LFA-1-expressing leukocytes for treating 

leukemia and autoimmune diseases [i.e., rheumatoid arthritis (RA) and multiple 

sclerosis (MS)]. The hypothesis is that MTX-cIBR will be directed toward LFA-1-

expressing cells (i.e., leukocytes) over the cells that do not express LFA-1, so the 

conjugate would have lower side effects than MTX alone. MTX was selected as the 

drug molecule because it is being used to treat leukemia at high doses11,12 and 

autoimmune diseases such as rheumatoid arthritis at low doses.13,14 The cellular 

uptake of MTX is mediated by reduced folate carrier (RFC) and membrane folate-

binding protein (mFBP), and thus, these cellular uptake processes could occur non-

selectively in different cells, which then could contribute to potential side effects.15 

MTX may also generate drug resistance due to (a) changes in RFC expression level 

and altered transport kinetics, and (b) increased dihydrofolate reductase (DHFR) 

expression with continued use of the drug. Several other reasons for MTX resistance 

have also been proposed in the literature.16,17 MTX has been effectively delivered to 

cells using its conjugates with different carrier molecules, including peptides,16 

proteins,18,19 and polymers.20,21 Using target receptors other than RFC for cellular 

entry, the conjugate may possibly avoid cellular drug resistance. MTX-cIBR 

conjugate was synthesized by attaching the γ-carboxylic acid of MTX to the N-
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terminal of the peptide (Figure 4.1).22 Similar to cIBR peptide, MTX-cIBR inhibited 

the anti-I-domain monoclonal antibody (mAb) binding to LFA-1 in a concentration-

dependent manner.22 

In this work, we evaluated the chemical and enzymatic stability of MTX-cIBR 

conjugate under different conditions for optimizing the formulation and adjusting the 

dosing regimen of the conjugate to determine its effectiveness in in vivo systems. 

MTX-cIBR suppressed the progress of rheumatoid arthritis (RA) in the rat adjuvant 

model. The conjugate reduced bone loss, marrow inflammation, and paw weight in 

animals with RA. Although MTX-cIBR has lower toxicity compared to MTX, the 

conjugate had to be administered at a relatively higher dose (5 mg/kg body weight) 

than MTX alone to elicit RA suppressive activity. One possible explanation is that 

pharmacokinetics and in vivo stability of the conjugate may influence its biological 

activity. To test this hypothesis, the stability profiles of the conjugate in rat plasma 

and tissue homogenates were evaluated. The optimum formulation conditions were 

also investigated by subjecting MTX-cIBR to different solution pH conditions at 

elevated temperature for accelerated stability analysis. In the future, the degradation 

mechanisms will be used to design a more stable conjugate for in vivo studies.  

 

4.2 Experimental 

4.2.1 Chemical Stability Studies of MTX-cIBR 

All solvents for peptide synthesis were of analytical grade. All reagents, 
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including Fmoc-protected amino acids for peptide synthesis, were purchased from 

Peptides International (Louisville, KY), Advanced ChemTech (Louisville, KY) and 

Applied Biosystems (Foster City, CA). All the reagents for conjugation reaction were 

from Sigma Chemicals (St. Louis, MO). For the stability studies under different pH 

conditions, all the chemicals were purchased from Sigma and Fisher Chemical (Fair 

Lawn, NJ). Amber colored 1 mL ampoules were from WHEATON Science Products 

(Millville, NJ). 

The stability of MTX-cIBR conjugate was determined at 70 °C. Buffers were 

prepared as described in Table 4.1. 100 µM of MTX-cIBR conjugate was prepared in 

suitable buffer and 130 µL of conjugate solution was transferred to 1 mL amber, 

flame-sealed ampoules. Triplicate samples were taken out of the oven and analyzed 

immediately at certain time points. A calibration curve was prepared for the conjugate 

and the concentration range for the calibration curve was kept wide enough to follow 

two half-lives for the degradation of the conjugate. For the calibration curve, each 

concentration value was determined in triplicate. 

 

4.2.2 HPLC Analysis of MTX-cIBR Degradation 

All the samples were analyzed for degradation using a Hewlett Packard 1050 

reverse phase HPLC system with UV absorbance detection (220 nm). A Zorbax C18 

column (2.1 × 50 mm, 5 µm particle size) was used as the stationary phase, and the 

column temperature was maintained constant throughout the analysis. Samples were 

taken out of the oven for each time point and transferred to an HPLC sample vial. 10 
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Table 4.1 The observed pseudo first-order rate constants and half-lives for 
MTX-cIBR conjugate at different pH conditions at 70 °C 

 

pH Buffer type kobs(h–1) t1/2 
(h) 

1.0 HCl 5.25 × 10–-1 1.32 

4.0 Acetate 3.2 × 10–3 216.56 

5.0 Acetate 1.3 × 10–3 533.08 

6.0 Phosphate 9 × 10–4 770.00 

7.0 Phosphate 1.2 × 10-–3 577.50 

8.0 Phosphate 3.1 × 10–-3 223.55 

10.0 Carbonate 2.3 × 10-2 30.13 

12.0 NaOH 7.4 × 10-2 9.29 

Ionic strengths of all the buffer solution were adjusted to 0.15 M with NaCl. 0.1 N 
HCl was used for pH 1; 0.01 N NaOH was used for pH 12. For all the other pH 
values, buffer concentration was kept at 50 mM. 
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µL of the sample was injected each time using a gradient program that started with 

100% solvent A (95% water, 5% acetonitrile and 0.1% formic acid) and was 

increased to 16% solvent B (95% acetonitrile, 5% water and 0.1% formic acid) over 

12 min followed by a ramp to increase the composition of solvent B to 100% by 14 

min. The system was maintained at 100% B for 2 min followed by a gradient change 

to 100% A over 4 min. All the concentrations were converted to Log concentration 

(Log C). Mean and standard deviation were measured for each time point for each pH 

value. Plots of Log C with time (h) were generated in SigmaPlot (version 9.01, Systat 

Software, Inc.) and the rate constants for degradation and half-lives were calculated 

from the plots. A plot of kobs with different pH values was used to create a pH rate 

profile for the conjugate at 70 °C. Ion-product of water (Kw) was calculated at 70 °C 

for the pH rate profile determination. 

 

4.2.3 Identification of Degradation Products of MTX-cIBR by LC-MS 

Degradation products were identified using a Q-Tof (Waters Micromass) system 

equipped with electrospray ionization capability. Masslynx™ (version 4.0) software 

was used for data collection and analysis. For the LC analysis, a Zorbax C18 column 

(5 cm × 1 mm, 3.5 µm, Micro-Tech Scientific) was used. Mobile phase composition 

was kept at 99% A (99% water, 1% acetonitrile, and 0.08% formic acid) for 1 min 

(flow rate 0.11 mL/min), reduced to 90% A over the next 1 min and to 80% A over 

the next 6 min (flow rate 0.11 mL/min). Solvent composition was changed to 95% B 

(99% acetonitrile, 1% water, and 0.06% formic acid) over next 7 min to flush the 
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column (flow rate 0.15 mL/min), and the composition was changed back to 99% A 

over 2 min (flow rate 0.13 mL/min). The Injection volume for each sample was kept 

at 5 µL. 

 

4.2.4 MTX-cIBR Conjugate Stability in Biological Media 

4.2.4.1 Stability of MTX-cIBR in Rat Plasma 

The stability of MTX-cIBR was evaluated in rat plasma. MTX-cIBR solution in 

DMSO (100 µM) was prepared as a stock solution. 10 µL of stock solution was 

mixed with 990 µl of rat plasma and incubated at 37 °C in a water bath (Precision 

reciprocal shaking bath, Thermo Electron Corporation, Model 2870). 100 µL samples 

were drawn after 0, 10, 20, 30, 45, 60, 90, and 120 min of incubation. Samples were 

immediately treated with 500 µL of chilled acetonitrile containing internal standard 

Alprenolol (1 µg/mL). All samples were vortexed for 10 s and incubated in ice, 

followed by centrifugation at 14,000 rpm for 15 min (Eppendorf Refrigerated 

Microcentrifuge, Model 5417R). Aliquots (100 µL) of the supernatant were injected 

into the mass spectrometer. The standard curve was prepared by adding known 

concentrations of MTX-cIBR solution to rat plasma followed by immediate addition 

of cold acetonitrile containing internal standard. The solutions for the standard curve 

were treated in the same way as the samples. Each time point was measured in 

triplicate and the data are represented as percent concentration remaining at each time 

point.  
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4.2.4.2 Stability of MTX-cIBR with Homogenized Rat Heart 

Tissue stability of MTX-cIBR was evaluated by incubating the conjugate with 

homogenized rat heart. 6.28 mL of Dulbecco’s PBS (1X) solution without Ca2+ and 

Mg2+ (Mediatech, Inc. Cellgro®) was added to 3.18 g of rat heart tissue in a test tube. 

The tissues in different tubes were homogenized using a sonifier (Branson Sonifier, 

Branson Ultrasonic Corporation, Danbury, CT) for 3–5 min. From the stock solution 

of MTX-cIBR used in the plasma stability studies, 10 µl of the compound solution 

was mixed with 990 µl of tissue homogenate and incubated at 37 °C in a water bath. 

At different time points (0, 10, 20, 30, 45, 60, 90, 120 min) after incubation, triplicate 

samples were drawn and treated in the same way as described above for plasma 

stability studies.   

 

4.2.4.3 LC-MS Analysis of MTX-cIBR Degradation in Biological Matrices 

An Integrated Cohesive Technologies LX-2 series liquid chromatography system 

(comprised of pump, autosampler, valve interface module) coupled with a 4000 Q 

Trap triple quadrupole mass spectrometer (Applied Biosystems MDS-SCIEX) was 

used to quantify the compound extracted from the biological matrices. The mass 

spectrometer was equipped with a Turbo ion-spray ionization source and was 

operated in the positive mode. Samples were detected by multiple reaction monitoring 

(MRM) scan mode. For chromatographic separation, an Agilent Technologies Eclipse 

XDB-C18 column (4.6 × 15 mm, 3.5 µm particle diameter) was used with solvent A 

(10 mM ammonium formate buffer at pH 3.5) and solvent B (acetonitrile with 0.1% 
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formic acid) with a flow rate of 1.0 mL/min. A combination of linear and step 

gradients was used for the liquid chromatography separation with the following 

solvent composition changes: (a) 90% A to 10% A over 17 s, (b) 10% A maintained 

for 2 min, (c) changed to 90% A over 50 s, and (d) maintained at 90% A for 17 s. 

 

4.3 Results  

4.3.1 Chemical Stability of MTX-cIBR 

Degradation of MTX-cIBR conjugate was monitored at pH values 1, 4, 5, 6, 7, 8, 

10 and 12, and the degradation products at acidic and basic pH values were identified. 

Upon incubation at 70 °C, the samples were analyzed up to two half-lives, and the 

degradation profile for MTX-cIBR appeared to follow pseudo first-order kinetics at 

all pH values. The Log C of MTX-cIBR was plotted against time for all pH values, 

and the half-lives of the conjugate are shown in Table 4.1.  

 

4.3.1.1 Degradation of MTX-cIBR at Acidic pH Conditions 

MTX-cIBR conjugate degraded rapidly at pH 1.0 with a half-life of 1.32 h (Table 

4.1). However, the stability of the compound increased dramatically at pH 4.0 (t1/2 = 

216.56 h). The maximum stability of the conjugate was at pH 6.0 (t1/2 = 770 h). 

Further increases in pH decreased the chemical stability of the conjugate (pH 7.0, t1/2 

= 577.5 h).  

The degradation products of the conjugate at acidic pH were analyzed by LC-MS. 

The parent MTX-cIBR (1, Figure 4.1) has two charges (m/z = 805.9), which are on 
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the side chain of the arginine residue and the tertiary amine of MTX. Because the 

degradation products at pH 1.0 and 4.0 were similar, only the products at pH 1.0 were 

identified. There are two major degradation products of the conjugate with double 

charges (2, m/z = 718.8; 3, m/z = 711.8) as determined using the isotopic distribution 

profiles (Figure 4.2). Compound 2 is the cleavage product of the C–N bond between 

the 6-methylpteridine and phenyl rings (pathway a, Figure 4.3), and the bond 

cleavage may be assisted by a positively charged tertiary amine as a leaving group 

(Figure 4.3). Compound 2 degraded further to compound 3 by releasing the methyl 

group from the phenyl amine moiety (pathway b). The HPLC profile indicated that 

the abundance of compound 3 gradually decreased with the increase in pH value, 

suggesting the reaction was pH-dependent. To confirm the identity of compounds 2 

and 3 when they were subjected to fragmentation, they both produced the compound 

4 with m/z = 1303.6 (z = +1). This suggested that the degradation was, in fact, in the 

drug portion of the conjugate as the cIBR peptide was intact even in this 

fragmentation product (pathway c, Figure 4.3). A minor degradation product 5 (m/z = 

727.8; z = +2) was derived from compound 2, and it was the product of peptide bond 

hydrolysis between Gly5 and Ser6 in the cIBR portion of the conjugate (pathway a, 

Figure 4.4). Further hydrolysis of compound 5 gave compound 6 (m/z = 661.3; z = 

+2). Compound 3 degraded further via dehydration of the Ser6 residue to produce 

compound 7 (Figure 4.5). A similar reaction could occur for the Thr10 residue to give 

a dehydrated product equivalent to compound 7. 
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Figure 4.5 The scheme shows the mechanism of degradation of compound 3 to 
compound 7 via a dehydration reaction at pH 1.0. 
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4.3.1.2 Degradation of MTX-cIBR at Basic pH Condition 

In the basic condition, as expected, the conjugate had the lowest stability at pH 12 

(t1/2 = 9.29 h, Table 4.1). The degradation characteristics at pH 10 were similar to 

those of at pH 12; therefore, only the degradation products at pH 12 were identified 

here. The parent MTX-cIBR showed a single peak before incubation at pH 12; upon 

incubation at pH 12, four peaks with the same molecular weight (i.e., 805.9, z = +2) 

appeared in the extracted ion chromatograms (Figures 4.6 and 4.7). These four 

products can be attributed to different amino acid stereoisomers on the peptide 

portion of the conjugate (e.g., compound 10, Figure 4.8). The stereoisomers were 

generated by a racemization reaction, which occurred at the Ser6 or Thr10 residues. 

The Ser and Thr residues may undergo dehydration and rehydration reactions to 

racemize the α-carbon and give a mixture of L-/D-Ser or L-/D-Thr. This hypothesis is 

supported by the observation of four different dehydrated peaks with m/z 797.4 (z = 

+2) in the chromatograms (Figure 4.7), which correspond to compounds 8 and 9 and 

their derivatives (Figure 4.8). These dehydrated products could only be generated 

from the β-elimination of the hydroxyl group in Ser6 and Thr10 (Figure 4.8). 

The dehydrated product 8 could undergo further degradation to form compound 

15 (m/z = 721.8, z = +2, Figure 4.9). Compound 15 is a product of a combination of 

the dehydration reaction, disulfide bond cleavage, and C-terminal amino acid 

hydrolysis. It is interesting to find that compound 8 undergoes further dehydration to   
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form alkene derivatives at both Ser6 and Thr10 to give intermediate 11. Further 

degradation of compound 11 via β-elimination at the Pen1 residue opened the cyclic 

peptide to give compound 12. The C-terminal Cys12 was hydrolyzed from the 

peptide via intermediates 13 and 14 to produce compound 15. Although it is a minor 

product, this product supports other observations of the degradation mechanisms of 

the conjugate. 

Another family of products was derived from the degradation of the disulfide 

bond of the cyclic peptide under basic conditions (Figure 4.10). The attack of the 

disulfide bond by a hydroxide ion led to the opening of the disulfide bond to form a 

sulfenic acid and a thiol group. One of two possible products is compound 16 (m/z = 

814.9, z = +2); in this case, the sulfenic acid group is at the Pen1 residue. The other 

possible product is the sulfenic acid group at Cys12. The thiolate group in compound 

16 could further react with another molecule at the disulfide bond to give a dimer 

intermediate 17. The intramolecular reaction between the thiolate and sulfenic acid 

groups generated a cyclic dimer 18 with m/z 805.9 and quadruple charges (Figure 

4.10).  

 

4.3.1.3 Determination of the pH Rate Profile for MTX-cIBR 

To evaluate the overall stability of MTX-cIBR conjugate at various pH values, the 

pH-rate profile was plotted (Figure 4.11), which can be used to develop a suitable 

condition for the formulation of this conjugate. The pH-rate profile showed that the 
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Figure 4.10 The disulfide bond degradation in MTX-cIBR at pH 12 produces 
thiolate-sulfenic acid 16 and cyclic dimer 17. The disulfide bond opening is by direct 
attack of hydroxyl anion on the sulfur of the disulfide bond. Thiolate 16 reacts with 
another molecule of the conjugate to produce linear dimer 17; intramolecular reaction 
of thiolate anion with the sulfur atom of sulfenic acid generates cyclic dimer 18. 
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Figure 4.11 pH-rate profile for MTX-cIBR conjugate at 70 °C with buffer 
concentrations and ionic strength as described in the Table 4.1. Stability of the 
conjugate was followed at pH values 1, 4, 5, 6, 7, 8, 10 and 12. Maximum stability of 
the conjugate was observed at pH 6.  
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 conjugate is most stable at pH 6.0 and two inflection points were observed at pH 3.9 

and 8.9, which were due to the protonation-deprotonation of the carboxylic acid and 

amino groups, respectively. This pH-rate profile was constructed with the following 

assumptions: (a) the ionization of the two carboxylic groups occurs at the same pH, 

(b) the tertiary amine in the MTX can be neutral or protonated, and (c) the two amino 

groups on the pteridine ring are considered to be highly unreactive and their 

contributions are negligible. It has been reported previously that the amines in 

heterocyclic ring systems of methotrexate, purines, and pyrimidines are highly 

unreactive.16 Thus, MTX-cIBR conjugate was treated as a molecule with three 

ionizable groups (a carboxylic acid, a tertiary amine, and a guanidium group). 

Because the guanidium group has a pKa of 12.5 and the maximum pH value studied 

in this experiment was 12, the system was considered to have three species with two 

different equilibrium constants for the dissociation, as shown in the following 

equation with Ka1 and Ka2 as the equilibrium constants, respectively: 

 

  

The overall degradation kinetics for the conjugate are described by the following 

equation: 

)f]OH[(k")f]OH[(k')f(k')f(k)f][H(kk HAOHAHOHAHOAHOAHHobs
22

2
3

2
3

−−+ ++++= ++++  

Where, 

HAAHAH 2
2

3 ↔↔ ++
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The observed rate constant shown below was obtained by substituting the values for 

the fraction of the individual species. 

])]/[HKKK(k")KK(k'

])[HK(k')][H(k)][H[(k)]KK][HK][1/([Hk

a2a1wOHwa1OH

a1O
2

O
3
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+

+++++

+

+++∗++=
 

 

Because the study was conducted at 70 °C, the value of the ion product of water 

(pKw) was calculated using the empirical relationship below. 

12.80        
T01706.00875.64470.99/T)(pKw

=
+−=

 

From the model, the values for the constants were:  

Ka1 = 1.3 × 10–4, Ka2 = 1.3 × 10–10, kH = 5.2 × 106 M–1hr–1, kO = 0.005 hr–1, k'O = 

0.0009 hr–1, k'OH = 15.6 × 107 M–1hr–1, k''OH = 3.15 × 105 M–1hr–1, 

 

where, kH is the rate constant for acid-catalyzed degradation of H3A2+, and k'OH and 

k''OH are the rate constants for the base-catalyzed degradation of H2A+ and HA, 

respectively, as shown above. kO and  k'O are the rate constants for water-catalyzed 

degradation of the H3A2+  and H2A+ species, respectively.  
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4.3.2 In Vitro Stability of MTX-cIBR in Plasma and Tissue Homogenate 

The stability of MTX-cIBR was evaluated in rat plasma and homogenized rat 

tissue to determine its biological disposition (Figure 4.12). We found that MTX-cIBR 

conjugate has half-lives of 43.8 and 38.1 min in rat plasma and homogenized rat 

heart, respectively (Table 4.2). Clearly, this molecule is rapidly eliminated in the 

blood upon i.v. injections into the animal model of RA. This may explain the need to 

deliver a higher dose of the conjugate compared to the drug itself to the animals for 

suppressing the progress of RA. It is expected that the peptide is rapidly metabolized 

in plasma. The rapid peptide metabolism could be attributed to the presence of the 

Arg residue that makes the peptide prone to trypsin digestion. The disulfide bond in 

the cyclic peptide could be opened by reaction with glutathione in plasma and tissue. 

In addition, the MTX portion of the molecule could be metabolized to form 2,4-

diamino-7-hydroxy-pteridine.23  

 

4.4 Discussion 

MTX is widely used to treat chronic inflammation in RA; however, due to its 

toxicity, this drug elicits side effects, including suppression of immune response, liver 

damage, anemia, and neutropenia. To lower the side effects, MTX has been 

conjugated to different carriers such as peptides, proteins, and polymers to improve 

cellular uptake.24,25 Because RA is characterized by the activation of ‘self-reactive’ T-

cells, it would be ideal to target MTX to activated T cells. Thus, we utilized MTX-

cIBR conjugate to target MTX to activated T cells for suppressing the progress of RA  
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Figure 4.12 Determination of the stability of the MTX-cIBR conjugate with isolated 
rat plasma and homogenized rat heart tissue. Stability of the conjugate was 
determined over a 2-h period. Pseudo first-order plots were generated from the 
degradation profiles. Half-lives and rate constants for degradation are presented in 
Table 4.2. 
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Table 4.2 Rate constants and half-lives for MTX-cIBR conjugate with in vitro 
biological matrices 

 

Biological Matrix Rate constant for 
degradation (min–1) 

Half-life (min) 

Rat plasma 15.8 × 10–3 43.8 

Homogenized rat heart 18.2 × 10–3 38.1 
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in the rat adjuvant animal model. Upon i.v. injection of MTX-cIBR (5 mg/kg) to the 

rat model, the conjugate suppressed the progress of RA, and the animals had normal 

synovium and periarticular tissue, articular cartilage, epiphyseal bone, and distal tibia 

growth plate. In addition, no bone resorption was observed at the physis. In contrast, 

the adjuvant rats treated with vehicle had severe synovitis and periarticular 

inflammation due to edema and neutrophil infiltration. In addition, these animals had 

bone resorption across the physis with the presence of bone fragments. Unfortunately, 

MTX-cIBR was not effective at 1 mg/kg dose. One possible explanation is that the 

conjugate is not very stable in the systemic circulation. The presence of glutathione in 

plasma could cause the opening of the disulfide bond to convert the cyclic peptide to 

a linear peptide. Finally, the presence of the Arg residue in cIBR peptide makes it 

prone to proteolytic cleavage of C-terminal peptide bond of the Arg residue by 

trypsin. Thus, it is necessary to design a conjugate with higher plasma stability in the 

future. 

It is also important to determine the chemical stability of the conjugate for future 

development of its formulation. Furthermore, degradation mechanisms of the 

conjugate can be utilized to design more stable molecules. Interestingly, the MTX 

portion of the conjugate is more prone to degradation in acidic conditions than in 

basic conditions. There are two degradation pathways of the MTX segment of the 

conjugate. The first degradation pathway is the release of the pteridine ring from the 

conjugate (pathway a, Figure 4.3) to give compound 2. This release is due to the 

cleavage of the C-N bond between the pteridine ring and the p-amino-benzoyl ring. 
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This reaction is assisted by the presence of the protonated tertiary amine of the p-

amino-benzoyl group, which acts as a good leaving group.  The second major 

degradation product was produced by demethylation of the phenylamine moiety 

(pathway b, Figure 4.3) of compound 2 to give compound 3. A second degradation 

pathway is the cleavage of the peptide bond connecting the p-aminobenzoyl group 

and the α-amino group of Glu residue in MTX. The reaction was observed during the 

conversion of degradation product 5 to product 6 (pathway b, Figure 4.4). In this case, 

the α-carboxylic acid group of the Glu residue of MTX attacks the carbonyl carbon of 

the p-amino-benzoyl group to form a five-membered ring intermediate 5a (Figure 

4.4.). The five-membered ring intermediate 5a undergoes rearrangement reaction to 

form anhydride 5b, which is unstable under acidic conditions to release the p-

aminobenzoyl group to give compound 6. Compound 6 is closely related in structure 

to that of compound 4 (Figure 4.3). We have previously observed a similar 

anchimeric assistance reaction by the C-terminal carboxylic acid group on the peptide 

bond hydrolysis in a cyclic pentapeptide.26  

The major degradation sites for the peptide portion of the conjugate are at the 

Ser6 and Thr10 residues and at the disulfide bond. The Ser6 and Thr10 residues 

undergo the N,O-acyl migration reaction followed by peptide bond hydrolysis under 

acidic conditions. In these conditions, the degradation product 2 degrades to form 

compound 5 by hydrolysis of the peptide bond between the Gly5 and Ser6 residues. 

This reaction is initiated by protonation of the carbonyl group of Gly5 (2a, Figure 

4.4) followed by attack on its carbonyl carbon by the hydroxyl group of Ser6 to form 
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a five-membered ring cyclic intermediate 2b. Protonation of the amino group in 2b 

followed by the ring opening, which produces ester intermediate 2c as the N,O-acyl 

migration reaction product. Ester 2c can be hydrolyzed under acidic conditions to 

form acid and alcohol that separate Gly5 and Ser6 to yield degradation product 5.  

The Ser6 and Thr10 residues also degrade via β-elimination under both acidic and 

basic conditions. When the conditions are acidic, the conjugate degrades via 

compound 3 followed by β-elimination reaction to produce compound 7 (Figure 4.5). 

This reaction proceeds via intermediate 3a in which the hydroxyl group of Ser6 is 

protonated, followed by nucleophilic attack of the α-carbon-associated hydrogen of 

Ser6 to release a water molecule; this produces the dehydroalanine at position 6 

(dehydro-Ala6) in compound 7. A dehydration reaction could also occur at the Thr10 

residue; at this time, we cannot distinguish at which residue the dehydration reaction 

occurred. In basic conditions, the dehydration reaction is also observed as the major 

degradation pathway of the peptide segment. After incubation in basic conditions, 

four peaks with the same molecular weight as the parent conjugate were observed 

(Figures 4.6 and 4.7). These compounds are due to the racemization at the α-carbon 

of Ser6 and Thr10 to give four possible conjugates with (1) L-Ser6 and L-Thr10 (the 

parent compound), (2) L-Ser6 and D-Thr10, (3) D-Ser and L-Thr10, and (4) D-Ser6 

and D-Thr10. Racemization of the Ser residue in peptides has been observed 

previously in RS-26306 decapeptide and the LHRH analog histrelin.27,28 The 

mechanism of racemization is supported by the presence of four different dehydration 

products of the conjugate (Figures 4.6 and 4.7). The dehydration products are 
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generated by abstraction of the α-carbon hydrogen of Ser6 and Thr10 (1a, Figure 4.8) 

followed by release of the hydroxyl anion to produce dehydro-Ala6 (compound 9) 

and β-methyldehydroalanine10 (β-Me-dehydro-Ala10, compound 8), respectively. 

The rehydration of the alkene group produces the racemic mixture of at Ser6 and/or 

Thr10. Thus, the four dehydration products are due to the presence of the following 

amino acids at positions 6 and 10: (1) L-Ser6 and β-Me-dehydro-Ala10, (2) D-Ser6 

and β-Me-dehydro-Ala10, (3) dehydro-Ala6 and L-Thr10, and (4) dehydro-Ala6 and 

D-Thr10. It was not possible to identify each of these peaks individually due to the 

lack of separation and their co-elution with the dimer products. Our attempts to 

improve the separation of these molecules were unsuccessful. In addition, the 

fragmentation of the dehydrated species failed to yield additional information because 

the 6-methylpteridine-2,4-diamine ring carried most of the ion current that led to the 

suppression of the signal from the peptide fragments. 

Another major degradation pathway of the peptide segment is via the β-

elimination reaction at the Pen1 and Cys12 residues and the direct attack of the sulfur 

atom of the disulfide bond by hydroxide ion. The β-elimination reaction was observed 

in the further degradation of compound 8 to give compound 15. During the 

degradation process, compound 8 is converted to compound 11 by a dehydration 

reaction. The abstraction of the proton from the α-carbon of Pen1 in compound 11 

followed by sulfur atom extrusion generates compound 12 with the dehydro-β-

dimethyl-Ala residue at position 1.  It is interesting that the Cys12 residue is cleaved 

from compound 12. We propose that this cleavage reaction takes place through the 
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formation of cyclic intermediate 13 that rearranges to form anhydride 14, which is 

unstable under basic conditions. The anhydride is then rapidly hydrolyzed to give the 

degradation product 15. 

Finally, the disulfide bond can be cleaved directly by hydroxide ion to produce 

thiolate-sulfenic acid 15, and this type of reaction has been observed previously in 

cyclic peptides.26,29 The thiolate anion can attack a disulfide bond in another molecule 

of conjugate to produce a linear dimer 17. The intramolecular reaction of the thiolate 

ion on the sulfur of sulfenic acid generates the cyclic dimer 18 and releases hydroxyl 

anion. 

The fact that MTX-cIBR is most stable at pH 6.0 is advantageous for formulation 

development of the conjugate as it is close to the physiological pH (pH 7.4). Peptides 

and proteins with higher stability in highly acidic or alkaline pH often present a 

challenge in formulation development. Indications that MTX-cIBR is somewhat 

unstable in the presence of biological matrices combined with the identification of the 

chemical degradation mechanisms will help to design a more stable conjugate. 

Identification of the in vivo degradation products along with the pharmacokinetic 

profile will be evaluated in the future. 

 

4.5 Conclusions 

 In this work, we have shown that the optimal chemical stability of MTX-cIBR 

conjugate occurs at pH 6.0. The major degradation mechanisms under acidic 

conditions involve the MTX fragment. In contrast, the major degradation mechanisms 

under basic conditions involve the Ser6 and Thr10 and the disulfide bond in the 
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peptide segment of the conjugate. The conjugate has short half-lives in plasma and 

tissue homogenates. These results explain why the conjugate is not effective when 

delivered in low doses in vivo. Therefore, there is a need to optimize the stability of 

the peptide in biological media. The effort to design more stable molecules is 

underway.   .
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5.1 Summary and Conclusions 
 

The objective of this work was to explore the possibility of selectively 

delivering cytotoxic drugs to leukocytes using intercellular adhesion molecule-1 

(ICAM-1)-derived cyclic peptides. Peptides derived from the D1 domain of ICAM-1 

inhibited the ICAM-1/LFA-1 (leukocyte function associated antigen-1)-mediated 

heterotypic T-cell adhesion.1 Among these peptides, cIBR peptide 

[cyclo(1,12)PenPRGGSVLVTGC] showed binding affinity to the LFA-1 receptor, 

and this binding was inhibited by anti-LFA-1 antibody.2 Further, FITC-cIBR showed 

temperature-dependent internalization properties with MOLT-3 T-cells.3 Interaction 

of cIBR peptide with its target receptor and subsequent internalization offered an 

attractive pathway to deliver drugs to leukocytes.  This approach is advantageous for 

delivering highly toxic anticancer drugs such as doxorubicin (DOX), which enters the 

cells in a non-specific manner.4 Drugs such as methotrexate (MTX) use ubiquitously 

expressed transporters like membrane folate binding protein (mFBP) and reduced 

folate carrier (RFC) to enter the cells; thus, MTX has side effects because it can also 

cause damage to the normal cells in the body.5 Conjugation of MTX to a carrier 

molecule like cIBR peptide may allow it to be selectively delivered to LFA-1 

expressing cells such as leukocytes.  

In this work, cIBR peptide was conjugated to FITC and DOX via the N-

terminal of the peptide. FITC-labeled cIBR (FITC-cIBR) showed punctate 

fluorescence stains inside the HL-60 (human leukemic promyelocytic cell line) cells, 

whereas DOX-labeled cIBR (DOX-cIBR) showed diffuse distribution throughout the 
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cell cytosol. Comparison of internalization was done through a) temperature-

dependent internalization, b) inhibition of ATP synthesis processes using sodium 

azide and 2-deoxy-D-glucose and c) disruption of microtubules using nocodazole. All 

these studies showed that FITC-cIBR entered the HL-60 cells by an endocytic uptake 

pathway in an energy-dependent manner, whereas DOX-cIBR entered via an energy-

independent pathway. DOX-cIBR (distribution ratio 14.1, pH 7.4) was found to be 

much more hydrophobic than FITC-cIBR (distribution ration 3.8, pH 7.4). The 

hydrophobicity of the DOX-cIBR conjugate was proposed to be one of the major 

reasons for its energy-independent cellular entry.6 

As the hydrophobicity of the DOX-cIBR conjugate was proposed to be 

responsible for the energy-independent cellular entry into HL-60 cells, efforts were 

focused on understanding the contribution of this particular physicochemical property 

in the internalization process of the DOX-peptide conjugates. Thus, a more 

hydrophilic derivative of cIBR called cIBR7 (cyclo(1,8)CPRGGSVC) was used to 

deliver DOX and FITC molecules. cIBR7 peptide has higher binding affinity to I-

domain of LFA-1 than the parent cIBR.1 To further increase the hydrophilicity of the 

conjugate, a hydrophilic spacer (i.e., 11-amino-3,6,9-trioxaundecanoate) was used to 

link DOX to cIBR7 to produce DOX-PEGcIBR7. Octanol/aqueous buffer distribution 

ratios of DOX-cIBR7 and DOX-PEGcIBR7 showed that these conjugates were more 

hydrophilic than the parent DOX-cIBR. However, the DOX-cIBR7 and DOX-

PEGcIBR7 conjugates still entered the HL-60 cells in an energy-independent manner 

similar to that of DOX-cIBR. Both DOX-cIBR7 and DOX-PEGcIBR7 showed 
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diffuse cytoplasmic fluorescence distribution pattern indicative of a non-endocytic 

uptake pathway. This suggests that even though hydrophobicity of the conjugate is an 

important property for cellular internalization, it is not the only reason for DOX-

peptide conjugate entry by passive diffusion. In contrast, FITC-labeled cIBR7 (FITC-

cIBR7) utilized the energy-dependent endocytic uptake mechanism. These results 

suggest that the entry of DOX-cIBR and its derivatives into the cell cytosol was due 

to the properties of DOX and not to the properties of the peptide.  

To gain an insight into the endocytic migration pathway of FITC-cIBR and 

FITC-cIBR7 peptides inside the cell, colocalization studies were performed with 

fluorophore-conjugated dextran molecules. The colocalization studies showed that the 

both FITC-cIBR and FITC-cIBR7 followed an endocytic pathway somewhat different 

compared to that of dextran. Dextran molecules are known to travel through the 

endosomes to end up in the lysosome.7 Lack of colocalization indicates that it might 

take longer than 1 h for the peptide molecules to enter the lysosome compartment. It 

might also indicate that the final cellular destination for these peptides is not the 

lysosome. This information could be used for further studying intracellular 

sequestration of these peptides to generate an efficient drug-peptide conjugate for 

intracellular release of the drug. 

The methotrexate conjugate of cIBR peptide (MTX-cIBR) was synthesized by 

conjugating the γ-carboxylic acid of methotrexate to the N-terminal of cIBR peptide 

by amide bond. MTX-cIBR retained the binding affinity to the target receptor (i.e., 

LFA-1).8 This conjugate also inhibited the progression of rheumatoid arthritis in the 
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rat adjuvant model. However, in order to be effective the conjugate had to be 

administered at a relatively high dose (5 mg/kg). The need to deliver a high dose of 

the conjugate in the in vivo system may be due to the instability of the conjugate in 

the systemic circulation. In addition, for optimizing the formulation of the conjugate, 

it is necessary to evaluate the chemical stability of MTX-cIBR. The accelerated 

chemical stability analysis of MTX-cIBR showed that MTX-cIBR conjugate was 

most stable at pH 6.0. The drug portion of the conjugate was unstable under the acidic 

conditions, while the peptide portion was unstable under the basic conditions. In 

acidic conditions, the major degradation product was generated by cleaving the C-N 

bond between the pteridine ring and the p-aminobenzoyl ring. Dehydration of the 

Ser6 and Thr10 residues along with the racemization produced the major degradation 

products in highly basic conditions. Disulfide bond exchange, disulfide hydrolysis, 

and β-elimination were the major degradation reactions in basic conditions. The half-

lives of the conjugate were 38.1 min with isolated rat plasma and 43.8 min with 

homogenized rat heart tissue, suggesting that this is one of the reasons for the high 

dose needed to produce its activity in vivo. It is encouraging to find that MTX-cIBR 

did not produce undesirable side effects in vivo, even at higher doses. In the future, it 

is necessary to design conjugates that are more potent and stable in in vivo systems. 

 

5.2 Future Directions 

5.2.1 Delivery of DOX using cIBR and cIBR7 Peptides 
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Delivery of DOX has been found to be challenging using peptides and 

proteins. Properties of DOX (i.e., aqueous aggregation) may affect the behavior of the 

conjugate.4 It is possible that it is difficult to deliver DOX using DOX-peptide 

conjugates irrespective of the nature of the conjugates. One possible way to deliver 

DOX may be protecting the drug in liposomes or nanoparticles that have been 

decorated with targeting peptides such as cIBR. This will ensure that DOX will enter 

the cells encapsulated in these particles and will not influence the selectivity of the 

particle delivery. We have not explored the possibility of conjugating the DOX 

molecule to the C-terminal cIBR peptide and its derivatives. This conjugation method 

may improve the recognition of the peptide segment by the LFA-1 receptor on 

leukocytes because the N-terminal PRGG sequence is the recognition site of the 

peptide.  

 

5.2.2 Delivering Other Hydrophilic, Cytotoxic Drugs using cIBR and cIBR7 

Thus far, DOX and MTX have been conjugated to the cIBR peptide while 

only DOX has been conjugated to cIBR7 peptide. Other cytotoxic drugs can be 

conjugated to these peptides to evaluate the general applicability of these peptides for 

targeted drug delivery. In an attempt to evaluate other drug-cIBR conjugates, 

melphalan has been conjugated to cIBR peptide to give Mel-cIBR. Unfortunately, 

Mel-cIBR conjugate was found to be highly insoluble, which precluded its use for 

further studies. Thus, it is important to obtain a balance between physicochemical 

properties and biological activity of the conjugate for its applicability in the clinical 
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setting. Currently, our group is exploring the effect of drug properties on the 

conjugate selectivity to leukocytes. 

 

 

5.2.3 Understanding the Intracellular Metabolism of FITC-cIBR and FITC-cIBR7 

FITC-cIBR and FITC-cIBR7 peptides have been found to be internalized by 

HL-60 cells via an endocytic uptake pathway. Colocalization studies have shown that 

FITC-cIBR and FITC-cIBR7 followed an endocytic pathway somewhat different 

compared to that for dextran inside the cells. Dextran is known to localize into 

lysosomes inside the cells. Identification of the compartment for intracellular 

localization of these peptides and subsequent compartment isolation will allow the 

identification of the possible intracellular metabolic products. The identification the 

metabolic product of the conjugate can be used design a better conjugate that would 

release the drug at the appropriate site(s) in the intracellular space. 

 

5.2.4 Exploring the Possibility of Drug Delivery to Multidrug-Resistant Cells by 

using cIBR and cIBR7 Peptides 

Overexpression of efflux transporters is one of the causes of drug resistance in 

cancer cells. Among these efflux transporters, permeability glycoprotein (Pgp) is the 

most widely studied. These transporters contribute to the difficulty of delivering 

cytotoxic drugs to the resistant cancer cells. Moreover, these transporters have an 

extremely diverse array of substrate specificity. Therefore, any approach to bypass 
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these transporters to enter the cell will be of tremendous value in cancer therapy. For 

this purpose, cIBR and cIBR7 peptides can be used to avoid the efflux pump for 

delivering cytotoxic drugs to cancer cells. Therefore, we have conjugated a Pgp 

substrate (i.e., rhodamine) to cIBR peptide to give Rho-cIBR. In the future, the 

mechanism of uptake of this conjugate may shed light on the ability of the conjugate 

to avoid Pgp-mediated efflux. Comparison of the internalization of Rho-cIBR to that 

of rhodamine in the Pgp-expressing leukemic cell line will provide information on the 

ability of the conjugate to evade the efflux transporters. 
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