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Abstract

In this thesis mathematical models for a deforming solid medium are derived using con-

servation laws in Lagrangian as well as Eulerian descriptions. First, most general forms of the

mathematical models permitting compressibility of the matter are considered which are then

specialized for incompressible medium. Development of constitutive equations central to the

validity of the mathematical models is considered and specific forms of the constitutive models

are derived. Numerical solution of these mathematical models are obtained using finite element

method based on h, p, k mathematical and computational framework in which the integral forms

are variationally consistent and hence the resulting computational processes are unconditionally

stable.

The Lagrangian descriptions using second Piola-Kirchhoff stress and Green’s strain (with

displacement as dependent variables) permitting large motion and large strain remain the most

widely used strategy for developing mathematical models for solids. In this approach the gov-

erning differential equations resulting from conservation laws present no problems but the con-

stitutive equations relating the second Piola-Kirchhoff stress to Green’s strain (or any other

conjugate pairs of stresses and strains) must be given careful consideration to ensure that they

are derivable from a potential. The second major issue of concern is that while using these

mathematical models, increasing mesh distortion with progressively increasing deformation

eventually leads to highly distorted finite element meshes for which either the computed so-

lution become grossly in error or the computations cease altogether. This situation is often

salvaged by rediscretization and mapping of solution from the existing discretization onto the

new discretization. Many unresolved problems associated with this approach adversely effect

accuracy of the computations.

In Eulerian descriptions, we do not follow motions of material particles. Hence, in this ap-

proach the discretization remain fixed and the material particles flow through it. The mathemat-

ical models based on conservation laws consists of : continuity equation, momentum equations,

and the energy equation employing velocities, Cauchy stresses, temperature and heat fluxes as

dependent variables. One can use Fourier law of heat conduction to express heat flux in terms
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of material conductivities and temperature gradients. The other constitutive equations relating

Cauchy stresses to strain-rate tensor are required. These constitutive equations are known as

rate constitutive equations. In the published work Jaumann, Truesdell, upper Convected, and

lower Convected etc. rate constitutive equations have been used and hence will be considered in

the present work. It is well known that for a given set of material constants all rate constitutive

equations do not produce the same response. This is another area of investigation. Since Eule-

rian descriptions do not monitor motions of material particles, moving interfaces, boundaries,

and fronts are relatively difficult to track during deformation process.

Thus, in the Lagrangian descriptions, mesh distortion, rediscretization, solution mappings,

and validity and development of constitutive equations are areas of potential research and con-

cern. While in the Eulerian descriptions, rate constitutive equations, their development and

non-unique response based on the choice, tracking of moving fronts, boundaries and interfaces

remain areas of research. In this thesis, we consider investigations of both Lagrangian and Eu-

lerian descriptions for solid mechanics. Mathematical models are established based on conser-

vation laws. Details of the constitutive equations in both Lagrangian and Eulerian descriptions

are presented. Limitations of the constitutive models are presented and also illustrated numer-

ically. A variety of model problems are chosen for numerical studies. The wave propagation

model problems are considered for numerical studies. Mathematical developments and numeri-

cal studies are aimed at investigating the two approaches of constructing mathematical models:

(i) Behaviors and limitations of constitutive models in both descriptions (ii) Overall benefits and

drawbacks of Lagrangian and Eulerian descriptions.
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Chapter 1

Introduction, literature review and

scope of work

1.1 Introduction

For over four decades, the finite element method has been widely applied to a variety of prob-

lems in linear elasticity and non-linear solid mechanics such as metal forming, large deforma-

tion of plates, shells and beams. In constructing finite element formulation in solid mechanics

two approaches are commonly employed. In the first approach mathematical models are con-

structed using conservation laws and constitutive equations and then used in the development

of the finite element processes using methods of approximation, generally Galerkin method

with weak form. In the development of the mathematical models Lagrangian descriptions with

second Piola-Kirchhoff stresses and Green’s strains are used almost exclusively. The resulting

governing differential equations (GDEs) are a system of nonlinear partial differential equations.

In the second approach, principle of virtual work [1] is utilized directly in constructing the fi-

nite element processes without first deriving the mathematical models using conservation laws.

Incremental equations of equilibrium are derived and solved iteratively. In this approach also

the formulations are constructed using Lagrangian descriptions with second Piola-Kirchhoff

stresses and Green’s strains.
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While the first approach is more appealing from the point of view that a complete description

of mathematical models (GDEs) permits one to investigate the viability of various methods of

approximations in constructing finite element processes, the second approach remains the most

dominant methodology in the published work. There have been other alternatives used and

proposed in the published work some of which are discussed in the following sections. There

are also some published works [2, 3] on the development of the mathematical models using

Eulerian descriptions but this approach has not been as commonly adopted as the one based on

the Lagrangian descriptions.

The finite element processes based on Lagrangian descriptions suffer from the mesh distor-

tion problems with progressively increasing deformation. Thus, at some stage, the computations

becomes erroneous or cease all together. This problem is seemingly overcome by periodic redis-

cretization during the deformation process. Rediscretization obviously requires a new mesh but

more importantly necessitates mapping of the solution from an existing discretization onto the

new discretization. This process is generally prone to significant errors and thus may lead to er-

roneous solutions in a process that requires repeated rediscretizations. Another significant prob-

lem is in the constitutive equations that express a relationship between second Piola-Kirchhoff

stresses and Green’s strains. This relationship is not always derivable based on a potential and

hence, lacks a mathematical foundation from the continuum mechanics point of view. A major

strength of the Lagrangian descriptions is that in this methodology motion of material particles

is intrinsic in the mathematical models hence moving boundaries interfaces, and fronts can be

tracked precisely.

The use of mathematical models for solid mechanics based on Eulerian descriptions is not

very common but appears attractive to consider primarily for the following two reasons: (1) In

this approach the mesh remains fixed and the material particles flow through it, thus there are

no issues of mesh distortion and hence no rediscretization and associated problems of solution

mapping. (2) In multi-physics and interaction problems such as fluid-solid interaction [4], the

use of Eulerian descriptions for fluid necessitates Eulerian description for solids if the interac-

tion of the fluid and solid is to be an integral and intrinsic part of the mathematical models. This
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approach eliminates the constraint equations (used presently) at the interfaces between the solid

and fluid used to describe their interaction and many approximations and problems associated

with them. Just like Lagrangian descriptions, the Eulerian descriptions are not free of prob-

lems either. Since in Eulerian descriptions material particles are not followed, the simulations

of moving boundaries, moving fronts, free boundaries, and interfaces become difficult. The

Eulerian descriptions necessitate use of velocities in the mathematical models (as opposed to

displacements in The Lagrangian descriptions) hence it becomes necessary to have constitutive

equations in terms of strain rates. For this purpose rate equation are employed as constitutive

equations. Many rate constitutive equations have been proposed in the published work. A rig-

orous mathematical formulation (based on continuum mechanics) for the rate equations is still

subject of discussions and issue of controversy. It is well known that for the same material

constants, different rate constitutive equations produce different response. This of course raises

the question of the validity of rate equations as a constitutive equations framework for solid

mechanics.

In regard to the finite element processes, the currently used methodologies are based on h

and p utilizing local approximations of class C0 in space and time. Surana et al. [5–7] have

shown that order k of the approximation space defining global differentiability of order (k− 1)

is an independent parameter in addition to h and p in all finite element processes. Thus the finite

element processes must be based on h, p, and k as opposed to h and p used currently. The h, p,

k mathematical and computational framework for finite element processes is highly meritorious

over h, p framework [5–7].

1.2 Literature Review

A literature review of currently used methodologies and approaches for linear and nonlinear

solid mechanics problems are presented in this section. The literature review is divided in

four group: the total Lagrangian formulations, the updated Lagrangian formulations, formu-

lations based on the Eulerian descriptions, and rate constitutive equations. Traditionally, the
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Lagrangian (referential) descriptions gained prominence over the Eulerian (spatial) descriptions

in solid mechanics problems. Truesdell’s description [8] for Lagrangian and Eulerian frame of

references is the following: (i) referential description: independent variables are the position X̄

of a particle X in an arbitrary chosen reference configuration, and the time t (ii) spatial descrip-

tion: independent variables are the current position x̄ of a particle X , and the time t. we note

that the independent variables x̄ is a function of X̄ and the time t, i.e. x̄ = x̄(X̄, t).

It is critical for mathematical models to describe the actual behavior of a physical systems

or processes with a high degree of accuracy. In addition to this, the usage of correct consti-

tutive models is important as well as their objectivity i.e. frame invariant. Furthermore, one

must utilize energetically conjugate pair of stresses and strains in their development [9, 10].

The total Lagrangian formulation uses the initial configuration as the reference configuration.

Incremental-iterative Newton-Raphson solution procedure [1, 9] is generally employed for solv-

ing nonlinear algebraic equations. In this approach, second Piola-Kirchhoff stress tensor and

Green-Lagrange strain tensor are generally used as a conjugate pairs. Oden [11] presented fi-

nite element method to analyze 3-D elastic bodies that are subjected to large deformation and

finite strains. Main focus of this paper is the development of non-linear stiffness relations for

finite deformation of elastic bodies. Oden [11] and Hibbitt et al. [12] are the first one to

use fully nonlinear kinematic relations where they focused on the development of non-linear

stiffness relations for elastic bodies that are subjected to large deformation and finite strains.

Nemat-Nasser et al. [13] used similar approach based on absolute minimum principle (absolute

minimum of potential energy). Incremental approach was used to solve large deformation prob-

lems with both material and geometric nonlinearities. Authors provided explicit results for both

compressible and incompressible elastic materials where formulations in the Lagrangian and the

Eulerian frame of reference are provided and compared. Wood et al. [14] developed equilibrium

equations for the deforming body using virtual work principle with Newton-Raphson method

is used for solving nonlinear algebraic equilibrium equations. The total Lagrangian approach is

used and there were no restrictions on the magnitude of displacements and rotations.

The updated Lagrangian formulation uses the last equilibrium position as the reference
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configuration. This is a source of error because it implies that reference configuration itself

is being approximated [15]. Cauchy stress tensor and Almansi strain tensor are generally used

as a conjugate pair in this approach for constitutive equations. Horrigmoe and Bergan [16]

presented their work on incremental variational principles of solid mechanics where they used

incremental form of the principle of stationary potential energy. Their goal was to develop a

consistent form of incremental variational principle so that these formulations can be applied to

analyze large displacement nonlinear problems. The updated Lagrangian formulation was used

where authors noted that similar formulation based on the total Lagrangian can be derived in the

same manner. Heyliger et al. [17] presented a mixed variational finite element method using the

updated Lagrangian formulation in which the displacements and stresses appear as dependent

variables. Cauchy stresses and Almansi strains are used in the constitutive equations. Numerical

computations of displacements are shown to be in good agreement with displacement based

formulations. Authors reported that stresses in their formulation are more accurate compared to

displacements based approaches.

In the published literature, the updated Lagrangian formulations and the Eulerian formu-

lations are often used interchangeably especially in the context with finite element processes.

Gadala et al. [2, 3] indicated that in the updated Lagrangian formulation, the independent vari-

ables are x̄ and t, where x̄ is the position occupied by the materialX at time t. This is the reason

why this formulation is referred as the updated Lagrangian formulation instead of the Eulerian

formulation where x̄ and t are dependent as in x̄ = x̄(X̄, t). In the Eulerian approach, attention

is focused on a given region of space instead of a given body of matter. A Literature survey

of the problems with geometric and material nonlinearity problems is given by Gadala et al.

[3]. Main focus of the survey is to distinguish differences between the updated Lagrangian and

Eulerian formulations. In addition to this, an Eulerian formulation suitable for both static and

dynamic problems is presented. Authors also discussed the development of the total Lagrangian

formulations. However no numerical studies are presented for given formulations.

Key [18] used Cauchy stress in the formulation of large deformation dynamic response of

solids. A fixed spatial coordinate system is used to describe the formulation. In this paper, ex-
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plicit central difference time integration scheme with artificial viscosity is used. The numerical

results are compared to experimental data or analytical solutions.

Swedlow [19] proposed a new formulation for Navier’s equations in terms of displacement

rates by using the material time derivative of the equilibrium equations in the Eulerian frame

of reference. Author provided detailed derivations for torsion of prismatic bars, plane strain

and plane stress problems. Swedlow show that the equilibrium equations derived using this

technique are elliptic provided elastic/plastic moduli are bounded and non-negative. Osias [20]

applied Swedlow’s formulation to tensile necking processes in plane strain and plane strain

problems. Finite deformation of elasto-plastic material was simulated by solving Jaumann rate

equations incrementally. Governing differential equations and constitutive equations for finite

elasto-plastic deformation were derived using the Eulerian frame of reference. The results of

this investigation provided numerical solutions for tensile necking of metals in plane stress

and plane strain; however, author acknowledged that mechanics of tensile testing data was not

precise to validate the numerical results over the full range of the tensile testing data. In 1974,

Osias et al. [21] used Galerkin method to validate numerical results for number of homogeneous

finite deformation problems with analytical solutions.

For elasto-plastic problems, Lee et al. [22, 23] presented least squares finite element for-

mulation. Lee [24] combined least squares formulation with GDEs developed by Swedlow [19]

using Cauchy stress rate and velocities as dependent variables. The same computational algo-

rithm was used for both elliptic and hyperbolic regions. The resulting matrices are always sym-

metric and positive definite due to least squares process. Siu et al. [25] extended formulation

developed in [24] to describe three dimensional deformation analysis where the deformation

is treated as a process instead of an event. Benson [26] has an extensive literature review on

Lagrangian and Eulerian hydrocodes that are used to solve transient, large deformation solid

mechanics problems. The paper provides detailed reviews on both finite element and finite dif-

ference codes. Benson [27] introduced an implicit multi-material Eulerian formulation in order

to extend the applicability of explicit formulation to quasi-static problems. This approach has

two issues that must be addressed: mixture theory for the multi-material elements and the trans-
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port step where solutions from the deformed Lagrangian mesh are mapped onto Eulerian mesh.

Benson noted that mixed elements containing a high percentage of void material will experi-

ence convergence difficulties. Furthermore, author concluded that Jaumann rate had adequate

accuracy while requiring less storage than the Green-Naghdi rate.

A numerical method based on absolute minimum principle is developed by Nemat-Nasser

et al. [13]. Incremental approach is used to solve large deformation problems with both mate-

rial and geometric nonlinearities. Authors provided explicit results for both compressible and

incompressible elastic materials where the Lagrangian and Eulerian formulations are used and

compared. Atluri [28] reviewed the question of ’generalization’ of finite strains in different

theories such as infinitesimal strain theory of elasticity and elasto-plasticity with isotropic and

kinematic hardening. Atluri presented different stress distributions for different objective stress

rates in simple shear problems. The authors concluded that all stress rates are equivalent as long

as the constitutive equation is properly posed. Prager [29] discussed the development of four

different stress rates: Jaumann; Cotter and Rivlin; Truesdell; and Oldroyd. Prager stated that

following condition is not sufficient for unique constitutive rate equations:

If a stressed continuum performs a rigid body motion and the stress field is indepen-

dent of time when referred to a coordinate system that participates in this motion,

the stress rate vanishes.

Dienes [30] reviewed the literature on stress rates in deforming bodies that are experiencing

large deformations. It was pointed out that constitutive laws must be formulated in such a

way that they account for material rotations even in the absence of additional strain. In this

paper, expression for the rate of material rotation was given as an explicit function of vorticity,

rate of deformation, and stretch. This derivation includes the case when material axes become

strongly skewed. Derived expression is similar to Green-McInnis but suitable for viscoelastic

and elastic-plastic materials. Xiao et al. [31] proposed a new rate constitutive law rate based on

logarithmic strains. They claimed that use of logarithmic strain is beneficial, since logarithmic

strains can be identical to stretching and they form a work-conjugate pair with Cauchy stresses.

Authors concluded in their analysis by stating that if stretching is used to measure the rate
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of change of deformation, the logarithmic rate is the only choice. This formulation requires

calculation of eigenvalues and eigenvectors which makes it hard to implement in finite element

framework. Xiao et al. [32] applied logarithmic stress rate to the Kirchhoff stress in hypo-

elasticity problems. Authors indicated that simple shear response of this model is stable where

models based on Jaumann stress rate predicts unstable oscillatory shear. In 1999, Xiao et al.

[32] studied existence and uniqueness of the integrable hypo-elastic equation of grade zero

for different stress rates. Main goal of this study was to find a better criteria for choosing an

objective stress rate other than its response to simple shear problem. Xiao et al. suggested that

investigators in solid mechanics field should consider the following criteria: the hypo-elastic

equation of grade zero must be exactly integrable to define an elastic relation.

1.3 Scope of Present Work

In this thesis, we present development of mathematical models and associated computational

infrastructure in which all solid mechanics problems are treated with same rigor and accuracy.

The mathematical models incorporate finite strain, finite strain rate, and large motion of the

solid continuum as well as linear and non-linear material behavior. The mathematical frame-

work utilized in the present work is based on h,p,k finite element framework and space-time

variationally consistent integral forms. The order k of the approximation space permits higher

order global differentiability in space and time. The space-time variationally consistent integral

forms ensure unconditionally stable computational process during the entire evolution. Least

squares finite element process enforces that the coefficient matrices are always symmetric and

positive definite. In the following, summary of the work presented in this thesis is given:

(i) Development of mathematical models based on conservation laws

(ii) Constitutive equations, equations of state for an elastic deforming solid, stress-strain re-

lationships for an elastic deforming solid

(iii) Mathematical and computational infrastructure: Space-time least squares processes (STLSP)
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In chapter 2, mathematical models in Lagrangian and Eulerian descriptions for a deforming

solid medium are presented. Governing differential equations (GDEs), continuity equation,

momentum equations, and energy equation, are developed for conjugate pairs of stresses and

strains. The development of constitutive equations are presented in chapter 3 for both La-

grangian and Eulerian descriptions where chapter 4 provides a closure for the mathematical

models. Chapter 5 includes discussions on computational framework and details of the least

squares finite element formulation for initial value problems (IVPs). Numerical studies for 1-

D and 2-D elastic wave propagation as well as investigation of rate equilibrium equation are

presented in chapter 6. Finally, chapter 7 includes summary and conclusions.

9



Chapter 2

Development of Mathematical Models

Based on Conservation Laws

In this chapter we consider development of mathematical models for a deforming solid medium

using Lagrangian as well as Eulerian descriptions. We utilize conservation of mass, Newton’s

second law for a volume of matter (rate of change of linear momentum must equilibrate with the

forces acting on the volume) and conservation of energy to derive: continuity equation, momen-

tum equations, and energy equation. In the development of the governing differential equations

(GDEs) resulting from these mathematical models we choose appropriate measures of stresses,

strains and heat flux without regard to the constitutive equations that relate stresses to strains

and heat fluxes to the temperature gradients. That is we do not consider the constitution of the

matter. Thus the mathematical models presented in this chapter do not have closure. In other

words, we have more dependent variables than the number of equations. The development of

the constitutive equations are presented in chapter 3 for Lagrangian and Eulerian descriptions.

These constitutive equations together with GDEs from conservation laws provides a system of

partial differential equations (PDEs) that have closure. The mathematical models based on con-

tinuum approach using conservation laws without regard to material constitution are relatively

straightforward to establish for desired physics. However, the constitutive equations are still

an area of research even for simple material behaviors. It is for this reason that developments
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related to the material constitution are not presented in this chapter but are considered in chapter

3.

2.1 Preliminaries, Notations, Definitions and Fundamental Rela-

tions

Consider a body B in the undeformed state (time t = 0). Let P be a point in the body with

coordinates x1, x2, x3 with respect a fixed frame of reference x1, x2, x3. Upon deformation the

body B occupies B̄ at time t. The point P (x1, x2, x3) is now P̄ (x̄1, x̄2, x̄3) (figure 2.1).

Clearly,

x̄1 = x̄1(x1, x2, x3, t)

x̄2 = x̄2(x1, x2, x3, t)

x̄3 = x̄3(x1, x2, x3, t)

(2.1)

Let u1, u2, u3 be the displacements of point P (x1, x2, x3), then the following holds

x̄1 = x1 + u1(x1, x2, x3, t)

x̄2 = x2 + u2(x1, x2, x3, t)

x̄3 = x3 + u3(x1, x2, x3, t)

(2.2)

Inverse of (2.2) can be given as,

xj = x̄j − ūj(x̄i, t) i, j = 1, 2, 3 (2.3)

(2.1) - (2.3) are fundamental in the study of deformable matter. In what follows, we adopt two

different notation strategies. The first one consists that of matrix and vector notations. In the

second case we use Einstein’s index notation. Obviously one is derivable from the other. We uti-

lize both these notations based on convenience. Thus if f is a scalar field than its differentiation

11



)x,x,x(P 321

Configuration at time t=to Present Configuration at time t

)x,x,x(P 321
'

)x (;x 1  1

)x (;x 2  2

)x (;x 3  3

Figure 2.1: Configuration of a Body at Two Different Times
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with a vector field {x} = [x1, x2, x3]t is represented as a row vector,

∂f

∂{x}
=
[
∂f

∂x1
,
∂f

∂x2
,
∂f

∂x3

]
= {b}t (2.4)

The differentiation of a vector field say {x̄} with respect to another vector field say {x} gives a

Jacobian matrix,

[J(t)] =
∂{x̄}
∂{x}

=
[
x̄1, x̄2, x̄3

x1, x2, x3

]
=


∂x̄1
∂x1

∂x̄1
∂x2

∂x̄1
∂x3

∂x̄2
∂x1

∂x̄2
∂x2

∂x̄2
∂x3

∂x̄3
∂x1

∂x̄3
∂x2

∂x̄3
∂x3

 (2.5)

|J | > 0 is essential for [J(t)] to be invertible. Inverse of [J(t)] is given by

[J̄ ] = [J ]−1 =
∂{x}
∂{x̄}

=
[
x1, x2, x3

x̄1, x̄2, x̄3

]
(2.6)

|J̄ | > 0 is also essential for [J̄ ] to be invertible. Using (2.2) - (2.3) and (2.5) - (2.6) we can write

the following.

[J ] = [I] +
[
u1, u2, u3

x1, x2, x3

]
= [I] + [J̇ ] (2.7)

and

[J̄ ] = [I] +
[
u1, u2, u3

x̄1, x̄2, x̄3

]
= [I] + [ ¯̇J ] (2.8)

If xi and t are independent variables in the development of the mathematical models then such

mathematical models are called Lagrangian descriptions. On the other hand if x̄i and t are

independent variables in the development of the mathematical models then the resulting math-

ematical models are called Eulerian descriptions. As a general notation, the quantities without

the over bar are Lagrangian descriptions, whereas those with over bar are Eulerian descriptions.
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2.1.1 Measures of Strains:

For a solid matter undergoing large motion and large deformation one could use various mea-

sures of strain [33, 34]. In Lagrangian descriptions we generally consider Cauchy strain, Finger

strain and Green’s strain denoted by [C], [F ], and [ε] and are given by

[C] = [J ]t[J ] = [I] + [J̇ ]t + [J̇ ] + [J̇ ]t[J̇ ] (2.9)

[F ] = [C]−1 = [J̄ ][J̄ ]t = [I]− [ ¯̇J ]t − [ ¯̇J ] + [ ¯̇J ][ ¯̇J ]t (2.10)

[ε] =
1
2
[
[J ]t[J ]− [I]

]
=

1
2

[
[J̇ ]t + [J̇ ] + [J̇ ]t[J̇ ]

]
(2.11)

In Eulerian descriptions we consider Cauchy, Finger and Almansi strains [33, 34] denoted by

[C̄], [F̄ ], and [ε̄] and are given by

[C̄] = [J̄ ]t[J̄ ] = [I]− [ ¯̇J ]t − [ ¯̇J ] + [ ¯̇J ][ ¯̇J ]t (2.12)

[F̄ ] = [C̄]−1 = [J ][J ]t = [I] + [J̇ ] + [J̇ ]t + [J̇ ][J̇ ]t (2.13)

[ε̄] =
1
2
[
[I]− [J̄ ]t[J̄ ]

]
=

1
2

[
[ ¯̇J ]t + [ ¯̇J ]− [ ¯̇J ]t[ ¯̇J ]

]
(2.14)

2.1.2 Measures of Stresses:

The concept of stress is based on force and area. Thus deformed object with deformed area is

a natural way to define stress. We define a stress matrix [σ̄] related to the equilibrium of the

deformed object. [σ̄] is called Eulerian stress matrix or Cauchy stress matrix. It can be shown

that [33] [σ̄] is symmetric and is a tensor of rank two. Thus [σ̄] is a natural measure of stress in

Eulerian descriptions.

In Lagrangian descriptions there is no concept of stress. Thus a measure of stress in such

descriptions is established through a correspondence rule [35]. Two such measures commonly

used in the literature are considered here. The first measure is called Lagrange stress (first

Piola-Kirchhoff stress) [σ∗] and the second measure is called second Piola-Kirchhoff stress [σ].
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These two measures are obviously related to [σ̄] through [J ] or [J̄ ]. We have the following

relationships [35],

[σ∗] = |J |[J ]−1[σ̄] 6= [σ∗]t (2.15)

[σ] = |J |[J ]−1[σ̄][J t]−1 = [σ]t (2.16)

Clearly [σ∗] is non-symmetric whereas [σ] is symmetric. Some other useful relations are,

[σ̄] = |J |−1[J ][σ][J ]t (2.17)

[σ] = [J ]−1[σ∗]t = [σ∗][J t]−1 (2.18)

[σ∗] = [σ][J ]t (2.19)

Second Piola-Kirchhoff stress is commonly used in Lagrangian descriptions involving large

motions and finite strain. For infinitesimal deformation |J | = 1, [J ] = [I], and hence [σ̄] = [σ].

2.2 Mathematical Models for a Deforming Solid Continuum Using

Lagrangian Description

We consider a deforming solid to be compressible and experiencing large motion and finite

strain. In Lagrangian descriptions all quantities are expressed in terms of undeformed position

coordinates xi and time t. Let ~v = [v1, v2, v3]t or vi ; i = 1, 2, 3 to be velocities of a pointP (xi),

~F b = [F b1 , F
b
2 , F

b
3 ]t or F bi ; i = 1, 2, 3 to be the body forces per unit mass and ~q = [q1, q2, q3]t

or qi ; i = 1, 2, 3 be the heat fluxes in the coordinate directions x1, x2, x3.

We consider a volume V with boundary ∂V that deforms into volume V̄ with boundary

∂V̄ . Conservation of mass yields continuity equation. Application of Newton’s second law to

the deforming volume i.e. rate of change of linear momentum must equilibrate with the forces

acting on the deforming volume yields momentum equations. Application of the first law of
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thermodynamics i.e. rate of work done and rate of heat added to the deforming volume must

result in the rate of change of internal energy, yields energy equation. Refer to [35] for details of

the derivations. If we utilize second Piola-Kirchhoff stress measure, then we have the following

system of equations.

Continuity Equation:

ρ = ρ̄|J | (2.20)

Momentum Equations:

ρ
∂~v

∂t
−
(
|J |−1[J ][σ]t[J ]t

)
{∇}|J | − ~F bρ = 0 (2.21)

Energy Equation:

ρ
∂e

∂t
+ |J |

(
{∇}t[J ]−1

) (
[J t]−1{q}

)
− [J ][σ]

[
∂~v

∂{x}

]t
= 0 (2.22)

where ρ and ρ̄ are densities in undeformed and deformed configurations, e is specific internal

energy, [σ] are second Piola-Kirchhoff stresses and {∇} =
[
∂
∂x1

, ∂
∂x2

, ∂
∂x3

]t
. These are system

of five partial differential equations in density ρ̄, velocities ~v, stresses σij , fluxes qi, and specific

internal energy e. These equations do not have a closure i.e. there are more unknowns than the

number of equations. This is not surprising due to the fact that the constitution of the matter

was never considered in deriving these equations. Constitutive equations (derived in chapter

3) relate stresses to strains, heat fluxes to temperature and specific internal energy to density,

temperature and pressure and provide closure to the GDEs resulting from conservation laws.

We consider some specific causes of deformations in the following.
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2.2.1 Incompressible Solid Matter: Large Motion, Finite Strain

We consider finite strain large deformation but assume matter to be incompressible. In this case

|J | = 1 and |J |−1 and hence ρ = ρ̄ i.e. continuity is satisfied identically and hence is no longer

part of the mathematical model. Momentum and energy equations reduce to,

ρ
∂~v

∂t
−
[
[J ][σ]t[J ]t

]
{∇} − ~F bρ = 0 (2.23)

ρ
∂e

∂t
+ ({∇}t[J ]−1)([J t]−1{q})− [J ][σ]

[
∂~v

∂{x}

]t
= 0 (2.24)

2.2.2 Incompressible Solid Matter: Small Deformation Small Strain

If we consider the deformation to be infinitesimal and the motion to be infinitesimal then, |J | =

1 (due to incompressibility) and [J ] = [I] (due to xi = x̄i) and hence the GDEs reduce to

ρ
∂~v

∂t
− [σ]{∇} − ~F bρ = 0 (2.25)

ρ
∂e

∂t
+ {∇}t{q} − σij

∂vi
∂xj

= 0 (2.26)

If the deformation is independent of time then, we have

[σ]{∇} − ~F bρ = 0 (2.27)

ρ
∂e

∂t
+ {∇}t{q} − σij

∂vi
∂xj

= 0 (2.28)

or in index notation,

∂σij
∂xj

+ F bi ρ = 0 (2.29)

ρ
∂e

∂t
+
∂qi
∂xi
− σij

∂vi
∂xj

= 0 (2.30)
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The specific internal energy term in the energy equation must be retained at this stage. It needs

to be expanded further in terms of ρ,~v, and p (pressure).

Remarks

(1) The mathematical details presented above for various cases of deformation need consti-

tutive equations and details of specific internal energy in order to have closure.

(2) All quantities are functions of initial position coordinate in the undeformed configuration

and time except that (2.27) and (2.28) are invariant of time.

2.3 Mathematical Models for Deforming Solid Continuum Using

Eulerian Description

In Eulerian descriptions all quantities of interest are function of deformed coordinates x̄i and

time t.

Considering volumes of the matter V and V̄ with boundaries ∂V and ∂V̄ and applying same

conservation laws as in the case of Lagrangian descriptions, we obtain the following system of

governing differential equations (in index notation) for a compressible solid undergoing large

motion and finite strains [35]. Noting that the quantities with over bars refer to deformed con-

figuration.

Continuity Equation:

∂ρ̄

∂t
+

∂

∂x̄i
(ρ̄vi) = 0 (2.31)

Momentum Equations:

ρ̄
∂vi
∂t

+ ρ̄
∂vi
∂x̄j

vj −
∂σ̄ij
∂x̄j

− F bi ρ̄ = 0 ; i = 1, 2, 3 (2.32)
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Energy Equation:

ρ̄
De

Dt
+
∂q̄i
∂x̄i
− σ̄ij

∂vi
∂x̄j

= 0 (2.33)

where σ̄ij are components of Cauchy stress tensor and D
Dt is the material time derivative (ex-

panded form is given in chapter 3). In this case also, just like in case of Lagrangian descriptions,

these equations do not have closure. That is we have more variables than the equations. The

constitutive equations and equations of state described in chapter 3 provide closure to these

systems of GDEs.

2.3.1 Incompressible Solid Matter: Large Motion, Finite Strain

If the matter is incompressible, then ρ = ρ̄ i.e. deformation is volume preserving or isochoric

in which case (2.31) to (2.33) can be written as,

Continuity Equation:

ρ
∂vi
∂x̄i

= 0 (2.34)

Momentum Equations:

ρ
∂vi
∂t

+ ρ
∂vi
∂x̄j

vj −
∂σ̄ij
∂x̄j

− F bi ρ = 0 ; i = 1, 2, 3 (2.35)

Energy Equation:

ρ
De

Dt
+
∂q̄i
∂x̄i
− σ̄ij

∂vi
∂x̄j

= 0 (2.36)

Remarks:

(1) There is no need to reduce these further to small motion small deformation case due to

the fact that the incentive to use Eulerian descriptions is warranted by large motion of the

material particles.
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(2) The small motion small deformation behavior is obviously intrinsic in (2.34) - (2.36).

(3) De
Dt need to be further expanded using specific form of ’e’.

(4) Obviously, we need constitutive equations and equations of state (if the matter is com-

pressible).

2.4 Summary

In this chapter, mathematical models for solid matter are derived based on conservation laws

using both Lagrangian and Eulerian descriptions. In addition, fundamental deformation rela-

tions, mappings relationships from Lagrangian to Eulerian, and measures of strains and stresses

are presented. The most general form of governing differential equations (GDEs) are described

for large motion, finite strain compressible matter in Lagrangian descriptions, however, it is

straightforward to get simplified forms of GDEs for incompressible solid matter for large mo-

tion, finite strain case as well as small deformation, small strain cases. These various forms of

GDEs are also presented in this chapter. Similarly, for Eulerian descriptions, GDEs for large

motion and finite strain for both compressible and incompressible solid matter are given. The

constitution of the matter is not considered in this chapter, hence, the mathematical models

presented here do not have closure. The constitutive equations providing closure to these math-

ematical models are given in chapter 3.
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Chapter 3

Constitutive Equations, Equations of

State and Other Relations for an

Elastic Deforming Solid

In the developments of the mathematical models for continuum (chapter 2), we employed con-

servation laws and utilized stresses, fluxes and internal energy per unit mass as dependent vari-

ables in addition to density and velocities. These developments did not consider the constitution

of the medium and hence are applicable to any or all continua. We know that bodies of same

shape and size when subjected to identical disturbances and constraints respond differently.

Thus, we need to incorporate the constitution of the material or matter into the mathematical

models (derived in chapter 2). We shall see that the stresses, fluxes and internal energy can be

expressed in terms of displacements, velocities, temperature, and the constitution of the matter

i.e. the appropriate properties of the matter. We generally refer to these relations as constitutive

equations. Thus, the constitutive equations are in essence mathematical models of the behavior

of material. These mathematical models are generally derived based on experimental observa-

tions and must be calibrated (i.e. determination of unknown parameters) and validated using

experiments. Once, the mathematical models for constitutive behavior are established, then the

difference between the predictions using these models and experiments is generally attributed
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to the inaccuracies in the representation of the constitutive behavior in the mathematical models

or the constitutive equations. A material for which the constitutive behavior is only a func-

tion of the current state of deformation is called elastic material. In the following we consider

constitutive equations in Lagrangian as well as Eulerian descriptions.

3.1 Stress-Strain Relationship for Elastic Matter: Lagrangian De-

scription

The general stress-strain relations for elastic matter have been considered by Truesdell and

Eringen. We use some of these in the following. What follows is applicable for large motion,

finite strain case as long as the material is elastic. An ideal elastic body is characterized by

its natural state in which the stresses depend upon the state of deformation only and when the

external loads are removed or released, the body or matter resumes the natural state again. Thus,

the work done by the external forces acting on the body is stored in the body as elastic energy

(internal energy) which is fully recovered upon removing the loads. Hence, the constitutive

relation for such bodies must be derivable from an internal energy function. On this basis,

Green (1839-41) assumed that internal energy is a function of strain. An alternate approach,

due to Cauchy (1823, 1828, 1829), is based on the assumption that in an ideally elastic body

the stress is a function of strain. For infinitesimal strain, both of these methods yield the same

results but for finite strain Green’s method leads to a more definite theory in spite of the fact that

Cauchy’s method is more general but requires additional assumption to obtain more definitive

form.

LetW be the strain energy per unit volume. Then for homogeneous isotropic material one could

show [35] that

W = W ([J ]) (3.1)
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Since [C] = [J ]t[J ] ; Cauchy strain tensor, (3.1) can also be written as,

W = W ([C]) (3.2)

objectivity of W i.e. frame invariance requires that,

W = W (Ic, IIc, IIIc) (3.3)

in which Ic, IIc, IIIc are the invariants of the strain tensor [C]. Note that we also have other

measures of strains such as [ε], [F ], [C̄], [F̄ ], and [ε̄] all of which naturally have invariants and

they are all related to each other through [J ]. W can be expressed as a function of the three

invariants of a desired strain tensor. In the work presented here, we choose Green’s strain with

invariants Iε, IIε, IIIε. Thus,

W = W (Iε, IIε, IIIε) (3.4)

becomes our starting point for deriving constitutive equations for an elastic matter undergoing

large motion and finite strain. In addition to choosing Green’s strain [ε] as strain measure,

we also need an energetically [35] conjugate choice of stress which is second Piola-Kirchhoff

stress [σ] for Green’s strain. Thus in the following we seek a relationship between [σ] and [ε].

When [σ] and [ε] are energetically conjugate pairs, one could show [35] using virtual work

consideration that,

{σ}t =
∂W

∂{ε}
(3.5)

in which

{σ} = [σx1x1 , σx2x2 , σx3x3 , σx2x3 , σx3x1 , σx1x2 ]t (3.6)
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and

{ε} = [εx1x1 , εx2x2 , εx3x3 , γx2x3 , γx3x1 , γx1x2 ]t (3.7)

Thus, {σ} as a function of {ε} admits W as a potential. This form was derived by Cosserat

(1896).

We can also write (3.5) in index notation,

σij =
∂W

∂εij
(3.8)

We note that

γx2x3 = 2εx2x3 , γx3x1 = 2εx3x1 and γx1x2 = 2εx1x2 (3.9)

Thus, we see that determination of the constitutive equations depends upon existence of W .

In the following we present two derivation of the constitutive relations. The first derivation is

more general and is applicable to large motion finite strain case whereas the second derivation is

specifically for small deformation small strain case but applicable to non-linear elastic materials

as well as linear elastic materials.

3.1.1 Case(a): Large Deformation Finite Strain: General Theory

If we use [σ] and [ε] as energetically conjugate pairs then we have,

{σ}t =
∂W

∂{ε}
; W = W (Iε, IIε, IIIε) (3.10)

Applying chain rule of differentiation to (3.10), we obtain

∂W

∂{ε}
=
∂W

∂Iε

∂Iε
∂{ε}

+
∂W

∂IIε

∂IIε
∂{ε}

+
∂W

∂IIIε

∂IIIε
∂{ε}

(3.11)
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where

Iε = εx1x1 + εx2x2 + εx3x3 (3.12)

IIε = εx1x1εx2x2 + εx2x2εx3x3 + εx3x3εx1x1 −
1
4

(γ2
x2x3

+ γ2
x3x1

+ γ2
x1x2

) (3.13)

IIIε = εx1x1εx2x2εx3x3 +
1
4

(γx1x2γx2x3γx3x1−

εx1x1γ
2
x2x3
− εx2x2γ

2
x3x1
− εx3x3γ

2
x1x2

) (3.14)

Thus,

∂Iε
∂{ε}

= {a1}t = [1, 1, 1, 0, 0, 0] (3.15)

∂IIε
∂{ε}

= {a2}t = [(εx2x2 + εx3x3), (εx3x3 + εx1x1), (εx1x1 + εx2x2),

− 1
2
γx2x3 ,−

1
2
γx3x1 ,−

1
2
γx1x2 ]

or

∂IIε
∂{ε}

= {a2}t = Iε{a1}t − {ε}t (3.16)

and

∂IIIε
∂{ε}

= {a3}t = [(εx2x2εx3x3 −
1
2
γ2
x2x3

), (εx1x1εx3x3 −
1
2
γ2
x1x3

),

(εx1x1εx2x2 −
1
2
γ2
x1x2

),
1
4

(γx1x2γx1x3 − 2εx1x1γx2x3),

1
4

(γx2x3γx1x2 − 2εx2x2γx3x1),
1
4

(γx2x3γx3x1 − 2εx3x3γx1x2)] (3.17)
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If we let,

∂W

∂Iε
= β1 ,

∂W

∂IIε
= β2 ,

∂W

∂IIIε
= β3 (3.18)

Then we have,

{σ}t =
∂W

∂{ε}
= β1{a1}+ β2{a2}+ β3{a3} (3.19)

Knowing explicit form of W , we can now establish {σ}t as a function of {ε}, the desired

constitutive relations between second Piola-Kirchhoff stress and Green’s strain. Thus the key

element in establishing the constitutive equations are:

(a) Choice of energetically conjugate pairs of stresses and strains ( We have used [σ] and [ε]).

(b) Determination of W as a function of the invariants of [ε]. This obviously depends upon

the type of deformation, strain and motion and hence choice of the [σ] and [ε].

(c) In later section, we consider second order elasticity to establish specific form of W and

then derive explicit relationship between [σ] and [ε].

3.1.2 Case(b): Small Deformation, Small Strain: Linear or Non-linear Elastic

Material

Obviously, the constitutive equations for this case can be derived using what has been presented

in case(a). However, the approach presented in this section is more appealing for the specific

case of small deformation, small strain. For this particular case of deformation xi and x̄i are

same hence if the material is homogeneous and isotropic we can express W as a function of

εij and there is no need to express W as a function of invariants of the [ε]. This permits a

different approach of deriving the constitutive equations. Details are given in the reference

[35]. Materials for which the following constitutive laws apply are also referred to as hyper-

elastic materials. Let W be the strain energy density function for elastic material with initial
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strain [ε0] 6= [0] and initial stress [σ0] such that,

{σ}t =
∂W

∂{ε}
or σij =

∂W

∂εij
(3.20)

Expand W ([ε]) in Taylor series about [ε0]. Symbolically, we write,

W = W |[ε0] +
∂W

∂{ε}

∣∣∣∣
[ε0]

({ε} − {ε0}) +
1
2!

∂2W

∂{ε}2

∣∣∣∣
[ε0]

({ε} − {ε0})2+

1
3!

∂3W

∂{ε}3

∣∣∣∣
[ε0]

({ε} − {ε0})3 + . . . (3.21)

More precisely, using index notation, we can write the above equation as,

W = C0 + Cij(εij − ε0
ij) +

1
2!
Ĉijkl(εij − ε0

ij)(εkl − ε0
kl)+

1
3!
C̃ijklmn(εij − ε0

ij)(εkl − ε0
kl)(εmn − ε0

mn) + . . . (3.22)

This expression for W is the most general case for the small deformation, small strain case that

permits linear as well as non-linear elastic behavior.

Remarks:

(i) For non-linear elastic materials, W is a cubic or higher order function of strains

(ii) For linear elastic materials, W is a quadratic function of strains

Generalized Hooke’s Law; Linear Elastic Material:

Based on remark (ii),W is a quadratic function of strains and we can write,

W = C0 + Cij(εij − ε0
ij) +

1
2!
Ĉijkl(εij − ε0

ij)(εkl − ε0
kl) (3.23)
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σmn =
∂W

∂εmn
= Cmn + Cijδimδjn +

1
2!
Ĉijklδimδjn(εkl − ε0

kl)+

1
2!
Ĉijkl(εij − ε0

ij)δkmδln (3.24)

where

δij =

 1 when i = j

0 when i 6= j

Therefore we can rewrite (3.24) as,

σmn =
∂W

∂εmn
= Cmn +

1
2!

(Ĉmnklεkl − Ĉmnklε0
kl + Ĉijmnεij − Ĉijmnε0

ij) (3.25)

or

σmn =
∂W

∂εmn
= Cmn +

1
2

(Ĉmnklεkl + Ĉijmnεij)−
1
2

(Ĉmnklε0
kl + Ĉijmnε

0
ij) (3.26)

Note that,

Ĉmnij =
∂

∂εij

(
∂W

∂εmn

)∣∣∣∣
[ε0]

(3.27)

Ĉijmn =
∂

∂εmn

(
∂W

∂εij

)∣∣∣∣
[ε0]

(3.28)

and

Cmn =
∂W

∂εmn

∣∣∣∣
[ε0]

(3.29)

From (3.27) and (3.28), we have

Ĉmnij = Ĉijmn (3.30)
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Hence

1
2
Ĉmnijεij +

1
2
Ĉijmnεij = Ĉmnijεij (3.31)

Hence (3.25) can be written as,

σmn =
∂W

∂εmn
= Cmn + Cmnijεij − Cmnijε0

ij (3.32)

In which, Cmn are initial stresses σ0
ij or [σ0] and ε0

ij are initial strains. (3.32) is the desired

generalized Hooke’s law for linear isotropic elastic material with small strain and small motion.

Cmnij are called material stiffness coefficients which are strictly deterministic. When [σ0] = [0]

and [ε0] = [0], (3.32) reduces to

σmn = Cmnijεij (3.33)

Let (3.33) hold in x-frame and let x
′
-frame be obtained from x-frame by an orthogonal rotation

matrix [R] then, σmn and εij transform into σ
′
mn and ε

′
ij as a second rank tensors and we obtain,

σ
′
mn = C

′
mnijε

′
ij (3.34)

One can show [35] that C
′
mnij can be obtained using Cmnij and [R] using fourth order tensor

transformation. Hence Cmnij and C
′
mnij are fourth order tensor in x-frame and x

′
-frame re-

spectively. The tensor Cmnij contains 81 constants. One can show that for orthotropic materials

these constants reduce to nine. Explicits determination of these constants is more convenient if

one writes (3.33) in vector and matrix notation.

We begin with (3.33), by virtue of (3.27) and (3.28) and the fact that [σ] and [ε] are sym-
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metric tensors, we can write (3.33) in the following form,



σx1x1

σx2x2

σx3x3

σx2x3

σx3x1

σx1x2



=



C1111 C1122 C1133 C1123 C1113 C1112

C2222 C2233 C2223 C2213 C2212

C3333 C3323 C3313 C3312

symm. C2323 C2313 C2312

C1313 C1312

C1212





εx1x1

εx2x2

εx3x3

εx2x3

εx3x1

εx1x2



(3.35)

Introducing new notation for Cijkl

11→ 1 , 22→ 2 , 33→ 3,

23→ 4 , 13→ 5 , 12→ 6

We can write Cijkl or [C] as follows:

[C] =



C11 C12 C13 C14 C15 C16

C22 C23 C24 C25 C26

C33 C34 C35 C36

symm. C44 C45 C46

C55 C56

C66


(3.36)

Thus we can write the following,

{σ} = [C]{ε} (3.37)

and we assume that [C] is invertible, then we can write the following relationship

{ε} = [S]{σ} (3.38)

30



where [S] = [C]−1 and [C] = [S]−1

For orthotropic material one could show [35] that [C] in (3.36) reduces to the following,

[C] =



C11 C12 C13 0 0 0

C12 C22 C23 0 0 0

C13 C23 C33 0 0 0

0 0 0 C44 0 0

0 0 0 0 C55 0

0 0 0 0 0 C66


(3.39)

From elementary strength of materials consideration, one could directly obtain components of

[S] (a derivation based on W is given in the next section



εx1x1

εx2x2

εx3x3

εx2x3

εx3x1

εx1x2



=



1
Ex1x1

− νx2x1
Ex2x2

− νx3x1
Ex3x3

0 0 0

− νx1x2
Ex1x1

1
Ex2x2

− νx3x2
Ex3x3

0 0 0

− νx1x3
Ex1x1

− νx2x3
Ex2x2

1
Ex3x3

0 0 0

0 0 0 1
2Gx2x3

0 0

0 0 0 1
2Gx3x1

0

0 0 0 0 0 1
2Gx1x2





σx1x1

σx2x2

σx3x3

σx2x3

σx3x1

σx1x2



(3.40)

or

{ε} = [S]{σ} (3.41)

In which E, ν, and G are Young’s moduli, Poisson’s ratios and shear moduli respectively.
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or

{ε} =



S11 S12 S13 0 0 0

S22 S23 0 0 0

S33 0 0 0

symm. S44 0 0

S55 0

S66


{σ} = [S]{σ} (3.42)

Inverse of [S] gives [C] and we have, {σ} = [C]{ε} where [C] = [S]−1

[C] =



C11 C12 C13 0 0 0

C22 C23 0 0 0

C33 0 0 0

symm. C44 0 0

C55 0

C66


3.1.3 Case(c): Second Order Elasticity: W for Finite Strain, Large Deformation

and Large Motion

In section 3.1.1 we presented general theory of deriving constitutive equation using W for

elastic material, however in this development specific form of W was never considered. We

consider this here for second order elasticity. The strain energy density function for an elastic

material subjected to finite deformation can be expressed in terms of three invariants of the

strain (in this case Iε, IIε, IIIε of [ε]; Green’s strain). For incompressible material W can be

expressed as a function of Iε and IIε due to the fact that IIIε is related to change in volume

which does not occur in incompressible matter. This fact permits specific forms of W . A clear

understanding of second order elasticity is essential. We note that if we designate elements of

[ε] as infinitesimals then Iε is an infinitesimal of order one (contains only first powers of the
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elements of [ε]), IIε is an infinitesimal of (at least) order two, and IIIε is an infinitesimal of (at

least) order three. In the following we express W as a power series in terms Iε, IIε, and IIIε but

separate infinitesimals of various orders. In the second order elasticity we choose to neglect the

infinitesimals of order higher than three. Thus in second order elasticity, we write,

W = W0 +W1 +W2 +W3 + . . . (3.43)

We choose

W1 = αεIε (3.44)

W2 =
1
2

(λε + 2µε)I2
ε − 2µεIIε (3.45)

W3 = lεI
3
ε +mεIεIIε + nεIIIε (3.46)

Choice of W0 is of no consequence if it is constant as it drops out upon differentiating with

respect to Iε, IIε, and IIIε. In (3.44) - (3.46) αε, λε, µε, lε, mε, and nε are material constants.

Recall the development in section 3.1.1, we need partial derivatives of W with respect to Iε,

IIε, and IIIε i.e.

∂W

∂Iε
=
∂W1

∂Iε
+
∂W2

∂Iε
+
∂W3

∂Iε
(3.47)

∂W

∂IIε
=
∂W1

∂IIε
+
∂W2

∂IIε
+
∂W3

∂IIε
(3.48)

∂W

∂IIIε
=
∂W1

∂IIIε
+
∂W2

∂IIIε
+
∂W3

∂IIIε
(3.49)

In which

∂W1

∂Iε
= αε ,

∂W1

∂IIε
= 0 ,

∂W1

∂IIIε
= 0 (3.50)

∂W2

∂Iε
= (λε + 2µε)Iε ,

∂W2

∂IIε
= −2µε ,

∂W2

∂IIIε
= 0 (3.51)
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∂W3

∂Iε
= 3lεI2

ε +mεIIε ,
∂W3

∂IIε
= mεIε ,

∂W3

∂IIIε
= nε (3.52)

Putting these together, we obtain,

∂W

∂Iε
= αε + (λε + 2µε)Iε + 3lεI2

ε +mεIIε = β1 (3.53)

∂W

∂IIε
= −2µε +mεIε = β2 (3.54)

∂W

∂IIIε
= nε = β3 (3.55)

Recall that

{σ}t =
∂W

∂{ε}
=
∂W

∂Iε

∂Iε
∂{ε}

+
∂W

∂IIε

∂IIε
∂{ε}

+
∂W

∂IIIε

∂IIIε
∂{ε}

(3.56)

where ∂Iε
∂{ε} = {a1}t, ∂IIε∂{ε} = {a2}t, and ∂IIIε

∂{ε} = {a3}t

The partial derivatives of Iε, IIε, and IIIε with respect to {ε} are given by (3.15) - (3.17) and

thus we have

{σ} = β1{a1}+ β2{a2}+ β3{a3} (3.57)

or in matrix form,

{σ} = [Ds([ε])]{ε}+ αε

{ 1
1
1
0
0
0

}
(3.58)

This is the desired constitutive equation for the second order elasticity.

Remarks:

(i) The constitutive equation derived above are for second order elasticity and thus can ac-

commodate up to third order infinitesimals and hence, can be used for large deformation

finite strain.

(ii) The constitutive equations contain constants: αε, λε, µε, lε, mε, and nε. Choice of these
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is critical for specific materials.

(iii) The choices lε, mε, and nε for W3 may vary. For example we may choose,

W3 =
(
lε + 2mε

3

)
I3
ε − 2mεIεIIε + nεIIIε (3.59)

in this case meanings of lε, mε change but the development remains unaffected.

(iv) Explicit form of [Ds([ε])] in (3.58) can be derived and is given in the appendix A (using

lε, mε, and nε).

Special Case: Linear Elasticity: Infinitesimal Deformation

This implies infinitesimal of order 2 in the expression W i.e. W becomes

W = W0 +W1 +W2 (3.60)

where

W1 = αεIε (3.61)

W2 =
1
2

(λε + 2µε)I2
ε − 2µεIIε (3.62)

W3 = 0 (3.63)

We can choose W0 = 0 without loss of generality.

Thus,

β1 = αε + (λε + 2µε)Iε (3.64)

β2 = −2µε (3.65)

β3 = 0 (3.66)
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and we have

{σ} = β1{a1}+ β2{a2} (3.67)

or in matrix form

{σ} = [Ds]{ε}+ αε

{ 1
1
1
0
0
0

}

Note that [Ds] is not a function of [ε]. Explicit form of [Ds] is given in the following

[Ds] =



(λε + 2µε) λε λε 0 0 0

λε (λε + 2µε) λε 0 0 0

λε λε (λε + 2µε) 0 0 0

0 0 0 2µε 0 0

0 0 0 0 2µε 0

0 0 0 0 0 2µε


(3.68)

3.2 Stress-Strain Relations for Elastic Matter: Eulerian Descrip-

tions

From the descriptions of the mathematical models for a deforming elastic solid in Eulerian

frame, we note that the equations resulting from the conservation laws are in terms of velocities.

In case of Lagrangian descriptions it is possible to substitute velocities in terms of derivatives

of displacements and thereby eliminating velocities all together from the GDEs. This however,

is not possible in the mathematical models resulting from Eulerian descriptions. Thus, when

using the GDEs for solids in Eulerian descriptions it becomes essential to derive constitutive

equations in terms of velocity gradients or strain rates. We proceed as follows. From Eulerian

descriptions for fluids, we have the following.

Let vi or ~v be the velocities and {∇̄} = [ ∂
∂x̄1

, ∂
∂x̄2

, ∂
∂x̄3

]t be the differential operator. Then, we
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define,

Dij =
1
2

(
∂vi
∂x̄j

+
∂vj
∂x̄i

)
= Dji (3.69)

wij =
1
2

(
∂vi
∂x̄j
− ∂vj
∂x̄i

)
6= wji (3.70)

the symmetric and anti-symmetric parts of the velocity gradient tensor [∇̄~v] respectively. wij

are responsible for pure rotation and hence referred to as components of the spin tensor [w]. Dij

on the other hand are called components of the strain rate tensor [D], responsible for the stresses

(or stress rates). Thus the constitutive equation must be derived in terms of Dij . One can show

that [D] is a second order tensor and hence transform according to a second order tensor due

to rotation of coordinate frame. Thus [D] is objective, a strict requirement to be admissible in

the development of the constitutive equations. To look for conjugate stress pair, the choice in

the Eulerian descriptions is obviously Cauchy stress [σ̄] or σ̄ij ( as used in the development of

GDEs from the conservation laws). Since [D] is a tensor of strain rates, the conjugate stress has

to be stress rate (unlike fluids). In Eulerian descriptions, the most straight forward way to obtain

rate of [σ̄] is to take its material time derivative. However, we find that D[σ̄]
Dt is not objective or

frame invariant [35]. Thus we can not relate [D] to D[σ̄]
Dt through material constitution.

Let D
Dt be a material time derivative operator such that D[σ̄]

Dt is objective, then we can write the

following, relating [σ̄] and [D].

D[σ̄]
Dt

= D : D (3.71)

Since [σ̄] and [D] are both tensors of rank two, it follows [35] that D is a material tensor of rank

four. Thus, (3.71) becomes the fundamental starting point in the development of the constitutive

equations for the solid elastic matter in Eulerian descriptions. Specific forms of D
Dt and D need

to be established. The constitutive equation of the form (3.71) are referred to as rate constitutive

equations due to the fact these relate stress rates to strain rates.

One can show that convected derivatives of [35] tensor [σ̄] are objective. The convected
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derivative can be obtained in more than one way i.e. upper Convected (Co-deformational),

lower Convected, Jaumann, Truesdell etc. [35]. We define these in the following but omit their

derivations.

Let us define the conjugate pairs of D
Dt and D

CD

Dt
, CD ;

LCD

Dt
, LCD ;

JD

Dt
, JD ;

TD

Dt
, TD (3.72)

In which C, LC, J , and T stand for convected (upper convected), lower convected, Jaumann,

and Truesdell. Using (3.71) and (3.72),we can write convected, lower convected, Jaumann, and

Truesdell rate constitutive equation respectively as follows:

CD[σ̄]
Dt

= CD : D (3.73)

LCD[σ̄]
Dt

= LCD : D (3.74)

JD[σ̄]
Dt

= JD : D (3.75)

TD[σ̄]
Dt

= TD : D (3.76)

Explicit forms of D[σ̄]
Dt for various rate equations are given in the following,

CD[σ̄]
Dt

=
D[σ̄]
Dt
−
[
([σ̄] · [∇̄~v])t + [σ̄] · [∇̄~v])

]
(3.77)

LCD[σ̄]
Dt

=
D[σ̄]
Dt

+
[
([σ̄] · [∇̄~v])t + [σ̄] · [∇̄~v])

]
(3.78)

JD[σ̄]
Dt

=
D[σ̄]
Dt

+ [w] · [σ̄]− [σ̄] · [w] (3.79)

TD[σ̄]
Dt

=
D[σ̄]
Dt

+ div~v[σ̄]− [∇̄~v] · [σ̄]− [σ̄] · [∇̄~v] (3.80)

where

D[σ̄]
Dt

=
∂[σ̄]
∂t

+ ~v · ∇̄[σ̄] (3.81)
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Thus everything is defined in the four different descriptions of the constitutive equation except

material tensor D.

Remarks:

(1) It is obvious that the four rate equations are a set of partial differential equations in [σ̄],

strain rates and the constitution of the matter (contained in D).

(2) For the same [D] i.e. for a given strain rate tensor, all four constitutive equations will

yield the same response only if constants of D were different for each rate equation.

(3) For the same [D] and D in each rate equation, the response would be different for each

rate equation.

3.3 Heat Flux Equation

If we use Fourier law of heat conduction, the heat fluxes qi or q̄i can be expressed in terms of

the conductivities of the solid matter and temperature gradients and we can write,

Lagrangian descriptions:

qi = −kij
∂T

∂xj
(3.82)

Eulerian descriptions:

q̄i = −kij
∂T

∂x̄j
(3.83)

3.4 Equation of State: Eulerian Description

If the solid matter is compressible, then compression causes change in volume and hence change

in density which in turn results in change in temperature and thermodynamic pressure. Thus,

in dealing with compressible solid matter thermodynamic pressure p = p(ρ̄, T ) must be intro-

duced in the mathematical models. Definition of p = p(ρ̄, T ) is called the equation of state.
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For solid matter compressibility is only significant for very high pressures which might occur

in specific applications such as blast.

Similar to fluid, here also we introduce Stokes hypothesis,

σ̄ij = −pδij + τ̄ij (3.84)

where p is positive when compressive, σ̄ij are usual Cauchy stresses and τ̄ij are Cauchy stress

deviations.

(3.84) must be introduced in GDEs derived from the conservation laws as well as in the consti-

tutive equations. Now we can define p = p(ρ̄, T ) as equation of state. At present this symbolic

form suffices for the mathematical developments. However, specific form of the equation of

state must be considered depending upon the application.

3.5 Specific Internal Energy ′e′

Recall that in the energy equation the term De
Dt was present, we need to pay closer attention to

this term. We note that specific internal energy e is a function of p, ρ̄, and T . But p = p(ρ̄, T )

and hence we can write,

e = e(ρ, T ) (3.85)

Lagrangian descriptions:

ρ
De

Dt
= ρ

∂e

∂t
= ρ

(
∂e

∂ρ

∂ρ

∂t
+
∂e

∂T

∂T

∂t

)
(3.86)

if specific form of e is known then ∂e
∂ρ and ∂e

∂T are strictly deterministic.

Eulerian descriptions:
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In Eulerian descriptions one can show [35] that for compressible solid matter,

ρ̄
Dē

Dt
= ρ̄

∂ē

∂T

(
∂T

∂t
+ vi

∂T

∂x̄i

)
− ρ̄2 ∂ē

∂ρ̄

∂vi
∂x̄i

(3.87)

in which ∂ē
∂T and ∂ē

∂ρ̄ are strictly deterministic once we have explicit form of ē.

3.6 Variable Material Properties

In high temperature applications, the conductivities, Young’s moduli, shear moduli, and specific

heat may not be constant and may indeed depend upon temperature. In such cases, we can use

appropriate analytical expression (from experimental data with curve fit or derived otherwise).

Thus, it suffices to say,

Young’s moduli: Eij = Eij(T )

Shear moduli: Gij = Gij(T )

Thermal conductivities: kij = kij(T )

(3.88)

3.7 Explicit Expression for ′e′ and Cv (specific heat)

In this section, we present details of specific internal energy e = e(p, ρ, T ). Since p = p(ρ, T )

(equation of state), we have e = e(ρ, T ). For compressible matter with temperature dependent

specific heat, we can write the following for specific internal energy e.

e =
∫ T

T0

CvdT −
∫ ρ

ρ0

1
ρ2

((
T
∂p

∂T

)
ρ

− p

)
dρ (3.89)

with Cv = Cv(T ), we have

Cv = C∗v − T
∫ ρ

ρ0

1
ρ2

(
∂2p

∂T 2

)
ρ

dρ (3.90)
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and

C∗v =
m∑
j=0

CjT
j (3.91)

Remarks:

(i) Using p = p(ρ, T ) from equation of state, we can obtain explicit expression for Cv

and then for e = e(ρ, T ) for any desired equation of state and hence, we have explicit

expression for ∂e
∂T and ∂e

∂ρ needed in the energy equation.

(ii) Thus, p = p(ρ, T ) and e = e(ρ, T ) and their spatial derivatives are completely defined

explicitly for any desired equation of state.

3.8 Summary

In this chapter, developments of constitutive equations for solid matter are presented. A general

theory for deriving stress-strain relationships for elastic matter based on potential function is

given in section 3.1. The specific forms of the constitutive equations for first order and second

order elasticity are given. In addition, an alternate derivation for special case of Hooke’s law

for linear elastic materials is presented using Taylor series expansion of strain energy density

function. In Lagrangian descriptions, it is possible to substitute velocities for displacements in

constitutive equations. In Eulerian descriptions, GDEs are in terms of velocities therefore, it

becomes essential to derive constitutive equations in terms of strain rate tensor. Additionally,

objectivity is a strict requirement in the development of constitutive equations. Since mate-

rial derivative of stress, [σ̄] is not objective, [D] and D[σ̄]
Dt can not be related through material

constitution. Four different objective rate constitutive equations are presented for Eulerian de-

scriptions: upper Convected, lower Convected, Jaumann, and Truesdell which are commonly

used in the literature. Heat flux equations, equation of state and specific internal energy details

are given toward the end of the chapter.
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Chapter 4

Complete Mathematical Models for a

Deforming Solid in Lagrangian and

Eulerian Descriptions

4.1 Introduction

In chapter 2, governing differential equations (GDEs) resulting from conservation laws are pre-

sented in Lagrangian as well as Eulerian descriptions. We noted that these systems of GDEs do

not have closure due to the fact that the constitution of the matter was never considered in their

derivations, thus these GDEs are valid for all matter within the assumptions used in their deriva-

tions. In chapter 3, we developed constitutive equations for a deforming solid in Lagrangian and

Eulerian descriptions. In Lagrangian descriptions we choose second Piola-Kirchhoff stresses

and Green’s strains as conjugate pairs of choice in the development of constitutive equations

for first order as well as second order elasticity. Eulerian descriptions due to choice of veloci-

ties as dependent variables (as opposed to displacements) require rate constitutive equations. A

number of rate equations commonly reported in the published work were presented.

In this chapter we bring the GDEs from chapter 2 and the constitutive equations from chap-

ter 3 together to present complete descriptions of mathematical models (in Lagrangian and Eu-
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lerian descriptions) that have closure. Thus, these mathematical models are suitable for math-

ematical descriptions of boundary value problems (BVPs) and initial value problems (IVPs)

describing behaviors of deforming solid matter. In the following we give a quick summary of

the developments in this chapter.

Lagrangian descriptions:

(1) Large motion, finite strain, compressible matter

• First order elasticity

• Second order elasticity

(2) Large motion, finite strain, incompressible matter

• First order elasticity

• Second order elasticity

(3) Large motion, small strain, incompressible matter

• First order elasticity

(4) Small motion, small strain, incompressible matter

• First order elasticity

Eulerian descriptions:

Since Eulerian descriptions have no restriction on motion hence, we consider the following,

(1) Compressible matter

• Rate constitutive equations

(2) Incompressible matter

• Rate constitutive equations
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We present details of the complete mathematical models in the following. The material pre-

sented in the following is from chapters 2 and 3, but integrated to present complete models.

Flux equations in all models are substituted into the energy equation and thus, eliminated as a

separate system of equations.

4.2 Lagrangian Descriptions

4.2.1 Large Motion, Finite Strain, Compressible Matter

We consider second Piola-Kirchhoff stress and Green’s strains as energetically conjugate pairs

and strokes hypothesis to replace σij with

[σ] = −p[I] + [τ ] (4.1)

in which τ are Cauchy stress deviations. This is necessitated due to equation of state p =

p(ρ, T ).

ρ
∂2~u

∂t2
+ (|J |−1[J ](−p[I] + [τ ])[J ]t){∇} − ~F bρ = 0 (4.2)

ρ
∂e

∂t
− |J |({∇}t[J ]−1)([J t]−1{[K]{∇T}} − [J ](−p[I] + [τ ])

[
∂~̇u

∂{x}

]t
= 0 (4.3)

{τ} = p

{ 1
1
1
0
0
0

}
+ [Ds([ε]){ε} ; second order elasticity (4.4)

{τ} = p

{ 1
1
1
0
0
0

}
+ [Ds]{ε} ; first order elasticity (4.5)

{τ}t = [τ11, τ22, τ33, τ23, τ31, τ12] (4.6)

{ε}t = [ε11, ε22, ε33,
1
2
γ23,

1
2
γ31,

1
2
γ12] (4.7)

~̇u =
∂(~u)
∂t

and
∂e

∂t
=
∂e

∂ρ

∂ρ

∂t
+
∂e

∂T

∂T

∂t
(4.8)
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p = p(ρ, T ); equation of state and e = e(ρ, T, p) = e(ρ, T ) are known explicitly from the

constitution of the matter.

Remarks:

(i) [ε] is a nonlinear function of displacement gradients [J̇ ]

(ii) [Ds] for first order elasticity is only a function of material parameters λε and µε

(iii) [Ds([ε])] for second order elasticity is a function of invariants Iε, IIε, IIIε of [ε] as well

as [ε]in addition to material parameters αε, λε, µε, lε, mε, nε.

(iv) We can express [ε] in terms of components of [J̇ ], then substitute [ε] in constitutive equa-

tions to express [τ ] in terms of p and components of [J̇ ]. This resulting expression for

[τ ] can be substituted in momentum and energy equation to eliminate [τ ] and [ε] all to-

gether from GDEs. The resulting model contains density, displacements and temperature

as dependent variables due to the fact that pressure can be eliminated by equation of state.

This gives us the final desired set of GDEs constituting the mathematical model.

4.2.2 Large Motion, Finite Strain, Incompressible Matter

For incompressible matter |J | = 1 and hence continuity is satisfied identically due to the fact

that ρ = ρ̄ i.e. no change in density. Furthermore for incompressible matter equation of state is

not required, hence, Stokes hypothesis is not necessary i.e. we can maintain [σ] in the model.

Also for constant specific heat (Cv), e = CvT hence ∂e
∂t = Cv

∂T
∂t in the energy equation. The

resulting equations are as follows.

ρ
∂2~u

∂t2
+ ([J ][σ]t[J ]t){∇} − ~F bρ = 0 (4.9)

ρCv
∂T

∂t
− ({∇}t[J ]−1)([J t]−1{[K]{∇T}} − [J ][σ]

[
∂~̇u

∂{x}

]t
= 0 (4.10)

{σ} = [Ds([ε])]{ε} ; second order elasticity (4.11)

{σ} = [Ds]{ε} ; first order elasticity (4.12)
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Remarks:

(i) [ε] is a nonlinear function of displacements [J̇ ]

(ii) [Ds] for first order elasticity is only a function of material parameters λε and µε

(iii) [Ds([ε])] for second order elasticity is a function of invariants Iε, IIε, IIIε of [ε] as well

as [ε]in addition to material parameters αε, λε, µε, lε, mε, nε.

(iv) We can express [ε] in terms of components of [J̇ ], then substitute [ε] in constitutive equa-

tions to express [σ] in terms of components of [J̇ ]. This resulting expression for [σ] can

be substituted in momentum and energy equation to eliminate [σ] and [ε] all together

from the GDEs. The resulting system of GDEs in displacements and temperature are the

desired system of PDEs.

4.2.3 Large Motion, Small Strain, Incompressible Matter

In this case also |J | = 1, ρ = ρ̄ (no change in density) hence, there is no equation of state and

e = CvT for constant Cv (as in 4.2.2)

ρ
∂2~u

∂t2
+ ([J ][σ]t[J ]t){∇} − ~F bρ = 0 (4.13)

ρCv
∂T

∂t
− ({∇}t[J ]−1)([J t]−1{[K]{∇T}} − [J ][σ]

[
∂~̇u

∂{x}

]t
= 0 (4.14)

{σ} = [Ds]{ε} ; first order elasticity (4.15)

In this case the momentum and energy equations are same as in 4.2.2. but the constitutive

equation only requires first order elasticity. [σ] and [ε] are second Piola-Kirchhoff stress and

Green’s strain due to large motion.

Remarks:

(i) [ε] is a non-linear function of displacements [J̇ ]

(ii) [Ds] for first order elasticity is only a function of material parameters λε and µε
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(iii) By substituting components of [J̇ ] in [ε] in the constitutive equations and then substitution

of [σ] in momentum and energy equation permits us to obtain the desired system of PDEs

in displacement and temperature.

4.2.4 Small Motion, Small Strain, Incompressible Matter

In this case, we have |J | = 1, [J ] = [I] and hence [J ]−1 = [I] (due to xi = x̄i). There is no

equation of state and e = CvT for constant Cv. Only first order elasticity is required in which

[σ] and [ε] Cauchy stress (same as Piola-Kirchhoff stress) and linear part of the Green’s strains

(standard engineering strains). The GDEs in this case are simplified considerably and become

familiar equations in linear elasticity.

ρ
∂2~u

∂t2
+ [σ]{∇} − ~F bρ = 0 (4.16)

ρCv
∂T

∂t
− {∇}t({[K]{∇T}} − σij

∂u̇i
∂xj

= 0 (4.17)

{σ} = [Ds]{ε} ; [ε] =
1
2

[[J̇ ] + [J̇ ]t] (4.18)

Remarks:

(i) [Ds] is the familiar matrix containing λε and µε or E and ν for homogeneous isotropic

material

(ii) {σ} can be expressed in terms of components of [J̇ ] by substituting for {ε} in terms of

[J̇ ] and then [σ] can be substituted in the momentum and energy equation to eliminate

{σ} and {ε} all together from the GDEs. The resulting mathematical model contains

four PDEs in three displacements and temperature and hence has closure
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4.3 Eulerian Description

4.3.1 Large Motion, Compressible Matter:

Here Cauchy stress deviations and strain rate tensors are the choices for conjugate pair.

∂ρ̄

∂t
+

∂

∂x̄i
(ρ̄vi) = 0 (4.19)

ρ̄
∂vi
∂t

+ ρ̄
∂vi
∂x̄j

vj +
∂p

∂x̄i
− ∂τ̄ij
∂x̄j
− ~F bρ̄ = 0 ; i = 1, 2, 3 (4.20)

ρ̄
∂ē

∂T

(
∂T

∂t
+ vi

∂T

∂x̄i

)
− ∂

∂x̄i

(
Kij

∂T

∂x̄j

)
+
(
p(ρ̄, T )− ρ̄2 ∂ē

∂ρ̄

)
∂vi
∂x̄i
− τ̄ij

∂v̄i
∂x̄j

= 0 (4.21)

D[−p[I] + [τ̄ ]]
Dt

= D : D ; rate constitutive equations (4.22)

Remarks:

(i) [D] is the strain rate tensor

(ii) D
Dt and D are conjugate choices depending upon the choice of rate equation (discussed in

chapter 3).

(iii) Stokes hypothesis is essential to bring p in GDEs so that equation of state p = p(ρ, T )

can be used.

(iv) Equation of state defines p = p(ρ, T ) and e = e(p, T, ρ) = e(ρ, T ). Both p and e are

known for a specific material constitution for constant as well as variable properties of

the matter

(v) Since the constitutive rate equations are differential equations in [τ̄ ] and strain rate tensor,

components of [τ̄ ] i.e τ̄ij must remain dependent variables in the mathematical model.

Due to equation of state p = p(ρ, T ), p is no longer a dependent variable in the mathe-

matical model.

(vi) The resulting mathematical model is a system of eleven PDEs in density ρ̄, three velocities
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~v, six stresses τ̄ij and temperature T and thus we have closure. This system of PDEs

constitutes the final description of the mathematical model.

4.3.2 Large Motion, Incompressible Matter

Due to incompressibility, density is constant. There is no equation of state and ē = CvT

for constant specific heat Cv. Due to absence of the equation of state, Stokes hypothesis is not

required and hence, the mathematical model can be expressed using Cauchy stress [σ̄] and strain

rate tensor [D] and we have (noting that ρ̄ = ρ),

ρ
∂vi
∂x̄i

= 0 (4.23)

ρ
∂vi
∂t

+ ρ
∂vi
∂x̄j

vj +
∂σij
∂x̄j

− ~F bρ = 0 ; i = 1, 2, 3 (4.24)

ρCv

(
∂T

∂t
+ vi

∂T

∂x̄i

)
− ∂

∂x̄i

(
Kij

∂T

∂x̄j

)
− σ̄ij

∂vi
∂x̄j

= 0 (4.25)

D[σ̄]
Dt

= D : D ; rate constitutive equations (4.26)

Remarks:

(i) D
Dt and D are conjugate choices depending upon the choice of rate equation (discussed in

chapter 3).

(ii) Since the constitutive equations are a system of PDEs in σ̄ij and Dij , σ̄ij can not be

eliminated from the GDEs and hence, must remain as dependent variables.

(iii) The mathematical model presented here contains eleven PDEs but only ten variables

(three velocities, temperature and six stresses). Thus it does not have a closure. This

situation can be corrected by either of the two ways.

(a) If σ̄ij are variables then incompressibility requirements warrants that continuity to

be eliminated due to the fact that here a control volume experiences motion but no

change i.e. material particles in it remain intact.
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(b) Use Stokes hypothesis, σ̄ij = −pδij + τ̄ij to substitute σ̄ij and make pressure a

dependent variable, now continuity equation is admissible even though statement in

(a) hold.

4.4 Mathematical Model due to Swedlow, Osias, and Lee

In this section we present a mathematical model for a deforming solid that has been published

and used by Swedlow, Osias, and Lee and others quite frequently [19–23, 25, 36, 37]. The

motivation for this model is neither clear to us nor it has been stated in the publications. We

only present this model here for two reasons: (i) for a time period of 5-10 years many papers

have appeared on this model including numerical studies and we wonder about the validity of

these (ii) to demonstrate that this mathematical model is in violation of basic principles even if

we ignore the motivation for its development. In the subsequent chapter we present numerical

studies to illustrate this point for a model problem utilizing this mathematical model as well as

using another model problem (1-D convection-diffusion problem) for which the mathematical

framework is constructed using the same principle used by the authors in references [19–23,

25, 36, 37]. Following references [19–23, 25, 36, 37], we present the development given by

the authors. In the absence of body forces and inertial effects the equilibrium equations for a

deforming solid are written as,

[σ̄]{∇̄} = 0 (4.27)

By taking material time derivative of the above equations, the authors obtain what are referred

to as rate equilibrium equations.

D

Dt
([σ̄]{∇̄}) = 0 (4.28)
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or

∂

∂t
([σ̄]{∇̄}) + ~v · ~∇([σ̄]{∇̄}) = 0 (4.29)

The rate constitutive equation used in references [19–23, 25, 36, 37] is due to Jaumann,

JD[σ̄]
Dt

= JD : D (4.30)

where

JD[σ̄]
Dt

=
D[σ̄]
Dt

+ ([w] · [σ̄]− [σ̄] · [w]) (4.31)

[w] =
1
2

(∇̄~v − (∇̄~v)t) ,
D[σ̄]
Dt

=
∂[σ̄]
∂t

+ ~v ·~̄∇[σ̄] (4.32)

or wij =
1
2

(Dij −Dji) (4.33)

Thus the final mathematical model consists of

∂

∂t
([σ̄]{∇̄}) + ~v · ~∇([σ̄]{∇̄}) = 0 (4.34)

and

∂[σ̄]
∂t

+ ~v · ~∇[σ̄] + [[w] · [σ̄]− [σ̄] · [w]] = JD : D (4.35)

Remarks:

(1) This is a system of nine PDEs in three velocities and six Cauchy stresses, σ̄ij and hence

has closure.

(ii) The equilibrium equations in first order derivatives of Cauchy stresses are a system of first

order PDEs in σ̄ij and are based on Newton’s second law applied to a volume of matter.

Its material derivative is essentially differentiation of the conservation law yielding a

higher order system of PDEs that are not derivable from the physics of deforming matter
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(obvious from [σ̄]{∇̄} = 0 containing all of the essential physics).

(iii) Since these GDEs contain higher order derivatives of the dependent (σ̄ij) variables com-

pared to the GDEs from the conservation laws, their unique solution will obviously re-

quire additional boundary conditions (BCs) and/or initial conditions (ICs) that may or

may not be possible to ascertain from the physics of the process. Hence the solutions of

the associated BVPs and IVPs may have serious issues of the uniqueness. Our numerical

experiments with this mathematical model as well as for another model for which the

mathematical model is constructed using this approach confirm this.

(iv) The essential points we wish to underline are:

(a) Differentiating the GDEs resulting from the conservation laws and then using them

as part of the mathematical models in place of the original GDEs resulting from

conservation laws is not permissible due to the fact that the resulting equations

describe higher order physics compared to what is present in the process and is

reflected the GDEs resulting from the conservation laws.

(b) However, it is permissible to use differentiated forms of the GDEs from the con-

servation laws for simplification purposes. For example for two dimensional com-

pressible flow the continuity equation is,

∂u

∂x
+
∂v

∂y
= 0

Thus when continuity holds, the following hold as well

∂2u

∂x2
+

∂2v

∂x∂y
= 0

∂2u

∂x∂y
+
∂2v

∂y2
= 0 . . . etc

and these can be used to simplify other equations in the system of GDEs. But the orig-

inal continuity equation can not be replaced using any of these differentiated form. It is
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rather obvious that these differentiated form of the continuity equation can not be derived

directly using the principle of conservation of mass due to the fact that the principle of

conservation of mass is first order physics in relation to the velocity field and not second

order as in the differentiated forms.

4.5 Summary

In this chapter, material presented in chapter 2 (governing differential equations) and chapter

3 (constitutive equations) is integrated to present complete mathematical models. The mathe-

matical models are given in Eulerian descriptions as well as Lagrangian descriptions and they

are suitable for both boundary value problems (BVPs) and initial value problems (IVPs) for

investigating wide variety of solid mechanics problems. The most general formulations for

compressible elastic matter are given for large deformation, finite strain case. In addition, the

formulations for incompressible elastic matter with small deformation, small strain assumption

are also presented.

In section 4.4, equilibrium rate formulation is investigated which is based on the material

time derivative of the equilibrium equations in the absence of inertial and body forces. Since the

GDEs obtained from this contain higher order derivatives of the dependent variables compared

to GDEs from conservation laws, there is a need for additional BCs and/or ICs. However, it is

not always possible to determine these from the physics, hence uniqueness of the solution from

these mathematical models is always a serious issue.
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Chapter 5

Mathematical and Computational

Infrastructure, Finite Element

Formulations and Solution Method

5.1 Introduction

An examination of the complete mathematical models that have closure (Chapter 4) reveals that

except for small motion small strain Lagrangian description all other mathematical models are

a system of non-linear partial differential equations (PDEs) in space and time. The descriptions

of the physical processes utilizing these mathematical models will naturally result in initial

value problems. For such problems, the solution changes as time elapses. A comprehensive

literature review of various finite element methodologies based on space-time decoupled and

space-time coupled methods can be found in reference [38] and is not presented here for the

sake of brevity. Based on Surana et al. [38], space-time coupled methods utilizing space-time

strip or slab for an increment of time with time marching is highly meritorious for simulating

the evolution and hence is adopted here. Space-time coupled finite element methodology ob-

viously requires space-time integral forms for each space-time strip and hence each space-time

element of the strip. Surana et al. [5–7, 38] introduced the concepts of variational consistency
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(VC) and variational inconsistency (VIC) for boundary value problems (BVPs) by establishing

a correspondence between the integral forms and the calculus of variations and showed that VC

integral forms yield unconditionally stable and non degenerate computational processes. This

cannot be ensured for the integral forms that are variationally inconsistent. The authors showed

that when the differential operators in the BVPs are non-linear only least squares processes

gives variationally consistent integral forms. These non-linear algebraic equations are solved

using Newton’s first order method with line search assuming the term containing the second

variation of residual can be neglected in the second variation of the least squares functional [5–

7, 38]. Thus, for non-linear GDEs the least squares finite element method is highly meritorious

over all others.

These concepts for BVPs have been extended by Surana et al. for initial value problems

(IVPs) [38] by introducing the concepts of space-time variationally consistent (STVC) and

space-time variationally inconsistent (STVIC) for space-time integral forms. Authors showed

that what holds for BVPs also holds for IVPs when the integral forms are space-time integral

forms and thus, space-time least squares processes for a space-time strip with time marching

become the preferred computational strategy for obtaining numerical solutions of IVPs and is

utilized in the present work. In summary, except space-time least squares method all other meth-

ods of approximation are space-time VIC when the differential operators in the mathematical

models of IVPs are non-linear PDEs.

It is well known that in finite element processes local approximations over an element is

extremely crucial. Surana et al. [5–7, 38] have shown for BVPs that the order k of the approx-

imation space defining global differentiability of order (k − 1) is an independent parameter in

all finite element processes in addition to h, the characteristic length of discretization and p,

the local approximation. Thus, the authors proposed h, p, k mathematical framework for BVPs

as apposed to the h, p framework used currently in computational mathematics. The authors

showed benefits of hpk framework in terms of accuracy, reduced degree of freedoms, better

convergence and the most essential feature of being able to incorporate the desired physics

through k in the design of the computational processes. This work for BVPs has been extended
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by Surana et al. [38] for IVPs yielding hpk framework for IVPs in which the order of global dif-

ferentiability in space and time can be controlled by k1 and k2 the orders of the approximation

spaces in space and in time. In the present work we utilize higher order global differentiability

approximation in space and time which is only possible in hpk framework.

Thus, in summary, we use space-time least squares processes in hpk framework for IVPs.

In the following we present details of the space-time least squares process in hpk framework

for IVPs as well as the solution method for time marching the evolution.

5.2 Space-time Least Squares Process for IVPs

In this section we present details of space-time least squares finite element process (STLSP).

The material is presented in abstraction but one could easily make it problem specific using the

specific forms of the differential operator and the dependent variables.

Let Bj(iϕ) − fj = 0 in nΩxt = Ωx × nΩt = Ωx × (tn, tn+1)

i = 1, . . .m and j = 1, . . .m
(5.1)

be a system of non-linear partial differential equations in space and time in dependent variables

iϕ over a space-time domain nΩxt of nth space-time strip from time tn to tn+1.

Let nΩ̄T
xt =

M⋃
e

nΩ̄e
xt (5.2)

be a discretization of nΩ̄xt in which nΩ̄e
xt is a typical space-time element ′e′. Let mi

1 and mi
2

; i = 1, . . .m be the highest orders of the derivatives of the dependent variables iϕ in space

and time appearing in the PDEs (5.1). nI and nIe be the least squares functionals for the nth

space-time strip and the space-time element ′e′ respectively. Let iϕeh be the space-time local

approximation for the dependent variables iϕ over nΩ̄e
xt. We choose,

iϕeh ∈ iVh ⊂ H(ki
1,k

i
2);(pi

1,p
i
2)nΩ̄e

xt (5.3)
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in which H(ki
1,k

i
2);(pi

1,p
i
2)nΩ̄e

xt is a scalar product space containing monomial basis functions of

global differentiability of orders (ki1 − 1) and (ki2 − 1) and degrees of local approximations, pi1

, pi2 for variables iϕ in space and time.

Let iϕh be the global approximation of iϕ over nΩ̄T
xt, then,

iϕh =
M⋃
e

iϕeh (5.4)

(5.3) and (5.4) ensure that iϕeh and iϕh are of the same classes i.e. of same global differentia-

bility in space and time. By substituting (5.3) in (5.1), we obtain residuals or residual equations

for nΩ̄e
xt,

Bj(iϕeh) − fj = nEej (
iϕeh) ∀ (x, t) ∈ nΩ̄e

xt (5.5)

Least squares functional nI is constructed using (5.5) for nΩ̄T
xt as follows,

nI(iϕh) =
m∑
j=1

(nEj , nEj) =
M∑
e=1

(
m∑
j=1

(nEej ,
nEej )) =

M∑
e=1

nIe(iϕeh) (5.6)

nIe(iϕeh) is the least squares functional for nΩ̄e
xt, the space-time domain of a space-time

element ′e′. This establishes existence of the functional nI(iϕh). In least squares method, we

seek extrema (minimum in this case) of the functional nI(iϕh). First variation of nI provides

necessary conditions and the second variation nI must yield a unique extremum principle or

sufficient condition.

δ(nI(iϕh)) =
M∑
e=1

M∑
j=1

(nEej , δ(
nEej )) = g(iϕh) = 0 (5.7)

Based on the work presented by Surana et al. [5–7, 38]

δ2(nI(iϕh)) ∼=
M∑
e=1

M∑
j=1

(δ(nEej ), δ(
nEej )) > 0 (5.8)
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Hence, the integral form resulting from (5.7) is variationally consistent. We seek a solution iϕh

for nΩ̄T
xt that satisfies (5.7) (necessary condition). Since the PDEs are nonlinear, g(iϕh) is a

nonlinear function of iϕh, thus, we must find iϕh that satisfies (5.7) iteratively. We proceed as

follows.

Let (iϕh)0 be an assumed or starting solution, thus,

g((iϕh)0) 6= 0 (5.9)

Let ∆(iϕh) be correction to (iϕh)0 such that,

g((iϕh)0 + ∆(iϕh)) = 0 (5.10)

Expand g((iϕh)0 + ∆(iϕh)) in (5.10) in Taylor series about (iϕh)0 and retain only up to first

order terms in ∆(iϕh),

g((iϕh)0 + ∆(iϕh)) ∼= g((iϕh)0) +
∂g

∂(iϕh)

∣∣∣∣
(iϕh)0

∆(iϕh) = 0 (5.11)

But, from (5.8),

∂g

∂(iϕh)
= δ2(nI(iϕh)) (5.12)

Hence, from (5.11) we obtain ∆(iϕh),

∆(iϕh) = −
(

[δ2(nI(iϕh)]−1
(iϕh)0

)
g(iϕh)

∣∣
(iϕh)0

(5.13)

The improved solution is then obtained using,

iϕh = (iϕh)0 + α(∆(iϕh)) (5.14)
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α is a scalar (generally 0 < α < 2) determined such that,

nI(iϕh) ≤ nI((iϕh)0) (5.15)

This method is referred to as Newton’s first order method with line search. The iterative solution

procedure is considered converged when absolute value of each component of g in (5.7) is below

a certain preset tolerance, generally 0(10−6) or lower.

Remarks

(1) Surana et al. [5–7, 38] have shown that approximation in (5.8) is essential to achieve

space-time variational consistency of the integral form resulting from (5.7). Space-time

variational consistency by (5.8) ensures that the coefficient matrix in (5.13) is uncondi-

tionally positive definite and hence, the computations are unconditionally stable.

(2) The approximation in (5.8) does not affect least squares process as it ends with (5.7). This

approximation only influences the slope of the hyperplane to the hypersurface defined by

δ(nI(iϕh)) = 0. In simple words it only influences the slope of the tangent at (iϕh)0

in Newton’s linear method for solving the non-linear equations from (5.7). The benefits

of this are obviously enormous (STVC) as it ensures unconditionally positive definite

coefficient matrix in (5.13).

5.3 Computation of Evolution

The STLSP described in 5.2 is applied to the first space-time strip or slab (from t = 0 to t=∆t)

using BCs and ICs and a solution iϕh is computed. h, p and k are adjusted so that the solution

for the first space time strip is converged that is we ensure that nI(iϕh) ≤ ∆ a predetermined

value (generally O(10−6) or lower). This ensures that (based on (5.6)) GDEs for each space-

time element of nΩ̄T
xt are satisfied accurately in the point-wise sense. Now we consider second

space-time strip from t = ∆t to t = 2∆t. The initial conditions at t = ∆t for this space-time

strip are obtained from the iϕh for first space-time strip at t = ∆t. Using these ICs and the
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BCs, a solution is computed for the second space-time strip. During the computations for the

second space-time strip we maintain same pi1 ,pi2, ki1 and ki2 as in case of first space-time strip.

Generally these suffice unless there is a new event in the process at later values of time. This

process is continued until the desired value of time is reached.

We note that in this time marching approach it is essential to obtain a converged solution

(nI ≤ ∆) for the current space-time strip before time marching due to the fact that the solution

from the current space-time strip serves as initial conditions for the next space-time strip. This

is obviously easy to accomplish.

This approach ensures desired accuracy of the solution during evolution and for each space-

time strip we only solve a very small problem compared to the approaches in which the entire

space time domain is discretized using space-time elements.

5.4 Global Differentiability in Space and Time Choices ki1, ki2, pi1,

pi2:

If we choose ki1 ≥mi
1 + 1, ki2 ≥mi

2 + 1 ; pi1 ≥ 2ki1 − 1, pi2 ≥ 2ki2 − 1, then we ensure that all

space-time integrals in the entire process are Riemann. The equality for the choices of ki1 and

ki2 corresponds to the minimally conforming spaces for the integrals to be Riemann.

We could also choose, ki1 = mi
1, ki2 = mi

2, in which case the integrals in the LSP will

be Lebesgue. ki1 < mi
1 and ki2 < mi

2 are obviously not admissible in the LSP. Benefits of the

choices of ki1 and ki2 that ensure integrals in Riemann sense in the entire LSP have been reported

by Surana et al. [4].

5.5 Summary

It is shown by Surana et al. [38] that space-time least squares finite element processes (STLSP)

are highly meritorious for initial value problems (IVPs) over all others. This is due to the

fact that only space-time least squares processes produce space-time variationally consistent

(STVC) integral forms regardless of the nature of the space-time differential operators whereas
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all other methods of approximation are space-time variationally inconsistent (STVIC) regard-

less of the nature of differential operators. Variationally consistent integral forms yield uncon-

ditionally stable and non-degenerate computational processes. Numerical studies in chapter 6

are carried using hpk mathematical framework with the STVC integral forms. Based on Surana

et al. [5–7, 38] hpk framework result in improved accuracy, reduced degree of freedoms, better

convergence rate and ability to incorporate the desired physics of the problem through k in the

design of the computational process. Newton’s first order method with line search is used to

solve the nonlinear equations where the iterative solution procedure is assumed converged when

the |g| is below a preset tolerance.
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Chapter 6

Numerical Studies

6.1 Introduction

From the mathematical models one observes that there are many areas, specially rate equilib-

rium equations and constitutive equations, that require closer examination to decide their appli-

cability based on assumptions under which they are derived. First, we present a short discussion

on the main issues of concern in each section followed by numerical studies. In all numerical

studies Eulerian descriptions in velocities and stresses are used unless stated otherwise (Hence

over bar for Eulerian variables is omitted in this chapter). Periodically comparisons are made

using results obtained from mathematical models derived using Lagrangian descriptions. The

numerical studies are derived in the following sections,

(a) Investigation of the mathematical model based on rate equilibrium approach

(b) 1-D axial wave propagation model problem to investigate rate constitutive equations

(c) 2-D wave propagation under various loading with zero and non-zero Poisson’s ratio using

mathematical models based on velocities and stresses

(d) Some comparisons with numerical results obtained using Lagrangian descriptions in dis-

placements, second Piola-Kirchhoff stresses and Green’s strains.
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6.2 Investigation of Mathematical Model Based on Rate Equilib-

rium Approach

The mathematical models based on rate equilibrium approach [20–25, 36] have been published

and used. This approach is based on Eulerian description with material time derivative of the

static equilibrium equations in Cauchy stresses to obtain what is referred to as a rate equilibrium

equations in velocities and Cauchy stresses. The appearance of the velocities in Eulerian de-

scription obviously require rate constitutive equations. In all published works on this approach

Jaumann rate constitutive equations are utilized.

Remarks

(i) Since the material time derivative of the static equilibrium equations are used, these math-

ematical models do not contain inertial effects and hence can not be used to study time

dependent motion of solids.

(ii) Based on (i), these mathematical models are only valid for static case for which the ratio-

nale of material time derivative is not quite clear.

(iii) We note that the static equilibrium equations used here are a special case of momen-

tum equations and that are obtained as a result of neglecting convective terms and iner-

tial terms. Thus the static equilibrium equations are a result of conservation law based

on Newton’s second law applied to a volume of solid matter. These contain first order

derivatives of the Cauchy stresses. That is derivation of these equations only recognize

the gradients of stresses for specific physics. When one takes material derivative of the

static equilibrium equations, we obtain a form that contain derivatives of the stresses of

order higher than one. Additionally velocity field and time derivatives of the Cauchy

stresses appear as well. It is quite obvious that this form could not have been derived

using conservation law based on Newton’s second law.

When using the rate equilibrium equation as part of the mathematical model two additional

difficulties arise: (a) The appearance of higher order derivatives require higher order regularity
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of the approximations which in accordance with static equilibrium equation is unnecessary. (b)

Uniqueness of the solution with the rate equilibrium equations obviously requires additional

boundary conditions and initial conditions which may not be possible to establish based on

physics of the problem.

In summary, the rate equilibrium equations bring higher order physics in the mathematical

models which is not present in the original equilibrium equations based on the conservation

law. The higher order physics obviously necessitates additional boundary conditions for the

uniqueness of the solution which may be absent in the description of the original problem. The

most disturbing feature of these models is that they fail for time dependent motion and if the

static response is the goal, then these models are not required in the first place. Jaumann rate

constitutive equations appears to have limitations as well (discussed in next section).

6.2.1 Model Problem 1

In this section we present a numerical study using rate equilibrium equations approach with

Jaumann constitutive equations using 1-D axial wave propagation as a model problem. We

consider a rod of length L, fixed at one end (x = 0) and subjected to an axial stress σxx at

the other end x = L. σxx is a pulse of duration 2∆t and peak value of σxx (figure 6.1). The

discretization consists of a space-time strip of ten element uniform mesh (space-time elements).

Numerical solution for the evolution is computed for p-level of 9 (in both space and time)

with space-time local approximations of class C11(nΩ̄e
xt). Dimensionless values of various

quantities one shown in figure 6.1. We choose peak value of σxx to be −0.01. Figures 6.2 (a),

(b) and (c) show that evolutions of Cauchy stress σxx and axial velocity u. At the end of first

time step, σxx = −0.01 for all values of x is static response for σxx = −0.01. Since σxx = 0 at

the end of the second time step and thereafter, we observe the same for time evolutions of σxx

in figure 6.2 (a). Velocity evolutions in figure 6.2 (b) and (c) appear spurious for static response

axial velocity should have been zero. Thus, it is not clear whether we have a static response or

dynamic response in this study.
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Figure 6.1: 1-D Elastic Wave Propagation: Model Problem 1
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6.2.2 Model Problem 2

This model problem is constructed using exactly the same principle as used in rate equilibrium

equation models i.e. differentiation of a conservation law. The purpose of this study is to

demonstrate clearly that mathematical models derived using differentiated forms of the GDEs

resulting from the conservation laws: (i) have higher order physics that is not present in the

GDEs resulting from the conservation laws (ii) require additional boundary conditions (due to

higher order partial differential equations (PDEs) than those from the conservation laws) for the

uniqueness of the solution. Description of these additional boundary conditions is obviously

not possible from the physics of the original problem which is of lower order. Thus uniqueness

of the solution from such models can not be ensured.

Consider 1-D steady state convection diffusion equation,

dφ

dx
− 1
Pe

d2φ

dx2
= 0 ∀x ∈ Ωx = (0, 1) (6.1)

with

φ(0) = 1 and φ(1) = 0 (6.2)

Equation (6.1) is the one dimensional form of energy equation in the absence of viscous dissi-

pation. Thus, it is derived from the principle of conservation of energy (second law of thermo-

dynamics). Equation (6.1) is a second order ordinary differential equation with two boundary

conditions (6.2) and hence has a unique solution. Peclet number Pe is a measure of diffusion

or conductivity of the medium.

The analytical or theoretical solution of (6.1) and (6.2) is given by,

φ(x) =
(
exPe − ePe

1− ePe

)
(6.3)
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and

dnφ

dxn
=
(

(Pe)nexPe

1− Pe

)
(6.4)

A finite element formulation of equation (6.1) is constructed using least squares method. Nu-

merical solutions are computed for a uniform discretization of 20 elements with solutions of

class C1 at p-levels of 7,9, and 11. Figures 6.3 (a) and 6.3 (b) show that plots of φ(x) versus x

and dφ
dx versus x and a comparison with the theoretical solutions (figure 6.3). Excellent agree-

ment is obtained between the two. Based on references [20–25, 36], we differentiate (6.1) with

respect to x to obtain,

d2φ

dx2
− 1
Pe

d3φ

dx3
= 0 ∀x ∈ Ω = (0, 1) (6.5)

with

φ(0) = 1 and φ(1) = 0 (6.6)

We now consider (6.5) instead of (6.1) but with the same two boundary conditions (6.6) (as in

(6.2)). A solution of (6.5) and (6.6) is non-unique due to the fact that we have a third order

differential equations but only two boundary conditions. The physics of the problem in (6.1)

and (6.2) has no more information on φ at the boundaries then the state in (6.2). Thus an

additional boundary condition is not possible (at least based on physics). We note that (6.1)

is a conservation law with second order physics (meaning up to second order derivatives of φ)

whereas (6.5) has third order physics that conservation laws do not recognize. Thus (6.5) is not

a description of the 1-D energy equation in the absence of viscous dissipation. When (6.1) is

satisfied i.e. for a φ that satisfies (6.1) ∀x ∈ Ωx = (0, 1), (6.5) also holds. That is a solution of

(6.1) and (6.2) is also a solution of (6.5) and (6.6) but a solution of (6.5) (if obtainable) may or

may not be a solution of (6.1) and (6.2).

We present numerical studies to further illustrate these points. A least squares formulation
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of (6.5) is constructed. Numerical solutions are computed using a uniform discretization of

20 elements (same as used for (6.1) and (6.2)) with p-level of 9 and solution class C1 for the

following sets of boundary conditions.

case (a): φ(0) = 1 ; φ(1) = 0

case (b): φ(0) = 1 ; φ(1) = 0 ;
dφ

dx

∣∣∣
x=0

= 0 additional BC

case (c): φ(0) = 1 ; φ(1) = 0 ;
dφ

dx

∣∣∣
x=1

= −100 additional BC

The numerically computed solutions are shown in figures 6.4 and 6.5.

Remarks

(1) For all choices of boundary conditions, the numerically computed solutions are spurious.

(2) Additional boundary conditions used for cases (b) and (c) are obviously not based on

physics and hence, are no help either.

(3) For such simple ordinary PDEs (based on a single conservation law) we clearly observe

the lack of validity of the mathematical model utilizing differentiated form of the gov-

erning differential equation resulting from the conservation law. Non-uniqueness of the

solution if such mathematical model is not surprising due to the fact that their derivation

or development has no mathematical or physical basis.
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6.3 Investigation of Rate Constitutive Equations: 1-D Axial Wave

Propagation

In this section we consider 1-D axial stress wave propagation problem (model problem 3). The

model problem consists of a rod of uniform cross-section and constant material properties. The

length of the rod is L (figure 6.6). The rod is assumed completely fixed at left end (x = 0)

and the right end (x = L) is subjected to a compressive axial stress pulse of duration 2∆t

and maximum magnitude of σxx at t = ∆t. A ten element uniform spatial discretization is

considered giving a space-time strip of ten space-time elements. We consider pξ = pη = p = 9

and local approximation of class C11(nΩ̄e
xt) in space and time.

Using this model problem, we investigate the behaviors of various rate constitutive equa-

tions. In the literature, Jaumann rate constitutive equations are dominantly used even though

it is well known that these constitutive equations provide non-physical oscillatory response for

simple shear problems [39, 40]. It is obvious that for a fixed D corresponding to same material

properties, different rate constitutive equations will produce different response [28, 30, 31] that

may be dependent on the magnitude of σxx as well. Atluri [28] suggested that by adding addi-

tional terms to the constitutive equations, one can get same behaviors. In the work considered

here, we will not pursue this approach, instead we consider same material tensor D for all rate

constitutive equations to study in 1-D elastic stress wave propagation problems for progressively

increasing magnitude of σxx (figure 6.6). We consider upper Convected, lower Convected, Jau-

mann and Truesdell rate constitutive equations. For each rate constitutive model, time evolution

is computed for the model problem shown in figure 6.6 using σxx, a pulse of duration 2∆t with

maximum magnitudes of (say (σxx)max) −0.01,−0.1, and −0.3.

Figures 6.7 - 6.9 show time evolution of stress σxx and velocity u for the three different

magnitudes of (σxx)max using upper Convected rate constitutive model. In all cases wave prop-

agation, reflection and propagation of the reflected waves are simulated free of oscillations. The

wave shapes (magnitude and base) are preserved. From figures 6.7 (b) and 6.8 (b) we observe

that maximum magnitudes of the reflected waves is 2(σxx)max. For (σxx)max = −0.01 and
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Figure 6.6: 1-D Elastic Wave Propagation : Model Problem 3
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(σxx)max = −0.1, the values of |g|max and least squares functional, nI , are of the order of

O(10−7) and O(10−8) respectively. This indicates good convergence of Newton’s method with

line search and accuracy of 1-D wave propagation simulations. In case of (σxx)max = −0.3,

we note from figure 6.9 (b) that 2(σxx)max is not obtained. This is primarily due to the fact that

increasing (σxx)max with same ∆t steepens the wave for which the discretization and p-level is

not adequate to simulate the wave reflection process. However, upon further evolution the orig-

inal wave shape is recovered. Furthermore, the values of |g|max and least square functional nI

are of the order of O(10−6) and O(10−6) respectively for this case. Velocity pulse for all val-

ues of (σxx)max maintains amplitude and base during the evolution. Upon reflection the velocity

pulse changes sign as expected.

Similar results for lower Convected rate constitutive model are shown in figures 6.10 - 6.12.

For (σxx)max = −0.01 (figure 6.10), we observe correct simulation of the 1-D elastic wave

propagations for σxx and u. The values of |g|max and least square functional, nI , are of the order

of O(10−7) and O(10−8) respectively. However for (σxx)max = −0.1 and (σxx)max = −0.3

(figures 6.11 and 6.12), the pulse magnitude and base deteriorate upon evolution and result

in failure of computations after a few time increments and |g|max and nI are of the order of

O(10−6) and O(10−4) respectively.

Results shown in figures 6.13 - 6.15 for Jaumann rate constitutive equations and those in

figures 6.16 - 6.18 for Truesdell rate constitutive equations show behaviors similar to lower

Convected. For (σxx)max = −0.01, the evolution of σxx and u are good but result in total

failure for (σxx)max = −0.1 and (σxx)max = −0.3.

From this simple study we note that only upper Convected rate constitutive equations pre-

serve the wave during the evolution for progressively increasing (σxx)max and the other three

rate constitutive equation show breakdown for (σxx)max = −0.1 and (σxx)max = −0.3. More-

over, similar studies for model problem 3 (figure 6.6) are carried out in Lagrangian description

using displacements, second Piola-Kirchhoff stress and Green’s strain. Comparisons between

Lagrangian description and Eulerian description using upper Convected rate constitutive equa-

tions for evolution of σxx and u are given in figure 6.19 and 6.20. From these studies, it is clear

76



that the results from Lagrangian as well as Eulerian descriptions for 1-D elastic wave propaga-

tion agree quite well. The relationship between second Piola-Kirchhoff stress and Cauchy stress

is given in 2.17 and is utilized here to transform second Piola-Kirchhoff stress to Cauchy stress.

Discrepancy between Eulerian and Lagrangian velocities is observed in figure 6.20 which is

more apparent for higher magnitudes of stresses. This is due to the fact that the material par-

ticles are attached to the mesh in Lagrangian description, consequently the velocities represent

the velocities of these material particles. However, in Eulerian description, material particles

flow through the mesh so velocities are of those particles that occupy the specific grid points.
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Figure 6.7: 1-D Elastic Wave Propagation, Upper Convected (σxx = −0.01)
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Figure 6.9: 1-D Elastic Wave Propagation, Upper Convected (σxx = −0.3)
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Figure 6.10: 1-D Elastic Wave Propagation, Lower Convected (σxx = −0.01)
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Figure 6.11: 1-D Elastic Wave Propagation, Lower Convected (σxx = −0.1)
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Figure 6.12: 1-D Elastic Wave Propagation, Lower Convected (σxx = −0.3)
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Figure 6.13: 1-D Elastic Wave Propagation, Jaumann (σxx = −0.01)
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Figure 6.14: 1-D Elastic Wave Propagation, Jaumann (σxx = −0.1)
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Figure 6.15: 1-D Elastic Wave Propagation, Jaumann (σxx = −0.3)
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Figure 6.16: 1-D Elastic Wave Propagation, Truesdell (σxx = −0.01)
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Figure 6.17: 1-D Elastic Wave Propagation, Truesdell (σxx = −0.1)
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Figure 6.18: 1-D Elastic Wave Propagation, Truesdell (σxx = −0.3)
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Figure 6.19: Comparison of Evolution of σxx for Total Lagrangian vs Eulerian Description (Up-
per Convected)
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Figure 6.20: Comparison of Evolution of u for Total Lagrangian vs Eulerian Description (Upper
Convected)
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6.4 Model Problem 4

We consider square panel (1 × 1) in plane strain subjected to uniform tension (figure 6.21).

The material properties, choice of reference quantities and the dimensional properties as well

as dimensionless parameters are shown in figure 6.21. For the first time step, initial conditions

(ICs) are set to be zero for all the variables. The solutions for the current space-time strip

will serve as initial conditions for the next time step. Similar to 1-D elastic wave propagation,

here also we compare the performances of various rate constitutive equations. Choice of σyy

is critical from 1-D elastic stress wave propagation studies presented in section 6.3. Since for

low magnitudes of axial stress all rate constitutive equations yield roughly the same response,

in case (a) we choose σyy = 0.2 with Poisson’s ratio, ν of 0.0, large enough to evaluate the

behaviors of different rate constitutive equations for two dimensional elasticity. (For reference,

studies for magnitude of σyy = 0.01 and ν = 0.0 is given in appendix B)

We consider a space-time slab with 10× 10 uniform spatial discretization for an increment

of time with p-levels of 3 in spatial directions as well as time and local approximations of class

C11 in spatial directions and time. For this choice of local approximation, the approximation

space is minimally conforming and hence all integrals are Riemann for the space-time slab. We

consider two cases

case (a): Poisson’s ratio ν = 0.0 applied uniform tension σyy = 0.2

case (b): Poisson’s ratio ν = 0.3 applied uniform tension σyy = 0.01

For each space-time slab, time evolution is computed using ∆t = 0.1. Using all four rate

constitutive equations for both case (a) and case (b). The total σyy is applied in 4 increments of

time in a continuous and differentiable manner.

6.4.1 Case (a): Poisson’s ratio, ν = 0.0, and applied uniform tension σyy = 0.2

In this case the behavior of the plate is purely axial in the y-direction and hence it serves as a

good test of the accuracy and performance of the various rate constitutive equations. That is,
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AD : σxx= 0 ; τxy= 0 ; free surface 

BC : σxx= 0 ; τxy = 0 ; free surface 

AB : u = 0 ; v = 0 ; τxy= 0 ; fix end 

Boundary Conditions :
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Figure 6.21: 2-D Elastic Wave Propagation, Model Problem 4 (uniform load) : C11 with p-
levels of 3 ; 10× 10 uniform mesh ; ∆t = 0.1
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except σyy and v all other stresses and u are zero.

(a1) Upper Convected Rate Constitutive Equations

Figures 6.22 - 6.24 show evolution of stress σyy. Evolution of velocity v is shown in figures 6.25

- 6.27. The evolution of stress σyy and velocity v are oscillation free. Stress wave propagation

and reflection are simulated correctly. At the reflection, the stress σyy doubles in magnitudes

and upon further evolution regains its applied amplitude.

(a2) Lower Convected Rate Constitutive Equations

Figures 6.28 - 6.30 and figures 6.31 and 6.33 show evolution of σyy and v for lower Convected

rate constitutive equations. From 6.31 - 6.33, we clearly note that evolution and propagation of

σyy is diffused. The reflection of the stress wave is non-physical. The evolution and propagation

of velocity front is non-physical as well.

(a3) Jaumann Rate Constitutive Equations

The evolutions of σyy and v shown in figures 6.34 - 6.36 and figures 6.37 - 6.39 show these

to be better than those from the lower Convected rate constitutive equations, but as evolution

proceeds, the stress fronts begin to diffuse. Highly diffused reflected stress waves are quite

obvious in Figure 6.36. The velocity front evolution and propagation is much better than the

stress wave before the reflection but it too becomes highly diffused upon reflection.

(a4) Truesdell Rate Constitutive Equations

Figures 6.40 - 6.42 and figures 6.43 and 6.45 show evolutions and propagations of σyy and v for

Truesdell rate constitutive equations. From Figures 6.40 - 6.42, we note that σyy fronts appear

reasonable. Upon closer examination and a comparison with figures 6.22 - 6.24 and 6.25 - 6.27

(for upper Convected rate constitutive equations) shows that upon reflection the stress wave

speed is lower in this case even though the profiles of the fronts are maintained reasonably well.
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Except upper Convected rate constitutive equations, all others produce non-physical evolu-

tions of σyy and v.
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Figure 6.22: Model Problem 4, case (a1) : ν = 0.0 and σyy = 0.2 : Evolution of σyy : Upper
Convected Stress Rate - Time steps from 1st to 6th
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Figure 6.23: Model Problem 4, case (a1) : ν = 0.0 and σyy = 0.2 : Evolution of σyy : Upper
Convected Stress Rate - Time steps from 7th to 12th
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Figure 6.24: Model Problem 4, case (a1) : ν = 0.0 and σyy = 0.2 : Evolution of σyy : Upper
Convected Stress Rate - Time steps from 13th to 18th
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Figure 6.25: Model Problem 4, case (a1) : ν = 0.0 and σyy = 0.2 : Evolution of v : Upper
Convected Stress Rate - Time steps from 1st to 6th
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Figure 6.26: Model Problem 4, case (a1) : ν = 0.0 and σyy = 0.2 : Evolution of v : Upper
Convected Stress Rate - Time steps from 7th to 12th
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Figure 6.27: Model Problem 4, case (a1) : ν = 0.0 and σyy = 0.2 : Evolution of v : Upper
Convected Stress Rate - Time steps from 13th to 18th
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Figure 6.28: Model Problem 4, case (a2) : ν = 0.0 and σyy = 0.2 : Evolution of σyy : Lower
Convected Stress Rate - Time steps from 1st to 6th
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Figure 6.29: Model Problem 4, case (a2) : ν = 0.0 and σyy = 0.2 : Evolution of σyy : Lower
Convected Stress Rate - Time steps from 7th to 12th
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Figure 6.30: Model Problem 4, case (a2) : ν = 0.0 and σyy = 0.2 : Evolution of σyy : Lower
Convected Stress Rate - Time steps from 13th to 18th
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Figure 6.31: Model Problem 4, case (a2) : ν = 0.0 and σyy = 0.2 : Evolution of v : Lower
Convected Stress Rate - Time steps from 1st to 6th
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Figure 6.32: Model Problem 4, case (a2) : ν = 0.0 and σyy = 0.2 : Evolution of v : Lower
Convected Stress Rate - Time steps from 7th to 12th
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Figure 6.33: Model Problem 4, case (a2) : ν = 0.0 and σyy = 0.2 : Evolution of v : Lower
Convected Stress Rate - Time steps from 13th to 18th
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Figure 6.34: Model Problem 4, case (a3) : ν = 0.0 and σyy = 0.2 : Evolution of σyy : Jaumann
Stress Rate - Time steps from 1st to 6th
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Figure 6.35: Model Problem 4, case (a3) : ν = 0.0 and σyy = 0.2 : Evolution of σyy : Jaumann
Stress Rate - Time steps from 7th to 12th
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Figure 6.36: Model Problem 4, case (a3) : ν = 0.0 and σyy = 0.2 : Evolution of σyy : Jaumann
Stress Rate - Time steps from 13th to 18th
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Figure 6.37: Model Problem 4, case (a3) : ν = 0.0 and σyy = 0.2 : Evolution of v : Jaumann
Stress Rate - Time steps from 1st to 6th
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Figure 6.38: Model Problem 4, case (a3) : ν = 0.0 and σyy = 0.2 : Evolution of v : Jaumann
Stress Rate - Time steps from 7th to 12th
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Figure 6.39: Model Problem 4, case (a3) : ν = 0.0 and σyy = 0.2 : Evolution of v : Jaumann
Stress Rate - Time steps from 13th to 18th
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Figure 6.40: Model Problem 4, case (a4) : ν = 0.0 and σyy = 0.2 : Evolution of σyy : Truesdell
Stress Rate - Time steps from 1st to 6th
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Figure 6.41: Model Problem 4, case (a4) : ν = 0.0 and σyy = 0.2 : Evolution of σyy : Truesdell
Stress Rate - Time steps from 7th to 12th
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Figure 6.42: Model Problem 4, case (a4) : ν = 0.0 and σyy = 0.2 : Evolution of σyy : Truesdell
Stress Rate - Time steps from 13th to 18th
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Figure 6.43: Model Problem 4, case (a4) : ν = 0.0 and σyy = 0.2 : Evolution of v : Truesdell
Stress Rate - Time steps from 1st to 6th
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Figure 6.44: Model Problem 4, case (a4) : ν = 0.0 and σyy = 0.2 : Evolution of v : Truesdell
Stress Rate - Time steps from 7th to 12th
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Figure 6.45: Model Problem 4, case (a4) : ν = 0.0 and σyy = 0.2 : Evolution of v : Truesdell
Stress Rate - Time steps from 13th to 18th
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6.4.2 Case (b): Poisson’s ratio, ν = 0.3, and applied uniform tension σyy = 0.01

In this section we present numerical studies for the similar to model problem 4 (figure 6.21)

with identical discretizations, p-levels and the orders of the approximation space except that

the Poisson’s ratio is 0.3. Based on the studies presented in case (a), we only consider upper

Convected rate constitutive equations for this numerical study. For uniformly applied tension

of σyy = .01, computed evolutions of σyy, σxy, σxx, v, and u are presented in the following

figures.

Figures 6.46-6.48 : σyy

Figures 6.49-6.51 : σxy

Figures 6.52-6.54 : σxx

Figures 6.55-6.57 : v

Figures 6.58-6.60 : u

Evolution of σyy is a propagating front (with some shape change compared to ν=0.0). Upon

reflections (figure 6.48), the complexities of the wave interactions and boundary effects are

clearly observed. Symmetry of evolution about yz plane is some assurance of the validity of

the evolution. In case of σxy we observe antisymmetric behavior whereas for σxx we observe

symmetric behavior about yz plane (figures 6.49 - 6.51 and figures 6.52 - 6.54 respectively).

Interaction of the stress wave with boundaries and the influence of the free boundaries is more

clearly visible in case of the evolution of velocity v (figures 6.55 - 6.57). Symmetry of the

evolution about yz plane is clearly seen. Velocity u is antisymmetric about yz plane as expected.

In all figures, the evolutions are smooth, reflections are simulated without any difficulty and

the influence of the boundaries is clearly observed on the evolution.
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Figure 6.46: Model Problem 4, case (b) : ν = 0.3 and σyy = 0.01 : Evolution of σyy : Upper
Convected Stress Rate - Time steps from 1st to 6th
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Figure 6.47: Model Problem 4, case (b) : ν = 0.3 and σyy = 0.01 : Evolution of σyy : Upper
Convected Stress Rate - Time steps from 7th to 12th

122



Figure 6.48: Model Problem 4, case (b) : ν = 0.3 and σyy = 0.01 : Evolution of σyy : Upper
Convected Stress Rate - Time steps from 13th to 18th
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Figure 6.49: Model Problem 4, case (b) : ν = 0.3 and σyy = 0.01 : Evolution of σxy : Upper
Convected Stress Rate - Time steps from 1st to 6th
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Figure 6.50: Model Problem 4, case (b) : ν = 0.3 and σyy = 0.01 : Evolution of σxy : Upper
Convected Stress Rate - Time steps from 7th to 12th
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Figure 6.51: Model Problem 4, case (b) : ν = 0.3 and σyy = 0.01 : Evolution of σxy : Upper
Convected Stress Rate - Time steps from 13th to 18th
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Figure 6.52: Model Problem 4, case (b) : ν = 0.3 and σyy = 0.01 : Evolution of σxx : Upper
Convected Stress Rate - Time steps from 1st to 6th
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Figure 6.53: Model Problem 4, case (b) : ν = 0.3 and σyy = 0.01 : Evolution of σxx : Upper
Convected Stress Rate - Time steps from 7th to 12th
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Figure 6.54: Model Problem 4, case (b) : ν = 0.3 and σyy = 0.01 : Evolution of σxx : Upper
Convected Stress Rate - Time steps from 13th to 18th
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Figure 6.55: Model Problem 4, case (b) : ν = 0.3 and σyy = 0.01 : Evolution of v : Upper
Convected Stress Rate - Time steps from 1st to 6th
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Figure 6.56: Model Problem 4, case (b) : ν = 0.3 and σyy = 0.01 : Evolution of v : Upper
Convected Stress Rate - Time steps from 7th to 12th
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Figure 6.57: Model Problem 4, case (b) : ν = 0.3 and σyy = 0.01 : Evolution of v : Upper
Convected Stress Rate - Time steps from 13th to 18th
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Figure 6.58: Model Problem 4, case (b) : ν = 0.3 and σyy = 0.01 : Evolution of u : Upper
Convected Stress Rate - Time steps from 1st to 6th
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Figure 6.59: Model Problem 4, case (b) : ν = 0.3 and σyy = 0.01 : Evolution of u : Upper
Convected Stress Rate - Time steps from 7th to 12th
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Figure 6.60: Model Problem 4, case (b) : ν = 0.3 and σyy = 0.01 : Evolution of u : Upper
Convected Stress Rate - Time steps from 13th to 18th
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6.5 Model Problem 5

In this study we consider the same model problem as in Section 6.4 but σyy is a parabolic

distribution. All other details remain the same as in case of model problem 4. Figure 6.61 shows

a schematic of the model problem, boundary conditions and the loading. Material properties,

choices of reference quantities, dimensionless properties and the reference parameters are also

shown in Figure 6.61.

In view of the studies presented in Section 6.3 and 6.4, we only consider upper Convected

Constitutive rate equations in this study for the following two cases,

Case (a) : Poisson’s ratio of 0.0

Case (b) : Poisson’s ratio of 0.3

Choice of discretization, p-levels, orders of the space and time increment ∆t are same as in

case of model problem 4 (also see Figure 6.61). The objective of this study is to illustrate that a

more complex loading may yield a complicated evolution but no difficulties are encountered in

simulating it.

6.5.1 Case (a): Poisson’s ratio ν = 0.0

Figures 6.62-6.64 : σyy

Figures 6.65-6.67 : σxy

Figures 6.68-6.70 : σxx

Figures 6.71-6.73 : v

Figures 6.74-6.75 : u

Complexities in the wave formulations, propagation and specially upon reflection are quite

clear from the results but no difficulties are encountered in their simulations. Symmetries of

σyy, v, and σxx and antisymmetries of σxy and u about yz plane are clearly observed during the

entire evolution. Even though ν=0.0, the effects transverse to yz plane are clearly observed.
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CD : (σyy) max= 0.01 ; applied stress

AD : σxx= 0 ; τxy= 0 ; free surface 

BC : σxx= 0 ; τxy = 0 ; free surface 

AB : u = 0 ; v = 0 ; τxy= 0 ; fix end 
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Figure 6.61: 2-D Elastic Wave Propagation, Model Problem 5 (parabolic load) : C11 with p-
levels of 3 ; 10× 10 uniform mesh ; ∆t = 0.1
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Figure 6.62: Model Problem 5, case (a) : ν = 0.0 and (σyy)max = 0.01 (parabolic) : Evolution
of σyy : Upper Convected Stress Rate - Time steps from 1st to 6th
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Figure 6.63: Model Problem 5, case (a) : ν = 0.0 and (σyy)max = 0.01 (parabolic) : Evolution
of σyy : Upper Convected Stress Rate - Time steps from 7th to 12th
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Figure 6.64: Model Problem 5, case (a) : ν = 0.0 and (σyy)max = 0.01 (parabolic) : Evolution
of σyy : Upper Convected Stress Rate - Time steps from 13th to 18th
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Figure 6.65: Model Problem 5, case (a) : ν = 0.0 and (σyy)max = 0.01 (parabolic) : Evolution
of σxy : Upper Convected Stress Rate - Time steps from 1st to 6th
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Figure 6.66: Model Problem 5, case (a) : ν = 0.0 and (σyy)max = 0.01 (parabolic) : Evolution
of σxy : Upper Convected Stress Rate - Time steps from 7th to 12th
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Figure 6.67: Model Problem 5, case (a) : ν = 0.0 and (σyy)max = 0.01 (parabolic) : Evolution
of σxy : Upper Convected Stress Rate - Time steps from 13th to 18th
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Figure 6.68: Model Problem 5, case (a) : ν = 0.0 and (σyy)max = 0.01 (parabolic) : Evolution
of σxx : Upper Convected Stress Rate - Time steps from 1st to 6th
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Figure 6.69: Model Problem 5, case (a) : ν = 0.0 and (σyy)max = 0.01 (parabolic) : Evolution
of σxx : Upper Convected Stress Rate - Time steps from 7th to 12th
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Figure 6.70: Model Problem 5, case (a) : ν = 0.0 and (σyy)max = 0.01 (parabolic) : Evolution
of σxx : Upper Convected Stress Rate - Time steps from 13th to 18th
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Figure 6.71: Model Problem 5, case (a) : ν = 0.0 and (σyy)max = 0.01 (parabolic) : Evolution
of v : Upper Convected Stress Rate - Time steps from 1st to 6th

147



Figure 6.72: Model Problem 5, case (a) : ν = 0.0 and (σyy)max = 0.01 (parabolic) : Evolution
of v : Upper Convected Stress Rate - Time steps from 7th to 12th
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Figure 6.73: Model Problem 5, case (a) : ν = 0.0 and (σyy)max = 0.01 (parabolic) : Evolution
of v : Upper Convected Stress Rate - Time steps from 13th to 18th
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Figure 6.74: Model Problem 5, case (a) : ν = 0.0 and (σyy)max = 0.01 (parabolic) : Evolution
of u : Upper Convected Stress Rate - Time steps from 1st to 6th
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captionModel Problem 5, case (a) : ν = 0.0 and (σyy)max = 0.01 (parabolic) : Evolution of u
: Upper Convected Stress Rate - Time steps from 7th to 12th
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Figure 6.75: Model Problem 5, case (a) : ν = 0.0 and (σyy)max = 0.01 (parabolic) : Evolution
of u : Upper Convected Stress Rate - Time steps from 13th to 18th
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6.5.2 Case (b): Poisson’s ratio ν = 0.3

The results of this study are summarized in the following figures.

Figures 6.76-6.78 : σyy

Figures 6.79-6.81 : σxy

Figures 6.82-6.84 : σxx

Figures 6.85-6.87 : v

Figures 6.88-6.90 : u

Due to non-zero Poisson’s ratio, the waves, their evolutions, propagation and reflection

is much more complicated compared to the case with ν=0.0 but are simulated without any

difficulty. The effects transverse to yz plane are more significant in this case compared with

ν=0.0. For example, σxx attains a maximum magnitude of 0.012 for ν=0.3 whereas for ν=0.0

the maximum magnitude of σxx is only 0.004. Similar behavior is observed for velocity u. We

find that umax=0.013 for ν=0.3 whereas for ν=0.0, umax has a value of 0.004.
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Figure 6.76: Model Problem 5, case (b) : ν = 0.3 and (σyy)max = 0.01 (parabolic) : Evolution
of σyy : Upper Convected Stress Rate - Time steps from 1st to 6th
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Figure 6.77: Model Problem 5, case (b) : ν = 0.3 and (σyy)max = 0.01 (parabolic) : Evolution
of σyy : Upper Convected Stress Rate - Time steps from 7th to 12th
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Figure 6.78: Model Problem 5, case (b) : ν = 0.3 and (σyy)max = 0.01 (parabolic) : Evolution
of σyy : Upper Convected Stress Rate - Time steps from 13th to 18th
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Figure 6.79: Model Problem 5, case (b) : ν = 0.3 and (σyy)max = 0.01 (parabolic) : Evolution
of σxy : Upper Convected Stress Rate - Time steps from 1st to 6th
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Figure 6.80: Model Problem 5, case (b) : ν = 0.3 and (σyy)max = 0.01 (parabolic) : Evolution
of σxy : Upper Convected Stress Rate - Time steps from 7th to 12th
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Figure 6.81: Model Problem 5, case (b) : ν = 0.3 and (σyy)max = 0.01 (parabolic) : Evolution
of σxy : Upper Convected Stress Rate - Time steps from 13th to 18th
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Figure 6.82: Model Problem 5, case (b) : ν = 0.3 and (σyy)max = 0.01 (parabolic) : Evolution
of σxx : Upper Convected Stress Rate - Time steps from 1st to 6th
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Figure 6.83: Model Problem 5, case (b) : ν = 0.3 and (σyy)max = 0.01 (parabolic) : Evolution
of σxx : Upper Convected Stress Rate - Time steps from 7th to 12th
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Figure 6.84: Model Problem 5, case (b) : ν = 0.3 and (σyy)max = 0.01 (parabolic) : Evolution
of σxx : Upper Convected Stress Rate - Time steps from 13th to 18th
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Figure 6.85: Model Problem 5, case (b) : ν = 0.3 and (σyy)max = 0.01 (parabolic) : Evolution
of v : Upper Convected Stress Rate - Time steps from 1st to 6th
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Figure 6.86: Model Problem 5, case (b) : ν = 0.3 and (σyy)max = 0.01 (parabolic) : Evolution
of v : Upper Convected Stress Rate - Time steps from 7th to 12th
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Figure 6.87: Model Problem 5, case (b) : ν = 0.3 and (σyy)max = 0.01 (parabolic) : Evolution
of v : Upper Convected Stress Rate - Time steps from 13th to 18th

165



Figure 6.88: Model Problem 5, case (b) : ν = 0.3 and (σyy)max = 0.01 (parabolic) : Evolution
of u : Upper Convected Stress Rate - Time steps from 1st to 6th
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Figure 6.89: Model Problem 5, case (b) : ν = 0.3 and (σyy)max = 0.01 (parabolic) : Evolution
of u : Upper Convected Stress Rate - Time steps from 7th to 12th
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Figure 6.90: Model Problem 5, case (b) : ν = 0.3 and (σyy)max = 0.01 (parabolic) : Evolution
of u : Upper Convected Stress Rate - Time steps from 13th to 18th
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6.6 General remarks (2-D model problems)

(1) Model problem 4 (uniform tension in y direction) clearly establishes that only upper

Convected rate constitutive equations are able to preserve the wave shapes for higher

amplitudes. All other rate equations exhibit significant deterioration in the wave forms at

some point during the evolution after which the computations cease.

(2) In all numerical studies space-time least squares formulation for a space-time slab with

time marching is used to compute the evolutions.

(3) The choices of local approximations of classes C1 in space and time ensure the space-

time integrals in Riemann sense.

(4) Symmetries or anti-symmetries of the results during the entire evolutions are preserved.

In all cases evolutions are free of oscillations. |g|max is of the orders of O(10−6) or

lower for each space-time strip ensures that Newton’s linear method with line search is

satisfactory in finding a solution of the non-linear algebraic system. In most cases less

than five iterations are required. The least squares functional nI for each space-time slab

is of the order of O(10−8) or lower. This ensures that GDEs are satisfied accurately in

the pointwise sense (due to the space-time integrals being Riemann).

6.7 Summary

Investigation of the behavior of rate equilibrium equations in section 6.1 using 1-D elastic wave

propagation problem shows that this formulation has many limitations. First of all, absence of

inertial terms from the equilibrium equations inhibits correct simulation of dynamic processes.

The 1-D convection diffusion equation is used to illustrate the shortcomings of the mathematical

models derived using differentiated forms of the GDEs resulting from the conservation laws.

Since the resulting GDEs require additional boundary condition(s) that may not be present in

the physics of the problem, uniqueness of the solution from such models can not be guaranteed.
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All other numerical studies employs GDEs resulting from the conservation laws in Eulerian

description(chapter 2) and constitutive equations presented in chapter 3. In all the numerical

studies, space-time least squares formulation for a space-time slab with time marching is used

to compute the evolutions. The choices of local approximations of classes C1 in space and

time ensure the space-time integrals in Riemann sense. Based on section 4.3.2, if one chooses

total stress σ̄ij as a variable, incompressibility requirements warrants for continuity equations

to be eliminated. This is due to fact that control volume in this model can experience mo-

tion, but it can not experience any change in size or shape (material particles remain intact).

From 1-D stress wave propagation studies, we note that for small values of applied total stress

((σxx)max = −0.01 as compressive pulse over 2∆t), all objective rate constitutive equations

behave almost identically. The wave propagation and reflection processes are free of oscilla-

tion. If one continues to increase the magnitude of the applied stress, mathematical models

employing different rate constitutive equations produces different numerical results. From the

numerical studies, it is observed that only upper Convected rate constitutive equations preserve

the wave during the evolution process where all the other rate constitutive equations (lower

Convected, Jaumann and Truesdell) break down numerically at different values of time during

the evolution for (σxx)max = −0.1 and (σxx)max = −0.3. Two dimensional studies are needed

to further substantiate the behaviors of rate constitutive equations.

Square panel in plane strain is used as a model problem with ν = 0.0. This model problem

simulates 1-D stress wave propagation but in two-dimensional setting. Numerical studies show

that,

(i) wave propagation and reflection processes are precisely simulated using formulations

with different rate constitutive equations for small magnitudes of applied uniform tension,

σyy = 0.01 (Appendix B).

(ii) For higher amplitudes of applied uniform tension, only upper Convected constitutive

equations are able to preserve the wave shape whereas all the other rate constitutive equa-

tions show deterioration in the wave shape during the evolution.

170



Further studies using upper Convected rate constitutive equations are carried for different Pois-

son’s ratio and non-uniformly applied stress. The wave propagation, reflections and interactions

processes are more complex in this case than for ν = 0.0 but no difficulties are encountered.

Furthermore, symmetries and anti-symmetries of the solution are preserved throughout evolu-

tions.

For all initial value problems (IVPs), Newton’s linear method with line search is used for

solving non-linear algebraic system of equations. Moreover the least square functional for each

space-time strip or slab is of the order of O(10−8) for studies carried out using maximum

tension of σyy = .01 and is of the order of O(10−6) for studies carried out using maximum

tension of σyy = .2. This ensures that GDEs are satisfied accurately throughout the evolution.
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Chapter 7

Summary, Conclusions and Future

Work

The mathematical descriptions of the deforming solids are dominantly constructed using La-

grangian descriptions so that materials particles may be followed. The finite element formula-

tion in solid mechanics is generally constructed using:

(i) either principle of virtual work in which case virtual work statement may be written

directly without resorting to governing differential equations (GDEs)

(ii) or using GDEs of the mathematical models along with integral form based on Galerkin

method with weak form.

Issues related to Lagrangian descriptions for large motion, finite strain are well known and have

been documented in chapter 1. The Eulerian descriptions on the other hand are lucrative due

to the fact that these descriptions avoid mesh distortion problems but bring in new problems of

their own due to their inability to follow material particles.

The thrust in this work has been to present the most general and complete mathematical

models for the deforming solids in both Lagrangian and Eulerian descriptions based on con-

servation laws. The mathematical models consider large motion, finite strain as well as com-

pressibility. These models are also specialized for small deformation, small strain cases. The
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Lagrangian descriptions employ displacements, stresses, temperature as variables in which the

second Piola-Kirchhoff stresses and the Green’s strains are conjugate pairs used in the develop-

ment of constitutive equations. The stress and strain measures degenerate to Cauchy stress and

linear strain in case of small motion, small strain. In Eulerian descriptions, velocities, Cauchy

stresses, temperature and strain rates are quantities of choice in the development of the mathe-

matical models. The choice of velocities in the conservation laws necessitates rate constitutive

equations. The commonly used rate constitutive equations based on upper Convected, lower

Convected, Jaumann, and Truesdell have been presented. The developments of the mathemat-

ical models in chapter 2 and the constitutive equations in chapter 3 are integrated in chapter 4

to to provide complete descriptions of the mathematical models that have closure. For com-

pressible solid matter, the constitutive equations, equations of state and other thermodynamic

relations such as specific heat, specific internal energy are also presented.

Details of mathematical model based on equilibrium rate equations are presented in section

4.4. It is demonstrated that such models are neither suitable for static nor dynamic applications.

The absence of inertial terms precludes their use in time dependent processes. The main source

of problem in this model is the use of differentiated form of conservation laws which require

additional boundary conditions and/or initial conditions for the uniqueness of the solution. This

additional information is generally not deducible from the physics. To substantiate this further,

differentiated form of 1-D steady state convection diffusion problem has been used as a model

problem. It is shown that for this model problem the numerical solutions are spurious or non-

unique due to lack of additional boundary conditions. From these studies, it is concluded that

differentiated form of the conservation equations as integral part of the mathematical model

must be avoided. However, their use in simplifying the equations in the mathematical model is

justified.

In chapter 5 brief summary of the hpk mathematical and computational framework [5–7]

for initial value problems has been presented. Based on Surana et al. [38], the integral forms

based on space-time least squares processes are utilized in formulating finite element processes

for a space-time strip or slab for an increment of time. The space-time strip with marching is
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used for computing evolutions in all cases.

A number of different numerical studies are presented to demonstrate various features,

strengths and shortcomings. 1-D elastic wave propagation studies are presented using Eulerian

description and the rate constitutive equations with incompressibility assumption. Numerical

studies show that for lower values of applied stress (producing lower strain rates) all four ob-

jective rate constitutive equations produce almost identical behaviors of wave propagation and

reflection. With increasing magnitude of the applied stress, only upper Convected rate con-

stitutive equations preserve the wave shape during evolution. All other rate equations result

in seizure of the computational processes. The results from Eulerian descriptions are in good

agreement with those from Lagrangian descriptions. In all cases |g|max ≤ O(10−7) and least

squares functional for each space-time strip of O(10−8) or lower confirm convergence of the

iterative solution procedure (Newton’s linear method with line search) as well as accuracy of the

computed solutions. Based on these studies, only upper Convected rate constitutive equations

appear to have good performance for a wide range of strain rates.

Numerical studies are also presented for stress wave propagation in 2-D plane strain elastic-

ity with Poisson’s ratio ν = 0.0 and ν = 0.3 using a square panel subjected to uniform tension

as well as parabolically varying stress. When ν = 0.0, the simulation produce perfect 1-D

elastic wave propagation behaviors that are in agreement with 1-D numerical studies. All four

rate constitutive equations are investigated with findings exactly similar to 1-D elastic wave

propagation. When Poisson’s ratio is nonzero, the propagations, reflections and interactions

are complex but no difficulties are encountered. Symmetries and antisymmetries of various

quantities are observed precisely in the computed evolutions.

The work presented here is a comprehensive expose of mathematical models based on con-

servation laws, constitutive equations in Lagrangian and Eulerian descriptions. Numerical stud-

ies presented merely demonstrate the Eulerian descriptions to be meritorious of consideration

with caution in the choice of rate constitutive equations. The findings regarding to rate con-

stitutive equations are substantial from the view point that Jaumann constitutive equations are

used almost exclusively [41, 42] in most solid mechanics applications which are shown to be
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spurious as the strain rates increase.

This work needs to be continued in a rigorous fashion in order to bring it to maturity so

that its application to real problems can be undertaken. The most immediate areas of research

are: (i) investigation of level set for tracking material particles so that free boundaries, moving

fronts, moving interfaces etc. can be simulated. (ii) investigation of second order elasticity

for high strain rate applications. (iii) investigation of higher strain rates which are invariably

accompanied by plasticity, hence, developments of elastoplastic constitutive models, first based

on continuum flow plasticity and subsequently based on continuum endochronic theories are

essential. (iv) a parallel development in Lagrangian descriptions which is essential to validate

Eulerian simulations. (v) developing theoretical work that is essential to demonstrate the prob-

lems associated with the rate constitutive equations (lower Convected, Jaumann and Truesdell)

as well as to demonstrate the validity of upper Convected constitutive model.
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Appendix A

Second Order Elasticity: [Ds(ε)]

Explicit form of [Ds(ε)] in (3.58) is given in the following,



Ds11(ε) Ds12(ε) Ds13(ε) Ds14(ε) Ds15(ε) Ds16(ε)

Ds21(ε) Ds22(ε) Ds23(ε) Ds24(ε) Ds25(ε) Ds26(ε)

Ds31(ε) Ds32(ε) Ds33(ε) Ds34(ε) Ds35(ε) Ds36(ε)

Ds41(ε) Ds42(ε) Ds43(ε) Ds44(ε) Ds45(ε) Ds46(ε)

Ds51(ε) Ds52(ε) Ds53(ε) Ds54(ε) Ds55(ε) Ds56(ε)

Ds61(ε) Ds62(ε) Ds63(ε) Ds64(ε) Ds65(ε) Ds66(ε)


(A.1)

where

Ds11(ε) = 3ε11lε + 2ε22(3lε +mε) + ε33(6lε + 2mε) + λε + 2µε

Ds12(ε) = ε22(3lε +mε) + ε33(6lε + 3mε + nε) + λε

Ds13(ε) = ε33(3lε +mε) + λε

Ds14(ε) = −γ23

[mε

2
+ nε

]
Ds15(ε) = −γ13

mε

2

Ds16(ε) = −γ12
mε

2
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Ds21(ε) = ε11(3lε +mε) + 2ε22(3lε +mε) + ε33(6lε + 3mε + nε) + λε

Ds22(ε) = ε22(3lε) + 2ε33(3lε +mε) + λε + 2µε

Ds23(ε) = ε33(3lε +mε) + λε

Ds24(ε) = −γ23
mε

2

Ds25(ε) = −γ13

[mε

2
+ nε

]
Ds26(ε) = −γ12

mε

2

Ds31(ε) = ε11(3lε +mε) + ε33(6lε + 2mε) + ε22(6lε + 3mε + nε) + λε

Ds32(ε) = ε22(3lε +mε) + ε33(6lε + 2mε) + λε

Ds33(ε) = ε33(3lε) + λε + 2µε

Ds34(ε) = −γ23
mε

2

Ds35(ε) = −γ13
mε

2

Ds36(ε) = −γ12

[mε

2
+ nε

]
Ds41(ε) = 0

Ds42(ε) = 0

Ds43(ε) = 0

Ds44(ε) = −ε11(mε + nε)− ε22mε − ε33mε + 2µε

Ds45(ε) = γ12
mε

2

Ds46(ε) = 0

Ds51(ε) = 0
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Ds52(ε) = 0

Ds53(ε) = 0

Ds54(ε) = γ12
mε

2

Ds55(ε) = −ε11mε − ε22(mε + nε)− ε33mε + 2µε

Ds56(ε) = 0

Ds61(ε) = 0

Ds62(ε) = 0

Ds63(ε) = 0

Ds64(ε) = γ13
mε

2

Ds65(ε) = 0

Ds66(ε) = −ε11mε − ε22mε − ε33(mε + nε) + 2µε
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Appendix B

2-D Elastic Wave Propagation, for

uniform load of σyy = 0.01 with ν = 0.0

The material properties, choice of reference quantities and the dimensional properties as well

as dimensionless parameters are shown in figure B.1. For each space-time slab, time evolution

is computed using ∆t = 0.1 where the total σyy = 0.01 is applied in 4 increments of time

in a continuous and differentiable manner. Figures B.2 - B.25 show evolution of σyy and v

for rate constitutive equations of upper Convected, lower Convected, Jaumann, and Truesdell

respectively. 2-D wave propagation and reflection processes are simulated correctly and all four

rate constitutive equations produce the same behavior. At the reflection, the stress σyy doubles

in magnitude and regains its amplitude upon further evolution. As expected σxy, σxx, and u

are zero throughout the evolution. Newton’s linear method with line search is used to solve

non-linear algebraic system of equations where |g|max is of the orders of O(10−6) or lower for

each space-time strip. Moreover, the least squares functional nI is of the order of O(10−8).

This ensures the accuracy of the numerical simulations.
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AD : σxx= 0 ; τxy= 0 ; free surface 

BC : σxx= 0 ; τxy = 0 ; free surface 

AB : u = 0 ; v = 0 ; τxy= 0 ; fix end 

Boundary Conditions :

3
m  /kg   7860  ρ =ˆ

Pa 10    2  E
11

×=ˆ

Material Properties :

Pa 10    2  E
11

0
×=

Pa 10    2  
11

0
×=τ

3

0
m  /kg  7860  =ρ

s  /m  5044.3  
0

=u

Reference Properties :

Dimensionless  Properties :

;      1  h =  1  ρ =

;      1  E =

;      1  ====w

 0.3  =ν

A

B

D

C

w

h

y

x
σyy

CD : σyy= 0.01 ; applied stress (uniform)

Figure B.1: 2-D Elastic Wave Propagation, Model Problem 6 (uniform load) : C111 with p-
levels of 3 ; 10× 10 uniform mesh ; ∆t = 0.1
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Figure B.2: Model Problem 6 : ν = 0.0 and σyy = 0.01 : Evolution of σyy : Upper Convected
Stress Rate - Time steps from 1st to 6th
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Figure B.3: Model Problem 6 : ν = 0.0 and σyy = 0.01 : Evolution of σyy : Upper Convected
Stress Rate - Time steps from 7th to 12th
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Figure B.4: Model Problem 6 : ν = 0.0 and σyy = 0.01 : Evolution of σyy : Upper Convected
Stress Rate - Time steps from 13th to 18th
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Figure B.5: Model Problem 6 : ν = 0.0 and σyy = 0.01 : Evolution of v : Upper Convected
Stress Rate - Time steps from 1st to 6th
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Figure B.6: Model Problem 6 : ν = 0.0 and σyy = 0.01 : Evolution of v : Upper Convected
Stress Rate - Time steps from 7th to 12th
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Figure B.7: Model Problem 6 : ν = 0.0 and σyy = 0.01 : Evolution of v : Upper Convected
Stress Rate - Time steps from 13th to 18th
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Figure B.8: Model Problem 6 : ν = 0.0 and σyy = 0.01 : Evolution of σyy : Lower Convected
Stress Rate - Time steps from 1st to 6th
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Figure B.9: Model Problem 6 : ν = 0.0 and σyy = 0.01 : Evolution of σyy : Lower Convected
Stress Rate - Time steps from 7th to 12th
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Figure B.10: Model Problem 6 : ν = 0.0 and σyy = 0.01 : Evolution of σyy : Lower Convected
Stress Rate - Time steps from 13th to 18th
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Figure B.11: Model Problem 6 : ν = 0.0 and σyy = 0.01 : Evolution of v : Lower Convected
Stress Rate - Time steps from 1st to 6th
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Figure B.12: Model Problem 6 : ν = 0.0 and σyy = 0.01 : Evolution of v : Lower Convected
Stress Rate - Time steps from 7th to 12th
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Figure B.13: Model Problem 6 : ν = 0.0 and σyy = 0.01 : Evolution of v : Lower Convected
Stress Rate - Time steps from 13th to 18th
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Figure B.14: Model Problem 6 : ν = 0.0 and σyy = 0.01 : Evolution of σyy : Jaumann Stress
Rate - Time steps from 1st to 6th
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Figure B.15: Model Problem 6 : ν = 0.0 and σyy = 0.01 : Evolution of σyy : Jaumann Stress
Rate - Time steps from 7th to 12th
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Figure B.16: Model Problem 6 : ν = 0.0 and σyy = 0.01 : Evolution of σyy : Jaumann Stress
Rate - Time steps from 13th to 18th
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Figure B.17: Model Problem 6 : ν = 0.0 and σyy = 0.01 : Evolution of v : Jaumann Stress
Rate - Time steps from 1st to 6th
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Figure B.18: Model Problem 6 : ν = 0.0 and σyy = 0.01 : Evolution of v : Jaumann Stress
Rate - Time steps from 7th to 12th
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Figure B.19: Model Problem 6 : ν = 0.0 and σyy = 0.01 : Evolution of v : Jaumann Stress
Rate - Time steps from 13th to 18th
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Figure B.20: Model Problem 6 : ν = 0.0 and σyy = 0.01 : Evolution of σyy : Truesdell Stress
Rate - Time steps from 1st to 6th
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Figure B.21: Model Problem 6 : ν = 0.0 and σyy = 0.01 : Evolution of σyy : Truesdell Stress
Rate - Time steps from 7th to 12th
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Figure B.22: Model Problem 6 : ν = 0.0 and σyy = 0.01 : Evolution of σyy : Truesdell Stress
Rate - Time steps from 13th to 18th
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Figure B.23: Model Problem 6 : ν = 0.0 and σyy = 0.01 : Evolution of v : Truesdell Stress
Rate - Time steps from 1st to 6th
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Figure B.24: Model Problem 6 : ν = 0.0 and σyy = 0.01 : Evolution of v : Truesdell Stress
Rate - Time steps from 7th to 12th
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Figure B.25: Model Problem 6 : ν = 0.0 and σyy = 0.01 : Evolution of v : Truesdell Stress
Rate - Time steps from 13th to 18th
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