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The chemical and physical stability of proteins in solution and solids was addressed in 

this dissertation. Protein-excipient interactions in lyophilized solids were studied by 

hydrogen/deuterium exchange with mass spectrometry (chapter 3) while glycosylation 

quanitification (chapter 4) and deamidation (chapter 5) was characterized in antibodies 

in solution. LC/ESI-MS was the method of choice for all studies. Hydrogen/deuterium 

exchange study showed that the method can be used to obtain region specific 

information about protein-excipient interactions in solids. It was demonstrated that 

exchange protection did not occur uniformly along the backbone of the protein and was 

dependant on excipient type and protein structure. The glycosylation quanitification 

study demonstrated that the Fc/2 (limited proteolysis followed by reduction) method was 

relatively quick and accurate and showed comparable values to the standard sugar 

release assay. Antibody deamidation study demonstrated that secondary structure 

played a pivotal role in determination of the deamidation products in antibodies. 
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Chapter 1 

Introduction to protein characterization in solution and solids 
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1.1. Introduction 

The objective of this dissertation is to address some key issues associated 

with protein chemical stability (in solution) and protein-excipient interactions in the 

lyophilized state. The issues addressed are – i) most common pathway of protein 

degradation – deamidation in the Fc portion of a recombinant human antibody (IgG), 

ii) one of the common forms of post translational modification – glycosylation in a 

recombinant human antibody and iii) analysis of protein-excipient interaction in 

lyophilized solids using hydrogen/deuterium exchange with mass spectrometry. 

In the past decade, there has been a significant rise in number of therapeutic 

peptides and proteins passing through rigorous clinical trials and finally reaching the 

market1. The trend shows no signs of letting up. A major advantage of proteins 

compared to small molecules is that they are highly specific in their therapeutic 

effects able to exert these effects at low concentrations (i.e., they are potent). This 

aspect of protein therapeutics has made them an important area of research in the 

pharmaceutical industry. Protein drug products include enzyme activators and 

inhibitors, poly and monoclonal antibodies, interferons, interleukins and vaccines.  

Even though they are highly potent, protein drugs are subject to a variety of 

chemical and physical degradation processes during manufacturing and storage that 

reduce potency, limit shelf-life and increase the potential for immunogenic side 

effects. The development of a stable protein formulation thus is imperative for safe 

administration of protein drugs, but presents serious challenges for the 

pharmaceutical scientist.  

Physical degradation changes protein conformation or phase behavior 

through processes such as aggregation, denaturation, precipitation and adsorption to 
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surfaces. Aggregation is the most common pathway of physical aggregation 

observed in protein formulations. For example, the development of high 

concentration protein formulations that are to be administered through the 

subcutaneous route faces considerable aggregation and viscosity issues2-4. Surface 

adsorption is particularly important  in the development of pre-filled syringe 

formulations5. Proteins have been observed to denature at the interfaces leading to 

loss of efficacy.  

Chemical degradation produces covalent changes in particular amino acids 

through reactions and are generally irreversible. Common pathways include 

deamidation6, 7, oxidation8, hydrolysis9, isomerization10, 11 and disulfide exchange9. 

Studies presented in Chapter 3 address the effects of secondary structure on 

deamidation in the Fc portion of a human IgG molecule which includes an 

introduction on deamidation. Among other degradation reactions oxidation is another 

common degradation reaction and typically occurs in the side-chains of His, Met, 

Cys, Trp and Tyr residues.   

Among the various post-translational modifications (PTMs) involving 

additional of another functional group in their biosynthetic pathway, glycosylation has 

emerged to be one of the most important12, 13. Glycosylated proteins generally are 

more stable than other aglycan forms, particularly with respect to physical stability14-

16. Chapter 4 includes an introduction on glycosylation and deals with LC-MS 

methods for quantitation of different glycoforms present in a recombinant human IgG 

molecule.  

Due to their inherent instability in solution, proteins are often formulated in 

their lyophilized form. Though lyophilization is intended to stabilize the protein, it can 
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still undergo chemical and physical degradation during  lyophilization or storage in 

the solid state17. Excipients are often added in these formulations as lyo- or a 

cryoprotectant in an attempt to preserve protein structure during the freeze-drying 

process. Chapter 5 describes the characterization of protein-excipient interactions in 

lyophilized solids using hydrogen/deuterium exchange with ESI-MS. Also, chapter 2 

is a comprehensive review of techniques currently employed to analyze protein 

structure in lyophilized solids including hydrogen/deuterium exchange.  

Overall, the chemical and physical stability of therapeutic proteins irrespective 

of it being in the form of solution or solid will determine the efficacy of a protein drug. 

Thus characterization and analysis of intra or intermolecular interaction between 

molecules assumes immense importance. Thus, in this dissertation, our emphasis 

has been on characterizing and analyzing certain important aspects of protein 

instability both in solution and lyophilized solids. 

 

1.2. Specific aims 

The work presented in this dissertation addresses three Specific Aims related 

to the chemical and physical characterization of protein drugs in solution and in the 

solid state: 

1.2.1. Specific Aim 1. – To determine the effect of secondary structure on 

deamidation in the Fc portion of an IgG (Chapter 3) – The work reported in 

Chapter 3 is a detailed study of deamidation at N382 and N387 of the tryptic fragment 

G369 -K390, (GFYPSDIAVEWESNGQPENNYK) located in the CH3 domain of the Fc 

portion of a humanized IgG1 antibody. The objective of the study was to detect the 

deamidation sites and to elucidate the effects of secondary structure on the reaction 
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products and kinetics.  The results demonstrate that the product profile for the tryptic 

fragment and the intact protein are indeed different, supporting the hypothesis that 

higher order structure of the protein plays a significant role in determining both 

deamidation kinetics and product distribution.  

1.2.2. Specific Aim 2. – To compare LC and LC/MS-based methods for 

quantifying glycosylation in a recombinant IgG (Chapter 4) - The studies 

reported here compare six LC and LC/MS-based methods for quantifying 

glycosylation in two production lots of a IgG. The studies test the hypothesis that  

LC/MS-based methods provide identification and quantitation of glycoforms that is 

equivalent to the convenational normal phase LC-based sugar release assay. The 

results demonstrate that LC/MS analysis of Fc/2 fragments yields results that are 

statistically comparable to the sugar release assay and can be used as a 

complimentary technique due to its ease of sample preparation and reduced analysis 

time. 

1.2.3. Specific Aim 3. – To develop hydrogen/deuterium exchange with 

+ESI/MS analysis as a method for characterizing protein conformation and 

excipient interactions in lyophilized solids (Chapter 5) - In previous studies by 

our group18-20, HDX with tandem liquid chromatography / electrospray ionization 

mass spectrometry (LC/+ESI-MS) and peptic mapping were used to provide site 

specific information on HDX in solid samples of calmodulin. The results 

demonstrated that low molecular weight sugars (i.e., trehalose, sucrose) provided 

significant protection from exchange relative to excipient-free controls, and that this 

protection was exerted preferentially in the α-helical fragments of calmodulin. The 

studies presented here extend this method to other model proteins having differing 
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secondary structure and in the presence of excipients with differing size and H-bond 

donor and/or acceptor capacities. The studies test the hypothesis that the ability of 

excipients to protect proteins from HDX in amorphous solids depends on both 

excipient type and protein structure, and that this effect is exerted non-uniformly 

along the protein sequence.  
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Methods for assessing protein structure in lyophilized solids 
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2.1. Introduction 

Protein drugs have seen unprecedented growth over the past decade. These 

complex and labile molecules are subject to a variety of physical and chemical 

degradation processes during manufacturing and storage which can lead to loss of 

activity, severe side effects and immunogenicity. Development of a stable protein 

formulation thus is imperative for safe administration of protein drugs, but presents 

serious challenges for the pharmaceutical scientist. To stabilize the protein to meet 

the long term shelf-life requirement, many protein drug products are formulated in 

lyophilized (i.e., freeze-dried) forms. Other techniques of drying are also available 

(e.g., spray drying) but lyophilization is still the method of choice. 

Though lyophilization is intended to stabilize the protein, the protein can still 

undergo chemical and physical degradation during the lyophilization process or 

during storage in the solid state. The physical degradation changes can be reversible 

on reconstitution, but often are not. Chemical degradation reactions such as 

deamidation, oxidation, and the Maillard reaction occur in the solid state, leading to 

net changes in the chemical composition of the protein. It is generally accepted that 

the native structure of the protein has to be maintained in the solid state for the 

protein to maintain potency and minimize any adverse reactions (e.g., immune 

response). Excipients are generally added to the formulations to keep the protein in 

its native form by providing protection during freeze drying and storage. To assess 

the stability of solid protein formulations, it is imperative to have analytical techniques 

capable of determining protein structure in the solid state. Although there are many 

techniques available for studying protein structure in solutions, far fewer are 

available for solids. The techniques available do not provide useful/interpretable 
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information in many cases.  This chapter presents a review of techniques available 

with their advantages and limitations, together with examples of their applications. 

The techniques described here are Fourier Transform Infrared Spectrocopy (FTIR, 

Section 2.2), solid-state Nuclear Magnetic Resonance (ssNMR, Section 2.3), Fourier 

Transform Raman Spectroscopy (FT-Raman, Section 2.4) and hydrogen/deuterium 

exchange with mass spectrometry (HDX, Section 2.5). 

 

 2.2. Fourier Transform Infrared Spectroscopy (FTIR) 

FTIR has emerged over the last decade as one of the most important 

technique for analyzing protein structure in solid formulation. Many research groups 

have employed FTIR to study protein structure in amorphous solid formulations1-8. 

The technique’s greatest advantage is that it is not limited by the physical form of the 

sample, and can be effectively used for to dispersions9, 10 and hydrated solids11 as 

well as solutions. 

FTIR measures the light energy absorbed by a protein molecule in the 

infrared region between transitions of vibrational modes and therefore is 

characteristic of bonds or bond types. Only three of a possible nine interpretable 

absorption bands12 are used for present day analysis.  The Amide I (1600 - 1700 cm-

1), Amide II (1500 - 1600 cm-1) and Amide III (1220 - 1330 cm-1) bands are highly 

sensitive to changes in the protein backbone. The Amide I band is directly correlated 

to the protein backbone conformation. It arises due to C=O stretching vibrations with 

minor contributions from C-N stretching in the region of 1600 to 1700 cm-1. 

Secondary structure measurements of proteins in both solutions and solids are 

generally performed by deconvolution of the Amide I band. The Amide II band arises 
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due to N-H bending coupled with C-N stretching vibrations and usually appears 

between 1500 and 1600 cm-1. Since it involves N-H bending, the Amide II band has 

been used to characterize protein secondary structure by employing 

hydrogen/deuterium exchange experiments. On exchange of the imide hydrogen 

with deuterium, the band shifts to 1450 cm-1, thus enabling quantitation of H / D 

exchange kinetics. The Amide III band is comprised of a number of coordinated 

vibrations and is reflected in the 1220 to 1330 cm-1 region. Though it has been used 

to quantitate secondary structure, it has failed to gain importance due to the low 

signal quality13-16. 

There are three distinct FTIR sampling methods that are generally used for 

amorphous solid samples, each with its own advantages: KBr pellet, Diffused 

Reflectance (DRIFTS), and Attenuated Total Reflectance (ATR). The KBr pellet 

technique involves the application of force to form thin pellets of the protein-KBr 

mixture which are then introduced into a sample holder for transmission mode 

measurement. Although this technique has a long history, there is some concern 

regarding possible changes in protein secondary structure by the pressure applied 

during pellet formation17. However, other reports claim that KBr pellet formation has 

little effect on protein structure based on comparisons with other techniques like IR 

microscopy18-20. ATR has been has been used extensively in solution studies but 

less widely for solids. ATR is purported to have minimal sample preparation and 

does not affect the secondary structure of proteins. The method involves spreading 

the sample over a crystal made of ZnSe or Ge or diamond and then applying enough 

pressure to ensure close contact of the sample with the crystal surface. The infrared 

beam enters one end of the crystal and is totally reflected multiple times because of 
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the high reflective index of the crystal. At the total reflection point, the IR beam is 

able to penetrate into the sample for ~0.5 mm; this penetrating light is called the 

evanescent wave. The sample absorbs the evanescent wave at this point. The beam 

exiting the crystal is recorded as the sample absorption and provides structural 

information. DRIFTS has emerged has an excellent alternative to KBr pellet and ATR 

techniques, especially for powders that are not easily spread. DRIFTS has been 

used by many groups to study the effect of excipients on secondary structure in the 

amorphous state. Van de Weert et al.20 have demonstrated that sampling techniques 

had a minor effect on the spectrum and therefore all methods are acceptable. 

 

2.3. Solid State Nuclear Magnetic Resonance Spectroscopy (ssNMR) 

ssNMR is fast emerging as a technique for characterizing macromolecular 

formulations as more and more lyophilized protein formulations are being developed 

in the industry. Previously, ssNMR has been used almost exclusively for 

characterizing small molecules. 

In solution NMR, small molecules are tumbling rapidly, which serves to 

average many of the interactions that occur. For example, only the isotropic value of 

the chemical shift is observed, rather than full chemical shift tensors. In ssNMR, the 

molecules are no longer tumbling rapidly, and therefore are characterized by broad 

peaks which can be attributed to the strong coupling interactions and chemical shift 

anisotropy (CSA) in the solid. These problems are being overcome for dilute nuclei 

such as 13C by applying high-power 1H decoupling and by spinning the sample at an 

angle of 54o 44’ between the spin axis and the direction of the magnetic field, the so-
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called “magic angle”.  Through cross polarization (CP) of magnetization from protons 

to carbons (13C), the 13C sensitivity can be enhanced by up to a factor of four. 

For biological systems, ssNMR applications have been primarily used for the 

elucidation of the structure of proteins with low water solubility such as membrane 

proteins and beta amyloid fibrils21-33 since these systems cannot be studied by 

conventional solution NMR or X-ray crystallography. In lyophilized powders, the 

molecular orientation is more random, making it more difficult to obtain protein 

structure information. Although no full structure elucidation has been reported for a 

lyophilized protein using ssNMR, the method can provide useful structural 

information in solid formulations34.  Though limited in its applications for lyophilized 

formulations it has been used for secondary structure measurement, chemical 

reactivity and measurement of molecular mobility of both protein and excipient in 

amorphous solids35-41.  

 

2.4. Near Infrared Spectroscopy (NIR) 

NIR has gained popularity as a simple, rapid, noninvasive and nondestructive 

technique that allows protein structure monitoring, and has found widespread 

acceptance in the food42 and pharmaceutical industry43-46. Since NIR provides 

information on both physical and chemical properties of the sample, it has been used 

for analysis of residual moisture content47-49, crystallinity50, 51 and molecular 

interactions in solids52, 53.  

The greatest advantage of NIR is the need for little or no sample preparation: 

samples in any glass vial can be subjected to NIR to yield reproducible information 

on protein structure in less than a minute. This can be attributed to the low molar 
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absorptivity of NIR bands which facilitates operation in reflectance mode46, 51, 54. 

Wavenumbers of 13300-4000 cm-1 are generally referred to as the NIR region. NIR 

bands are overtone and combination bands of absorption bands involving C-H, N-H 

and O-H bonds and thus can be used for investigating protein conformation in the 

solid state. These bands are the outcome of forbidden transitions from the ground 

vibrational energy levels and are therefore several fold less intense than their 

corresponding mid-IR absorption bands55. Higher wavenumber regions (5000 - 

13000 cm-1) are assigned mainly to the overtone bands while the lower wavenumber 

regions (4000 – 5000 cm-1) are assigned to combination bands.  It has been 

proposed that protein structure is best elucidated from the 4000 – 5000 cm-1 region56-

59. NIR studies of lyophilized proteins have shown certain bands at 4369 and 4604 

cm-1 corresponding to α-helix and at 4323, 4417, 4525-4535 cm-1 corresponding to β-

sheet domains 56, 60. A recent report by Bai et. al61 suggested the possibility of 

distinguishing proteins with respect to their secondary structure and also the 

protective effects of sucrose in amorphous solids using NIR. Izutsu et al.62 

demonstrated the effect of freeze drying on secondary structure using seven proteins 

having different secondary structures and comparing their NIR spectra in solution 

and in the solid state. The authors showed a slight reduction in α-helical structure 

with concomitant rise in β-sheet structure upon freeze drying and also at elevated 

temperatures. β -sheet proteins did not show any effect.  

NIR may be most useful technique in a manufacturing or production setting 

that demands ready analysis of the secondary structure and other physico-chemical 

properties of amorphous solids63. Further development in data analysis procedures 

would improve the quality of information obtained from NIR spectra. 
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2.5. Fourier Transform Raman Spectroscopy (FT-Raman) 

Raman spectroscopy has emerged as an important tool to monitor secondary 

structure of proteins. Like FTIR, FT-Raman has the flexibility to handle samples with 

different physical forms, and has been used to study protein conformation in 

aqueous solution64-66, organic solvents67 and solids68-70. The method has also been 

used to study polymers, ceramics, semiconductors and other biological molecules 

like DNA and carbohydrates.  

Raman spectroscopy basically involves the inelastic scattering or Raman 

scattering of monochromatic light usually from a laser beam in the visible, near 

infrared or in the near UV region. It measures the frequency differences in scattered 

light between the ground and excited vibrational energy levels of a molecule on 

exposure to a beam of light. This in turn gives rise to a characteristic set of bands or 

Raman spectra for that particular chemical entity. It involves the excitation of a 

molecule to virtual energy states by an incident photon and then emitting a photon 

during relaxation to a vibrational excited state. Three types of transitions are 

possible. Raman scattering arises when the energy of the emitted photon is less than 

that of the incident photon indicating that the molecule has gained energy during this 

process to an excited state (Fig. 2.1). This is defined as the Stokes Raman 

scattering. If the energy of the emitted photon is greater than that of the incident 

photon, indicating gain of energy by the photon from the molecule in an excited 

vibrational state while it falls back to its ground state, then it is defined as the anti-

Stokes Raman scattering. Stokes Raman scattering is generally measured in 

conventional Raman spectrometers. The third transition involves same energy for  
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Figure 2.1. Energy diagram for different vibrational transitions possible. Thickness of 
lines is approximately proportional to the signal strength of each transition.  
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both the incident and emitted photon and is stronger than the previous two 

transitions. It is known as Rayleigh scattering and is a major obstacle to obtaining 

meaningful Raman data. For FT-Raman, a 1064 nm near infrared laser is generally 

used as the source, and has found widespread application as it can completely block 

Rayleigh scattering and selectively allow Raman scattering for analysis. As in FTIR, 

the secondary structure of proteins in FT-Raman is analyzed mainly by Amide I 

bands (C=O stretching) which are sensitive to protein conformation. Typically, α-

helical structures have the Amide I band at 1655 cm-1 while β-sheet structures 

appear at 1670 cm-1 and random coil are generally observed at approximately 1640 

cm-1. Research has revealed that with UV resonance Raman, the Amide III band is 

also very sensitive to protein secondary structure and could be used for analysis64. 

Raman spectroscopy enjoys a few advantages over FTIR but is necessarily a 

complementary vibrational spectroscopy technique rather than a replacement for 

FTIR.  An advantage of Raman spectroscopy is that the water signal in Raman is 

weak, particularly in comparison to its marked IR absorbance which can interfere 

with analysis, especially in solution. Raman spectroscopy also provides information 

on highly polarizable groups having symmetrical vibrational modes, which may or 

may not be IR active. This attribute of Raman spectroscopy provides information on 

the disposition of protein side-chains e.g., whether they are hydrogen bonded or if 

the S-H bonds are free. Raman also has the advantage of using light of any single 

wavelength from deep UV to near infra-red, thus offering great selectivity. A 

disadvantage of the technique is that Raman scattering is a weak physical 

phenomenon and therefore signal intensity in terms of quantum yield is low. As a 

result, a relatively concentrated solution (1-5 mg/ml) or solid is required to obtain a 
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good quality spectrum.  An excellent review by Wen71 lists recent advances of 

Raman spectroscopy along with their applications. 

FT Raman has been used to analyze lyophilized proteins for the past three 

decades. The literature primarily addresses the change in secondary structure of 

proteins on lyophilization69, 70, 72, 73. Sane et. al.68 examined the extent of protection 

provided by sugars for a therapeutic antibody and also compared spray drying to 

freeze drying by Raman Spectroscopy. The antibody was found to lose some β-

sheet structure with a corresponding gain in the turn and unordered content in the 

absence of sugars. Trehalose and sucrose were found to be equally protective of the 

predominantly β-sheet structure of the antibody, with the degree of protection 

increasing with higher sugar:protein molar ratios. Histidine had a similar effect, but 

was not as protective as the sugars. Aggregation was also reported to be reduced in 

presence of sugars and occurred more rapidly in spray dried formulations than in 

lyophilized formulations. Tattini et. al.73 studied the PEGylation of bovine serum 

albumin (BSA) and found out that a ratio of 1:0.25 (BSA:PEG) provided the best 

maintenance of the secondary structure. Miller et. al.74, studied the effect of 

photolysis on reactive functional groups and/or reaction products of lyophilized 

recombinant bovine somatotropin with Raman spectroscopy. They observed a 

significant loss of intensity in the 400-550 cm-1 and 650-725 cm-1 regions, indicating 

modifications of the Cys disulfide groups. The data was supported by a photolysis-

dependent increase of intensity between 1060-1125 cm-1, indicating the presence of 

S=O. These results demonstrate that Raman spectroscopy can be used as a 

complementary technique to FTIR for protein secondary structure characterization. 
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2.6. Hydrogen / Deuterium Exchange (H/D Exchange) 

Hydrogen / deuterium exchange has long been used to analyze protein 

structure75, protein folding-unfolding mechanisms76-79 and  protein ligand 

interactions80, 81 in solution. Traditionally H/D exchange was used in conjunction with 

NMR analysis,82 but in recent years H/D exchange with mass spectrometry has 

emerged as a powerful technique capable of investigating protein structure83-85 and 

dynamics under different conditions. H/D exchange with mass spectrometry has 

certain advantages over exchange studies with NMR, in that mass spectrometry: i) 

enables superior sensitivity (ESI, MALDI), ii) requires minute quantities of protein for 

analysis while NMR is performed in high protein concentration, and iii) is adaptable 

to large proteins and their complexes. NMR offers the advantage of providing 

information at the amino acid level i.e., determining exchange rates at specified 

amide linkages, and therefore affords greater spatial resolution than mass 

spectrometry. 

H/D exchange is based on the rate at which the protein backbone amide 

hydrogens undergo exchange with deuterons when they are incubated in the 

presence of D2O vapor or solution. The amide hydrogens are located at every amino 

acid along the backbone and are involved in numerous hydrogen bonds that stabilize 

the secondary and tertiary structure. It usually takes 1-10 s for an amide hydrogen to 

exchange with deuterium when exposed to D2O solution. For a structured protein, 

the exchange rate will depend on the solvent accessibility of that particular amide 

hydrogen (i.e., whether that particular residue is buried or surface exposed) and also 

on its involvement in intramolecular hydrogen bonding 86. Typically, an H/D exchange 

experiment involves exposing the protein sample to a D2O environment (vapor or 
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solution) for predetermined time intervals followed by withdrawal of samples and 

quenching by a low pH  buffer (~ 2.4) and low temperature (~0oC)  to arrest back 

exchange with non-deuterated solvent87. Intact protein analysis can be performed to 

monitor the total uptake of deuterium. Alternatively, the protein can be subjected to 

digestion with an acid-stable protease (usually pepsin) and deuterium uptake by 

different regions of the protein determined by measuring the increase in mass by 

each fragment with LC-ESI MS.  

2.6.1. H/D exchange in lyophilized solids. - Lyophilization has been reported to 

have adverse effect on protein structure  and can lead to aggregation and 

denaturation, causing increased chemical degradation88 and immunogenicity89. H/D 

exchange with mass spectrometry offers considerable promise for providing detailed 

and region specific information on protein structure and interactions in amorphous 

solids. When applied to solids, the technique involves a procedure similar to the well-

established methods used in solution, except that the lyophilized powder is exposed 

to D2O vapor at controlled relative humidity followed by reconstitution of the sample 

before analysis by LC-ESI-MS.  

In recent years, there have been reports of the use of H/D exchange methods 

for monitoring protein structure and protein-excipient interactions in amorphous 

solids with NMR90, FTIR91 and mass spectrometry being the analytical techniques of 

choice92-94. Desai et. al90 employed H/D exchange technique with NMR analysis to 

study and confirm the unfolding of bovine pancreatic trypsin inhibitor (BPTI) on 

lyophilization which led to its loss of activity when reconstituted in organic solvents. 

Six aromatic residues (three buried and three on the surface of the protein) which 

were well resolved in the 1H NMR spectrum were used for analysis.  The authors 
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reasoned that if the protein unfolds, some of these buried protons would become 

exposed and exchange with the D2O in the vapor phase. They observed faster 

exchange for certain NH protons in the lyophilized form compared to solution, and 

found that on addition of sorbitol (lyoprotectant), no exchange occurred. They argued 

that the sorbitol promotes the maintenance of native structure on lyophilization, while 

the protein unfolds when it is lyophilized without this excipient. 

French et. al.,91 used the isotopic shifts for the Amide II/II’ band in the FTIR 

spectra to characterize the solvent exposure of proteins and trehalose in spray-dried 

powders. Human granulocyte colony stimulating factor (rhG-CSF) and recombinant 

consensus interferon-α (rConIFN) were studied in the presence of different weight 

ratios of trehalose at 33 % and 75% RH.  At 33% RH, the H/D exchange was found 

to decrease with increasing percent of trehalose in the formulation, suggesting 

increased protection of the backbone amide bonds due to hydrogen bonding 

between the sugar and the protein. At 75% RH, H/D exchange increased for both 

proteins with trehalose having a mild protective effect. The exchange data correlated 

well with conformational changes that were observed at the two RH values by 

conventional FTIR. H/D exchange rates were also monitored for trehalose. It was 

observed that the trehalose exchange rate was not affected by RH indicating that the 

protons in the sugar are highly protected in the powder. 

More recently, Li et al., 92, 93 used LC ESI-MS to analyze H/D exchange in 

amorphous solid samples. Calmodulin, a calcium binding protein with predominantly 

α-helical structure, was used as a model protein with trehalose and calcium chloride 

as the stabilizing excipients. Pepsin digestion was performed to dissect the effect of 

trehalose and calcium on different regions of the protein. At 33%RH the stabilizing 
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effects of the excipients were not exerted uniformly along the protein backbone. The 

protective effect of calcium chloride was primarily observed in the calcium binding 

loops, while that of trehalose was observed in the α-helices. At 75% RH, trehalose 

was not able to reduce the exchange rate in any of the fragments. FTIR data did not 

show any appreciable perturbation of the secondary structure in any of the 

formulations. 

Li et al.94 also studied calmodulin-excipient interactions in the solid state, 

using trehalose, raffinose, sucrose, dextran, mannitol and guanidine hydrochloride 

(negative control) as excipients. Trehalose, raffinose and sucrose showed the 

greatest protection from exchange, with the effect primarily exerted on the α-helical 

portions. Dextran also showed mild protection. Mannitol showed no protection, which 

was attributed to its recrystallization on storage. 

 

2.6. Conclusions 

This chapter has reviewed five common methods for assessing protein 

structure in lyophilized solids: FTIR, ssNMR, NIR, FT-Raman and H/D exchange. In 

the pharmaceutical and biotechnology industry, FTIR remains the most widely used 

method for characterizing protein secondary structure changes and in lyophilized 

solids. With further development, emerging techniques like ssNMR and H/D 

exchange have the potential to provide detailed information about protein-excipient 

interactions at the peptide or amino acid level. NIR offers the advantage of minimal 

sample preparation and rapid analysis time, and is finding increasing application in 

manufacturing and quality control. Though not discussed here, recent studies have 

employed solid state fluorescence of tryptophan residues95, 96 to analyze protein 
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tertiary structure, an approach that may add an important dimension to solid state 

analysis. Further evolution of these techniques may ultimately make it possible to 

determine exact interactions between protein and excipients in amorphous solids, 

facilitating the development of stable well-characterized formulations.  
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3.1. Introduction 

Proteins and other biotech drugs are among the fastest growing sectors of 

the pharmaceutical industry1. To protect these labile molecules from chemical and 

physical degradation, protein drugs are often formulated and marketed as solids. The 

properties of proteins and formulation additives (“excipients”) together with the 

processing methods used (e.g., lyophilization) typically produce solids that are 

amorphous rather than crystalline. Though amorphous solids are lower in energy 

than solutions, there nevertheless is ample evidence that proteins undergo a variety 

of degradation processes in the amorphous solid state.2-10 Understanding and 

controlling these processes is central to the effective development of solid protein 

drug products. 

Though the mechanisms of protein degradation in amorphous solids are far 

from clear, maintaining native conformation is generally considered critical to 

preventing degradation12-16. Various methods have been used to assess protein 

structure in amorphous solids, though far fewer methods are available than for 

proteins in solution.  By far the most commonly used technique is Fourier transform 

infrared spectroscopy (FTIR)12-14, 16-19. FTIR offers the advantages of applicability to 

both solid and solution samples, ease of sample preparation and rapid analysis. 

However, though FTIR can detect gross changes in protein secondary structure, the 

method lacks sufficient resolution to detect more subtle structural changes17-19. Other 

spectroscopic methods such as near infra-red20, circular dichroism21 and Raman 

spectroscopy22, and thermal methods such as differential scanning calorimetry 

(DSC)23 also have been used to acquire information on protein structure in 

amorphous solids but share the limited resolution of FTIR. Solid-state nuclear 
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magnetic resonance spectroscopy (ssNMR) has made it possible to solve the 

structures of membrane proteins at atomic resolution24. Current ssNMR methods 

allow the complete assignment of backbone and side chain signals for solid proteins 

in the 5-10 kD range25, 26, but generally require that the sample possess a degree of 

microscopic order (e.g., crystallinity) and/or isotopic labeling25, 27. Since protein drugs 

are often far larger than 10 kD, lack microscopic order in the amorphous solid state, 

and are not routinely expressed in isotopically enriched forms, the routine application 

of current ssNMR methods to determine protein drug conformation in amorphous 

solids is impractical.  

Hydrogen/deuterium exchange (HDX) has emerged as a new method for 

studying protein conformation and excipient interactions in the solid state. In solution, 

HDX has been used for more than 50 years to study protein conformation, folding 

and ligand binding28-33. Recently, efforts have been made to extend 

hydrogen/deuterium exchange to proteins in the solid state. Generally, lyophilized 

formulations are exposed to D2O vapor for variable lengths of time at a 

predetermined RH value before being analyzed by a suitable technique.  French et. 

al.34 used HDX with FTIR analysis to characterize the solvent exposure of human 

granulocyte colony stimulating factor (rhG-CSF) and recombinant consensus 

interferon-α (rConIFN) in spray-dried powders containing trehalose, using isotopic 

shifts in the Amide II/II’ bands.  Desai et. al35 employed HDX with 1H NMR analysis to 

study the unfolding of bovine pancreatic trypsin inhibitor (BPTI) on lyophilization 

which led to its loss of activity when reconstituted in organic solvents. In previous 

studies by our group11, 36, 37, HDX with tandem liquid chromatography / electrospray 

ionization mass spectrometry (LC/+ESI-MS) and peptic mapping were used to 
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provide site specific information on HDX in solid samples of calmodulin. The results 

demonstrated that low molecular weight sugars (i.e., trehalose, sucrose) provided 

significant protection from exchange relative to excipient-free controls, and that this 

protection was exerted preferentially in the α-helical fragments of calmodulin. The 

studies presented here extend this method to other model proteins having differing 

secondary structure and in the presence of excipients with differing size and H-bond 

donor and/or acceptor capacities. The studies test the hypothesis that the ability of 

excipients to protect proteins from HDX in amorphous solids depends on both 

excipient type and protein structure, and that this effect is exerted non-uniformly 

along the protein sequence.  

 

3.2. Materials and Methods 

3.2.1. Materials. – Myoglobin, lysozyme, ribonuclease A, β-lactoglobulin, 

concanavalin A, raffinose, trehalose, polyvinyl alcohol (PVA; avg. mol. wt 30,000), 

polyvinyl pyrrolidone (PVP; avg. mol. wt. 10,000), tris[2-carboxyethyl] phosphine 

(TCEP), urea-d4 and guanidine hydrochloride (Gdn•HCl) were obtained from Sigma-

Aldrich Co. (St. Louis, MO). Dextran 5000 was obtained from Fluka (Milwaukee, WI). 

Isopropyl-β-D-thiogalactopyranoside (IPTG) for protein expression was purchased 

from Amresco, Inc. (Solon, OH). Pepsin was obtained from Worthington Biochemical 

Corp. (Lakewood, NJ) and formic acid from Acros Organics (Morris Plains, NJ). All 

materials were of reagent grade or higher and used without further purification.  

3.2.2. Expression and purification of E-cadherin 5 (EC-5). -  E-cadherin 5 (EC-5) 

was expressed in E. coli by transforming the recombinant plasmid into BL21 (DE3)-

T1R competent cells according to a previously reported protocol38. Briefly, cells were 
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incubated in self-made LB agar plates with kanamycin as the inhibiting antibiotic. A 

colony was selected with a sterile loop and then incubated further in LB media 

containing kanamycin (100mg/L) at 37 oC until OD600 reached 0.5-0.8. IPTG (100 

mg/ml) was added to induce over-expression to achieve a final concentration of 1 

mM. After 4 h of further incubation, the cells were transferred to 4 oC to stop growth 

followed by centrifugation to obtain the pellets which were stored at -80 oC overnight. 

The pellet was then reconstituted and French-pressed to lyse the cells followed by 

centrifugation at 20,000 rpm for 60 minutes. The supernatant was transferred to 2 ml 

microcentrifuge tubes, incubated in 80 oC water bath for 10 min and then kept in ice 

for 5 minutes. The suspension formed was then centrifuged at 20,000 rpm for 30 

minutes. The supernatant was loaded onto a Q-Sepharose column (Buffer A: 50 mM 

Tris-HCl, pH 7.5, Buffer B: 50 mM Tris-HCl, 1 M NaCl, pH 7.5) connected to a fast 

protein liquid chromatography (FPLC) system (Amersham Biosciences, NJ). EC-5 

fractions collected after separation were concentrated using Amicon Ultra-15 tubes 

with a 5000 MW cut-off (Millipore Corp., Billerica, MA). The concentrated protein was 

then loaded onto a Superdex™ 200 column (GE Healthcare, Piscataway, NJ) for 

final purification. The EC-5 concentration was determined by UV absorption at 280 

nm. 

3.2.3. Sample preparation. – Solid samples were prepared by lyophilization from 

aqueous solution. 100 μl samples of protein in solution (4 mg/ml) were directly 

lyophilized or co-lyophilized with one of the excipients (i.e., trehalose, raffinose, 

dextran, PVA, or PVP) in a ratio of 1:1 (w/w).  For samples containing Gdn•HCl, 100 

μl of a 3 M Gdn•HCl solution was added to the 100 μl protein solution before 

lyophilization. All samples were lyophilized by first freezing at -35 oC for 2 h. Drying 
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was then performed under a vacuum of 15 mT at a shelf temperature of -35 oC for 2 

h, -5 oC for 8h, 5 oC for 6 h and 25 oC for 10 h.  

3.2.4. Solid-state hydrogen/deuterium exchange (ssHDX). - ssHDX experiments 

were performed according to the protocol previously reported by our group11, 36, 37. 

Briefly, lyophilized samples were placed in sealed desiccators at room temperature 

at 33% relative humidity (RH) over D2O, achieved by storing the samples over a 

saturated solution of MgCl2 in D2O. Samples were collected in triplicate at designated 

times for immediate analysis or stored at -80o C for later analysis. ssHDX 

experiments were performed for intact protein and for peptic digests, as described 

below.  

3.2.4.1. ssHDX for intact protein. – ssHDX studies of intact protein were performed to 

determine the total deuterium uptake by the protein upon exposure to D2O vapor at 

33% RH for 72 h following our previously reported protocol11, 36, 37.  Preliminary data 

(not shown) and our previous studies11, 36, 37 showed that proteins generally reach a 

plateau in deuterium uptake following 72 h at 33%RH; this standard storage time 

was applied to all proteins. Lyophilized formulations were reconstituted with Solvent 

A (94.5% H2O, 5% acetonitrile and 0.5% formic acid, pH 2.3) to a protein 

concentration of 4 mg/ml. A 2 μl aliquot was then removed and diluted with an 

additional 48 μl of Solvent A. The sample was then injected into a short C18 trap 

column (Upchurch Scientific, Oak Harbor, WA) and washed with the aqueous phase 

for 1.3 minutes before being eluted with Solvent B (19.5% H2O, 80% acetonitrile and 

0.5% formic acid) into the mass spectrometer. A Micromass Q-Tof II mass 

spectrometer (Waters Corp., Milford, MA) was used in +ESI mode for analysis. The 

intact protein was detected within 3 minutes following reconstitution. MassLynx 
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software (Version 4.0, Waters Corp.) was used to deconvolute the mass spectrum 

for the intact molecules, and the mass was taken as the cetroid of each 

deconvoluted peak. Back exchange was corrected using the method of Zhang and 

Smith39 and total deuterium incorporation was calculated using the equation: 

D = (m - mo) / (m100 - mo) * N    (3.1) 

where m is the mass of the sample protein at any time, mo is the mass of the native 

protio form of the protein, m100 is the mass of the fully deuterated protein and N is the 

total number of exchangeable amides on the protein backbone.  

3.2.4.2. ssHDX of peptic digests. – In addition to analysis of the intact protein, solid 

samples of selected proteins (i.e., EC-5, β-lactoglobulin, myoglobin, concanavalin A) 

were subjected to proteolytic digestion with pepsin to determine the distribution of 

deuterium incorporation along the protein sequence. Lyophilized pepsin (Worthington 

Biochemical Corp., Lakewood, NJ) was dissolved in 10 mM sodium acetate to a final 

concentration of 15 mg/ml. For each digestion, lyophilized proteins without disulfide 

bonds (i.e., myoglobin, concanavalin A) were reconstituted with 40 μl solvent A 

followed by the addition of 12 μl pepsin (1:3, protein:pepsin w/w). Proteins with 

disulfide bonds (i.e., EC-5, β-lactoglobulin) were reconstituted with 35 μl 1M 

TCEP/4M urea-d4 solution40  and placed in an ice bath for 4 minutes to denature the 

protein and reduce the disulfide bonds prior to the addition of 12 μl of pepsin 

solution. In either case (i.e., proteins with or without disulfide bonds), the mixture was 

introduced into the injection loop (on ice) and digestion allowed to occur on-line for 3 

minutes before LC +ESI-MS. The peptides were separated on a C4 reverse phase 

column (Grace Vydac, Hesperia, CA) with a gradient from 5 to 50 % B in 7 minutes 

followed by a wash and re-equilibration step. Data analysis was performed using MS 
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scan with the highest ion count; the cluster was then smoothed and centralized to 

calculate the deuterium uptake after correcting for back exchange by the method of 

Zhang and Smith39. The injection port, column and tubing were kept on ice and low 

pH solvents were used to minimize back exchange. 

3.2.5. Solids characterization. – The lyophilized solids were analyzed to determine 

moisture content, glass transition temperature (Tg), crystallinity and protein 

secondary structure using the methods described below.  

3.2.5.1. Thermogravimetric analysis (TGA). - TGA was used to measure the water 

content in the lyophilized samples after exposure to 33 %RH conditions for 72 h. 

Samples were analyzed by a Q50 TGA (TA Instruments, New Castle, DE) with a 

thermal scan from ambient to 200 oC at a scan rate of 10 oC per minute in an open 

platinum pan with nitrogen purge. Universal Analysis software (Version 4.1, TA 

instruments) was used to determine water content from measured mass loss. 

3.2.5.2. Differential scanning calorimetry (DSC). -  DSC was used to determine the 

Tg of the lyophilized formulations after exposure to 33% RH for 72h. A modulated 

DSC (MTDSC) was used to distinguish glass transition events from other kinetic 

thermal events such as dehydration and degradation. Samples were analyzed by a 

Q100 DSC (TA Instruments, New Castle, DE). Samples were held isothermally at 25 

oC for 5 minutes before increasing the temperature at a ramp rate of 1 oC per minute 

with modulation amplitudes of ± 0.32 oC and a modulation period of 60 s. Universal 

Analysis software (Version 4.1, TA Instruments) software was used for analysis. 

3.2.5.3. Powder X-ray diffraction (PXRD). -  PXRD was performed to ascertain 

whether the lyophilized samples were in the crystalline or the amorphous state after 

exposure to 33% RH for 72 h. The 25 mm diameter shallow well of a 50 mm. 
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diameter circular Plexiglas sample holder was filled with sample and then mounted 

on the diffractometer (Bruker AXS, Madison, WI).  A locked-coupled θ/2θ scan was 

performed for 10° ≤ 2θ( CuKα) ≤ 50° using graphite-monochromated CuKα radiation 

(λ = 1.54184 Å) in 0.02° increments with a 4°/min. scan rate.  X-rays were provided 

by a normal-focus sealed X-ray tube operated at 40 kV and 40 mA.  No slits were 

inserted in the X-ray path 

3.2.5.4. Fourier transform infrared spectroscopy (FTIR). -  FTIR was performed to 

detect significant changes in protein secondary structure after lyophilization. A 

PerkinElmer FTIR One spectrometer (PerkinElmer Life and Analytical Sciences, Inc., 

Waltham, MA) with universal attenuated total reflectance accessory (UATR) was 

used to acquire the spectra. The solid sample was placed on a diamond crystal 

surface and covered with a stainless steel slide. Pressure greater than 100 Torr was 

applied on the steel slide to ensure good contact between the protein and the crystal. 

GRAM AI (Thermo Electron Corp., Waltham, MA) software was used to analyze the 

spectra. The raw absorption spectra (Amide I band) were derivatized followed by 

area normalization using the GRAMS software to enable direct qualitative and 

quantitative comparison between spectra. Quantitation was performed using the 

method of Kendrick et al. 41 Previous FTIR studies34, 42-49 on lyophilized solids have 

identified bands that reflect a specific secondary structure of the protein. In keeping 

with these reports, bands at ~1650 cm-1 have been assigned to α-helical structures, 

those at ~1630 cm-1 to β-sheet structures and those at~ 1640 cm-1 to unstructured 

regions. 
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3.3. Results 

3.3.1. Solid-state hydrogen/deuterium exchange (ssHDX). -  

3.3.1.1. ssHDX for intact protein. -  Deuterium incorporation for seven proteins 

following 72 h of exposure to D2O vapor at 33% RH and room temperature is shown 

in Figure 1. The proteins were lyophilized without excipients (Fig. 3.1, “None”), in the 

presence of polymeric excipients at a protein:excipient ratio of 1:1 (w/w) (Fig. 3.1, 

“+Dex”, “+PVA”, “+PVP”), in the presence of di- or trisaccharide excipients at a 

protein:excipient ratio of 1:1 (w/w) (Fig. 3.1, “+Tre”, “+Raf”), or following exposure to 

1.5 M guanidine hydrochloride prior to lyophilization (Fig. 3.1, “+Gdn•HCl”). To 

normalize the data and facilitate comparisons among proteins with different mass, 

deuterium incorporation is reported as a percentage of the maximum (i.e., as 100 × 

(D/N), Eqn. 3.1). In Figure 3.1, proteins with the greatest α-helix content in the native 

form are presented to the left, while those with the greatest β-sheet content in the 

native form are presented to the right. Detailed structural information for all the model 

proteins is given in Table 3.1.  

 For each of the proteins studied, the greatest deuterium incorporation was 

observed following exposure to Gdn•HCl (70-95%; Fig. 3.1). Particularly high 

deuterium incorporation was observed for α-helical proteins without disulfide bonds 

(i.e., myoglobin, calmodulin; Fig. 3.1, Table 3.1). Proteins containing one or more 

disulfide bonds showed lower percentage deuterium uptake following Gdn•HCl 

exposure (i.e., lysozyme, ribonuclease A, β-lactoglobulin; Fig. 3.1, Table 3.1). E-

cadherin 5, a β-sheet protein, with disulfide bonds shows comparable exchange to 

the α-helical proteins with no disulfide bonds probably because 60% of it is 

unstructured and thus allowing 70% of its amide hydrogens to exchange (Fig. 3.1,  
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Table 3.1. Molecular weight and secondary structure of proteins used for HDX 
analysis  
 
Protein Molecular 

Weight 
(kD) 

Number 
of  S-S 
bonds 

α-Helical 
Percent 

β-Sheet 
Percent 

Unstructured

Myoglobin 16.95 0 83 0 17 
Calmodulin 17.0 0 64 2 34 
Lysozyme 14.3 4 40 6 54 
Ribonuclease A 13.7 4 27 38 35 
Β-lactoglobulin 18.3 2 12 35 53 
E Cadherin 12.6 2 7 30 60 
Concanavalin A 25.6 0 7 79 14 
 
Information source PDB: myoglobin (1WLA), Lysozyme (1CXV), RNase A (1RBX), β-lactoglobulin (1CJ5), Con A 
(1GKB). EC5 information from reports in literature38 
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Table 3.1). In solution, Gdn•HCl is known to promote protein unfolding and is often 

used as a denaturing agent. The high deuterium incorporation for proteins lyophilized 

from Gdn•HCl solutions suggests that they remain unfolded in the solid state with a 

high percentage of the backbone amide nitrogens accessible to D2O from the vapor 

phase. That proteins with disulfide bonds showed somewhat lower deuterium 

incorporation suggests that the disulfide bonds, which were not reduced here, 

provided some protection from exchange. Interestingly, concanavalin A (con A) 

showed relatively low deuterium incorporation on ssHDX following exposure to 

Gdn•HCl in solution, though the protein contains no disulfide bonds. Con A forms 

dimers, tetramers and aggregates in aqueous solution50 which may be retained 

during lyophilization and may protect the Gdn•HCl-treated protein from deuterium 

exchange in the solid state. Unlike the other proteins, solids containing con A were 

hazy upon reconstitution, further supporting the presence of aggregation and/or 

oligomerization. LC/+ESI-MS spectra showed peaks corresponding to dimeric and 

trimeric forms of con A following exposure to 33% RH for 72 h. The areas of these 

deconvulated mass spectrometric peaks were approximately 8% and 4%, 

respectively, of the area of intact con A. LC/+ESI-MS spectra of myoglobin also 

showed evidence of dimer formation (~4%) following storage at 33% RH for 72 h. 

Spectra for RNase A, lysozyme, calmodulin and β-lactoglobulin did not show 

evidence of aggregation.  

 Protein samples lyophilized in the absence of excipients (Fig. 3.1, “None”) or 

with polymeric excipients in a 1:1 w/w ratio (Fig. 3.1, “+Dex”, “+PVP”, “+PVA”) 

generally showed 50 to 70% deuterium incorporation following exposure to D2O 

vapor. For each protein, deuterium incorporation was greater in excipient-free 
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samples than in samples containing polymeric excipients. This suggests that the 

polymeric excipients protect the proteins from exposure to D2O vapor by promoting a 

more compact structure and/or through protein/excipient interactions. Among the 

polymeric excipients, the greatest protection from exchange was afforded by dextran 

for all proteins except lysozyme and EC-5, perhaps due to dextran’s relatively low 

molecular weight (5 kD vs. 30 kD for PVA, 10 kD for PVP) and propensity to form H-

bonds51. Though PVA and PVP were selected as an H-bond donor and an H-bond 

acceptor, respectively, differences in protection from exchange by the two materials 

were minimal.  

 For all seven proteins studied, the greatest protection from exchange was 

provided by trehalose (a disaccharide) and raffinose (a trisaccharide) (Fig. 3.1). 

Trehalose and raffinose reduced exchange to less than 50% of the value in the 

absence of excipients in some cases, with the strongest inhibition generally observed 

in proteins having moderate to high α-helix content (Fig. 3.1). Proteins having high β-

sheet structure (i.e., EC-5 and concanavalin A, Fig. 3.1) also showed inhibition of 

exchange in the presence of trehalose and raffinose, but to a lesser extent. Low 

molecular weight sugars such as trehalose and raffinose have long been used to 

stabilize proteins during lyophilization and storage, an effect that has been attributed 

to intermolecular hydrogen bonds between the sugar and the protein in the solid 51-53. 

It is reasonable to expect that such intermolecular protein-excipient hydrogen bonds 

and/or intramolecular hydrogen bonds within the protein influence 

hydrogen/deuterium exchange on exposure to D2O vapor.  

 ssHDX studies of intact proteins provide global information on deuterium 

uptake in the presence of various excipients, but do not address whether this uptake 
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occurs uniformly along the protein sequence. Analysis of peptic digests of selected 

proteins was performed to provide information on the uniformity of exchange.  

3.3.1.2. ssHDX of peptic digests. – Solid samples of selected proteins exposed to 

D2O vapor were subjected to digestion with pepsin to assess the distribution of 

deuterium incorporation. Our previous studies of calmodulin11, 36, 37 showed that the 

protective effects of the excipients were exerted primarily in its α-helices and calcium 

binding loops. Here, we evaluate whether this site specific protection from exchange 

occurs in other proteins. To that end, myoglobin (α-helical), β-lactoglobulin (mixed) 

and EC5 (mostly β-sheet) were subjected to peptic digestion and analysis following 

D2O exposure in the solid phase. Lysozyme and Con A were resistant to pepsin 

digestion and could not be digested in a time frame short enough to allow reasonable 

retention of deuterium labeling. The remainder of this section summarizes previous 

digest results on calmodulin followed by current results on myoglobin, β-lactoglobulin 

and EC-5. 

3.3.1.2.1. Calmodulin. -  Calmodulin is an EF hand protein with high α-helix content 

(Table 3.1).  In our group’s previous work11, 36, 37, calmodulin work was lyophilized 

with trehalose, raffinose, dextran 5000 and Gdn•HCl.  Following exposure to D2O(g) 

in the solid state and peptic digestion, thirteen peptic fragments were used to map 

the protein and the results grouped according to secondary structure (Fig. 3.2A). We 

define the “protective effect” of a particular excipient as the difference between the 

percent deuterium incorporation for the excipient-free control (“None”, Fig. 3.2B) and 

the percent deuterium incorporation in samples containing that excipient. Low 

molecular weight carbohydrates (trehalose and raffinose) thus had a distinct 

protective effect in the α-helical regions of calmodulin (Fragments 2, 7, 9 and 11; Fig.  
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Figure 3.2. A) Sequence and predicted secondary structure of calmodulin obtained 
from PDB, entry CLL. B) Peptide fragments of calmodulin showing the percent of 
deuterium uptake in presence of various excipients. Data for calmodulin taken from11 
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3.2B) and to some extent in the calcium binding loops (Fragments 3, 6, 8 and 12; 

Fig. 3.2B) while the unstructured fragments were largely unaffected. Dextran had a 

moderate effect, mainly in the α-helical regions.  

3.3.1.2.2. Myoglobin. -  Myoglobin is a globular protein with high (83%) α-helix 

content (Table 3.1). Peptic digestion produced twenty-eight fragments detectable by 

LC/+ESI-MS, of which thirteen were selected to provide maximum sequence 

coverage (74%, Fig. 3.3A). As for calmodulin, the data were divided into two groups 

according to secondary structure, i.e., into fragments constituting the α-helical 

regions and those constituting the loops and the unstructured portions of the protein 

(Fig. 3.3B). The pattern of protection from exchange (Fig. 3.3B) is similar to that 

observed for calmodulin. Raffinose and trehalose showed the greatest protection 

from exchange for all the fragments, but the greatest protective effect of these low 

molecular weight sugars occurred for the α-helical regions (Fig. 3.3B, Fragments 2-

9,12).  Most of the unstructured fragments also showed some protective effect of the 

sugars (Fig. 3.3B, Fragments 1, 10, 11, 13); though these fragments were assigned 

to the “unstructured” group, all but Fragment 13 has some α-helical content (Fig. 

3.3A). Dextran exhibited a moderate protective effect primarily in the α-helical 

domains, while PVA and PVP showed no protective effects in any portion of the 

protein. As expected, the greatest deuterium incorporation occurred in samples 

exposed to Gdn•HCl. For some fragments (Fig. 3.3B, Fragments 4-8,11,12) 

deuterium incorporation was greater than 100% in solid samples treated with 

Gdn•HCl prior to lyophilization.  Since the percent deuterium incorporation is 

calculated relative to the fully folded and maximally deuterated protein in solution  
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Figure 3.3. A) Sequence and predicted secondary structure of myoglobin obtained 
from PDB, entry 1wla. B) Peptide fragments of myoglobin showing the percent of 
deuterium uptake in presence of various excipients. 
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(see Eqn. 3.1), values greater than 100% suggest that the protein was denatured in 

Gdn•HCl solutions, remained unfolded upon lyophilization, and in that form showed 

greater deuterium uptake from D2O(g) in the solid than the native protein in D2O 

solution. Of the four proteins subjected to digestion, this effect was only observed for 

myoglobin.  

3.3.1.2.3. β-lactoglobulin. -  β-lactoglobulin is a lipocalin with mixed α-helix (14%) 

and β-sheet (35%) structure (Table 3.1). Sixteen of the thirty-two peptic fragments 

detected by LC/+ESI-MS were used to map the protein (Fig. 3.4A), providing 76% 

sequence coverage. Since this is a mixed protein, an attempt was made to select 

fragments with exclusively β-sheet or α-helix content (Fig. 3.4A). The β-sheet regions 

of β-lactoglobulin generally showed lower percent deuterium incorporation than other 

types of secondary structure, and values were less sensitive to excipient selection 

(Fig. 3.4B). Protection from exchange in the α-helical fragments followed the pattern 

observed for calmodulin and myoglobin, with the greatest protection from exchange 

provided by trehalose and raffinose.  Exchange in fragments assigned to the “mixed” 

or “loops and other” categories showed variable exchange and protection from 

exchange. In some fragments, inclusion of PVA or PVP resulted in deuterium 

incorporation that was greater than the excipient-free control (e.g., Fragments 1, 12, 

13, 16, Fig. 3.4B), suggesting that PVA and PVP promote exposure to D2O (g) in 

these regions. Including Gdn•HCl produced the greatest exposure to exchange in all 

fragments.  

3.3.1.2.4. E-Cadherin-5 (EC-5). – EC-5 has high β-sheet content (~50%).  Eleven 

peptic fragments were selected for analysis, giving a total sequence coverage of  
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Figure 3.4. A) Sequence and predicted secondary structure of β-lactoglobulin 
obtained from PDB, entry 1cj5. B) Peptide fragments of β-lactoglobulin showing the 
percent of deuterium uptake in presence of various excipients. 
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Figure 3.5. A) Sequence and predicted secondary structure of EC5. B) Peptide 
fragments of EC5 showing the percent of deuterium uptake in presence of various 
excipients. 
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97%, and assigned to either β-sheet or unstructured regions (Fig. 3.5A). Fragments 

with partial β-sheet character (i.e., Fragments 1, 3, 4, Fig. 3.5A) were included in the  

unstructured group on the basis of their exchange behavior. The peptic fragments of 

EC-5 generally showed greater percent deuterium incorporation than observed for 

other proteins, suggesting a less compact structure in the solid state. The β-sheet 

fragments (Fig. 3.5B, Fragments 2, 5-9) showed some protection from exchange by 

the various excipients, to a degree roughly comparable to the β-sheet regions of β-

lactoglobulin (Fig. 3.5B). The unstructured fragments of EC-5 were insensitive to the 

excipients used, and exposure to Gdn•HCl did not increase deuterium incorporation 

relative to the other excipients (Fig. 3.5B, Fragments 1,3,4,10,11), again suggesting 

a loose structure.  

3.3.2. Solid state characterization 

3.3.2.1. Powder -ray diffraction (PXRD) – PXRD was performed on lyophilized 

samples exposed to 33% RH for 72 h to determine the physical state of the solids 

(i.e., amorphous vs. crystalline) and to detect partial crystalline character. - PXRD 

patterns for all samples were consistent with amorphous material (Figs. 3. 6, 3.7, 3.8, 

3.9, 3.10), with the exception of samples treated with Gdn•HCl, which showed partial 

crystallinity (Figs. 3.11). The salt crystallizes out on lyophilization with the protein 

remaining in the amorphous form11. 

3.3.2.2. FTIR. - FTIR spectroscopy was performed to assess protein secondary 

structure in the solid state following exposure to 33% RH for 72 h, and to provide 

qualitative and quantitative information on the effects of lyophilization and excipient 

selection on protein secondary structure. Since the pyrrolidone ring of PVP absorbs 

in the amide I region, masking the protein signal, FTIR measurements were not  
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Figure. 3.6. PXRD pattern for a formulation containing β-lactoglobulin and trehalose 
in 1:1 ratio (w/w). 
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Figure. 3.7. PXRD pattern for a formulation containing β-lactoglobulin and raffinose 
in 1:1 ratio (w/w). 
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Figure. 3.8. PXRD pattern for a formulation containing β-lactoglobulin and dextran in 
1:1 ratio (w/w). 
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Figure. 3.9. PXRD pattern for a formulation containing β-lactoglobulin and PVA in 1:1 
ratio (w/w). 
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Figure. 3.10. PXRD pattern for a formulation containing β-lactoglobulin and PVP in 
1:1 ratio (w/w). 

 



 67

Figure. 3.11. PXRD pattern for a formulation containing β-lactoglobulin and 
Guanidine. HCl in 1:1 ratio (w/w). 
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performed on samples containing PVP. FTIR results are summarized and discussed 

below by each protein.  

3.3.2.2.1 Myoglobin- Myoglobin’s predominantly α-helical structure is retained in 

solid samples lyophilized in the absence of excipients, as reflected in the strong FTIR 

band at 1660 and1650 cm-1 (Fig. 3.12). The band intensity is greater for samples 

containing trehalose or raffinose, consistent with an increase in helix content and 

greater retention of structure. FTIR spectra for myoglobin samples containing 

dextran were similar to the excipient-free samples, while those containing PVA 

showed a loss in band intensity relative to controls, consistent with a loss in 

structure. The absorption band and the second derivative peak assignments are in 

agreement with previous FTIR reports for myoglobin54-56. 

3.3.2.2.2. Lysozyme – The FTIR spectra for solid samples of lysozyme without 

excipients showed moderately strong α-helical absorption bands at 1658 and 1648 

cm-1 together with strong β-sheet bands at 1638 cm-1
 (Fig. 3.13), consistent with 

previous FTIR studies of this protein.51, 55  In samples containing excipients, the α-

helical bands show increases in intensity that are generally considered consistent 

with increased secondary structure57.  Samples containing PVA showed increased 

intensity for bands associated with both α-helical (1658, 1648 cm-1) and β-sheet 

structure (1638 cm-1), a seeming contradiction that may be associated with increased 

water content in these formulations. Lysozyme has been reported to undergo 

structural perturbation on drying leading to loss of secondary structure58.   

3.3.2.2.3. RNase A – Though RNase A has mixed α-helix and β-sheet structure in 

solution (Table 3.1), the dominant feature of the FTIR spectra for solid samples is a 

strong β-sheet absorption band (~ 1638 cm-1) that increases in intensity when  
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Figure 3.12. Overlaid FTIR spectra for myoglobin lyophilized formulations with 
various excipients (1:1, w/w). 
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Figure 3.13. Overlaid FTIR spectra for lysozyme lyophilized formulations with various 
excipients (1:1, w/w). 
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Figure 3.14. Overlaid FTIR spectra for RNase A lyophilized formulations with various 
excipients (1:1, w/w). 
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excipients are included in the sample (Fig. 3.14).  Weak α-helical bands are also 

observed at 1658 and 1650 cm-1, the latter of which shows minor increases in 

excipient-free control. The absorption band and the second derivative peak 

assignments agree with previous FTIR studies of myoglobin54, 55, 59, 60 

3.3.2.2.4. β-lactoglobulin - β-lactoglobulin, a protein with mixed α-helix and β-sheet 

structure, showed a strong absorption band at 1626 cm-1 consistent with its β-sheet 

structure (Fig. 3.15). The position and intensity of the β-sheet band are relatively 

unaffected by the carbohydrate excipients, while inclusion of PVA is associated with 

a decrease in intensity of this band. Though β-lactoglobulin has some α-helix content 

(Table 3.1), these bands are not prominent in the spectra. The raw absorption 

spectra are in good agreement with those previously reported for β-lactoglobulin59 

3.3.2.2.5 EC5 – FTIR spectra for EC5 show a strong β-sheet band at 1644 cm-1, 

suggesting that this β-sheet containing protein retains structure in the solid samples 

(Fig. 5.16). The spectrum is relatively unaffected by the inclusion of excipients.  

3.3.2.2.6 Con A - FTIR spectra for solid samples containing Con A show an intense 

β-sheet absorbtion band at 1633 cm-1, consistent with retention of secondary 

structure for this lectin (Fig. 3.17). Relative to the excipient-free control, the intensity 

of the band is increased in solids containing trehalose or raffinose with a 

corresponding decrease in the shoulder at ~1625 cm-1, suggesting increased 

secondary structure. The spectrum is relatively insensitive to other excipients. The 

absorption band and the second derivative peak assignments agreed with previous 

FTIR reports for con A54. 

For each protein, FTIR spectra for samples containing excipients were 

compared quantitatively to the excipient-free control using a correlation matrix  
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Figure 3.15. Overlaid FTIR spectra for β-lactoglobulin lyophilized formulations with 
various excipients (1:1, w/w). 
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Figure 3.16. Overlaid FTIR spectra for EC5 lyophilized formulations with various 
excipients (1:1, w/w). 
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Figure 3.17. Overlaid FTIR spectra for con A lyophilized formulations with various 
excipients (1:1, w/w). 
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Table 3.2. FTIR correlation coefficients (R values) between protein with no excipients 
and with excipient. 
 
Protein +Tre +Raf +Dex +PVA 
Myoglobin 0.94 0.95 0.97 0.92 
Lysozyme 0.95 0.97 0.94 0.94 
RNase A 0.97 0.96 0.92 0.90 
β-Lactoglobulin 0.97 0.98 0.98 0.91 
EC5 0.99 0.99 0.99 0.99 
Con A 0.97 0.98 0.98 0.98 
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 (Table 3.2). All the table entries are greater than or equal to 0.90, indicating that the 

spectra for samples containing excipients are similar to the excipient-free controls for 

all seven of the proteins studied.  Correlation coefficients were greatest for the EC-5 

spectra, will all values ~ 0.99 indicating no effect of excipients. In general, correlation 

coefficients were greater for the β-sheet proteins than for the α-helical proteins 

(Table 3.2), indicating a greater effect of excipients on solid structure for the latter 

group.  

3.3.3 Thermal analysis -  Thermogravimetric analysis was performed to measure the 

water content in myoglobin and β-lactoglobulin samples after exposure to 33% RH 

for 72 . Regardless of excipient, the water content did not exceed 7.5% (Table 3.3), 

and was highest in dextran and PVP formulations.  

DSC studies were performed on amorphous formulations to determine the 

glass transition temperature (Tg). At a given temperature, increasing Tg values are 

associated with a more glassy solid matrix with lower molecular mobility61, 62. Since 

formulations containing Gdn•HCl were partially crystalline, their Tg values were not 

measured. For myoglobin, the Tg values increased in the order PVA < trehalose < 

raffinose < dextran < PVP while for β-lactoglobulin the order was trehalose < PVA < 

raffinose < dextran ~ PVP.  

 

3.4. Discussion  

Hydrogen/deuterium exchange (HDX) has long been used to analyze protein structure40, 

protein structural stability63, protein folding-unfolding mechanisms30, 32, 33, 64 and  protein 

ligand interactions65, 66 in solution. Traditionally HDX has been used in conjunction with  
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NMR analysis67, but in recent years HDX with mass spectrometry has emerged as a 

powerful technique capable of investigating protein structure68, 69 and dynamics under a  

variety of conditions. This application of this technique to protein dynamics in solution 

has been covered in great detail and has been reviewed extensively31, 70-73. 

The study of protein-excipient interactions in amorphous solids by HDX with 

LC/+ESI-MS analysis was initiated in our labs using a predominantly α-helical protein, 

calmodulin, with no disulfide bonds. We observed that co-lyophilization with a variety of 

excipients protected calmodulin from HDX in the solid state11, 36, 37. Here, we have 

extended this method to solid samples of other proteins with a range of secondary 

structures, both with and without disulfide bonds. The studies test the hypothesis that the 

ability of excipients to protect proteins from HDX in amorphous solids depends on both 

excipient type and protein structure, and that this effect is exerted non-uniformly along 

the protein sequence. The results for intact proteins (Fig. 3.1) and for peptic digests of 

(Fig. 3.2, 3.3, 3.4, 3.5, 3.6) support this hypothesis and demonstrate that the technique 

provides detailed information on protein-excipient interactions in amorphous solids with 

peptide-level resolution.  

Several mechanisms have been proposed to explain protein-excipient 

interactions during lyophilization and storage in amorphous solids, and the means by 

which these interactions influence protein conformation and stability. (i) The 

“vitrification hypothesis” asserts that effective excipients produce a solid with high Tg 

and limited mobility that “locks” the protein in its native conformation61, 62. The “water 

replacement hypothesis” proposes that effective excipients form hydrogen bonds to 

the protein, replacing the hydrogen bonds to water that stabilize protein conformation 

in solution74, 75. The “preferential hydration hypothesis” suggests that effective 
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excipients are excluded from the protein surface, preserving a hydration shell that 

promotes structure74, 76-79.  The results presented here provide information on several 

of these hypotheses.  

 Comparison of the HDX data (Figs. 3.1) and Tg data (Table 3.3) for myoglobin 

and β-lactoglobulin provide a test of the vitrification hypothesis. The hypothesis is 

supported if the proteins show less exposure to exchange, consistent with a more 

compact conformation, in glassy matrices with high Tg. The data do not provide this 

support. Trehalose and raffinose showed significant protection against exchange for 

both proteins (Figs. 3.1) but have the lowest Tg indicating greater mobility of the matrix. 

In contrast, the polymers dextran and PVP showed higher Tg values (Table 3.3), but 

limited protection from exchange (Figs. 3.1). FTIR data provide additional evidence for 

retention of secondary structure for both proteins co-lyophilized with trehalose and 

raffinose, and a loss of structure with dextran (particularly for myoglobin).  

Previous tests of the “water replacement hypothesis” have monitored the 

carboxylate absorption band in FTIR spectra, showing hydrogen bonding between 

the protein’s carboxylate groups and the excipient in lyophilized solids. These 

hydrogen bonds may involve the side-chains or the backbone of the protein, and 

cannot be distinguished readily by FTIR. In solid-state HDX, only the protein 

backbone behavior can be monitored as any deuterium incorporation in the side-

chains is immediately lost to back exchange as the solid is reconstituted for analysis. 

Thus, the two methods provide complementary information on hydrogen bonding 

interactions for proteins in lyophilized solids.  
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The peptic digest data for calmodulin (Fig. 3.2), myoglobin (Fig. 3.3) and β-

lactoglobulin (Fig. 3.4) show that the α-helical domains of these proteins are 

preferentially protected from HDX exchange by trehalose and raffinose, and to some 

extent, by dextran. In an intact α-helix, all backbone ‘i’ amide protons participate in 

hydrogen bonds to the i + 4 carbonyl residues. This suggests that excipients that 

protect α-helical regions from exchange promote these i → i + 4 hydrogen bonds 

rather than competing for them. Previous reports51, 58, 80 have shown that protein-

excipient hydrogen bonds involve side-chains groups and not the main chain. Hence, 

the low exchange for α-helical domains of the proteins studied here is consistent with 

hydrogen bonding of the excipients to protein side-chains, promoting the helix 

structure and inhibiting D2O access to the backbone.  

Some protection from exchange is also provided by the carbohydrate 

excipients in the β-sheet regions, albeit to a lesser extent than in the α-helical 

regions. β-sheets and strands are stabilized by hydrogen bonds involving alternate 

imino hydrogens and carbonyl groups. β-lactoglobulin has a β-barrel structure 

consisting of seven anti-parallel β-strands which form a closed structure, with the first 

strand H-bonded to the last. Low exchange is observed in the β-sheet fragments of 

β-lactoglobulin that is relatively insensitive to excipient type (Fig. 3.4, with the 

exception of Gdn.HCl), suggesting that the β-barrel is relatively robust. Exchange in 

the β-sheet portions of EC-5, is much higher than in the β-barrel of β-lactoglobulin 

(Fig. 3.5), and may reflect the looseness of the (unpublished) structure of this 

fragment of E-cadherin. 
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Overall, the HDX method has been shown to provide detailed, region specific 

information about the interactions of proteins and excipients in the lyophilized state. The 

use of peptic digests in addition to the intact protein analysis allows excipient effects to 

be assigned to secondary structural domains of the proteins. The intact HDX exchange 

studies are sensitive to the nature of the excipient, with the extent of exchange varying 

by 2-5 fold for the proteins studied here.  In contrast, FTIR studies of identical 

formulations showed correlation coefficients greater than 0.90 in all cases (Table 3.2), 

indicating largely similar spectra that shows little variation with excipient type.  

Though solid-state HDX with LC/+ESI-MS analysis is a promising technique, the 

technique has several limitations. High molecular weight proteins (>50,000) will definitely 

pose difficulties in +ESI/MS analysis, particularly with respect to peptic digestion 

followed by elution. FTIR is not subject to this size constraint. In the present studies, 

pepsin digestion was performed on proteins < 20 kD in three minutes followed by elution 

of all fragments within 7 minutes, keeping back-exchange to a minimum. For larger 

proteins, longer run times will be needed for full elution of the digest mixture so that 

back-exchange will be more prominent. Rapid digestion by pepsin is also necessary to 

minimize back exchange; lysozyme, con A and RNase A were not digestible in the 

present study. The use of an immobilized pepsin column which affords better digestibility 

could be an option71. Despite these limitations solid-state HDX analysis of intact proteins 

should be possible for proteins of all sizes, even for IgGs, studies may ultimately prove 

useful for excipient screening. 
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LC/MS alternatives to oligosaccharide mapping for 
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4.1. Introduction  

Glycosylation is an important determinant of the stability and biodisposition of 

protein drugs, including recombinant immunoglobulins (IgGs). The challenges 

involved in characterizing glycosylation in recombinant therapeutic proteins differ 

somewhat from those associated with analyzing endogenous proteins. Studies of 

glycosylation in human and animal tissues are often focused on the general variation 

in glycosylation patterns of a wide array of proteins, as in proteomic experiments. In 

contrast, the analysis of therapeutic proteins is focused on the complete 

characterization and quantitation of glycosylation in the protein drug product. 

Glycosylation in recombinant bio-therapeutic proteins varies widely with the 

production conditions used during manufacturing 1,2 and can influence efficacy, 

folding, target binding and pharmacokinetic properties 3-5. Both the variability and 

physiological effects of glycosylation make it important to accurately quantify the 

carbohydrate structures found in bio-therapeutic proteins. 

Immunoglobulin G molecules (IgGs), a subclass of immunoglobulins, have 

become attractive as therapeutic proteins due to their high specificity and long 

circulation life 6. An IgG is a multi-chain, symmetric protein consisting of two identical 

Fab arms (Fab = Fragment, antigen binding) and a conserved Fc stem (Fc = 

Fragment, crystallizable) connected through a flexible hinge 7. The Fab arms are 

composed of a light chain (LC) connected through disulfide bonds to a portion of the 

heavy chain (HC). The remaining portions of the two HCs are linked to form the 

homo-dimeric Fc stem. The Fc sequence is highly conserved in IgG molecules and 

contains a single N-glycosylation site, Asn297 7. Glycosylation in the Fc defines the 

structure of the CH2 domain and has been shown to be important for the effector 
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functions of the Fc 8. Unlike most proteins in which the carbohydrates are exposed, 

the carbohydrate moiety in the Fc is buried between the two CH2 domains 9 where 

space constraints restrict the extent of carbohydrate branching. Hence, the typical 

glycoform found in the Fc is the biantennary carbohydrate structure 8. The common 

variability in glycosylation of IgG molecules is introduced by incomplete processing of 

the galactose and fucose residues from the biantennary oligosaccharide. In some 

cases, additional heterogeneity is introduced by the presence of high mannose 

glycoforms which are highly branched precursors of the biantennary carbohydrates 6. 

While IgGs are symmetric with regard to the amino acid sequences of the light and 

heavy chains, glycosylation may be either symmetric or asymmetric10. Since each 

glycoform has a specific mass determined by its composition, mass spectrometry 

(MS) can be used to identify glycoforms. Recent advances in reversed-phase 

chromatography (rp-LC) and electrospray ionization mass spectrometry (ESI-MS) 

have made it possible to analyze glycoforms in samples of intact protein, as well as 

in protein fragments and in peptides generated after complete proteolysis with 

specific enzymes11,12. Each of these protein sample preparation methods offers 

potential advantages and disadvantages for glycoform analysis by MS, a topic that 

has been addressed in several recent reviews 11. Briefly, the analysis of glycosylation 

in intact proteins offers the advantage of minimal sample preparation and the ability 

to identify asymmetry in glycosylation, but the wide natural isotopic distribution of 

proteins may limit resolution13. In addition, since IgGs are highly hydrophobic, 

solvents such as isopropanol or n-propanol may be required for their reversed-phase 

separation. Techniques based on protein fragments or digests may offer higher 

resolution due to lower sample mass, but require more extensive sample preparation 
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(e.g., digestion, reduction, alkylation) that may introduce artifacts. Furthermore, 

though the quantitation of glycoforms using peak intensities from deconvoluted ESI-

TOF MS spectra has been reported by Gadgil14,15 and others16, concerns remain 

regarding the accuracy and reproducibility of concentration determinations by this 

method, regardless of sample preparation. An alternative approach involves 

chromatographic analysis of glycans released from the protein through enzymatic17 

(e.g., peptide N-glycosidases) or chemical (e.g., β-elimination) procedures 11. This 

“sugar release assay” is relatively straightforward and well-established, but 

information on the site of the protein-carbohydrate bond and potential asymmetry in 

glycosylation of the two heavy chains is lost with this approach. Sample preparation 

is also more time-consuming for the sugar release assay than for many of the LC/MS 

methods. Despite these limitations, the sugar release assay is generally considered 

the standard for glycoform analysis in the biopharmaceutical industry.  

The studies reported here compare six methods for quantifying glycosylation 

in two production lots of a IgG: (i) LC/ESI-MS analysis of intact IgG (“intact IgG 

method”), (ii) LC/ESI-MS analysis of the Fc fragment produced by limited proteolysis 

with Lys-C (“IgG Fc method”), (iii) LC/ESI-MS analysis of the IgG heavy chain 

produced by reduction (“IgG HC method”), (iv) LC/ESI-MS analysis of Fc/2 fragment 

produced by limited proteolysis and reduction (“IgG Fc/2 method”), (v) LC/MS 

analysis of the glycosylated tryptic fragment (293EEQYNSTYR301) using extracted 

ion chromatograms (“XIC method”) and (vi) normal phase HPLC analysis of sugars 

cleaved from the IgG using PNgase F (“sugar release assay”). The studies test the 

hypothesis that the LC/MS-based methods (i.e., Methods i-v) provide identification 

and quantitation of glycoforms that is equivalent to the sugar release assay (i.e., 
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Method vi).  The studies were conducted at Amgen, Inc., Thousand Oaks, CA, under 

the direction of Dr. Himanshu Gadgil. 

 

4.2. Materials and Methods 

4.2.1. Materials. - Trifluoroacetic acid (TFA), formic acid (FA) and guanidine 

hydrochloride (GdnHCl) were obtained from Pierce (Rockford, IL). Tris(2-

carboxyethyl) phosphine hydrochloride  (TCEP) and iodoaceatamide (IAM) were 

obtained from Sigma (St. Louis, MO). HPLC grade water and acetonitrile (ACN) were 

obtained from VWR international (West Chester, PA). Pepsin and trypsin were 

obtained from Roche (Indianapolis, IN). The IgG lots were produced and purified 

using processes proprietary to Amgen and kept frozen at –80oC until used.   

4.2.2. Sample pretreatment. - IgG samples were subjected to limited proteolysis 

and/or reduction to produce the IgG Fc, IgG HC and IgG Fc/2 fragments. Limited 

proteolysis was achieved by incubating the IgG samples with endoproteinase Lys-C 

at a protein:enzyme weight ratio of 400:1 in incubation buffer (0.1M Tris–HCl,pH 8.0). 

The incubation was carried out at 37 °C for 30 min. The reaction was quenched by 

lowering the pH to 4.5 with the addition of acetic acid. Reduction was achieved by 

incubating 0.5 mL of IgG or an IgG Fc fragment with Lys-C at a concentration of 2 

mg/mL in denaturing buffer (7.5 M GdnHCl, 120 mM sodium acetate, pH 5.0) 

containing 5 mM TCEP, at 37 ºC for 30 min.  

4.2.3. Reversed-phase chromatography. -  Reversed-phase separation of intact 

IgG and IgG fragments was carried out on an Agilent 1100 HPLC system equipped 

with a Varian diphenyl 2 X 150mm column. 20 µg protein sample was typically 

injected and elution was achieved with a linear A-B gradient for 40 min where eluent 
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A was 0.1% aqueous TFA and eluent B was 0.1% TFA in 90% acetonitrile. The flow-

rate and column temperature were maintained at 200 µl/min and 75 °C, respectively, 

throughout the run.  

4.2.4. Mass spectrometry. - Mass spectrometric analysis was carried out on a 

Waters LCT premier equipped with an ESI source operated in the W mode. The 

capillary and cone voltages were set at 2500 and 80 V, respectively. The desolvation 

gas and source temperatures were set at 350° C and 80° C, respectively. All the 

other voltages were optimized to provide maximal signal intensity in each of the 

modes. All raw data was processed using Waters MassLynx MaxEnt 1 software to 

obtain deconvoluted mass.  

4.2.5. Peptide mapping. - Reduced and alkylated IgG was buffer exchanged into 

digestion buffer (1 M Tris, 1 M urea and 20 mM hydroxylamine at pH 7.0) at a protein 

concentration of approximately 1 mg/mL using a NAP-5 column (Amersham 

Bioscience, Uppsala, Sweden) following the procedure described by the 

manufacturer. Trypsin digestion was carried out by incubating 1 mg/mL of sample (in 

digestion buffer) with 20 µg of trypsin at 37 ºC for 4 hours, followed by a second 

addition of 20 µg of trypsin. The mixture was allowed to incubate at 37 ºC for 4 

additional hours. The resulting tryptic peptides were separated using a Waters 

Atlantis column, 2.0 mm x 250 mm. Approximately 20 µg of the digested material 

was injected on the column. Elution was achieved using a linear gradient from 100% 

buffer A (0.1%FA) to 50% buffer A and 50% buffer B (90% acetonitrile 0.085% FA) in 

170 minutes. The flow rate was maintained at 0.2 ml/min and the column 

temperature was held at 50 ºC. 
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4.2.6. Sugar release assay. - The antibody samples were first diluted to 1 mg/ml in 

digestion buffer (provided with the kit) and deglycosylated by addition of PNGase F 

(Sigma St Louis, MO, USA) at a weight ratio of 1:100 (PNGase F : antibody) followed 

by incubation at 37o C for 24 hrs. The cleaved glycoforms were then purified with a 

GlycoClean™ R cartridge from Prozyme (San Leandro, CA, USA) using the 

procedure described by the manufacturer. The purified glycoforms were then labeled 

with 2-aminobenzamide following the protocol in the Prozyme (San Leandro, CA, 

USA) labeling kit. Normal phase chromatography was used to separate the labeled 

carbohydrates. The separation was carried on an Agilent 1100 system equipped with 

an Amide-80, 4.6 mm X 250 mm, 5 μm pore size column from Tosoh Biosciences 

(Grove City, OH) and a fluorescence detector with the excitation wavelength set at 

330 nm and the emission wave length set at 420 nm. Buffer A was 50 mM 

ammonium formate (pH 4.4) and buffer B was acetonitrile. The gradient employed 

was 20% to 53% Buffer A over 132 min at 0.4 mL/min, then 53% to 100% Buffer A 

over 5 min at 0.4 mL/min followed by 100% Buffer A for 5 min at 1 mL/min and re-

equilibration in starting conditions for 5 min at 0.4 mL/min. 

4.2.7. Statistical analysis. - Results of the LC/MS based assays were compared 

quantitatively with the standard sugar release assay using a paired t-test, α = 0.05. 

The intact IgG and HC assays were excluded from this comparison because these 

assays detect paired glycoforms on dimeric proteins, and so cannot be compared 

quantitatively with the results of the sugar release assay.  
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4.3. Results 

4.3.1. LC/MS analysis of intact IgG molecules. -  Recent advances in rp-LC and 

ESI-MS have made LC/MS analysis of intact IgGs routine 12,13,18. The diphenyl 

column used in this study allows IgG separation with acetonitrile and has been 

shown previously to resolve site-specific modifications in IgGs 19,20. ESI is the 

preferred mode of ionization for the analysis of large proteins as it produces a 

multiply charged envelope in the m/z range of 2000 to 4000 that can be 

deconvoluted to obtain the nominal mass. A major constraint in the MS analysis of 

large proteins is their wide natural isotopic distribution 13. Since the full maximum at 

half width (FMHW) of the isotopic distribution of an IgG molecule is approximately 40 

Da, small mass changes introduced by modifications such as oxidation (+16 Da) are 

difficult to resolve for intact IgGs even with high resolution MS analysis. However, 

glycosylation variation in IgGs is usually associated with larger mass changes which 

can be analyzed by standard time of flight instruments with resolution between 5,000 

and 15,000 Da 18.  

 The deconvoluted mass spectra of two different lots of a recombinant 

monoclonal IgG1 analyzed with rp-LC/ESI-TOF are shown in Figure 4.1. These 

spectra were obtained by deconvoluting the raw m/z spectra (not shown). Both lots 

of IgG showed multiple peaks which can be attributed to the galactose and fucose 

heterogeneity typically found on the N-linked sugar present in the conserved region 

of all IgG molecules. This typical sugar profile described in earlier reports 21 is 

summarized in Table 4.1. The (G0F)2 peak from Figure 4.1 contains two biantennary 

sugars, one on each heavy chain. The G0F sugar form has three mannose (hexose), 

four N-acetylglucosamine residues and a fucose residue. This structure is the basic  
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Table 4.1: Structure, nomenclature and molecular weight of the carbohydrate 

moieties typically observed in recombinant monoclonal IgG molecules 
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GlcNac 
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core of the biantennary sugar. The mannose and N-acetylglucosamine residues in 

this structure are typically conserved during the production of IgG molecules and 

hence are unlikely to be the source of the identified heterogeneity. The terminal 

galactose residues however, show significant variability leading to the peaks 

G0F/G1F, (G1F)2 etc, which are successively 162 Da apart. In addition to these 

galactose variants, Man5/Man5 and Man5/G0F structures were also observed. 

Man5, Man6, Man7, Man8 and Man9 are high mannose carbohydrate structures, 

which are precursors of the biantennary carbohydrates. The assignment of these 

peaks was based on their deconvoluted mass. The observed mass for the 

Man5/Man5 peak agrees well with its calculated mass of 147787. However, the 

Man5/G0F peak was nine Da less than its calculated mass. The mass for the 

Man5/G0F peak is within 100 Da of the mass of G0/G0, G0/G0F and Man5/Man6 

glycoforms. As described earlier, the wide isotopic distribution for large proteins 

makes it difficult to fully resolve these forms. The incomplete resolution of the peaks 

could result in the larger mass error observed for the Man5/G0 form. 

 The deconvoluted spectra of the IgG from lots A and B show some 

differences in their glycosylation profiles. The IgG from lot B had a greater extent of 

the terminal galactose residues which was evident from the higher intensities of the 

G0F/G1F and (G1F)2 peaks. We have shown previously that the intensities of the 

peaks from the deconvoluted spectra can be accurately used for quantitation of the 

hexose index (HexI) which is the molar ratio of galactose residues per molecule of 

IgG18. Additionally, the IgG from lot B also showed greater amounts of the high 

mannose oligosaccharide containing peaks than the IgG from Lot A.  
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 These data indicate that LC/MS analysis of intact IgG can be an adequate 

method for the high level analysis of glycoforms on IgG molecules. Due to minimal 

sample preparation involved, this method is adaptable to high throughput analysis. A 

critical limitation that becomes apparent in comparison with the other methods is that 

low abundance glycoforms are not detected, particularly many of the mannose-

containing glycoforms (see e.g., Fig. 4.2). In addition, individual glycoforms cannot 

be quantified, since the method only provides the total masses of paired glycoforms. 

Because of these limitations, the results of the intact IgG assay were excluded from 

further quantitative comparisons (see Table 4.2). Analysis of intact IgG could find 

application in lot release and product comparability assays, however.  

4.3.2. LC/MS analysis of IgG-Fc. - The hinge region of an IgG is highly solvent 

exposed and susceptible to proteolytic cleavage. Limited proteolysis of IgG 

molecules has been widely used to generate IgG subunits which are generally more 

amenable to LC/MS analysis than the intact molecule22,23. Pepsin and papain have 

been classically used to clip below and above the hinge region to generate F(ab)’2, 

Fab, and Fc fragments. Gadgil et al. have recently developed a method for the 

limited proteolysis of human IgG1 mAbs using endoproteinase Lys-C12. Limited 

proteolysis with Lys-C causes a single cleavage at the C-terminus of a lysine residue 

located in the hinge region to generate an Fc and two Fab fragments. Limited 

proteolysis with Lys-C maintains the disulfide structure of the Fc and Fab domains 

and hence allows the characterization of modifications in the disulfide architecture. In 

addition, limited proteolysis also conserves the oligosaccharide pairing in the CH2 

domain.  
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The deconvoluted spectra of the IgG-Fc’s from the two lots generated after 

limited proteolysis with Lys-C are shown in Figure 4.2. IgG-Fc, with a mass of 

approximately 50 kDa, is roughly one-third the molecular weight of the intact IgG 

molecule. Hence, IgG-Fc has a much smaller normal isotopic distribution with a 

FMHW of approximately 15 Da, which allows for improved resolution. This is evident  

from the spectra in Figure 4.2 which shows the isoform resolution of several 

additional peaks such as Man5/Man6, Man5/Man7, G0/G0F, etc. The pairing of 

different high mannose structures can lead to several isobaric peaks. For example, 

Man6/Man6 and Man5/Man7 both have the same mass, but for simplicity only one 

form (the most predominant) was used for labeling. Overall, this method of glycoform 

analysis of IgG-Fc yields at least 10 additional peaks as compared to the analysis of 

intact IgG. However, some forms of the carbohydrate could not be fully resolved in 

these analyses. The forms Man5/G0F and G-GlcNac/G0F vary in mass by only 25 

Da and were not fully resolved. A partial resolution of these forms was obtained in 

the deconvoluted spectrum of lot B from Figure 4.2.  

 Analysis of intact IgG and IgG-Fc allows the determination of oligosaccharide 

pairing, an effect described previously by Masuda et al.21. Oligosaccharide pairing 

can lead to a symmetric or asymmetric Fc portion. Symmetric molecules have 

identical carbohydrates on each chain while asymmetric molecules have different 

carbohydrates on the two HCs. The study of pairing is important as each of the 

carbohydrates can independently control the effector functions of Fc. In both lots, the 

symmetric Man5/Man5 form was more abundant than the asymmetric Man5/G0F 

form. Since the G0F form was significantly greater than the Man5, a binomial 

distribution would lead to a greater amount of the asymmetric Man5/G0F form than 
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the Man5/Man5 form. However, in both lots, the Man5/Man5 form was greater in 

abundance than the Man5/G0F, indicating a preferential pairing of the Man/5Man5 

form. This preferential pairing could be the result of structural limitations imposed on 

the asymmetric Man5/G0F form or could be caused by cell culture parameters such 

as antibody titer, production time or other factors inherent to the cell line itself. 

LC/MS analysis of the intact IgG and IgG-Fc is the only method that allows detection 

of oligosaccharide pairing in the IgG molecule. 

 While the detection of low abundance glycoforms is improved by the analysis 

of IgG-Fc rather than intact IgG, the method does not provide for the quantiation of 

individual glycoforms but only glycoform pairs (see below). The results of LC/MS 

analysis of IgG-Fc have thus been excluded from the quantitative comparison (see 

Table 4.2).  

4.3.3. LC/MS analysis of IgG-HC. - Reduction of an IgG into individual HCs and 

LCs is another way to create IgG subunits and is often performed prior to analysis. 

The IgG HC which contains the carbohydrate is around 50 kDa, similar in size to the 

IgG-Fc. Analysis of the HC is more straightforward since reduction removes the 

complexity caused by the pairing of oligosaccharides when the two IgG HCs are 

linked, reducing the number of different analytes possible. For example, if five 

different glycoforms may be covalently attached to the heavy chains, the number of 

different masses expected for the HC fragment is five. In samples containing the 

dimeric heavy chain (i.e., IgG, IgG Fc), however, the number of possible masses is 

25 = 32, a consequence of the fact that different glycoforms may be linked to each of 

the heavy chains. Reduction of the IgG into monomeric HC fragments does result in 

fewer peaks, as shown in the deconvoluted spectra in Figure 4.3. The spectra of the  
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HC show the biantennary sugars G0F, G1F and G2F along with smaller amounts of 

the high mannose forms. The paired glycoforms detected in intact IgG and IgG-Fc 

samples (e.g., Man5/Man5,G0F/G1F, Figs. 4.1, 4.2) are absent, however, as 

expected. Since in the analysis of IgG-HC the pairing effect is removed, the intensity 

of peaks for the various carbohydrate structures can be used to quantify the various 

glycoforms. The MaxEnt algorithm used for generating the deconvoluted spectra 

preserves the intensity information from the raw spectra, allowing accurate 

quantitation.  

4.3.4. LC/MS analysis of IgG-Fc/2. - Fc/2 refers to the constant region of the single 

HC and is produced after reduction of the Fc. Fc/2 is approximately 25 kDa, is half 

the size of the HC and has a smaller normal isotopic distribution, which allows for 

greater resolution of modifications. The deconvoluted spectra of Fc/2 from the two 

different lots are shown in Figure 4.4. As compared to the deconvoluted spectra of 

HC (Fig. 4.3), the Fc/2 spectra showed improved resolution for the various 

glycoforms which was clearly observed in peaks such as Man5 and G0F-GlcNac. 

Additional low intensity peaks such as G0 were more clearly visible in the spectra for 

Fc/2. The improved detection of low intensity peaks could be the result of improved 

signal to noise of the more compact peaks in Fc/2. The higher sensitivity led to the 

identification of a greater number of glycoforms in the Fc/2 spectra. For example, 

while G0, G1 and G2 carbohydrates were not observed in the intact IgG, IgG-Fc or 

HC spectra, they were detected in the Fc/2 spectra. Similar to the previous analyses, 

the amount of the high mannose sugars was higher in lot B. Glycoforms with a mass 

difference as low as 25 Da were baseline resolved which subsequently allowed 

improved quantitation of these forms. All the peak assignments in the deconvoluted  



 112

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

26
30

0
26

35
0

26
40

0
26

45
0

26
50

0
26

55
0

26
60

0
26

65
0

26
70

0
26

75
0

26
80

0
26

85
0

26
90

0
26

95
0

27
00

0
ma

ss
0

10
0 %0

10
0 %

x1
42

0
26

65
3

26
42

5 26
45

1
26

63
6

26
81

6

26
67

0 26
70

9
26

77
2

26
83

1
26

97
7

x1
42

0
26

65
3

26
42

5 26
44

9
26

63
5

26
81

5

26
66

9 26
71

1
26

77
7

26
83

0
26

97
6

26
87

3
26

30
4  

 26
30

4  

G
1F

M
an

5  

G
0F

-G
lc

N
ac

 

G
1

 

 

G
0F

G
0  

M
an

6  
 

M
an

7
M

an
8  

A
 

G
1

  B
 

M
an

5  G
0F

-G
lc

N
ac

 

G
0  

G
0F

G
2

G
2

G
1F

M
an

7
G

2F

G
2F

M
an

6
G

0-
G

lc
na

c  

G
0-

G
lc

na
c  

Fi
gu

re
 4

.4
: D

ec
on

vo
lu

te
d 

sp
ec

tra
 o

f A
. I

gG
A

 F
c/

2 
an

d 
B

. I
gG

B
 F

c/
2 



 113

spectra were based on the calculated mass with errors less than 200 parts per 

million (ppm).  

4.3.5. LC/MS analysis after trypsin digestion (XIC method). - Tryptic peptide 

mapping is commonly used to determine chemical modifications and sequence 

variants in proteins24. Peptide mapping relies on specific cleavage of the protein 

sequence with a proteolytic enzyme such as trypsin, giving rise to a known set of 

peptides. The LC/MS analysis allows determination of site specific modifications in 

proteins. Peptide mapping has been widely used for the characterization of IgG 

molecules. Complete trypsin cleavage of IgG1 molecules generates the peptide 

293EEQYNSTYR301, which contains the N-linked carbohydrate moiety on N297. 

Standard reversed-phase separation methods may not be able to resolve the various 

glycoforms on the peptide. However, each glycoform (apart from isobaric structures) 

can be distinguished by its specific mass. The intensities specific to the glycoforms 

can be obtained from the total ion chromatogram (TIC) by generating extracted ion 

chromatograms (XIC). XICs are generated by extracting the ion signal for the mass 

of a particular peptide from the total ion chromatogram acquired on the mass 

spectrometer. This method allows the analysis of a specific compound in a mixture of 

analytes. Figure 4.5 shows the peptide maps (inlays) and XICs for the various 

glycoforms in the two lots. This method had a low sensitivity and only five glycoforms 

(Man5, Man6, G1F, G0F and G0F-GlcNAC) could be detected. XICs of other 

glycoforms, which were detected in the previous analyses, did not show measurable 

peaks (not shown). A difference in retention of the glycoforms was observed and 

highly branched structures (high mannose) had a shorter retention time than the  
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biantennary structures. Similarly, the size of the carbohydrate moiety also affected 

their retention.    

4.3.6. Sugar release assay. - A sugar release assay is the most commonly used 

method for the quantitation of glycoforms in IgG molecules and other glycoproteins. 

For this assay, the N-linked carbohydrate is released from the protein with PNgase F  

or other glycanases specific for N-linked sugars. The released sugars are purified 

from the protein and analyzed with normal-phase chromatography25, MALDI or other 

techniques26,27. In most cases, the released oligosaccharides are derivatized through 

their reactive reducing end prior to analysis. Derivatization is used to introduce 

fluorescent tags which improve the normal-phase separation as well as the 

sensitivity of detection17. The chromatograms of PNgase F released 

oligosaccharides from the two lots, derivatized with 2-aminobenzamide and 

separated with normal-phase chromatography, are shown in Figure 4.6A. The 

glycoform profile shown in Figure 4.6A agrees very well with that published by Hill et 

al. 17. Additional online MS analysis was carried out to identify the peaks separated 

by normal-phase chromatography. For simplicity, only the mass spectra for G0F-

GlcNAc, Man5 and G0F peaks are shown in Figure 4.6B. Similar mass spectra were 

obtained for other peaks as well. In a previous study by Hill et al.17, retention of a 

standard dextran ladder and glucose unit values for each oligosaccharide were used 

for assignment of peaks from the normal-phase chromatogram. According to that 

assignment, Man5 was reported to elute just before the G0F peak while the peak 

eluting after G0F was assigned as Man6. However, our LC/MS data clearly shows 

Man5 to elute after the G0F peak while the peak eluting before G0F was assigned as 

a mixture of G0F-GlcNAc and G0 (Fig. 4.6A). The MS analysis allowed a more  
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accurate identification leading to reassignment of the high mannose peaks. The 

highly branched nature of the high mannose sugars probably leads to a stronger 

interaction with the normal-phase column causing these forms to be retained more 

than the corresponding biantennary structures with higher glucose unit values. 

LC/MS analysis also allowed the identification of several new peaks such as G0-  

GlcNac and G0 which were detected but not assigned in the previous study by Hill et 

al17 (Fig. 4.6). In addition, the MS analysis showed that the normal-phase method 

could not fully resolve all the glycoforms: G0F-GlcNac and G0 as well as Man5 and 

G1 were found to co-elute. The low MS signal for G1 (Fig. 4.6B) may be due to ion 

suppression of the branched Man5 carbohydrate. Since elution in normal-phase 

chromatography is generally influenced by the amount of carbohydrate, the G2 form 

would be expected to co-elute with the Man6 form. However, the spectra for the 

Man6 form did not show the presence of the G2 form (data not shown). The co-

elution of these carbohydrate structures is a major limitation in quantitation using the 

sugar release assay. 

4.3.7. Quantitative comparison of assay results. - The quantitation of glycoforms 

by four different methods is summarized in Table 4.2 and Figure 4.7. As noted 

above, LC/MS analysis of intact IgG (Section 4.3.1) and of IgG-Fc (Section 4.3.2) are 

not included in the quantitative comparison because these methods do not detect 

individual glycoforms but only glycoform pairs. Table 4.2 summarizes the quantitative 

analysis of glycosylation by the four methods that detect monomeric (i.e., unpaired) 

glycoforms. The methods differ in both the number of glycoforms detected and in the 

quantitative distribution of the glycoforms. Note that in Table 4.2 the total 

percentages of all glycoforms sum to 100% for each of the methods. This introduces  
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bias in quantitative comparison of methods that detect different numbers of 

glycoforms. To allow for more accurate comparison, percentages were rescaled to 

include only the four glycoforms detected by all four methods (i.e., Man5, G0F, G1F, 

G2F). In addition, isobaric forms that were resolved by the sugar release assay (i.e., 

Man6 and Man6*, G1F and G1F*) were pooled for this comparison. This normalized  

comparison is shown graphically in Figure 4.7. The numbers of glycoforms detected 

by the reduced (HC) and extracted ion (XIC) methods are less than the by the other 

two methods (Table 4.2). Low abundance glycoforms, accounting for less than ~ 5% 

of the total, are infrequently detected by the HC and XIC methods. For example, with 

the exception of G2F, the HC method does not detect any of the glycoforms that are 

at less than 5% abundance by the sugar release assay. While the XIC method 

detects some of these low abundance glycoforms (e.g., Man6, G0), low abundance 

forms with higher mass (e.g., G2) are not detected.  In contrast, the limited and 

reduced (Fc/2) assay detects 11 glycoforms for IgGA and 10 glycoforms for IgGB, 

comparable to the ten glycoforms detected for each antibody by the sugar release 

assay (Table 4.2). 

 Figure 4.7 shows a quantitative comparison of the normalized percentages of 

the four major glycoforms by each of the four assay methods. For Man5, G1F and 

G2F, values obtained by the HC and XIC methods differ significantly from those 

obtained by the sugar release assay. The XIC results also differ significantly from the 

sugar release assay for the most abundant glycoform, G0F. In contrast, the results of 

the Fc/2 method are not significantly different from those of the sugar release assay 

for any of the four major glycoforms. Thus, the Fc/2 assay provides results that are 
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comparable to the sugar release assay in both the number of glycoforms detected 

(Table 4.2) and the quantitative values (Fig. 4.7).    

 Several reasons can be proposed for the quantitative and qualitative 

differences among the four methods. The poor ability of the HC method to detect 

glycoforms and to provide quantitative agreement with the standard sugar release 

assay may reflect poor ionization of the relatively large (~ 50 kD) glycosylated HC 

molecule. The XIC method may be susceptible to suppression of the glycopeptide 

signal due to the attached carbohydrate for the relatively small peptide fragments 

produced by digestion. The good agreement between the Fc/2 assay and the 

standard sugar release assay may be due in part to the improved ionization of this 

glycoslated protein, intermediate in size (~ 26 kD) between the HC and XIC 

fragments.  

 While the sugar release assay is regarded as a standard in monitoring IgG 

glycosylation, it is not without limitations. Of the methods studied here, only the sugar 

release assay could detect and resolve isobaric glycoforms (i.e., Man6 and Man6*, 

G1F and G1F*, Table 4.2). The sugar release assay also showed high precision as 

reflected by the low standard deviation. However, online mass spectrometric analysis 

showed co-elution of some of the carbohydrate structures during the sugar release 

assay, which greatly restricts the ability of the sugar release assay to quantitate 

these glycoforms. In particular, values for the Man5 and G0-GlcNAc reported for the 

sugar release assay in Table 4.2 are not accurate because these carbohydrate 

structures co-elute with the G0 and G1 forms, respectively, making their quantitation 

suspect. 
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Overall, the quantitation obtained with the Fc/2 assay was comparable to that 

of the sugar release assay and the small differences observed can be attributed to 

co-elution of certain forms during the sugar release assay. A limitation of the Fc/2 

assay, and of any rpLC/MS approach, is that isobaric structures (i.e., Man6 and 

Man6*, G1F and G1F*) cannot be resolved with this method. The Fc/2 and sugar 

release assays thus are highly complementary and, when used together, are 

expected to provide complete characterization of carbohydrates in therapeutic 

recombinant monoclonal IgG molecules. 

 
 
4.4. Conclusions 

 The studies reported here highlight strengths and limitations of LC/ESI-TOF 

MS assays for the identification and quantitation of glycoforms in IgGs. ESI-TOF 

analysis of the intact IgG was able to adequately measure the galactose variance in 

the biantennary sugar structure, but could not resolve the heterogeneity caused by 

high-mannose carbohydrates. ESI-TOF analysis of the IgG-Fc fragment generated 

after limited proteolysis enabled detection of both biantennary and high-mannose 

carbohydrates and  was effective in characterizing oligosaccharide pairing caused by 

the combination of glycans on the two IgG-Fc heavy chains. Neither the intact IgG 

nor the IgG Fc analysis was found to provide sufficient resolution for quantitation, 

however.  ESI-TOF analysis of the IgG-Fc/2 fragment showed accurate quantitation 

of various biantennary and high-mannose carbohydrates and was the most effective 

of the MS based methods evaluated at the identification and quantitation of 

carbohydrates. Peptide mapping followed by ESI-TOF MS analysis was not effective 

for absolute quantitation, as the ionization of glycopeptides was influenced by the 
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size of the carbohydrate. Though the sugar release assay showed high precision, the 

normal-phase method used for the assay could not fully resolve all the glycoforms. 

Collectively, the results suggest that MS quantitation based on analysis of Fc/2 

(reduced Fc) is accurate and gives results that are both comparable and 

complementary to the more time-consuming sugar release assay. 
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Chapter 5 

Effect of Secondary Structure on Deamidation in a Tryptic 

Fragment of the Fc Portion of a Recombinant Monoclonal 

Antibody 

 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 130

5.1. Introduction  

Therapeutic antibodies are one of the fastest growing segments of the 

pharmaceutical industry1,2. To maintain potency and minimize immunogenicity, 

antibodies and other protein drugs must be protected from physical and chemical 

degradation during manufacturing and storage. The rational development of stable 

formulations of these large molecules requires analytical methods capable of 

detecting chemical changes with amino-acid level resolution.   

One of the most common routes of chemical inactivation of proteins is 

deamidation at asparagine (N) residues. In neutral to basic solution, deamidation 

proceeds via the nucleophilic attack of the N+1 nitrogen of the protein backbone on 

the carbonyl group of the N side chain, forming a cyclic imide (succinimide) 

intermediate.  Hydrolysis then occurs at either of the succinimide carbonyl groups to 

form the aspartate- (D) and isoaspartate- (isoD) containing products, which differ 

from the parent sequence both in charge (acidic vs. neutral) and mass (+ 1 amu). 

Protein primary sequence strongly influences deamidation rate. For example, in 

unstructured model peptides (37 oC, pH 7.4), deamidation half-lives for the NG 

sequence are typically on the order of 1 day, while half-lives at NV and NI sequences 

of more than 200 days have been reported3. Secondary structure also influences 

deamidation rate4-8, but its effects have not been as clearly elucidated.  

Various analytical methods have been used to detect deamidation in 

proteins9. Ion-exchange chromatography (IEC) exploits the difference in charge of 

the acidic degradation products and the parent molecule, and is routinely used in the 

pharmaceutical and biotechnology industry. Tryptic digestion with reversed-phase 

high performance liquid chromatography (rp-HPLC) has been used to identify sites of 
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deamidation and to quantify deamidation rates. IsoD and D variants can often be 

resolved from the parent tryptic fragment in tryptic mapping with rp-HPLC, albeit with 

long analysis times. The enzyme protein isoaspartyl methyl transferase (PIMT) 

repairs isoD residues in vivo, and has been used to quantify isoD levels in vitro. 

PIMT detection kits are available commercially (e.g., IsoQuant®, Promega, Madison, 

WI). PIMT selectively catalyzes the transfer of a methyl group from S-adenosyl 

methionine to isoD at the α-carbonyl, generating S-adenosyl homocysteine (SAH), 

which is detected by HPLC.  

Recent reports suggest that there may be two deamidation-prone regions in 

the complementarity determining regions (CDR) of antibodies and several hot spots 

in the constant regions (Fc). Deamidation in the Fc-domain of a humanized 

monoclonal antibody was studied recently with tryptic digestion followed by analysis 

with liquid chromatography and electrospray ionization mass spectrometry 

(HPLC/+ESI/MS)10. The results showed that the reaction is sensitive to antibody 

structure, with tryptic fragment G369-K390, (GFYPSDIAVEWESNGQPENNYK) 

showing rapid and structure-dependent deamidation at N382 and N387. Interestingly, 

the authors did not observe several expected deamidation products at these sites, 

including the isoD product of N387 (i.e., isoD387), the Asp product at N382 (i.e., D382) 

and the succinimide intermediate at N387. The authors infer that the mechanisms of 

deamidation differ at the two sites, perhaps due to differences in secondary 

structure. This is an important observation and a potentially significant contribution to 

our understanding of the effects of secondary structure on chemical reactivity in 

proteins. However, it is also possible that the “missing” products were simply poorly 

resolved chromatographically and so were not detected. This is particularly 
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problematic if the IsoD and D variants co-eluted, since the two products have 

identical mass and cannot be resolved by the use of base ion chromatograms, as 

employed by the authors. As a result, the effect of secondary structure on 

deamidation in this commercially important protein remains an open question.  

 The work reported here is a detailed study of deamidation at N382 and N387 in 

the Fc portion of a humanized IgG1 antibody and was performed in collaboration with 

and with support from Merck Research Laboratories, West Point, PA. We have 

employed ultraperformance liquid chromatography with electrospray ionization mass 

spectrometry (UPLC/+ESI/MS) in an attempt to achieve chromatographic resolution 

of deamidation products while maintaining relatively short analysis times. In addition, 

synthetic peptides corresponding to the tryptic fragment G369-K390 have been used as 

analytical standards and as controls for the effects of structure on deamidation. The 

results demonstrate that the product profile for the tryptic fragment and the intact 

protein are indeed different, supporting the hypothesis that higher order structure of 

the protein plays a significant role in determining both deamidation kinetics and 

product distribution.  

 

5. 2. Materials and Methods 

5.2.1. Materials. – Deamidation was monitored in the Fc portion of a humanized 

IgG1. Tryptic digests of Fc-IgG and synthetic model peptides corresponding to 

selected tryptic fragments were used as relatively unstructured controls. Fc-IgG was 

prepared at Merck Research Laboratories from a humanized monoclonal antibody 

expressed in NS0 cells, a murine myeloma cell line. The human IgG1 Fc fragment 

was prepared by digestion with immobilized papain (Pierce, Rockford IL), followed by 



 133

protein A purification. Impurities were further removed by cation-exchange high 

performance liquid chromatography (HPLC) using a ProPac WCX-10 9 x 250 mm 

column (Dionex, Sunnyvale, CA) and gradient elution (mobile phase A: 10 mM 

sodium phosphate pH 6.5; mobile phase B: 10 mM sodium phosphate, 0.5 M NaCl 

pH 6.5; gradient: 3-26% B in 20 min at a flow rate of 2 ml/min). The human Fc IgG1 

digestion and purification was conducted by Dr. Josef Vlasak at Merck Research 

Laboratories, West Point, PA. 

 Model peptides corresponding to the tryptic fragment G369-K390 (i.e., 

GFYPSDIAVEWESNGQPENNYK) and its deamidated variants were used as 

synthetic standards and as unstructured controls. The parent peptide 

GFYPSDIAVEWESNGQPENNYK (hereinafter abbreviated “NNN”) and the D387-

containing deamidated variant, GFYPSDIAVEWESNGQPEDNYK (abbreviated 

ND387N), were synthesized by the Biochemical Research Services Laboratory of the 

University of Kansas. The isoD382-containing variant, 

GFYPSDIAVEWES(isoD)GQPENNYK (abbreviated isoD382NN), was purchased 

from American Peptide Company (Sunnyvale, CA). All other chemicals and reagents 

were of the highest commercial grade and used without further purification. Milli-Q 

water was used to prepare all solutions.  

5.2.2. Sample preparation and accelerated stability studies. - Accelerated 

stability studies were conducted for two types of samples at 37 oC and pH 7.5: (i) the 

fully-folded, intact Fc IgG (~ 50 kD) (“intact protein”) and (ii) tryptic digests of Fc IgG 

(“digests”). Deamidation in the native Fc IgG (i) was thus compared to deamidation in 

its tryptic fragments which serve as an unstructured control. For the intact protein, 

samples contained 50 µL of 0.5 mg/mL Fc IgG in 100mM Tris-HCl buffer (pH 7.5). 
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Samples were stored in capped microcentrifuge tubes at 37 oC for two days. 

Triplicate samples were withdrawn at designated time intervals, digested with trypsin 

as described below, and stored at -20 oC prior to LC-MS analysis (see Section 5.3).    

To produce digests, the intact Fc IgG was subjected to proteolytic digestion with 

trypsin prior to accelerated stability testing. Tryptic digestion followed the protocol 

reported by Chelius et. al10. Briefly, an aliquot of intact Fc was first exchanged to 6 M 

guanidine-HCl, 0.2 M Tris-HCl, 1 mM EDTA (pH 7.5) such that 100 μL of 0.5 mg/ml 

Fc was obtained. Reduction was performed by addition of 2 μL of 0.5 M dithiothreitol 

(DTT) at 37 oC for 40 minutes followed by alkylation by 4 μL of 0.5 M iodoacteamide 

at room temperature for 40 minutes. The reduced, alkylated Fc portion was then 

buffer exchanged with a 10,000 MW cut off membrane (Microcon centrifugal filter, 

Millipore, Billerica, MA) to 100 mM Tris buffer (pH 7.5) such that the Fc concentration 

was maintained at 0.5 mg/ml. Trypsin (Worthington, MA) was then initially added in a 

trypsin:protein ratio of 1:50 (w/w) and incubated for 2 hrs at 37 oC. This was followed 

by addition of another equal amount of trypsin with incubation for 2 more hours, 

bringing the final trypsin:protein ratio to 1:25 (w/w). For stability studies, the samples 

were withdrawn and the reaction quenched by addition of 20 % formic acid such that 

the final concentration was 2%. For stability studies of digests, a 50 µL aliquot was 

then stored in capped microcentrifuge tubes and stored at 37 oC for up to 45 days. 

Triplicate samples were withdrawn at designated time intervals and stored at -20 oC 

prior to LC-MS analysis (see Section 5.2.3). Samples of intact Fc IgG were subjected 

to tryptic digestion by this protocol following storage. Stability studies of intact protein 

and digests thus were conducted identically, but with the order of tryptic digestion 

and storage reversed.  
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5.2.3. Mass spectrometric analysis (UPLC/+ESI-MS) of Fc-IgG and fragments. - 

The analytical strategy for monitoring deamidation in Fc-IgG involved tryptic 

digestion of intact protein (see Section 5.2.2), ultraperformance liquid 

chromatography with tandem electrospray ionization mass spectrometry 

(UPLC/+ESI-MS) analysis of the fragments, and quantitation of peptides and their 

deamidated variants using extracted ion chromatograms (EIC). UPLC is a recent 

innovation in high performance liquid chromatography (HPLC), in which unique small 

particles and very low column volumes allow for greater throughput and rapid 

analysis times. In the G369-K390 sequence, deamidation can occur at each of the N 

residues (N382, N387, N388) to produce the isoD and D variants. Since each of the 

three sites can exist in three forms (i.e., N, isoD, D), a total of 27 (i.e., 33) variants is 

possible. Identification and quantitation of the product mixture thus requires 

analytical methods capable of resolving similar peptides in complex mixtures. UPLC 

is well-suited to the analysis of such mixtures, and was selected as the separation 

method to minimize possible co-elution of isobaric products.  

UPLC was performed using a Waters Acquity UltraPerformance liquid 

chromatography system (Waters, Inc., Milford, MA) with a BEH C18 column (1 mm × 

150 mm, 1.7 µm particle size) at a flow rate of 100 μL/min and a column temperature 

of 35 oC. Approximately 10 µg of protein was injected for each analysis (10 µl / 

injection). Gradient elution was employed, (Solvent A: 99% H2O, 1% methanol, 

0.08% formic acid; Solvent B: 99% acetonitrile, 1% H2O, 0.06% formic acid), with the 

profile: 0 to 1 min, solvent B at 1% (v/v); 1 to 2 min, solvent B increased to 10% (v/v); 

2 to 19 min, solvent B increased to 18% (v/v); 19 to 45 min, solvent B increased to 

22% (v/v); followed by washing and requilibration. Mobile phase solvent 
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compositions were: Solvent A - 99% H2O, 1% methanol, 0.08% formic acid; Solvent 

B - 99% acetonitrile, 1% H2O, 0.06% formic acid.  

The UPLC eluate was coupled to a Micromass® Q-Tof II mass spectrometer 

(Waters, Inc., Milford, MA) operated in the positive ion mode (+ESI) with a cone 

voltage of 35V and a collision voltage of 30 eV. The relatively high collision voltage 

produces partial fragmentation of the parent ions, and was adopted as an alternative 

to MS/MS analysis since it produced a sufficient number of daughter ions to allow 

unambiguous identification of deamidation sites. The G369-K390 fragment and the 

corresponding synthetic peptide carry a charge of +2, a theoretical mass of 2544.67 

Da and thus an expected m/z value of 1272.57. Data were analyzed using 

MassLynx® software (Waters, Inc.). Quantitation of native peptides and their 

deamidated variants was based on the isotopic peak intensities of each form. The 

theoretical isotope distribution for the parent peptide was employed to separate the 

contribution of a doubly deamidated product, which eluted as a shoulder with the 

parent in studies of the undigested protein. The ionization efficiency of the parent 

peptide was assumed to be equivalent to that of its deamidated forms. 

5.2.4. Kinetic modeling. – The time-varying concentrations of the N-containing 

parent species and their deamidated variants were subjected to kinetic analysis to 

determine the rate constants for deamidation. The native species and the 

deamidation products form an ensemble that evolves in time based on the 

microscopic rates of interconversion between species.  Assuming that the 

deamidation process can be well represented as a unimolecular, first-order reaction, 

the time-dependencies of the population of "n" species can be described by a system 

of linear differential equations of the form: 
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where Ai, Aj, represent molar fractions of any two species in the ensemble, and kji is 

the microscopic rate constant describing the conversion of species Aj into species 

Ai: 

i
kji

j AA ⎯→⎯
   

The system of linear differential equations was solved using classical procedures11  

to determine the eigenvalues of the system λi (i=1,n). The eigenvalues λi represent 

experimental rate constants and can be expressed as linear combinations of the 

microscopic rate constants, kji.  For a system comprising "n" distinct species there 

are at most "n -1" values for λi, since one solution is always zero, corresponding to 

the equilibrium value. The solutions of the system, [Ai](t), were expressed as a sum 

of exponentials of the form: 

∑ λ−α=
j
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where αij represent coefficients that are specific to each species, "i".  The 

coefficients αij are determined from the system of linear equations and from initial 

(t=0) and equilibrium (t=∞) conditions. Since the system is relatively uncomplicated, 

the eigenvalues and eigenvectors were calculated ”by hand”, i.e., no particular 

application was used to solve the system of equations describing the time-

dependence of each species. The explicit form of the system of differential 

(5.1)

(5.2)

(5.3)
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equations, with their corresponding eigenvalues and solutions for the molar fractions 

of the species, is given in the Appendix. 

For a particular data set (i.e., describing either the deamidation of a model 

peptide, a tryptic fragment or the intact Fc), the microscopic rate constants were 

determined by performing a global fit, in which the fitting of the experimental points 

was performed simultaneously for all kinetic traces using the program SigmaPlot 

(Ver 10.0, Systat Software, Inc., San Jose, CA).  Statistical information regarding the 

fitting results, including standard and relative errors of regression coefficients, was 

provided by SigmaPlot routines. Kinetic analysis was performed by Dr. Roxana 

Ionescu at Merck Research Laboratories, West Point, PA. 

5.2.5. Molecular dynamics simulations (MDS). - The IgG-Fc structure was 

visualized using SYBYL (Version 8.0, Tripos, St. Louis, MO) which enabled direct 

measurement of key interatomic distances as represented in the 1h3u RCSB Protein 

Data Bank (PDB) crystal structure12. Relative solvent accessibility of specific 

residues was determined in SYBYL by generating Connolly surfaces on those amino 

acids and evaluating the total area of each resulting surface. 

 

5.3. Results 

The studies reported here investigate the effect of higher-order structure on 

deamidation in the constant (Fc) domain of a humanized IgG1 antibody, focusing on 

a 22 amino acid tryptic fragment located in the CH3 domain 

(G369FYPSDIAVEWESNGQPENNYK390). To control for the effects of protein 

structure, deamidation in the intact Fc-protein was compared with deamidation its 

tryptic digests. The identification of reaction products for each of the sample types is 
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presented first (Section 5.3.1), followed by data on reaction kinetics (Section 5.3.2) 

and molecular dynamics simulation (Section 5.3.3). Because the product profiles are 

considerably more complex in the intact protein than in the digests, results for the 

digests are presented first within each Section. These are followed by results for the 

intact protein and then by supporting results on the synthetic peptides.   

5.3.1. Product identification  

5.3.1.1. Deamidation products in tryptic digests. -  The EIC for a representative 

sample of a tryptic digest of Fc-IgG following 14 hours of storage (37 oC, pH 7.4) 

shows three well-resolved peaks eluting at approximately 36, 37 and 39 min (Fig. 

5.1A). Figure 1B shows the molecular ion mass spectrum of each of these peaks, 

presented in the order of elution. The second peak (Fig. 5.1A, ~37 min) shows an 

m/z of 1273 (Fig. 5.1B(2)) and is thereby identified as the intact parent peptide (i.e., 

G369-K390). The first peak (Fig. 5.1A, ~36 min) and the third peak (Fig. 5.1A, ~39 min) 

both shown +1 amu shifts in their molecular isotope envelopes (Fig. 5.1B(1), Fig. 

5.1B(3)), consistent with singly deamidated products. These mass envelope shifts 

cannot identify the site of deamidation, however, nor can they distinguish between 

the isobaric D and isoD products produced at a single site.  

The sites of deamidation were determined using the daughter ions (i.e., b- 

and y˝-ions) formed during high energy MS1 analysis of each of these peaks (Fig. 

5.2). Figures 5.2A and 5.2C show y˝10, y˝12, y˝13 and y˝19 ions with a mass increase of 

+1 amu, consistent with deamidation in these fragments and which may have 

occurred at the N382, N387 or N388 sites. However, Figures 5.2A and 5.2C show that 

there are no mass changes in the y˝6, y˝4 and y˝3 ions, which excludes deamidation 

at the the N387 and N388 sites. Thus, using these daughter ions, deamidation at N382  
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 (EIC) and B) molecular ion isotope envelope of 1. IsoDNN, 2. NNN and 3. DNN 
peaks in the EIC, for a sample stressed for 14 hours at 37 oC, pH 7.5 after digestion. 
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Figure 5.1. Representative A) Extracted ion chromatogram (EIC) and B) molecular ion 
isotope envelope of 1. IsoDNN, 2. NNN and 3. DNN peaks in the EIC, for a sample stressed 
for 14 hours at 37 oC, pH 7.5 after digestion 
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Figure 5.2. High energy MS1 spectra of the peptides eluting at approximately 36 (A), 
37 (B) and 39 (C) minutes. The peptides  were identified with the y ions as the 
IsoD382, parent and the D382 forms respectively. 
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was confirmed for both the first and third peaks of Figure 5.1A, indicating that they 

are the isoD382 and D382 products of deamidation at this site. Both the relative peak 

areas and the elution order further suggest that the first peak corresponds to the 

isoD382NN product. In reverse-phase chromatography, isoD-containing peptides 

typically elute earlier than their D-containing counterparts13-16. In addition, the isoD 

product is generally favored in unstructured peptides, with a typical isoD:D ratio of 

3:1 to 5:1 6,17. On this basis, the product peaks in Figure 1A are tentatively assigned 

as isoD382NN (Fig. 5.1A, 36 min) and D382NN (Fig. 5.1A, 39 min).  These 

assignments were later confirmed by comparing the elution pattern of synthetic 

peptides corresponding to the isoD382NN and parent forms (see Section 5.3.1.3, 

below).  

5.3.1.2. Deamidation products in the intact protein. - The intact protein was stressed 

at 37 oC, pH 7.4 (100 mM Tris) to allow deamidation to occur in the native (i.e., fully 

structured) form, then subjected to tryptic digestion prior to UPLC/MS analysis. 

Figure 5.3A shows the EIC for the G369-K390 peptide fragment of intact Fc that had 

been stressed for 28 hrs before digestion. A total of five species are detected, eluting 

at 35.7, 36.7, 37.3, 38.2 and 38.8 min.  The molecular isotope envelopes (Fig. 5.3B) 

show that: (i) the first, fourth and fifth peaks correspond to singly deamidated 

products (Fig. 5.3B(1), 5.3B(4) and 5.3B(5)), (ii) the second peak corresponds to the 

parent peptide (Fig. 5.3B(2)), and the third peak corresponds to a doubly-deamidated 

product with +2 amu mass increase relative to the parent (Fig. 5.3B(3)). By 

comparison with results for the digests (above) and by high energy MS1 analysis  
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Figure 5.3. Representative A) Extracted ion chromatogram (EIC) and B) molecular 
ion isotope envelope of  1. IsoDNN, 2. NNN, 3. IsoD/D,IsoD/D,N, 4. NDN and 5. 
DNN peaks in the EIC, for a sample stressed for 28 hours at 37 oC, pH 7.4 before 
digestion. 
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(not shown), the first and fifth peaks were identified as the isoD382NN and D382NN 

variants. The y˝ ions indicate that the deamidation sites for the third and fourth peaks 

were at N382 and N387 (Figure. 5.4). By high energy MS1 analysis (Fig. 5.4A) and the 

molecular isotope envelopes (Fig. 5.3B(3)), the third peak was identified as a doubly 

deamidated product (Fig. 5.4A). The presence of y˝4, y˝6 and y˝8 daughter ions with a 

mass change of +1 amu and of a y˝3 daughter ion with unchanged mass indicated 

deamidation at N387. Since this peak eluted after the parent peak and was singly 

deamidated, it was tentatively assigned as the D form. This result was confirmed with 

the synthetic peptide studies (see Section 5.3.1.3). A +2 amu mass change for the 

y˝10 and y˝19 daughter ions indicated a second deamidation site at N382.  Thus, the 

third peak is deamidated at both the N382 and N387 sites. The identity of the 

deamidated sites with respect to isoD or D is not determinable with the present data. 

5.3.1.3. D and IsoD peak identification with synthetic peptides. – Three synthetic 

peptides (NNN, ND387N, IsoD382NN; see Section 5.2.1) were analyzed by UPLC/MS 

to confirm the tentative peak assignments described above. The elution times of the 

synthetic peptides agreed with those tentatively assigned to these species in the 

previous studies, thus confirming their identities (Fig. 5.5). When allowed to 

deamidate under the same stress conditions used for the digests and intact protein 

(i.e., 37 oC, pH 7.4), the synthetic NNN peptide formed the isoD382NN and D382NN 

peptides observed in the digest studies (not shown).  

5.3.2. Deamidation kinetics - The deamidation products for the Fc IgG digests are 

consistent with the accepted mechanism for deamidation at a single Asn site16,18,19. 

In the discussion that follows, deamidation kinetics in these samples will be modeled 

as parallel irreversible first-order reactions to produce the isoD and D products, as 
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Figure 5.4. High energy MS1 spectra of the peptides eluting as a shoulder a 
approximately 37.5 minutes (A) and 38 (B) minutes. The peptides were identified 
with the y ions as the doubly deamidated IsoD/D382, IsoD/D387N and the D387 
peptide. 
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Figure 5.5.  Elution times for the synthetic peptides IsoDNN, NNN and NDN. Elution 
pattern matched with that observed for the digest assay and also the intact protein 
analysis. 
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shown schematically in Fig. 5.6A and described in previous reports17,20-22. In contrast, 

deamidation in the intact Fc IgG produced singly deamidated products at two sites 

(i.e., isoD382 and D387) and a doubly deamidated product. As discussed below, 

reaction kinetics for the intact protein are consistent with parallel irreversible first-

order deamidation to produce the singly deamidated products, followed by their 

further degradation to produce the doubly deamidated product (Fig. 5.6B).  In the 

discussion below, reaction kinetics for the digests are presented first (Section 

5.3.2.1) followed by results for the intact protein (Section 5.3.2.2) and supporting 

results on the synthetic peptides (Section 5.3.2.3). 

5.3.2.1. Deamidation kinetics in tryptic digests. – Kinetic profiles for deamidation in 

the digests are shown in Figure 5.7. The parent fragment (NNN) degrades in a 

pseudo-first order manner with less than 10% remaining after 42 hrs. Loss of the 

parent fragment is accompanied by monotonic increase in the isoD- and D- 

containing products at N382 (i.e., isoD382NN and D382NN, respectively), which are 

formed in the ratio of ~ 4:1 (Fig. 5.5). The percentages were calculated assuming 

that sum of the N-, isoD- and D-containing species is 100%.  

 The kinetic data for the parent tryptic fragment and its deamidation products 

were fitted simultaneously to the reaction scheme in Fig. 5.6A to provide values for 

the rate constants k1p and k2p (Table 5.1). The regression lines are in close 

agreement with the data (Fig. 5.7) and the coefficients of variation are relatively small 

(%CV, Table 5.1), indicating a good fit. The calculated half-life for loss of the parent 

fragment is ~ 14 hours (i.e., 0.693 (k1p + k2p)-1 = 14.2 h), in good agreement with 

deamidation rates  
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Figure 5.6. Reaction scheme showing the kinetics of deamidation of A) peptide 
digest assay and B) intact Fc. 



 149

Table 5.1.  Fitting parameters obtained from global analysis of the data for the 369-
390 tryptic peptide of Fc fragment 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Parameter Value  SD CV (%) 

k1p (hours-1) 0.0390 0.0017 4.5 

k2p (hours-1) 0.0097 0.0012 12.3 

SD= Standard Deviation, CV=Coefficient of Variance 
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Figure 5.7. Kinetic profile for fragment 369-390, stressed after digestion of the Fc 
portion at 37oC, pH 7.4. The symbols are experimental data points, the lines 
represent the fit obtained with the kinetic model described in the text. N=3 
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predicted for peptides with the NG primary sequence by Robinson et al.3 and with 

previous reports on unstructured model peptides with this sequence20,23. The half-life 

is significantly shorter than the value of 110 hours previously reported by Chelius et 

al. for deamidation in this fragment of an Fc IgG10, however, a difference of 

approximately 8-fold. Since the two studies were conducted in solutions of identical 

pH, storage temperature, buffer, and buffer concentration, the reasons for this 

difference are unclear, but may involve differences in peptide concentration and/or 

partial retention of secondary structure in the previous study. Deamidation at N387 

and N388 was not detected during the time course of the studies reported here. Since 

Tyr is C-terminal to N388, the absence of deamidation products at this site is not 

surprising as steric hindrance by the bulky Tyr residue typically slows deamidation3. 

The absence of deamidation products at N387 in the present study suggests that the 

presence of a second N, C-terminal to the N of interest, slows deamidation rate. 

Long-term incubation of the digests at 37 oC for more than 48 h led to mass balance 

issues and so, the slower deamidation at N387 and N388 could not be monitored.  

Studies with the synthetic peptides (data not shown) also showed mass balance 

issues after being stressed for 48 h or more. Clipping of the S373-D374 bond was 

observed with the peak for D374-K390 peptide increasing over time. 

5.3.2.2. Deamidation kinetics in the intact protein. – Kinetic profiles for deamidation 

in the intact Fc IgG are shown in Figure 5.8. The fully N-containing form of the 

protein (i.e., NNN) undergoes monotonic loss with corresponding increases in the 

singly deamidated (i.e., isoD382NN, ND387N) and doubly deamidated (i.e., 

isoD382D387N) products. At time zero, the percentage of the fully N-containing form is 

less than 100  
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Figure 5.8. Kinetic profile for fragment 369-390, stressed Fc at 37oC, pH 7.4 followed 
by digestion. The symbols are experimental data points, the lines represent the fit 
obtained with the kinetic model described in the text. N=3 
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and the percentage of the isoD382NN product is greater than zero, suggesting that 

partial deamidation of N382 occurs during sample preparation or is already present in 

the protein at time 0. The D382 product (i.e., D382NN) was also detected throughout 

the study at a constant level of approximately 2-3% (not shown) consistent with its 

formation during sample preparation. A similar pattern was also evident in the digest 

samples (Fig. 5.7), albeit to a lesser extent.    

Kinetic analysis of deamidation in intact Fc IgG was performed according to 

the reaction scheme shown in Figure 5.6B. The D382NN product was treated as an 

artifact of sample preparation and measured amounts of D382NN (1.5-2%) were 

reassigned to the parent form (NNN). Kinetic data for the parent protein and its 

degradation products then were fitted simultaneously to provide the microscopic rate 

constants (k1,k2,k3,k4; Fig. 5.6B). A time-shift parameter, t0, was included to account 

for the history of the Fc fragment, i.e., deamidation occurring in the protein prior to 

initiation of the stability study and/or during sample preparation.  Simultaneously 

fitting the time-dependent profiles for the four species with a model containing five 

global fitting parameters resulted in good agreement between experimental and 

theoretical values (not shown). However, values of the rate constant for loss of 

ND387N (i.e., k4) were small with large standard errors, indicating that the value was 

not significantly different from zero. Regression was then repeated with the 

constraint k4=0, corresponding to a very slow conversion of ND387N to isoD382D387N 

on the time scale of the experiment. Good agreement between theoretical and 

experimental values was again observed (Fig. 5.8) and the errors associated with the 

determination of the regression parameters decreased to acceptable levels (Table  
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Table 5.2.  Fitting parameters obtained from global analysis of the data for the intact 
Fc fragment 
 
 

Parameter Value SD CV (%) 

t0 (days) 1.99 0.31 15.6 

k1 (days-1) 0.0166 4.8200e-4 2.9 

k2 (days-1) 0.0103 3.5780e-4 3.5 

k3 (days-1) 0.0369 1.8970e-3 5.1 

                 SD= Standard Deviation, CV=Coefficient of Variance 
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5.2). If the number of regression parameters was further reduced by requiring 

equality of the microscopic rate constants for the production and loss of the singly 

deamidated products (i.e., setting k1=k3 and k2=k4), the fit was not satisfactory. 

Reported model values (Table 5.2) and fitting lines (Fig. 5.8) thus correspond to the 

schematic shown in Figure 5.6B with k4 =0 (fixed) and the inclusion of the time-shift 

parameter, t0. 

 The calculated half-life for the overall loss of the parent protein is ~ 26 days 

(i.e., 0.693 (k1 + k2)-1 = 25.8 d; Table 5.2), approximately 44-fold slower than the 14-

hour half-life observed for the digests. The rate of formation of isoD382NN in the 

digests (k1p) was approximately 60-fold greater than in the intact protein (k1) (0.0166 

d-1 vs. 0.94 d-1), suggesting that reduction in the rate of deamidation at N382 is a 

dominant contribution to the overall reduction in degradation rate. The rates of 

formation of the two singly deamidated products, isoD382NN (k1) and ND387N (k2), 

were comparable in the intact protein. The rate of formation of isoD382NN (k1) is less 

than the rate of loss of this intermediate, reflecting its low accumulation. The ND387N 

is formed at an approximately equal rate but degrades slowly (k4 ~ 0) and 

accumulates through the time course of the study. While we have proposed that the 

doubly deamidated product (isoD382D387N) is produced by parallel reactions from 

both isoD382NN and ND387N (Fig. 5.6B), the global analysis suggests that this product 

is formed mainly from isoD382NN, since k4 ~ 0. That k3 > k2 further suggests that the 

formation of isoD382 at accelerates the formation of D at position 387 (i.e., ND387N). 

The D-product at the 382 position, D382NN, was not observed in the intact protein, in 

agreement with the previous observation by Chelius et al.  
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Figure 5.9. Molecular simulation showing the local environment around the 382, 387 
and 388 asparagine sites. 

 

 

 

 

 

 

N382 

N387 

N388 



 157

5.3.3. Molecular dynamics simulation - Using the PDB crystal structure for human 

Fc-IgG1 (1h3u), SYBYL MDS revealed that N382 is located in a loop between two β-

sheet regions (Fig. 5.9), while the N387 and N388 residues are located in a relatively 

unstructured loop. Solvent accessibility values and interatomic distances were also 

calculated for all three N residues (Table 5.3). Previous reports suggest that 

deamidation is favored by an interatomic distance between the attacking backbone 

nitrogen and the N-side chain carbonyl of 1.89 Å or less, while distances greater than 

4.9 Å are unfavorable for deamidation. Here, the calculated interatomic distances are 

greater than 1.89 Å and less than 4.9 Å for all three N residues (Table 5.3), 

suggesting some susceptibility to deamidation based on structure. The smallest 

simulated interatomic distance corresponds to N382, experimentally observed to 

deamidate most readily (Table 5.3). Calculated solvent accessibility values 

decreased in the order N382 > N387 > N388, again corresponding to the measured 

deamidation rates (Table 5.3).  

 The MDS results also help to explain the somewhat unusual distribution of 

deamidation products in the intact protein, in which: (a) only the isoD product is 

observed at position 382, (b) only the D product is observed at position 387, and (c) 

no deamidation is observed at position 388.  The formation of isoD382NN to the 

exclusion of D382NN suggests that hydrolysis of the succinimide occurs preferentially 

at the carbonyl contributed by the backbone amide and not at the carbonyl 

contributed by the N side chain. Such preferential hydrolysis could be related to the 

location of the 382 residue between two β-sheet regions, which may hinder the 

attack of water from the side-chain side. In contrast, hindered hydrolysis of the  
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Table 5.3.  Solvent accessibility and interatomic distances obtained from molecular 
simulation studies with SYBYL software  
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succinimide is an unlikely explanation for the preferential formation of D at the 387 

position, since the site is relatively solvent exposed. The absence of deamidation 

products at position 388 probably reflects the combined effects of primary sequence, 

with deamidation hindered by the N388+1 Tyr residue, and the limited solvent 

exposure of this site (Table 5.3).  

 

5.4. Discussion 

The rapid, high-resolution rpUPLC method was able to separate the three N-

containing 22-amino acid tryptic fragments and their deamidated variants. The parent 

peptide was well resolved from its deamidated counterparts, thus emphasizing the 

utility of UPLC as a high resolution technique. The product profile for the intact 

protein (structured) differed from that obtained for the tryptic digest (unstructured). 

The digest deamidated approximately 50-times faster than the intact protein, 

suggesting that deamidation is inhibited in the structured protein. This hypothesis is 

supported by the product profiles for the intact and the digest samples. In the 

digests, the N382 site deamidated to form the expected isoD382 and D382 products in 

the typical ratios of 4:1, while in the intact protein, only isoD382 is observed with no 

formation of D382. Molecular dynamics studies supported the formation of isoD382 

since the N382 residue was shown to be located in a structurally constrained 

orientation. In the digests, no deamidation was observed for N387 while in the intact 

protein, only the D387 product was observed at this site with no appearance of the 

corresponding isoD387 form. Together, these results indicate a significant role of the 

local secondary structure in deamidation in this region of Fc IgG.  
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                 The product profile is similar to that reported previously by Chelius et al. 

for Fc IgG10. That group also observed deamidation at the N382 and N387 sites with 

exclusive formation of the isoD382 and D387 products. However, the doubly 

deamidated product was not detected by Chelius et al. for the intact protein, while 

the succinimide intermediate at N382 was observed. The detection of the succinimide 

at N382 supports the hypothesis that the exclusive formation of the isoD product at 

this site involves the preferential hydrolysis of backbone side of the succinimide, 

though the succinimide was not detected in the current study.  Interestingly, the half-

life for loss of the parent tryptic fragment (i.e.,  

G369FYPSDIAVEWESNGQPENNYK390) in the work by Chelius et al. was 

approximately 9 times greater than the 14-h half life observed here under identical 

conditions. Also, the intact Fc half-life for the intact protein was reported to be 

approximately 1.5 times greater than observed in the present study. These 

differences may be due to differences in pH and/or solution composition in the two 

studies.  

 Similar results have also been reported for deamidation of an N-residue 

located in the CDR1 region of an antibody24,25. In that work, the denatured protein 

formed isoD to D in a ratio of 3.5:1 but the native antibody deamidated via a 

succinimide intermediate to form only D under neutral and basic conditions. 

Unpublished work on deamidation in the CDR1 region by Vlasak et al. has shown 

that the ratio of isoD to D changes over time, presumably due to isomerization of 

isoD to D as the process tends toward equilibrium. Creighton et al.26 studied 

deamidation in RNase A and observed that the structured protein deamidates 30-fold 

slower at N67 than in the reduced and denatured form, a difference attributed to the 
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local β-turn. Capasso et. al later observed that the isoD:D ratio for this protein was 

initially as high as in unstructured peptides (~ 3 : 1) but decreased to 1 : 2 as the 

reaction approached equilibrium4. A study by Harris et. al13 of Herceptin®, a 

commercial monoclonal antibody drug product, showed that N30 in the light chain 

deamidates to form only the D product. Atypical isoD : D ratios have also been 

observed for crystallin7,27. Capasso et al. 28-30 proposed that the D product will 

dominate over its isoD counterpart wherever the D configuration has a lower energy, 

which in turn depends on the protein three dimensional structure, and noted that 

equilibration between isoD and D via the succinimide occurs more slowly than 

deamidation. A similar rationale may hold for deamidation at the N387 of the Fc IgG 

studied here, though our inability to detect the succinimide at this site does not 

provide support for this mechanism.   

An alternative deamidation mechanism has been proposed by Clarke et al.31, 

in which the backbone carbonyl oxygen rather than the (N+1) nitrogen attacks the 

side chain carbonyl to form an isonimide ring with release of water. Subsequent 

hydrolysis of the symmetric isonimide ring from either side yields only the D-

containing product, unlike hydrolysis of the succinimide which produces both isoD- 

and D-containing products. This mechanism has been promoted in several studies in 

which the formation of the D-containing product was observed to the exclusion of the 

isoD product, with absence of the succinimide intermediate32,33. In the present 

studies, the formation of the D387 to the exclusion of isoD387 is consistent with an 

isonimide mechanism at that site, as is our failure to detect the succinimide. 

However, since the isonimide intermediate was not detected here, this explanation 

must be regarded as speculative.  
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Chapter 6 

Conclusions and Recommendations for Future Work 
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6.1 Summary and Conclusions 

The objectives of this dissertation are broadly related to the characterization of 

protein drugs in solution and in the solid state. The specific objectives were: i) To 

determine the effects of secondary structure on deamidation in a tryptic fragment in 

the CH3 domain of an human IgG molecule in solution (Chapter 3), ii) to compare 

methods for quantifying glycosylation patterns in recombinant human IgG molecules 

in solution (Chapter 4), and iii) to analyze protein-excipient interactions in lyophilized 

solids using hydrogen/deuterium exchange (Chapter 5). The summary and 

conclusions for each of these specific objectives are as listed below. 

6.1.1 Protein-Excipient Interactions in Amorphous Solids by 

Hydrogen/Deuterium Exchange with Mass Spectrometry (Chapter 5) –  The 

objective of this project was to extend and validate a technique developed in our 

group1-3 to1 obtain region-specific information about protein-excipient interactions in 

the solid state. Hydrogen/deuterium exchange was used in conjunction with mass 

spectrometry to obtain information about the deuterium uptake capability of the intact 

protein and its fragments on digestion with pepsin. 

A total of six proteins were studied – myoglobin, lysozyme, β-lactoglobulin, 

ribonuclease A, E casherin 5 and concanavalin A - with α-helical structure 

decreasing from myoglobin to con A. The HDX exchange for the intact protein was 

found to be sensitive to the nature of the excipient, with the extent of exchange 

varying by 2-5 fold for the proteins studied. The use of peptic digests in addition to 

the intact protein analysis allows excipient effects to be assigned to secondary 

structural domains of the proteins. The stabilization of proteins by excipients in the 

solid state occurs in a region-specific manner and not uniformly along the protein 
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backbone. Effects were primarily exerted in the proteins’ α-helical regions, while β-

sheet regions were protected to a lesser extent with low molecular carbohydrate 

excipients, trehalose and raffinose, showing significant protection against exchange. 

The results demonstrate the utility of H/D exchange with ESI-MS for analyzing 

protein-excipient interactions in lyophilized samples. 

6.1.2 Comparison of LC and LC/MS methods for quantifying glycosylation in 

recombinant IgGs (Chapter 4) – The objective of this project was to identify a fast 

and accurate LC/ESI-TOF method to quantify the various glycoforms that would yield 

comparable values to the standard sugar cleavage assay method. The studies 

compare six methods for quantifying glycosylation in two production lots of a IgG: (i) 

LC/ESI-MS analysis of intact IgG (“intact IgG method”), (ii) LC/ESI-MS analysis of 

the Fc fragment produced by limited proteolysis with Lys-C (“IgG Fc method”), (iii) 

LC/ESI-MS analysis of the IgG heavy chain produced by reduction (“IgG HC 

method”), (iv) LC/ESI-MS analysis of Fc/2 fragment produced by limited proteolysis 

and reduction (“IgG Fc/2 method”), (v) LC/MS analysis of the glycosylated tryptic 

fragment (293EEQYNSTYR301) using extracted ion chromatograms (“XIC method”) 

and (vi) normal phase HPLC analysis of sugars cleaved from the IgG using PNgase 

F (“sugar release assay”). 

The results highlight strengths and limitations of LC/ESI-TOF MS assays for 

the identification and quantitation of glycoforms in IgGs. ESI-TOF analysis of the 

intact IgG was able to adequately measure the galactose variance in the biantennary 

sugar structure, but could not resolve the heterogeneity caused by high-mannose 

carbohydrates. ESI-TOF analysis of the IgG-Fc fragment generated after limited 

proteolysis enabled detection of both biantennary and high-mannose carbohydrates 
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and  was effective in characterizing oligosaccharide pairing caused by the 

combination of glycans on the two IgG-Fc heavy chains. Neither the intact IgG nor 

the IgG Fc analysis was found to provide sufficient resolution for quantitation, 

however.  ESI-TOF analysis of the IgG-Fc/2 fragment showed accurate quantitation 

of various biantennary and high-mannose carbohydrates and was the most effective 

at the identification and quantitation of carbohydrates. Peptide mapping followed by 

ESI-TOF MS analysis was not effective for absolute quantitation, as the ionization of 

glycopeptides was influenced by the size of the carbohydrate. Though the sugar 

release assay showed high precision, the normal-phase method used for the assay 

could not fully resolve all the glycoforms. Collectively, the results suggest that MS 

quantitation based on analysis of Fc/2 (reduced Fc) is accurate and gives results that 

are both comparable and complementary to the more time-consuming sugar release 

assay. 

6.1.3 Effect of Secondary Structure on Deamidation in a Tryptic Fragment of 

the Fc Portion of a Recombinant Monoclonal Antibody (Chapter 3) – The 

objective of this study was to develop an assay method to monitor deamidation in a 

particular tryptic fragment located in the CH3 domain of a recombinant human 

antibody and to assess the effect of secondary structure on deamidation. 

The rapid, high-resolution rpUPLC method used in this study was able to 

separate the three N-containing 22-amino acid tryptic fragments and their 

deamidated variants. The parent peptide was well resolved from its deamidated 

counterparts, thus emphasizing the utility of UPLC as a high resolution technique. 

The product profile for the intact protein (structured) differed from that obtained for 

the tryptic digest (unstructured). The digest deamidated approximately 50-times 
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faster than the intact protein, suggesting that deamidation is inhibited in the 

structured protein. This hypothesis is supported by the product profiles for the intact 

and the digest samples. In the digests, the N382 site deamidated to form the expected 

isoD382 and D382 products in the typical ratios of 4:1, while in the intact protein, only 

isoD382 was observed with no formation of D382. Molecular dynamics studies 

supported the formation of isoD382 since the N382 residue was shown to be located in 

a structurally constrained orientation. In the digests, no deamidation was observed 

for N387 while in the intact protein, only the D387 product was observed at this site with 

no appearance of the corresponding isoD387 form. Together, these results indicate a 

significant role of the local secondary structure in deamidation in this region of Fc 

IgG.  

 

6.2. Future work 

The results of the three projects suggest opportunities for additional research, as 

described below. 

6.2.1 Protein-Excipient Interactions in Amorphous Solids by 

Hydrogen/Deuterium Exchange with Mass Spectrometry (Chapter 5) – The 

results of this study demonstrated that detailed information about protein-excipient 

interactions can be obtained by this technique. This suggests that 

hydrogen/deuterium exchange might be useful in predicting the aggregation 

propensity of proteins in the solid state.  Exposure of aggregation-prone sequences 

could be measured by hydrogen/deuterium exchange and related to measured 

aggregation rates. Aggregation prone proteins like myoglobin, human growth 

hormone, con A etc. could be used as model proteins to validate this theory. 
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Aggregation can possibly be monitored with respect to temperature or RH which will 

provide information about the unfolding dynamics of the protein in lyophilized solids. 

The same study when done for proteins with commonly used excipients like 

trehalose can provide an insight into protein structure protection in presence of this 

excipients. 

6.2.2 Comparison of LC and LC/MS methods for quantifying glycosylation in 

recombinant IgGs (Chapter 4) – Several techniques were compared in this study 

for their ability to quantitate glycosylation in the IgG molecule. The Fc/2 method was 

concluded to be the best due to its ease of sample preparation and fast analysis 

time. Its only disadvantage was that it could not resolve the isobaric forms. This 

limitation could be addressed by the use of a reverse phase column in series with a 

column that has the capability to separate isobars e.g. the normal phase column 

used for sugar release assay.  

The type glycoform modulates the function of the antibody. For example: (i)  

antibodies having high mannose sugar content have been observed to be inactive in 

complement activation4,5, (ii) glycoforms in IgG in patients with rheumatoid arthritis 

are known to contain higher G0 sugars6, and (iii) IgGs with higher F0 sugars are 

known to have greater binding for human Fcg RIII7. The pharmacological effects 

could be related to a changes in protein higher order structure, since the sugars 

interact at various contact points with the amino acids in the CH2 region and with 

sugars from the complementary CH2 domain8. Crystal structures of IgG-Fc reveal a 

distinct conformation for the oligosaccharide resulting from multiple non-covalent 

interactions with the protein, such that each has a reciprocal influence on the 

conformation of the other9-11. It has also been reported that the deglycosylated 
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antibody is less thermally stable than the glycosylated variety12. Deglycosylation 

results in a more closed conformation of the IgG-Fc and more importantly leads to an 

increased internal disorder of the CH2 domains whilst the CH3 domain is 

unaffected13.  Therefore, it would be interesting to investigate whether the variability 

in antibody function with different sugars is related to a change in higher order 

structure or if it imparts overall stability to the antibody. The study will involve 

purifying antibodies attached to various glycoforms e.g. Man5/Man5, G0F/G0F, 

G1F/G1F etc. Structural studies will involve monitoring the structure with Circular 

Dichroism or FTIR. Differential scanning calorimetry can also be used to determine 

the thermodynamic parameters for thermal unfolding, which will include a 

contribution from the intra-molecular oligosaccharide-protein interactions12. This will 

allow an understanding of the importance of the presence of an extra galactose unit 

or a high mannose glycoform like Man5.  To my knowledge no studies on the effect 

of various glycoforms have been reported. 

 6.2.3 Effect of Secondary Structure on Deamidation in a Tryptic Fragment of 

the Fc Portion of a Recombinant Monoclonal Antibody (Chapter 3) – The results 

reported here demonstrate that secondary structure has a profound effect on 

deamidation product profile and kinetics. The N382 site deamidated to form isoD382 

while the N387 site deamidated to form only the D387 product. Although an effort was 

made to explain the selective formation of these products, additional evidence is 

needed to test the deamidation mechanism.  The succinimide was not detected at 

either N382 or N387, which is in disagreement with the previous report by Chelius et 

al.14 and may suggest an alternative pathway for deamidation. An approach to 

isolating the succinimide would be to perform the study at a lower pH (~ 5). Acidic 
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conditions will stabilize the cyclic imide if it is formed thereby facilitating detection by 

mass spectrometry. Recent reports have also used H2
18O to identify and quantitate 

succinimide formation15,16., a method which provides an increase of +3 amu in 

deamidation products and may improve mass resolution. This approach could be 

taken to prove/disprove the formation of succinimide in the present study and to 

assess whether isomerization is responsible for detecting D387 at the N387 site.    
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APPENDIX 

Deamidation of 369-390 tryptic peptide of Fc fragment 

The analysis of the deamidation of the 369-390 tryptic peptide of Fc fragment was 

performed according to the reaction shown in Schematic A.I.  Using the following 

notations: NNN=N, IsoD382NN=ID, D382NN=D, the system of differential equations 

can be written as follows for 3 species (n=3): 

Nk
dt
dD

Nk
dt

dID

N)kk(
dt
dN

p2

p1

p2p1

=

=

+−=

 

The eigenvalues of the system are λ1=k1p+k2p; λ2=λ3=0 and the time dependencies of 

the molar fraction of each species are: N(t)=exp(-λ1t), ID(t)=[k1p/(k1p+k2p)]x[1- exp(-

λ1t)], D(t)=[k2p/(k1p+k2p)]x[1- exp(-λ1t)]. 

 

Deamidation of intact Fc fragment 

The analysis of the deamidation of the intact Fc fragment was performed according 

to the reaction shown in Schematic A.II.  Using the following notations: NNN=N, 

IsoD382NN=ID, ND387N=D, IsoD382 D387N=DD, the system of differential equations can 

be written as follows for four species (n=4): 
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DkIDk
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dt
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The eigenvalues of the system are λ1=k1+k2, λ2=k3, λ3=k4, λ4=0 and the time 

dependencies of the molar fraction of each species are: N(t)=exp(-λ1t), 

ID(t)=[k1/(k1+k2-k3)]x[exp(-λ2t)- exp(-λ1t)], D(t)=[k2/(k1+k2-k4)]x[exp(-λ3t)- exp(-λ1t)], 

DD(t)=1-[N(t)+ID(t)+D(t)]. 
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