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Abstract

Self-supporting surfaces are widely used in contemporary architecture, but their design remains a
challenging problem. This paper aims to provide a heuristic strategy for the design of complex self-
supporting surfaces. In our method, non-uniform rational B-spline (NURBS) surfaces are used to
describe the smooth geometry of the self-supporting surface. The equilibrium state of the surface
is derived with membrane shell theory and Airy stresses within the surfaces are used as tunable
variables for the proposed heuristic design strategy. The corresponding self-supporting shapes to
the given stress states are calculated by the nonlinear isogeometric analysis (IGA) method. Our
validation using analytic catenary surfaces shows that the proposed method finds the correct self-
supporting shape with a convergence rate one order higher than the degree of the applied NURBS
basis function. Tests on boundary conditions show that the boundary’s influence propagates along
the main stress directions in the surface. Various self-supporting masonry structures, including
models with complex topology, are constructed using the presented method. Compared with ex-
isting methods such as thrust network analysis and dynamic relaxation, the proposed method ben-
efits from the advantages of NURBS-based IGA, featuring smooth geometric description, good
adaption to complex shapes and increased efficiency of computation.

Keywords:
Masonry structure, Self-supporting, Isogeometric analysis, Equilibrium approach, Architectural
geometry

1. Introduction1

Masonry is a type of architecture built from bricks or stones that are laid in and bound together2

by mortar. It has been used for centuries and is regarded as one of the most important architectural3
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forms. At present masonry is still widely used throughout the world, especially in low- and mid-4

rise buildings for its economical competitiveness and aesthetic value [1]. Masonry surfaces are5

a fascinating form of masonry that features a large structural span and various shapes, including6

arches, domes and vaults (see Fig. 1 for examples). The intrinsic characteristic of a masonry7

surface is that it is self-supporting, which means the surface bears the weight of the units, usually8

bricks or stones, and maintains the equilibrium state with minimum support only on the borders.

(a) (b)

Figure 1: Masonry architectures with self-supporting surfaces. (a) A typical quadripartite vault at an entrance of
Mariendom, Linz. (b) A modern building with a grand arch in Dalian.

9

Despite the long history and wide use of masonry structures, the design of self-supporting10

surfaces remains a challenge. The difficulty is rooted in the building material of masonry, which11

is composed of discrete units, such as stones or bricks. The units are held together almost all by12

themselves except for the constraint on the boundary to resist gravity, therefore the geometrical13

configuration needs to be carefully designed to keep the discrete units together and maintain the14

structure’s shape. Robert Hook first discovered that the ideal shape of a masonry arch is analogous15

to an inverted catenary curve. This discovery has been applied to the design and assessment of16

masonry buildings, e.g., in Giovanni Poleni’s study of St. Peter in the Vatican [2], and is still17

an influential guide to modern design [3]. Classical designs of self-supporting surfaces are based18

on empirical rules and various codes of practices, and the majority of contemporary designs are19

duplications of existing structures from history. However, contemporary architects have shown20

increasing interests in building new masonry structures with complex topology, which necessitates21

the development of new design methods.22

We propose a heuristic strategy for the design of self-supporting masonry surfaces with com-23

plex geometry and topology. Specifically, we study the characteristic equilibrium state with the24

membrane shell theory. The Airy stress function is further used to transform the equilibrium25

equations into a single partial differential equation relating the Airy stress and the height func-26

tion representing a self-supporting surface. Computationally, the nonlinear isogeometric analysis27
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(IGA) method is applied for solving the equilibrium equation, in order to obtain the self-supporting28

surfaces. The IGA-based method produces an accurate solution with the convergence rate being29

one order higher than the degree of the NURBS basis used. To summarize, the contributions of30

this work are:31

1. An equilibrium state modeled with IGA is proposed for self-supporting surfaces. Surfaces32

with complex topology are represented by multi-patch NURBS with high smoothness.33

2. A heuristic strategy to design self-supporting surfaces is provided by tuning the Airy stress34

of the surfaces.35

3. Newton’s iteration is used to solve the nonlinear changes of gravity load caused by shape36

variation.37

1.1. Related work38

Equilibrium. The state of equilibrium is a fundamental consideration for designing self-39

supporting structures. Influenced by the classic inverted catenary curve theory, numerical methods40

have been developed to describe the equilibrium state of self-supporting shapes. The thrust lines41

method (TLM) is proposed to consider the thrust lines as the centers of thrust forces. To maintain42

structural equilibrium, thrust lines must be contained within the masonry structure. Thrust line43

analysis is used to assess various masonry buildings [4] and constitutes the traditional equilibrium44

approach to calculate masonry structures [5]. Thrust network analysis (TNA), proposed by Block45

et al. [6, 7], assumes that a network of forces exists in the masonry and the structure is stable46

once the forces maintain equilibrium. The TNA method discretizes the surface into a network47

and models the equilibrium of the surface as the balance of forces on the network nodes. TNA48

enables the modeling of complex masonry structures [8], based on which form-finding and design49

algorithms have been proposed [9]. Liu et al. [10] define a new parameterization for the space of50

self-supporting triangular meshes, based on which the force distributions can be optimized. An op-51

timal assembling process of building blocks is proposed by Deuss et. al. [11] to guide the physical52

construction of self-supporting structures. Bletzinger et al. studied the simulation of stress states53

of masonry structures and the numerical methods for simulation are merged into the form-finding54

and structural optimization [12–14].55

Geometric representation. Triangular or polygon meshes are used in TLM and TNA meth-56

ods, which have considerable discretization errors in shape representation. Miki et al. [15] intro-57

duced NURBS for the geometric representation of masonry structures. The spline-based geomet-58

ric description represents an advantage over the mesh-based models used in TNA-related methods59

because they have better smoothness and more regular geometry variation.60

Material. A masonry structure is composed completely of bricks or stone blocks held together61

by external forces, typically gravity. It can resist large compressive stress caused by its own gravity62

and outer loads but has almost no resistance to tension force [16]. Performing an accurate analysis63

on this type of bimodulus material is still a challenging problem in mechanics [17, 18]. In classical64

assumptions on the behavior of masonry structures, the complex material property of masonry65

is simplified and is considered as the ideal tension-free elastic material that does not fail under66

pressure [19, 20].67
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Isogeometric analysis. Isogeometric analysis (IGA) was first proposed by Hughes et al. [21]68

as a numerical simulation method to link the computer-aided design and simulation. In the present69

work, IGA is used for simulating self-supporting shapes for two benefits. First, in IGA the smooth70

geometry defined by NURBS describes the masonry surface more accurately. Second, IGA offers71

a rigorous framework for simulating the mechanics of masonry and the equilibrium state of the72

surface, which is a distinct advantage over the network-based TNA methods. Simulation of shell73

structures with IGA has been widely investigated to calculate the inner stress state of shells under74

outer loads [22–24]. Cazzani et al. applied a NURBS based isogeometric beam model to simulate75

the historical masonry arches [25]. Bletzinger et al. pioneered the research on designing self-76

supporting surfaces for architecture design using isogeometric analysis. They applied the isoge-77

ometric B-Rep to structural analysis and form-finding of structural membranes, and proposed the78

updated reference strategy for form-finding with isogeometric membrane and beam elements [26–79

29]. The design of architectural membranes with isogeometric elements is proposed in [26] for the80

first time, proposing the updated reference strategy for the form-finding of membranes. In [28]81

this method is expanded to form-finding of complex models described by untrimmed and trimmed82

multi-patch geometries, as summarized in [27]. A special isogeometric Bernoulli beam element83

embedded into a membrane structure was proposed in [29] for analyzing curves in the structure.84

The dynamic relaxation method is applied for masonry design [30]. In these works the isogeo-85

metric concept is used along with the form-finding algorithm to design self-supporting surfaces.86

The form-finding is the inverse problem of classical structural analysis, and the main challenge in87

form-finding is the handling of a singular stiffness matrix. In the present paper we also apply the88

isogeometric analysis for structure simulation by proposing a direct design strategy to compute89

the stresses in the masonry structure. Our method is effective in obtaining self-supporting shapes90

compared with the form-finding strategy.91

1.2. Outline92

This paper is organized as follows. In Section 2, we introduce the theory of self-supporting93

structures. In Section 3, we first present the heuristic design method using admissible Airy stress94

states, and then construct the computational model based on IGA. In Sections 4 and 5, results and95

discussions are given. Finally Section 6 concludes the paper.96

2. Self-supporting membrane shell theory97

2.1. Geometry98

Three-dimensional shell structures are generally represented by their middle surfaces [31].
Based on Monge’s description (Figure 2), a surface

S = {(x, y, h(x, y) : (x, y) ∈ U)}

can be represented as a height function h(x, y) over a two-dimensional (2D) domain U with Carte-
sian coordinates x and y:

R ⊃ U → R
(x, y) → h(x, y) (1)
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Figure 2: Monge’s description of a masonry shell surface.

With this formulation, it is assumed that the masonry structure under consideration does not have99

any overhangs.100

With IGA the 2D physical geometric domain U and the height function h(x, y) are both de-
scribed by the same set of NURBS basis functions. In particular, a tensor product parameter
domain Ω is set for each NURBS patch by the knot vectors. Denote the knot intervals in each of
the parametric dimensions as (ξ1, ξ2) and (η1, η2), and we have Ω as (ξ1, ξ2)×(η1, η2). The geometry
mapping using NURBS links the physical and parameter domains:

x=

n∑
i=1

m∑
j=1

Ri, j (ξ, η) xi, j y=

n∑
i=1

m∑
j=1

Ri, j (ξ, η) yi, j (2)

where (x, y) ∈ U, (ξ, η) ∈ Ω, Ri, j represents the 2-D NURBS bases and xi, j, yi, j denotes the co-101

ordinates of control points, and n and m are the number of control points in the two directions.102

The geometry mapping in Eq. 2 defines a parameterization of the physical domain U over the103

parameter domain Ω.104

Hence, the height function h over the physical domain U in Eq. 1 is also parameterized by
(ξ, η) ∈ Ω. Here we assume that the geometric mapping between parameter space and physi-
cal space is invertible. Furthermore, we assume that the height function h(x, y) is given in the
following NURBS form over the parameter domain.

h=

n∑
i=1

m∑
j=1

Ri, j (ξ, η) hi, j (3)

where Ri, j represents the 2-D NURBS bases and hi, j denotes the height of the control points. n and
m are the number of control points in the two directions. To calculate the derivatives of height to x
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and y, the geometry mapping in Eq.2 is used. Conceptually, the height function can be expressed
as

h=

n∑
i=1

m∑
j=1

Ri, j (ξ (x, y) , η (x, y)) hi, j (4)

2.2. Equilibrium analysis with membrane shell theory105

Membrane theory is used to describe the balance conditions relating the surface geometry and
the stress field on the surface which resists external loads [19, 32]. The stress per surface point
when projected onto the horizontal plane is encoded by the symmetric 2 × 2 matrix

σ =

[
σ11 σ12

σ12 σ22

]
=

[
N̄x N̄xy

N̄xy N̄y

]
(5)

where N̄x, N̄y and N̄xy are the projected stress forces in the normal and shear directions respectively.
The shell membrane equilibrium can be expressed by the following second-order differential equa-
tions [33]:

∂σ11

∂x
+
∂σ12

∂y
= 0

∂σ12

∂x
+
∂σ22

∂y
= 0

(6)

σ11
∂2h
∂x2 + 2σ12

∂2h
∂x∂y

+ σ22
∂2h
∂y2 = −P̄z (7)

where P̄z is the gravitational load on the surface

P̄z = Pz

√
1 +

(
∂h
∂x

)2

+

(
∂h
∂y

)2

(8)

Pz = ρgt is the unit area load, where ρ is the density of the material, g is the gravitational acceler-106

ation, and t is the thickness of the surface. Assuming a uniform material density, without loss of107

generality, we use a constant Pz = 1 for subsequent discussions. Eq. 6 represents the horizontal108

equilibrium, which is equivalent to the stress tensor σ being divergence free. Eq. 7 represents the109

vertical equilibrium under external load.110

For a simply connected domain, if there exists a function Φ(x, y) such that

σ11 =
∂2Φ

∂y2 , σ22 =
∂2Φ

∂x2 , σ12 = −
∂2Φ

∂x∂y
, (9)

the divergence free property of σ (Eqs. 6) is satisfied. The function Φ(x, y) is called the Airy stress
function, as discussed in Ref. [34] (page 26, Chapter 2). Substituting Eq. 9 into Eq. 7, we obtain
the following equilibrium equation in the vertical direction:

∂2h
∂y2

∂2Φ

∂x2 − 2
∂2h
∂x∂y

∂2Φ

∂x∂y
+
∂2h
∂x2

∂2Φ

∂y2 = −P̄z (10)
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The equilibrium equation can be transformed into a dimensionless form. Let L0 be the ref-
erence length. The coordinates x and y and the thickness of surface t can be expressed by their
dimensionless forms x∗, y∗ and t∗.

x = x∗L0, y = y∗L0, h = h∗L0, t = t∗L0

The resultant stresses can be divided by L0Pz to give the dimensionless forms,

σ∗22 = σ22/(L0Pz), σ∗12 = σ12/(L0Pz), σ∗11 = σ11/(L0Pz)

The dimensionless form of equilibrium equation is

σ∗22
∂2h∗

∂y∗2
+ 2σ∗12

∂2h∗

∂x∗∂y∗
+ σ∗11

∂2h∗

∂x∗2
= −

√
1 +

(
∂h∗

∂x∗

)2

+

(
∂h∗

∂y∗

)2

(11)

With the dimensionless form, the influence of stress states on the corresponding shapes can be111

clearly demonstrated. Therefore in the following solution with IGA, L0 and Pz are set as unit112

values and the generality of the resulting shapes is not affected. This is useful in choosing the113

parameters of Airy stress functions for the design of masonry surfaces.114

An issue related to Eq. 9 is that, Eq. 6 is more general than Eq. 9, because divergence free115

stress tensors exist that are not second-order differentials of a function. Indeed, by the Hodge116

decomposition theorem [35], a divergence free vector field may contain an additional component117

of a harmonic vector field which may not be integrable on a domain with high genus. Nevertheless,118

the present approach focuses on designing the Airy stress function which is able to describe a wide119

range of stress states in masonry structures.120

2.3. Self-supporting condition of masonry structures121

In this work, we assume that the material of masonry reacts elastically to arbitrary compression
but cannot bear the slightest traction. Therefore, the elasticity theory of masonry can be charac-
terized by the requirement that, in addition to the above equilibrium equations, the resultant stress
tensor σ be negative semi-definite to ensure compression only:

∂2Φ

∂x2 +
∂2Φ

∂y2 ≤ 0

∂2Φ

∂x2

∂2Φ

∂y2 −

(
∂2Φ

∂x∂y

)2

≥ 0
(12)

In other words, the self-supporting condition implies that Φ is concave [32].122

3. Designing and computation self-supporting surfaces123

3.1. Designing self-supporting surfaces by tuning Airy stress124

The Airy stress and height functions are the two unknowns to be solved in the design of self-125

supporting surfaces. With the prescribed Airy stress, equilibrium in the horizontal directions is126
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fulfilled automatically. The unknown left is the height function of the masonry structure, which127

should meet the equilibrium condition in the vertical direction. Designing various self-supporting128

shapes can thus be achieved by adjusting the Airy stresses. The problem to be solved is formulated129

as follows: given the planar boundary curves of a shape, find a smooth surface with a specific130

inner stress state, such that the self-supporting equilibrium under the given loads and boundary131

conditions is fulfilled. The design strategy is illustrated in Fig. 3.

Figure 3: General problem description and design strategy. The sources of inspiration for the initial design shown in
the picture include the sculpture “Crest” designed by Zaha Hadid Architects, and an indoor masonry vault roof. The
picture of Crest is credited by the Zaha Hadid Architects.

132

Usually, the initial designs are simple curves that represent the boundaries of architectures
and sculptures. With the proposed design strategy, the Airy stress function is prescribed, for
which a particularly useful case is when the resultant stresses throughout the masonry shell are
uniform [33], so that all points in the structure have the same inner stress and are equally strong
for a single material. Such a situation represents an optimal state, as the structure can resist the
largest total load without exceptional weak parts. The Airy stress function corresponding to the
constant resultant stress state can be described as

Φ =
1
2
σc

22x2 +
1
2
σc

11y2 − σc
12xy (13)

where σc
11, σc

12 and σc
22 are constants. The corresponding stress tensor is

σ =

[
σc

11 σc
12

σc
12 σc

22

]
(14)
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A linear polynomial c1x+c2y+c3 can be added to the Airy stress function with arbitrary coefficients133

ci, i = 1, 2, 3. Because the linear term does not affect the obtained stress, it is omitted. The134

concave condition of the Airy stress function can be easily obtained by assigning values such that135

σc
11 + σc

12 ≤ 0 and σc
11σ

c
12 − σ

c
22

2 ≥ 0 (Eq. 12). If σc
12 is set to zero, then the normal Airy stresses136

represent the major stress states, which can give meaningful directions for the design.137

3.2. Computational modeling of self-supporting surfaces with IGA138

Following the IGA framework, the non-uniform rational B-spline (NURBS) is used to describe139

the geometry of a self-supporting surface in the sense of Eq. 4. The shapes of masonry structures,140

such as domes and vaults, are generally composed of smooth surfaces, so can be accurately de-141

scribed by NURBS.142

The designed planar footprint of the target self-supporting surface is given as input; During de-143

sign computation, the footprint remains fixed and only the B-spline coefficients are varied (Eq. 3).144

Depending on its complexity, the footprint domain is described by single or multiple NURBS145

patches. For example, in the “Crest” model, the input geometry is described by a single NURBS146

patch (Fig. 4(a)). The “Tent” model consists of multiple patches (Fig. 4(b)), where neighboring147

patches share control points along their common boundaries, which makes the whole shape always148

continuous. Through this setting the continuity of the multi-patch surface is C0, which suits for the149

design of masonry structures because kinks widely exist in the masonry buildings (see Fig. 1(a)150

for an example). To achieve higher order continuity, the algorithms in Refs. [36–38] can be used.

(a) Crest (b) Tent

Figure 4: The input NURBS surface for calculating two masonry structures. The crest model is described by a single
patch and the tent model by multiple patches.

151

The equilibrium equation (Eq. 10) is a second-order partial differential equation. NURBS
based IGA [21] is used to solve the equation and calculate the self-supporting surfaces. A self-
supporting surface generally has fixed or free boundary conditions, which can be easily imple-
mented in the formulation of IGA by assigning Dirichlet boundary conditions. Permanent and
static loads, especially the gravity, are deemed as Neumman boundary condition and discretized
as the right-hand-side forces in IGA. The advantage of using IGA for computing masonry equilib-
rium is its high precision, for modeling various self-supporting shapes with different topological
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and geometric characteristics and boundary conditions. In particular, with IGA we construct the
weak form of Eq. 10:σ11

∫
Ωe

∂R
∂x

∂R
∂x dΩ + 2σ12

∫
Ωe

∂R
∂y

∂R
∂x dΩ + σ22

∫
Ωe

∂R
∂y

∂R
∂y dΩ

 · he

= −Pz

∫
Ωe

R
√

1 +

[(
∂R
∂x · he

)2
+

(
∂R
∂y · he

)2
]
dΩ

(15)

Here, referring to Equations 3 and 4, we have[
∂R
∂x
∂R
∂y

]
=

 ∂x
∂ξ

∂y
∂ξ

∂x
∂η

∂y
∂η

−1 [ ∂R
∂ξ
∂R
∂η

]
.

Eq. 15 can be formulated into the following standard form:

K · he = fe (16)

where
K = σ11

∫
Ωe

∂R
∂x

∂R
∂x

dΩ + 2σ12

∫
Ωe

∂R
∂y

∂R
∂x

dΩ + σ22

∫
Ωe

∂R
∂y

∂R
∂y

dΩ

fe = −Pz

∫
Ωe

R

√
1 +

(∂R
∂x
· he

)2

+

(
∂R
∂y
· he

)2dΩ

K is the stiffness matrix, he is the vector of unknown heights of control points in the elementary152

patch Ωe, and fe is the right-hand-side force.153

3.3. Iterative solution via Newton’s method154

In Eq. 16, the force vector fe changes with the height vector he, which makes the equation
nonlinear. We use Newton’s method to solve the equation. According to Newton’s method, the
unbalanced force is defined as

F = K · he − fe (17)

Then Eq. 16 is equivalent to F = 0, which is solved through the iteration formulated as(
∂F
∂he

)(`)

·
(
he(`+1)

− he(`)
)

= −F
(
h(`)

)
(18)

where ` is the iteration number, and ()` represents the value in the `th iteration. The derivative of
F with respect to the height vector is

∂F
∂he = K − Pz

∫
Ωe

1 +

(∂R
∂x
· he

)2

+

(
∂R
∂y
· he

)2− 1
2

R
((
∂R
∂x
· he

)
∂R
∂x

+

(
∂R
∂y
· he

)
∂R
∂y

)
dΩ. (19)
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The initial solution h(0) is set as the planar footprint of the model. The stop condition is that the155

module of the unbalanced force F is smaller than a threshold value, which is generally set as 10−12
156

within the present paper.157

In the formulation, the distributed body force (e.g. gravity) is already considered. Additional158

concentrated and distributed forces in the vertical direction can also be easily applied. Assume159

that a concentrated force P is applied on the surface and is located to the point of patch Ωe with160

parametric coordinates
(
ξp, ηp

)
. The force P is then distributed to the control points of the patch,161

by adding
∫
Ωe

R
(
ξp, ηp

)
PdΩ to the right-hand-side of Eq. 16.162

4. Results163

Without loss of generality, the footprints of the models are constrained in a simple square164

domain with the scale as [−1, 1] × [−1, 1]. The loads are set as unit. Note that the dimensionless165

form of equilibrium function does not limit the generality of the present design algorithm.166

4.1. Validation with the analytic catenary surface167

A catenary is the curve that an idealized hanging chain assumes under its own weight if it
is supported only at its ends. A catenary surface is the sweep surface of a catenary curve along
a line perpendicular to the curve’s plane. This surface is useful in the design of cathedrals and
in Gothic arches used in Gothic architecture, to assure that no bending force is generated in the
structure. Without loss of generality, for the catenary surface aligned with coordinate axes, the
normal resultant stresses take uniform values and the shear resultant stresses vanish. Therefore, its
self-supporting equilibrium equation is

−

(
∂2h
∂x2 +

∂2h
∂y2

)
=

√
1 + h,x2 + h,y2 (20)

The analytic solution to this equation is the catenary surface

h̄ = − cosh (x) + c (21)

where c is an arbitrary constant. For example, setting c = cosh (2), we have

h̄ = − cosh (x) + cosh (2) (22)

Fig. 5d illustrates the corresponding catenary surface. To validate our method, we compute the
surface numerically using our proposed framework. The input coefficients are set according to
Eq. 20 as σ11 = −1, σ22 = −1, and σ12 = 0. The corresponding Airy function is Φ = −1

2 x2 − 1
2y2.

The boundary curves of the catenary surface are set according to Eq. 22 and fixed as Dirichlet
boundary conditions, as shown in Fig. 5a. The footprint on the horizontal plane forms a simple
square over domain (x, y) , x = (−1, 1) , y = (−1, 1), that is used as the initial solution for Newton’s
iteration (Sec. 3.3). Fig. 5c shows the shape obtained, which is almost the same as the analytic
result as the ground truth. To measure the distance between the numerical result and the analytic

11



(a) Boundary curves (b) Footprint domain

(c) Designed Result
(d) Analytical solution

Figure 5: The validation of our solver for the catenary model. (a) The boundary curves are specified according to
concept of catenary surface (b) The square NURBS patch of the footprint is used as the initial surface of the Newton
iteration (c) The designed result (d) The analytical solution as ground truth for comparison.

surface, the L2 error is computed:

EL2 =

√√∫
Ω

(
h − h̄

)2
dΩ =

√√
1000×1000∑

i=1

(
hi − h̄i

)2
(23)

In the error computation, 1000 × 1000 evaluation points are evenly distributed over the horizon-168

tal footprint, hi and h̄i are the calculated and the analytic heights respectively. We tested with169

increased polynomial degrees for NURBS (p-refinement) and refined spline with more control170

points (h-refinement), and show the errors in Table 1. The convergence rate is further visualized in171

Fig. 6: for each model described by splines with degree p, the convergence rate of the L2 error with172

respect to the step size (distance between two neighboring control points) is p + 1. Our method173

can obtain a surface with L2 error 9.48 × 10−4 in 5.07 × 10−3 seconds.174
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Figure 6: Convergence results for the catenary model. The x coordinate represents the step size and the y coordinate
represents the L2 error, which are shown in logarithmic form in base 10. Empirically, for each model described by
splines with degree p, the order of convergence is p + 1.

4.2. “Tent”175

The tent model is inspired by vault roofs as shown in Reference [15]. Starting from an initial176

conceptual sketch of the shape, our algorithm turns it into a self-supporting surface. The boundary177

of the footprint is first drawn with CAD tools and then the design domain is modeled by NURBS178

patches. The layout of patches is shown in Fig. 4b. The self-supporting tent surface is designed179

by setting the stresses as σ11 = 1, σ22 = 0.8, and σ12 = 0, and is shown in Fig. 7.180

4.3. “Crest”181

The original “Crest” (Fig. 3) is an experimental sculpture designed by Zaha Hadid Architects.182

To construct it, the designers assembled very thin aluminium panels together into a flat plate and183

then lifted the plate into a self-supporting structure. The designers of “Crest” intend to investigate184

“the relationship between formal arrangement and structural performance”1, a topic with which185

we have affinity in this work. Inspired by the sculpture, using our algorithm, we create variations186

of self-supporting Crest models with different inner stress states. There is the pattern that the187

height of the surface increases when the ratio of stresses σ22/σ11 decreases. This pattern may help188

the architects to predict what shapes they will obtain, thus providing them a useful tool to explore189

possible designs. Fig. 8 shows three results for the Crest concept. The designers can choose the190

optimal design among them (and many others) according to their own aesthetics taste.191

1According to the description in http://www.zaha-hadid.com/architecture/crest-installation/
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Table 1: Convergence tests of the catenary problem. The tolerance of the Newton iteration is 10−12.

Degree Refine times Cp per-side L2 error Computation time(seconds)

1 1 5 2.678E-02 2.150E-3
1 2 9 6.661E-03 7.505E-3
1 3 17 1.659E-03 3.687E-2
1 4 33 4.142E-04 2.541E-1
1 5 65 1.034E-04 2.753E+0
1 6 129 2.587E-05 6.146E+1

2 1 7 9.479E-04 5.070E-3
2 2 11 1.022E-04 1.958E-2
2 3 19 1.220E-05 9.809E-2
2 4 35 1.505E-06 6.351E-1
2 5 67 1.875E-07 5.461E+0
2 6 131 2.342E-08 1.935E+2

3 1 9 7.430E-05 1.126E-2
3 2 13 6.916E-06 4.751E-2
3 3 21 4.784E-07 2.527E-1
3 4 37 3.105E-08 1.854E+0
3 5 69 1.975E-09 3.106E+1
3 6 133 1.245E-10 5.457E+2

4 1 11 2.040E-06 2.578E-2
4 2 15 1.606E-07 1.113E-1
4 3 23 5.405E-09 5.243E-1
4 4 39 1.724E-10 3.641E+0
4 5 71 5.436E-12 1.038E+2
4 6 135 1.706E-13 1.569E+3

4.4. Top of Lilium tower: comparison with TNA192

The top of Lilium Tower is used for comparison with the TNA methods. Lilium tower is a193

building in Warsaw, Poland, also designed by Zaha Hadid Architects. In [9] a self-supporting194

mesh defined by 1201 vertices and 3504 edges approximating the top of Lilium tower is given.195

With our NURBS-based representation, only 36 control points are used, as shown in Fig. 9a. So196

compared with the TNA-based method using a discrete mesh surface, the shape computed by our197

method is smooth and the variables needed to describe the geometry are much fewer. As a result,198

our algorithm has better computational efficiency, as further discussed in section 5.1. In Masaaki et199

al.’s work [15], which also uses parametric surfaces for representing self-supporting surfaces, dis-200

crete self-supporting conditions, however, are still based on the equilibrium of the thrust network,201

which lacks the high order precision achieved with few variables that our isogeometric model202

provides.203

4.5. Trihole and Stadium204

The “Trihole” and “Stadium” models have complex topology. Our method handles them with-205

out difficulty. The input footprints are specified according to the top views of the mesh models206
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(a) (b)

(c) (d)

Figure 7: The design process of the tent model. (a) The design concept. (b) The input model is designed with CAD
software. (c) The input model described by NURBS patches. (d) The output masonry structure.

shown in [8] and [9]; parts of the boundaries are fixed to the ground. Fig. 10 illustrates the com-207

puted self-supporting surfaces with our method.208

5. Discussions209

5.1. Comparisons with TNA and IGA based methods210

We model masonry surfaces by parametric NURBS, which is suitable for describing smooth211

geometry. Compared with TNA-based methods, which use discrete graphs and meshes, the para-212

metric description defines smooth surfaces with a smaller number of control points, thus enjoying213

a considerable advantage in computational efficiency. The runtime statistics of our algorithm are214

listed in Table 2. All the experiments are done on an Intel i7 processor clocked at 2.7GHz. For215

example, the catenary and the crest models are defined with a single patch, thus the number of con-216

trol points used to define the geometry is very small while the smooth shapes are well represented.217

Our algorithm finds the self-supporting shapes from the initial planar configurations within less218

than 0.1 seconds for both models. Complicated models with holes are represented using multiple219
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(a) (b)

(c) (d)

Figure 8: Crest model. (a) Free form curves and patch inspired by the “Crest” sculpture. The stresses are set as
follows: σ11 = −1, σ12 = 0 are used for all the examples. The other stresses are (b) σ22 = −0.6, (c) σ22 = −0.3, (d)
σ22 = −0.2.

(a) Input geometry (b) Present result

Figure 9: Lilium tower. (a) The input geometry; (b) Result obtained by present algorithm with stresses as σ11 = −0.5,
σ22 = −0.5, and σ12 = 0. It is a continuous smooth surface described by NURBS, and the triangulation shown in the
figure is only created by the rendering.
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(a) Tri-hole model (b) Stadium

Figure 10: Two complex self-supporting surfaces computed by our method. (a) The tri-hole model has stresses as
σ11 = −0.2, σ22 = −1.0, and σ12 = 0. (b) The stadium model has stresses as σ11 = −0.3, σ22 = −0.3, and σ12 = 0.

NURBS surface patches, as in the examples of the tent, the top of lilium tower, and the tri-hole220

models. Adjacent patches share the control points along their common boundary, so that the sur-221

face has C0 continuity. Again our algorithm can effectively find the self-supporting shapes, with222

computation time only about 25% of that by TNA in [9].223

Table 2: Computational statistics of our algorithm.

Fig. Con. Pts. Iters. Err. Time (s)

5c 25 12 10−12 0.027
7 828 4 10−12 2.069
8 56 4 10−12 0.093

9b 36 4 10−12 0.044
10b 1158 4 10−12 4.218

Table 3: Comparison of computational efficiency. The termination condition is that the tolerance of the Newton
iteration is 10−12. For a simple shape that can be described by a single patch, our method can obtain a self-supporting
shape in real time (less than 0.1 seconds). For whole shapes which must be described by multi-patch geometry, the
present algorithm only needs about 25% time of that when using TNA.

Fig. Our algorithm Ref. [9]
Con. Pts. Iters Time (s) Vertices iterations Time (s)

9b 36 4 0.044 1201 9 21.6
10b 1158 4 4.218 1535 21 17.0

Alic and Persson’s dynamic relaxation method [30] and Philipp et al.’s updated reference strat-224

egy [28] also use isogeometric analysis for the computation of membrane structures. In these two225

papers the form-finding approach is used to compute architectural surfaces. Our method is more226

practical and effective for the design of masonry shapes. In particular, one advantage is that our227

algorithm does not need a specific input shape as the target, and useful self-supporting shapes228

17



can be obtained efficiently by tuning the inner stress states. The form finding methods follow229

the reverse design approach: an existing model must be used as the input and the outputs are all230

in similar shapes with the input. Another advantage is the computational efficiency: our method231

applies Newton’s method to handle the nonlinear loads and converges within very few (typically232

about 5) iterations. The results in Table 3 show that form finding methods generally take more233

computation time.234

5.2. Influence of Airy stress235

In this section, we explore the influence of Airy stress in tuning the self-supporting shape. To236

carry out the analysis, we use a simple square domain of [−1, 1]× [−1, 1] on which self-supporting237

surfaces are defined.238

5.2.1. Scale and ratio239

In actual masonry buildings, gravity loads vary from dozens to thousands of pascals depending240

on the building material, while geometric scales range from meters to dozens of meters. According241

to the control formula in Eq. 10, the relative ratio of Airy stress to the gravity load determines242

the shape. Therefore, without loss of generality we assume a unit gravity load, and fix all four243

boundaries of the surface to the ground. We explore the effect of uniform Airy stress functions244

which have zero shear stress (σ12 = σ21 = 0) and varying normal stresses σ11, σ22. In addition,245

we always set σ11 > σ22, because models with σ11 < σ22 can be obtained simply by rotation. Our246

results show that the feasible design domain of Airy stresses under this setting locates within a247

triangle, as plotted in Fig. 11. The main conclusions from the test are as follows. Through this248

example, it is shown that the meaningful values for the Airy stresses reside in a well-defined region249

and the obtained shapes are predictable by tuning the values.250

a) When both stresses are tiny, which means the structure is in a loose state and there is not251

enough compression force to hold the pieces together, Newton’s iteration will not converge252

and no self-supporting shapes can be obtained.253

b) When stress increases, the height of the obtained shape generally decreases. This phenomenon254

is explained by the fact that equilibrium with smaller plane stresses can be obtained with steeper255

shapes, until reaching the extreme case when walls are built straight up with blocks. In the256

opposite direction, when inner stress increases, the height of the obtained shape decreases,257

until it becomes planar in the extreme situation.258

c) When the ratio of two normal stresses σ11, σ22 increases, the shape cross sections in the two259

directions will be more different, as shown in Fig. 12.260

d) The feasible design domain in this problem is located within a triangle with vertexes (0.3, 0.3),261

(1.49, 1.49) and (3.2, 0.002). A symmetrical triangle plotted by the dashed line is the feasible262

domain for σ11 < σ22.263
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Figure 11: The feasible design domain of Airy stresses. Shear stresses are set to zero, and the absolute value of
normal stresses are plotted in logarithmic-logarithmic coordinates. The red circular spots represent feasible values for
obtaining self-supporting shapes. The cross spots mean that the Newton iteration does not converge. The inverted
triangles represent flat shapes that are not interesting, while the triangles represent cliffy shapes. The values are chosen
by practical experiences that shapes with a maximum height less than 0.2 are deemed flat, and more than 4 as high.

Figure 12: The influence of the scale of Airy stress functions on self-supporting shapes. The insets on down-right
corners show the side views of the shapes. For all models σ12 = σ21 = 0. (a) σ11 = σ22 = −1, (b) σ11 = σ22 = −0.5,
(c) σ11 = −2, σ22 = −0.01, (d) σ11 = −0.5, σ22 = −0.1.

5.2.2. Propagation of boundary conditions264

In this section, a square domain with two opposite and curved boundaries is used to study the265

influence of boundary conditions. A model with four patches is used. The boundary curve is given266

by the function 0.3 |sin (πx)|, as shown in Fig. 13. The L2 projection method is used to force the267

boundary of the model to keep the same shape as the boundary curve.268

Figure 13: The boundary curve.

First, a sequence of different stresses with zero shear force and corresponding results are shown269

in Fig. 14. We see that when the normal stress σ22 is small, the influence of the curved boundary270
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is limited to the sides and the interior domain is not affected; with the increase of σ22, however,271

the influence propagates and can even dominate the whole shape.272

Figure 14: Influence of the boundary increases with the corresponding Airy stress values. Curved boundary conditions
shown in Fig. 13 are applied on two opposite sides of the square. The other two sides are pinched, with a constant
normal stress σ11 = −0.5. The absolute value of normal stresses on the wiggly sides σ22 gradually increase. (a) the
input boundaries, (b) σ22 = −0.5, (c) σ22 = −5, (d) σ22 = −50. Shape construction in (d) is difficult, because the
inner stress is large and huge force must be applied on the boundary to maintain the stress state, which is not practical
in construction.

To investigate the propagation direction of the boundary conditions under the influence of
stress functions, we further conduct the following tests. According to theory of elasticity, the two
main stresses within a membrane can be computed as follows:

σ1

σ2

}
=
σ11 + σ22

2
±

√(
σ11 − σ22

2

)2
+ σ2

12 (24)

The two main stresses are both negative; the one with the larger absolute value is denoted as σ1.
The angle between the main stress σ1 and the x coordinate axis is denoted as α1, and

tan
(
α1

)
=
σ1 − σ11

σ12
.

Five stress states are picked from Mohr’s stress circle with main stresses σ1 = −50, σ2 = −0.5.273

The angles α1 of the five states are 90◦, 60◦, 45◦, 30◦ and 0◦. In Fig. 15, the top view of the274

obtained shapes are plotted so that the propagation of curved boundary condition can be clearly275

observed. The results show that the propagation direction of boundary conditions coincides with276

the direction of main stress. This result is very useful for improving our understanding about the277

behavior of masonry surfaces.278

5.3. Influence of parameterizations279

The influence of parameterization for multi-patch models is tested. Fig. 16 shows two para-280

metric models for an input shape with the same planar boundary: the left model has four patches,281

while the right model has three patches. The outer boundaries of the models are fixed to the ground282

and the central circular boundary rises to form self-supporting surfaces. The Airy stress is set as283

σ11 = σ22 = −0.4, σ12 = 0. The results show that differences in the parametric models do not284

significantly affect the final shapes obtained using our algorithm. The computed masonry shapes285

from these two parameterizations are almost the same, with their Hausdorff distance being 0.68%286

of the bounding box diagonal length of the result shapes.287
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30o 0o
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2

Figure 15: Self-supporting shapes corresponding to the five stress states picked from the Mohr’s stress circle. The
main stress direction coincides with the propagation direction of applied boundary conditions.

(a) Input model 1 (b) Input model 2 (c)

Figure 16: Two different parametric methods for the “plate-hole” model with the same geometrical shape. Our
algorithm obtains stable results for these two parametric models. (a) Input model with four patches; (b) Input model
with three patches; (c) The obtained shapes are close to one another and cannot be visually distinguished.

5.4. Exponential Airy stress288

Constant stress states have been used in previous examples so far. However, Airy stress func-
tions are not restricted to constant stress states. In this section we show an example with varying
stress states. In particular, exponential functions make a qualified candidate for Airy stress func-
tion because of their strict convexity. For example, the function

Φ = − (ex + ey) (25)

is concave and thus the self-supporting condition is always satisfied. In this case, the stress tensor
takes the form

σ =

[
−ex 0
0 −ey

]
.
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The shape of the Airy stress function is shown in Fig. 17(a). The self-supporting shape is shown289

together with the corresponding Airy stress in Fig. 17(b), and in different views in Fig. 17(c) and290

17(d). This example demonstrates the ability of our algorithm to deal with various types of Airy291

stress functions.

Figure 17: Computational results obtained for an exponential Airy stress. (a) Absolute value of the Airy function. (b)
Obtained shape and corresponding Airy function. (c) and (d) show the shape in different perspectives.

292

6. Conclusion293

In this paper, self-supporting masonry surfaces are modeled with NURBS based IGA and294

a heuristic strategy for designing the surfaces is proposed. The equilibrium equation for self-295

supporting surfaces is derived from membrane shell theory and can be effectively solved by the296

IGA representation. Nonlinear equations that consider changing gravity loads with shapes are297

solved via Newton’s method. The convergence rate of the presented algorithm is shown to be298

one order higher than the degree of applied NURBS basis functions. Airy stress states within the299

shape can be manipulated and the corresponding self-supporting surfaces are efficiently calculated.300

Moreover, the Airy stress space for meaningful designs is explored and discussed, which provides301

guidance for design. Various self-supporting structures with complex topology and shapes are302

demonstrated. These shapes can help architects to find the ideal conceptual design, and to get an303

idea of the stress states within the design. Overall, the proposed algorithm accurately and effi-304

ciently calculates the shapes of self-supporting surfaces and provides an effective tool for design.305

There are some limitations of the present method. The stress state of masonry structure is306

wider than that described by Airy stress function, because divergence free stress tensors exist that307

are not second-order differentials of a function. In future works, the algorithm to solve the general308

differential equation of self-supporting masonry using isogeometric analysis, without the aid of309

Airy stress function can be investigated. The present algorithm focuses on the elastic deformation310

and the plastic deformation can be embedded into the present strategy in the future work for the311

evaluation of existing masonry structures. Higher continuity such as C1 smoothness along the312

boundary of the adjacent patches of complex structure can also be considered.313
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