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ABSTRACT 
 

The therapeutic benefits of atypical antipsychotics are proposed to be 

mediated by antagonism and subsequent desensitization of 5-HT2A receptor 

signaling; however, the mechanisms underlying this desensitization response 

are not yet understood. We hypothesize that the desensitization of 5-HT2A 

receptors induced by atypical antipsychotics is dependent on activation of the 

JAK-STAT pathway. To test this hypothesis, we used a cell line, A1A1v cells, 

that natively expresses 5-HT2A receptor signaling system, and further 

confirmed the findings in rats. In A1A1v cells, we confirmed that treatment 

with both olanzapine and clozapine desensitizes 5-HT2A receptor signaling. 

Furthermore, olanzapine treatment also increased RGS7 mRNA and protein 

levels which were dependent on activation of JAK-STAT pathway. Similar 

results were found with MDL100907, a specific 5HT2A receptor antagonist; 

RGS7 protein and mRNA levels were increased along with activation of the 

JAK-STAT pathway, suggesting that antagonism of 5-HT2A receptors is 

sufficient to induce these changes. In addition, we also found an increase in 

STAT3 binding to the putative RGS7 promoter region with olanzapine 

treatment suggesting that the increase in RGS7 expression could be directly 

mediated by the JAK-STAT pathway. An increase in RGS protein could 

mediate desensitization of 5-HT2A receptor signaling by its GAP activity.  

Lastly, inhibition of the JAK-STAT pathway significantly attenuated 

olanzapine-induced desensitization of 5-HT2A receptor signaling in A1A1v 
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cells.  Similar findings were also observed in rats treated with olanzapine for 7 

days. We found a decrease in 5-HT2A receptor-stimulated PLC activity in the 

frontal cortex which was dependent on activation of JAK-STAT pathway. 

Consistent with the cell culture data, the olanzapine-induced increase in 

RGS7 proteins and mRNA levels were dependent on activation of the JAK-

STAT pathway. Olanzapine treatment significantly reduced plasma levels of 

oxytocin, adrenocorticotrophic hormone (ACTH), and corticosterone. 

Surprisingly, 5-HT2A receptor-stimulated oxytocin and corticosterone levels 

were also decreased in a dose-dependent manner by the JAK inhibitor 

whereas ACTH levels were not altered.  Further studies are needed to 

investigate the role of the JAK-STAT pathway in the regulation of hormone 

levels. Taken together, these results from experiments in cells in culture and 

in rats suggest that increases in RGS7 expression via increased activation of 

the JAK-STAT pathway are necessary for antipsychotic-induced 

desensitization of 5-HT2A receptor signaling.  
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CHAPTER I 
 

INTRODUCTION 
 

Atypical antipsychotics are widely prescribed for the treatment of 

schizophrenia. They are classified as atypical because of their ability to 

achieve antipsychotic effects with lower rates of extrapyramidal side effects 

compared with first generation antipsychotics such as haloperidol. In addition, 

selected atypical antipsychotics also improve certain aspects of cognitive 

function in schizophrenic patients, whereas typical antipsychotics may worsen 

cognition (Meltzer, 1999). Although, atypical antipsychotics have a diverse 

receptor binding profile, 5-HT-receptor-based mechanisms have been 

postulated to play a critical role in the action of the atypical antipsychotic 

drugs (Willins, et al., 1999). However, the process by which these drug-

receptor interactions translate into long-term cellular adaptive changes 

resulting in antipsychotic efficacy is unknown. Atypical antipsychotic drugs 

bind with high affinity to 5-HT2A receptors and desensitize 5-HT2A receptor 

signaling (Deutch, et al., 1991; Meltzer and Nash, 1991; Seeger, et al., 1995). 

Desensitization of 5-HT2A receptor signaling by atypical antipsychotics is 

reported to be associated with down-regulation and internalization (Willins, et 

al., 1999). The 5-HT2A receptor subtype has been implicated in various 

psychiatric disorders including depression, anxiety, and schizophrenia 

(Glennon, et al., 1984). Atypical antipsychotics as well as a specific 5-HT2A 

receptor antagonist, MDL 100,907, desensitize 5-HT2A-mediated responses 
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(Willins, et al., 1999). However, the molecular mechanisms involved in 

antagonist-induced desensitization of 5-HT2A receptor signaling are not well 

understood. By understanding the molecular mechanisms underlying the 

effects of olanzapine and other atypical antipsychotics, we hope to gain 

insight into targets for therapeutic treatment of psychiatric disorders. 

The Janus tyrosine kinase (JAK)-signal transducer and activator of 

transcription (STAT) signaling cascade has been reported to couple with 5-

HT2A receptors in skeletal muscles and vascular smooth muscle cells (Guillet-

Deniau, et al., 1997; Banes, et al., 2005). G protein-coupled receptor 

agonists, thrombin and angiotensin II, have previously been shown to activate 

the JAK-STAT signaling cascade (Bhat, et al., 1994). JAK-STAT could be one 

of the possible signaling pathways involved in mediating olanzapine-induced 

receptor desensitization. JAKs are a small family of cytoplasmic tyrosine 

kinases initially identified as a mediator of cytokine receptor signaling (Ihle, 

1995). Agonist stimulation of cytokine receptors causes phosphorylation of 

JAK, which in turn phosphorylates tyrosine residues on the receptor 

cytoplasmic tail, facilitating activation of specific STATs. Tyrosine 

phosphorylated STAT, then undergoes dimerization and translocates to the 

nucleus, where it binds to target DNA sequences (Darnell, Jr., 1998). 

Alterations in proximal components of the 5-HT2A receptor signaling system 

could mediate desensitization in response to increased activity of intracellular 

cascades such as JAK-STAT. 5-HT2A
 receptors are classically linked to the 
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Gαq protein family (Ivins and Molinoff, 1990). Activation of Gαq stimulates 

phospholipase C activity, which subsequently promotes the release of 

diacylglycerol and inositol triphosphate, which in turn stimulate protein kinase 

C activity and calcium release (Berg, et al., 2001). It has been extensively 

reported that increased expression of regulator of G protein signaling (RGS) 

proteins cause desensitization of several G protein-associated receptor 

systems (Koelle and Horvitz, 1996). RGS proteins reduce the duration of 

signaling of many G protein-coupled receptors by their action as GTPases, 

accelerating the hydrolysis of GTP-bound Gα proteins or by blocking the 

interaction of Gα with its target proteins through a not well understood process 

known as effector antagonism (Bramow-Newerly, et al., 2006). Expression of 

RGS7 protein in rat frontal cortex is well documented (Zhang and Simonds, 

2000;Krumins, et al., 2004) and decreased 5-HT2A receptor-mediated 

signaling via direct interaction of RGS7 protein with Gαq has been widely 

characterized in different systems (DiBello, et al., 1998;Ghavami, et al., 2004).  

 In addition, atypical antipsychotics are reported to reduce levels of 

ACTH and cortisol in schizophrenic patients (Cohrs, et al., 2006; Scheepers, 

et al., 2001; Hatzimanolis, et al., 1998; Meltzer, 1989; Markianos, et al., 

1999). Although, monoaminergic mechanisms including serotonin and 

dopamine are known to play an important role in the regulation of ACTH and 

cortisol secretion (Wilcox, et al., 1975; Fuller and Snoddy, 1984;Tuomisto and 

Mannisto, 1985; Contesse, et al., 2000), the attenuation of cortisol secretion, 
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after subchronic administration of olanzapine and clozapine to schizophrenic 

patients, has been attributed to 5-HT receptor blockade (Scheepers, et al., 

2001; Hatzimanolis, et al., 1998; Markianos, et al., 1999).  Furthermore, 5-

HT2A receptors in the hypothalamic paraventricular nucleus have been shown 

to mediate the neuroendocrine responses to a peripheral injection of DOI; 

intraparaventricular and peripheral injections of the selective 5-HT2A receptor 

antagonist MDL 100,907 dose dependently inhibit the DOI-induced increases 

in hormone secretions (Zhang, et al., 2002). These data suggest that 

decreases in hormone secretion by atypical antipsychotics may be mediated 

by 5-HT2A receptors and that plasma hormone levels can be monitored as an 

index of the function of 5-HT2A receptor signaling in the hypothalamic 

paraventricular nucleus. 

Central hypothesis 

The desensitization of 5-HT2A receptor signaling induced by chronic 

antagonist treatment is dependent on JAK-STAT signaling and subsequent 

changes in gene expression, especially an increase in RGS7 protein.  Three 

different specific aims are proposed to test this hypothesis.  

The first specific aim of this dissertation is to determine the underlying 

mechanisms of olanzapine-induced desensitization of 5-HT2A receptor 

signaling in A1A1v cells. Experiments are proposed to test whether 

olanzapine-induced desensitization is mediated by alterations in signaling 

components of 5-HT2A receptor such as RGS proteins and receptor levels. In 
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addition, we will determine the possible role of activation of the JAK-STAT 

pathway on the desensitization response and whether inhibition of this 

pathway could reduce the desensitization response caused by olanzapine. 

The second specific aim is to determine the selectivity of atypical 

antipsychotics on desensitization of 5-HT2A receptor signaling and regulation 

of RGS7 protein expression. Specifically, whether clozapine-induced 

desensitization is mediated by activation of JAK-STAT pathway and RGS7 

expression. Furthermore, we will determine if antagonism of 5-HT2A receptors 

is sufficient for desensitization of 5-HT2A receptor signaling by atypical 

antipsychotics. The third specific aim is to determine the involvement of the 

JAK-STAT signaling in the olanzapine-induced desensitization of 5-HT2A 

receptor signaling in vivo. Specifically, in this aim we will investigate the role 

of the JAK-STAT pathway in the frontal cortex (5-HT2A-mediated-PLC activity) 

and the paraventricular nucleus (hormone levels) of rats in response to 

chronic treatment with olanzapine.  
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CHAPTER II 
 

REVIEW OF RELATED LITERATURE 
 
 

Serotonin 

Discovery: 

The discovery of serotonin (5-HT) can be traced back to the late 

1940’s when it was reported that the serum of clotted blood contained a factor 

capable of causing vasoconstriction. Eventually, the indolamine 5-HT was 

discovered by Rapport et al. (1948) and was found to have vasoconstriction 

and blood clotting properties  (Rapport, et al., 1948). Independently, 

Erspamer and Ottolenghi (1950) had discovered a factor (enteramine) in gut 

mucosa that was later shown to be identical to 5-HT (Erspamer and 

Ottolenghi, 1950). Twarog and Page (1953) finally discovered that 5-HT was 

present in brain and this finding led others to establish 5-HT as a 

neurotransmitter (Twarog and Page, 1953). 5-HT is found in three major 

areas of the body; the intestinal wall (isolated as enteramine by Dr. Erspamer, 

where it causes increased gastrointestinal mobility); blood vessels (isolated 

and named as serotonin by Dr. Page’s laboratory, where it causes 

vasoconstriction); and the central nervous system (CNS) (isolated by Dr. 

Twarog).   
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Brain Distribution of 5-HT:  

The anatomical distribution of 5-HT neurons in the brain was first 

studied by fluorescence histochemical detection of the indoleamine by 

Dahlstrom and Fuxe (Dahlstrom and Fuxe, 1964). In 1964, they described 5-

HT neurons as a relatively small population of morphologically diverse 

neurons whose cell bodies are present largely within the brainstem raphe 

nuclei and particular regions of the reticular formation. Raphe clusters of 5-HT 

neurons are found rostrally from the level of the interpeduncular nucleus in 

the midbrain to the level of the pyramidal decussation in the medulla. 

 

 

Cerebral 
Cortex

Thalamus

Medial 
Central      
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Median raphe 
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(B5 &B8) 
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Hippocampus 

Amygdala 

Striatum
Hypothalamus 

 7



Figure 1: Serotonergic projections in the human brain. Includes neuronal 

projections (arrow) and serotonergic nuclei in the brain stem (ovals). (Picture 

adapted from (Bear and Abraham, 1996). 

Although there are only about 20,000 serotonergic neurons in the rat 

brain (~300K in humans), the extensive axonal projection system arising from 

these neurons bears a tremendous number of collateral branches so that the 

5-HT system densely innervates nearly all regions of the CNS (Dahlstrom and 

Fuxe, 1964). The midline raphe nuclei consist of the caudal linear nucleus 

(CLi, B8), the dorsal raphe nucleus (DR, B6, B7), the median raphe nucleus 

(MnR, B5, B8), raphe magnus nucleus (RMg, B3), raphe pallidus nucleus 

(RPa, B1), and the raphe obscurus nucleus (ROb, B2) (Dahlstrom and Fuxe, 

1964; Dahlstrom and Fuxe, 1964; Fuxe and Gunne, 1964; Dahlstroem, et al., 

1964). Innervations of the ascending structures by serotonergic neurons are 

primarily derived from the dorsal raphe and median raphe (Figure 1), and 

innervate the cortex, limbic system, basal ganglia and hypothalamus. The 

cortex, striatum, and globus pallidus are predominantly innervated by dorsal 

raphe nucleus; whereas median raphe predominantly innervates medial 

septum and dorsal hippocampus. In addition, the ventral hippocampal region 

is innervated by both the dorsal raphe nucleus and the median raphe nucleus 

(McQuade and Sharp, 1997).  
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Initial 5-HT Studies: 

After the discovery of 5-HT, researchers primarily focused on defining 

the pathways for synthesis and degradation of 5-HT.  One of the first clinical 

applications of this new found understanding was the use of 5-HT synthesis 

inhibitor, parachorophenylalanine (PCPA), as a treatment to reduce excessive 

5-HT secretions from carcinoid tumors (Carrillo and Aviado, 1969). However, 

a great deal of interest soon focused on 5-HT because of its presumed 

involvement in the major psychoses (Heym, et al., 1984; Himwich and Costa, 

1960; Consbruch and Faust, 1960; Sourkes, 1956; Pelicier, 1964). The 

development of monoamine oxidase inhibitors and their effectiveness in the 

treatment of depression provided an early indication of the importance of 5-

HT in these psychiatric disorders.  

5-HT is involved in diverse physiological and behavioral functions such 

as aggression, appetite, cognition, emesis, endocrine function, 

gastrointestinal function, sex, sleep, and vascular function (Reynolds, III, et 

al., 1995; Heninger, 1997). 5-HT has been also implicated in the etiology of 

many disease states and particularly important in mental illness such as 

depression, anxiety, obsessive compulsive disorder, panic disorder, migraine, 

and eating disorders (Sjoerdsma and Palfreyman, 1990). Indeed, many 

treatments currently used for these disease states are thought to act by 

modulating serotonergic tone, highlighting the need of developing more 
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selective ligands that could lead to novel therapies with increased efficacy 

and decreased side effects.  

 

Biosynthesis and Metabolism of 5-HT:  

Considering the important and diverse role of 5-HT in the brain, one 

would assume that most of the 5-HT in the body would be present or 

synthesized in the brain. However, only 1-2% of total body 5-HT is 

synthesized in brain and is sufficient to maintain normal brain function. Most 

of the 5-HT, almost 95%, is actually found in gastrointestinal tract (GI) (90% in 

enterochromaffin cells and 5% in enteric neurons). Although a large amount 

of 5-HT is present in the periphery, it cannot cross the blood brain barrier 

therefore, it is synthesized in the brain under normal conditions (Sharma and 

Dey, 1986; Sharma, et al., 1990). Plasma L-tryptophan, which is a primary 

substrate for 5-HT synthesis, is derived mainly from diet and is actively 

transported into the brain. 5-HT can be synthesized both in the neuronal cell 

bodies and nerve terminals (Wilson and Marsden, 1996). The synthesis of 5-

HT is described in figure 2 with tryptophan hydroxylase (A) being rate limiting 

enzyme. Once released from neurons, the action of 5-HT is mainly terminated 

by re-uptake in neurons, where it is either restored in the vesicles or 

metabolized by monoamine oxidase (MAO). 
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Figure 2: 5-HT synthesis pathway: Schematic representation of the 5-HT 

synthesis pathway with tryptophan as starting material. Tryptophan 

hydroxylase is the rate limiting enzyme.  

 

Discovery of 5-HT Receptors: 

 Neurotransmitters produce their effects as a consequence of 

interaction with appropriate receptors. Gaddum and Picarelli (1957) were the 

first to suggest the existence of more than one type of 5-HT receptor 

(Gaddum and Picarelli, 1957). Subsequently pharmacological, 

neurophysiological, and other techniques have provided evidence that 5-HT 

acts at pre-synaptic and post-synaptic sites and could be excitatory or 

Tryptophan 
A

5-hydroxytryptophan 
B   

Serotonin (5-HT) 

C 

       5-hydroxy-indole-acetic acid 

A. Tryptophan hydroxylase 
B. Amino acid decarboxylase 
C. Monoamine oxidase/ Aldehyde dehydrogenase 
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inhibitory in its action. However, more definitive evidence of 5-HT receptor 

heterogeneity began to emerge from early 1980’s.  

There is now molecular and functional evidence for the existence of 16 

different subtypes of 5-HT receptors (Hoyer, et al., 2002). Indeed, the 

multiplicity of 5-HT receptor subtypes, both within and among species, has 

exceeded most of the predictions that could have been made on the basis of 

pharmacological data in the late 1980s. While the discovery of 5-HT receptor 

subtypes advanced rapidly in the late 1980s and early 1990s, the number and 

specificity of ligands for 5-HT receptor subtypes has lagged behind. The 

existence of so many 5-HT receptors appears to be a result of more than 750 

million years of molecular evolution. Advances in molecular biological 

analysis of 5-HT receptors have made the classification procedure more 

logical (Lucas and Hen, 1995). 

 

Classification of 5-HT Receptors: 

Bradley et al. (1986) initiated a classification scheme for the subtypes 

of 5-HT receptors (Bradley, et al., 1986). His rationale was based on binding 

studies of selective pharmacological agents like methiothepin, methylsergide 

and 5-carboxymidotryptamine. The Nomenclature Committee of the Serotonin 

Club (NCSC) updated and modified this list in 1993 to include recently cloned 

receptors (Humphrey, et al., 1993).  
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The current system of classification depicted below is inclusive of new 

information obtained with both recombinant and native receptors to align the 

nomenclature with the human genome and avoid species differences (Hartig, 

et al., 1996; Hoyer, et al., 1994).  Currently, seven families of 5-HT receptors 

are recognized including 16 subtypes (multiple isoforms)(Hoyer, et al., 2002). 

 

 

Figure 3: 5-HT receptors with effector enzymes: Schematic representation 

of the 5-HT receptor family based on protein sequence and structural 

homology (Barnes and Sharp, 1999;Hoyer, et al., 2002)  

 Structurally, all 5-HT receptors, except the 5HT3 receptor (Maricq, et 

al., 1991) which is a ligand gated ion channel, related to NMDA, GABA, and 

nicotinic receptor, belong to G-protein super-family and contain the seven 

transmembrane regions. At least five 5-HT1 receptor subtypes have been 

recognized- 5-HT1A, 5-HT1B, 5-HT1D, 5-HT1E and 5-HT1F. These receptors are 

negatively linked to adenyl cyclase via the Gi family of G proteins with an 

Gi/o  GsGq

5-HT1A   5-HT1B     5-HT1D     5-HT1E   5-HT1F
 

5-HT4   5-HT6   5-HT7   5-HT5A   5-HT5B
 

5-HT2A   5-HT2B   5-HT2C  

cAMP cAMP PLC 
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overall sequence homology of about 40%. 5-HT4 - 5-HT7 are positively linked 

to adenyl cyclase via Gs. The central focus of this dissertation is on 5-HT2A 

subclass of 5-HT receptors, this receptor subtype will be described in more 

detail. 

 

5-HT2 Receptor Subfamily: 

On the basis of functional studies with agonists and antagonists, ligand 

binding affinities, molecular structure and intracellular transduction 

mechanisms, the 5-HT2 receptor family comprises three specific subtypes: 5-

HT2A, 5-HT2B, and 5-HT2C. All three are positively couple to the effector 

enzyme phospholipase C (PLC) via Gq and display an overall sequence 

homology of approx 60% (Boess and Martin, 1994; Martin and Humphrey, 

1994). Activation of these receptors results in PLC-mediated increases in 

inositol phosphate (IP3) and increases in  intracellular Ca++ levels (Berridge, 

1982; Conn and Sanders-Bush, 1984). Ullmer et al. reported that stimulation 

of 5-HT2B receptors causes intracellular calcium release via a mechanism 

independent of the phosphatidylinositol hydrolysis (Ullmer, et al., 1996).  

 

5-HT2A Receptors:  

The human 5-HT2A receptor gene is located on chromosome 13q14–

q21 (Sparkes, et al., 1991) consists of three exons separated by two introns, 

and spans over 20 kb (Liu, et al., 1991). 5-HT2A receptor subtypes have been 
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identified in both the CNS and the periphery. In periphery, they are located on 

vascular, bronchial, and urinary smooth muscle and on platelets. Their 

function includes vaso- and broncho-constriction and platelet aggregation. 5-

HT2A receptors are expressed widely throughout the CNS. They are 

expressed near most of the serotoninergic terminal rich areas, including 

neocortex (mainly prefrontal, parietal, and somatosensory cortex) and 

olfactory tubercle. There are high concentrations of this receptor on the apical 

dendrites of the pyramidal cells in layer V of the cortex suggested to modulate 

cognitive processes (Pazos, et al., 1985; Pompeiano, et al., 1994). In 

addition, 5-HT2A receptors are predominantly located in the neocortex, with a 

large density in the prefrontal cortex, which suggests its involvement in higher 

brain functions, such as working memory (Williams, et al., 2002). In the rat, 

postsynaptic 5-HT2A receptors in medial prefrontal cortex control the activity of 

the serotonergic system through changes in the activity of pyramidal neurons 

projecting to the dorsal raphe nucleus. Stimulation of central 5-HT2A receptors 

in rats causes head twitches and is suggested to mediate the effects of 

hallucinogens such as lysergic acid diethylamide (LSD) in humans (Darmani 

and Gerdes, 1995).  Abnormalities in 5-HT receptors especially 5-HT2A 

receptor-mediated signal transduction systems have been widely reported in 

various disorders like mood disorders (Ressler and Nemeroff, 2000; Akin, et 

al., 2004), and specifically depression (Rosel, et al., 2000), and bulimia 

nervosa (binge eating and inappropriate compensatory behaviors to avoid 
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weight gain) (Goethals, et al., 2004; Walsh and Devlin, 1998). One of the 

more interesting and recent findings on the 5-HT2A receptor is that it plays a 

very important role in schizophrenia. Although, the role of 5-HT2A receptors in 

the etiology of schizophrenia is still debatable, there is complete agreement 

regarding 5-HT2A receptors as an important target of atypical antipsychotics. 

The next section will discuss the progress made in over many decades of 

research on 5-HT2A receptors in various CNS disorders. 

 

5-HT2A Receptors and CNS Disorders 

5-HT2A receptors have been implicated in numerous CNS disorders 

including depression, anxiety, migraine, psychosis and schizophrenia, sleep 

disorders, and hypertension. In addition to other monoamine neurotransmitter 

receptors, 5-HT2A receptors serve as a major therapeutic target of 

antidepressant and antipsychotic drugs. The next section will highlight the 

role of 5-HT2A receptors in depression and schizophrenia. 

 

Depression and 5-HT2A receptors:  

Depression is one of the most common psychological problems.  Each 

year over 17 million American adults experience a period of clinical 

depression. A decrease in the synaptic levels of monoamines (5-HT, 

norepinephrine, and epinephrine) in the CNS may be an underlying cause of 

this disorder (Delgado, 2000). With the success of selective serotonin 
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reuptake inhibitor (SSRIs), such as fluoxetine (Prozac), the 5-HT system 

became the focus of a large body of literature implicating 5-HT 

neurotransmitter disturbances in the pathophysiology of depression. Of the 16 

different classes of 5-HT receptors identified to date, the 5-HT2A and 5-HT1A 

receptors have been most extensively investigated in psychotic disorders. 

Using positron emission tomography (PET) and a selective 5-HT2A receptor 

radioligand [18F] altanserin, a significant decrease in 5-HT2A receptor density 

was reported in hippocampus of both young and old depressed patients 

(Sheline, et al., 2004; Mintun, et al., 2004).  

In recent years, a number of open-label and placebo-controlled studies 

have suggested that atypical antipsychotic drugs augment the clinical 

response to selective serotonin reuptake inhibitors (SSRI) in treatment-

resistant patients (Ostroff and Nelson, 1999; Marangell, et al., 2002; Marek, et 

al., 2003).  One common feature of these agents is their ability to occupy 5-

HT2 receptors in the brain at clinical doses and to block 5-HT2 -mediated 

responses, in particular those mediated by 5-HT2A receptors (Marek, et al., 

2003). Studies in 5-HT2A receptor knock-out mice showed a significant 

reduction in forced-swim test immobility (test of antidepressant drug action) 

that was of equal magnitude to that produced by the antidepressant mianserin 

and to the 5-HT2A receptor antagonist, MDL100907. The lack of change in 

other behavioral tests including open-field locomotor activity, entries in the 

elevated-plus maze test, and susceptibility to pentylenetetrazole (PTZ)-
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induced seizures suggested that non-specific changes in locomotor activity or 

neuronal excitability were not responsible for the reductions in immobility 

observed in the forced swim test (Sibille, et al., 1997). Altogether, these 

observations support a role for 5-HT2A receptors in antidepressant drug 

action.  

 

Schizophrenia and 5-HT2A receptors:  

Schizophrenia is a group of illnesses that usually begins during 

adolescence or young adulthood. It is characterized by two or more of the 

following, and each present for a significant portion of time during a 1-month 

period: delusion, hallucinations, disorganized speech, grossly disorganized or 

catatonic behavior, and negative symptoms (affective flattening, alogia or 

avolution). The realization in the early 1950s, that LSD can cause psychosis 

suggests that abnormal neurotransmission at 5-HT2 receptors may be 

involved in pathophysiology of schizophrenia (Woolley and Shaw, 1954).  

Direct evidence supporting this hypothesis came primarily from post-mortem 

ligand binding studies in which a decrease in 5-HT2A receptor density in the 

prefrontal cortex of untreated schizophrenic patients was observed (bi-

Dargham, et al., 1993). Additional studies like positron emission tomography 

(PET) suggested a decrease in 5-HT2A receptor density in schizophrenic 

patients taking atypical antipsychotics (Trichard, et al., 1998). However, a 

great deal of research on 5-HT2A receptors and schizophrenia now suggests 
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that the changes in this receptor are complex and may be involved in both the 

pathology of the disorder and the effects of some antipsychotic drugs(Dean, 

2003). 

In general, the serotonergic system has an inhibitory influence on 

dopaminergic neurons and this effect appears to be mediated by 5-HT2A 

receptors at the level of midbrain (e.g. substantia niagra and ventral 

tegmental area) as well as at the terminal regions of the nigrostriatal and 

mesocortical dopaminergic pathways (Kapur and Remington, 1996). 

According to Weinberger, the primary defect in schizophrenia may be the 

diminished dopaminergic innervention of the prefrontal cortex, which results in 

mesolimbic dopaminergic hyperactivity (Weinberger, 1987) . Thus, an 

increase in subcortical dopaminergic function may account for the positive 

symptoms and a decrease in cortical dopaminergic function may underlie the 

negative symptoms of schizophrenia.  In addition, the atypical antipsychotic 

clozapine was reported to induce a sustained enhancement in dopaminergic 

tone in the medial frontal cortex (Youngren, et al., 1994), which may be 

attributed to antagonism of 5-HT2A receptors(Meltzer, et al., 1989). The ability 

of 5-HT2A receptor antagonists to modify behavioral states associated with 

excess dopaminergic activity, while having little or no effect on basal 

dopamine function, may be relevant to the lack of extra-pyramidal effects 

observed following administration of atypical antipshychotics such as 

clozapine (Meltzer, et al., 1989).  
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Furthermore, it is suggested that the atypical antipsychotic-induced 

internalization (sequestration of the receptor away from the cell surface) of 5-

HT2A receptors may be involved in the therapeutic effect of these drugs. 

Interestingly, antipsychotics devoid of 5-HT2A receptor antagonist activity had 

no effect on the regulation or subcellular distribution of 5-HT2A receptors in 

cells and in vivo. Subsequently, it is suggested that 5-HT2A receptor 

desensitization and down-regulation plays a key role in the maintenance of 

the therapeutic action of antipsychotics. These studies suggest that it is 

important to understand the molecular changes that occur with 5-HT2A 

receptor antagonist treatment and other mechanisms that result in 

desensitization of 5-HT2A receptor signaling. By discovering the molecular 

mechanisms underlying signaling and desensitization of 5-HT2A receptor, new 

targets for therapeutic intervention may be identified. 

 

Signaling Pathways of 5-HT2A receptor 

Classically, 5-HT2A receptors are coupled to Gq/11 G alpha-proteins and 

mediate physiological responses by activating PLCβ, leading to the 

generation of IP3 and diacylglycerol (DAG)(Taylor, 1990;Conn and Sanders-

Bush, 1984). IP3 mobilizes calcium from intracellular stores which then 

activates calcium-dependent kinases and various signaling pathways 

(McKune and Watts, 2001;Takuwa, et al., 1989). However, recent studies 

have revealed a rich diversity of coupling mechanisms of 5-HT2A receptors 
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suggesting that these receptors can regulate a broad array of potential 

effectors depending on cell type, receptor population, density and types of G-

proteins expressed, and the specific agonist or antagonist by which the 

receptor is activated.  

 

Activation of Phospholipase A2:  

The 5-HT2A receptor can mediate stimulation of phospholipase A2 

(PLA2); thereby generating the second messenger arachidonic acid 

(AA)(Tournois, et al., 1998). 5-HT2A receptors can couple to PLA2 activation 

through two parallel signaling cascades: (1) activation of the pertussis toxin-

sensitive G protein, namely Gαi/o, causing the release of Gβγ, which is then 

free to initiate activation of the Ras-Raf-MEK-ERK signaling cascade, 

ultimately leading to ERK-mediated phosphorylation of cytosolic PLA2 

(cPLA2); and (2) activation of receptor-coupled pertussis toxin-insensitive 

Gα12/13, which functions to activate Rho, and ultimately results in p-38 

mediated phosphorylation of PLA2 (Chambers, et al., 2003; Kurrasch-

Orbaugh, et al., 2003). In addition, because inhibition of either pathway 

caused a nearly identical reduction in AA release, it appears that the two 

pathways share a common final enzyme known as mitogen activated protein 

kinase (MAPK) prior to PLA2 activation. It was shown that only the 5-HT2A 

receptor antagonist ketanserin and the PLA2 inhibitor mepacrine were able to 

inhibit all 5-HT-induced AA release in NIH3T3 cells (Kurrasch-Orbaugh, et al., 
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2003b). Qu et al. (2003) reported that the 5-HT syndrome, characterized by 

head and body shakes, ear scratching, skin jerks, and forepaw tapping, 

involves widespread brain activation of PLA2 via 5-HT2A receptors, leading to 

the release of the second messenger, arachidonic acid (Qu, et al., 2003). 

These reports suggest that 5-HT2A receptors could differentially regulate the 

PLA2 and PLC signaling pathways depending upon the cellular environment 

(Nagatomo, et al., 2004).  

 

Activation of Extracellular Signal-Regulated Mitogen-Activated Protein 

Kinase (ERK-MAPK):  

Previously, signals generated by receptor tyrosine kinases (RTKs) and 

GPCRs were thought to be completely compartmentalized, with little or no 

cross-talk between the signaling pathways. Recently, the lines of distinction 

between signaling pathways used by GPCRs and RTKs have become less 

definite. There is a new awareness that RTKs such as the epidermal growth 

factor (EGF) receptor (EGFR) and GPCRs possess significant potential for 

cross-talk during signal initiation and propagation. The transactivation of 

EGFR-dependent signalling pathways upon stimulation of GPCRs, which are 

critical for the mitogenic activity of ligands such as lysophosphatidic acid, 

endothelin, thrombin, bombesin and carbachol, provides evidence for such an 

interconnected communication network (Prenzel, et al., 1999). 5-HT2A 

receptor-mediated activation of ERK-MAP kinases in cells with contractile 
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phenotypes and vascular smooth muscle cells require  PLC, L-type Ca2+ 

channels, and MEK1 (Florian and Watts, 1998;Watts, et al., 1998). In renal 

mesangial cells, activation of ERK-MAPK is mediated by PKC and activation 

of an NAD(P)H oxidase-like enzyme (Grewal, et al., 1999;Greene, et al., 

2000). Xu et al.(2002) reported that in sheep aortic valve interstitial cells 

(SAVIC), 5-HT-induced activation of Erk1/2 via the MAP-kinase pathway is 

mediated only in part by 5-HT2A receptor activity (Xu, et al., 2002). Both PKC 

and Src/Src-like tyrosine kinase are involved in mediating the stimulatory 

effects of 5-HT on Erk1/2 activity.  

Besides these non-neuronal cell lines, in PC12 cells (endogenously 

expressing 5-HT2A receptors) 5-HT-induced activation of ERK has been 

reported to be mediated by calcium-calmodulin and tyrosine kinases 

independent of PKC (Quinn, et al., 2002). 5-HT2A receptors are also reported 

to activate Akt in a calcium dependent manner in PC12 cells (Johnson-Farley, 

et al., 2005).  Furthermore, 5-HT2A receptors are suggested to regulate 

activity of growth factor receptors. For example, in cultured renal mesangial 

cells, stimulation of 5-HT2A receptors mediated activation of tumor necrosis 

factor-activating enzyme (TACE), the shedding of heparin-bound epidermal 

growth factor (HB-EGF), and consequent activation of EGF receptor.  

Activation of EGF receptors results in ERK activation and cell proliferation 

(Gooz, et al., 2006) 
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Taken together these reports suggest that 5-HT2A receptors mediate a 

wide variety of peripheral and central physiological effects by activation of 

other signaling pathways. Further understanding of these diverse interactions 

of 5-HT2A receptors with other signaling pathways could shed light on 

changes in gene expression observed with various psychotic drugs acting on 

5-HT2A receptors. Given the importance of 5-HT2A receptors in both 

pathological situations and regular physiological processes, the next section 

will focus on various mechanisms proposed to mediate regulation of this 

receptor. 

 
 

Regulation of 5-HT2A receptors 
 

Many GPCRs can be desensitized and down-regulated by 

overexposure to agonists.  The 5-HT2 receptor system is unique in that 

chronic exposure to either agonists or antagonists leads to receptor 

desensitization and down-regulation (Toth and Shenk, 1994;Toth and Shenk, 

1994; Blackshear, et al., 1986; McKenna, et al., 1989). Desensitization can 

occur as a result of receptor uncoupling from G protein, internalization 

(sequestration of the receptor away from the cell surface), or down-regulation 

(reduced ligand-bound receptor); each has been reported for 5-HT2A 

receptors.  

Generally, G protein-linked receptor system functioning is highly 

regulated. These receptors are regulated by transcriptional mechanisms, 
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post-transcriptional mechanism such as mRNA editing and post-translational 

modifications of the receptors, including phosphorylation (Dohlman and 

Thorner, 1997; Chuang, et al., 1996; Freedman and Lefkowitz, 1996; Burns, 

et al., 1997). Other mechanisms also influence the functioning of G protein-

linked receptor system by altering coupling of G proteins to receptors such as 

binding of inhibitory proteins to receptors (e.g. arrestins for adrenoceptors) 

(Siderowski, et al., 1996). 

This section will briefly describe the following classical mechanistic 

models of 5-HT2A receptor desensitization: I) receptor-effector uncoupling as 

the consequence of receptor phosphorylation and arrestin binding, II) receptor 

internalization that removes agonist-activated  

Cell surface receptors from the plasma membrane to a membrane-

associated intracellular compartment and, III) receptor down-regulation as the 

result of lysosomal protein degradation or reduced mRNA or protein 

synthesis. 

I) Functional uncoupling of 5-HT2A receptors:  

An essential step in the desensitization of GPCRs is phosphorylation, a 

process that can be achieved within seconds to minutes of agonist stimulation 

and leads to uncoupling GPCRs from their G-proteins (Tobin, 1997). Two 

patterns of phosphorylation-induced desensitization have been characterized 

for GPCRs: homologous and heterologous desensitization. Homologous 

desensitization is an agonist-specific process based on the phosphorylation of 
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only those receptors that were activated by a given agonist. In contrast, 

heterologous desensitization reduces the sensitivity of receptors other than 

those stimulated by a particular agonist.  

G-protein-coupled receptor kinase (GRK)-mediated desensitization: 
   

As with other GPCRs, it is generally thought that the desensitization of 

5-HT2 receptors can be induced by GRKs and arrestins. In particular for the 5-

HT2A receptor, arrestins can bind to the third intracellular loop of the 5-HT2A 

receptor and are co-localized with 5-HT2A receptors in cortical pyramidal 

neurons. Furthermore, endogenously expressed 5-HT2A receptors in C6 

glioma cells show arrestin-dependent desensitization (Gray, et al., 2001). 

However, the desensitization of 5-HT2A receptors in the heterologous HEK-

293 cell system seems to be arrestin-independent, possibly indicating that the 

underlying mechanisms of homologous 5-HT2A receptor desensitization are 

cell-type dependent (Bhatnagar, et al., 2001; Gray, et al., 2001). 

 
Desensitization mediated by other kinases: 
 

Desensitization can be mediated by second messenger-dependent 

phosphorylating proteins, e.g. protein kinase A (PKA) or C (PKC) or 

calcium/calmodulin-dependent kinase (CaMK). Based on the effects of PKC 

inhibitors (e.g., staurosporine, 1-(5-isoquinolinesulfonyl)-2-methylpiperazine 

dihydrochloride (H-7)) and activators (e.g., mezerein, phorbol 12-myristate 

13-acetate (PMA)), a PKC-mediated feedback system appears to mediate the 
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desensitization of 5-HT2A receptors (Anji, et al., 2000; Kagaya, et al., 1990; 

Marek and Aghajanian, 1995; Rahimian and Hrdina, 1995; Rahman and 

Neuman, 1993). Rahimian and Hrdina (1995) further confirmed that the 5-

HT2A receptor can be desensitized as a result of an agonist-induced increase 

in PKC activity. In C6 glioma cells, which express only the PKC α and γ 

isoforms, treatment with 5-HT increases the levels of PKC α and γ, 

suggesting that both isoforms may be involved in 5-HT2A receptor regulation 

(Anji, et al., 2000). Analogously to PKC, a second second-messenger-

dependent kinase, CaMK, seems to be involved in the pathway that 

desensitizes 5-HT2A receptors in C6 glioma cells (Akiyoshi, et al., 1993; 

Kagaya, et al., 1993; Rahman and Neuman, 1993).  

II) Internalization of 5-HT2A receptors: 

It is generally accepted that 5-HT2A receptors undergo an agonist-

induced internalization. Rapid 5-HT2A receptor internalization to endosomes 

after exposure to an agonist occurs via clathrin-coated vesicles in cells 

(Bhatnagar, et al., 2001; Berry, et al., 1996). Analogously to classical GPCR 

regulation, agonist-induced internalization of endogenously expressed 5-HT2A 

receptors mediates the receptor resensitisation (Gray, et al., 2001). However, 

the 5-HT2A receptor is differently regulated in HEK-293 cells in that 5-HT2A 

receptor internalization is not necessary for receptor resensitisation. Gray et 

al (2001) showed that inhibition of 5-HT2A receptor internalization in HEK-293 

cells results in an increased resensitisation, suggesting novel cell-type-
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specific modes of regulation for this receptor. After endosomal sorting, the 5-

HT2A receptors can be degraded or exported back to the plasma membrane. 

III) Down-regulation of the 5-HT2A receptors: 

In vivo studies have shown that 5-HT2A receptors are down-regulated 

after prolonged agonist stimulation (Eison, et al., 1989; Chaouloff, et al., 

1993; Pauwels, et al., 1990). However, reports from cell culture studies are 

not consistent, similar results have been found in some, but not all, cell 

culture studies. Agonist exposure induces a down-regulation, up-regulation or 

no change in 5-HT2A receptor density expressed in cells (Ferry, et al., 1993; 

Rinaldi-Carmona, et al., 1994). Grotewiel and Sanders–Bush (1994) have 

suggested that the cellular background in which the 5-HT2A receptor is 

expressed appears to determine the regulation of the 5-HT2A receptor density 

(Grotewiel and Sanders-Bush, 1994). They have further shown that after 

agonist pre-treatment, 5-HT2A receptors are down-regulated, unaltered or up-

regulated depending on which heterologous expression system was used. 

Although some cell culture studies showed that 5-HT2A receptors are 

desensitized and down-regulated after exposure to agonists (Ivins and 

Molinoff, 1990; Van, et al., 1993), desensitization of 5-HT2A receptors, in 

particular in heterologous expression systems, can occur without reduction in 

receptor density (Van, et al., 2003;Roth, et al., 1995). These results imply that 

5-HT2A receptor desensitization can occur with or without receptor down-
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regulation, indicating that the mechanisms of 5-HT2A receptor desensitization 

may be distinct from those involved in down-regulation and internalization. 

 Consistent with most data from cell culture and in vivo studies on 

agonist-induced regulation, agonist-induced desensitization of 5-HT2A 

receptors can be explained as a multistep phenomenon. First, the 5-HT2A 

receptors are uncoupled from the G-protein upon phosphorylation by one or 

more kinases (e.g. GRKs, PKC or CaMK) (The GRK-induced desensitization 

is completed by the binding of arrestins). Second, 5-HT2A receptors are 

internalized via clathrin-coated pits, followed by transport to endosomes. After 

endosomal sorting, 5-HT2A receptors can be shuttled back to the cell 

membrane or degraded. The occurrence of 5-HT2A receptor down-regulation 

in cells seems to depend on the cell system. Although models for agonist-

induced regulation of 5-HT2A receptors have been formulated, the underlying 

mechanisms remain poorly understood. The cellular background in which the 

5-HT2A receptor is expressed in cells appears to determine the regulation 

properties of this receptor. 

 

Paradoxical down-regulation of 5-HT2A receptors by Antagonists 
 

In vivo regulation studies showed that the adaptive changes of 5-HT2A 

receptors after administration of 5-HT2A antagonists are different from those in 

other receptor systems. Many reports demonstrated that chronic 

administration of compounds with 5-HT2A antagonistic action leads to reduced 
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5-HT2A receptor levels (i.e., the Bmax-value was reduced and the KD-value was 

unaltered after treatment with the antagonists). Studies using more selective 

5-HT2A receptor antagonists further confirmed the atypical down-regulation of 

5-HT2A receptor binding sites (Burnet, et al., 1996; Matsubara and Meltzer, 

1989; Mikuni and Meltzer, 1984). 

The consistent results obtained in vivo for antagonist-induced 

regulation of 5-HT2A receptors stand in contrast to the variable results from 

cell culture studies. In cells, the antagonist-induced regulation of the 5-HT2A 

receptor may vary depending on the antagonist used, host cell line and 

species of the receptor. Indeed, the total number of (antagonist) 5-HT2A 

receptor binding sites was found to be decreased, increased, or unaltered by 

antagonist treatment (Toth, 1996; Barker and Sanders-Bush, 1993). Grotewiel 

and Sanders–Bush stated that in cells the effects of chronic antagonist 

exposure to 5-HT2A receptors depend on the cell model system (Grotewiel 

and Sanders-Bush, 1994). In order to get a better understanding of what 

happens to the receptor population following prolonged drug treatment, it is 

important to investigate both high affinity agonist binding sites (G-protein-

coupled receptors) and the total population of antagonist-labeled receptors. 

Apparently inconsistent findings may be related to the different radioligands 

used in the different studies and the accuracy with which receptor numbers 

are quantified. Willins et al (1999) showed that antipsychotics with high affinity 

for  5-HT2A receptors induce a 5-HT2A receptor internalization, which could 
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explain the paradoxical down-regulation of 5-HT2A receptors (Willins, et al., 

1999). In contrast, antipsychotics devoid of 5-HT2A receptor antagonist activity 

had no effect on the regulation or subcellular distribution of 5-HT2A receptors 

in cells and in vivo. Consequently, it is suggested that 5-HT2A receptor 

antagonism by antipsychotics and the down-regulation of 5-HT2A receptors 

play a role in the maintenance of the therapeutic action of the drugs.  

As evident from these reports, there is no consensus model for 

antagonist-induced desensitization of 5-HT2A receptor signaling. Hence, it is 

reasonable to presume that novel cellular and biochemical mechanisms are 

responsible for antagonist-induced internalization of 5-HT2A receptors. 

Because of the pivotal role of 5-HT2A receptor in many processes and 

because of its importance in atypical antipsychotic medications, further insight 

into mechanism of 5-HT2A receptor regulation will likely have important 

ramifications for many areas of neurobiology and psychiatry. Therefore, it is 

important to understand the molecular changes that occur with 5-HT2A 

receptor antagonist treatment and other methods that result in desensitization 

of 5-HT2A receptor signaling. 

In addition to these classical mechanisms of regulation of 5-HT2A 

receptors, there are additional mechanisms which affect the downstream 

signaling pathways of 5-HT2 receptors including those that affect the ability of 

the G proteins to bind to nucleotides and activate the second messenger 

system. One mechanism is used by a group of molecules to inhibit nucleotide 

 31



exchange on the Gα subunit of G proteins (Dohlman and Thorner, 1997). The 

other mechanism is to accelerate the inactivation of the GTP-Gα subunit by 

increasing the rate of hydrolysis of the bound GTP. Proteins that work via this 

second mechanism are termed GTPase-activating proteins (GAPs) such as 

regulators of G protein signaling (RGS) proteins (Dohlman and Thorner, 

1997;Hepler, et al., 1997). Increased expression of RGS proteins leads to 

desensitization in several G protein-linked receptor systems (Dietzel and 

Kurjan, 1987; Druey, et al., 1996; Koelle and Horvitz, 1996). The next section 

will focus on structural and physiological aspects of RGS proteins in the 

context of their interaction with various GPCRs.  

 

RGS Proteins 

Coordinated regulation of heterotrimeric guanine nucleotide–binding 

protein (G protein) activity is critical for the integration of information from 

multiple intracellular signaling networks. The process of G protein inactivation 

is a key step that determines the duration of the signaling and therefore the 

extent of the cellular response. It is controlled by a specialized protein family -

RGS that act to speed up the inactivation (i.e. desensitization) of the signaling 

pathway by accelerating the GTP hydrolysis of the G proteins. RGS proteins 

form a large and diverse family, initially identified as GTPase activating 

proteins (GAPs) of heterotrimeric G-protein Gα. Activation of GPCR stimulates 

the exchange of GDP for GTP on Gα to initiate heterotrimer dissociation and 
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activation of effector proteins that, in turn, initiate a cascade of cellular 

signaling events. RGS proteins participate in this process by binding directly 

to the activated Gα-GTP to serve as GTPase-activating proteins (GAPs), 

which limit the lifetime of Gα-GTP and terminate signaling events.  In addition 

to terminating Gα-dependent signaling, GAP activity results in generation of 

Gα-GDP from Gα-GTP and reformation of heterotrimer and the termination of 

Gβγ -mediated signaling subunits (Berman and Gilman, 1998;Shuey, et al., 

1998; Willars, 2006).  

Although the majority of RGS are GAPs, some RGS can affect 

signaling in a non-GAP manner. For example, RGS4 and RGS19 (GAIP) 

besides acting as GAP for Gαq, can also inhibit Gαq activity through effector 

antagonism (competing with effector molecules for GTP bound Gα-subunit) 

when activated by non-hydrolysable GTP analogue, GTPγS, (Hepler, et al., 

1997)  and through inhibition of ALF4- -mediated G-protein activation of 

phospholipase C (Yan, et al., 1997). Furthermore, certain RGS proteins 

(RGS12 and RGS14) contain a GoLoco domain that selectively bind inactive 

Gα-subunits, impeding GDP release and thereby limiting G-protein activation 

known as guanine nucleotide dissociation inhibition (GDIs) (Kimple, et al., 

2001). 
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Classification of RGS Proteins: 

RGS proteins are a family of cellular proteins with a conserved RGS 

domain (also called RGS box) of about 120 amino acid residues in length. It is 

now well recognized that the RGS play essential regulatory roles in the G 

protein-mediated signal transduction. There are over 20 members in the 

mammalian RGS family (Ross and Wilkie, 2000). Based on the similarity in 

sequence and features of structural domains, they are classified into various 

subfamilies (R4, R7, R12, RA, and RZ) (Table 1). Their structural features are 

listed in Table 2. While RGS proteins by definition contain at least one RGS 

or RGS-like domain, there is considerable diversity outside this region. The 

prototype of the simplest RGS protein, RGS21 is a member of the R4 

subfamily and contains only a RGS domain (Von, et al., 2004). Other RGS 

proteins have N-and C-terminal extensions of different lengths, many of which 

contain domains that have either enzymatic activity or are involved in the 

protein-protein interactions. These domains not only influence the ability of 

RGS proteins to act as GAPs or effector antagonists, but also influence other 

aspects of the signaling mediated by GPCR activation.  
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Table 1- RGS proteins: Their Gα targets and tissue distribution (most 

recent references are listed) 

 

 

Subfamily RGS proteins Gα Protein Distribution References 

 

RZ 

RGS17(RGSZ2)

RGS19(GAIP) 

 

RGS20(RGAZ1)

Gαz 

Gαt,Gαt, 
Gαz>Gαq
 
 
Gαz>Gαi

ND 

Ubiquitous, 
low in brain 
 
 
Brain 

(de, et al., 

1999) 

(Wang, et al., 
1998) 
 
 

 

 

 

 

R4 

RGS1 

 

RGS2 

 

RGS4 

 
 
RGS5 
RGS8  

RGS13 

RGS16 

 

RGS18 

RGS21 

Gαi
 
 
 
Gαq
 
 
 
Gαi> Gαq 
 
 
 
Gαi/o, Gαq
Gαi, Gαo
 
ND 
 
Gαi 
 
 
 
Gαi/o, Gαq 
 
ND 

Lung, β- lym 
-phocyte 
 
 
Ubiquitous 
 
 
 
Brain, Heart 
 
 
 
Ubiquitous 
Brain 
 
Lung 
 
Retina, Liver, 
Pituitary  
 
 
ND 

(Druey, et al., 
1996a) 
 
(Siderovski, et 
al., 1994) 
 
 
(Seki, et al., 
1998) 
 
(Gold, et al., 
1997c) 
 
(Saitoh, et al., 
1997) 
 
Gene bank 
 
(Chen, et al., 
1997) 
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R7 

RGS6 

RGS7 

RGS9 

 
RGS11 

Gαo  

Gαi, Gαq

Gαt

 
Gαo

ND 

Brain 
 
Retina, 
Neurons 
 
Brain  

(Liang, et al., 
2000) 
 
(Gold, et al., 
1997b) 
 
(He, et al., 
1998) 
 

 

R12 

 

RGS10 

RGS12 

 

RGS14 

 

Gαi 

Gαi(Gα12/13) 

 
Gαi/o, Gα12/13
 

 

 

 

Brain 

Lung, Brain, 
Spleen 
 

ND 

 

 
 
(Hunt, et al., 
1996) 
 
(Mao, et al., 
1998) 
 
(Traver, et al., 
2000) 

 

RA 

Axin1 

Axin2 

ND 

ND 

Thymus, 

Testis 

(Zeng, et al., 
1997a) 
(Berman and 
Gilman, 
1998a) 

 

ND: not determined, associated Gα-protein coupling include reports from both 

in cells and in vivo studies, some of the information presented taken from 

gene bank report see(De and Gist, 1999) for further details). 
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Table 2- Key structural features of each subfamily and reported post-

translational modification:  

Subfamily Domain characteristics Post-Translational 
modification 

RZ 

 

*c, cysteine string,  RGS domain 

 

Palmitoylation 

R4 

 

*RGS3 has long N-terminus 

Palmitoylation 
(RGS3,4,16) 
 
Ubiquitination 
(RGS4,16) 
 
Phosphorylation 
(RGS2,3,4,16,18) 

R7 

 

*RGS9 has long C-terminus 
DEP, domain found in Dishevelled; GGL,  
Gγ-like domain;R7H, R7 homology 

Palmitoylation 
(RGS7) 
 
Ubiquitination 
(RGS7) 
 
Phosphorylation 
(RGS7,9) 
 

R12 

 

*RGS10 has only RGS domain 
*RGS14 does not have PDZ &PTB domain 
 
PDZ, post synaptic density protein 
(PSD95), Drosophila disc large tumor 

Palmitoylation 
(RGS10) 
 
Phosphorylation 
(RGS10,14) 
 

 RGS 

 RGS PTB PDZ RID GoLoco cc 

R7H GGL DEP 

C 

 RGS 

 RGS 
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suppressor (DlgA), and zonula occludens-1 
protein (zo-1); PTB, phosphotyrosine 
binding domain; CC, coiled-coiled region 

RA 

GSK3-BD, glycogen synthetase kinase 3b-
binding domain; βCat-BD, β-catenin binding 
domain; PP2A, protein phosphatase 2A 
homology domain 

Phosphorylation 
(Axin1) 
 

PP2A GSK3-BD 
 RGS 

β Cat-BD 

*For further information please refer to (Willars, 2006). 

 

In addition to well-recognized protein domains, regions or motifs, N-

and/or C-terminal extensions may well regulate their function by determining 

their sub-cellular localization.  N-terminus extensions have been proposed to 

mediate membrane localization of many RGS proteins and the C-terminus 

acts as affinity adapters increasing the affinity of RGS proteins for their 

respective Gα-proteins.   

 

Regulation of RGS Proteins: 

In addition to structural diversity, RGS proteins are subjected to a 

number of post-translational modifications including phosphorylation, 

palmitoylation, and ubiquitination (Table 2).  However, no consistent effect of 
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phosphorylation on RGS protein functions is suggested. Reports of both 

enhanced (Tang, et al., 2003;Pedram, et al., 2000) or reduced GAP activity 

(Cunningham, et al., 2001;Chen, et al., 2001;Chen and Lin, 1998), altered 

sub-cellular localization (Burgon, et al., 2001), protein stability (Derrien, et al., 

2003), and altered ability of G-protein α-subunit to enhance RhoGEF activity 

have been shown (Suzuki, et al., 2003). Several RGS proteins are 

palmitoylated on multiple sites but it is yet to be established if and how 

palmitoylation of specific residues is regulated in the cellular context and how 

this influences the function of RGS proteins (Willars, 2006). Ubiquitination, i.e. 

the addition of ubiquitin to proteins, is associated with degradation of proteins 

by 26S proteosome. Among RGS proteins, RGS7 (Kim, et al., 1999), 4, and 

16 (Davydov and Varshavsky, 2000) are reported to undergo degradation by 

this method. 

 

RGS proteins in Pathophysiology of Diseases: 

Recently, several studies have linked RGS proteins to various disease 

conditions. The following discussion will highlight the role of RGS proteins 

primarily in psychiatric disorders. Studies investigating changes in gene 

expression have extensively and consistently reported a decrease in RGS4 

mRNA in prefrontal cortex, motor cortex, and visual cortices of schizophrenic 

patient (Chowdari, et al., 2008;Levitt, et al., 2006;Mirnics, et al., 

2001;Chowdari, et al., 2002). However, similar studies in patients with major 
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depressive disorders do not show any change in mRNA levels of RGS4, 

suggesting that alteration in RGS4 expression is specific to schizophrenia. 

These findings along with reports of atypical antipsychotic-induced decreases 

in activity of 5-HT2A and D2 receptor signaling highlights the notion that RGS4 

could be a risk factor for developing schizophrenia.  

Studies specifically looking at RGS2 and RGS9 demonstrated that 

reducing the levels of these proteins have an effect on response to morphine. 

Knocking down RGS2 makes morphine less potent while decreasing RGS9 

potentiates analgesic effects of morphine(Garzon, et al., 2001). These and 

other studies have suggested that RGS proteins play an important role in 

altering effects of certain drugs of addiction because of their ability to 

modulate signal desensitization and thereby affecting potency of a compound. 

It has been proposed that small molecules that inhibit RGS protein/Gα 

interactions could be developed as novel drugs to potentiate the actions of 

endogenous neurotransmitters in various disease states such as Alzheimer's. 

 

RGS proteins as Potential Drug Target: 

Many drugs act on receptors coupled to heterotrimeric G proteins 

(GPCRs). Historically, drug discovery has focused on agents that bind to the 

receptors and either stimulate or inhibit the receptor-initiated signal. This is an 

approach that is both direct and logical, and has proven extremely fruitful in 

the past. However, as our understanding of G-protein signaling has 
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increased, novel opportunities for drug development have emerged. GTPase-

accelerating protein activity is a general feature of RGS proteins, and serves 

to facilitate the inactivation of the G protein rather than the receptor. Thus, 

agents that bind and inhibit RGS proteins could modulate endogenous 

neurotransmitter and hormone signaling, in a manner analogous to 

neurotransmitter uptake inhibitors.  

In addition, what makes many RGS proteins such attractive new drug 

targets is their unique capacity to modulate G protein signaling combined with 

their highly regionalized localization, most notably within the central nervous 

system (Gold, et al., 1997). Since their initial discovery, RGS proteins have 

been extensively studied as important new drug targets (Zhong and Neubig, 

2001; Neubig, 2002; Neubig and Siderovski, 2002).  Alternatively, such 

therapeutic agents could be used to boost the effects of existing GPCR-

directed drugs by decreasing the therapeutic dose needed while increasing 

the agonist's regional specificity, thereby reducing unwanted side effects 

(Neubig and Siderovski, 2002). The design of small molecules that block or 

mimic RGS protein/receptor interactions could become a highly specific 

therapeutic tool that is effective only in those cell types in which both the RGS 

protein and the receptor are localized.  
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Atypical Antipsychotics   
 

Schizophrenia is a debilitating disorder that affects 1% of the world’s 

population, often at an early age (Andreasen, et al., 1995; Ho, et al., 2003; 

Philip, et al., 2008). While schizophrenic patients have various abnormalities 

of perception, thought, language, or affect, many patients develop cognitive 

deficits and most show marked and long lasting impairments in social 

functioning (positive symptoms) (Prell, et al., 1996). Despite intense efforts, 

the etiology of schizophrenia has remained elusive. A promising route of 

investigation into the cause of the disease is to study how antipsychotic drugs 

alter brain function in schizophrenia. An improved understanding of how 

antipsychotic drugs convey their therapeutic effects during the treatment of 

schizophrenia can help to unravel neural mechanisms involved in the 

pathophysiology of schizophrenia. In the past, a similar approach has 

generated a prominent model of schizophrenia, the dopamine hypothesis 

(symptoms of schizophrenia (like psychoses) to a disturbed and hyperactive 

dopaminergic signal transduction) (Matthysse, 1973).  

The number of therapeutic agents available for the treatment of 

schizophrenia have grown and diversified in the last half century since the 

advent of chlorpromazine and the beginning of the pharmacologic era in 

psychiatry.  Over the past decade, much of the attention regarding the 

treatment of schizophrenia and related psychotic disorders has focused on a 

new class of antipsychotic medications (Weiden, et al., 2006;Mathews and 
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Muzina, 2007). The reintroduction of clozapine was a major step forward, and 

led to the proliferation of atypical or second generation antipsychotic drugs, 

including risperidone, olanzapine, quetiapine, ziprasidone, and sertindole 

(Lieberman, et al., 1989; Meltzer and Nash, 1991; Kane and Freeman, 1994). 

In fact, there is growing evidence that most of these drugs offer advantages 

over typical or first generation antipsychotic such as greater improvement in 

negative symptoms i.e. lack of behaviors (such as emotion, speech, social 

interaction, and action), cognitive impairment, relapse prevention, functional 

capacity and quality of life with fewer extra pyramidal side effects and tardive 

dyskinesia (Farah, 2005; Brooke, et al., 2005; Pierre, 2005; Seeman, 2002).  

Although, these improvements are substantial considering the improvement in 

overall quality of life, other distressing side effects like weight gain, 

hyperglycemia, and dyslipidemia are widely reported with atypical 

antipsychotic drugs (Roerig, et al., 2008; Henderson, 2007; Ferraioli, et al., 

2004).  Furthermore, the full clinical profile is still being studied in terms of the 

extent of therapeutic efficacy and adverse effects, on a variety of other 

outcomes including cognition, affect, subjective response, and social and 

vocational functions.  

All atypical antipsychotic drugs share a similar receptor binding profile, 

high affinity for dopamine receptors D1, D2, D4, 5-HT receptors 5-HT2A, 5-

HT2C, 5-HT3, 1-adrenergic, histamine H1, and five muscarinic receptor 

subtypes and low affinity for α2-adrenergic receptors and relatively low affinity 
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for 5HT1 subtypes, gamma aminobutyric acid A (GABAA), β-adrenergic 

receptors, and benzodiazepine binding sites (Kendrick, 1999). This binding 

profile is consistent across rat and human brain, and in cell lines. This 

receptor binding profile of atypical antipsychotic drugs is also correlated with 

the antidopaminergic, antiserotonergic, and antimuscarinic activity observed 

in animal models and predicts atypical antipsychotic activity in human 

(Bymaster, et al., 1996a;Bymaster, et al., 1996b). However, antipsychotic 

properties of atypical antipsychotics were more commonly attributed to the 

potent antagonism/inverse agonism of 5-HT2A than dopamine D2 receptors 

(Arora and Meltzer, 1994; Masellis, et al., 1995).  Since 5-HT2A receptors are 

focus of this dissertation, the following section will discuss findings suggesting 

that 5-HT2A receptors are pivotal in the action of atypical antipsychotic drugs. 

Over the years, intensive research on the new antipsychotic drugs has led to 

a greater understanding of the biochemical effects of these drugs, however, 

the pharmacological mechanisms underlying their therapeutic properties 

remain to be identified. Understanding the mode of action of the atypical 

antipsychotic drugs will be useful in exploring the pathophysiology of 

schizophrenia and other psychotic disorders and for the development of 

potential new therapeutic targets.  
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Table 3: Different classes of antipsychotic drugs and target receptors: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
*

 

 
 

 
Drugs                  Class                Receptor affinity                     Side effects            
 
 
Haloperidol       Typical         D1 & D2,                               EPS, Prolactin 
                                              5-HT2 and α2                         Weight gain 
 
Clozapine        Atypical         D1, D2, 5-HT2, α2,                Weight gain,                        
                                              H1, M1                                Postural hypotension, 
                                                                                         Sedation,                             
                                                                                         Anti-cholinergic effect,         
                                                                                         Granulocytosis 
           
 
Olanzapine      Atypical         D1, D2, 5-HT2, H1, M1         Weight gain,     
                                                                                          Sedation, Dizziness, 
                                                                                          Transient elevation of 
                                                                                          Liver transaminases 
 
 
Risperidone      Atypical         D1, D2, 5-HT2, H1, α2          Weight gain, 
                                                                                          Seizure, Dystonia, 
                                                                                          Anxiety,    Prolactin 
 
 
Ziprasidone      Atypical         D1, D2, 5-HT2, H1                Weight gain, 
                                                                                           Seizure, Dystonia 
 
 
Sertindole        Atypical         D1, D2, 5-HT2, H1, M1          Prolonged QT interval 
 
 
Quetiapine       Atypical        D1, D2, 5-HT2, H1, M1           Anti-cholinergic effects 
                                                                                       
 
 

For further information please refer to (Kendrick, 1999). 
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Mechanism of Action of Atypical Antipsychotic Drugs: 

Woolley and Shaw (1954) proposed that because hallucinogens are 

structurally related to LSD, and because schizophrenia is a disease 

exemplified by hallucination, then schizophrenia must be a disease involving 

5-HT (Woolley and Shaw, 1954). This “serotonin hypothesis of schizophrenia” 

was later discarded in favor of the ‘dopamine hypothesis of schizophrenia’ 

because of several observations that implicated dopamine (DA) in 

antipsychotic drug action (Carlsson and Lindqvist, 1963;Creese, et al., 1976). 

Additionally, clinical evidence suggested that the syndrome elicited by 

hallucinogens was quite distinct from that seen in schizophrenia (Hollister, et 

al., 1962).  Although, drugs which are developed to target dopamine D2 

receptors “typical antipsychotic drugs” are effective in treating certain core 

symptoms of schizophrenia, they also frequently induce serious side effects 

including negative symptoms, cognitive impairment, extra pyramidal side 

effects and tardive dyskinesia. 

However, the recognition that clozapine was effective without having 

motor side effects or appreciable affinity for either D1 or D2 dopamine 

receptors led to a reevaluation of dopamine hypothesis of schizophrenia and 

antipsychotic drug actions. Importantly, clozapine has a higher affinity for 5-

HT2A receptors than for either the D1 or D2 receptors. Although, clozapine 

was superior in treating psychosis, it was withdrawn after wide spread reports 

of agranulocytosis, a potentially fatal blood dyscrasia. In fact, the superior 

 46



efficacy and lack of motor side effects eventually led to the search for other 

atypical antipsychotic drugs without the propensity to induce agranulocytosis. 

Like clozapine, all new members of this class bind with high affinity to 5-HT2A 

receptors. These findings renewed interest in the role of 5-HT receptors in 

antipsychotic drug actions and the role of 5-HT in the pathophysiology of 

schizophrenia (Roth, et al., 1995).   

 

Role of 5-HT2A receptors in Antipsychotic Treatment: 

Altar et al. (1986) was the first to systematically examine the role of 5-

HT2A receptors in atypical antipsychotic drug actions (Altar, et al., 1986) . 

They found that several putative atypical antipsychotic drugs displaced [3H] 

spiperone binding to 5-HT2A receptors more easily than to D2 dopamine 

receptors. Additionally electrophysiological studies have also shown that 

atypical antipsychotic drugs have potent 5-HT2A receptor antagonist activity 

(Charney, et al., 1988). Further studies by Meltzer et al. (1989) demonstrated 

that a large number of atypical antipsychotic drugs were characterized by 

having higher affinities for 5-HT2A receptors than for D1 or D2 receptors 

(Meltzer, et al., 1989). These studies have led in part to the development of a 

new class of atypical antipsychotic drugs with higher affinity for 5-HT2 over D2 

receptors.  

Atypical antipsychotic drugs reduce positive symptoms by blocking 

dopamine D2 receptor in the mesolimbic systems without affecting dopamine 
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receptors in nigrostriatal system. Their effect on negative symptoms may be 

mediated through the enhancement of dopamine activity in the pre-frontal 

cortex, either by selective binding to dopamine receptor subtypes or through 

antagonism at 5-HT2 receptors. Consistent with the 5-HT2:D2 antagonism 

hypothesis of schizophrenia, numerous reports have consistently observed 

that antipsychotic effects of clozapine, olanzapine, sertindole, and quetiapine 

are mediated by their ability to block 5-HT2A receptor without excessive 

blockade of D2 receptors (Nyberg, et al., 1997; Kasper, et al., 1999; Kasper, 

et al., 1999). The strong antagonism of 5-HT2A receptor by these drugs was 

further confirmed with MDL100907 (a highly specific antagonist of 5-HT2A 

receptor) (Maixner, et al., 1998).  Furthermore, His52Tyr allele of the 5-HT2A 

receptor, which accounts for 10-20% of the schizophrenia patients is 

associated with the poor response to clozapine, again confirming role of 5-

HT2A receptor antagonism in the action of clozapine and other drugs of this 

class (Masellis, et al., 1998; Arranz, et al., 2001).  

 

Effect of 5-HT2A receptor Antagonism and D2 receptor Function:  

It had been proposed that the usefulness of 5-HT2A receptor 

antagonists in treating psychosis results from their influence on dopaminergic 

activity in mesolimbic and mesostriatal system.  Increased dopaminergic 

activity in the nucleus accumbens and other mesolimbic and possibly cortical 

regions may contribute to the positive symptoms, whereas increased 
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dopaminergic activity in the striatum would diminish extrapyramidal side 

effects (EPS).  There is considerable evidence suggesting that 5-HT2A 

receptors modulate activated but not basal mesolimbic DA activity (Gleason 

and Shannon, 1997; Martin, et al., 1998). Therefore, drugs that block the 

effect of excessive, but not basal, D2 receptor activity may be the most 

effective clinically. This hypothesis was further supported by reports that 

MDL100907 has been found to diminish the increase in DA efflux in the 

nucleus accumbens produced by either haloperidol or S-sulpiride (Liegeois, et 

al., 2002;Ichikawa and Meltzer, 1995). Therefore, it is very likely that 5-HT2A 

receptor antagonism may have antipsychotic action when dopaminergic 

activity is slightly or moderately increased.  

 

5-HT2A receptor Antagonism and Glutamate Levels: 

Besides dopamine, 5-HT2A receptors on cortical pyramidal neurons are 

also suggested to play a crucial role in psychosis by modulating intracortical 

and cortical-subcortical glutaminergic neurotransmission  (Jakab and 

Goldman-Rakic, 1998). Aghajanian and Marek have proposed a link between 

the glutamate hypothesis of schizophrenia and hallucinogen hypothesis 

based on the observation that stimulation of 5-HT2A receptors on layer V 

pyramidal cells increases the frequency of postsynaptic potentials (PSP) and 

this was blocked by  AMPA/Kinate glutaminergic antagonist LY293558 

(Marek, et al., 2000; Aghajanian and Marek, 2000).  
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Effects on Gene Expression and Cell Signaling: 

As discussed in previous sections, atypical antipsychotic drugs cause 

desensitization of 5-HT2A receptor signaling both in cell culture and in rat 

brain. These drugs also alter expression of a host of genes including 5-HT2A 

receptors (Burnet et al., 1996). However, whether changes in gene 

expression and desensitization have any cause and effect relationship is 

currently not known. The following section will review the literature reporting 

various signaling pathways activated or stimulated by these drugs.  However, 

in line with the focus of this dissertation, the following discussion will be 

limited to the change in 5-HT2A receptor expression.  

In situ hybridization and autoradiography studies reported selective 

decreses of 5-HT2A receptor mRNA and the density of [3H] ketanserin binding 

in cingulate and frontal cortex of rats injected for 14 days at the dose of 25 

mg/kg/day clozapine.  In the same study, no change was observed in 5-HT1A 

receptor expression and 5-HT2c receptor messenger RNA suggesting that 5-

HT2A receptor is the primary target of clozapine and similar drugs (Burnet et 

al., 1996). Subsequent studies by Buckland et al. (1997) in whole brain of 

animals treated with clozapine (10 mg/kg/day) for 32 days also reported a 

decrease in 5-HT2A mRNA levels in hippocampus, brainstem and midbrain. In 

contrast, 4 day treatment with clozapine increased 5-HT2A mRNA in nucleus 

accumbens (Buckland, et al., 1997).  The increase in mRNA levels after acute 

treatment may be a short-term adaptive response to the antagonistic effect of 
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these drugs. Additional studies with olanzapine using both acute (24 and 48 

h) and subchronic (16 day) treatment in rats reported a decrease in 5-HT2A 

receptor density both in frontal cortex and blood platelets without any 

changes in receptor affinity (Padin, et al., 2006).  

 

Activation of Signaling Pathways: 

Numerous reports have also suggested activation of different signaling 

pathways with atypical antipsychotic drugs in cell culture. Clozapine was 

reported to activate glycogen synthase kinase-3β( GSK-3β) in SH-SY5Y cells 

(human neuroblastoma) by specific Wnt signal pathway independent of 

AKT(Kang, et al., 2004). Other reports have suggested AKT-dependent 

activation of GSK-3β by inhibiting calcium calmodulin kinase (CaM-Kinase) 

with clozapine (Shin, et al., 2006).  Therefore, it seems that these effects are 

more likely to be cell type specific. However, no effort was made to link 

whether these effects are a consequence of clozapine or olanzapine-induced 

changes on target monoamine neurotransmitter receptors. The 

interaction/interplay of different signaling cascades has been well studied in 

various disease processes such as cancer. However, such interactions are 

relatively unknown in various neuropsychiatric and other CNS disorders.  

In addition, 5HT2A receptors are reported to mediate activation of the 

JAK-STAT pathway in multiple cell culture systems (Guillet-Deniau, et al., 

1997; Banes, et al., 2005). Activation of the JAK-STAT pathway transmits 
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information received from extracellular polypeptide signals, through 

transmembrane receptors, directly to target gene promoters in the nucleus, 

providing a mechanism for transcriptional regulation. Evolutionarily conserved 

in eukaryotic organisms from slime molds to humans, JAK-STAT signaling 

appears to be an early adaptation to facilitate intercellular communication 

(Rawlings, et al., 2004).  Thus, the JAK-STAT pathway seems to be an 

interesting prospect which might impart to atypical antipsychotics the ability to 

induce change in gene expression; however, this hypothesis needs to be 

tested. The following section will describe JAK-STAT pathway in more detail. 

 
 

JAK-STAT Pathway 
 

Characterization of the ability of interferon-α (IFN-α) to rapidly induce 

genes led to the discovery of the Janus kinase (JAK)-signal transducers and 

activators of transcription (STAT) pathway (Schindler and Darnell, Jr., 

1995;Ihle, 1995). The JAK-STAT pathway is one of a handful of pleiotropic 

cascades that transduce a multitude of signals for development and 

homeostasis in animals, from humans to flies (Heim, 1999;Pires-daSilva and 

Sommer, 2003). In mammals, the JAK-STAT pathway is the principal 

signaling mechanism for a wide array of cytokines and growth factors 

(Duncan, et al., 1997). JAK activation is reported to stimulate cell proliferation, 

differentiation, cell migration, and apoptosis (Igaz, et al., 2001; O'Shea, et al., 

2002). The JAK-STAT signaling was discovered almost 15 years ago with the 
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identification of a novel class of interferon-activated transcription factors 

(Harpur, et al., 1992; Shuai, et al., 1992).  

Although, first described as the signal-transducing pathway of 

interferons, the JAK-STAT system was soon discovered to be utilized by 

numerous cytokines and non-immune signaling pathways (growth factor, 

hormones etc). Besides cytokines, various receptors are also reported to 

activate the JAK-STAT pathways (Table 4). Since its discovery, extensive 

studies have characterized the core components of the JAK-STAT signal 

transduction pathway. It includes a wide and diverse range of extracellular 

ligands and transmembrane receptors, four genes for JAKs and seven genes 

coding for STATs (Kisseleva, et al., 2002). 

Activation of the JAK-STAT pathway requires binding of an 

extracellular ligand to a transmembrane receptor, results in the activation of 

receptor-associated JAKs. Activated JAKs then autophosphorylate and 

phosphorylate their associated receptors to generate docking sites for the 

SH2 domains of STATs. According to the established model, STATs are 

normally present in the cytoplasm as inactive monomers before being 

recruited to receptor/JAK complex. However, it has also been shown that 

STATs constitutively shuttle between the cytoplasm and nucleus before being 

retained in the nucleus following activation (Meyer and Vinkemeier, 2004). 

Once bound to the receptor/JAK complex, STAT proteins are cross-

phosphorylated and form either a hetero- or homo-dimer. Stabilized by the 
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interaction between the SH2 domain of one molecule and the phospho-Tyr of 

the other molecule, the STAT-STAT dimer translocates  to nucleus where it 

binds to a palindromic DNA sequence at the promoter of target genes  to 

modulate transcription (as shown below).  

 

Figure 4: The Model of JAK-STAT Signaling: Pre-dimerised complexes of 

a receptor and JAKs are activated following ligand binding. Phosphorylation 

of the JAKs and the receptors generate docking sites for the normally 

cytosolic STATs that are recruited to the active complex. Following 

phosphorylation of the STATs, a STAT-STAT dimer forms then translocates 

to the nucleus and binds to a palindromic DNA sequence at the promoter of a 
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target gene. Although STAT-STAT dimer formation can occur prior to 

pathway stimulation, only complexes activated by Tyr-phosphorylation appear 

to induce target gene expression (Braunstein, et al., 2003). 

Diversity of JAK-STAT Signaling:  

So far four members of JAK (JAK1-4) and seven members of STAT 

(STAT1-7) have been identified.  The JAKs range from 120-135 kDa, each of 

them contains a characteristic feature of two tandem kinase domains, referred 

to as JAK homology (JH) domains 1 and 2. Although, the most carboxy 

terminal domain, JH1, appears to be catalytically active, both JH1 and JH2 

are required for full activation.  JAKs share five additional homology domains, 

JH3-7. The most amino terminal domains JH6 and JH7 are believed to be 

important in receptor association(Schindler, 1999).  
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Structure of JAKs:  

 
Kinase 
Domain 

Pseudokinase 
    Domain  

JH7    JH6      JH5          JH4        JH3          JH2                      JH1               

   Structure of STATs: 

STAT 1,3,4,  
TAD  5A & 5B 

 

Figure 5: Structures of JAKs and STATs: The JAKs share seven regions of 

high homology, JH1-JH7. JH1 has been shown to encode the kinase. JH2 

represents a pseudokinase domain, which appears to regulate JH1 catalytic 

activity. JH3 - JH7 have been implicated in receptor association. Likewise, the 

STATs share several conserved domains, including an amino-terminal 

domain (NH2), a coiled-coil domain, the DNA-binding domain, a linker domain, 

an SH2 domain, and a tyrosine activation domain (TAD). The carboxy-

terminal transcriptional activation domain is conserved in function, but not in 

sequence.  
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   SH3   SH2 Y S 
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 Out of seven STAT members 2 & 6 are 850 amino acids long whereas 

others   are shorter, around 700 amino acids. Phosphorylation at tyrosine 

(705Y) residue facilitates dimerization with other STATs through the SH2 

domain. C-terminus contains a transcriptional activation domain (TAD) and 

also a serine residue (S) which upon phosphorylation modulates 

transcriptional activity.  DNA binding domain is localized between SH2 and 

SH3 sites.  

 

Interaction of JAK-STAT with other GPCRs:   

Recently, the interaction of various members of G-protein coupled 

receptor (GPCR) family with different JAKs and STATs has been a focus of 

investigation. Guillet-Deniau et al. (1997) reported association of JAK2 with 5-

HT2A receptor in skeletal muscle cells (Guillet-Deniau, et al., 1997).  5-HT 

stimulation of 5-HT2A receptor initiated a rapid and transient tyrosine 

phosphorylation of JAK2 kinase. They also reported association of 5-HT2A 

receptor and STAT3 with JAK2 by co-immunoprecipitation suggesting JAK-

STAT pathways could be attributed to some of the effects mediated by 5-HT2A 

receptor signaling.  

Additional studies by other groups also identified interaction of JAK2 

and activation of STAT3 with Angiotensin II (Hunt, et al., 1999) and , JAK-

STAT activation by arginine-vasopressin in vascular smooth muscle cells 

(Levy and Granot, 2006), and 5-HT stimulation of JAK-STAT in vascular 
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smooth muscle cells (Banes, et al., 2005). However, except for one report of 

involvement of small GTPases Rho and Rac for activation of JAK2 with 

thrombin and angiotensin (Pelletier, et al., 2002), not much is known about 

the mechanism of JAK activation by GPCR agonists.  Some of the other 

receptors which have shown to activate various JAKs and different STATs are 

listed below:  

Table 4: Cytokine and non cytokine receptors activate different JAKs 

and STATs: 

Receptor Ligands JAK STAT 

GPCR Chemokines-SDF, Thrombin 
AngiotensinII, Endothelin, 5-HT 
 
 

JAK1,2 , &3 STAT1,2,3,
&5 

Single 
chain-non 
kinase 
RTK 
 

EGF, PDGF, GH, PRL, CSF-1, 
EPO 

JAK1 & 2 STAT1, 3,& 
5 

Heterotrim
eric- non 
kinase 
RTK 
 

IL-2,3,6,10 and interferon JAK1,2,&3 STAT1,2,3,
&5 

 

Regulation of the JAK-STAT Signaling Pathway: 

A number of regulatory layers modulate this signaling pathway 

including both positive and negative regulators. JAK activation is dependent 

on tyrosine phosphorylation. Therefore, it is not surprising that two related 

SH2 domain containing phosphatases (as depicted in domain structure), 
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SHP1 and SHP2, are reported to negatively regulate JAK activity. Other 

reports have also suggested direct interaction and dephosphorylation of JAKs 

and STAT5 by SHP1 and SHP2 (Marrero, et al., 1998;Yu, et al., 2000). 

Besides SHPs, recent reports have also implicated membrane associated 

phosphatases like CD45 in negatively regulating JAK-STAT signaling 

stimulated by IL-3, IL-4, EPO, and IFN-γ (Irie-Sasaki, et al., 2001).  

The suppressor of cytokine signaling (SOCS) are a family of STAT 

target genes that directly antagonize STAT activation.  The founding member 

of this class CIS-1 (cytokine-inducible SH2 containing protein) is reported to 

block STAT receptor recruitment (Yoshimura, et al., 1995). Gene targeting 

studies with various STATs have reported that deletion of STAT1 & 3 is 

embryonic lethal (Naka, et al., 1998;Marine, et al., 1999a;Marine, et al., 

1999b)  and STAT2 null mice developed gigantism (Igaz, et al., 2001). Protein 

inhibitor of activated STATs (PIAS), PIAS 1 & 3 bind with activated STAT and 

blocks their ability to bind DNA (Gross, et al., 2001; Liu, et al., 1998).  

 

Biological and Clinical Significance: 

Investigation into the importance of the JAK-STAT pathway in vivo is 

hampered by the lethality of knockouts for JAK1 and JAK2; the only viable 

phenotypes is JAK3 (Nosaka, et al., 1995). However, JAK3 has only limited 

expression compared to the widely expressed JAK1 and JAK2. Thus, the role 

of JAK 1 and 2 during embryonic development is still not known. JAK3 
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knockout mice suffer from murine SCID (severe combined immune 

deficiency) that severely affects both the B- and T-cell population. These mice 

develop a phenotype which is very similar to ones lacking common γ-chain, 

suggesting it affects the same signaling pathway regulating assembly of 

various IL receptors (IL2, 4, 7, 9 &15) (Sugamura, et al., 1996; Cao, et al., 

1995).   Among STAT knockout models, all of them are viable except STAT3. 

Separate knockouts of STAT1 and STAT2 knockouts develop viral infections 

suggesting they might play a role in interferon signaling (Levy and Darnell, Jr., 

2002; Park, et al., 2000). STAT4 and STAT6 influence differentiation of T-

cells (Levy, 1999). The STAT5a knockout model does not show any severe 

abnormality except defects in mammary gland development. The STAT5b 

knockout model confirmed its role in sexually dimorphic growth hormone 

action (Liu, et al., 1996;Udy, et al., 1997).  

Most of diseases associated with malfunctioning of the JAK-STAT 

pathway were initially linked with lymphohaemopoietic neoplastic disorders 

but recently their role in myocardial hypertrophy and bronchial asthma are 

recognized. Fusion proteins of JAK2 and Tel (an Ets family transcription 

factor) were found in some acute lymphocytic leukaemias (Lacronique, et al., 

1997).  Human T-cell lymphotrophic virus 1 infected T cells (HTLV-1) sustain 

activation of the JAK-STAT pathway and is linked to malignant transformation 

(Takemoto, et al., 1997). Over activity of STAT3 was reported in multiple 

myeloma, mycosis fungoides, and in chronic myelogenous leukemia (Catlett-
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Falcone, et al., 1999; Nielsen, et al., 1999; Chai, et al., 1997). In addition to 

neoplastic diseases, the human SCID phenotype is in part also associated 

with defects of JAK-STAT pathway (Macchi, et al., 1995; Cacalano, et al., 

1999).  

De-Fraja et al extensively characterized expression and regulation of 

JAK-STAT in various brain regions (De-Fraja, et al., 1998; Cattaneo, et al., 

1998). In CNS, nitric oxide (NO) plays an important role during development 

and progression of diseases like multiple sclerosis (MS), Parkinson’s disease, 

and Alzheimer’s disease. The JAK-STAT pathway regulates inducible nitric 

oxide synthetase (iNOS) expression, which regulates NO production, and 

thereby plays an important role during pathogenesis of these disorders 

(Dell'Albani, et al., 2001;Dalton, et al., 1993;Dell'Albani, et al., 2001b). 

Berhow et al. (1996) reported that some of the effects of chronic cocaine on 

ventral tegmental area (VTA) dopaminergic neurons are mediated directly by 

the JAK-STAT pathway (Berhow, et al., 1996). Additionally, activation of the 

JAK-STAT pathway in response to IL-6 induction in spinal cord injury was 

also reported (Yamauchi, et al., 2006). In conclusion, the JAK-STAT pathway 

is now being recognized as an important regulatory mechanism in CNS 

development, function and disease progression.  
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Purpose of the Present Study 

Extensive literature now suggests that changes in 5-HT2 receptors in 

the CNS are associated with various cognitive and mood disorders including 

schizophrenia, depression, anxiety, and bipolar. Studies indicate that an 

increased function of the 5-HT2A receptor system may be associated with 

disorders such as depression (D'haenen, et al., 1992; Hrdina, et al., 1993) 

while a reduction in 5-HT2A receptors has been associated with other 

neurological and psychiatric disorders (Gurevich and Joyce, 1997; Joyce, et 

al., 1997). Additionally, it has been proposed that dysregulation of 5-HT2A 

receptor-mediated signaling may contribute to the pathogenesis of 

schizophrenia and related diseases. In fact, chronic treatments with 

antagonists that reduce 5-HT2A receptor density and/or efficacy have been 

used clinically to treat these psychiatric disorders, such as schizophrenia 

(Blier and De, 1999; Aghajanian and Marek, 2000). 

Although antipsychotics bind to their target receptors soon after 

administration, complete therapeutic benefits of antipsychotic medication take 

weeks to be realized (Agid, et al., 2003; Hyman and Nestler, 1996; 

McDermott, et al., 1991). This often results in prolonged treatment trials for 

individual patients until a particular drug is found therapeutically effective. To 

improve treatment outcome, we need to understand the mechanisms 

underlying the delay in the full clinical effects of antipsychotic drugs. The 

clinical potency of atypical antipsychotic drugs is directly correlated with their 
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ability to inhibit 5-HT2A receptors, but this relationship cannot explain their 

delayed action. With the chronic use of atypical antipsychotic drug, 5-HT2A 

receptor signaling is desensitized. Thus, it is possible that neuroadaptive 

mechanisms could possibly lead to alterations in the regulation of 5-HT2A 

receptor signaling and would be responsible for this delayed clinical 

response. Thus, it is important to investigate how 5-HT2A receptor signaling is 

regulated and discover the cellular pathways underlying desensitization after 

treatment with atypical antipsychotics such as olanzapine or clozapine.  

Atypical antipsychotic drugs are inverse agonist of 5-HT2A receptors in 

vivo in patients, and animal pharmacological studies are consistent with the 

notion that the 5-HT system may serve as one of the regulators of 

dopaminergic tone in vivo. It therefore becomes important to understand the 

molecular changes that occur with 5-HT2A receptor antagonist treatment and 

other methods that result in desensitization of 5-HT2A receptor signaling. With 

better understanding of the molecular mechanisms underlying signaling and 

desensitization of 5-HT2A receptor signaling, new targets for therapeutic 

intervention may be identified.   
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CHAPTER III 

OLANZAPINE INCREASES RGS7 PROTEIN EXPRESSION VIA 

STIMULATION OF THE JANUS TYROSINE KINASE-SIGNAL 

TRANSDUCER AND ACTIVATOR OF TRANSCRIPTION (JAK-STAT) 

SIGNALING CASCADE 

(Published in J Pharmacol Exp Therap 322(1):133-40, 2007)

 

Abstract 
 

Atypical antipsychotics such as olanzapine have high affinity for 

multiple monoamine neurotransmitter receptors and are the main stay of 

pharmacological therapy for treatment of schizophrenia.  In addition to 

blocking monoamine receptors, these drugs also affect intracellular signaling 

cascades. We now report that 24-hour treatment with 300nM olanzapine 

causes desensitization of serotonin (5-HT)2A receptors in A1A1v cells, a rat 

cortical cell line, as indicated by a reduction in inositol phosphate 

accumulation following stimulation with a 5-HT2A/2C receptor agonist [(−)-1-

(2,5-dimethoxy-4-lodophenyl)-2-aminopropane HCl] (DOI). Olanzapine 

treatment for 24 hours increased the levels of 5-HT2A receptors in both cytosol 

(234±34% of control level) and membrane fractions (206±14% of control 

levels) and RGS7 proteins in both cytosol (193±32% of control levels) and 

membrane fractions (160±18% of control levels) as measured on western 

blots. Increased phosphorylation of a tyrosine kinase JAK2, and increased 
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phosphorylation and nuclear translocation of STAT3 with 24-hour olanzapine 

treatment demonstrates activation of the JAK-STAT signaling cascade. 

Pretreatment with a JAK inhibitor, AG490, prevented the olanzapine-induced 

increase in membrane RGS7 protein levels; AG490 alone had no effect on 

RGS7 protein levels. We verified that treatment with AG490 reduced 

phosphorylation of JAK2, and inhibited the nuclear localization of phospho-

STAT3. Interestingly, treatment with the JAK inhibitor had no effect on 5-HT2A 

receptor protein levels. These data suggest that olanzapine-induced 

activation of the JAK-STAT signaling cascade causes increased expression 

of RGS7 protein, which in turn could mediate desensitization of 5-HT2A 

receptor signaling caused by olanzapine since RGS7 binds to Gαq protein 

and accelerates GTP hydrolysis. 

 

Introduction 

Atypical antipsychotics are widely prescribed for the treatment of 

schizophrenia. They are classified as atypical because of their ability to 

achieve antipsychotic effects with lower rates of extrapyramidal side effects 

compared to first generation antipsychotics such as haloperidol. In addition, 

selected atypical antipsychotics also improve certain aspects of cognitive 

function in schizophrenic patients, whereas typical antipsychotics may worsen 

cognition (Meltzer, et al., 1999). Atypical antipsychotics improved side effects 

and efficacy have been attributed to the high affinity interaction with 5-HT2A 
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receptors and lower affinity for D2 (Kasper, et al., 1999). Atypical 

antipsychotics have also been shown to block other 5-HT2 receptor subtypes 

mainly 5-HT2B and 5-HT2C (Lucaites, et al., 1996;Zhang and Bymaster, 1999). 

However, only 5-HT2C receptor antagonism is suggested in contributing to the 

atypical antipsychotic effects (Herrick-Davis, et al., 2000;Rauser, et al., 2001).  

The 5-HT2A receptor subtype has been implicated in various psychiatric 

disorders including depression, anxiety, and schizophrenia (Glennon, et al., 

1984). Olanzapine is an atypical antipsychotic, approved for the treatment of 

schizophrenia and bipolar disorder. Olanzapine has been also studied in 

treatment of disorders like substance abuse, aggression/violence, borderline 

personality disorder, and obsessive–compulsive disorder (Littrell, et al., 

2006).  

Atypical antipsychotics as well as a specific 5-HT2A receptor 

antagonist, MDL 100,907 ((+)-α-(2,3-dimethoxyphenyl)-1-[2-(4-

fluorophenylethyl)]-4-piperidinemethanol), desensitize 5-HT2A-mediated 

responses (Willins, et al., 1999). However, the molecular mechanisms 

involved in antagonist-induced desensitization of 5-HT2A receptor signaling 

are not well understood. By understanding the molecular mechanisms 

underlying the effects of olanzapine and other atypical antipsychotics, we 

hope to gain insight into targets for therapeutic treatment of psychiatric 

disorders. It has been recently reported that olanzapine increases 

Extracellular Receptor Kinase (ERK) 1/2 phosphorylation in rat prefrontal 
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cortex (Fumagalli, et al., 2006).  Furthermore, changes in mRNA levels of 

both 5-HT2A/2C receptors with 5-HT2A receptor antagonists after both chronic 

and short-term treatments have been reported (Buckland, et al., 1997). These 

studies suggest that atypical antipyschotics may target intracellular pathways 

shuttling information from the receptor to the nucleus. 

The Janus kinase-signal transducers and activators of transcription 

(JAK-STAT) signaling cascade has been reported to couple with 5-HT2A 

receptors in skeletal muscles and vascular smooth muscle cells (Guillet-

Deniau, et al., 1997;Banes, et al., 2005). G-protein coupled receptor (GPCR) 

agonists, thrombin and angiotensin II, have previously been shown to activate 

JAK-STAT signaling cascade (Bhat, et al., 1994). JAK-STAT could be one of 

the possible signaling pathways involved in mediating olanzapine-induced 

receptor desensitization. Janus kinases (JAK) are a small family of 

cytoplasmic tyrosine kinases initially identified as a mediator of cytokine 

receptor signaling (Ihle, 1995).  Agonist stimulation of cytokine receptors 

causes phosphorylation of JAK, which in turn phosphorylates tyrosine 

residues on the receptor cytoplasmic tail, facilitating activation of specific 

signal transducers and activators of transcription (STAT). Tyrosine 

phosphorylated STAT then undergoes dimerization and translocates to the 

nucleus where it binds to target DNA sequences (Darnell, Jr., 1997).   

Alterations in proximal components of the 5-HT2A receptor signaling 

system could mediate desensitization in response to increased activity of 
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intracellular cascades such as JAK-STAT. 5-HT2A receptors are classically 

linked to the Gαq/11 protein family (Ivins and Molinoff, 1990). Activation of 

Gαq/11 stimulates phospholipase C (PLC) activity, which subsequently 

promotes the release of diacylglycerol and inositoltriphosphate, which in turn 

stimulate protein kinase C activity and calcium release (Berg, et al., 2001). It 

has been extensively reported that increased expression of regulators of G 

protein signaling (RGS) proteins cause desensitization of several G-protein 

associated receptor systems (Koelle and Horvitz, 1996). RGS proteins reduce 

the duration of signaling of many G-protein-coupled receptors by their action 

as GTPases, accelerating the hydrolysis of GTP bound Gα -proteins or by 

blocking the interaction of Gα with its target proteins through a not well-

understood process known as effector antagonism (Roy, et al., 2006).  

Expression of RGS7 protein in rat frontal cortex is well documented 

(Krumins, et al., 2004;Zhang and Simonds, 2000) and decreased 5-HT2A 

receptor-mediated signaling via direct interaction of RGS7 protein with Gαq 

has been widely characterized in different systems (DiBello, et al., 

1998;Ghavami, et al., 2004). We hypothesize that the increased expression of 

RGS7 protein by the JAK-STAT signaling cascade contributes to olanzapine-

induced desensitization of 5-HT2A receptor signaling. In this study, we 

examined 5-HT2A receptor and RGS7 protein levels in response to treatment 

with olanzapine and determined whether changes in these proteins are 

mediated by olanzapine-induced JAK-STAT signaling in A1A1v cells.  
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Materials and Methods 

Cell Culture:   

A1A1v cells, a cortical cell line that expresses 5-HT2A receptors, were 

used for all experiments and were generously donated by Dr. William Clarke 

and Kelly Berg (University of Texas Health Science Center, San Antonio, TX).  

Cells were grown in Dulbecco's modified Eagle's medium (DMEM) 

supplemented with 10% fetal bovine serum. Serotonin was removed from 

serum by filtration after treating with charcoal. Cells were grown in the 

serotonin-free serum media 24 hours before treatment with olanzapine. 

Olanzapine was a generous gift from Eli-Lilly. The treatment concentration 

(300nM) was obtained by dissolving olanzapine in 20% acetic acid. The pH of 

the vehicle and olanzapine was adjusted to 6.5 with 10N NaOH. A JAK 

inhibitor, α-Cyano-(3,4-dihydroxy)-N-benzylcinnamide (AG490), was 

purchased from Calbiochem, San Diego, CA. It was reconstituted with DMSO 

to obtain the desired concentration. (-)1-(2,5-dimethoxy-4-iodophenyl)-2-

aminopropane (DOI) was purchased from Sigma-Aldrich; St. Louis, MO. 

HBSS mix (1X HBSS, 20mM LiCl2, and 20mM HEPES) was used to dissolve 

DOI. Cells were treated with either vehicle (20% acetic acid) or 300nM 

olanzapine for 24 hour for various experiments.  
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Cell fractionation:   

Cells were separated into membrane and cytosol fractions using ultra 

centrifugation as previously described (Tucker, 2004). Briefly, cells were 

collected in hypotonic buffer containing 0.25M sucrose, 50mM Tris-HCl, 5mM 

EDTA, and protease inhibitor cocktail (Sigma-Aldrich; St. Louis, MO). Cell 

homogenate was prepared by sonication three times for 10 seconds. The 

homogenate was spun at 100,000xg for 45 minutes at 40C to produce a 

pellet, which is composed of membrane fraction, and a supernatant, which is 

the cytosol fraction. The pellet was reconstituted with hypotonic buffer.  The 

protein amount was assessed with bicinchoninic acid protein assay kit (Pierce 

Chemical, Rockford, IL). Cytosolic and nuclear fractions were prepared as 

previously described (Andrews and Faller, 1991) with some modification. 

Briefly, cells were washed and scrapped into ice-cold PBS containing 

phosphatase inhibitors. The pellet was collected after centrifugation at 

1,000xg for one minute and resuspended into Buffer A (10mM HEPES-KOH 

pH 7.9, 1.5mM MgCl2, 10mM KCl, 0.5mM DTT, and protease inhibitor 

cocktail) and incubated for 10 minutes on ice followed by vortex mixing for 10 

seconds. The supernatant contains the cytosolic fraction. The pellet was 

resuspended in Buffer B (10mM HEPES-KOH pH 7.9, 25% glycerol, 420mM 

NaCl, 0.2mM EDTA, 1.5mM MgCl2, 10mM KCl, 0.5mM DTT, and protease 

inhibitor cocktail) and incubated on ice for 20 min. The nuclear fraction was 

obtained as the supernatant after centrifugation at 18,000xg for 2 min. 

 70



Western Analyses:   

Equal amounts of protein were separated and transferred to 

nitrocellulose membrane as described before (Berg, et al., 1994a).  

Membranes were blocked either in TBS or PBS containing 5% (w/v) nonfat 

dry milk with 0.1% Tween 20. The following primary antibodies were used: 

anti-RGS7 (1:1000; Polyclonal antibody, Upstate Biotechnology, Inc., Lake 

Placid, NY), anti-phospho-JAK2 (1:1000; polyclonal antibody, Affinity 

Bioreagent, CO), and anti-JAK2 (1:2000; polyclonal antibody, Upstate 

Biotechnology, Inc., Lake Placid, NY). The anti-phospho- STAT1, STAT3, 

STAT5 (1:1000; polyclonal antibodies), and anti-STAT1, STAT3, STAT5 

(1:1000; polyclonal antibody) were purchased from Cell Signaling, (Danvers, 

MA). A monoclonal anti-actin antibody was from MP Biomedicals (1:10,000; 

Aurora, OH). Prior to incubation with a second primary antibody, blots were 

stripped with Restore western blot stripping buffer from Pierce (Rockford, IL) 

by incubating at 370C for 25 minutes.  After incubation blots were removed 

from stripping buffer, washed three times for 10 min each with TBS or PBS 

containing 0.1% Tween20 and blocked again. Protein bands were analyzed 

densitometrically using Scion Image software (Scion Corporation, Frederick, 

MD). The IOD for the film background was subtracted from the IOD for each 

band. Each sample was measured in triplicate. RGS7 protein and 5-HT2A 

receptor protein levels were normalized to actin protein used as a loading 

control and phosphoproteins were normalized to the corresponding total 
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protein levels. Protein levels from olanzapine-treated cells were normalized to 

vehicle-treated cells for each cell fraction.  

 

5-HT2A Receptor Antibody Production and Characterization:  

A peptide corresponding to amino acids 22 to 41 of the rat 5-HT2A 

receptor (NH2-GD PRLYHNDFNSRDANTSE-OH) was synthesized and used 

to produce antibodies by Biosynthesis, Inc. (Lewisville, TX). This sequence is 

85% identical to the mouse 5-HT2A receptor sequence and 65% identical to 

the human 5-HT2A receptor sequence as determined using the NCBI 

Sequence Viewer. The same peptide sequence was used previously by 

Garlow et al. (Garlow, et al., 1993) to produce antibodies against the 5-HT2A 

receptor. The antibodies produced were characterized using western blotting 

and ELISA assays. The antibody titer reported by Biosynthesis, Inc. was up to 

1:25,600. A1A1v cells were used to verify the specificity of the 5-HT2A 

receptor antibodies. Cells were transfected with the human 5-HT2A receptor in 

pcDNA3.1+ (Guthrie DNA Resource Center, Sayre, PA) using 3µg of DNA for 

every dish and the Lipofectamine Plus Reagent (Invitrogen, Corp., Frederick, 

MD). 

Inositol phosphate (IP) accumulation assay:  

Assays were performed as previously described (Berg, et al., 1994). 

Briefly, cells were seeded in 24 well plates at the density of 40,000/well. Cells 

were treated with vehicle or 300nM olanzapine and also at the same time 
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labeled with 0.5 µCi [3H] myoinositol/well for 24 hour in serum free DMEM 

media.  Cells were washed with Hank’s balanced salt solution containing 20 

mM LiCl2 and 20 mM HEPES, Ph 7.4.  PI hydrolysis was initiated with the 

addition of DOI at 370C.  Reaction was stopped after 30 min with ice-cold 10 

mM formic acid. The accumulation of 3H-labeled inositol phosphate (IP) was 

determined by ion exchange chromatography (Singh et al., 2007). 

 

Statistics:  

All statistical analyses were performed using GB-STAT School Pak 

(Dynamic Microsystems, Silver Spring, MD). Data are expressed as means ± 

SEM. For Western blots and the IP accumulation assay, data were analyzed 

using a Student's t test for equal variances.  

 

Results 

IP accumulation assay:  

Agonist-stimulated IP accumulation can be used to monitor 

desensitization of 5-HT2A receptor mediated signaling (Hanley and Hensler, 

2002). Treatment with 300nM olanzapine for 24 hours significantly decreased 

(p<0.05) DOI (10-4 M) stimulated IP accumulation by 28±1.9% compared to 

vehicle (20% acetic acid) treated cells (figure 6). This decrease suggests a 

desensitization of 5-HT2A-mediated receptor signaling by olanzapine. The DOI 
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concentration was chosen based on the previous dose-response experiments 

conducted in our laboratory (Shi, et al., 2007). 

 

Olanzapine induced phosphorylation of JAK kinase:  

Guillet-Deniau et al. (Guillet-Deniau, et al., 1997) have shown that 

serotonin stimulation of 5-HT2A receptors causes phosphorylation of JAK2 

kinase and association of the receptor with JAK2. To investigate whether 

olanzapine causes JAK2 phosphorylation, lysates of cytosol and membrane 

fractions prepared from vehicle (20% acetic acid) and olanzapine (300nM) 

treated cells were examined by western blot with anti-phospho-JAK2 

antibody, then stripped and reprobed with anti-JAK2 antibody (figure 7A). 

Tyrosine phosphorylation of JAK2 was significantly increased (p<0.05) to 

more than 232 ±15 % of the control levels in the membrane fraction of 

olanzapine-treated cells (no significant change in cytosolic levels), whereas 

total JAK2 protein levels did not show any appreciable change.  

 

Phosphorylation and nuclear translocation of STAT Proteins:   

 Phosphorylated JAK2 facilitates activation of various STAT proteins. 

Tyrosine phosphorylated STATs then undergoes dimerization, translocate to 

the nucleus and bind to the target DNA sequences. However, different STAT 

proteins mediate signaling cascades stimulated by different agonists. To 

determine which STAT protein(s) are activated in response to olanzapine, 
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lysates of cytosolic and nuclear fractions from control (20% acetic acid) and 

olanzapine (300nM) treated cells were analyzed by western blot with anti-

phospho- STAT1, STAT3, and STAT5 antibodies, then stripped and reprobed 

with corresponding anti-STAT antibodies. We found that phosphorylation and 

nuclear translocation STAT3 was significantly increased to 171±25% in the 

olanzapine-treated cells compared to vehicle-treated cells (figure 7B), where 

as phosphorylation and nuclear translocation of STAT1 and STAT5 did not 

show any change (data not shown). 

 

Olanzapine increases RGS7 protein levels:  

In order to monitor the changes in RGS7 protein levels, lysates from 

cytosol and membrane fractions of vehicle (20% acetic acid) and olanzapine 

(300nM) treated cells were analyzed by western blot with anti-RGS7 antibody 

(figure 8A). We found that RGS7 protein levels were increased in the 

membrane fraction to 160±18% of control levels and significantly increased in 

cytoplasmic fraction by 193±32% of control levels in olanzapine-treated cells 

compared to vehicle-treated control cells. 

 

Characterization of 5-HT2A receptor antibody:   

A1A1v cells were used to verify the specificity of the 5-HT2A receptor 

antibody. On western blots prepared with A1A1v cell lysates, there was a 

prominent band with a molecular mass of approximately 42 kilodaltons (figure 

 75



3B). This is very similar to the size of the band produced by in vitro 

transcription and translation of the human 5-HT2A receptor construct provided 

by Guthrie cDNA Resource Center (Sayre, PA). Over expression of the 

human 5-HT2A receptor construct in A1A1v cells resulted in a more intense 

protein band detected on western blots prepared with the 5-HT2A receptor 

antibody (figure 8B). Preadsorption control experiments were also performed 

to verify the specificity of the antibody. Using homogenates from rat frontal 

cortex and lysates from A1A1v cells transfected with the human 5-HT2A 

receptor, the 42 kilodalton band 5-HT2A receptor band was no longer present 

in the western blots prepared with the antibody pre-incubated with the peptide 

antigen (figure 8C). These experiments also demonstrate that the antibody 

produced using a peptide based on the sequence for rat 5-HT2A receptor, 

cross-reacts with the human 5-HT2A receptor expressed in rat cells. 

Furthermore, the 5-HT2A receptor antibody also cross-reacts with the rat 5-

HT2A receptor expressed in a rat cortical cell line. 

 

5-HT2A receptor protein levels:  

Cytosol and membrane fractions from vehicle (20% acetic acid) and 

olanzapine (300nM) treated cells were analyzed by western blot with the anti-

5-HT2A antibody we generated. We found a significant increase (p<0.05) in 

both cytoplasmic (234±32% of control level) and membrane fractions 

(206±14% of control levels) of olanzapine-treated cells compared to vehicle-
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treated cells (figure 8D). We also assessed the purity of our membrane 

fraction after stripping and reprobing the same blot with an anti-NA+-K+-

ATPase antibody. A band corresponding to NA+-K+-ATPase was mainly 

present in membrane fraction (data not shown). 

 

JAK inhibition:  

A JAK kinase inhibitor, AG490, was used to investigate whether 

inhibition of the JAK-STAT signaling cascade could reverse the increase of 5-

HT2A receptor or RGS7 protein levels observed in response to olanzapine 

treatment.  Cells were treated for one hour with 0, 15, and 30 µM of AG 490, 

before adding either vehicle or olanzapine. Twenty-four hours later, cells were 

lysed and protein levels of phospho-JAK2, RGS7, and phospho-STAT3 were 

analyzed by western blot. Olanzapine-induced phosphorylation of JAK2 was 

decreased with AG490 as shown in figure 9A. There was no change in the 

total JAK2 protein levels. With AG490 treatment, there was a similar decrease 

in olanzapine-induced STAT3 phosphorylation in the nuclear fraction as 

shown in figure 9B, and no change in STAT levels, again confirming previous 

findings that activation of JAK2 causes phosphorylation and nuclear 

localization of STAT3.   

If the JAK-STAT signaling cascade is mediating the olanzapine-

induced increase in protein levels, then inhibiting this signaling cascade 

should prevent the increase in 5-HT2A receptor and RGS7 protein levels. To 
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test this hypothesis, membrane fractions from vehicle- and olanzapine-treated 

cells, pretreated with AG490 were analyzed by western blot for 5-HT2A 

receptor and RGS7 protein levels. As in previous experiment (figure 8A) 

olanzapine treatment for 24 hours increased the levels of RGS7 protein 

(figure 10A and B). Treatment with AG490 reduced the olanzapine-induced 

increase in the RGS7 in the membrane fractions to the levels in the vehicle 

treated cells (figure 10A). Treatment with AG490 alone had no effect on the 

levels of RGS7 protein.  Although we observed a similar increase in levels of 

5-HT2A receptor protein in olanzapine-treated cells compared to vehicle-

treated cells as shown before in figure 8C, AG490 pretreatment did not alter 

protein levels of 5-HT2A receptor in cells treated with olanzapine (figure 10C 

and D) suggesting that the increase in levels are not mediated by JAK-STAT 

signaling cascade. 
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Figure 6. Olanzapine decreases DOI-stimulated IP accumulation. A1A1v cells 

were treated either with vehicle (20% acetic acid) or olanzapine (300nM) for 

24 hours, and incubated with [3H] myoinositol for same 24-hour period. Both 

vehicle- and olanzapine-treated cells were stimulated with 10-4 M DOI. Bar 

graph represents the mean DOI-stimulated IP accumulation normalized to 

DOI-stimulated IP accumulation in vehicle-treated cells from three 

independent experiments.  IP accumulation was significantly decreased in 

olanzapine-treated cells compared to vehicle-treated cells. * indicates 

significantly different from vehicle-treated cells at p < 0.05. 
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(See next page for figure legend) 
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Figure 7. Olanzapine activates the JAK-STAT signaling cascade. A1A1v cells 

were treated either with vehicle (20% acetic acid) or (300nM) olanzapine for 

24 hour. (A) Cytosol (C) and membrane (M) fractions of cells were analyzed 

by western blot with an anti-phosphoJAK2 antibody, stripped and reprobed 

with anti-JAK2 and anti-actin antibodies. Bar graph represents quantification 

of phosphoJAK2 protein levels divided by JAK2 protein levels from three 

independent experiments. Phosphorylation of JAK2 was significantly 

(*p<0.05) increased with olanzapine-treatment compared to vehicle-treated 

cells. (B) Cytosol (C) and nuclear fractions (N) of cells were analyzed by 

western blot with anti-phosphoSTAT3 antibody, stripped and reprobed with 

anti-STAT3 and anti-actin antibodies. Bar graph represents quantification of 

phosphoSTAT3 protein levels divided by STAT3 protein levels from three 

independent experiments. Olanzapine treatment significantly increases the 

phospho-STAT3 in the nucleus compared to vehicle treatment. * indicates 

significantly different from vehicle-treated cells at p < 0.05. 
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Figure 8. Olanzapine treatment increases the levels of RGS7 protein and 5-

HT2A receptor (5-HT2AR) protein levels. (A) A1A1v cells were treated with 

either vehicle (20% acetic acid) or 300nM olanzapine for 24 hour. Cytosol (C) 

and membrane (M) fractions of cells were analyzed by western blot with anti-

RGS7 antibody, stripped and reprobed with an anti-actin antibody as a 

loading control. Bar graph represents quantification of RGS7 protein levels 

divided by actin protein levels from three independent experiments. Protein 

levels of RGS7 were significantly (*p<0.05) increased in olanzapine-treated 

cells compared to vehicle-treated cells. (B) A1A1v cells transfected with 

human 5-HT2A receptor (lane 2) produced a larger band than untransfected 

cells (lane 1) probed by 5-HT2A receptor antibody. (C) Preabsorbtion of the 5-

HT2A receptor antibody blocked the production of the 42kd protein band for 5-

HT2A receptor. Western blots prepared with homogenates of rat frontal cortex 

(lanes 1 and 3) and with lysates of A1A1v cells transfected with human 5-

HT2A receptor (lanes 2 and 4) were incubated with 5-HT2A receptor antibody 

(lanes 1 and 2) or 5-HT2A receptor antibody preadsorbed with the peptide 

antigen (lanes 3 and 4). (D) A1A1v cells were treated with either vehicle (20% 

acetic acid) or 300nM olanzapine for 24 hour. Cytosol and membrane 

fractions of cells were analyzed by western blot with anti- 5-HT2A antibody, 

stripped and reprobed with anti-actin antibody as a loading control. Bar graph 

represents quantification of 5-HT2A protein levels divided by actin protein 

levels from four independent experiments. 5-HT2A protein levels in both 
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cytosol and membrane fractions were significantly increased in olanzapine-

treated cells compared to vehicle-treated cells. * indicates significantly 

different from vehicle-treated cells at p < 0.05. 
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Figure 9. AG490 pretreatment inhibited olanzapine-induced increases in JAK-

STAT signaling. A1A1v cells were pretreated for 1hour with the indicated 

concentrations of AG490 prior to treating with either vehicle (20% acetic acid) 
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or 300nM olanzapine for 24 hours. (A) Membrane fraction of cells was 

analyzed by western blot with anti-phosphoJAK2 antibody. Blots were 

stripped and reprobed with anti-JAK2 and anti-actin antibodies. Bar graph 

represents quantification of phosphoJAK2 protein levels divided by JAK2 

protein levels from three independent experiments. (B) Nuclear fractions were 

analyzed by western blot with anti-phosphoSTAT3 antibodies, stripped and 

reprobed with anti-STAT3 and anti-actin antibodies.  Bar graph represents 

quantification of phospho-STAT3 protein levels divided by STAT3 protein 

levels from three independent experiments. AG490 pretreatment decreases 

phosphoJAK2 levels and phosphoSTAT3 nuclear translocation in olanzapine 

treated cells compared to cells treated olanzapine and the AG490 vehicle. * 

indicates significantly different from vehicle-treated cells at p < 0.05. 
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Figure 10. AG490 pretreatment reduces the olanzapine-induced increase in 

RGS7 protein levels in membrane but not the levels of 5HT2A receptor protein 

(5-HT2AR). A1A1v cells were pretreated with the indicated concentrations of 

AG490 for 1hour, before treating with either vehicle (20% acetic acid) or 

300nM olanzapine for 24 hours. (A) The membrane and (B) cytosol fraction of 
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cells were analyzed by western blot with anti-RGS7 antibody, stripped and 

reprobed with anti-actin antibody; actin was used as a loading control. Bar 

graph represents quantification of RGS7 protein levels divided by actin 

protein levels from three independent experiments. (C) Membrane and (D) 

cytosol fractions of cells were analyzed by western blot with anti-5-HT2A 

receptor antibody, stripped and reprobed with anti-actin antibody as a loading 

control. Pretreatment with AG490 had no effect on the increase in 5-HT2A 

receptor protein levels induced by olanzapine. * indicates significantly 

different from vehicle-treated cells at p < 0.05. 
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Discussion 
 

This study demonstrates the involvement of an intracellular signaling 

cascade, the JAK-STAT pathway, in increasing the levels of RGS7 protein in 

response to treatment with olanzapine. The increased levels of RGS7 protein 

in turn could contribute to the desensitization of 5-HT2A receptor signaling 

induced by olanzapine in A1A1v cells by directly interacting with Gαq/11 and 

accelerating GTP hydrolysis. In contrast, we found an increase in 5-HT2A 

receptor protein levels with olanzapine treatment that was not associated with 

increased activation of the JAK-STAT signaling cascade. The increase in 5-

HT2A receptor protein levels would not likely contribute to the desensitization 

response but could conceivably counter or moderate the desensitization 

response. 

Olanzapine and other antipsychotics have been recently reported to 

stimulate other signaling cascades including increased phosphorylation of 

ERK1/2 in rat frontal cortex (Fumagalli, et al., 2006), and increased 

phosphorylation of Akt/PKB and p38 in PC12 cells (Lu, et al., 2004). The 

increased activation of signaling cascades induced by antipsychotics 

suggests that changes in gene expression regulated by these cascades could 

contribute to the positive therapeutic benefits seen in schizophrenic patients.  

Several micro-array studies have explored the effects of olanzapine 

and other antipsychotics on gene expression, reporting changes in 

expression of a host of genes including RGS proteins, and gene families 
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linked with synaptic plasticity and presynaptic neurotransmission (Feher, et 

al., 2005;Fatemi, et al., 2006). Fatemi et al. (Fatemi, et al., 2006), reported an 

increase in expression of RGS19 mRNA and a decrease in expression of 

RGS2 mRNA in the frontal cortex of rats treated for three weeks with 

olanzapine. GAP activity of RGS19 is associated with Gαz, a member of 

Gαi/o-G protein family, whereas 5-HT2A receptors are coupled with Gαq/11 

proteins. Therefore, increased RGS19 is unlikely to affect olanzapine-induced 

desensitization of 5-HT2A receptor signaling. Although RGS2 protein 

associates with Gαq protein, and could decrease the 5-HT2A receptor 

signaling; a decrease in expression of RGS2 protein could not cause the 

desensitization of 5-HT2A receptor signaling induced by olanzapine since a 

decrease in RGS protein expression would likely result in increased receptor 

signaling. Although RGS2 is expressed in frontal cortex, it is not known if it 

co-localizes with 5-HT2A receptors in frontal cortex.  

None of these microarray studies identified alterations in RGS7 protein 

or 5-HT2A receptor mRNA levels. It is important to remember that changes in 

mRNA levels may or may not result in changes in protein levels and changes 

in protein levels may not be due to changes in mRNA levels. It is also 

important to emphasize that these studies were conducted in different 

experimental settings with different time course and dose regimens than our 

study. Each study highlights important findings, further extending our 

understanding of antipsychotics mechanism of action. It is becoming evident 
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that there could be numerous pathways and alterations in gene expression 

that lead to the development of psychosis (Ko, et al., 2006) and its treatment 

with atypical antipsychotics.   

Direct association of JAK2 and STAT3 with 5-HT2A receptors, and 

activation of the JAK-STAT signaling cascade by 5-HT2A receptor agonists 

has been reported previously (Guillet-Deniau, et al., 1997).  In the present 

study, we found JAK2 activation and increased phosphorylation and nuclear 

localization of phospho-STAT3 in olanzapine-treated cells. It is interesting to 

note that phosphorylation and nuclear translocation of other isoforms of STAT 

proteins, STAT1 and STAT5, did not show any change with olanzapine 

treatment. Activation of STAT proteins, which are transcription factors, could 

bolster the previous notion that antipsychotic agents affect expression of 

various genes. 

Our experiments with a JAK kinase inhibitor, AG490, suggest that the 

increased levels of RGS7 protein are mediated by the JAK-STAT signaling 

cascade in response to olanzapine treatment. Interestingly, AG490 selectively 

targeted the membrane localized RGS7 protein and had no effect on the 

levels in cytosol fraction. The overall effect of AG490 is a decrease in the total 

levels of RGS7 protein (i.e., membrane plus cytosol), suggesting that 

olanzapine-induced JAK-STAT signaling increases the levels of RGS7 protein 

rather than causing a redistribution of the protein. We speculate that 

transcriptional activity of phospho-STAT3 could increase RGS7 mRNA 
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expression and be responsible for increased levels of RGS7 protein in the 

membrane fraction. The mechanism(s) involved in the selective decrease in 

the membrane fraction of A1A1v cells are unknown but could involve a 

chaperone protein. However, further studies are needed to test these 

hypotheses. In contrast, changes in 5-HT2A receptor protein levels seem to be 

regulated by a different mechanism, since pretreatment with AG490 fails to 

reverse the olanzapine-induce increase in receptor protein levels. 

Most atypical antipsychotics cause desensitization of 5-HT2A receptor 

signaling. The decrease in DOI stimulated IP accumulation with olanzapine 

treatment in our study is consistent with these findings and supports the use 

of A1A1v cells as a model to study the actions of olanzapine on 5-HT2A 

receptor signaling. Previous experiments in A1A1v cells using the selective 5-

HT2A receptor antagonist, MDL100907 demonstrated that IP accumulation 

stimulated by the 5-HT2A/2C selective agonist DOI is not likely due to 

stimulation of 5-HT2C receptors (Shi, et al., 2007). Numerous investigations 

have explored the mechanisms by which antipsychotics cause desensitization 

of 5-HT2A receptor signaling. This desensitization by antipsychotics could be 

mediated by receptor internalization, uncoupling of G-proteins from receptor, 

and receptor down-regulation (Roth, et al., 1995;Willins, et al., 1999) in 

addition to increases in RGS7 protein.  

Other mechanisms have been associated with desensitization of 5-

HT2A receptor signaling as a result of treatment with atypical antipsychotics. 
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Several studies specifically investigated changes in the transcript level of 5-

HT2A receptors with both short term and chronic antipsychotic treatments 

(Doat-Meyerhoefer, et al., 2005;Burnet, et al., 1996). Buckland et 

al.(Buckland, et al., 1997) reported a significant decrease in receptor mRNA 

in hippocampus, brain stem and midbrain whereas no significant change was 

observed in other brain regions after 32 days of treatment with the atypical 

antipsychotic clozapine. However, in the same study, four days of clozapine 

treatment did not produce any significant change but a trend for a decreased 

mRNA expression was observed in major brain areas. As noted previously, 

changes in mRNA levels do not necessarily result in corresponding changes 

in protein levels, so changes in 5-HT2A receptor mRNA levels are not 

necessarily inconsistent with the current findings. We found an increase in 5-

HT2A receptor protein levels in both the cytosol and membrane fractions. 

Previous studies reported a sizeable amount of 5-HT2A receptors in the 

cytosol in addition to that found in the membrane (Cornea-Hebert, et al., 

1999). Several reports suggest a decrease in Bmax with no change in Kd 

after treatment with antipsychotics (Doat-Meyerhoefer, et al., 2005;Matsubara 

and Meltzer, 1989). A decrease in the density of 5-HT2A receptors without any 

change in affinity is consistent with the receptor internalization previously 

reported (Roth, et al., 1995;Willins, et al., 1998). An increase in 5-HT2A 

receptor protein levels in the cytosol as we found with western blot analysis, 

could reflect internalized receptors. Furthermore, an increase in total 5-HT2A 
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receptor protein levels is not necessarily inconsistent with a decrease in 

receptor density. 5-HT2A receptor proteins undergo extensive post-

translational modifications that could affect ligand binding. It is difficult to 

speculate at this point about the post-translational modifications that are 

required for or inhibit ligand binding. It is likely that multiple mechanisms 

contribute to desensitization of 5-HT2A receptor signaling and that the specific 

mechanisms involved are likely tissue specific. 

In summary, our cell culture data highlight a new role of JAK-STAT 

signaling in treatment with olanzapine. Increased-activation of this pathway by 

olanzapine increases expression of RGS7 protein. Increased RGS7 protein 

could directly contribute to the desensitization of 5-HT2A receptor signaling by 

accelerating hydrolysis of GTP bound Gαq protein. Unfortunately, the JAK 

inhibitor AG490 interferes with the IP accumulation assay and therefore 

precludes our ability to determine if JAK-STAT signaling contributes to the 

desensitization of 5-HT2A receptors in our model system. We are further 

investigating whether increased RGS7 protein is the result of increased 

transcriptional activity and whether blocking membrane localization of RGS7 

protein inhibits desensitization of 5-HT2A receptor signaling cascade. Further 

studies are also needed in animal models to confirm these findings in vivo. 

Overall, the results from this study provide a further understanding of possible 

involvement of intracellular pathways in mediating the effects of atypical 

antipsychotics. 
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    CHAPTER IV 

THE ROLE OF THE JAK-STAT PATHWAY IN ATYPICAL 

ANTIPSYCHOTIC-INDUCED DESENSITIZATION OF 5-HT2A RECEPTOR 

SIGNALING IN CELL CULTURE 

 
 

Abstract 
 

We previously demonstrated that olanzapine-induced desensitization 

of 5-HT2A receptor signaling is associated with increases in RGS7 protein 

levels both in vivo and in cells in culture, and the increase in RGS7 is 

dependent on activation of the JAK-STAT pathway in cells in culture (Muma, 

et al., 2007;Singh, et al., 2007). In the current study, we found that 

desensitization of 5-HT2A receptor signaling induced by olanzapine is 

dependent on activation of the JAK-STAT pathway. Similar to olanzapine, 

clozapine-induced desensitization of 5-HT2A receptor signaling is 

accompanied by increases in RGS7 (194±11% of control levels) and 

activation of JAK2 (196±18% of control levels). Treatment with the selective 

5-HT2A receptor antagonist MDL100907 for 24 h also increased RGS7 protein 

levels (176 ±16 % of control levels) and JAK2 activation (183 ±13 % of control 

levels). Olanzapine, clozapine, and MDL100907 treatment for 24 h increased 

mRNA levels of RGS7. Olanzapine treatment for 24 h increased STAT3 

binding to the putative RGS7 promoter region. Taken together, olanzapine-

induced activation of the JAK-STAT pathway, and increases in STAT3 
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binding to the RGS7 gene could underlie the increase in RGS7 mRNA which 

could subsequently increase protein expression. Furthermore, the increase in 

RGS7 protein could play a role in the desensitization of 5-HT2A receptor 

signaling by terminating the activated Gαq/11 proteins more rapidly. Overall, 

our data suggest that the full desensitization of 5-HT2A receptor signaling by 

atypical antipsychotics requires activation of JAK-STAT pathway, which in 

turn increases RGS7 expression likely by direct transcriptional activity of 

STAT3. 

 

Introduction 

Atypical antipsychotics like clozapine and olanzapine (dibenzopyridine 

derivatives) represent a relatively new generation of antipsychotics with fewer 

incidences of negative side effects such as extrapyramidal side effects (EPS) 

(Meltzer, 1995).  Although, atypical antipsychotics have a diverse receptor 

binding profile, 5-HT-receptor-based mechanisms have been postulated to 

play a critical role in the action of the atypical antipsychotic drugs (Willins, et 

al., 1999a). However, the process by which these drug-receptor interactions 

translate into long-term cellular adaptive changes resulting in antipsychotic 

efficacy is unknown.  

Atypical antipsychotic drugs bind with high affinity to 5-HT2A receptors 

and desensitize 5-HT2A receptor signaling (Deutch, et al., 1991;Meltzer and 

Nash, 1991;Meltzer and Nash, 1991;Seeger, et al., 1995). Although, 
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desensitization of 5-HT2A receptor signaling by atypical antipsychotics is 

reported to be associated with down-regulation and internalization (Willins, et 

al., 1999); the molecular mechanisms that underlie these changes are not 

well understood. Activation of 5-HT2A receptors stimulates activation of Gαq/11, 

which in turn activates effector enzymes including phospholipase C (PLC).  

PLC catalyses release of diacylglycerol (DAG) and inositoltriphosphate (IP3) 

from phosphatidyl inositol bisphosphate (PIP2). The released IP3 can be 

measured as an index of 5-HT2A receptor signaling activity. In addition to 

these integral components of receptor signaling system, regulators of G 

protein signaling (RGS) proteins modulate signaling of several G protein 

coupled receptors (GPCR) (Koelle and Horvitz, 1996).  RGS proteins can 

regulate G-protein signaling by functioning as GTPase-activating proteins 

(GAPs). GAP activity can hasten the termination of a signal upon removal of a 

stimulus, attenuate a signal either as a feedback inhibitor or in response to a 

second input, promote regulatory association of other proteins, or redirect 

signaling within a G protein signaling network (Ross and Wilkie, 2000). RGS4 

and RGS7 are highly enriched in various brain regions including frontal cortex 

and are reported to be GAPs for Gαq/11 associated 5-HT2A receptor signaling 

(Larminie, et al., 2004). Khawaja et al. (1999) have extensively characterized 

cellular co-localization of RGS7 with Gαq/11 immunohistochemically throughout 

the adult rat brain and reported a heterogeneous and overlapping regional 

distribution (Khawaja, et al., 1999).  
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We have previously reported that desensitization of 5-HT2A receptor 

signaling with chronic treatment of olanzapine is accompanied by activation of 

STAT3 and an increase in RGS7 protein levels in rat frontal cortex (Muma, et 

al., 2007). In addition, we found that 24-h treatment with olanzapine causes 

desensitization of 5-HT2A receptor signaling and an increase in membrane-

associated RGS7 protein that is dependent on activation of the JAK2-STAT3 

pathway in A1A1v cells, a cell line endogenously expressing the 5-HT2A 

receptor signaling components (Singh, et al., 2007). However, whether 

activation of JAK-STAT is necessary for olanzapine induced desensitization 

and the mechanisms by which activation of the JAK-STAT pathway increase 

RGS7 protein are not currently known. Therefore, it is important to determine 

not only the role of the JAK-STAT pathway but also the mechanisms 

underlying up-regulation of RGS7 protein in response to antipsychotic 

treatment to help identify new targets for therapeutic intervention.  

Increases in RGS7 protein levels could be mediated by several 

mechanisms for example, RGS7 binding to Gβ5 is reported to increase 

stability of each protein (Chen, et al., 2003) such that an increase in Gβ5 could 

increase RGS7 protein levels. Another possible mechanism is a direct 

increase in transcription of RGS7 thereby increasing RGS7 mRNA levels.  

We previously reported that inhibition of activated JAK-STAT pathway, 

completely blocked the increase in RGS7 protein levels by olanzapine (Singh, 

et al., 2007). Although, transcriptional activity of STAT3 as been extensively 
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reported for various genes (Aaronson and Horvath, 2002;Kisseleva, et al., 

2002;Schindler, 2002), STAT3 has not been identified as a transcription factor 

for RGS7. STAT3-mediated regulation of gene expression is associated with 

the presence of the consensus element TTCN2-4GAA upstream of the 

transcription start site (Ehret, et al., 2001;Wrighting and Andrews, 2006). 

Genomic sequence analysis of rat RGS7 revealed that there are multiple sets 

of TTCN2-4GAA sequences. Thus, it is possible that STAT3 is a transcription 

factor for the RGS7 promoter.  

Based on our previous reports that the olanzapine-induced increases 

in RGS7 protein levels are dependent on activation of the JAK-STAT 

pathway, we hypothesize that STAT3 is a transcription factor for RGS7 and is 

directly responsible for the increase in RGS7 protein levels by olanzapine 

treatment.  In this study, we also examined whether another atypical 

antipsychotic, clozapine and a selective 5-HT2A receptor antagonist, 

MDL100907, also activate the JAK-STAT pathway and increase RGS7 

expression. Lastly, we determined whether activation of JAK-STAT pathway 

is necessary for desensitization of 5-HT2A receptor signaling by atypical 

antipsychotics.  

Materials and Methods 

Drugs: 

Olanzapine and AG490 were purchased from Torrent Research 

Chemicals Inc., ON, Canada. MDL100907 was kindly provided by Sanofi 
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Aventis, Bridgewater, NJ. Clozapine was purchased from TOCRIS, Ellisville, 

MO. Olanzapine was dissolved in 20% glacial acetic acid and the pH was 

adjusted to 6.5 with 10M NaOH as described in previous chapter. AG490, 

MDL100907 and clozapine were dissolved in 100% DMSO to obtain the 

desired concentration for individual treatments with each drug. (-)1-(2,5-

dimethoxy-4-iodophenyl)-2-aminopropane (DOI) was purchased from Sigma-

Aldrich; St. Louis, MO. HBSS mix (1X HBSS, 20mM LiCl2, and 20mM 

HEPES) was used to dissolve DOI. A stock solution of 100µM clozapine was 

prepared in DMSO. For clozapine treatment each group was added equal 

volume (10µl) in 10 ml of cell culture media of either drug or vehicle (equal 

volume of DMSO was added to each group).   

 

Cell Culture:   

A1A1 cells, a cortical cell line, that endogenously expresses 5-HT2A 

receptors and its downstream components, were used for all experiments 

(generously donated by Dr. William Clarke and Kelly Berg, University of 

Texas Health Science Center, San Antonio, TX). Cells were grown in the 

charcoal-treated serum to diminish serotonin in the media 24 h before 

treatment with olanzapine, clozapine, or MDL100907. Cells were treated with 

either vehicle or drugs for 24 h. 

 

 

 100



Cell fractionation:   

Cell lysates were separated into membrane and cytosol fractions using 

centrifugation as previously described (Tucker, 2004;Singh, et al., 2007). 

Briefly, cells were washed once with PBS containing phosphatase inhibitors, 

followed by incubation in hypotonic buffer containing 0.25M sucrose, 50mM 

Tris-HCl, 5mM EDTA, and protease inhibitor cocktail (Sigma-Aldrich; St. 

Louis, MO) for 15 min on ice before lifting them with a cell scrapper. Cells 

were spun at 500xg at 40C to remove cell debris and then sonicated three 

times for 10 sec to make a cell homogenate. The homogenate was spun at 

100,000xg for 45 min at 40C to produce a pellet, which is composed of 

membrane fraction, and a supernatant, which is the cytosol fraction. The 

pellet was reconstituted with hypotonic buffer.  The protein concentration was 

assessed with bicinchoninic acid protein assay kit (Pierce Chemical, 

Rockford, IL).  

 

Western Analyses:   

Equal amounts of protein from vehicle-control and drug-treated 

samples were separated on 10% SDS polyacrylamide gels. Proteins were 

transferred to nitrocellulose membrane for 2 h at 100V.  Non-specific binding 

to the membranes was blocked either with TBS containing 5% (w/v) nonfat 

dry milk with 0.1% Tween 20 (TBST) or in PBS containing 5% (w/v) nonfat dry 

milk. The following primary antibodies were used: anti-RGS7 (Polyclonal 
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antibody, Upstate Biotechnology, Inc., Lake Placid, NY), anti-phospho-JAK2 

(polyclonal antibody, Affinity Bioreagent, CO), anti-JAK2 (polyclonal antibody, 

Upstate Biotechnology, Inc., Lake Placid, NY), and anti-actin (monoclonal 

antibody MP Biomedicals, Aurora, OH). Prior to incubation with a second 

primary antibody, blots were stripped with Restore western blot stripping 

buffer (Pierce, Rockford, IL) by incubating at 370C for 25 min.  After 

incubation, blots were removed from stripping buffer, washed three times for 

10 min each with TBS or PBS containing 0.1% Tween20 (TBST or PBST) and 

blocked with 5% milk in TBST or PBST for 1 hr at room temperature. Protein 

bands were analyzed densitometrically using Scion Image software (Scion 

Corporation, Frederick, MD). The gray scale density readings were calibrated 

using a transmission step-wedge standard. The integrated optical density 

(IOD) of each band was calculated as the sum of the optical densities of all 

the pixels within the area of the band outlined. The IOD for the film 

background was subtracted from the IOD for each band. Each sample was 

measured in triplicate. RGS7 protein was normalized to actin protein and 

phosphoproteins were normalized to the corresponding total protein levels. 

Protein levels from treated cells were normalized to vehicle-treated cells for 

each western blot analysis.  
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Inositol phosphate (IP) accumulation assay:  

The assay was performed as previously described (Singh, et al., 

2007b). Briefly, cells were seeded in 24 well plates at a density of 40,000 

cells/well. Cells were treated with vehicle or different concentrations of 

clozapine for 24 hr in serum-free DMEM media during the same 24-hr period; 

cells were labeled with 0.5 µCi [3H] myoinositol/well. Following treatment and 

labeling, cells were washed 4 times with HBSS mix containing 20mM LiCl2, 

and 20 mM HEPES, then incubated with 500 µL of same buffer at 370C for 15 

min. Following the incubation, cells were challenged with 100 µM DOI for 30 

min. Media was removed with 10mM ice-cold formic acid after the challenge 

treatment, and incubated on ice for 1 hr. AG1-X8 (Bio-Rad) resin columns 

were prepared as follows: columns were washed once with 3 ml of 3 M-

ammonium formate/100 mm formic acid, twice with 5 ml of 10 mm formic 

acid/10 mm inositol. Once the columns were drained out completely, samples 

were loaded into the column and allowed to enter into the resin. Columns 

were then washed once with 5 ml of 10 mM formic acid/10 mM inositol, twice 

with 5 ml of 60 mM sodium formate/ 5 mM borax. After washing, samples 

were eluted with 5 ml of 1 M ammonium formate/ 100 mM formic acid into 

scintillation vials, 12 ml of scintillation cocktail was added into each vial, 

mixed thoroughly and counted in a scintillation counter.  
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PLC Assay:   

Since preincubation with AG490 interferes with [3H] myoinositol 

incorporation into A1A1v cells, we used an alternative, ex vivo, method to 

isolate membranes from control and treated cells and incubate the membrane 

fraction with [3H] myoinositol.  This method involves testing the enzymatic 

activity of PLC present in isolated membranes thereby avoiding any problems 

with incorporation of [3H] myoinositol in presence of AG490. To harvest cells, 

culture plates were washed twice with Tris buffer (25 mM Hepes-Tris, 1mM 

EGTA, pH 7.4, containing protease inhibitor cocktail). Cells were harvested by 

scraping cells off the plates, and then cells were centrifuged at 20,000g for 20 

min at 4°C. The pellet was resuspended in Tris buffer and stored at -80°C. 

Homogenates were thawed on the day of the PLC assay and homogenized 

by hand with five up-and-down strokes with a glass on glass homogenizer 

and then centrifuged at 20,000g for 20 min. After centrifugation, the pellet was 

resuspended in 50 mM Tris buffer and centrifuged at 20,000g for 10 min. The 

resultant pellet was washed 3X and resuspended in assay buffer (25 mM Tris 

pH 7.4, 3 mM EGTA, and 10 mM LiCl).  

5-HT- and GTP S-stimulated PLC activity in cell membranes were 

measures as described previously (Damjanoska, et al., 2003;Wolf and 

Schutz, 1997). Protein concentrations were determined using a bicinchoninic 

acid protein assay kit (Pierce Chemical). The membrane protein was diluted 

to an approximate concentration of 30 µg/100 µl with  buffer containing 25 
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mM HEPES-Tris, 3 mM EGTA, 10 mM LiCl, 12 mM MgCl2, 1.44 mM sodium 

deoxycholate with 0.5 µM GTP S (a nonhydrolyzable form of GTP), 100 nM 

free Ca2+, 1mM unlabeled phosphatidylinositol, and 100 µM [3H] 

phosphatidylinositol (PerkinElmer Life and Analytical Sciences). A 

concentration of 100 µM 5-HT or 1 µM of bradykinin was used to stimulate 

PLC activity. 5-HT-stimulated PLC activity is a selective measure of 5-HT2A 

receptor function in A1A1v cells as previously demonstrated using selective 

antagonists (Shi, et al., 2007). Bradykinin was used to investigate the 

selectivity of olanzapine-induced desensitization of 5-HT2A receptor signaling.  

 

RNA Isolation and Reverse Transcription:  

Total RNA was isolated using the RNeasy Mini Kit (Qiagen Sciences, 

Valencia, CA) according to the manufacturer’s protocol. Total RNA was 

quantitated using a spectrophotometer and optical density (OD) 260/280 nm 

ratios were determined. Quality of the RNA was further accessed with a 

formaldehyde-agarose gel. First strand cDNA was synthesized using random 

hexamers and Superscript II Reverse Transcriptase from Invitrogen according 

to the manufacturer’s protocol. Reactions were incubated at 250C for 2 min, 

250C for 10 min, and 420C for 50 min and inactivated by heating at 700C for 

15 min in an M J Mini, personal thermal cycler (BIO-RAD).  
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Real-Time PCR:  

The GAPDH (sense 5’-tggagtctactggcgtcttcac-3’; antisense 5’-

ggcatggactgtggtcatga-3’) and RGS7 (sense 5’-gaagatgagttgcaccgacaga-3’; 

antisense 5’-ggtctttcagtgcctcatccat-3’) primer sets were synthesized by IDT, 

Inc (Coralville, IA).  PCR amplification was performed with 7500 Real-Time 

PCR System using SYBR green PCR master mix (Applied Biosystems, 

Foster city, CA). The PCR parameters used were a 10 min denaturation cycle 

at 95°C, 40 cycles of amplification at 95°C for 15 sec, and 

annealing/extension at 60°C for 1 min. Real-Time PCR was performed with 

25 µL reaction mixture of cDNA, primers and SYBR green master mix. 

 

RNA Data Analysis:  

Comparative Ct (∆∆CT) method was used for analysis of all real-time 

PCR data.  ∆CT values were calculated by normalizing CT values of RGS7 to 

GAPDH from vehicle and antagonist-treated groups. The extent of the 

response is determined by 2mean(∆∆CT), and the relative degree of response is 

calculated by 2−mean (∆∆CT). Results are expressed as fold change in RGS7 

mRNA levels for clozapine, MDL100907 or olanzapine-treated cells with 

respect to vehicle-treated cells. Data presented are from four independent 

experiments performed in triplicate. 
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Chromatin Immunoprecipitation Assay (ChIP):  

The chromatin immunoprecip -itation (ChIP) assay was performed using a kit 

(Millipore, Billerica, MA) according to the manufacturer’s protocol. Following 

crosslinking, the DNA/protein complexes were sheared by sonication. One 

percent of sheared DNA/protein complex was kept and used as an input DNA 

sample. Anti-STAT3 rabbit polyclonal antibody (Sigma, Saint Louis, MO), or 

normal rabbit IgG (Millipore, Billerica, MA) was used for immunoprecipitation. 

Immunoprecipitated DNA/protein complexes were analyzed using polymerase 

chain reaction (PCR) with following primer sets flanking the five potential 

STAT3 binding sites (site 1-site 5): 

F1 5’-GAAGTCAGGAGTCAGTCAAAGC-3’,  

R1 5’- ACTCCTTGGCTTCAACTAT GG-3’ 

F2 5’-AAGCTGGGTACGTTTCAGG-3’, R2 5’-AATTTGGAGGCCTGGACC-3’ 

F3 5’-ATCCTTGGCACTGGACACC-3’, R3 5’-GGGCTAAGATAATGGGAGG-3’  

F4 5’-GATGGTTTGCCACTTGTGC-3’, R4 5’- CTACTCTGCAGCCATCTGC-3’ 

F5 5’- ACATTCCAACAGGACCGG-3’, R5 3’-ATCGGTCATGGCATCTCACC-3’ 

A previously identified STAT3 binding region from the hepcidin gene was 

used as a positive control (F 5’- GAGGGTGACACAACCCTGTT-3’, R 5’-

ACCGAGTGACA GTCGCTTTT-3’) (Wrighting and Andrews, 2006). Two 

microliter of precipitated DNA was amplified using Taq polymerase (New 

England, Biolabs, Ipswich, MA). The conditions for PCR amplification were as 
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follows: 40 cycles of 940C for 15 s, 550C for 15 s, 720C for 45 s, and the 

amplimers were resolved on 1% agarose gels containing ethidium bromide. 

 

Statistics:   

All statistical analyses were performed using GB-STAT School Pak 

(Dynamic Microsystems, Silver Spring, MD). Data are expressed as means ± 

SEM. For Western blots and IP accumulation assay, data were analyzed 

using a using a one-way analysis of variance, followed by a Newman–Keuls' 

post hoc analysis. RT-PCR and PLC activity assay was analyzed using a two-

way analysis of variance, followed by a Newman–Keuls' post hoc analysis.  

 

Results 

IP3 accumulation assay:  

Agonist-stimulated IP3 accumulation can be used to monitor 

desensitization of 5-HT2A receptor signaling (Singh, et al., 2007). Treatment 

with different concentrations of clozapine for 24 h significantly decreased 

(F(4,14) = 104.43, p < 0.0001) DOI (10-4 M) stimulated IP3 accumulation in a 

dose dependent manner compared to vehicle (DMSO) treated cells (figure 

11). A post-hoc analysis revealed a decrease in IP3 accumulation by 39% 

with 5 µM (p < 0.01), 53% with 20µM (p < 0.01), 64% with 30µM (p < 0.01), 

and 80% with 40 µM (p<0.01) treatment. This decrease suggests a 
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desensitization of 5-HT2A-mediated receptor signaling in A1A1v cells by 

clozapine.  

 

Clozapine and MDL100907 treatment increase phosphorylation of JAK2:  

We have shown that the 5-HT2A receptor inverse agonist, olanzapine 

causes phosphorylation of JAK2 kinase (Singh, et al., 2007). In order to 

investigate whether the effect is specific to olanzapine or is a general effect of 

atypical antipsychotics and more specifically 5-HT2A receptor antagonists, we 

treated A1A1v cells for 24h with either clozapine, MDL100907 or drug 

vehicles. Membrane fractions prepared from vehicle, clozapine (20µM), and 

MDL100907 (1µM) treated cells were analyzed by western blot with an anti-

phospho-JAK2 antibody, then stripped and reprobed with an anti-JAK2 

antibody (figure 12). Tyrosine phosphorylation of JAK2 was significantly 

increased (F(2,8) = 39.57, p < 0.001). A post-hoc analysis revealed that pJAK 

levels were increased to 183 ±13 % of the control levels with MDL100907 and 

196±18% of the control levels with clozapine treated cells, whereas total 

JAK2 protein levels did not show any appreciable change.  

 

Clozapine and MDL100907 increase RGS7 protein levels:  

Next, we wanted to determine whether this increase in JAK2 

phosphorylation with both clozapine and MDL100907 is also accompanied by 

increases in RGS7 protein levels as previously observed with olanzapine 
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(Singh, et al., 2007). In order to monitor the changes in RGS7 protein levels, 

membrane fractions of vehicle, clozapine, or MDL100907-treated cells were 

analyzed by western blot with anti-RGS7 antibody (figure 13). We found that 

RGS7 protein levels were significantly increased (F(2,8) = 95.99, p < 0.001) by 

drug treatments.  A post-hoc analysis revealed that RGS7 protein levels were 

increased to 176 ±16 % of the control levels with MDL100907 and 194±11 in 

clozapine treated cells.  

 

JAK2 inhibitor partially reversed the olanzapine-induced desensitization 

of 5-HT2A receptor signaling:  

We have previously shown that olanzapine-induced activation of the 

JAK2-STAT3 pathway is necessary for the increase in RGS7 protein levels; 

next we wanted to determine if activation of the JAK2-STAT3 pathway is 

necessary for olanzapine-induced desensitization of 5-HT2A receptor 

signaling. However, AG490 interfered with the measurements of IP3 

accumulation in vivo. Therefore, we decided to use an alternative ex vivo 

method in which we isolated membranes from AG490 pretreated, control and 

olanzapine-treated cells and then incubated them with [3H] myoinositol. This 

method involves measuring the enzymatic activity of PLC present in isolated 

membranes thereby avoiding any interference of preincubation of AG490 on 

incorporated [3H] myoinositol. Olanzapine-induced changes in PLC activity 

were monitored in response to stimulation with 5-HT, bradykinin, or GTPγS. 5-
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HT stimulation measures the ability of 5-HT2A receptors to stimulate PLC 

activity via Gαq/11 activation where as GTPγS directly binds to Gαq/11 to 

activate PLC. Bradykinin was used to investigate the specificity of olanzapine-

induced desensitization response by examining the effects on another Gq/11 

linked receptor system. Olanzapine treatment significantly decreased (by 

55%, p<0.01). PLC activity stimulated with serotonin. AG490 alone had no 

effect on PLC activity (figure 14A).  However, pretreatment with AG490 

significantly attenuated the olanzapine-induced decreases in PLC activity 

(p<0.05) suggesting that the JAK-STAT pathway is necessary for the full 

olanzapine-induced desensitization of 5-HT2A receptor signaling. Two-way 

ANOVA indicates a main effect of olanzapine on PLC activity (F(1,19) = 41.18, 

p < 0.001),  a main effect of AG490 (F(1,19) = 4.23, p < 0.05), but no significant 

interaction was observed between olanzapine and AG490 (F(1,19) = 2.92, 

p < 0.391). In addition, olanzapine or AG490 treatment had no effect on 

GTPγS-stimulated PLC activity (figure 14B). When olanzapine-treated cells 

were stimulated with bradykinin (figure 14C); olanzapine treatment had no 

effect on bradykinin-stimulated PLC activity confirming that olanzapine 

treatment specifically desensitizes 5-HT2A receptor signaling. 
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Olanzapine, Clozapine and MDL100907 increase mRNA levels of RGS7 

protein:  

To investigate whether the increase in RGS7 protein levels is 

associated with an increase in RGS7 mRNA levels, cells were treated in a 

similar fashion as in previous experiments for 24h with vehicle, olanzapine, 

clozapine, or MDL100907. Total RNA was isolated from each sample and 

reverse transcribed with random hexamers to make cDNA. Using that cDNA, 

a real-time PCR analysis was performed with specific primers for RGS7 and 

GAPDH.  The vehicle and drug-treated RGS7 mRNA levels were normalized 

to GAPDH. We found a statistically significant (F(1,15) = 43.43; p < 0.001) 

increase in RGS7 mRNA levels. A post-hoc analysis revealed that RGS7 

mRNA levels were increased to 153±11% with olanzapine (figure 15A), 

175±14 % with clozapine, and 144±17 % with MDL100907 treatment (figure 

15B) over their respective vehicle-treated cells.  

 

STAT3 binds to the putative RGS7 promoter region:  

To determine if STAT3 binds to potential STAT3 consensus site in cells, we 

used a ChIP approach. A bioinformatic analysis of the 10 kb promoter region 

of rat RGS7 identified five potential STAT3 binding sites based on the 

consensus sequence-TTCN2-4GAA.  Specific primers were designed that 

flank each of these consensus sites and were named site number one 

through five (figure 6). A1A1v cells were treated with vehicle (20% acetic 
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acid) or olanzapine (300nM) for 24h as previously described. 

Immunoprecipitates isolated from either vehicle or olanzapine-treated cells 

were used to perform ChIP analysis. Of the five potential STAT3 binding sites 

identified, only site 2 tested positive in this analysis (Figure 6).  Moreover, 

treatment with olanzapine produced increased STAT3 binding at this site. Site 

2 begins 2.34kb upstream of the RGS7 transcription start site. The primers 

specific for hepcidin, used as a positive control, also tested positive using 

STAT3 immunoprecipitates.  In contrast, when the beads alone or pre-

immune IgG was used to produce chromatin no amplimer was detected. 
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Figure 11. Clozapine decreases DOI-stimulated IP accumulation. A1A1v cells 

were treated with either vehicle (DMSO) or with various concentrations of 

clozapine for 24 h, and incubated with [3H]-myoinositol for same 24 h period. 

Both vehicle- and clozapine-treated cells were stimulated with 10-4 M DOI. 

Bar graph represents DOI-stimulated IP accumulation normalized to DOI-

stimulated IP accumulation in vehicle-treated cells from four independent 

experiments.  IP accumulation was significantly decreased in clozapine-

treated cells compared to vehicle-treated cells. * indicates significantly 

different from vehicle-treated cells at p < 0.01. 
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Figure 12.  Clozapine and MDL100907 stimulate JAK2 phosphorylation. 

A1A1v cells were treated either with vehicle (DMSO) or 20 µM clozapine or 

1µM MDL100907 for 24 h. Membrane fractions of cells were analyzed by 

western blot with anti-phosphoJAK2 antibody, stripped and reprobed with 

anti-JAK2 and anti-actin antibodies. Bar graph represents quantification of 

phosphoJAK2 protein levels divided by JAK2 protein levels from five 

independent experiments. Phosphorylation of JAK2 was significantly 

increased (p<0.05) with both clozapine and MDL100907 treatment compared 

with vehicle treated cells. * indicates significantly different from vehicle-treated 

cells at p < 0.05. 
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Figure 13. Clozapine and MDL100907 treatment increases RGS7 levels. 

A1A1v cells were treated either with vehicle (DMSO) or 20 µM clozapine or 

1µM MDL100907 for 24 h. Membrane fractions of cells were analyzed by 

western blot with an anti-RGS7 antibody, stripped and reprobed with an anti-

actin antibody as a loading control. Bar graph represents quantification of 

RGS7 protein levels divided by actin protein levels from four independent 

 116



experiments. RGS7 protein levels were significantly increased (p<0.05) with 

clozapine and MDL100907 compared to vehicle-treated cells. * indicates 

significantly different from vehicle-treated cells at p < 0.05. 
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(See next page for figure legend) 
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Figure 14. A JAK inhibitor partly attenuated the olanzapine-induced decrease 

in PLC activity.  A1A1v cells were pretreated for 1h with the 30µM AG490 

prior to treating with either vehicle (20% acetic acid) or 300nM olanzapine for 

24 h. (A) 5-HT-stimulated PLC activity was significantly (p<0.01) reduced by 

olanzapine treatment  compared to vehicle-treated control (*indicates 

significantly different from vehicle-treated control at p < 0.01). AG490 alone 

did not have any effect on PLC activity. However, in cells pretreated with 

AG490, the olanzapine-induced decrease in PLC activity was significantly 

attenuated (p<0.05) (B) GTPγS-stimulated-PLC activity was not altered either 

by the olanzapine or AG490 treatments. (C). Olanzapine treatment had no 

effect on Bradykinin-stimulated PLC activity, whereas 5-HT-stimulated PLC 

activity was significantly reduced suggesting olanzapine treatment selectively 

affect 5-HT2A receptor mediated-PLC activity. 
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(See next page for figure legend) 
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Figure 15. Olanzapine, clozapine and MDL100907 increase RGS7 mRNA 

levels. A1A1v cells were treated either with vehicle (20% acetic acid), 300nM 

olanzapine, vehicle (DMSO), 20 µM clozapine or 1µM MDL100907 for 24 h. 

Total RNA was isolated from vehicle-treated control or drug-treated cells, and 

equal amounts of cDNA were reverse-transcribed. Bar graph represents 

quantification of RGS7 mRNA levels normalized to GAPDH levels from five 

independent experiments and represents the fold change over control. RGS7 

mRNA levels were significantly increased in olanzapine, clozapine and 

MDL100907-treated compared to vehicle-treated cells (p<0.05). * indicates 

significantly different from vehicle-treated cells at p<0.05. 
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Figure 16. STAT3 binds to the putative RGS7 promoter region at site 2. ChIP 

assays were performed as described in “Materials and Methods” with an anti-

STAT3 antibody, non-immune IgG, or with beads alone.  DNA samples were 

amplified using primer pairs that flanked all five potential STAT3-binding sites 

(site1 – site 5). Primers that amplify the STAT3 binding site previously 

identified in the hepcidin gene were used as a positive control. Non-

precipitated genomic DNA (input) was used as a positive control. 

Amplification was not observed in lanes loaded with samples 

immunoprecipitated with beads alone, i.e., without the STAT3 antibody, and 
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non-specific IgG in place of the STAT3 antibody confirming specificity of the 

reaction with the STAT3 antibody.  For brevity, only site 2 and site 3 results 

are shown. 
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Discussion 

 
Atypical antipsychotics have been previously reported to act as inverse 

agonist and to induce desensitization of 5-HT2A receptor signaling (Egan, et 

al., 1998;Egan, et al., 2000;Herrick-Davis, et al., 1998;Rauser, et al., 2001). 

Internalization and down-regulation have been proposed as mechanisms of 

desensitization, (Roth, et al., 1995;Willins, et al., 1998) however, subsequent 

studies provided evidence supporting both internalization- and down-

regulation- dependent and independent desensitization of 5-HT2A receptor by 

atypical antipsychotics (Kuoppamaki, et al., 1995;Hanley and Hensler, 2002). 

It is likely that internalization and down-regulation can contribute to the 

desensitization process but whether they are necessary and sufficient for the 

full desensitization process is not known.  In addition, studies were 

inconclusive regarding the role for transcriptional regulation of 5-HT2A 

receptor down-regulation with antipsychotics (Gray and Roth, 2001). Both, a 

decrease in receptor mRNA in hippocampus, brain stem, and midbrain and 

no change in mRNA levels are reported previously with atypical 

antipsychotics (Burnet, et al., 1996;Doat-Meyerhoefer, et al., 2005).  Thus, 

transcriptional regulation of 5-HT2A receptor by atypical antipsychotics does 

not appear to be responsible for down-regulation leading to the 

desensitization of 5-HT2A receptor signaling.  

Consistent with previous reports that atypical antipsychotics induce 

desensitization of 5-HT2A receptor signaling, (Gray and Roth, 2001) we find 
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that olanzapine and clozapine induce desensitization of 5-HT2A receptor 

signaling in A1A1v cells. Olanzapine, clozapine, and MDL100907 increase 

RGS7 mRNA and protein levels as well as the activation of the JAK-STAT 

pathway. We previously found that the increase in RGS7 protein expression 

in response to olanzapine treatment is dependent of JAK-STAT signaling 

(Singh, et al., 2007). We now further report that the desensitization response 

on the 5-HT2A receptor signaling, induced by these atypical antipsychotics is 

dependent on JAK-STAT signaling. Olanzapine-induced decreases in PLC 

activity, monitored as an index of 5-HT2A receptor responsiveness (i.e., 

desensitization), were significantly attenuated by pretreatment with a JAK2 

kinase inhibitor. These data suggest that activation of the JAK-STAT pathway 

is necessary for atypical antipsychotics-induced 5-HT2A receptor-mediated 

PLC activity. 

In addition to 5-HT2A receptors, atypical antipsychotics also have high 

affinity for other GPCRs for example, other 5-HT receptors (e.g., 5-HT1A, 5-

HT2C, 5-HT6, and 5-HT7) (Meltzer, et al., 1989;Roth, et al., 1992;Meltzer, 

1999;Seeger, et al., 1995), the dopamine D4 receptor (Van Tol, et al., 

1991;Roth, et al., 1995), all five muscarinic receptors (m1-m5) (Peroutka and 

Synder, 1980;Zeng, et al., 1997), and several adrenergic and histamine 

receptors (Peroutka and Synder, 1980). MDL100907 initially characterized as 

a selective antagonist of 5-HT2A receptor, has been used to delineate 

antipsychotic responses mediated specifically by 5-HT2A receptor (Olijslagers, 
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et al., 2005;Wolff and Leander, 2000;Bhagwagar, et al., 2006) and 

desensitizes 5-HT2A receptor signaling (Rauser, et al., 2001;Shi, et al., 2007). 

In this study, we report that MDL100907 stimulated activation of the JAK-

STAT pathway and increased RGS7 protein and mRNA levels suggesting 

that antagonism of 5-HT2A receptors is sufficient to induce these changes 

caused by atypical antipsychotics.  

RGS proteins reduce G-protein-mediated signaling by acting as guanosine 

triphosphatase (GTPase)-accelerating proteins (GAPs) for Gα subunits 

(Hollinger and Hepler, 2002;Dohlman and Thorner, 1997). Expression of 

RGS7 protein in rat frontal cortex is well documented (Zhang and Simonds, 

2000c;Krumins, et al., 2004) and decreased 5-HT2A receptor signaling via 

direct interaction of RGS7 protein with Gαq has been characterized in different 

systems (DiBello, et al., 1998;Ghavami, et al., 2004). Furthermore, an 

increase in RGS7 protein following both olanzapine and clozapine treatment 

would increase the termination rate of 5-HT2A receptor- Gαq/11 protein 

signaling by more rapidly hydrolyzing GTP, and could thereby produce or 

contribute to the desensitization response. When GTPγS, a non-hydrolysable 

GTP analog is used to activate G proteins, PLC activity is not affected by 

RGS proteins, since RGS proteins are not able to hydrolyze GTPγS. 

Therefore, the differential effects of olanzapine on receptor versus G-protein 

activation of PLC activity are consistent with an increase in RGS7 protein as 

an underlying mechanism for olanzapine-induced desensitization. The 
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increased levels of RGS7 could reduce 5-HT-stimulated PLC activity as we 

found in olanzapine treated cell membranes; however, GTPγS stimulated-

PLC activity was not altered by olanzapine consistent with increase RGS 

proteins underlying the change in response. 

Numerous studies have reported a significant decrease in RGS4 

expression in the prefrontal cortex of schizophrenic subjects (Mirnics, et al., 

2001;Erdely, et al., 2006;Bowden, et al., 2007;Gu, et al., 2007). Expression of 

RGS4 and RGS7 have been previously noted to be independent (Krumins, et 

al., 2004). Like RGS7 proteins, RGS4 also regulates 5-HT2A receptor 

signaling. Atypical antipsychotic-induced increases in RGS7 levels observed 

in our studies might restore the 5-HT2A receptor signaling duration to 

physiological levels by substituting for the diminished RGS4 protein.  

Atypical antipsychotics could increase RGS7 levels by either increased 

stability of RGS7 protein or by increased transcription of RGS7 mRNA. RGS7 

binding to Gβ5 is reported to increase the stability of each protein (Chen, et al., 

2003). In addition, RGS7 phosphorylation and subsequent binding to 14-3-3 

sequesters RGS7 in the cytoplasm (Burchett, 2003). Therefore, an increase 

in phosphorylation of RGS7 or increased expression of 14-3-3 or Gβ5 could 

increase the levels of RGS7 in the cytoplasm. Our real-time PCR data 

suggest that the increase in RGS7 levels by olanzapine, clozapine and 

MDL100907 could be directly mediated by an increase RGS7 mRNA via 

activation of the JAK-STAT pathway. STAT3 regulates a variety of biological 
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processes, functioning at both transcriptional and non-transcriptional levels to 

influence cell growth, survival and metabolism (Inghirami, et al., 

2005;Leeman, et al., 2006).  From a genomic sequence analysis of rat RGS7, 

we have identified multiple sets of the STAT3 consensus binding element, 

TTCN2-4GAA, (Decker, et al., 1997;Ehret, et al., 2001), suggesting that 

STAT3 could be a possible transcription factor for the RGS7 promoter.  Using 

a ChIP analysis, we found one of the STAT3 consensus binding elements 

located at 2.34kb upstream of transcription start site strongly binds with 

STAT3 in response to olanzapine treatment. STAT3 binding to the RGS7 

gene along with an increase in mRNA levels of RGS7 suggests the possibility 

that STAT3 is a transcription factor for RGS7. The promoter region of RGS7 

is not yet identified, however,  it is usually present upstream of the 

transcription start site consistent with our identified STAT3 binding site 2.34kb 

upstream from the transcription initiation site. Taken together, these results 

are consistent with our hypothesis that activation of JAK-STAT pathway by 

atypical antipsychotics and the subsequent increase in RGS7 expression is 

an underlying mechanism for desensitization of 5-HT2A receptor signaling.  

In our previous studies (Singh, et al., 2007;Muma, et al., 2007) we have 

reported olanzapine-induced activation of the JAK-STAT pathway.  In this 

study we demonstrate that activation of the JAK-STAT pathway is necessary 

for full desensitization of 5-HT2A receptor signaling by atypical antipsychotics 

in A1A1v cells. While the precise mechanism of JAK-STAT activation by 

 128



atypical antipsychotics is not determined, it has been reported that 5-HT2A 

receptor associates in a complex with JAK2 and STAT3 (Guillet-Deniau, et 

al., 1997). Other studies have reported that 5-HT activates JAK2, JAK1, and 

STAT1 via the 5-HT2A receptors (Banes, et al., 2005). Furthermore, atypical 

antipsychotics have also been reported to activate other signaling cascades 

for example, activation of ERK1/2 pathways in the rat frontal cortex 

(Fumagalli, et al., 2006), Akt/PKB and P38 pathways in PC12 cells (Lu, et al., 

2004), and GSK3α/β in the rat frontal cortex (Kang, et al., 2004;Roh, et al., 

2007). Although, atypical antipsychotics have been extensively characterized 

as an inverse agonist/antagonist of 5-HT2A receptor, activation of JAK-STAT 

in our studies clearly indicates that besides being an antagonist, atypical 

antipsychotics are agonist for the JAK-STAT pathway. Our studies 

demonstrate that agonist activity as demonstrated by activation of JAK-STAT 

pathway and antagonist effects at the PLC enzyme occur simultaneously. 

Previous studies have demonstrated selective agonism, where one agonist 

stimulates one pathway preferentially over another (Kenakin, 2007).  Our 

studies extend the diversity of signaling by a single receptor suggesting that a 

ligand like olanzapine or clozapine can be an agonist for one 5-HT2A receptor 

mediated pathway, JAK-STAT, and simultaneously an antagonist at the Gq/11-

PLC pathway.  

Overall, our data suggest that desensitization of 5-HT2A receptor 

signaling by atypical antipsychotics requires activation of the JAK-STAT 
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pathway. In addition, activation of the JAK-STAT pathway and increases in 

RGS7 expression by transcriptional activity of STAT3 is likely to contribute to 

the full desensitization response of 5-HT2A receptors signaling. However, 

further studies are needed to confirm the transcriptional activity of STAT3 on 

putative promoter site of RGS7.  
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        CHAPTER V 

JAK-STAT PATHWAY IN OLANZAPINE-INDUCED 

DESENSITIZATION OF 5-HT2A RECEPTOR SIGNALING IN RAT BRAIN 

 

Abstract 

We previously demonstrated that chronic treatment with olanzapine 

causes desensitization of 5-HT2A receptor signaling in the rat frontal cortex 

and this desensitization response is associated with increases in RGS7 

protein levels and activation of STAT3 (Muma, et al., 2007). We now report 

that desensitization of 5-HT2A receptor signaling induced by olanzapine is 

dependent on activation of the JAK-STAT pathway. Pretreatment with a JAK2 

inhibitor significantly attenuated 5-HT2A stimulated-PLC activity. In the current 

study, we found that olanzapine treatment increased RGS7 protein levels 

(211±19% of control levels), RGS7 mRNA levels (188±13%), and activation of 

JAK2 (198±14% of control levels) in rat frontal cortex. Furthermore, inhibition 

of JAK activation also prevented the olanzapine-induced increases in RGS7 

mRNA and protein levels. We verified that treatment with AG490 reduced 

phosphorylation of JAK2. The functional status of the 5-HT2A receptor 

pathway in the hypothalamic paraventricular nucleus (PVN) was examined 

using 5-HT2A receptor-stimulated increases in plasma hormone levels. 

Plasma oxytocin, adrenocorticotrophic hormone (ACTH) and corticosterone 

measurements showed that olanzapine injections for 7 days caused 
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desensitization of 5-HT2A receptor signaling (oxytocin response decreased 

81.63±4.37%; ACTH response decreased 38.68±12.43%; corticosterone 

response decreased 54 ± 6.41%). Surprisingly, oxytocin and corticosterone 

levels were also decreased in a dose-dependent manner by the JAK2 

inhibitor whereas ACTH levels were not altered. Taken together, these results 

suggest that the olanzapine-induced increase in RGS7 expression is 

mediated by activation of JAK-STAT and is necessary for olanzapine-induced 

desensitization of 5-HT2A receptor signaling in the frontal cortex. Although, 

decreases in plasma hormone levels confirmed olanzapine-induced 

desensitization of 5-HT2A receptor signaling in the hypothalamus, the precise 

role of the JAK-STAT pathway in 5-HT2A-stimulated hormonal release 

requires further investigation.   

 

Introduction 
 

Evidence implicates involvement of serotonin 5-HT2A receptors in a 

number of psychiatric disorders, including schizophrenia, depression, and 

anxiety(Nichols, et al., 1994;Naughton, et al., 2000). Furthermore, atypical 

antipsychotics are reported to bind with high affinity at 5-HT2A receptors as 

determined in cell culture (Meltzer, et al., 1989) and in vivo (Zhang and 

Bymaster, 1999). Although, atypical antipsychotics bind to diverse population 

of receptors (Meltzer, et al., 1989;Altar, et al., 1986;Zhang and Bymaster, 

1999;Roth, et al., 2004), therapeutic benefits associated with atypical 
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antipsychotics are attributed, in part, to their ability to antagonize (i.e. 

desensitize) 5-HT2A receptor signaling  (Goyer, et al., 1996). In addition, 

further evidence for the involvement of 5-HT2A receptors in the mechanisms of 

action of atypical antipsychotics came from reports of polymorphisms in the 

promoter and coding regions of the 5-HT2A receptor gene. Schizophrenics 

with this polymorphism were reported to respond poorly to clozapine 

treatment suggesting that genetic variation at 5-HT2A receptors may influence 

clozapine response and strengthens the candidacy of these receptors as 

important therapeutic targets (Yu, et al., 2001;Arranz, et al., 1996;Masellis, et 

al., 1998).  

Several studies have reported the desensitization and down-regulation 

of central 5-HT2A receptor signaling by antagonist in the brain (Blackshear and 

Sanders-Bush, 1982;Gandolfi, et al., 1985;Hensler and Truett, 

1998),however, molecular mechanisms underlying these changes are not 

understood.  In addition, atypical antipsychotics are reported to reduce levels 

of ACTH and cortisol in schizophrenic patients (Cohrs, et al., 

2006;Scheepers, et al., 2001;Hatzimanolis, et al., 1998;Meltzer, et al., 

1989;Hatzimanolis, et al., 1998). Although, monoaminergic mechanisms 

including serotonin and dopamine are known to play an important role in the 

regulation of ACTH and cortisol secretion (Wilcox, et al., 1975;Fuller and 

Snoddy, 1984;Tuomisto and Mannisto, 1985;Lefebvre, et al., 1998), the 

attenuation of cortisol secretion, after subchronic administration of olanzapine 
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and clozapine to schizophrenic patients, has been attributed to 5-HT receptor 

blockade(Scheepers, et al., 2001;Meltzer, et al., 1989;Hatzimanolis, et al., 

1998;Hatzimanolis, et al., 1998).  Furthermore, 5-HT2A receptors in the 

hypothalamic paraventricular nucleus have been shown to mediate the 

neuroendocrine responses to a peripheral injection of DOI, 

intraparaventricular and peripheral injections of the selective 5-HT2A receptor 

antagonist MDL 100,907 dose-dependently inhibit the DOI-induced increases 

in hormone secretions (Zhang, et al., 2002). These results suggest that 

alterations in hormone secretions by atypical antipsychotics may be mediated 

by 5-HT2A receptors and that plasma hormone levels can provide an index of 

the function of 5-HT2A receptor signaling in the hypothalamic paraventricular 

nucleus.  

5-HT2A receptors are coupled through Gq/11 proteins to phospholipase 

C (PLC) (Hide, et al., 1989;Roth, et al., 1998). Upon activation of PLC, 

hydrolysis of phosphatidylinositol 4,5-bisphosphate generates diacylglycerol 

and inositol 1,4,5-trisphosphate (Berridge, 1986). Gαq/11 proteins stimulate 

PLC activity until the bound GTP is hydrolyzed to GDP. The intrinsic GTPase 

activity of Gαq/11 proteins is enhanced by regulators of G protein signaling 

proteins type 4 and 7 (RGS4 and RGS7)(Hepler, et al., 1997;Xu, et al., 1999).  

Activation of various GPCRs like angiotensin ΙΙ, bradykinin, thrombin, 

and 5-HT2A have been reported to induce activation of the JAK-STAT 

pathway under different cellular milieu and in different cell types (Ju, et al., 
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2000;Marrero, et al., 1995;Guillet-Deniau, et al., 1997). Although, the exact 

mechanism by which 5-HT2A receptors activate the JAK-STAT pathway is not 

known, 5-HT2A  receptors associate with JAK and STAT and rapid activation 

of JAK and STAT via phosphorylation in response to serotonin was previously 

reported (Guillet-Deniau, et al., 1997). In addition, chronic exposure to 

cocaine, an inhibitor of serotonin reuptake, was reported to activate JAK2 in 

the rat ventral tegmental area (VTA)(Berhow, et al., 1996). Previously, we 

have reported that daily treatment with olanzapine for 7 days causes 

desensitization of 5-HT2A receptor signaling accompanied by activation of the 

JAK-STAT pathway and increases in RGS7 protein levels (Muma, et al., 

2007). The JAK-STAT pathway regulates expression of a number of genes 

including c-Fos, c-Jun and c-Myc (Burysek, et al., 2002;Cattaneo, et al., 

1999), transcription factors which can then stimulate expression of select 

genes. Consistent with these reports, we have also shown that olanzapine 

treatment in cells in culture causes JAK-STAT dependent desensitization and 

increases in membrane-associated RGS7 protein levels (Singh, et al., 2007). 

The increased membrane-associated RGS7 protein can then increase 

hydrolysis of activated Gαq/11 and could contribute to the desensitization of 5-

HT2A receptor signaling. However, whether olanzapine-induced activation of 

JAK-STAT pathway has any direct impact on desensitization of 5-HT2A 

receptor signaling in vivo is currently unknown.  
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Based on our previous studies, we hypothesized that olanzapine 

induces activation of the JAK-STAT pathway, and subsequent activation and 

translocation of STAT3 to the nucleus increases RGS7 transcription and 

mRNA thereby increasing RGS7 protein levels in the membrane. The 

increased membrane-associated RGS7 protein can then increase hydrolysis 

of activated Gαq/11 and result in desensitization of 5-HT2A receptor signaling. 

We began to test this hypothesis by investigating the impact of blocking the 

JAK-STAT pathway with a specific JAK2 inhibitor, AG490, on olanzapine-

induced desensitization of 5-HT2A receptor signaling in the frontal cortex and 

hormone release in the hypothalamus. Furthermore, we also monitored the 

effect of AG490 on olanzapine-induced increases in RGS7 protein levels and 

the impact of activated STAT3 on levels of RGS7 mRNA and protein in the 

frontal cortex.   

 

Materials and Methods 
 
Animals: 

Male Sprague-Dawley rats (250–275 g; Harlan, Indianapolis, IN) were housed 

two per cage in an environment controlled for temperature, humidity, and 

lighting (7:00 AM–7:00 PM). Food and water was provided ad libitum. Eight 

rats were used per experimental group. All procedures were conducted in 

accordance with the National Institutes of Health Guide for the Care and Use 
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of Laboratory Animals as approved by the Loyola University Institutional 

Animal Care and Use Committee. 

Drugs:

Olanzapine and AG490 were purchased from Torrent Research 

Chemicals Inc., ON, Canada. Olanzapine was dissolved in 20% glacial acetic 

acid and the pH was adjusted to 6.0 with 10M NaOH as described previously 

(Singh et al., 2007). Olanzapine was injected at a dose of 10 mg/kg i.p. 

AG490 was dissolved in 50% DMSO and injected at 2 mg/kg and 10 mg/kg 

s.c. DOI was purchased from Sigma/RBI (Natick, MA) and dissolved in 0.9% 

saline and injected at a dose of 1 mg/kg i.p. for the challenge injections. 

Experimental procedures: 

Rats were randomly assigned to the various experimental groups with 

cage mates being placed within the same experimental groups. The body 

weight of each rat was recorded every alternate day. They were kept in a 

quiet environment to minimize stress and prevent plasma hormones from 

exceeding basal levels. Rats were first injected with 50% DMSO or one dose 

of AG490 (2 mg/kg or 10 mg/kg s.c.). One hr later these rats were injected 

with either the vehicle 20% glacial acetic acid or 10 mg/kg olanzapine. These 

injections were repeated for 7 days.  Twenty-four hr after the last injection of 

AG490 or olanzapine, eight rats from each group received either a challenge 

injection of (-)-DOI (1 mg/kg s.c.) or a 0.9% saline (1 ml/kg s.c.) 30 min before 
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sacrifice. The trunk blood was collected in centrifuge tubes containing 0.5 ml 

of 0.3 M EDTA (pH 7.4) solution. The plasma samples for 

radioimmunoassays were stored at -80°C. Whole brains were removed, 

frozen on dry ice, and stored at -80°C for biochemical and molecular 

analyses.   

PLC activity assay:   

The membrane fraction prepared from frontal cortex of animals 

challenged with saline was used for the measurement of PLC activity. PLC 

activity was measured by the amount of inositol 1,4,5 trisphosphate produced 

by PLC, as described previously (Damjanoska, et al., 2004;Wolf and Schutz, 

1997a). Briefly, 30 µg of membrane protein from frontal cortex was diluted into 

100 µl of total volume with a buffer containing 25 mM Hepes-Tris, 3 mM 

EGTA, 10 mM LiCl, 12 mM MgCl2, 1.44 mM sodium deoxycholate with 1 µM 

GTPγS, 300 nM free Ca2+,  1 µM 5-HT, and 1 mM unlabeled phosphatidyl 

inositol. The reaction tubes were kept on ice until the incubation period (20 

min at 37°C) was started with the addition of 100 µM [3H] phosphatidyl 

inositol. The reaction was stopped by addition of 0.9 ml of CHCl2/MeOH (1:2) 

and 0.3 ml of chloroform. The tubes were shaken vigorously for 90 seconds 

and centrifuged at room temperature for 90 seconds at 13,600Xg. Then, 0.3 

ml of the upper aqueous phase was mixed with 4 ml of scintillation cocktail 

and counted by a scintillation counter for 5 min. Protein concentrations in 
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these membrane preparations were measured using the BCA protein assay 

kit (Pierce Chemical, Rockford, IL). 

 

Radioimmunoassay of hormones: 

Plasma concentrations of oxytocin, ACTH, and corticosterone were 

determined by radioimmunoassays as described previously (Li, et al., 1993;Li, 

et al., 1997;Li, et al., 1999). 

Immunoblot analyses of RGS7, pJAK2, and JAK2 proteins 

Tissue preparation: 

Frontal cortex from the treatment groups that received 1 mg/kg DOI 

challenge was used for the measurement of pJAK2, JAK2 and RGS7 

proteins. Tissue was homogenized in 20 volume of ice-cold homogenization 

buffer which contained 25 mM HEPES-Tris, pH 7.4 at 25 °C, 1 mM EGTA and 

protease inhibitor cocktail (1:1000) from Sigma-Aldrich (St. Louis, MO) by 

using a Tekmar Tissumizer (Cincinnati, OH). The homogenate was 

centrifuged at 20,000 × g for 10 minutes at 4 °C. After centrifugation, the 

supernatant was collected as the cytosolic fraction. The tissue pellet was 

resuspended in 20 volumes homogenization buffer and centrifuged again. 

The final membrane pellet was resuspended and sonicated in 25 mM 

HEPES-Tris buffer containing 3 mM EGTA and 10 mM LiCl. Protein 
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concentrations were determined by using a bicinchoninic acid protein assay 

kit (Pierce Chemical, Rockford, IL).  

Western analyses:  

Equal amounts of protein from vehicle-control and drug-treated 

samples were separated on 10% SDS polyacrylamide gels. Proteins were 

transferred to nitrocellulose membrane for 2 hr at 100V.  Non-specific binding 

was blocked either in TBS containing 5% (w/v) nonfat dry milk with 0.1% 

Tween 20 (TBST) or in PBS containing 5% (w/v) nonfat dry milk. The 

following primary antibodies were used: anti-RGS7 (Polyclonal antibody, 

Upstate Biotechnology, Inc., Lake Placid, NY), anti-phospho-JAK2 (polyclonal 

antibody, Affinity Bioreagent, CO), anti-JAK2 (polyclonal antibody, Upstate 

Biotechnology, Inc., Lake Placid, NY) and anti-actin (monoclonal antibody MP 

Biomedicals, Aurora, OH). Prior to incubation with a second primary antibody, 

blots were stripped with Restore western blot stripping buffer (Pierce, 

Rockford, IL) by incubating at 370C for 25 minutes.  After incubation, blots 

were removed from stripping buffer, washed three times for 10 minutes each 

with TBS or PBS containing 0.1% Tween20 (TBST or PBST) and blocked 

with 5% milk in TBST or PBST for 1 hr at room temperature. Protein bands 

were analyzed densitometrically using Scion Image software (Scion 

Corporation, Frederick, MD). The gray scale density readings were calibrated 

using a transmission step-wedge standard. The integrated optical density 

(IOD) of each band was calculated as the sum of the optical densities of all 
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the pixels within the area of the band outlined. The IOD for the film 

background was subtracted from the IOD for each band. Each sample was 

measured in triplicate. RGS7 protein was normalized to actin protein and 

phosphoproteins were normalized to the corresponding total protein levels. 

Protein levels from treated cells were normalized to vehicle-treated cells for 

each western blot analysis.  

 
RNA Isolation and Reverse Transcription: 

  Total RNA was isolated using the RNeasy Mini Kit (Qiagen Sciences, 

Valencia, CA) according to the manufacturer’s protocol. Total RNA was 

quantitated using a spectrophotometer and optical density (OD) 260/280 nm 

ratios were determined. Quality of RNA was determined with a formaldehyde-

agarose gel. First strand cDNA was synthesized using random hexamers and 

Superscript II Reverse Transcriptase from Invitrogen (Carlsbad, CA) 

according to the manufacturer’s protocol. Reactions were incubated at 250C 

for 2 minutes, 250C for 10 minutes, and 420C for 50 minutes and inactivated 

by heating at 700C for 15 minutes in an M J Mini, personal thermal cycler 

(BIO-RAD, Hercules, CA ).  

 

Real-Time PCR: 

 The GAPDH (sense 5’-tggagtctactggcgtcttcac-3’; antisense 5’-

ggcatggactgtggtcatga-3’) and RGS7 (sense 5’-gaagatgagttgcaccgacaga-3’; 

antisense 5’-ggtctttcagtgcctcatccat-3’) primer sets were synthesized by IDT, 
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Inc (Coralville, IA).  PCR amplification was performed with 7500 Real-Time 

PCR System using SYBR green PCR master mix (Applied Biosystems, 

Foster City, CA). The PCR parameters used were a 10 minute denaturation 

cycle at 95°C, 40 cycles of amplification at 95°C for 15 seconds, and 

annealing/extension at 60°C for 1 minute. Real-Time PCR was performed 

with 25 µL reaction mixture of cDNA, primers and SYBR green master mix. 

 
RNA Data Analysis: 

  Comparative Ct (∆∆CT) method was used for analysis of all real-time 

PCR data.  ∆CT values were calculated by normalizing CT values of RGS7 to 

GAPDH from vehicle and drug-treated animal groups. The extent of the 

response is determined by 2mean(∆∆CT), and the relative degree of response is 

calculated by 2−mean (∆∆CT). Results are expressed as fold change in RGS7 

mRNA levels for AG490, olanzapine, AG490 and olanzapine-treated cells 

with respect to vehicle-treated cells. Data presented are from four 

independent experiments performed in triplicate. 

 
Statistical analyses:  

All statistical analyses were performed using GB-STAT School Pak 

(Dynamic Microsystems, Silver Spring, MD). Data are expressed as means ± 

SEM. For RT-PCR, western blots data, and PLC activity assay was analyzed 

using a two-way analysis of variance, followed by a Newman–Keuls' post hoc 
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analysis.  Hormone levels were analyzed using a three-way analysis of 

variance, followed by Newman-Keuls’ post hoc analysis.  

 

Results 
 

Inhibition of the JAK-STAT pathway attenuated the olanzapine-induced 

inhibition of 5-HT2A receptor-mediated PLC activity:  

We previously reported that olanzapine treatment for 7 days caused a 

significant decrease in 5-HT-stimulated PLC activity in the rat frontal cortex 

(Muma, et al., 2007). Consistent with our previous report, 10mg/kg olanzapine 

treatment for 7 days caused a significant decrease (*p<0.01) in 5-HT-

stimulated PLC activity (Figure 17A) in the frontal cortex. Olanzapine 

treatment decreased PLC activity by 68%. PLC activity was not affected by 

AG490 treatment alone. However, PLC activity was significantly attenuated 

(*p<0.05) in rats injected with AG490 at 10 mg/kg, before olanzapine 

injections, suggesting activation of the JAK-STAT pathway is necessary for 

the desensitization response induce by olanzapine treatment. Two-way 

ANOVA indicates a main effect of olanzapine (F(1,19) = 5.91, p<0.05), a main 

effect of AG490 (F(1,19) = 46.18, p<0.001), but no significant interaction was 

observed between olanzapine and AG490 (F(1,19) = 1.27, p=.275).  

Furthermore, AG490 or olanzapine treatment has no effect on GTPγS-

stimulated PLC activity suggesting that the desensitization response is 

occurring at 5-HT2A receptor or 5-HT2A receptor-Gαq/11 interface (figure 17B).  
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Phosphorylation of JAK2 was blocked by AG490 treatment:  

Treatment with olanzapine for 7 days significantly increased (*p<0.05) 

phosphorylation of JAK2 in the membrane fraction of the frontal cortex as 

shown in figure 18. The total JAK2 protein level was not significantly altered 

with olanzapine treatment. The olanzapine-induced increases in 

phosphorylation of JAK2 were significantly reduced to basal levels by pre-

injections of AG490 at 10 mg/kg. AG490 alone had no effect on JAK2 

phosphorylation. Two way ANOVA indicates a main effect of olanzapine 

(F(1,15) = 19.88, p < 0.001), a main effect of AG490 (F(1,15) = 37.41, p < 0.001), 

and a significant interaction between olanzapine and AG490 was also 

observed (F(1,15) = 31.28, p = 0.001). 

 
Increase in RGS7 mRNA and protein levels by olanzapine treatment was 

blocked by pre-treatment with AG490:  

Olanzapine injections for 7 days significantly increased mRNA 

(*p<0.05) and protein (*p<0.05) levels of RGS7 as shown in figure 19A and 

19B.  Both message and protein levels of RGS7 were not affected by AG490 

treatment alone. In rats pre-injected with AG490 at 10 mg/kg, the olanzapine-

induced increases in RGS7 expression were significantly attenuated to basal 

levels. Two-way ANOVA for mRNA measurement indicates a main effect of 

olanzapine (F(1,15)=43.43, P<0.001), a main effect of AG490 (F(1,15)=155.96, 

P<0.001), and a significant interaction between olanzapine and AG490 
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(F(1,15)=69.51, P<0.001). Two-way ANOVA for protein levels indicate a main 

effect of olanzapine (F(1,15)=10.30, P<0.01), a main effect of AG490 

(F(1,15)=12.30, P<0.01), and a significant interaction between olanzapine and 

AG490 (F(1,15)=12.40, P<0.01). 

Effect of olanzapine on plasma levels of oxytocin, ACTH, and 

corticosterone 

Basal plasma ACTH, corticosterone, and oxytocin levels were not 

significantly altered after seven daily injections of AG490 and olanzapine. An 

acute dose (i.e., a challenge dose) of DOI was administered 30 minutes 

before the measurement of plasma hormone levels. 

  
Oxytocin response to DOI: 

DOI-challenge produced a significant (*p<0.01) increase in plasma 

oxytocin levels (1257%) in vehicle-pretreated rats, in 2 mg/kg AG490 injected 

rats increase (853%) (*p<0.01), and in 10 mg/kg AG490 injected rats (449%) 

(*p<0.01) compared to saline-challenged rats. However, there were significant 

differences in the DOI-stimulated increases in plasma oxytocin, suggesting a 

dose-dependent inhibition on oxytocin release with AG490 treatment. 

Olanzapine treatment completely blocked the DOI-induced increases in 

oxytocin release as compared to vehicle-treated rats (Figure 20A). Although, 

a trend towards reversal of olanzapine-inhibited oxytocin level was observed 

at high dose of AG490 (10 mg/kg), it was statistically insignificant. Three-way 

ANOVA indicates a main  effect of DOI challenge on oxytocin levels (F(1,81)= 

 145



44.62, P<0.0001), a main effect of olanzapine (F(1,81)= 5.36, P<0.05), and a 

main effect of AG490 (F(2,81)= 9.94, P<0.001). Significant interactions  

between DOI X olanzapine (F(1,81)= 28.12, P<0.0001) , DOI X AG490 (F(2,81)= 

63.57, P<0.0001), and olanzapine X AG490 (F(2,81)= 165.69, P<0.0001)  were 

also observed. Finally, there was significant interaction among DOI X 

olanzapine X AG490 (F(2,81)= 65.83, P<0.0001).   

 
ACTH response to DOI:   

DOI-challenge produced a significant (*p<0.01) increase in plasma 

ACTH levels (1279%) in control rats, in 2 mg/kg AG490 injected rats 

(*p<0.01) (1296%), and in 10 mg/kg AG490 injected rats (*p<0.01) (1032%) 

compared to vehicle-treated rats. Olanzapine treatment significantly 

(38%,*p<0.01) attenuated the DOI-stimulated increase in ACTH release as 

compared to vehicle treated rats (Figure 20B). However, AG490 treatment 

had no significant effect on ACTH levels in rats treated with olanzapine 

compared to vehicle-treated rats. Three-way ANOVA indicates a main effect 

of DOI challenge on ACTH levels (F(1,66)= 118.44, and a main effect of AG490 

(F(2,66)= 22.32, P<0.0001). A significant interaction between DOI X olanzapine 

(F(1,66)= 16.46, P<0.001) , DOI X AG490 (F(2,66)= 99.68, P<0.0001), and 

olanzapine X AG490 (F(2,66)= 1897.87, P<0.0001)  was also observed. There 

was also a significant interaction among DOI X olanzapine X AG490 (F(2,66)= 

155.32, P<0.0001).   
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Corticosterone response to DOI:   

DOI-challenge produced a significant (*p<0.01) increase in plasma 

corticosterone levels (685%) in vehicle-pretreated rats, in rats treated with 2 

mg/kg AG490 (524%) (*p<0.01), and in 10 mg/kg AG490 injected rats (406%) 

(*p<0.01) compared to saline-challenged rats. Olanzapine treatment 

significantly (54%,*p<0.01) attenuated the DOI stimulated increase in 

corticosterone release as compared to vehicle treated rats (Figure 20C). 

However, AG490 pretreatment had no significant effect on corticosterone 

levels in rats treated with olanzapine. Three-way ANOVA indicates a main 

effect of DOI challenge on ACTH (F(1,82)= 43.57, P<0.0001), a significant 

effect of olanzapine (F(1,82)= 5.96, P<0.001), a main effect of AG490 (F(2,82)= 

10.55, P<0.0001). A significant interaction between DOI X olanzapine (F(1,82)= 

29.63, P<0.001) , DOI X AG490 (F(2,82)= 62.98, P<0.0001), and olanzapine X 

AG490 (F(2,82)= 164.50, P<0.0001)  was also observed. Finally, there was a 

significant interaction between DOI X olanzapine X AG490 (F(2,82)= 68.01, 

P<0.0001).   
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(See next page for figure legend) 
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Figure 17. PLC activity in the frontal cortex. (A): 5-HT-stimulated PLC activity 

in the frontal cortex is significantly decreased with 7 days of daily olanzapine 

injections compared to vehicle-treated control rats (*p < 0.01). AG490 

injections alone had no effect on the PLC activity whereas the olanzapine-

induced decrease in PLC activity was significantly (*p<0.05) attenuated by 

pre-injections of AG490 (10 mg/kg). (B) GTPγS-stimulated-PLC activity was 

not altered by either the AG490 or olanzapine treatments. 
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Figure 18. Olanzapine treatment significantly increased (* p<0.05) 

phosphorylation of JAK2 in the frontal cortex. AG490 treatment alone had no 

effect on phosphorylation of JAK2, however, inhibition of the JAK-STAT 

pathway with AG490 pre-treatment significantly attenuated phosphorylation of 

JAK2. Total JAK2 protein levels were not altered. (* indicate significantly 

different from olanzapine treated rats p<0.05), whereas AG490 alone had no 

effect on JAK2 levels. 
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(See next page for figure legend) 
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Figure 19. Olanzapine treatment significantly (* p<0.05) increased RGS7 

mRNA in the frontal cortex (A) and membrane-bound RGS7 protein levels (B) 

over vehicle-treated control rats. AG490 pre-treatment completely blocked the 

olanzapine-induced increase in mRNA levels of RGS7. Olanzapine-induced 

increase in protein levels were also blocked by AG490 pretreatment.  (* 

indicate significantly different from olanzapine treated rats p<0.05), whereas 

AG490 alone had no effect on RGS7 levels.  
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Figure 20. Chronic treatment with olanzapine significantly attenuated DOI- 

stimulated hormone responses. Oxytocin (A), ACTH (B) and corticosterone 

(C) responses to a challenge with DOI 1 mg/ml at 30 min post-injection. The 

data represent the mean ± S.E.M. of eight rats per group. Basal plasma 

oxytocin, ACTH and corticosterone levels were not significantly different 

among vehicle, AG490 and olanzapine injected rats. DOI-challenge induced a 

significant increase of plasma oxytocin, ACTH and corticosterone levels 

compared with saline-challenge groups. A significant difference amongst DOI-

challenged control and treated rats is indicated by * for p < 0.001. A 

significant effect of chronic olanzapine and AG490 treatment compared with 

vehicle treatment is indicated by δ δ, p < 0.01. 
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Discussion 

Although, atypical antipsychotics bind to diverse population of receptors 

(Meltzer, et al., 1989;Altar, et al., 1986;Zhang and Bymaster, 1999;Roth, et 

al., 2004), the therapeutic benefits associated with atypical antipsychotics are 

attributed, in part, to their ability to antagonize 5-HT2A receptor signaling (i.e. 

desensitization) (Goyer, et al., 1996). Previous studies have shown atypical 

antipsychotics induced desensitization of 5-HT2A receptor signaling both in 

vivo and in cells (Gray and Roth, 2001;Hanley and Hensler, 2002). 

Internalization and down-regulation are suggested to be involved in the 

desensitization response; however, the underlying molecular mechanisms 

necessary for desensitization are not yet identified.  Previously, we reported 

that both in rat frontal cortex and in cells in culture, olanzapine causes 

desensitization of 5-HT2A receptor signaling,  increases RGS7 expression and 

activates the JAK-STAT pathway (Muma, et al., 2007;Singh, et al., 2007).  

Consistent with our previous findings in cultured A1A1v cells, we now find 

that the olanzapine-induced decrease in 5-HT2A receptor mediated-PLC 

activity in the rat frontal cortex is dependent in part on activation of the JAK-

STAT pathway. Olanzapine treatment increases RGS7 mRNA and protein 

levels. We previously reported that increased RGS7 protein expression in 

response to olanzapine treatment is dependent on JAK-STAT signaling in 

A1A1v cells (chapter I). Consistent with this report, increases in RGS7 mRNA 

and protein levels are blocked by inhibition of JAK-STAT pathway in frontal 
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cortex. The olanzapine-induced desensitization of 5-HT2A receptor signaling 

was significantly attenuated with pretreatment with a JAK2 kinase inhibitor. 

These data suggest that activation of the JAK-STAT pathway is necessary for 

olanzapine-induced desensitization of 5-HT2A receptor signaling.  

RGS proteins can reduce G-protein-mediated signaling by their ability to 

increase the intrinsic guanosine triphosphatase (GTPase) activity of 

heterotrimeric G proteins. This GTPase accelerating protein (GAP) activity 

enhances G protein deactivation and promotes desensitization (Hollinger and 

Hepler, 2002;Dohlman and Thorner, 1997). RGS7 protein is primarily 

expressed in the brain (Koelle and Horvitz, 1996;Saitoh, et al., 1999). The 

expression of RGS7 mRNA in the brain is widespread and abundant. An 

increase in RGS7 protein following olanzapine treatment would increase the 

termination rate of 5-HT2A receptor-Gαq/11 protein signaling by more rapidly 

hydrolyzing GTP, and could thereby produce or contribute to the 

desensitization response. When GTPγS, a non hydrolysable GTP analogue, 

is used to activate G-proteins, PLC activity is not affected by RGS proteins, 

since RGS proteins are not able to hydrolyze GTPγS bound to G proteins. 

Therefore, the differential effects of olanzapine on receptor versus G-protein 

activation of PLC activity are consistent with an increase in RGS7 protein as 

an underlying mechanism for olanzapine-induced desensitization. The 

increased levels of RGS7 proteins could reduce 5-HT-stimulated PLC activity 

as we found in olanzapine-treated cell membranes; however, GTPγS 
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stimulated-PLC activity was not altered by olanzapine consistent with 

increased RGS proteins underlying the desensitization response. These 

results are consistent with our previous report where AG490 pretreatment 

significantly attenuated the olanzapine-induced decrease in 5-HT2A receptor-

mediated PLC activity in A1A1v cells but GTPγS stimulated-PLC activity was 

not altered by olanzapine. 

Previous studies have reported down-regulation of RGS4 expression in 

the frontal cortex of schizophrenic patients (Mirnics et al., 2001; Gu et al., 

2007). Although, none of these studies have identified alterations in RGS7 

expression. Since RGS7 and RGS4 are independently regulated  (Krumins et 

al., 2004), the olanzapine-induced increase in RGS7 protein might replace the 

diminished RGS4 levels and thereby restore the 5-HT2A receptor signaling 

duration to more physiological levels.  

The olanzapine-induced increase in RGS7 levels could be mediated by 

either increased stability of RGS7 proteins and/or increased transcription of 

RGS7 mRNA. Interaction of RGS7 with Gβ5 (Zhang and Simonds, 2000) and  

polycystine (Kim, et al., 1999) is reported to increase the stability of RGS7. In 

addition, interaction of RGS7 with 14-3-3  is reported to control its GAP 

activity (Benzing, et al., 2000). However, our real-time PCR data suggest that 

the increase in RGS7 levels by olanzapine is mediated by a direct increase in 

RGS7 mRNA via activation of JAK-STAT pathway.  In addition, previous 

reports have suggested that  activation of JAK-STAT by tumor necrosis factor 
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α (TNFα) (Guo, et al., 1998) decreases the inhibitory interaction of RGS7 with 

14-3-3 thereby increasing its GAP function (Benzing, et al., 2002). Thus, it is 

possible that activation of JAK-STAT pathway by olanzapine treatment could 

increase GAP activity of RGS7 by inhibiting its interaction with 14-3-3.  

In our previous studies we identified a STAT3 consensus binding 

elements located 2.34kb upstream of transcription start site that binds 

strongly with STAT3 in response to olanzapine treatment. Thus, STAT3 

binding to the RGS7 gene along with an increase in mRNA levels of RGS7 

suggest the possibility that STAT3 could be a transcription factor for RGS7. 

Taken together, these results are consistent with our hypothesis that atypical 

antipsychotics increase RGS7 expression via activation of the JAK-STAT 

pathway.  

While the precise mechanism of JAK-STAT activation by atypical 

antipsychotics is not determined, it has been reported that the 5-HT2A 

receptor associates in a complex with JAK2 and STAT3 (Guillet-Deniau, et 

al., 1997). Other studies have reported that 5-HT activates JAK2, JAK1, and 

STAT1 via the 5-HT2A receptors (Banes, et al., 2005). Furthermore, atypical 

antipsychotics have also been reported to activate other signaling cascades 

for example, activation of ERK1/2 pathways in the rat frontal cortex 

(Fumagalli, et al., 2006), Akt/PKB and P38 pathways in PC12 cells (Lu, et al., 

2004), and GSK3α/β in the rat frontal cortex (Kang, et al., 2004;Roh, et al., 

2007).  It is also important to emphasize that these studies were conducted in 
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different experimental settings with different time course and dose regimens 

than our study. Each study highlights important findings, further extending our 

understanding of the mechanisms of action of antipsychotics. It is becoming 

evident that there could be numerous pathways and alterations in gene 

expression that lead to the development of psychosis and its treatment with 

atypical antipsychotics. We found almost 50% recovery of the olanzapine-

induced reductions in PLC activity with inhibition of the JAK-STAT pathway, 

suggesting one of these other signaling cascades together with the JAK-

STAT pathway could participate in mediating desensitization of 5-HT2A 

receptor signaling by atypical antipsychotics. Similarly, we previously found 

that inhibition of the JAK-STAT pathway reduced by the olanzapine-induced 

desensitization response by approximately half in A1A1v cells. These results 

produced by inhibition of the JAK-STAT pathway suggest that activation of 

the JAK-STAT pathway is necessary but not sufficient to induce complete 

desensitization of 5-HT2A receptor signaling by atypical antipsychotics and 

may involve other signaling cascades.  

A wide range of studies have suggested a link between hypothalamic-

pituitary-adrenal (HPA)-axis dysfunction and psychiatric disorders particularly 

negative symptomatology in schizophrenia (Shirayama, et al., 2002;Walker, 

et al., 2002). Subsequent studies have demonstrated that the atypical 

antipsychotic- induced decrease in cortisol levels is associated with an 

improvement in psychopathology (Meltzer, 1989;Hatzimanolis, et al., 
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1998;Markianos, et al., 1999). The olanzapine-induced decrease in 5-HT2A 

receptor stimulated plasma levels of oxytocin, ACTH, and corticosterone in 

this study are consistent with previous reports (Scheepers, et al., 2001;Wik, 

1995;Tepavcevic, et al., 1994)  . However, unlike in the frontal cortex where 

preinjections of AG490 significantly attenuated the olanzapine-induced 

decrease in 5-HT2A receptor-mediated PLC activity, olanzapine-induced 

desensitization of 5-HT2A receptor stimulated plasma hormone release was 

not affected by inhibition of JAK-STAT pathway. 

 We did however find a selective dose-dependent inhibitory effect of 

AG490 on 5-HT2A receptor stimulated oxytocin and corticosterone levels 

whereas ACTH levels were not affected. Previous studies have reported that 

corticotropin releasing hormone (CRH) and oxytocin-containing neurons in 

the PVN, are directly innervated by 5-HT containing nerve terminals 

originating in the dorsal raphe nucleus (Liposits, et al., 1987;Sawchenko, et 

al., 1983;Kawano, et al., 1992;Saphier, 1991). Subsequent reports have 

further demonstrated the presence of 5-HT2A receptors on the oxytocin and 

CRH neurons in the PVN. Treatment with MDL100907, a specific antagonist 

of 5-HT2A receptor, inhibited release of oxytocin and ACTH in response to 

DOI, a 5-HT2A/2C agonist (Damjanoska, et al., 2003;Zhang, et al., 2004). 

However, it is not clear how inhibition of the JAK-STAT pathway 

independently regulates release of oxytocin and corticosterone. Previous 

studies investigating effect of clozapine on inhibition of CRH gene 
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transcription, suggested involvement of various kinases like PI3K, PKA, PKC, 

CaMK, and MAPK, Akt (Basta-Kaim, et al., 2006). This is consistent with the 

ability of atypical antipsychotics to induce alterations in gene expression 

probably by activation of various signaling cascades (Feher, et al., 

2005;Fatemi, 2006). Thus, olanzapine-induced activation of JAK-STAT 

pathway together with other signaling cascades may affect the gene 

expression of oxytocin and CRH thereby decreasing their plasma levels 

independent of the olanzapine response. Furthermore, as we have previously 

noted for PLC activity in A1A1v cells (Singh, et al., 2007), AG490 may 

interfere with the release of these hormones in the blood stream.  

Taken together, this study further confirmed that olanzapine-induced 

desensitization of 5-HT2A receptor-mediated PLC activity in frontal cortex is 

dependent in part on increased expression of RGS7 via activation of the JAK-

STAT pathway. Our plasma hormone data confirmed that olanzapine causes 

desensitization of 5-HT2A receptors in the hypothalamus but further studies 

are needed to determine the role of JAK-STAT pathway in the regulation of 

hormone levels.   
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CHAPTER VI 

                   CONCLUSIONS 

Our results suggest that atypical antipsychotics desensitize 5-HT2A 

receptor signaling both in cells and in vivo by activation of the JAK-STAT 

pathway. Phosphorylated and activated STAT3 forms a homodimer and 

translocates to the nucleus (figure 21), as suggested by increased phospho-

STAT3 levels in the nucleus. In the nucleus, phospho-STAT3 binds to its 

consensus element (TTCN2-4GAA) on the RGS7 putative promoter region at 

2.34kb upstream from the transcription start site. Treatment with atypical 

antipsychotics also increased RGS7 mRNA and proteins levels, which were 

blocked by pretreatment with a selective JAK2 inhibitor, AG490, suggesting 

that the increase in RGS7 expression is dependent on activation of the JAK-

STAT pathway. Furthermore, an increase in RGS7 protein following atypical 

antipsychotic treatment could increase the termination rate of 5-HT2A 

receptor- Gαq/11 protein signaling by more rapidly hydrolyzing GTP, and could 

thereby produce or contribute to the desensitization response.  In addition, 

inhibition of the JAK-STAT pathway also significantly reduced the 

desensitization response induced by atypical antipsychotics as measured by 

5-HT2A receptor-mediated PLC activity, suggesting that desensitization is 

dependent on activation of the JAK-STAT pathway. Although atypical 

antipsychotics bind with high affinity to a number of receptors, MDL100907 

also increased RGS7 mRNA and protein levels and activation of the JAK-
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STAT pathway in our cell culture model suggesting that antagonism at 5-HT2A 

receptors is sufficient for induction of these changes. The results of the 

present studies support our hypothesis that atypical antipsychotic-induced 

desensitization of 5-HT2A receptor signaling is dependent on activation of the 

JAK-STAT pathway and subsequent increases in RGS7 expression. 

In the present study, we found almost 50% recovery of the olanzapine-

induced reductions in PLC activity with inhibition of the JAK-STAT pathway, 

suggesting that activation of the JAK-STAT pathway is necessary but not 

sufficient for olanzapine-induced desensitization. It has been reported that 

another tyrosine signaling pathway ERK1/2 and serine/threonine signaling 

proteins like (GSK)-3β are activated by stimulation of 5-HT2A receptors and 

atypical antipsychotics like olanzapine (Browning, et al., 2005;Quinn, et al., 

2002;Roh, et al., 2007). Thus, it is likely that atypical antipsychotic-induced 

desensitization of 5-HT2A receptor signaling could be in part mediated by 

these other signaling pathways. This can be tested by monitoring 5-HT2A 

receptor-mediated PLC activity in the presence of a selective ERK1/2 

pathway inhibitor SB386023 and/or (GSK)-3β inhibitor SB-216763 separately 

and along with AG490. If the PLC activity is completely restored by a 

combination of these inhibitors with AG490, this would confirm that 

desensitization of 5-HT2A receptor signaling is mediated by activation of the 

JAK-STAT pathway together with other signaling pathways. 
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Figure 21: Proposed model for desensitization of 5-HT2A receptor 

signaling by atypical antipsychotics: Treatment with atypical 

antipsychotics causes desensitization of 5-HT2A-Gαq/11 pathway as measured 

by either production of inositol phosphate in cells or PLC activity in brain 

tissue. We hypothesized that atypical antipsychotics through 5-HT2A receptor 

antagonism activate the JAK-STAT pathway causing phosphorylated STAT3 

to dimerize and translocate to the nucleus, stimulate immediate early genes 

and subsequently increase RGS7 transcription and RGS7 protein levels in the 

membrane. An increase in RGS7 proteins following atypical antipsychotics 

treatment would increase the termination rate of 5-HT2A receptor-Gαq/11 
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protein signaling by more rapidly hydrolyzing GTP, and could thereby produce 

or contribute to the desensitization response.   

 

Our results are consistent with the notion that there could be numerous 

pathways and alterations in gene expression that are altered by treatment 

with atypical antipsychotics (Ko, et al., 2006).  We also found that treatment 

with atypical antipsychotics increased RGS7 mRNA and protein levels in cells 

and in vivo is dependent on activation of the JAK-STAT pathway. We 

proposed that increases in membrane bound RGS7 protein can accelerate 

hydrolysis of activated Gαq/11 that results in desensitization of 5-HT2A receptor 

signaling. RGS7 like other regulatory proteins is an unstable protein and is 

rapidly degraded by the ubiquitin−proteasome pathway.  Thus, it would be 

important to measure the GAP activity and half-life of RGS7 proteins to 

further confirm that the atypical antipsychotic-induced increase in RGS7 

expression is indeed occurs. The GAP activity of RGS7 can be measured by 

multiple mechanisms as reported in literature such as an in vitro GAP assay 

using radioisotope ([γ-32P] GTP) (Shuey, et al., 1998) and a direct 

fluorescence-based assay for RGS domain GAP activity (Willard, et al., 

2005).  In addition, it has been extensively reported that interaction with 

proteins such as polycystin, Gβ5, and 14-3-3 regulate the stability and activity 

of RGS7 proteins.  RGS7 contains a putative coiled-coil structure flanked by 

two potential PEST sequences (Rechsteiner, 1990) that contain minimal 
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consensus phosphorylation sites necessary for degradation. Polycystin by 

directly binding to a PEST sequence-containing domain of RGS7 inhibits the 

phosphorylation-dependent ubiquitination and subsequent degradation of 

RGS7 and thereby modulate its functional activity. It has also been suggested 

that polycystin may relocalize RGS7 to a subcellular compartment away from 

ubiquitin-protein ligases responsible for recognition and targeting of RGS7 to 

the proteasome (Kim, et al., 1999).  In addition, association of RGS7 with Gβ5 

is reported to stabilize the protein and enhance the GAP function of RGS7 on 

acceleration of GIRK channel kinetics (Kovoor, et al., 2000).  

Furthermore, RGS7 contains a functional 14-3-3-binding site within the 

RGS domain and a significant fraction of RGS7 normally exists bound to 

endogenous 14-3-3. The binding of RGS7 to 14-3-3 is phosphorylation-

dependent; the primary 14-3-3-binding site in RGS7 involves serine 434, a 

region implicated in interactions with Gα  subunits. It has been reported that 

phosphorylation and subsequent interaction with 14-3-3 results in a 

progressive decline in the GAP activity of RGS7 proteins (Benzing, et al., 

2000). Interestingly, previous reports have suggested that  tumor necrosis 

factor α (TNF)  by binding to its receptor TNFR1  induces activation of the 

JAK-STAT pathway (Guo, et al., 1998). Additionally, it has been 

demonstrated that treatment of mice with TNF-α inhibits the phosphorylation 

of serine 434 and completely abrogated the interaction of RGS7 with 14-3-3. 

In fact, RGS-mediated deactivation kinetics of G protein-coupled inwardly 
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rectifying K+ channels (GIRKs) in a Xenopus co-expression system was 

slowed by microinjections of 14-3-3 protein (Benzing, et al., 2002).   

Thus, it would be interesting to know if atypical antipsychotic-induced 

activation of the JAK-STAT pathway affects interactions of RGS7 with any of 

these proteins thereby affecting its GAP activity and stability. Although, a 

RGS7 knock-out animal model is not available, using a siRNA approach to 

decrease RGS7 expression, it can be determined whether increased RGS7 is 

necessary for atypical antipsychotics-induced desensitization of 5-HT2A 

receptors signaling in cells. This can be further examined in animals using a 

viral vector to deliver siRNA in the brain.   

In the present study, we reported that treatment with olanzapine 

increases STAT3 binding to its consensus element at 2.34kb upstream from 

transcription start site on the putative RGS7 promoter region. STAT3 binding 

to the putative RGS7 promoter region can be further verified with electro-

mobility shift assay (EMSA). The advantages of studying DNA: protein 

interactions by EMSA are that the source of the DNA-binding protein may be 

a crude nuclear or whole cell extract rather than a purified preparation. Gel 

shift assays can be used qualitatively to identify sequence-specific DNA-

binding proteins (such as STAT3) in crude lysates. Although, transcriptional 

activity of STAT3 has been extensively reported for various genes (Aaronson 

and Horvath, 2002;Kisseleva, et al., 2002;Schindler, 2002), STAT3 has not 

been identified as a transcription factor for RGS7. STAT3-mediated regulation 
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of gene expression is associated with the presence of the consensus element 

TTCN2-4GAA upstream of the transcription start site (Ehret, et al., 

2001;Wrighting and Andrews, 2006). Genomic sequence analysis of rat 

RGS7 revealed that there are multiple sets of TTCN2-4GAA sequences. Thus, 

it is possible that STAT3 is a transcription factor for the RGS7 promoter. The 

promoter region of RGS7 is not yet identified, however, it is usually present 

upstream of the transcription start site consistent with our identified STAT3 

binding site 2.34kb upstream from the transcription initiation site. We can 

further confirm the transcriptional activity of STAT3 on RGS7 promoter by 

using a reporter gene assay. This can be done by linking the identified 

putative promoter sequence to an easily detectable reporter gene such as 

that encoded for the firefly luciferase. Although, STAT3 knock-out is lethal, a 

conditional knock-out can be used to further confirm the role of STAT3 in 

regulating RGS7 expression.  

A previous study has examined the impact of olanzapine on changes in 

gene expression in the frontal cortex of rats treated with olanzapine (2 mg/kg 

per day for 21 days) (Fatemi, et al., 2006). In this study, 31 genes were down-

regulated and 38 genes were found to be upregulated including one RGS 

protein, RGS19. RGS7 was not identified as one of the upregulated genes in 

this study as expected since in our previous study, we did not find a 

significant increase in RGS7 protein levels with the 2 mg/kg dose of 

olanzapine (Muma, et al., 2007). Thus, a microarray study with a higher dose 
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of olanzapine (10mg/kg) based on our previous results (chapter V) can be 

useful in identifying changes in gene expression with chronic olanzapine 

treatment. The use of a higher dose of olanzapine is also supported by its 

half-life which in  rat brain is 2.5 to 5.1 hours,  much longer than the 20 to 54 

hour half-life of olanzapine in humans (Aravagiri, et al., 1999). Based on our 

present findings, we may identify alterations in one or more proteins in the 5-

HT2A receptor signaling pathway by olanzapine and possibly regulated by 

STAT3. 

In the present study, we found that treatment with olanzapine did not 

affect the basal levels of oxytocin, ACTH and corticosterone but decreased 

DOI-stimulated release of oxytocin, ACTH, and corticosterone which is  

consistent with previous reports (Scheepers, et al., 2001;Wik, 

1995;Tepavcevic, et al., 1994). However, unlike in the frontal cortex where 

preinjections of AG490 significantly attenuated the olanzapine-induced 

decrease in 5-HT2A receptor-mediated PLC activity, olanzapine-induced 

desensitization of 5-HT2A receptor stimulated plasma hormone release was 

not affected by inhibition of the JAK-STAT pathway. We did however find a 

selective dose-dependent inhibitory effect of AG490 on 5-HT2A receptor- 

stimulated oxytocin and corticosterone release whereas ACTH release was 

not affected. Although, JAK2 expression in the frontal cortex is almost twice 

the levels in the hypothalamus as reported previously (Berhow et al., 1996), 

dose-dependent inhibition of oxytocin and corticosterone release by AG490 
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suggests that JAK2 expression was not a factor in its inability to attenuate the 

desensitization response in the release of various hormones. Furthermore, 

the effect of JAK-STAT inhibition on 5-HT2A receptor-stimulated release of 

oxytocin and corticosterone suggests that the JAK-STAT may be directly 

involved in release of these hormones. Since, in the present study we injected 

AG490 systemically (s.c), a direct injection locally in  the PVN would provide 

further details of JAK-STAT impact on release of these hormones.  

In addition, antipsychotic drugs are reported to regulate gene 

expression, including those involved in regulation of hypothalamic-pituitary-

adrenal (HPA) axis, whose activity is frequently disturbed in schizophrenic 

patients. Recently, it has been reported that a clozapine-induced decrease in 

basal activity of the CRH promoter in Neuro-2A cells stably transfected with 

hCRH-CAT reporter construct is dependent on the activation of  PI3-K/Akt 

pathway (Basta-Kaim, et al., 2006). Although, this report does highlight a role 

of signaling cascades on CRH promoter activity, it is not yet understood how 

treatment with atypical antipsychotics decrease cortisol levels in 

schizophrenic patients (Scheepers, et al., 2001;Wik, 1995;Tepavcevic, et al., 

1994). Furthermore, in contrast to this study, we did not find any effect of 

JAK-STAT activation on ACTH release, which is regulated by CRH. In fact, 

we found a dose-dependent inhibitory effect of AG490 on oxytocin and 

corticosterone release. Since STAT3 has been extensively characterized as 

transcription factor for variety of genes, it would be interesting to investigate if 
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oxytocin and corticosterone regulating genes also contain STAT3 consensus 

elements. Since, both clozapine and olanzapine have similar chemical 

structure (thienobenzodiazepine), it would also be important to determine the 

role of activation of the JAK-STAT pathway in the desensitization response 

induced by atypical antipsychotics, by using a compound with a different 

chemical structure such as risperidone which contains benzisoxazole and 

piperidine functional groups. 

Overall, these results suggest that atypical antipsychotic 

(thienobenzodiazepine) treatment desensitizes 5-HT2A receptor function and 

increases expression of RGS7 mRNA and protein levels. Antagonism of 5-

HT2A receptors mediates the activation of the JAK-STAT pathway and is 

sufficient for subsequent increase in RGS7 mRNA and protein levels.  

Treatment with olanzapine increased STAT3 binding to its consensus 

element at 2.34kb upstream from transcription start site of RGS7 putative 

promoter region. Thus, STAT3 binding to the RGS7 gene along with an 

increase in mRNA levels of RGS7 suggest the possibility that STAT3 could be 

a transcription factor for RGS7. 
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