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Abstract

With the increasing demand in the wireless mobile applications came a grow-
ing need to transmit information quickly and accurately, while consuming more
and more bandwidth. To address this need, communication engineers started em-
ploying multicarrier modulation in their designs, which is suitable for high data
rate transmission. Multicarrier modulation reduces the system’s susceptibility to
the frequency-selective fading channel, by transforming it into a collection of ap-
proximately flat subchannels. As a result, this makes it easier to compensate for
the distortion introduced by the channel. This thesis concentrates on techniques
for saving bandwidth usage when employing adaptive multicarrier modulation,
where subcarrier parameters (bit and energy allocations) are modulated based on
the channel state information feedback obtained from previous burst.

Although bit and energy allocations can substantially increase error robustness
and throughput of the system, the feedback information required at both ends of
the transceiver can be large. The objective of this work is to compare different
feedback compression techniques that could reduce the amount of feedback in-
formation required to perform adaptive bit and energy allocation in multicarrier
transceivers.

This thesis employs an approach for reducing the number of feedback trans-
missions by exploiting the time-correlation properties of a wireless channel and
placing a threshold check on bit error rate (BER) values. Using quantization
and source coding techniques, such as Huffman coding, Run length encoding and
LZW algorithms, the amount of feedback information has been compressed. These
calculations have been done for different quantization levels to understand the re-

lationship between quantization levels and system performance. These techniques
have been applied to both OFDM and MIMO-OFDM systems.
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Chapter 1

Introduction

1.1 Motivation

Although in use for many years, multi-carrier modulation (MCM) has recently
become an attractive technique to many digital communication systems. The main
idea of an MCM system is to split a high-rate data stream into several slow-rate
data sequences, and to use these to modulate a set of parallel subchannels that
makes full use of the available bandwidth. When the channel introduces inter-
symbol interference (ISI), a system using MCM does not need a complex equalizer
at the receiver end. This is a useful property when dealing with time-dispersive
channels and high data rates.

From a time-domain perspective, this translates the wideband transmission
system into a collection of parallel narrowband transmission systems, each oper-
ating at a lower data rate. From the frequency-domain perspective, MCM trans-
forms the frequency-selective channel, i.e., non-flat spectrum across the frequency
band of interest, into a collection of approximately flat subchannels over which

the data gets transmitted in parallel. Thus, MCM has become one of the choices



to combat frequency-selective fading channel.

Orthogonal frequency division multiplexing (OFDM) [1] is one of the most
popular types of MCM schemes. It is an enhanced extension of frequency divi-
sion multiplexing (FDM), where the parallel subchannels have overlapped spec-
tra. Nevertheless, due to their orthogonality, data can be recovered at the receiver
without interference from adjacent subcarriers. As a direct consequence, these sys-
tems have high spectral efficiency. This is another prominent feature that modern
digital transceivers demand, as it leads to less interference (unlike GSM channels
which overlap but are not orthogonal, and thus interfere with each other to some
extent [2]).

Over the past several years, OFDM has received considerable attention from
the general wireless community, in particular from the wireless LAN (WLAN)
standards groups, because of its capability to exploit wideband multipath con-
ditions. Digital terrestrial television broadcast (DTTB) standards specified the
use of OFDM modulation in Europe (ETSI DVB-T) and Japan (ARIB ISDB-T).
Similarly, wireless local area network (WLAN) standards, also specifying OFDM
modulation, are currently being finalized in Europe (ETSI HIPERLAN/2), North
America (IEEE 802.11a) and Japan (ARIB HiSWANa). OFDM was also one of
the candidate transmission techniques for UMTS and is now proposed for IEEE
802.16a and ETSI BRAN HIPERMAN for broadband wireless access networks.
The success of OFDM in recent wired and wireless broadband communications
systems strongly suggests that it could be a leading candidate for a future cellular
communications standard, i.e. 4G.

However, many of these MCM systems, especially the wireless ones [3], use

conventional multicarrier modulation techniques, which employ the same signal



constellation across all the subcarriers. As a result, these systems suffer from the
subcarriers with poor error performance. For example, it is possible that a given
subchannel has a low gain, resulting in a large BER. Adaptive modulation is an
important technique that has been known to yield increased data rates for high-
speed wireless data transmission when OFDM is employed. However, accurate
channel state information (CSI) is required at both transmitter and receiver to
achieve the benefits. Given this knowledge, both the transmitter and receiver can
have an agreed-upon modulation scheme for increased performance. This modula-
tion scheme might be different for different subcarriers. As a part of the feedback,
either bit and energy allocations to be used for next transmissions or signal to
noise ratio (SNR) values of each subcarrier are sent. The bit allocations define
the modulation scheme to be used, and the energy allocations define the extra
energy required to transmit the new number of bits assigned on the subcarrier.
Since the modulation parameters are set according to the channel conditions, we
do not waste resources (power, or complex channel coding) when the channel is
known to be bad. And analogously we can benefit from a good channel by using,
for instance, higher order constellations to increase the data rate while keeping
the average transmitted power nearly constant.

In this thesis, we consider adaptive bit and power allocation schemes. Namely,
we presuppose a desired number of bits to be transmitted by a single OFDM
symbol (consisting of N subcarriers), and we load these bits onto the subcarriers
in such a way that minimum energy is allocated to the entire transmission. A
number of loading algorithms [4] have been developed and implemented by various
researchers.

OFDM may be combined with antenna arrays at the transmitter and receiver



to increase the diversity gain and/or to enhance the system capacity on time-
varying and frequency-selective channels, resulting in a multiple-input multiple-
output (MIMO) configuration [5]. MIMO refers to the use of multiple antennas
both at the transmitter and receiver to improve the performance of communication
systems. A MIMO system takes advantage of the spatial diversity that is obtained
by spatially separated antennas in a dense multipath scattering environment. A
key concept employed here is that every matrix channel can be decomposed into
a set of parallel subchannels over which data can be transmitted independently,
given appropriate precoding and shaping transformations at the transmitter and
receiver, respectively.

This thesis concentrates on comparing different compression techniques when
employed along with the scheme used for reduction of the number of feedback

transmissions in adaptive OFDM and MIMO-OFDM systems.

1.2 Research Objective

Much research has been done on the performance of adaptive multicarrier
systems. Some researchers assumed perfect channel knowledge [6-9], but they
were overly optimistic. They assumed ideal conditions and so, their results in
terms of performance were very good, which may or may not be correct when
applied to the actual situation. Others attempted to provide more accurate results
by considering the sources of uncertainty [10,11] and outdated channel estimates
[11,12]

As the number of subcarriers increase to provide better data rates in the adap-
tive systems, the amount of feedback increases, as the feedback data is directly

proportional to number of subcarriers. Thus, feedback occupies more bandwidth



reducing system throughput. Some of the research was also aimed at the over-
head information and its compression [13,14]. However, less research has been
done on the feedback data and its bandwidth occupancy, which has to be sent to
the transmitter for making the system adaptive. The feedback information size
is directly proportional to the number of subcarriers N. For example, for each
channel instance there would be N number of bits and energy values. Converting
them to binary bits before transmission will increase the size the feedback data
basing on the number of bits used to represent the allocations. The large amount
of CSI feedback and signaling transmissions will be a serious problem in adaptive
OFDM and MIMO-OFDM systems.

The primary goal of this thesis is to compress the feedback data using various
lossless compression algorithms along with a feedback reduction scheme. We also
hope to develop a thorough understanding of how the quality of feedback infor-
mation affects the performance of a multicarrier transceiver employing adaptive

loading algorithms by employing various quantization levels in the simulation.

1.3 Contributions

This thesis presents the following approach to compress the feedback data:

Since the wireless channel is a time-varying channel and there can be any
amount of channel correlation present, a feedback reduction scheme has been
used in this thesis which exploits the time-correlation properties of the wireless
channel and based on the BER performance of the system, decides if the system
needs newer allocation parameters or can continue with old allocations. This is
done by using a threshold check on BER values and by allowing feedback consist-

ing of bit and energy allocations to be transmitted only when the threshold check



is positive. With the help of this scheme, a reasonable reduction in the number of
feedback transmissions has been achieved which varies for different time-varying
correlated channels. Since the main motivation of this thesis is to compress the
feedback data, various suitable lossless compression algorithms have been con-
sidered, such as Huffman coding, Run length encoding and Lempel-Ziv-Welch
(LZW) compression. Since we have the advantage of having reduced feedback
data even before applying these compression techniques, a significant compression
has been achieved. Huffman coding dominated two other compression algorithms
by achieving higher compression ratios in worst channel correlation conditions.
Also, the system performance has been tested for various quantization levels and
a thorough understanding between the number of quantization levels and com-
pression ratios has been achieved. The main contribution of this thesis starts
with being able to reduce the number of feedback transmissions by taking advan-
tage of the time-correlation properties of a wireless channel, using the feedback
reduction scheme. Achieved significant compression ratios by applying lossless
compression algorithms on the feedback data and compared their performance
for different quantization levels and channel conditions. An understanding on the
varying quality of feedback data and its effect on the system performance has been

analyzed.

1.4 Thesis Outline

This thesis is organized as follows: Chapter 2 consists of a review of the
main aspects of MCM, OFDM and the channel decomposition method of MIMO-
OFDM, that will be needed in subsequent sections. A brief description of the

time-varying channels of different correlations, quantization methods and source



coding techniques which are employed in this work are given.

Chapter 3 deals with the energy and bit allocations across the OFDM and
MIMO-OFDM subcarriers. Special attention will be placed on adaptive mod-
ulation techniques and the analysis of algorithms used for optimal bit-loading
strategy. A brief summary of various approaches is also given.

In Chapter 4, the feedback data reduction scheme is explained in detail and
simulation results obtained by using this scheme along with different compression
algorithms are presented. A detailed discussion about the results obtained is also
provided.

Finally, in Chapter 5, several conclusions are drawn and directions for future

research is presented.



Chapter 2

Background

2.1 OFDM Framework

This section discusses the evolution of OFDM starting, from single carrier
transmission, and then frequency division multiplexing leading to OFDM and
MIMO. A brief description of other key system aspects, feedback channels and
their estimation, time-varying channel correlation models, quantization methods,

and data compression techniques is given.

2.1.1 Introduction to OFDM

Single Carrier Transmission

A single carrier system modulates information onto one carrier (usually a si-
nusoidal waveform) using the frequency, phase, or amplitude adjustment of the
carrier. For digital signals, information is in the form of bits, or collections of bits
mapped to symbols, that are modulated onto a carrier. In telecommunications,
bit rate or data rate (represented as R or f,) is the number of bits transmitted

over a communication link per unit of time. We know that f = 1/t, so for higher



bandwidths (data rates, f), the duration of one bit or symbol of information ()
becomes smaller. As a result the system becomes more susceptible to the loss of
information from impulse noise, signal reflections, and other impairments. These
impairments can impede the ability of the communication system to recover the
transmitted information. In addition, as the bandwidth used by a single car-
rier system increases, the susceptibility to interference from other signal sources
becomes greater. This type of interference is commonly labeled as carrier wave
(CW) or frequency interference.

Frequency Division Multiplexing (FDM)

Frequency division multiplexing (FDM) extends the concept of single carrier
modulation by using multiple subcarriers within the same single transmission
channel. FDM divides the channel bandwidth into subchannels and transmits
multiple relatively low data rate signals by carrying each signal on a separate
carrier frequency. Data transmitted using FDM do not have to be divided evenly,
nor do they have to originate from the same information source. Advantages of
FDM include using separate modulation/demodulation schemes customized to a
particular type of data, or sending out banks of dissimilar data that can be best
sent using multiple, and possibly different, modulation schemes.

FDM offers an advantage over single-carrier modulation in terms of narrow-
band frequency interference since this interference will only affect one of the fre-
quency subbands. The other subcarriers will not be affected by the interference.
Since each subcarrier has a lower information rate, the data symbol periods in a
digital system will be longer, adding some additional immunity to impulse noise
and reflections. To ensure that the signal of one subchannel does not overlap with

the signal from an adjacent one, in an FDM transmission, guard-bands are used



between the subchannels which leads to effective usage of spectrum.

Single Carrier
Channel Signal

frequency \ Subcarrier

response\
A ‘ y V \ V Y ‘\\

-

frequen;y

Figure 2.1. Frequency Response of a Single Carrier, Multicarrier
and Frequency-selective Fading Channel

Orthogonal Frequency Division Multiplexing (OFDM)

Figure 2.1 shows the frequency response of a single carrier transmission and
multicarrier transmission over a frequency-selective fading channel. Single carrier
system suffers information loss when the channel fading is deep, whereas multi-
carrier transmission experiences a flat fading in all its subcarriers and very less
information loss. In order to solve the bandwidth efficiency problem, orthogonal
frequency division multiplexing (OFDM) was proposed, where the different car-
riers are orthogonal to each other, allowing for overlapping subchannels in the
frequency domain. The basis functions of an OFDM system are represented in
Figure 2.2. As shown in Figure 2.3, we can see that for a given bandwidth the
number of subcarriers OFDM can employ are almost double the subcarriers of
FDM, which explains the bandwidth saving of OFDM over FDM. This carrier
spacing provides optimal spectral efficiency. In OFDM systems, because of the
overlapping subcarriers, spectrum is efficiently utilized. But in FDM, as there is
a need for usage of guard-bands, some of the spectrum is wasted. Today OFDM

has become a very popular choice of transmission technology.
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Figure 2.2. Basis Functions of OFDM system

s

frequency
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|
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»
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Figure 2.3. Illustration of FDM and OFDM Spectrum Occupancy

The OFDM system studied in this thesis has the block structure as shown
in Figure 2.4 [15]. The system determines the constellation scheme of each sub-
carrier and then maps the input bits into complex-valued symbols X (n) in the

modulation block. The number of bits per symbol assigned to each subcarrier,

11



which is based on the signal to noise ratio of each subcarrier in the frequency
range, is determined using an adaptive bit loading algorithm, which will be de-
tailed in the next chapter. In practice, OFDM systems are implemented using
a combination of fast fourier transform (FFT) and inverse fast fourier transform
(IFFT) blocks that are mathematically equivalent versions of the discrete fourier
transform (DFT') and inverse discrete fourier transform (IDF'T), respectively. The
IFFT block modulates X (n) onto N orthogonal subcarriers which is actually con-
verting the system into time domain from frequency domain. A cyclic prefix is
then added to the multiplexed output of the IFFT block. The output signal is then
converted into a continuous time analog signal before it is transmitted through
the wireless channel. At the receiver side, an inverse operation is carried out and

the information data are detected.

bits
— > Modulation » IFFT > CP

A

feedback !

Channel
Bit Loading Channel |
Estimation

bit
<L Demodulation |« FFT |« <

Figure 2.4. Block Diagram of an Adaptive OFDM System Describ-
ing the Feedback of Allocation Parameters.

2.1.1.1 FFT and IFFT

The key components of an OFDM system are the IFFT at the transmitter

and FFT at the receiver. These operations perform linear mappings between N

12



complex data symbols and N complex OFDM symbols. The reason for these
operations is to transform the high data rate stream into N low data rate streams
with each experiencing a flat fading portion of the channel during the transmission.
Suppose the data set to be transmitted is X (1), X(2),..., X(IV), where N is the
total number of subcarriers. The discrete-time representation of the signal after
IFFT is [16]:

X (k)e’*™ % n=0.N-1. (2.1)

At the receiver side, the data are recovered by performing FFT on the received
signal [16]:

z(n)e ™Y k=0.N-1. (2.2)

An N-point FFT only requires Nlog(/N) multiplications.

2.1.1.2 Cyclic Prefix

Two difficulties arise when the OFDM signal is transmitted over a dispersive
channel. One difficulty is that channel dispersion destroys the orthogonality be-
tween subcarriers and causes intercarrier interference (ICI). In addition, a system
may transmit multiple OFDM symbols in a series so that a dispersive channel
causes intersymbol interference (ISI) between successive OFDM symbols. The
insertion of a silent guard period between successive OFDM symbols would avoid
IST in a dispersive environment, but it does not avoid the loss of the subcarrier
orthogonality [17]. This problem is solved with the introduction of a cyclic prefix.

The cyclic prefix is a crucial feature of OFDM which combats the effects of
multipath. ISI and ICI are avoided by introducing a guard interval at the front,

which is appending a copy of the last part of the OFDM symbol at the front of

13



the transmitted symbol. The cyclic prefix still occupies the same time interval as
guard period, but it ensures that the delayed replicas of the OFDM symbols will
always have a complete symbol within the FFT interval (often referred as FFT
window); this makes the transmitted signal periodic. This periodicity plays a very
significant role, as this helps maintaining orthogonality. Figure 2.5 illustrates the

idea.

CP FRAME

0 tc > Tmax

i 4

Figure 2.5. Cyclic Prefix Illustration in OFDM Symbol

The idea is to convert the linear convolution (between signal and channel
response) into a circular convolution. In this way, the FFT of the circular convo-
lution of two signals is equivalent to the multiplication of these signals in the fre-
quency domain. However, in order to preserve the orthogonality property, T'max
should not exceed the duration of the time guard interval. As shown in Figure
2.5, once the above condition is satisfied, there is no ISI since the previous symbol
will only have effect over samples within [0, Tmaz]|. It is clear that orthogonality
is maintained so that there is no ICI. Another advantage with the cyclic prefix
is that it serves as a guard interval between consecutive OFDM frames. This
is similar to adding guard bits, which means that the problem with inter-frame
interference also will disappear. To conclude, the cyclic prefix gives a two-fold

advantage, first occupying the guard interval, it removes the effect of ISI, and by

14



maintaining orthogonality it completely removes the ICI. This often motivates the

use of OFDM in wireless systems.

2.1.1.3 Modulation and Demodulation

A modulator maps a set of bits into a complex number corresponding to an
element of a signal constellation. Given an adaptive algorithm, the modulator has
an input of a set of bits and energy values. The output of the modulator is a con-
stellation symbol corresponding to the number of bits on the input, appropriately
scaled to have a desired energy level.

The modulator is chosen to have a finite number of rates available, which means
that only a finite number of constellations are available for modulation. Only six
different square M-order quadrature amplitude modulation (MQAM) signal con-
stellations are used; this scheme is expected to perform with an efficiency very
close to that resulting from using unrestricted constellations [18]. The modulator
maps either 1 bit, 2 bits, 4 bits, 6 bits, or 8 bits into a symbol, which means
that it can perform only binary phase shift keying (BPSK), quadrature phase
shift keying (QPSK), 16 quadrature amplitude modulation (16QAM), 64 quadra-
ture amplitude modulation (64QAM), and 256 quadrature amplitude modulation
(256QAM) modulation on each subcarrier. Further, in order to provide robustness
against bit errors, gray-coded constellations are employed for each modulation or-
der available. This Gray coding ensures that if a symbol error occurs, where the
decoder selects an adjacent symbol to that which the transmitter intended to be
decoded, there is only a single bit error resulting. Shown in Figure 2.6 are the bit
allocations being provided by a bit loading algorithm to the transmitter.

Demodulation is performed using a maximum likelihood (ML) approach, given

15



Input Bits

0 1 0 0 1 1 10
o, Q%K % \QPK\BP\vK\ 16\QAM Q%K
0 1 0 1 0 o 1] 0 1 0o 1

Bit allocations provided at the RX by the Bit Loading
Algorithm

Figure 2.6. FExample Showing Bit Allocations by a Bit Loading Al-
gorithm

precise knowledge of the flat fading channel gain for each subcarrier. A substantial
performance improvement can be obtained in this adaptive modulation applica-
tion, where the modulator basis functions are designed as a function of measured
channel characteristics. On a good subchannel (high SNR), modulation methods
such as 64 QAM are used to increase the bit rate per symbol and a lower mod-
ulation such as QPSK is performed on a poor subchannel to keep the error rate

low.

2.1.1.4 OFDM Reception

Two important components for processing of the received OFDM signal are
synchronization and channel estimation.
Synchronization

At the front-end of the receiver OFDM, signals are subject to synchroniza-
tion errors due to oscillator impairments and sample clock differences [15]. The
demodulation of the received radio signal to baseband, possibly via an interme-

diate frequency (IF), involves oscillators whose frequencies may not be perfectly
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aligned with the transmitter frequencies. This results in a carrier frequency offset.
Also, demodulation (in particular, the radio frequency demodulation) usually in-
troduces phase noise acting as an unwanted phase modulation of the carrier wave.
Carrier frequency offset and phase noise degrade the performance of an OFDM
system.

When the baseband signal is sampled at the Analog-to-Digital converter, the
sample clock frequency at the receiver may not be the same as that at the trans-
mitter. Not only may this sample clock offset cause errors, it may also cause the
duration of an OFDM symbol at the receiver to be different from that at the
transmitter. Since the receiver needs to determine when the OFDM symbol be-
gins for proper demodulation with the FFT, a symbol synchronization algorithm
at the receiver is usually necessary. Symbol synchronization also compensates for
delay changes in the channel.

The most important effect of a frequency offset between transmitter and re-
ceiver is a loss of orthogonality between the subcarriers resulting in ICI. The
characteristics of this ICI are similar to white Gaussian noise and lead to a degra-
dation of the SNR. For both additive white Gaussian noise channels (AWGN)
and fading channels, this degradation increases with the square of the number of
subcarriers.

Finally, the degradation due to symbol timing errors is not graceful. If the
length of the cyclic prefix exceeds the length of the channel impulse response, a
receiver can capture an OFDM symbol anywhere in a region where the symbol ap-
pears cyclic, without sacrificing orthogonality. A small error only appears as pure
phase-rotations of the data symbols and may be compensated for by the channel

equalizer, still preserving the system’s orthogonality. A large error resulting in
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capturing a symbol outside this allowable interval, on the other hand, causes ISI,
ICI, and a performance degradation.

Time and frequency offset estimators have been addressed in a number of
publications [19]. We divide these estimators conceptually into two groups. The
first group assumes that transmitted data symbols are known at the receiver. This
can, in practice, be accomplished by transmitting known pilot symbols according
to some protocol. The unknown symbol timing and carrier frequency offset may
then be estimated from the received signal. The insertion of pilot symbols usually
implies a reduction of the data rate.

A second approach uses statistical redundancy in the received signal. The
transmitted signal is modeled as a Gaussian process. The offset values are then
estimated by exploiting the intrinsic redundancy provided by the L samples con-
stituting the cyclic prefix. The basic idea behind these methods is that the cyclic
prefix of the transmitted signal yields information about where an OFDM symbol
is likely to start. Moreover, the transmitted signal’s redundancy also contains
useful information about the carrier frequency offset.

Channel Estimation

In an OFDM link, the data bits are modulated on the subcarriers by some
form of PSK or QAM. To estimate the bits at the receiver, knowledge is required
about the reference phase and amplitude of the constellation on each subcarrier.
In general, the constellation of each subcarrier shows a random phase shift and
amplitude change, caused by carrier frequency offset, timing offset, and frequency
selective fading. To cope with such variations, two methods exist. One is co-
herent detection, which uses estimates of the reference amplitudes and phases

to determine the best possible decision boundaries for the constellation of each
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subcarrier. Of all the modulation techniques which lend themselves to coherent
detection, those that are most commonly found in present-day applications are the
quadrature modulations which include QPSK, quadrature amplitude shift keying
(QASK), and quadrature partial response (QPR) [20]. The second approach is dif-
ferential detection, which does not use absolute reference values, but only looks at
the phase and/or amplitude differences between two QQAM values. Differential de-
tection can be done both in the time domain and in the frequency domain. These
systems use differential modulation schemes such as differential phase-shift key-
ing (DPSK), where, this scheme encodes the transmitted information into phase
differences from symbol to symbol.

In a fading channel environment, differential modulation does not need to track
the subcarrier attenuations. The performance sacrifice associated with this mod-
ulation scheme compared with coherent modulation schemes is often motivated
by its simple receiver structure and its avoidance of pilot symbols. However,
if the subcarriers are coherently modulated as in the digital video broadcasting
project(DVB) standard, estimation of the channel’s attenuations of each subcar-
rier is necessary. These estimates are used in the channel equalizer, which in an
OFDM receiver, may consist of one complex multiplication for each subcarrier in
an OFDM symbol.

To be able to interpolate the channel estimates both in time and frequency
from the available pilots, the pilot spacing has to fulfill the nyquist sampling
theorem, which states that the sampling interval must be smaller than the inverse
of the double-sided bandwidth of the sampled signal. By choosing the pilot spacing
much smaller than these minimum requirements, a good channel estimation can

be made with a relatively easy algorithm. The more pilots used, however, the
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smaller the effective SNR becomes that is available for data symbols. Hence, the
pilot density is a tradeoff between channel estimation performance and SNR loss.

To determine the minimum pilot spacing in time and frequency, we need to find
the bandwidth of the channel variation in time and frequency. These bandwidths
are equal to the Doppler spread By in the time domain and the maximum delay
spread Tpe in the frequency domain [21]. Hence, the requirements for the pilot

spacing’s in time and frequency s; and s are:

st < 1/By (2.3)

sp < 1/Tmam- (2.4)

Channel estimation in OFDM is usually performed with the aid of pilot sym-
bols. Since each subcarrier is flat fading, techniques from single-carrier flat fading
systems can be applied to OFDM. For such systems, pilot-symbol assisted mod-
ulation (PSAM) on flat fading channels involves the sparse insertion of known
pilot symbols in a stream of data symbols. The attenuation of the pilot symbols
is measured and the attenuations of data symbols between these pilot symbols
are typically estimated and interpolated using time-correlation properties of the
fading channel [22].

In OFDM systems where Doppler effects are kept small (i.e., the OFDM sym-
bol is short compared with the coherence time of the channel), the time correlation
between the channel attenuation of consecutive OFDM symbols is high. Further-
more, in a properly designed OFDM system, the subcarrier spacing is small com-
pared with the coherence bandwidth of the channel. Therefore, there also exists
some substantial frequency correlation between the channel attenuation of adja-

cent subcarriers. Both the time and frequency correlations can be exploited by a
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channel estimator. The choice of pilot pattern determines the form of the channel
estimator.

Channel estimation techniques consist of two steps: First, the attenuation at
the pilot positions is measured and possibly smoothed using the channel correla-
tion. These measurements then serve to estimate (interpolate) the complex-valued
attenuation of the data symbols in the second step. The second step uses the
channel correlation properties, either with interpolation filters or with a decision-
directed scheme. Depending on the pilot pattern the estimation strategies diverge
in this second step.

Once we have the channel information estimated, we can remove the negative
effects of the channel from the receive signal by using one of three general equal-
ization techniques: the maximum likelihood sequence estimation (MLSE), linear
equalizers, and decision feedback equalizers. We only need one tap equalizer for
each subcarrier. This makes the linear equalizer method the logical choice. We
can determine the coefficient of the equalizer by using either the minimum mean

square error (MMSE) or the zero forcing (ZF) criteria. The latter works as follows:

(2.5)

where, Y,, is the receive signal, P, represents the pilot symbols and N, is the
additive white Gaussian noise.

Channel estimation inverts the effect of nonselective fading on each subcarrier.
Usually OFDM systems provide pilot signals for channel estimation. In the case
of time-varying channels, the pilot signal should be repeated frequently. The
spacing between pilot signals in time and frequency depends on coherence time

and bandwidth. Throughout this thesis, the channel estimates are assumed to be

21



perfect, and available to both the transmitter and receiver. Given full knowledge
of the channel, the transmitter and receiver can determine the frequency response
of the channel, and the channel gains at each tone of the OFDM symbol. Given
these gains, the adaptive algorithm can proceed to calculate the optimal bit and

power allocation.

2.2 MIMO-OFDM

Multiple input multiple output (MIMO) systems use multiple transmit and
receive antennas to improve the capacity of the system [5]. The multiple antennas
can be used to increase data rates through multiplexing, or to improve perfor-
mance through diversity. This technique can significantly increase the data rates
of wireless systems without increasing transmit power or bandwidth.The cost of
the performance enhancements obtained through MIMO techniques is the added
cost of deploying multiple antennas, the space and power requirements of these
extra antennas (especially on small handheld units), and the added complexity
required for multidimensional signal processing [23].

A great deal of research work has been devoted to the area of combining this
spatial scheme with OFDM systems. This system combines the advantages of
both techniques in providing simultaneously increased data rate and elimination
of the effects of delay spread. Power control for subcarriers on a MIMO/OFDM
system can be crucial in enhancing the spectral and power efficiency. Without
any interference, the best power control to optimize the transmission is the wa-
terfilling solution. But since it is not practically feasible, we have employed the
adaptive loading algorithm described in the next section [24]. This section con-

centrates on the concept employed in this thesis, that every matrix channel can be
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decomposed into a set of parallel subchannels over which data can be transmitted
independently, given appropriate precoding and shaping transformations at the

transmitter and receiver, respectively [25].

hi
1 1
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Block Block
TT on %

Figure 2.7. MIMO System With 7" Transmit Antennas and R Re-
ceive Antennas.

Shown in Figure 2.7 is a MIMO transmit/receive system with 7" transmit
antennas and R receive antennas. This system can be represented simply as
y = Hx +n. Here x represents the T-dimensional transmitted symbol, n is
the R-dimensional noise vector, and H is the R x T matrix of channel gains h;;
representing the gain from transmit antenna j to receive antenna 7.

If we consider the case of perfect channel state information at the transmitter
and receiver, we can decompose the MIMO channel on each tone into R paral-
lel non-interfering single input single output (SISO) channels using the singular
value decomposition (SVD) [18]. This results in the performance gain called mul-
tiplexing gain. By multiplexing data onto these independent channels, we get an

R-fold increase in data rate in comparison to a system with just one antenna at
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the transmitter and receiver. This increased data rate is called the multiplexing
gain.
Consider the MIMO system shown above in Figure 2.7. For any matrix H we

can obtain its SVD as:

H=Uxv" (2.6)

where the R X R matrix U and T' x T" matrix V' are unitary matrices and X is
R x T diagonal matrix of singular values of H.

Now, if we use a transmit precoding filter of V' and a receiver shaping filter of
U, the equivalent MIMO channel between the IFFT and FFT blocks decomposes
into parallel subchannels. Note that the number of such subchannels is exactly
equal to the number of nonzero singular values of H . This same decomposition
applies to each subchannel of the OFDM system. In general each precoder and
shaping matrix will be different for different subchannels [26].

Given the decomposition outlined above, the adaptively modulated MIMO/OFDM
system requires that each subchannel has the corresponding precoder and shap-
ing matrix applied to it. In other words, the MIMO/OFDM adaptive modulation
problem decomposes into a bit loading over all the nonzero singular values of all
the tones. Thus, the problem will be larger than in the SISO case, but the de-
composition has allowed us to proceed without any changes in the optimization

algorithm to be employed.

24



2.3 Channel Model

Designing future mobile radio systems requires a comprehensive knowledge
about propagation characteristics over different types of environments. Propaga-
tion studies involving the creation of channel models and their statistical param-
eters could be used to design better wireless systems.

Indoor radio channel environments are prone to interference due to reflection,
refraction and scattering of radio waves by structures inside a building. Transmit-
ted signals often reach the receiver via multiple paths resulting in a phenomenon
known as multipath fading. Multipath fading causes improper detection of the
signal across the frequency domain which can seriously degrade the system per-
formance. If we can adequately characterize the channel, appropriate transmitter
settings combined with equalizers can be employed. Therefore, developing a prop-
agation model to predict the characteristics of a wireless channel environments is
important.

Radio propagation channel models scan be classified into two major classes:
statistical models and site specific propagation models [27]. Statistical models
rely on measurement data and follow statistical impulse response modeling of the
multipath fading channel. The goal of statistical modeling is to investigate the
distribution of various channel characteristics such as arrival time, amplitude and
phase sequences, inter-relation between path variables, and spatial correlations on
path variables. In contrast, site specific propagation models are based on the use of
electromagnetic wave propagation theory to characterize indoor radio propagation.
This technique has been proposed to predict path loss, time invariant impulse
response and rms delay spread.

Saleh and Valenzuela used their measurement results from a medium-sized two
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story office buildings together, with results from other researchers, developed a
model for indoor radio channel simulation and analysis of various communication
schemes [28]. The model was shown to fit the measurements and may be extended
to other buildings by adjusting its parameters. They effectively measured the
impulse response of the channel by transmitting and receiving a sequence of narrow
pulses from omnidirectional antennas. Based on these time-domain measurements,
they presented a model that describes the wireless channel as the sum of discrete
arrivals, each with a different delay in its arrival time.

The complicated random and time varying indoor radio propagation channel
can be modeled by assigning linear time variant an impulse response to each point

in the 3-D space given by [27]:
N(7m)-1

hit,7) = D Be(t)d[r — ()] (2.7)

k=0

where ¢ and 7 are the observation time and application time of an impulse, N (1)
is the number of multipath components, and (i (t), 7x(t), andex(t) are the random
time-varying amplitude gain, arrival time and phase sequence and 4[.] is the Dirac
delta function. A time-invariant version of this model which is successfully used

in many radio applications given by [28]:

h(t) =" Bre6(t — 1) (2.8)

Due to the motion of people and equipment in and around the building, the
parameters [, Tk, and 0y are randomly time-varying functions. However, the rate
of their variations is very slow compared to any useful signaling rates that are
likely to be considered, e.g., higher than tens of kbit/s. Thus, these parameters
can be treated as virtually time-invariant random variables.

The model starts with the assumption that the multipath components arrive
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in clusters. The formation of the clusters is related to building structure, while
the multipath components within each cluster are formed by multiple reflections
from objects in the vicinity of transmitter and receiver. The cluster arrival times,
i.e., the arrival times of the first rays of the clusters, are modeled as a Poisson
arrival process with some fixed rate A. Within each cluster, subsequent rays also
arrive according to a Poisson process with another fixed rate A\. Typically, each
cluster consists of many rays, i.e., A >> A.

Let the gain of the kth ray of the Ith cluster be denoted by (3, and its phase by
Oy;. Thus, instead of Eq. (2.8), complex low pass impulse response of the channel

is given by [28]:

h(t) = Bue®5(t — T, — 1), (2.9)
1=0 k=0

where T} is the arrival time of [th cluster and 7, is the arrival time of kth ray
measured from the beginning of [th cluster. Both of these variables are described

by the independent inter arrival exponential probability density functions as [28]:

p(T|T—1) = Aexp[-A(Ti =Ti)], >0, (2.10)

P(Twt| Te—1y) = Aexp[=ATw — T—1y], k> 0. (2.11)

The received amplitude gains, (3;; of each component are independent Rayleigh
random variables with a variance that decays exponentially with the propagation
delay, and as well as with time delay, within a cluster. Thus, these amplitude

gains can be computed as [28]:
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Y = B, (2.12)

— 2 =T /T —7kl/vy
ﬁO,O6 / € / )

where Kz’o = 6_020 is the average power gain of the first ray of the first cluster, and
I and ~ are power-delay time constants for the clusters and the rays, respectively.

The actual arrival amplitudes are then described as a Rayleigh random variable
with a time-varying mean given by the double exponential. The phase of each
arrival is determined by the length of the path traveled, the medium through
which the signal passes, and by the reflection coefficients of the scattering surfaces.
The corresponding phase angles, #;; for each component are independent uniform
random variables over [0, 27|, the reason is that phases are very sensitive to even a
small variation e.g., movement of the order of millimeter. The model has enough
flexibility to permit reasonably accurate fitting of the measured channel response
is simple enough for simulation.

Figure 2.8 is a schematic representation of the channel model from [28]. Figure
2.8 (a) illustrates the exponentially decaying ray and cluster average powers as
described in Eq. (2.12). Figure 2.8 (b) shows the realization of a channel impulse
response generated taking into consideration, all the parameters described.

This multipath channel model is flexible enough to fit the experimental data
reasonably well, while retaining the basic features of a constant-rate Poisson
arrival-time process and mutually independent path gains, thus making its use
in analysis relatively simple. In addition, the model can be explained from a
physical viewpoint, thus making it more readily extendable to other types of en-

vironments.
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Figure 2.8. A Schematic Illustration of Channel Model. (a) Ex-
ponentially Decaying Ray and Cluster Average Powers. (b) Channel
Impulse Response (from [28]).

2.3.1 Time-Varying Channel Correlation Models

In wireless transceiver systems, time varying channels are often encountered.
Depending on the surroundings, atmosphere, etc., successive instances of the chan-
nel impulse response can possess some degree of correlation. In probability theory

and statistics, correlation indicates the strength and direction of a linear relation-
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ship between two random variables. The time correlation between two random
variables can be introduced using the equation shown below, which is the channel

model generation via the time domain recursion:

R(t) = ah(t) + (1 — a)h(t — 1) (2.13)

where h(t) represents current channel impulse response at time ¢, h(t — 1) repre-
sents previous channel impulse response at time ¢t — 1, « represents the correlation
percentage being introduced between the current and previous channel estimate,
and h/(t) represents the correlated channel response.

The time-varying channels can range from very slowly varying channels with
99% correlation to faster varying uncorrelated channel. The practicality of adap-
tive signaling in real world implementation has been questioned due to the vari-
ation of the wireless channel over time, which results in a different channel at
the time of data transmission than at the time of channel estimation. Thus, this
thesis investigates the performance of these systems for a range of correlation
values [29,30].

A completely uncorrelated time varying channel is shown in Figure 2.9. We
can see that each time instance of the channel is different from the next instance.
There is no repetition or redundancy when two channel time instances are com-
pared. Figure 2.10 shows strong time correlation, i.e., 99% correlation between
the channel instances.

We can see in Figure 2.10 how each channel time instance consists of 99% of
the previous channel instance and only 1% of the new channel instance. Since
the time variation is very low in these channels, they are called slow time varying

channels. Figure 2.11 shows the response with channel instances having 95%
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Figure 2.9. Uncorrelated Time-varying Channel Model
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Figure 2.10. 99% Correlated Time-varying Channel Model
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Figure 2.12. 85% Correlated Time-varying Channel Model
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correlation with each other and Figure 2.12 shows the channel instances with 85%

correlation with each other.

2.4 Quantization

Since quantization has been used in feedback data compression, a brief sum-
mary of quantization methods is given in this section.

Message signals such as speech waveforms or video waveforms have a contin-
uous amplitude range. When such continuous amplitude samples are transmitted
over a noisy channel, the receiver cannot discern the exact sequence of transmitted
values. The effect of the noise in the system can be minimized by representing
the samples by a finite number of predetermined levels and transmitting the levels
using a signalling scheme such as PAM, QAM etc.

Quantization refers to the process of representing the analog sampled values
by a finite set of levels. While sampling converts a continuous time signal to
a discrete time signal, quantizing converts a continuous amplitude sample to a
discrete amplitude sample. Thus, sampling and quantizing convert the output of
an analog information source into a sequence of levels or symbols [31].

There are two types of quantization — scalar quantization and vector quantiza-
tion. In scalar quantization, each input symbol is treated separately in producing
the output, while in vector quantization the input symbols are grouped together
into vectors and processed to give the output. This grouping of data and treating
them as a single unit increases the optimality of the vector quantizer compared
to scalar quantizer, but at the cost of increased computational complexity. Here,
we'll take a look at scalar quantization [32].

A quantizer can be specified by its input partitions and output levels, called
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reproduction points. If the input range is divided into levels of equal spacing, then
the quantizer is called a uniform quantizer. Otherwise, it is called a nonuniform
quantizer. A uniform quantizer can be easily specified by its lower bound and the
step size. The measure of performance that is most commonly used for evaluating
the performance of a quantizing scheme is the output signal to quantizing noise
power ratio.

The optimum quantizer encoder and optimum decoder must satisfy the fol-

lowing conditions [33]:

e Given the output levels or partitions of the encoder, the best decoder is one
that puts the reproduction point’s 2’ on the centers of mass of the partitions.

This is known as centroid condition.

e Given the reproduction points of the decoder, the best encoder is one that
puts the partition boundaries exactly in the middle of the reproduction
points, i.e., each x is translated to its nearest reproduction point. This is

known as nearest neighbor condition.

The quantization error (r — z’) is used as a measure of optimality of the
quantizer encoder and decoder.
Uniform Quantization

In uniform quantization, all quantization regions are of equal step size (A),
except the first and last regions, if samples are not finite valued. With N quan-
tization regions, logs(N) bits are used to represent each quantized value. The
uniform quantizer yields the highest (optimum) average signal to quantizer noise
power ratio at the output if the signal has a uniform probability density function

(pdf), and doesn’t work well when the signal has nonuniform pdf. Also, a fixed

34



step size will produce relatively larger quantization error when the signal is small,

and hence, will adversely affect signal quality when the input signal has smaller

amplitude.
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Figure 2.13. Uniform and Nonuniform Quantizers

Nonuniform Quantization

A better scheme for quantizing a random variable with a nonuniform pdf is to
use quantizing scheme that use a variable step size, A;, which has smaller values
when signal amplitude is small and larger values when the signal amplitude is
large. If a uniform quantizer is used in this case, it yields the same peak error in
each quantizer bin, which means smaller signals will suffer a larger relative errors
compared to larger signal values. But a nonuniform quantizer will yield a higher
average signal to quantizing noise power ratio than the uniform quantizer. Here,
quantization values should be the “centroid” of their regions, i.e., the conditional
expected value of that region. For a given number of levels, the nonuniform
quantizer yields a smaller MSE. Shown in Figure 2.13 is the illustration of the
length of quantization regions in uniform and nonuniform quantizers. As we can

see the uniform quantizer chose equal quantization levels and the nonuniform
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quantizer chose unequal quantization regions basing on signal pdf. Nonuniform
quantizers are difficult to implement because this requires knowledge of source
statistics and different quantizers for different input types.

One proposed solution for such problems was converting the nonuniform pdf
signal to a uniform pdf signal using compander and then applying uniform quan-
tizer. The idea behind this compander is, that initially, compression transforms
the input variable X (with nonuniform pdf) to another variable Y using a non-
linear transformation Y = ¢(X), such that fy(y) has a uniform pdf. Then Y
is uniformly quantized and transmitted. At the receiver, a complementary ex-
pander with transfer characteristics ¢! restores the quantized values of X. The
compressor and expander together are called compander.

The results achieved are optimal when the quantization applied to the data
is uniform and its followed by lossless compression algorithms. Thus, this thesis
would be concentrating on uniform quantization and lossless data compression

techniques.

2.5 Data Compression Techniques

The basic definition of data compression is “reducing the amount of data
required to represent a source of information while preserving the original content
as much as possible” [34]. There are two kinds of data compression algorithms,
lossy data compression and lossless data compression.

In lossy data compression, the original message can never be recovered exactly
as it was before it was compressed. As the name indicates, there will be some loss
of the original information. It is not good for critical data, when we cannot afford

to lose even a single bit. It is used mostly in sound, video, image compressions
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where the losses can be tolerated. Some lossy data compression schemes are Vector
Quantization, JPG, MPEG etc.

In lossless compression, the original message can be exactly decoded. This
lossless compression is achieved by finding repeated patterns in a message and
encoding them in an efficient manner; this is also referred to as ‘redundancy
reduction. Popular algorithms of this kind are: Lempel-Ziv-Welch (LZW) [35,36],
Run Length Encoding (RLE), Huffman coding [37], and Arithmetic Coding [38].

Choosing an adequate compression algorithm is very important in this thesis,
since our main aim is to compress the feedback information using one of the above
lossless algorithms and at same time never lose any of it (since if we cannot recover
the original data after compression, that would lead to bad system performance).

Thus, in this thesis we will have to choose lossless compression algorithms.
Specifically the RLE, Huffman Coding, and LZW compression schemes have been

employed in this work.

2.5.1 Huffman Coding

Huffman compression, also known as Huffman encoding, is one of many and
one of the most famous compression techniques in use today [37]. One of the
main benefits of Huffman compression is its ability to be implemented easily and
to achieve a decent compression ratio.

The Huffman compression algorithm assumes data files consist of some symbol
values that occur more frequently than other symbol values in the same file. The
most common characters in the input file (i.e., characters with higher probabil-
ity) are assigned short binary codes. Least common characters (i.e., those with

lower probabilities) are assigned longer binary codes. By analyzing the data, the
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algorithm builds a dictionary initially using the probability of occurrence of each
symbol, which associates each data symbol with a codeword, which has the prop-
erty that no codeword in the dictionary is a prefix of any other codeword in the
dictionary.

For example, consider a data source that produces “1” values with probability
0.1, “2” values with probability 0.1, and “3” values with probability 0.8. By having
this statistical information about the source, Huffman encoding and decoding can

be done easily.

SYMBOL PROBABILITY CODE
A 36 1 1 36
B 15 1 011 45
c 13 — . 1.0 010 39
D A — 1 64 0011 44
E .09 — 0 0010 36
F 07— . -36 0001 28
G 05 Lol e 00001 25
H 03— of 09 000001 18
| o1 —9 o4 000000 06

AVERAGE WORD LENGTH  2.77
(in binary digits)

Figure 2.14. Huffman Coding Example

A Huffman coding example is shown in Figure 2.14. We can see that the
symbols are arranged in the descending order of their occurrence based on prob-
ability. Then a binary tree is generated from left to right starting with the two
least probable symbols. The least probable symbols are combined to form another
equivalent symbol having a probability that equals the sum of the two symbols.

This is done until we are left with one single symbol. Then, by reading the tree
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from right to left, different codes are assigned to each symbol as shown in the
above example.

The first problem with Huffman coding is that the size of input symbols is
limited by the size of the translation table needed for the compression. That is,
a table is needed that lists each input symbol and its corresponding code. If a
symbol is one eight-bit byte, then a table of 256 entries is sufficient. Such a table
saves on storage costs but limits the degree of compression achieved.

The second problem with Huffman encoding is the complexity of the decom-
pression process. The length of each code to be interpreted for decompression is
not known until the first few bits are interpreted. The basic method for inter-
preting each code is to interpret each bit in a sequence and choose a translation
subtable according to whether the bit is a one or a zero.

A third issue with Huffman encoding is that we need to know the frequency
distribution for the ensemble of possible input symbols. A common solution is to
analyze each data block individually to adapt the character distribution uniquely
to that block. We must make two passes over the data, (1) a pass to count
characters and perform a sort operation on the character table, and (2) a pass for
encoding. This adaptable approach is acceptable if high transfer rates through
the compressor are not required and if the data blocks being compressed are very

large relative to the size of the translation table.

2.5.2 Run Length Encoding (RLE)

Run length encoding (RLE) stands out from other methods of compression,
since it does not try to reduce the average symbol size compared to Huffman coding

or Arithmetic coding, and it doesn’t replace strings with dictionary references such
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as Lempel-Ziv and Lempel-Ziv-Welch style coding [35,36]. RLE replaces a string
of repeated symbols with a single symbol and a count (i.e., run length) indicating
the number of times the symbol is repeated. It is called run length because a
“run” is made for repeated bits and coded in lesser bits by only stating how many
bits were there.

The problem with run length encoding for character sequences intermixed with
other data is in distinguishing the count fields from normal characters, which may
have the same bit patterns. This problem has several solutions, but each one
has disadvantages. For example, a special character might be used to mark each
run of characters, which is fine for ASCII text, but not for arbitrary bit patterns
such as those in binary integers. Typically, three characters are needed to mark
each character run, so this encoding would not be used for runs of three or fewer

characters.

OOOOOO 666666666 Original Data

: RLE Encoded Data

Figure 2.15. RLE Coding Example

Shown in Figure 2.15 is an example of RLE encoding. In the original data
we can see a series of repetitions on particular symbol, and when such repetition
occurs, RLE encoding replaces the whole repeating string of symbols with an
actual symbol and its count of repetition. The numbers represented in bold are
the repetition count values i.e., the number of times the particular symbol has
repeated. The next step in this compression technique would be to convert each of

the decimal values of run into 4-bit binary values, or nibbles. The only unique rule
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to follow during this conversion comes into play when one encounters a decimal
value of 15 or greater. Since the largest decimal number that a 4-bit binary nibble
can represent is 15 (which corresponds to four binary 1’'s — 1111), one must
convert a run/decimal value that is greater than 15 into multiple 4-bit nibbles.
For example, a run of 20 would be converted into 1111 1010, in which the first
nibble is the value 15, and the second nibble is the value 5. A caveat to this rule
is that if you are converting the value 15 itself, then you would also create two
nibbles: 1111 followed by 0000. The reason for this is simply to be consistent,
so that whenever a binary nibble of 1111 is encountered, the following nibble is
added to the value of 15. So, the higher the decimal values, the larger is number
of binary nibbles required for representation. One disadvantage of this technique
is that it is worthwhile only if the original data consist predominantly of binary

0’s.

2.5.3 LZW Compression

There are several compression algorithms that use a “dictionary,” or code book,
known to both the coder and the decoder, which is generated during the coding
and decoding processes. Many of these build on work reported in 1978 by Abra-
ham Lempel and Jacob Ziv, and are known as “Lempel-Ziv” (LZ) encoders [35].
These coders replace repeated occurrences of a string by references to an earlier
occurrence. The dictionary is merely the collection of these earlier occurrences.

One widely used LZ algorithm is the Lempel-Ziv Welch (LZW) algorithm
described by Terry A. Welch [36]. This algorithm was originally designed to
minimize the number of bits sent to and from disks, but it has been used in many

contexts, including GIF compression programs for images. The LZW compression
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algorithm is “reversible,” meaning that it does not lose any information — the
decoder is able to reconstruct the original message exactly.

The Lempel-Ziv algorithm converts variable-length strings of input symbols
into fixed length of predictable codes. The symbol strings are selected so that all
have nearly equal probability of occurrence. Consequently, strings of frequently
occurring symbols will contain more symbols than a string having infrequent sym-
bols. This form of compression is effective at exploiting character frequency re-
dundancy, character repetitions and high-usage pattern redundancy. However, it
is not effective on positional redundancy, i.e., a symbol repeating itself occasion-

ally [36].

Original data stream : 123 243 45 69 34 243 45 222 57 98 716 20 150 346 222 57

TS

Code table encoded : 123 258 69 34 258 259 98 716 20 150 346 259

Code no. | Transalation
0000 0
0001 1
0255 255
U 0258 243 45
N 0259 222 57
| . .
Q
0 . .
E 4096 XXX XXX

Figure 2.16. Illustration of LZW Compression

This type of algorithm is adaptive in the sense that it starts with an empty
table of symbol strings and builds the table during both the compression and
decompression process. These are one-pass procedures that require no prior in-

formation about the input data statistics, and the execution time is proportional
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to the length of the message. This adaptivity results in poor compression during
the initial portion of each message. As a result, the message must be long enough
for the procedure to build sufficient symbol frequency experience to achieve good
compression over the full message. On the other hand, most finite implementa-
tions of an adaptive algorithm lose the ability to adapt after a certain amount of
the message is processed. If the message is not homogenous and its redundancy
characteristics shift during the message, then compression efficiency declines if
the message length significantly exceeds the adaptive range of the compression
implementation.

An example of LZW compression is shown in Figure 2.16, where the codes are
assigned starting from 258, as 256 is reserved for indicating start of transmission
and 257 for end of transmission. We can see a string of symbols occurring fre-
quently. Such strings were replaced by the LZW codes, and the final codes and
their translations are also shown in the above figure. The LZW method achieves
compression by using codes 256 through 4095 to represent sequences of bytes. For
example, code 523 may represent the sequence of three bytes: 231 124 234. Each
time the compression algorithm encounters this sequence in the input file, code
523 is placed into the encoded file. During decompression, code 523 is translated
via the code table to recreate the true 3 byte sequence. The longer the sequence
assigned to a single code, and the more often the sequence is repeated, the higher
the compression achieved.

LZW is distinguished by its very simple logic, which yields relatively inexpen-
sive implementations. The real difficulty lies in the efficient management of the
code table. The brute force approach results in large memory requirements and

a slow program execution. Several tricks are used in commercial LZW programs
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to improve their performance. For instance, the memory problem arises because
it is not known beforehand how long each of the character strings for each code
will be. Most LZW programs handle this by taking advantage of the redundant
nature of the code table. The execution time of the compression algorithm is
limited by searching the code table to determine if a match is present. There
are many schemes for this type of code table management, and they can become
quite complicated. These quantization and compression schemes are applied to

the feedback data, i.e., generated by adaptive bit loading algorithms.

2.6 Chapter Summary

In this chapter the concepts of OFDM and MIMO-OFDM have been explained
in detail. We learned the basic concepts that make OFDM work and how to
overcome interference such as ISI and ICI with the use of a cyclic prefix. Also, a
solution to the channel estimation problem in MIMO-OFDM has been explained,
which makes it easy to apply the same bit loading algorithms to both OFDM and
MIMO-OFDM systems by decomposing the MIMO channel matrix into R parallel
independent channels. The wireless channel model considered in this work and
method of its generation has been shown. Also, provided are the examples of
different time-varying correlated channels that have been employed in this work.
Since quantization plays an important role in compressing the feedback, a brief
explanation of quantization techniques and the various compression algorithms
used in the simulation have been given. Run length encoding, Huffman coding and
LZW compression algorithms have been used in this work, and their performances
are compared based on the results achieved. Although, it is believed that Huffman

is guaranteed to achieve best results when statistics are known, however, under the

44



constraint that each source message is mapped to a unique codeword and that the
compressed text is the concatenation of the codewords for the source messages.
The Lempel-Ziv code is not designed for any particular source but for a large
class of sources. Surprisingly, for any fixed stationary and ergodic source, the
Lempel-Ziv algorithm performs just as well as if it was designed for that source.
Mainly for this reason, the Lempel-Ziv code is the most widely used technique
for lossless file compression. The comparison results obtained in this thesis would
prove how well these algorithms perform in case of the adaptive allocations. The
next chapter deals with the bit loading algorithms used for optimal bit loading in
adaptive multicarrier systems, and also, an analysis of the feedback data generated
by using these bit loading algorithms is given. It also explains the related research

work with regard to this thesis.

45



Chapter 3

Feedback in Adaptive OFDM and
MIMO-OFDM Systems

3.1 Feedback Data Analysis

This section explains in detail about the bit loading algorithms used in OFDM
and MIMO-OFDM systems, and the amount of feedback data generated in differ-
ent conditions. Also, the related research has been described where methods for

data reduction have been applied.

3.1.1 Adaptive Bit Allocation

The bit error probability for different OFDM subcarriers transmitted in time-
dispersive channels depends on the frequency domain channel transfer function.
The occurrence of bit errors is normally concentrated in a set of several faded
subcarriers, while the other subcarriers will experience relatively lower bit errors.
If the subcarriers that will exhibit high bit error probabilities in the OFDM symbol

to be transmitted can be identified and excluded from data transmission, the
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overall BER can be improved in exchange for a slight loss of system throughput.
This is the motivation behind adaptive modulation.

Channel
frequency Subcarrier

response\

-

s T

BER—> 404 0.01 103 0.2
Useful Faded Useful Faded
Subcarrier Subcarrier Subcarrier Subcarrier

Figure 3.1. Different Subcarriers BER Performance Illustration

As the frequency domain fading deteriorates the SNR of certain subcarriers,
but improves other subcarriers above the average SNR value, the potential loss
of throughput due to the exclusion of faded subcarriers can be mitigated by em-
ploying higher order modulation modes on the subcarriers exhibiting high SNR
values. Figure 3.1 illustrates the subcarriers performance. It can be seen that,
due to fading in the channel, the subcarrier BER is affected and the faded sub-
carriers are excluded if necessary, to keep the overall system performance in good
condition.

This estimation of future channel parameters for the purpose of adaptive mod-
ulation can be obtained by extrapolation of finite previous channel estimations,
which are acquired upon detecting each received OFDM symbol. Therefore, the
channel characteristics have to be slowly varying compared to the estimation in-
terval [39]. In the context of time-varying channels, there is a decorrelation time

associated with each frequency-selective channel instance. Thus, a new adapta-
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tion must be implemented each time the channel decorrelates. Adaptation of the
transmission parameters is based on the transmitters perception of the channel
conditions in the forthcoming time-slot.

Adapting the transmission technique to the channel conditions on a time-slot
by time-slot basis for serial modems in narrowband fading channels has been shown
to considerably improve the BER performance [40]. The Doppler fading rate of
the narrowband channel has a strong effect on the achievable system performance;
if the fading is rapid, then the prediction of the channel conditions for the next
transmit time-slot is inaccurate, and therefore, the wrong set of transmission
parameters may be chosen.

Adaptive modulation is only suitable for duplex communication between two
transceivers, since the transmission parameters have to be adapted using some
form of twoway transmission in order to allow channel measurements and sig-
nalling to take place. Transmission parameter adaptation is a response of the
transmitter to timevarying channel conditions. This is the purpose of feedforward
and feedback channels.

In order to efficiently react to the changes in channel quality, the following
steps have to be taken:

1. Channel quality estimation.
2. Choice of the appropriate parameters for the next transmission.

3. Signaling/blind detection of the employed parameters.
Channel Quality Estimation:

In order to appropriately select the transmission parameters to be employed for

the next transmission, a reliable estimation of the channel transfer function during
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the next active transmit time-slot is necessary. Since this knowledge can only be
gained by prediction from the estimation of past channel quality, the adaptive
system can only operate efficiently in an environment exhibiting relatively slowly
varying channel conditions.

For OFDM modems, the bit error probability in each subcarrier is determined
by the fluctuations of the channels’ instantaneous frequency domain channel trans-
fer function if no interference is present. The estimate of the channel transfer
function can be acquired by means of pilot tone based channel estimation. More
accurate measures of the channel transfer function can be gained by means of
decision directed or time domain training sequence based techniques [41]. The es-
timate of the channel transfer function does not take into account effects such as
cochannel or intersubcarrier interference. The delay between the channel quality
estimation and the actual transmission of the OFDM symbol in relation to the
maximal Doppler frequency of the channel is crucial with respect to the adaptive
systems performance.

This thesis employs closed loop adaptation where the receiver has to estimate
the channel quality and explicitly signal this perceived channel quality information
to the transmitter in the reverse link.

Choice of the Appropriate Parameters for the Next Transmission:

Based on the prediction of the channel conditions for the next time-slot, the
transmitter has to select the appropriate modulation modes for the subcarriers.

Different transmission parameters can be adapted to the anticipated channel
conditions, such as the modulation schemes and coding rates. Based on the esti-
mated frequency domain channel transfer function, spectral predistortion at the

transmitter of one or both communicating stations can be invoked, in order to
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partially or fully counteract the frequency selective fading of the timedispersive
channel. In addition to improving the systems BER performance in timedispersive
channels, spectral predistortion can be employed in order to perform all channel
estimation and equalization functions at only one of the two communicating du-
plex transceivers.

Signaling or Blind Detection of the Employed Parameters:

The receiver has to be informed as to which demodulator parameters to employ
for the received packet. This information can either be conveyed within the OFDM
symbol itself, at the cost of loss of effective data throughput, or the receiver can
attempt to estimate the parameters employed by the remote transmitter by means
of blind detection mechanisms [42].

Signaling plays an important role in adaptive systems and the range of sig-
naling options is open-loop and closed-loop signaling. If the channel quality es-
timation and parameter adaptation have been performed at the transmitter of a
particular link, based on open-loop adaptation, then the resulting set of parame-
ters has to be communicated to the receiver in order to successfully demodulate
the OFDM symbol. If parameter adaptation is done at the receiver itself using the
closedloop scenario, then the same amount of information has to be transmitted
to the transmitter in the reverse link. If this signaling information is corrupted,
then the receiver is generally unable to correctly decode the OFDM symbol corre-
sponding to the incorrect signalling information. Efficient and reliable signalling
techniques have to be employed for practical implementation of adaptive OFDM
systems.

Figure 3.2 from [6], shows an MCM system employing the adaptive loading al-

gorithm. As explained in earlier, this thesis considers the closed-loop adaptation.
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Figure 3.2. MCM Transmitter and Receiver With Adaptive Bit
Loading Algorithm

With the help of channel estimation, new allocation parameters for adaptation
are generated by the bit loading algorithm at the receiver and fed back to the
transmitter through reverse link. It can be seen from the Figure 3.2, how the high
speed input symbol stream is demultiplexed into N streams, each stream having
varying bit allocation. After applying the IFFT operation, a composite signal is
transmitted across the channel. The received signal is separated into N subcar-
riers using the FF'T operation, equalized, demodulated and multiplexed together
to form the estimate of actual input signal. The optimal adaptive transmission
scheme, which achieves the Shannon capacity for a fixed transmit power, is the

waterfilling distribution of power over the frequency-selective channel [43]. How-
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ever, while the waterfilling distribution will indeed yield the optimal solution, it is
difficult to compute and it tacitly assumes infinite granularity in the constellation
size, which is not practically realizable.

The adaptive loading technique employed in this thesis is an efficient technique
for achieving power and rate optimization based on knowledge of the subchannel
gains [44,45].

In the discrete bit loading algorithm of [44], we are given a set of IV increasing
convex functions e, (b) that represent the amount of energy necessary to transmit
b bits on subcarrier n at the desired probability of error using a given coding
scheme. We will assume e, (0) = 0.

The allocation addressed in this thesis is an energy minimization procedure

defined as:

min ) _e,b(n) (3.1)

b, € Z,b, >0,n=1,2,...,N, and (3.2)
N

st. Y b, =D (3.3)

n=1

To initialize the bit allocation, the scheme found in [45] was employed as shown
in Figure 3.3.

SNR GAP (') is a tuning parameter. Different values for I' yield different
Eb/No ratios for a given desired number of bits B to transmit. This is because
the I' directly impacts the energy table value calculations. Thus, tuning the I’
allows us to characterize the BER performance of the system.

Consider the k™" subcarrier. Given the channel gain and noise PSD, the energy
increment table will provide the incremental energies required for the subcarrier

data rate to transition from 0 bit to 1 bit, 1 bit to 2 bits, 2 bits to 3 bits, and so
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1. Compute the subchannel signal to noise ratios.

2. Compute the number of bits for the i** subchannel based on the formula:

~

b(i) = loga(1 + SNR(#)/T).

3. Round the value of b(i) down to b(i).

4. Restrict b(7) to take values 0, 1, 2, 4, 6 or 8 (correspond to available modulation
orders).

5. Compute the energy for the i subchannel based on the number of bits initially
assigned to it using the formula:

e,(b(i)) = (29 — 1)/SNR(i)/T.

6. Form a table of energy increments for each subchannel. For the i*" subchannel,

2b—1

Ae;(b) = e;j(b) —e;(b—1) = SNEG)T

Figure 3.3. Chow’s Bit Loading Algorithm

on. If only even numbered bits are to be used in the system, the energy increment
table has to be changed using a clever averaging technique [44].

For example, suppose the energy increment required for supporting an addi-
tional bit from 2 bits in the n'® subcarrier is 30 Joules, and that required for
supporting an additional bit from 3 bits is 40 Joules. Then, reassign the energy
increment values to the same value, namely, the average of the two. In this case,
that value is 35 Joules. This assures us that if a subcarrier is allocated a single
bit for going from 2 bits to 3 bits, then in the next iteration the same minimum
amount of additional energy required to support another bit implies that the same
subcarrier will be allocated the next bit as well.

The same averaging procedure is repeated for all other possible bit transitions.

The only exception that might arise is when the algorithm terminates, not having
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Initialize:
B'=0

Forn=1toN

B'=B'+b(n)

no
n= argrﬁax15j5N m = argminqsnsN
Aej(bj) Aei(bi + 1)
l l
B=B-1 B=B+1
b(n) = b(n) - 1 b(n) = b(n) + 1

Figure 3.4. Flowchart Describing the Campello’s Optimization Al-
gorithm of Bit Allocation
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assigned the final bit to even out the total number of bits on that subchannel. In
order to resolve this issue, we used an algorithm proposed in [44], which will be
discussed in the detail later in this section.

Given the initial bit allocation, the algorithm shown in Figure 3.4 optimizes the
bit allocation, which is nothing but the B-tightness algorithm [44]. B-tightness
simply guarantees that the fixed rate constraint in the discrete loading problem is
met. A b]\ift distribution b with granularity 5 and total bits per symbol b is B-tight
if b = an. The B-Tighten algorithm is the data rate preserving algorithm.
Given arlgflbit distribution, it iteratively subtracts a (8 bits when the total number
of bits is greater than the limit and adds ( bits when the total bit distribution
exceeds the limit. This algorithm has a very simple stopping criterion. Combining
the algorithms outlined, one can find the optimum solution to discrete bit loading
problems by first efficientizing and then tightening a candidate solution. The
speed of the convergence depends on the initial bit distribution. Since there is a
restriction on the number of bits that each subcarrier can carry, the algorithms
have been modified accordingly.

Finally, in order to deal with a single violated bit constraint, we employ the
following algorithm shown in Figure 3.5 [44].

The reason we have this constraint is that all the other subchannels will have
2,4, 6, or 8 bits and allocating a single bit to them will violate the bit constraint.
With these three algorithms, we have a complete characterization of the bit loading
procedure for a given frequency selective channel.

To demonstrate the bit and energy allocations, an instance of the channel was
generated and the optimal bit allocation was found. Figure 3.6 shows the channel

frequency response, the allocation of bits to each tone, and the corresponding
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. Check that the input bit allocation contains at most one violation of the bit
constraint.

. If there is a single violation, (say it is in subchannel v), find the bit from the
current bit allocation having the largest incremental energy that can be used
to fill up subchannel v. Let,

E1 = Ae, (b(v)) — Ae;(b(i)).

. Find the bit that will cost the least to increment in the other subchannels
which have been allocated either 0 or 1 bit only. Let,

B2 = Ae;(b(j) + 1) — Aey (b(v)).

. Perform the change corresponding to the smallest of E1 and E2.

Figure 3.5. Algorithm to Deal With Single Violated Bit Constraint
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energy on each tone.

So, from Figure 3.6 we can see that the size of bit and energy allocations is
directly proportional to number of subcarriers N. For transmitting the feedback
data which is a combination of bit and energy allocation values, these values are
converted to binary form, and total size would be approximately 2 x N x (b + e),
where b represents the number of binary bits required to represent bit allocation
values, and e represents the number of binary bits required to represent quantized

energy allocation values.

3.2 Related Research

Large amounts of channel state information (CSI) feedback and signalling
overhead can be a serious problem in adaptive OFDM and MIMO systems. Recent
researchers have payed much attention to this problem.

In the context of bit loading for dynamic adaptation for point-to-point connec-
tions, two related studies have been published [14,46]. Reference [46], aimed at
highlighting two major issues dealing adaptive modulation based on bit loading
algorithms. The first one is correlation due to Doppler in order to reduce the
bit loading complexity, and the second is the signalling information related to
the bit mapping structure. By applying the LZW source coding algorithm, the
researchers could achieve reasonable compression.

Reference [14] addressed multicarrier systems whose link adaptation is carried
out by means of bit loading algorithms. The associated signalling load increases
quickly with the number of subcarriers, modulation schemes and users. These bit
loading vectors are considered a priori known at the receiver. An adaptive loss-less

compression system for an optimized compression performance and complexity is
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proposed, based on run length encoding which was shown to be more suitable
than the LZW algorithm. However, these studies do not consider the principal
performance impact due to the signaling overhead. Instead, they focus on suitable
compression schemes.

Reference [47] proposed using one bit channel state feedback for each sub-
carrier, and this one bit is used to indicate the subcarrier selection or thresh-
old based power allocation, e.g., 1 for one power level and 0 for another. This
method provides very limited adaptive capability and works well for excluding
deep faded subcarriers. As compared to the subcarrier-to-subcarrier adaptation
mode, i.e. each subcarrier with one independent adaptation mode and signalling
loop, grouping is proved to be effective in reducing transceiver complexity, CSI
feedback and signalling overhead, since the same adaptive mode will be used in all
member subcarriers of a group instead of one mode for one subcarrier. Besides,
only minor modifications of traditional adaptive techniques need to be done for
transmissions based on this kind of feedback.

Reference [48] has proposed a grouping adaptive modulation OFDM system,
which separates subcarriers into groups for the same modulation. Reference [49]
proposed to process subband bit and power loading based on grouping the subcar-
riers according to the ascending order of subcarrier channel gains. Reference [50]
focused on practical feedback and adaptive signalling designs of OFDM systems.
Based on the investigations of the characteristics of frequency-selective channels,
the Dynamic Neighboring Subcarrier Grouping Scheme (DNSGS) is proposed to
cut down the feedback and adaptive signalling overhead, and to simplify the im-
plementation of OFDM adaptive techniques. The simulation results show that

DNSGS is flexible enough for different kinds of communication environments, and
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can effectively cut down the feedback and signalling overhead with rather limited
performance penalty. Besides, DNSGS outperforms the existing grouping schemes
greatly.

However, these methods either do not consider the characteristics of transmis-

sion channels or do not effectively cut down the adaptive signalling overhead.

3.3 Chapter Summary

In this chapter, bit loading algorithms employed in this work are explained in
detail. Also, the result of applying the algorithms to our adaptive OFDM system
and feedback data, i.e., bit and energy allocations generated based on the channel
conditions, has been shown. An analysis of the average size of feedback data be-
ing generated in our simulation system has also been explained in detail. A brief
explanation of the related research work has also been given in this chapter. Now,
our system is effectively generating bit and energy allocations using the bit load-
ing algorithms for time-varying channel conditions. The next chapter deals with
the feedback reduction scheme employed in this work, which exploits the time-
correlation properties and helps in reducing the number of feedback transmissions.
The results explaining the compression achieved by using compression algorithms

along with the feedback reduction scheme have been explained in detail.
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Chapter 4

Feedback Compression in
Adaptive OFDM and
MIMO-OFDM Systems

This section explains the feedback reduction scheme, the methods employed
for compression of the feedback data, and the results achieved. Also, the relation
between the number of quantization levels and the reduction and compression

ratio has been explained.

4.1 Feedback Reduction Scheme

This section talks in detail about the approach used for reducing the feedback
data in adaptive wireless multicarrier systems. In any general adaptive OFDM and
MIMO-OFDM system, a new set of allocation parameters are fed back for each
time-varying channel instance so that the system adapts effectively to the time-

varying channel condition. Thus, the number of times feedback is transmitted
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depends on the length of the time-varying channel and on the time correlation
between each channel instance. The main motivation of this thesis is to reduce
the number of times the feedback data has to be transmitted, and to achieve
a reasonable compression using suitable compression schemes. As the feedback
transmissions also vary depending on the type of time-varying channel, several
channel correlations, such as slow varying to very fast varying channels have been
considered in this thesis. For reducing the number of feedback transmissions, we
have employed a scheme as described.

Figure 4.1, is a general schematic of the feedback reduction scheme. As shown,
the system starts with initial bit and energy allocation values for the first channel
instance. Then, the data bits are spread onto the N = 256 subcarriers using
modulation techniques and [FFT. Then, the data pass through the time-varying
Rayleigh fading channel, which is a combination of several channel instances hav-
ing certain correlation with each other, and the data are gathered back at the
receiver using FFT and demodulation techniques. Here, the channel conditions
are estimated and the system performance is measured by calculating the individ-

ual BER on each channel instance.

bits Modulation » IFFT cP
Tfeedback
. i Channel \
Bit Loading |« Estimation
Channel
BER Threshold
Check 1
Dits Demodulation =7

Figure 4.1. General OFDM Schematic Employing Feedback Reduc-
tion Scheme
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In adaptive OFDM and MIMO systems, as soon as the channel conditions
are estimated, a new set of allocation values are generated and fed back to the
transmitter to adapt according to the channel conditions. Suppose there are C
time varying channel instances; for each channel instance the feedback has to be
transmitted, so the total feedback bits is C'« 2% N x (b + e), where b and e rep-
resent the number of binary bits required to represent bit and quantized energy
allocations which would obviously occupy a reasonable amount of the bandwidth.
This feedback is transmitted even when the channel is slowly varying, where in
such cases, the allocation values have only very slight differences with each other.
This approach concentrates on taking advantage of such situations and reducing
the number of feedback transmissions of the allocations. The transmitter can
be designed in such a way that if it receives any allocations through feedback,
it employs them for the next transmission or it continues transmitting with the
old allocation values. The threshold check box in Figure 4.1 checks if the mean
BER value has crossed the threshold value and decides on providing the trans-
mitter with a new set of bit and energy allocations or letting it continue with old
allocation values.

Shown in Figure 4.2 is the flowchart describing the simulation setup of feedback
reduction scheme in step-by-step manner. First a time-varying channel of length
100 instances is generated with a particular channel correlation value as described
in Chapter 2. An initial bit and energy allocation values to be employed in the
transmission are given by Chow and Campello’s algorithm as described in Chapter
3. The OFDM system starts transmitting the data with these initial allocation
values. At the receiver end, the data is received and the BER of each channel

instance is calculated.
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Generate the time-varying channel of length of 100
instances with 0; (where i = 1 to 99%) correlation.

v
Provide the TX with initial bit and energy allocations
generated using Chow and Campello Algorithms.

<
<«

\4

Transmit the OFDM symbols with initial allocations or
allocations feedback by RX.

\4

Calculate the BER (%) for each channel instance.

\4

Calculate mean BER () over a window size (w =10).

No

If P> Pp=10°

Yes

Generate new bit and energy allocation parameters to
be feedback to TX for next transmission.

Figure 4.2. Description of the Feedback Reduction Scheme for Feed-
back Transmission Reduction in Adaptive Multicarrier Systems With
Channel Correlations varying from 1% to 99%.
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After calculating the BER P, for each channel instance, the mean of BER (P)
values over a length of user defined window size (w) is compared to the threshold
value Pr = 107°. If the value of P crosses the threshold value Pp, then a new
set of bit and energy allocations is generated and fed back to the transmitter;
this new loading information is used for the next transmission. As long as P
stays below the threshold value, the transmitter uses only old allocation values
for transmission and there is no need for feedback transmission. So, the number
of feedback transmissions is reduced. This approach saves significant amount
of bandwidth when employed in slowly time-varying channels, thus being able
to concentrate on sending more data forward rather than wasting resources on
feedback. How often we need to reconfigure the allocation values and feed back,
depends on the channel correlations.

For the MIMO-OFDM case, as soon as time-varying channel is generated, each
subchannel is decomposed into the frequency domain. The parallel decomposition
of the channel is obtained by defining a transformation on the channel input
and output through transmitter precoding and receiver shaping. The transmitter
precoding and receiver shaping transform the MIMO channel into Ry (rank of
channel gain matrix H) parallel single-input single-output (SISO) channels. Based
on the number of transmitter and receivers employed (2 and 4 in our case), the
system is given a set of initial bit and energy allocations to start the transmission.
The same procedure described in the above paragraph is followed and the number
of feedback transmissions for MIMO-OFDM 2x2 and MIMO-OFDM 4x4 are
noted basing on the threshold check of BER values.

Whenever the P crosses the threshold and new allocations are generated, a

parameter, number of feedback transmissions, is incremented and this value tells
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us the number of times feedback has been sent for this particular channel correla-
tion. This is done for several channel correlation values, ranging from uncorrelated
(1%) to highly correlated (99%) and the reduction ratio achieved by the feedback
reduction scheme is compared to the unreduced feedback data. The results ob-
tained describing the number of feedback transmissions and the reduced feedback

ratio for OFDM and MIMO-OFDM are shown in the results section.

Start

A new set of allocation parameters are generated at the
RX to be feedback to TX, when P >Pr.

\4

Energy allocation values are quantized using uniform
guantization.

Lossless compression schemes such as Huffman, RLE
and LZW are applied on bit and energy allocations.

A 4

Compression ratios and Average BER values are
calculated for each correlation value.

Stop

Figure 4.3. Description of Feedback Data Compression Methods
Employed to Compress the Reduced Feedback Data in Adaptive Mul-
ticarrier Systems With Channel Correlations varying from 1% to 99%.
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The feedback reduction scheme focuses on reducing the number of feedback
transmissions, and the remaining part of this thesis deals with compression of this
reduced feedback data using lossless compression algorithms and their compar-
isons. The method employed to compress the reduced feedback data effectively is
shown in a step-by-step manner in Figure 4.3.

Since this part of the thesis becomes important only when P has crossed the
threshold value Pr and new allocations have been configured based on the channel
condition and fed back, the description in the flowchart begins at that stage. The
feedback data, as we know, is a combination of bits and energy allocation values.
The energy allocation values are to be quantized before transmitting the feedback
data, and this thesis employed a uniform quantization technique for quantization.
OFDM and MIMO-OFDM system performance has been observed for various
quantization levels.

Various lossless compression algorithms have been applied on the bit and quan-
tized energy allocations to achieve compression. The most suitable compression
algorithms that could be used in this case were Huffman coding, Run Length En-
coding and LZW as explained in Chapter 2. The compressed feedback bits were
fed back to the transmitter whenever the threshold check was positive. These bits
are decompressed at the transmitter and the information is used for adaptively
modulating the symbols for the next transmission. Also, the mean average BER
of the systems for each type of channel correlation has been calculated for dif-
ferent quantization levels in order to understand the effect of lower quantization
levels on the system performance. The compression ratios achieved using different
compression schemes and the relation between mean average BER of the system

and quantization levels are explained in the results section.
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4.2 Simulation Results and Comparison

4.2.1 Simulation Parameters

All the simulations used 51200 bits, assuming 1024 bits transmitted in each
of 50 transmissions per single channel instance. There are a total of 100 chan-
nel instances, and the number of symbols on each channel instance would vary
depending on the adaptive allocations. So, the total number of transmitted bits
over all the 100 time-varying channel instances is equal to 5120000. To ensure
a fair comparison between OFDM and MIMO-OFDM systems, the total num-
ber of bits per single channel instance was kept constant. Generally, for a single
transmission, as we can see from Figure 3.6, there would be N values each of bit
and quantized energy allocations to be fed back proportional to the number of
subcarriers N=256. Since we are considering 100 time-varying channels, there
are 100*512 values to be converted to binary digits before transmission. As the
number of subcarriers or as the number of channel time instances to be considered
increases, the feedback data size automatically increases to a higher value.

The modulation scheme was chosen from the set of binary phase shift keying
(BPSK), quadrature phase shift keying (QPSK), 16-level quadrature amplitude
modulation (16-QAM), 64-QAM, 256-QAM, as well as “No transmission,” for
which no signal was transmitted. These modulation schemes are denoted by M,,,
where m € (0,1,2,4,6,8) is the number of data bits associated with a subcarrier.
Only six different square MQAM signal constellations are used; this scheme is
expected to perform with an efficiency very close to that obtained by using un-
restricted constellations [18]. Since we require our system to have a maximum of
8 bits, the energy increment required to go from 8 bits to 9 bits is set to a very

high value.

67



Figure 4.4 is an example of the feedback data size of a normal OFDM and
MIMO-OFDM systems. Feedback bits in a system for a particular channel cor-
relation is defined as: number of channel instances x N X binary representation
of bit and energy allocations x number of antennas employed. The feedback
data size shown in the figure is defined as the feedback bits divided by the total
transmitted bits, where the total transmitted bits as described in the simulation
parameters, remained constant for all systems. As explained earlier, each channel

instance is Rayleigh frequency-selective fading channel.

Unreduced Feedback Size Ratio (%)
w

1| —e— OFDM .
—s— MIMO 2x2
—8— MIMO 4x4

0 20 40 60 80 100
% of Channel Correlation

Figure 4.4. Feedback Size Ratio of a Normal OFDM and MIMO-
OFDM Systems for Different Channel Correlations. Total Transmitted
Bits = 5120000.
We have considered 10 different channel correlation values and calculated the

feedback data size when no special techniques are applied to the system. We can

see that the feedback size is high when the channel is varying faster, and is low

68



when its slowly varying channel. So, feedback size depends on the channel corre-
lation and how fast it is varying. The trend observed in the graph is mainly due to
the high energy allocation values for lower channel correlations. All the bit allo-
cation values are represented by 3 binary bits and this binary bits are constant in
all cases. When the system has a time-varying channel with lower channel correla-
tion, there is a high fluctuation in the bit allocation information. Larger changes
require higher energies for transmission, making energy allocation values higher.
Thus, the total number of binary bits required for feedback data transmission is
also high, as energy allocation value is the deciding factor in feedback data size.
Varying quantization levels have been used to represent different ranges of the
energy values to compare it with the performance of fixed quantization values.
For higher channel correlations, the changes in the bit allocation values will be
lower. Thus, the energy required to transmit these changes will also be low and
the feedback data size is lower. We can see a trend when the correlation value is
higher, i.e., as the channel becomes a slow time-varying channel, the maximum
value of energy allocation decreases, and the total number of bits, thus results in
a falling curve.

The OFDM feedback data size curve in Figure 4.4 starts to decrease only after
70% channel correlation, which implies that the system had the same maximum
value of energy allocation in those channel correlations. After 70% channel cor-
relation, the energy allocation values decreased, which made the curve decrease
gradually. MIMO-OFDM systems experienced decreasing energy values for every
other channel correlation which made the curve look like steps. MIMO-OFDM
4x4 had a lower feedback transmission size when compared to other two systems.

The reduced feedback data achieved using the feedback reduction scheme and
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the compressed feedback data achieved using compression algorithms have been

compared with this unreduced feedback data.

4.2.2 Results

This section explains in detail all the results achieved for OFDM and MIMO-
OFDM systems using the feedback reduction scheme and various compression
algorithms. The MATLAB coding for this simulation has been written in such a

way that the SISO case occurs as a special case of a MIMO system.

4.2.2.1 Feedback Reduction Scheme Results in OFDM and MIMO-
OFDM Systems

When the feedback reduction scheme is applied to the OFDM and MIMO-
OFDM systems as described, there is a constant check on the BER values of
the system for each channel instance. The system performs well with the initial
allocations, but as the channel slowly varies, the initial allocations are not effective
past certain point. The BER values of the system worsen, which enables the
threshold check to allow a new set of allocation parameters to be fed back to
transmitter. When the time channel variation is fast, the initial allocations don’t
adapt to the conditions and therefore worsen the system performance in terms
of BER, thus possibly requiring a greater number of feedback transmissions than
slow varying channels. The effects of the feedback reduction scheme on the BER
values of OFDM and MIMO-OFDM system are shown in the next few figures
which explain the system performance when the channel is highly correlated,
i.e., very slow varying. Figure 4.5 is a BER curve of an OFDM system when

SNR=15dB and the channel correlation is 99%. These BER values have been
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calculated for each channel instance. We can see that, as the same old allocations
are being used initially, slowly the BER values rise and reach 107°, as a result,
immediately the allocations are reconfigured and new set of values are fed back
to the transmitter. So, the BER value immediately drops and then starts to rise
again after transmission through certain channel instances. In this case we had
to transmit the feedback data only 2 times instead of 100 times as in the general

case.
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Figure 4.5. BER of Individual Channel Instances of an OFDM Sys-
tem for 99% Correlated Channel at SNR=15dB.

Figures 4.6 and 4.7 are the BER curves of individual channel instances of
MIMO-OFDM systems with 2x2 and 4x4 transmitter/receiver configurations.
MIMO-OFDM systems perform in the same way as an OFDM system, crossing
the threshold only 2-3 times. These crossings of thresholds, which is nothing
but the number of feedback transmissions, have been calculated for OFDM and

MIMO-OFDM systems and shown in Figure 4.8 where we can see how many times
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Figure 4.6. BER of Individual Channel Instances of a MIMO 2x2
System for 99% Correlated Channel at SNR=15dB.
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Figure 4.7. BER of Individual Channel Instances of a MIMO 4x4
System for 99% Correlated Channel at SNR=15dB.
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a system has transmitted the feedback data for a particular channel correlation

value.
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Figure 4.8. Reduction in Number of Feedback Transmissions
Achieved Using Feedback Reduction Scheme in OFDM and MIMO-
OFDM Systems.

Figure 4.8 shows the reduced number of feedback transmissions achieved us-
ing the feedback reduction scheme in OFDM and MIMO-OFDM systems. The
threshold check on the BER is done only after the data has passed through 10
time-varying channel instances, since that is the user defined window size w.
When the channel has high correlation, initial allocations being used for the next
10 transmissions affects the error rate negligibly. As described earlier, we had to
transmit the feedback only 3 times for 99% channel correlation, which explains
the lower feedback transmissions for higher channel correlations. When the chan-

nel has lower channel correlation, the error rate is effected badly, as previous
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allocation information is not suitable for newer transmissions. So, the number
of feedback transmissions gradually rise as the channel correlation decreases. We
can observe that the highest number of times the feedback had to be transmitted
in an OFDM system was 64 for a completely uncorrelated time-varying channel
and only 3 times for a highly correlated channel. MIMO-OFDM 2x2 and MIMO-
OFDM 4x4 system had same highest number of feedback transmissions, 28 and
least, 3. We can clearly see that the MIMO-OFDM systems had a lower number of
feedback transmissions compared to OFDM as they are more robust and perform
better. We would have been required to send feedback data 100 times for every
correlation value, if we did not use the feedback reduction scheme. All these re-
sults clearly demonstrate the advantages of this scheme. Results shown here have
been simulated using varying bits per sample for representing quantization levels
of energy allocations compared to the performance of fixed quantization levels.
Figure 4.9 shows the relation between the average BER values over all the
subcarriers and different channel correlation values of OFDM and MIMO-OFDM
systems. We can see that while using the feedback reduction scheme, the average
BER values are less for higher channel correlation values, but as the correlation
between channel instances decreases, the average BER tends to rise. This is
because of the system using old allocation values until the BER values of individual
channel instances over a window size length cross the threshold. But as the
channel correlation decreases, there is a need for providing the transmitter with
newer allocations with greater speeds. But in our case there is a delay occurring
in sending the feedback to satisfy the threshold condition as described in the
reduction scheme, and this is the reason the average BER values of the overall

system keep rising with the decrease of channel correlation values. As seen in the
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Figure 4.9. Average BER Value Curves of OFDM and MIMO-
OFDM Systems for Various Channel Correlations.

figure, the MIMO-OFDM 4 x4 performs better than the other two cases considered
here.

Shown in Figure 4.10 is the graph of reduced feedback data size achieved by
using the feedback reduction scheme in OFDM and MIMO-OFDM systems. Also
shown in the same figure in dotted lines is the case of unreduced feedback size
i.e., Figure 4.4 for a comparison purpose. Here the feedback data is defined as:
number of feedback transmissions x N x binary representation of bit and energy
allocations x number of antennas employed. So the number of feedback trans-
missions decide the size of feedback data when the reduction scheme is applied to
the system. As explained, the total number of transmitted bits over all the 100
time-varying channel instances is constant equal to 5120000. The OFDM system

could achieve an average reduction ratio of 66.52% over all channel correlations.
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Figure 4.10. Reduction in Feedback Size Ratio Achieved Using the
Feedback Reduction Scheme in OFDM and MIMO-OFDM Systems.
Solid Lines for Reduced Feedback and Dotted Lines for Unreduced
Feedback. Total Transmitted Bits = 5120000.

It could achieve a 97% reduction in the feedback data size for high channel corre-
lation when compared to the unreduced case. This makes sense when we compare
the graphs of unreduced and reduced cases. The number of feedback transmis-
sions in the unreduced case was 100 and only 3 in the reduced case, which made
the system achieve 97% reduction in the feedback data, the least reduction being
36% for no channel correlation. MIMO-OFDM 2x2 achieved an average reduc-
tion of 87.29% by using this feedback reduction scheme, the highest reduction
being 97% for high channel correlation and the least being 73% for no channel
correlation. MIMO-OFDM 4x4 achieved an average reduction of 87.44% using
the reduction scheme, the highest reduction ratio being 97% for high channel cor-

relation and the least being 74% for no channel correlation. Both configurations
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of MIMO-OFDM systems achieve an almost equal feedback reduction ratio while
outperforming the OFDM system by achieving 24% more reduction. By applying
this reduction scheme to the OFDM and MIMO-OFDM systems, a reasonable
reduction in the number of feedback transmissions and thus the feedback data
size has been achieved.

In this section we have shown various system performance enhancements achieved
by employing the feedback reduction scheme. The results clearly show the effec-
tiveness of the scheme in taking advantage of time-correlation present in the wire-
less channels and helping systems reduce the number of feedback transmissions
and the feedback data. The next section deals with the results obtained when dif-

ferent lossless compression algorithms are applied to this reduced feedback data.

4.2.2.2 Quantization and Compression Results in OFDM and MIMO-
OFDM Systems

One of the more common and simpler examples of lossless compressions, run
length encoding, is applied first to the feedback data achieved after applying the
reduced feedback scheme to the system. Figure 4.11 shows the compression ratio
achieved from the reduced feedback data in a OFDM and MIMO-OFDM system
using Run Length Encoding (RLE) compression. Shown in the same figure in
dotted lines is the uncompressed case to which the comparison has been done and
compression ratios have been calculated. Compression ratio is defined as the feed-
back data in the compressed case divided by the feedback data in the unreduced
case. Since our main aim in this thesis is to talk about how much the unreduced
feedback can be compressed, the comparison has been done with the unreduced

case rather than reduced case. As explained, the total number of transmitted bits
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Figure 4.11. Compression of Feedback Size Ratio Achieved in
OFDM and MIMO-OFDM Systems Using Run Length Coding. Solid
Lines for Compressed Feedback and Dotted Lines for Unreduced Feed-
back. Total Transmitted Bits = 5120000.

over all the 100 time-varying channel instances is constant and equal to 5120000
for all the cases where compression algorithms have been applied. RLE compres-
sion as described replaces any repetitions of the same bit or byte that occur in a
sequence of data with a single occurrence of the bit/byte and a run count. Our
bit allocations have a lot of redundancy, as there are only six modulation schemes
being considered, and also there is good amount of redundancy introduced into
the energy allocations due to the quantization. When the RLE compression al-
gorithm was applied to the reduced feedback data achieved from the feedback
reduction scheme, we could achieve an average compression ratio of 75% in the
OFDM system, 90.3% in the MIMO-OFDM 2x2 and 90.7% in the MIMO-OFDM

4x4 system. The OFDM system could achieve an individual compression ratio
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of 98% for highly correlated channel and 51% compression for uncorrelated chan-
nel. MIMO-OFDM 2x2 could achieve an individual compression of 98% for high
correlated channel and 80% for uncorrelated channel. MIMO-OFDM 4x4 could
achieve an individual compression of 98% for highly correlated channel and 82%
for uncorrelated channel. MIMO-OFDM 2x2 and MIMO-OFDM 4 x4 performed
equally and they both achieved 15% more compression than the OFDM system
when RLE compression was considered. RLE, even though being such a sim-
ple lossless compression algorithm, when combined with the feedback reduction

scheme, could achieve a significant compression on the feedback data.
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Figure 4.12. Compression of Feedback Size Ratio Achieved in
OFDM and MIMO-OFDM Systems Using Huffman Coding. Solid
Lines for Compressed Feedback and Dotted Lines for Unreduced Feed-
back. Total Transmitted Bits = 5120000.

Huffman compression, also known as Huffman encoding, is one of many and

one of the most famous compression techniques in use today. The Huffman com-

79



pression algorithm assumes data files consist of some symbol values that occur
more frequently than other symbol values in the same file. The most common
characters in the input file (i.e., characters with higher probabilities) are assigned
short binary codes. Least common characters (i.e., with lower probabilities) are
assigned longer binary codes. Shown are the results achieved when the Huffman
coding is applied to the feedback data. Figure 4.12 shows the compression ratios
achieved on the reduced feedback data in OFDM and MIMO-OFDM systems us-
ing Huffman coding. Shown in the same figure in dotted lines is the uncompressed
case to which the comparison has been done and compression ratios have been
calculated. When Huffman coding was applied to the reduced feedback data, a
compression ratio of 85.5% was achieved in the OFDM system, 94.7% in MIMO-
OFDM 2x2 and 94.6% in MIMO-OFDM 4x4 systems. OFDM could achieve
a compression of 98% for highly correlated channel and 61% for uncorrelated
channel. MIMO-OFDM 2x2 could achieve a compression of 98% for highly cor-
related channel and 88% for uncorrelated channel and MIMO-OFDM 4x4 could
achieve a compression of 98% for high channel correlation, 87% for no channel
correlation. MIMO-OFDM 2x2 and MIMO-OFDM 4 x4 performed equally and
they both achieved 9% more compression than OFDM when Huffman coding was
considered. Huffman coding when employed along with the feedback reduction
scheme, could achieve a very high compression ratio and it outperformed the RLE
compression algorithm in OFDM by 10% more compression and in MIMO-OFDM
systems by 4% more compression. This implied that the feedback data consisted
of a greater number of frequently occurring symbols which helped Huffman coding
perform better than RLE. When the channel correlation is high, the individual

compression ratios achieved by both RLE and Huffman remain the same but the
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when the channel correlation is low, Huffman coding could achieve higher compres-
sion ratios since this is based on probability of occupancy rather than repetition

in the sequence.
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Figure 4.13. Compression of Feedback Size Ratio Achieved in
OFDM and MIMO-OFDM Systems Using LZW Coding. Solid Lines
for Compressed Feedback and Dotted Lines for Unreduced Feedback.
Total Transmitted Bits = 5120000.

Finally, the LZW compression algorithm was applied to the reduced feed-
back obtained after applying the feedback reduction scheme to the systems. The
Lempel-Ziv algorithm converts variable-length strings of input symbols into fixed
length predictable codes. The symbol strings are selected so that all have almost
equal probability of occurrence. Consequently, strings of frequently occurring
symbols will contain more symbols than a string having infrequent symbols. So if

there are a series of symbols repeating themselves very frequently in the feedback

data, LZW can take advantage and achieve good compression ratios. Figure 4.13
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shows the compression ratios achieved on the reduced feedback data in OFDM
and MIMO-OFDM systems using LZW compression. Shown in the same figure in
dotted lines is the uncompressed case to which the comparison has been done and
compression ratios have been calculated. LZW coding, when applied to the re-
duced feedback data, achieved an average compression ratio of 83.8% in the OFDM
system, 91.8% in MIMO 2x2 and 92.3% in MIMO 4x4 over all channel correla-
tions. OFDM achieved a compression ratio of 98% for high channel correlation
and 66% for no channel correlation. MIMO-OFDM 2x2 achieved a compression
of 98% for high channel correlation and 84% for no channel correlation. MIMO-
OFDM 4x4 achieved a compression of 98% for high channel correlation and 86%
for no channel correlation. MIMO-OFDM 4 x4 and MIMO-OFDM 2x2 achieved
almost equal compression while outperforming OFDM by 9% more compression.
From the results achieved we can see that LZW performed better than RLE com-
pression and a little lower than Huffman coding. Huffman coding outperformed
RLE and LZW in the OFDM system on average by 10% and 2%, and in MIMO-
OFDM systems by 4% and 3%. When coming into high correlation channels,
the compression ratios achieved by all three lossless compression algorithms re-
main the same. When the channel correlation was low, LZW could achieve higher
compression than RLE, but less compression compared to Huffman coding. So,
from all the results, we can say that assigning codes based on the probability of
occurrence of symbols has proven to be the best compression possible in OFDM
and MIMO-OFDM systems. When the channel correlation is high, any of the
above compression algorithms would achieve significant compression, but when
the channel correlation is low, the obvious choice of compression algorithm would

be Huffman coding.
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All the above simulations have been done to understand the performance of
quantization levels with varying bits per sample. To understand the relation
between different fixed quantization levels and the performance of OFDM and
MIMO-OFDM systems and their compression ratios, all the above simulations
have also been simulated with different quantization levels varying from 6 bits per
sample to 1 bit per sample to be used for representing quantized energy allocation
values. As explained, the total number of transmitted bits over all the 100 time-
varying channel instances is constant and equal to 5120000 for all the cases. The

results are shown below.
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Figure 4.14. Mean of Average BER Curves for Various Energy Al-
location Quantization Levels in OFDM and MIMO-OFDM Systems.

The performance of the system in terms of BER values as the quantization
levels decreased is discussed here. Shown in Figure 4.14 is the relation between

the mean average BER values achieved with varied energy allocation quantization
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levels for various channel correlation values in OFDM and MIMO-OFDM systems.
The x-axis values shown in the figure stand for the number of bits per sample
used to represent quantization levels. Simulations have been done for bits per
sample ranging from 6 to 1. As the quantization levels decreased, the BER values
gradually increased in all the systems. As the quantization levels decrease, the
quality of feedback is affected, and since this feedback is used for bit loading, it
results in an increase in the error rate of the system. From the results, we can see
that the advisable number of bits per sample to be used would be no less than 4 bits
per sample, as below 4 bits per sample, the BER values of the system go beyond
the threshold value and it would be a trade-off decision in choosing the number
of quantization levels in terms of system performance. So, the performance of
the OFDM and MIMO-OFDM systems in terms of BER values would meet the
desired target if the number of bits per sample used were greater than 4 bits per
sample.

The feedback reduction scheme has also been applied to systems employing
various quantization levels. The feedback data size achieved for various quantiza-
tion levels is discussed here. Figure 4.15 shows the effect of decreasing quantization
levels on the data achieved using the feedback reduction scheme. As the bits per
sample ranging from a maximum of 6 to a least value of 1 are used, the reduction
ratios decreased for all the systems. As the quantization levels are decreased, due
to bad feedback quality the system performance in terms of BER worsens. This
in turn increases the number of feedback transmissions and so the size of feedback
data. This leads finally, to a decrease in the feedback data size being achieved
by the feedback reduction scheme. The OFDM system showed a decrease in the
reduction ratio from 67% to 50%, whereas MIMO-OFDM 2x2 and MIMO-OFDM
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4x4 showed significantly less decrement from 87% and 89% to 79% and 80%. So,
as the quantization levels decrease, the feedback reduction scheme becomes less
efficient, especially in the OFDM case than in the MIMO-OFDM case. Since the
quantization levels will be chosen based on the required BER target, if it would
be more than 4 bits per sample it would still yield a reasonable reduction in the
feedback data size.

As the quantization levels decrease, greater number of values fall into the same
quantization levels, which in turn increases the repetition of the data, allowing
the compression algorithms to achieve more and more compression. Shown are
the compression ratios achieved when the compression algorithms discussed ear-

lier were applied to the system employing various quantization levels. Figure 4.16
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Figure 4.16. Compressed Feedback Size (RLE) Ratios for Various
Energy Allocation Quantization Levels in OFDM and MIMO-OFDM
Systems.

shows the compression ratios achieved in OFDM and MIMO-OFDM systems us-
ing RLE compression as quantization levels decrease. Once again OFDM shows
the highest increase in the compression ratio as the quantization levels decrease
beginning from 76% and continuing to 97%, whereas MIMO-OFDM 2x2 and
MIMO-OFDM 4x4 start from 90% and rise to 95% and 98%. The MIMO-OFDM
4x4 system achieves the highest compression ratio in the case of RLE compression
for least number of quantization levels used. There was a significant increase in
the compression ratios when the number of quantization levels decreased.
Huffman coding outperformed the other algorithms when the number of quan-
tization levels was 6 bits per sample. Shown here are the results of applying Huff-

man coding to the system with varying quantization levels. Figure 4.17 shows the
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Figure 4.17. Compressed Feedback Size (Huffman) Ratios for Var-
ious Energy Allocation Quantization Levels in OFDM and MIMO-
OFDM Systems.

compression ratios achieved in OFDM and OFDM-MIMO systems using Huffman
compression as quantization levels decreased. Compression ratios in the OFDM
system rose from 86% to 97% as the number of quantization levels decreased,
whereas in MIMO-OFDM 2x2 it increased from 89% to 97% and in MIMO-
OFDM 4x4 it increased from 92% to 98.5%. Huffman coding proves to be better
than RLE again when the number of quantization levels decrease. The high-
est compression ratio achieved was for MIMO-OFDM 4x4 when the number of
quantization levels were both highest and least. This demonstrates the efficiency
of Huffman coding in compressing the feedback data of an adaptive multicarrier
system.

LZW coding performed better than RLE and worse than Huffman in the case

of fixed quantization levels. LZW performance, when the number of quantiza-
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Figure 4.18. Compressed Feedback Size (LZW) Ratios for Various
Energy Allocation Quantization Levels in OFDM and MIMO-OFDM
Systems.

tion levels are varied is discussed here. Figure 4.18 shows the compression ratios
achieved in OFDM and OFDM-MIMO systems using LZW compression as quan-
tization levels decreased. Compression ratios in OFDM system rose from 84% to
97% as the number of quantization levels decreased, whereas in the MIMO-OFDM
2x 2 they increased from 92% to 97% and in the MIMO-OFDM 4 x4 they increased
from 92% to 98.3%. The highest compression achieved by all three compression
algorithms is almost equal where Huffman dominates with very minute differences.
So, when the channel correlation is low and the number of quantization levels used
in the system is also low, the best compression scheme would Huffman followed by
LZW and the last option would be RLE. Additionally, the times of computation
and urgency of requirement of results have to be taken into consideration when a

compromise can be made on the compression ratios. If time frame is considered,
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the best choice of compression algorithm that could be used will be Huffman fol-
lowed by RLE and then, LZW. As explained earlier, even though better reduction
and compression ratios can be achieved by using lower number of quantization
levels, a trade-off has to be decided upon between the number of quantization

levels and the required performance of the OFDM and MIMO-OFDM systems.

4.3 Chapter Summary

In this chapter, the descriptions of the simulation setup of the feedback reduc-
tion scheme and the method employed to compress the feedback data in adaptive
multicarrier systems have been shown. By exploiting the time-correlation proper-
ties of the wireless channel, the feedback reduction scheme helped in reducing the
number of feedback transmissions in adaptive systems and the existing lossless
compression algorithms helped in compressing the feedback data. By using them
jointly, the amount of feedback data has been significantly compressed.

According to the results, the feedback reduction scheme could achieve an av-
erage reduction of 60% for OFDM systems and 80% for MIMO-OFDM systems
feedback data size. With the help of compression algorithms, Run Length Encod-
ing, Huffman coding and LZW, an average compression ratio of 80% in OFDM
systems and an average compression ratio of 90% in MIMO-OFDM systems has
been achieved. Between, Huffman coding and LZW, although achieving very
close compression ratios, Huffman has proven to be better than the remaining
compression algorithms, and both Huffman and LZW outperformed RLE in all
cases considered. Also, results have been shown to understand the relation be-
tween the different quantization levels and system performance. As the number of

bits per sample decreased, the average BER of the system worsened, but there was
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a increase in the compression ratio’s. Thus, a trade-off has to be decided between
the number of quantization levels and the required compression ratio based on
the compromise to be made on requirements of the system performance. For our
case, BER values meeting the threshold value would require no less than 4 bits
per sample.

With the possibility of such significant compression of feedback data in adap-
tive multicarrier systems, these schemes are more suitable to be implemented
in future mobile systems, increasing data throughput and overall system perfor-
mance. The next chapter deals with the conclusions of this thesis and possible

future work.
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Chapter 5

Conclusions

In this thesis an attempt has been made to reduce the number of feedback
transmissions and compress the feedback data being generated in wireless mul-
ticarrier transceivers using adaptive bit allocations. Consequently, we have been
able to achieve a significant compression ratio. The achievements of this thesis

are:

e OFDM concepts have been understood clearly and have been implemented
through simulation; all interference removal techniques have been applied,
creating an ideal system to be used for this work. The performance of the
OFDM system has been measured while applying the time-varying channels

with different correlations.

e The adaptive bit loading techniques have been researched and implemented
on the OFDM system making it adaptive to the channel conditions. Analysis
of the feedback data being generated in the adaptive OFDM system has been
done and the need for compression of the feedback data has been clearly

verified.
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e Also, a clear understanding of the working of MIMO-OFDM systems has
been obtained and implemented. The decomposition of the MIMO channel
matrix into parallel channels using singular value decomposition, precoding
and receiver shaping has been effectively implemented, so that the same
bit loading algorithms can be applied to both OFDM and MIMO-OFDM

systems.

e By doing a thorough literature survey, different lossless compression tech-
niques suitable to be applied for compressing the feedback of adaptive sys-

tems have been confirmed and implemented.

e With the help of the feedback reduction scheme, the number of feedback
transmissions in adaptive multicarrier transceiver systems has been reduced.
This scheme exploits the time-correlation properties of the wireless channel
and achieves an average reduction of 60% in the OFDM system and 80% in
MIMO-OFDM systems feedback data size.

e A significant compression was achieved by applying source coding techniques
such as RLE, Huffman coding and LZW on the reduced feedback data. Huff-
man coding outperformed the other two compression algorithms by achiev-
ing an average compression of 80% in the OFDM system and 90% in MIMO-
OFDM systems. An understanding of the relationship between the number
of quantization levels and the system performance and compression ratios

possible have also been explained.
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5.1 Future Work

These are a few areas of future work related to what has been presented in

this thesis:

e Rigorous evaluation of the feedback reduction scheme in different system
conditions would help us to understand it’s effectiveness and build a better

and robust feedback reduction scheme.

e [t would be interesting to see if the feedback reduction scheme could be

implemented effectively on a cognitive radio.

e It would be nice to develop mathematical expressions for the error due to
channel estimation and the error due to source coding, and both quan-
titatively evaluate and compare several techniques to determine suitable
techniques for use with adaptive bit loading algorithms and the feedback

compression.
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