

Prime Number-Based

Hierarchical Data Labeling Scheme
for Relational Databases

Serhiy Morozov

Submitted to the Department of Electrical Engineering and
Computer Science and the Faculty of the Graduate School

of the University of Kansas in partial fulfillment of the
requirements for the degree of Master’s of Science

Committee Members: __________________________
Dr. Hossein Saiedian
Professor and Thesis Adviser

Dr. Arvin Agah
Associate Professor

Dr. James Sterbenz
Associate Professor

Date Defended_____________

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by KU ScholarWorks

https://core.ac.uk/display/213385303?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

i

The thesis committee for Serhiy Morozov certifies that this is the approved version of
the following thesis:

Prime Number-Based
Hierarchical Data Labeling Scheme

for Relational Databases

Committee Members: __________________________
Dr. Hossein Saiedian
Professor and Thesis Adviser

Dr. Arvin Agah
Associate Professor

Dr. James Sterbenz
Associate Professor

Date Approved: ____________

ii

Abstract

Hierarchical data structures are an important aspect of many computer science fields
including data mining, terrain modeling, and image analysis. A good representation of
such data accurately captures the parent–child and ancestor–descendent relationships
between nodes. There exist a number of different ways to capture and manage
hierarchical data while preserving such relationships. For instance, one may use a
custom system designed for a specific kind of hierarchy. Object oriented databases
may also be used to model hierarchical data. Relational database systems, on the
other hand, add an additional benefit of mature mathematical theory, reliable
implementations, superior functionality and scalability.
 Relational databases were not originally designed with hierarchical data
management in mind. As a result, abstract information can not be natively stored in
database relations. Database labeling schemes resolve this issue by labeling all nodes
in a way that reveals their relationships. Labels usually encode the node’s position in
a hierarchy as a number or a string that can be stored, indexed, searched, and
retrieved from a database. Many different labeling schemes have been developed in
the past. All of them may be classified into three broad categories: recursive
expansion, materialized path, and nested sets. Each model has its strengths and
weaknesses. Each model implementation attempts to reduce the number of
weaknesses inherent to the respective model.
 One of the most prominent implementations of the materialized path model
uses the unique characteristics of prime numbers for its labeling purposes. However,
the performance and space utilization of this prime number labeling scheme could be
significantly improved. This research introduces a new scheme called reusable prime
number labeling (rPNL) that reduces the effects of the mentioned weaknesses. The
proposed scheme advantage is discussed in detail, proven mathematically, and
experimentally confirmed.

iii

Table of Contents

Chapter 1 Introduction..1

1.1 Justification..3

1.2 RDBMS Hierarchical Labeling Problem...5

1.3 Significance..6

1.4 Expected Contributions..7

1.5 Evaluation Criteria ...8

1.6 Thesis Organization ...9

Chapter 2 Previous Work..10

2.1 Recursive Expansion Model ..10

2.2 Nested Set Model...13

2.3 Materialized Path Model..17

2.4 Other Approaches ..21

Chapter 3 Prime Number Labeling Scheme..22

3.1 PNL Label Size Issues ...24

3.2 Problem Statement ...26

Chapter 4 Reusable Prime Number Labeling Scheme28

4.1 rPNL Label Relationship ...33

4.2 PNL and rPNL Capacity Comparison..34

4.3 Update Flexibility ..38

Chapter 5 Evaluation and Analysis ..41

5.1 Benchmark Setup ...41

5.2 Tree Labeling ...46

iv

5.3 Node Labeling..51

5.4 Direct Children Lookup ...57

5.5 Descendent Search ...59

5.6 Ancestor Determination ...62

5.7 Update Flexibility ..66

Chapter 6 Conclusions and Future Work..68

6.1 Conclusion ...68

6.2 Summary of Contributions...69

6.3 Future Work ...70

v

List of Figures

Figure 1.1: RDBMS Hierarchical Labeling Problem ... 5

Figure 2.1: Adjacent List Labeling Scheme ... 11

Figure 2.2: Interval Labeling Scheme... 14

Figure 2.3: Prefix-Based Labeling Scheme .. 18

Figure 3.1: Prime Number Labeling Scheme ... 22

Figure 3.2: Effect of Fan-Out on Label Size in PNL.. 25

Figure 4.1: Reusable Prime Number Labeling Scheme.. 31

Figure 4.2: PNL Parent-Label Size Growth.. 36

Figure 4.3: rPNL Parent-Label Size Growth .. 37

Figure 5.1: CNN Tree Visualization (Aharef 2007) ... 43

Figure 5.2: Yahoo Tree Visualization (Aharef 2007)... 43

Figure 5.3: Hamlet Tree Visualization (Aharef 2007).. 44

Figure 5.4: Comedy Tree Visualization (Aharef 2007) .. 44

Figure 5.5: Relational Database Setup.. 46

Figure 5.6: CNN Tree Labeling Time... 49

Figure 5.7: Comedy Tree Labeling Time ... 50

Figure 5.8: CNN Tree Labeling with PNL and rPNL... 51

Figure 5.9: Comedy Tree Labeling with PNL and rPNL.. 53

Figure 5.10: CNN Tree Labeling with rPNL and Edge .. 54

Figure 5.11: Comedy Tree Labeling with rPNL and Edge... 54

Figure 5.12: CNN Tree Labeling with rPNL and Range .. 56

Figure 5.13: Hamlet Tree Labeling with rPNL and Range... 56

vi

Figure 5.14: CNN Tree Top-Down Tree Traversal .. 57

Figure 5.15: Yahoo Tree Top-Down Tree Traversal .. 58

Figure 5.16: Comedy Tree Top-Down Tree Traversal ... 58

Figure 5.17: CNN Tree Descendent Search.. 60

Figure 5.18: Yahoo Tree Descendent Search ... 61

Figure 5.19: Comedy Tree Descendent Search... 61

Figure 5.20: CNN Tree Ancestor Determination.. 62

Figure 5.21: Hamlet Tree Ancestor Determination .. 63

Figure 5.22: Yahoo Tree Ancestor Determination ... 63

Figure 5.23: Comedy Tree Ancestor Determination... 64

vii

List of Tables

Table 4.1: rPNL Self-Label Availability .. 35

Table 4.2: rPNL Hierarchy Update... 38

Table 5.1: Test Tree Properties... 42

Table 5.2: Test System Configuration .. 45

Table 5.3: PNL and rPNL Maximum Label Sizes.. 46

Table 5.4: Tree Model Size Comparison .. 47

Table 6.1: Scheme Comparison Summary for Deep Trees... 69

Table 6.2: Scheme Comparison Summary for Shallow Trees.................................... 69

1

Chapter 1

Introduction

Real world information often consists of multiple pieces that are somehow related to

each other. As a result, there exists a great demand for data management systems that

can easily store, retrieve and search this kind of information. One type of such

abstract data is hierarchy. Hierarchical structures are a very common representation of

business organization, work breakdown, or any data that can be organized in a tree.

Hierarchical data representations are often referred to as trees because of their

similarity in shape. The root node is an ancestor of all other nodes, and the entire

hierarchy is composed of branches of nodes starting from the root.

 Hierarchical data management is not a new concept. In fact, hierarchical and

network databases like IMS, MRI and TOTAL were quite popular during mainframe

computing before relational databases took over (Haigh 2006). Hierarchical

relationships within given data provide a very interesting insight into how the

information is organized in real life. Hierarchical models are especially useful for

organizing large amounts of data into related categories. The most common

application of a hierarchical model is the file system on any modern operating system.

2

It allows thousands of files to be neatly organized into appropriate folders, subfolders,

etc. Another popular hierarchical model is the Domain Name System (DNS) which

organizes server names based on predefined structure: top level domain (e.g. edu,

com, net), second level domain (e.g. wikipedia.com, google.com, yahoo.com), and

multiple sub-domains (e.g. maps.google.com, mail.google.com, tv.yahoo.com). Both

of these labeling schemes are variations of the materialized path model discussed in

section 2.3. Each one specifies the path from the root of the hierarchy to a specific

node. This results in an accurate representation of node relationships in a tree that is

so difficult to recreate in relational databases.

A defining distinction between hierarchical and relational data management is

the way each method locates data. Hierarchical systems are best suited for gradual

refinement of the search criteria or limiting the search to a specific category,

subcategory, etc. Due to their advanced indexing ability, relational database systems

excel at searches based on exact criteria. Both kinds of functionality are very useful;

however, no one system can provide both of them. In fact, this is why modern

operating systems generate a flat file system index, an optimized inventory of system

files, in addition to maintaining all files in a hierarchy. As an alternative, attempts

have been made to add the hierarchical functionality to an already existing relational

database. This research is focused on the latter topic.

3

1.1 Justification

Florescu and Kossmann discuss three classical approaches to managing hierarchical

data. The most apparent approach is to build a custom system specifically designed

and optimized towards handling this kind of information. The authors discuss some of

the most prominent research prototypes such as Rufus, Lore, and Strudel (Florescu

and Kossmann 1999b).

Rufus is a system based on an object-oriented database with extensible class

hierarchy and text search functionality (Shoens, Luniewski, Schwarz, Stamos, and

Thomas 1993). Lightweight Object Repository (Lore) is a database management

system (DBMS) designed specifically for managing semistructured data that uses

DataGuides instead of conventional database schema. The DataGuides are essentially

structural summaries of the data used to maintain the hierarchical relationships

(McHugh, Abiteboul, Goldman, Quass, and Widom 1997). Strudel is a website

content and structure management system that supports abstract data management by

maintaining the hierarchical relationships separately from externally stored data

(Fernández, Florescu, Kang, Levy, and Suciu 1998). Deutsch, Fernandez, and Suciu

presented a semistructured to relational data (STORED) query language and storage

schema. STORED performs various data mining operations in order to extract the

scheme from existing data and then build the appropriate relations. This custom

solution is very similar to other products such as Lorel (Quass, Rajaraman, Sagiv,

Ullman, and Widom 1995), UnQL (Buneman, Davidson, Hillebrand, and Suciu

4

1996), MSL (Papakonstantinou, Abiteboul and Garcia-Molina 1996), and StruQL

(Fernandez, Florescu, Levy, and Suciu 1997, Fernández et al. 1998).

A similar approach involves using an object-oriented database system that

models the nodes in a hierarchy as objects and edges as properties. Object data types

allow flexible storage capabilities and easily updatable trees. Florescu and Kossmann

focus on two commercial products that implement this method, O2 and Objectsore

(Deux et al. 1990). Atkinson, DeWitt, Maier, Bancilhon, Dittrich, and Zdonik

outlined the main features and desired characteristics of object oriented database

management systems (OODBMS). They also performed a comprehensive survey of

many existing products including Gemstone, Vision, Orion, Flavors, Lore, Simula,

Vbase and O2. DeWitt et al. compared these systems in regards to extensibility, data

persistence, concurrency and recovery functionality. The authors concluded that

many of the considered products had satisfactory results, which made those

OODBMS a viable solution for storing hierarchical data.

The third approach is to use an existing relational database system and map the

semistructured data onto the database tables. Florescu and Kossmann focused on the

performance of all of the mentioned solutions. The authors concluded that modeling

hierarchical data in a relational database is the most favorable. In fact, the Florescu

and Kossmann demonstrated that relational data management solutions could

outperform other approaches, especially when given complex queries on large

datasets (Florescu and Kossmann 1999b). A supporting argument by Jiang, Lu,

5

Wang, and Yu states that relational database solutions can outperform special purpose

XML repositories such as Lore (Jiang et al. 2002a).

1.2 RDBMS Hierarchical Labeling Problem

The goal of hierarchical labeling schemes is to capture structured data into relational

databases while maintaining the accuracy of the real world relationships. The reason

such abstract data is not stored in its raw format is because relational databases offer

greater flexibility, performance and scalability. Figure 1.1 shows an example

hierarchy that needs to be stored in a flat database table.

Figure 1.1: RDBMS Hierarchical Labeling Problem

As one can see, certain relationship information is lost. That is why labeling schemes

are needed. They record additional information that captures the relationships among

nodes. The goal of each labeling scheme is to minimize the space required to record

this information while maximizing the performance and available functionality.

Different labeling schemes employ various encoding techniques to achieve this goal.

Each label encoding varies in size and ability. Some tree models allow fast searches,

6

while others facilitate simple updates without the need for re-labeling. Label size is

also an issue when modeling hierarchies. Physical computer limitations put a definite

limit on the maximum label size that can be managed with the necessary precision.

Theoretically, there is no fundamental limit on label size. Modern computers can

successfully determine relationships between labels of arbitrary length. However, that

kind of computations would take up a lot of time and resources. As a result, there are

limits on the label sizes that allow acceptable response time.

This research is focused on improving labeling scheme performance by

reducing the label size. Smaller labels result in faster computations that improve

overall performance. Additionally, smaller labels are located closer to each other (e.g.

numeric labels) so overall label size grows slowly. As a result, labeling schemes with

small labels produce more compact model representations and are capable of

capturing more complex hierarchies because they do not run out of space as quickly.

This research introduces a new labeling scheme that is able to harness all of the

benefits associated with small labels.

1.3 Significance

Each labeling model implementation can be optimized by introducing more clever

ways of encoding the label information. This thesis is focused on the performance and

space utilization problem of the prime number labeling (PNL) scheme, introduced by

Wu, Lee, and Hsu. This scheme attempts to reduce the model size by storing

aggregate information from which the original labels can be inferred. PNL scheme

uses consecutive prime numbers and their products to label each node and its

7

ancestors. Since self-labels use unique prime numbers, their products (i.e. the

ancestor labels) grow exponentially. Figure 4.2 demonstrates this problem

graphically. The performance of the PNL scheme decreases rapidly when the

products of continuously growing labels become so large that they can no longer be

managed with the necessary precision. This shows inefficient utilization of the

available number space.

Theoretically, the PNL scheme does not lack anything. It is able to accurately

record and retrieve hierarchical information from a relational database. However, as

the size of the hierarchy increases, the space and processing requirements grow

accordingly. These two requirements are limited by the physical characteristics of the

hardware. Even though modern technology has drastically improved the storage and

processing capabilities, there are still distinct limitations on the numbers that can be

manipulated. For example, MySQL v5.0.45 database can only handle integers up to

64 bits long or 191084.1 × . Besides using very big labels, which take longer to

process, the PNL scheme does not utilize the available number space efficiently,

which in turn limits the model utility. A desired improvement would decrease the size

of the labels, thus making the computations easier, improving performance, and

increasing model capacity.

1.4 Expected Contributions

We propose a more capable labeling scheme that improves upon the PNL model. Our

reusable prime number labeling (rPNL) scheme is able to reuse small prime numbers

throughout the tree, which decreases the label size and improves performance. The

8

scheme also inherits all of the strengths of the PNL model such as fast descendant

searches and simple ancestor determination. The proposed scheme is especially suited

for deep hierarchies up to 15 levels. It generates parent labels that are approximately

half the size of the PNL scheme. Additionally, the proposed method has superior

model capacity and a label recycling functionality that is not present in the PNL

model. In fact, the rPNL model can successfully record over 91 million maximum

depth paths whereas the PNL scheme can only handle one.

1.5 Evaluation Criteria

Initially, we introduce the rPNL labeling scheme and the mathematical rules and

concepts that it is based on. We then prove that the proposed solution is, in fact,

capable of accurately capturing and retrieving hierarchical data. We compare PNL

and rPNL label size growth patterns and determine the effect they have on each

model’s capacity. Finally, we perform benchmark testing of PNL, rPNL, and other

representative models on several hierarchies with different depth and fan-out. We

measure performance of each scheme against the most common functional

requirements: tree labeling, direct child lookups, descendent searches, ancestor

determination, and overall model update flexibility. All experiments are conducted

five times, and an average measurement is noted in order to decrease the effect of any

interfering software processes. Trial testing has shown that there are no significant

changes in experiment results when they were ran more than five times. The results

are presented as graphs and discussed in detail.

9

1.6 Thesis Organization

The thesis is organized into the following chapters:

 Chapter 1: Introduction – The background of the problem, significance and a

justification of a solution.

 Chapter 2: Previous Work – The current state of the art in RDBMS labeling

schemes in tree categories: recursive expansion, nested set, and materialized path.

 Chapter 3: Prime Number Labeling Scheme – The prime number labeling

scheme and some of its limitations.

 Chapter 4: Reusable Prime Number Labeling Scheme – The proposed

reusable prime number labeling scheme and calculations and proofs that

demonstrate the validity of the suggested model.

 Chapter 5: Evaluation and Analysis – The experimental results, their

explanations and analysis.

 Chapter 6: Conclusions and Future Work – The conclusions and future

research direction in the field.

10

Chapter 2

Previous Work

In order for any labeling scheme to be successful, it should ensure that the parent–

child relationship among the nodes is readily available or easily computable. A

number of techniques are used by different schemes in order to accurately model a

tree. As Joe Celko specified, inheritance is another very important property of any

hierarchical model (Celko 2004). Therefore, a good labeling scheme should support

multigenerational ancestor–descendent relationships.

Vadim Tropashko identified two major categories in SQL representation of

hierarchies: recursive expansion and tree encodings. Tree encodings are further

divided into two groups: materialized path and nested sets (Tropashko 2005). This

chapter covers examples of all three models and outline their benefits and drawbacks.

2.1 Recursive Expansion Model

The recursive expansion model allows access to only one node at a time. In order to

expand one’s view of the tree, additional requests must be performed and

intermediate results saved. The adjacent list method is an example of a recursive

expansion model. It is probably the most natural way to store hierarchical data,

11

especially for procedural programming language developers who are used to the

concept of recursion. Each record contains a self-label and a label of a direct parent.

Oracle was the first commercial database to use such an approach (Celko 2004).

Storing hierarchical data by shredding it into rows of a relational database table is still

a widely used technique (Shanmugasundaram, Tufte, Zhang, He, DeWitt, &

Naughton 1999). Figure 2.1 shows the adjacent list database table as well as the

actual hierarchy it models.

Figure 2.1: Adjacent List Labeling Scheme

Given a node, its direct parent-label is available. Since all siblings share the

same parent-label, sibling queries become trivial. Adding a node to an existing tree

requires no additional operations. Ancestor queries are much more difficult. A

number of requests must be performed, each retrieving the label of a previous parent

in the hierarchy. Recursion is an extremely powerful concept, but it may require

significant computer resources even if the computations are very simple. Certain

programming languages such as Lisp and Prolog were specifically designed with

12

recursion in mind. However, the majority of other programming languages are not as

fit for recursion and, as a result, recursive expansion model implementations are

usually quite slow and resource intensive (Celko 2004). Additionally, descendent

searches are extremely inefficient, especially in large trees, in which intermediate

results must be stored in temporary tables or kept in the memory.

 The adjacent list method uses consecutive integers as its labels. It is a very

compact model because every possible number is likely to be utilized. Reusing

deleted labels, however, is not a default behavior of this scheme so an uneven number

distribution is possible if the hierarchy is modified frequently. Several papers have

been written about successfully using this model through recursive queries (Brandon

2005) and multiple self-joins (Shui, Lam, Fisher, and Wong 2005, Florescu and

Kossmann 1999a, David 2003).

The Edge approach presented by Florescu and Kossmann implements the

adjacency list model. It involves only one normalized self-referencing table that

stores pointers to source and destination nodes. A similar approach, called Monet,

stores the pointers to source and destination nodes across multiple small, semantically

homogeneous relations. In other words, all nodes on the same level are placed in the

same relation. For example, a path naaa K21 − will result in 1+n relations. As a

result, the individual relations are much smaller, but there are a great number of them.

In fact, there must be a relation for each possible path (Schmidt, Kersten,

Windhouwer, and Waas 2000). Yet another related approach, called XMLEase,

introduces redundant links between each node and all of its ancestors. The entire

13

hierarchy resides in single relation, where the number of ancestor attributes

determines the maximum tree depth. For example, a tree with a maximum path

node1–node2…noden will require n ancestor attributes (Elçi and Rahnama 2006).

Clearly this kind of labeling scheme wastes a lot of space and is not very well fit for

dynamic trees with varying depth.

2.2 Nested Set Model

The majority of performance issues in hierarchical models are related to descendent

searches. In particular, it is difficult to quickly determine all nodes that are ancestors

of a given parent. This task is especially difficult for recursive expansion model.

Ideally, this function should be very simple, similar to determining if one number is

bigger than the other. The interval based labeling scheme, called Range, does just

that. Each node receives a number range as a label and then an ancestor–descendent

relationship may be calculated by determining if one number range is contained

within another. This technique is called Dietz’s numbering scheme (Dietz 1982).

Figure 2.2 shows the interval based database table as well as the actual hierarchy it

models.

14

Figure 2.2: Interval Labeling Scheme

Each node receives two numbers as a label. The numbers represent the beginning and

the end of a number range. For example, the node with 3:8 range is a parent of all

labels starting with 4 or more and ending with 7 or less. Interval based labeling

scheme is the fastest way to do descendent search, which is difficult for other

schemes to accomplish (Tropashko 2005). Another advantage of the nested set

method is that labels may be assigned a fixed size, which allows database

optimization and improves performance (Shui et al. 2005). The performance

advantage of this method is strictly in descendent searches, as it is computationally

easy to locate all numbers within a range. Tropashko stated that ancestor searches

would be especially slow for this model, because it is considerably more difficult to

search all the ranges that contain a specific number (Tropashko 2005).

A major disadvantage of this scheme is that frequently changing tree

structures will require a considerable number of label adjustments as the changes will

stretch/shrink multiple number ranges. Assuming that any node has an equal chance

15

on being changed, an average update will cause half of the tree structure to be re-

labeled. In order to avoid this, a labeling scheme that allows new labels to be inserted

or removed without re-labeling is needed. Böhme and Rahm were able to achieve this

with a dynamic level numbering (DLN) scheme by padding the existing container so

that the new labels will have enough space. This requires anticipating the number of

future nodes, which is not very reliable.

The dyadic rational number encoding scheme and its Farey fractions

alternative are also capable to reducing the re-labeling issue (Tropashko 2005). Both

methods use fraction properties to reduce the need to re-label, as there always exists a

third fraction that is between the two existing ones. The resulting hierarchy may be

quickly searched and easily updated. However, it does not utilize the number space

efficiently and does not scale well. A similar scheme called Quartering-Regions

Scheme (QRS) was developed by Amagasa, Yoshikawa, and Uemura. It uses floating

point numbers and their binary equivalents as self labels that allow new nodes to be

inserted without re-labeling. This approach does not completely eliminate the

problem of re-labeling, but it does improve it significantly.

The XML indexing and storage system (XISS) is another variant of interval

encoding (Li & Moon 2001). Instead of head and tail labels, there are head and size

labels. The tail label is calculated, which reduces the space required for the labeling

scheme and improves the update flexibility. Additionally, this approach uses the

concept of extended preorder in order to handle future node insertions. In other

words, extra space is reserved at each node region in order to avoid future re-labeling.

16

A similar labeling scheme is called BIRD - Balanced Index-based numbering scheme

for Reconstruction and Decision (Weigel, Schulz, & Meuss 2005). This approach

follows the same labeling technique, but does not utilize consecutive numbers. Both

schemes simply delay the need for re-labeling as they allow only a limited number of

new nodes to be inserted before a global re-labeling must occur.

In response to this issue, a few authors proposed schemes specifically

designed to allow unlimited node insertions without the need for re-labeling. The

quaternary encoding for dynamic XML data (QED) scheme supports label insertion

without re-labeling by utilizing the lexicographical and not numerical ordering (Li &

Ling 2005a). Four numbers are used to encode each node’s region. As a result, this

scheme minimizes the individual label size while supporting infinite inserts between

any two existing labels (Li & Ling 2005a). LSDX, a labeling scheme for dynamically

updating XML data, uses both letters and numbers to describe the depth of the node

as well as its order (Duong & Zhang 2005). The root node receives 0a as a label

because its depth is 0 and it is the first node in its generation. The first child of the

root node will be labeled 1a.b, second 1a.c, etc. These labels uniquely identify each

node and allow additional nodes to be inserted easily. For instance, a new node

between 1a.z and 1a.zb would receive a label 1a.zbb according to the lexicographical

ordering.

Khaing and Thein pointed out a problem with LSDX labeling scheme. The

authors consider a case when one node must be inserted between 1a.z and 1a.zb and

another between 1a.zb and 1a.zc. In both cases the same label 1a.zbb will be

17

generated. Because of such collisions, the authors conclude that LSDX scheme does

not allow arbitrary node insertions. Khaing and Thein also propose a solution to the

label collision problem that occurs when the self-label of each node is limited to

numbers or digits only. The authors developed a labeling scheme for dynamic trees

that is very similar to LSDX, but uses a combination of numbers and digits as self

labels.

2.3 Materialized Path Model

The prefix-based labeling scheme proposed by Cohen, Kaplan and Milo is a typical

example of materialized path model. It is very simple to understand as each new node

inherits its parent’s path and appends its own label to it. This makes determining the

parent–child relationship a matter of comparing label prefixes. Unlike the nested sets

approach, this labeling scheme allows inserting new nodes without any re-labeling.

The great benefit of path enumeration models is that parent information is encoded in

the node’s label itself. In fact, node relationships are usually clearly visible to a

human scanning though a list of nodes. This also eliminates the need to make costly

database requests to determine the node’s ancestors. Additionally, searching a

materialized path tree does not involve any kind of recursion or expensive joins.

The path from the node to root is usually enumerated with numbers of a

specified length or encoded with delimited strings. Figure 2.3 shows the prefix-based

database table as well as the actual hierarchy it models.

18

Figure 2.3: Prefix-Based Labeling Scheme

The Dewey decimal system, which is standard in library catalogs, uses numbers as

well as periods and letters to categorize books. For example PHP Hacks: Tips &

Tools For Creating Dynamic Websites by Jack Herrington has 005.133 Dewey

classification number associated with it. This means it can be categorized under the

following subjects: "Computer programming, programs, data" (005), "Programming"

(005.1), "Programming languages" (005.13), and "Specific programming languages"

(005.133).

The ORDPATH labeling scheme is an improved version of the Dewey

decimal system for storing hierarchical data in a relational database (O’Neil & O’Neil

2004, Leonard 2006). Since label growth is an issue with materialized path schemes,

this approach utilizes few optimizations such as assigning odd-number labels to

newly inserted nodes thus leaving even number labels for future additions (Leonard

2006).

19

Another very common example of path enumeration labeling model is the US

Postal Service ZIP code. This label is structured in such a way that each digit carries

some geographical information. The information ranges from more general, such as

postal region and state, to more specific, such as city and post office location (Celko

2004, Böhme and Rahm 2004). Such a five-digit label can handle up to 100,000

unique values, which is sufficient for relatively small hierarchies. However, if the tree

grows, label size must also increase. The ZIP code decimal scheme also produces a

strictly balanced structure with limited fan-out, which means that there are at most ten

root branches that must be equal in size. Because only ten digits may be used, any

node may have at most ten children. The problems occur if a node has more than ten

children, e.g. densely populated state, or if some nodes only have a few children, they

are wasting the allocated space.

In deep hierarchies, some paths may be lengthy and their encodings take up a

significant amount of space. Using more compact numerical labels instead of

character based ones has additional advantage in which some queries may be sped up

by using fast numeric comparisons. Scanning character labeled paths usually involves

complex pattern matching, which is slow and inefficient. However, if numbers are

used (e.g. ZIP code encoding), a mathematical function may be used to quickly locate

and update the necessary nodes. Path enumeration label length usually increases

linearly as the depth of the hierarchy grows. As a result, performance is negatively

affected because no fixed amount of space may be allocated for hierarchical

20

information (Shui et al. 2005). This makes path enumeration model best suited for

relatively small, balanced, and static hierarchies.

The XParent approach implements a materialized path model (Jiang, Lu,

Wang, & Yu 2002b). Unlike Edge, this scheme explicitly stores available paths in a

separate relation. Unlike Monet, the path information is contained in a single table.

This data may be materialized into a new table to support ancestor–descendant

relationships (Jiang et al. 2002b). An alternative to XParent, called XRel, is able to

model hierarchical information in terms of a combination of path and region

(Yoshikawa & Amagasa 2001). Similarly to Monet, a separate relation is created for

each node type. Unlike Monet, XRel stores all existing paths in a separate relation.

Since this scheme does not maintain edge information, sibling nodes must be

uniquely identified. In order to preserve the ordering and containment relationship

among nodes, XRel records the region (start and end position) of each node. Scheme

combinations such as this one often introduce better functionality at the cost of

increased complexity and size.

 A very interesting encoding technique is discussed by Tropashko. Given two

co-prime numbers a and b such that ab ≤≤1 and certain information may be

encoded and decoded. For example, to encode a path 1.2.3.4.5 one would simplify the

following continued fraction.

157
225

5
14

13

12

11 =

+
+

+
+

21

The Euclidean algorithm is used to decode the path.

15 0 5
54 1 21
213 5 68

682 21 157
1571 68 225

×+=
×+=
×+=
×+=
×+=

This kind of encoding is not very computationally intensive and it accurately captures

the path with relatively small labels. The resulting labels are unique and could be

indexed for improved performance. However, ancestor information is not easily

accessible without actually decoding the labels, which makes descendant searches

extremely slow.

2.4 Other Approaches

Provided there is a well-known hierarchy structure (maximum fan-out, depth, etc), an

optimized database schema may be generated. A table may be created for every level

in a hierarchy and then easily searched using existing one-to-many relationships

between the tables. This technique may be used to create an entire database schema

based on document type definition (DTD) to store documents of previously known

structure (Shanmugasundaram et al. 1999, Christophides, Abiteboul, Cluet, & Scholl

1994). This approach is clearly the fastest, because it takes full advantage of the

database optimization algorithms, indexes, etc. However, the structure of the

hierarchy is rarely known ahead of time, which limits the utilization of this approach.

22

Chapter 3

Prime Number Labeling Scheme

A recent work by Wu, Lee, and Hsu introduces a new way to encode the hierarchy

information with prime number labeling scheme. In this top-down scheme each node

receives two numbers: a unique prime number called self-label and another number

called parent-label. Each parent-label is divisible by all of its ancestors’ self-labels,

because the label is in fact a product of all ancestor self-labels and the self-label of the

node. Figure 3.1 shows the prime number labeling database table as well as the actual

hierarchy it models.

Figure 3.1: Prime Number Labeling Scheme

23

This labeling scheme allows determining the relationship between two nodes

by simply comparing two numbers. If the self-label of node X divides node Y’s

parent-label, then node X is considered to be a parent of node Y. Likewise, all nodes

whose parent-labels are divisible by prime P are descendants of the node with P as a

self-label. A lightweight modulo function may be utilized for this purpose. A modulo

function is a way to determine if a given number is divisible by another number

without a remainder. It is not computationally intensive and can quickly operate on

very large numbers.

The PNL scheme inherits all the benefits of the materialized path model while

introducing much smaller, numeric labels that can be managed by fast and

lightweight mathematical functions. Adding a node to such a tree is very simple. A

self-label is assigned a value of any unused prime number and a parent-label is simply

a product of this prime with a parent-label of the parent node (Wu, Lee, and Hsu

2004). Unlike the rigid nested-sets method, this approach is very flexible as no re-

labeling is required when new nodes are added to the tree.

One valid disadvantage of PNL scheme is the fact that each descendant search

must go through the entire dataset in order to determine the parent–child

relationships. This may be particularly slow on very large datasets. However, this

method of searching the hierarchy is a better alternative to multiple joins especially in

very deep hierarchies as implemented in the recursive expansion model. Parent-labels

in this scheme cannot be indexed or sorted in any particular way to minimize the

number of operations needed for each scan. Another major disadvantage of PNL

24

scheme is that each prime number may only be used once. This helps establish the

uniqueness of the labels but also causes the magnitudes of each subsequent parent-

label to increase rapidly. This shortcoming is especially apparent in deep hierarchies.

Even though the authors propose a number of optimizations to improve the label

space usage, these improvements provide only a limited result.

3.1 PNL Label Size Issues

The authors also show that the size of the label grows mostly due to the increasing

depth of the tree, which requires multiple prime numbers to be multiplied. A more

detailed discussion of this issue is covered in section 4.2. Fan-out, on the other hand,

affects the label size very slightly as the increase is due to relative difference between

consecutive prime numbers. Figure 3.2 shows the label size requirements for a

number of nodes on the same level.

25

Figure 3.2: Effect of Fan-Out on Label Size in PNL

0

2

4

6

8

10

12

1 13 25 37 49 61 73 85 97 109 121 133 145 157 169 181 193

Label Order

L
a
b

e
l

S
iz

e
 (

b
it

s
)

PNL & rPNL
Edge

The label length is measured in the minimum number of bits required to represent the

label. The graph shows the fan-out of the tree at level one, which means that the label

is the same as the prime assigned to the node. In other words, this graph models the

size requirements for storing consecutive prime numbers (PNL & rPNL) and

consecutive integers (Edge). This graph clearly shows that prime number labels are

much bigger and grow faster than Edge labels. Li, Ling and Hu did multiple

comparisons of this scheme to two variants of the nested set model and a Dewey

prefix scheme. The PNL scheme required considerably more storage and had a much

longer response time.

After comparing their prime number labeling scheme to two other prefix-

based dynamic labeling schemes Wu, Lee, and Hsu concluded that when the

hierarchy has a large fan-out but limited depth their method consumes less storage

26

space. However, when the hierarchies are very deep with limited fan-out, the prime

number labeling scheme is not the best option. The authors believe that the PNL

scheme is appropriate, as the majority of analyzed XML documents have less than 8

levels of nesting and fan-outs up to 10,000 (Mignet, Barbosa, and Veltri 2003). Even

though this encoding scheme is not the most compact, it is least affected by the

structure of the hierarchy (Wu, Lee, and Hsu 2004). PNL scheme scalability is limited

by the label size restrictions. However, it uses numerical labels, which allows taking

advantage of standard relational database optimizations. Härder, Haustein, Mathis,

and Wagner performed benchmark experiments with PNL scheme modeling trees up

to 37 levels deep and a maximum fan out of several millions. The author concluded

that PNL scheme was not the most optimal solution for such complicated hierarchies.

3.2 Problem Statement

There are multiple areas of improvement in PNL model. For instance, the prime

number labeling scheme does not allow self labels to be reused. This causes parent-

labels to grow exponentially, which significantly limits the model capacity, increases

overall model size, and slows down performance. In fact, there is a discernible limit

on the maximum depth and fan-out dictated by the hardware limitations. This issue

has been identified by the authors and confirmed by independent research.

Additionally, this approach does not natively support label recycling. Ability to reuse

deleted labels results in much higher number space utilization and improves all of the

mentioned drawbacks. This functionality may be implemented with PNL at the cost

of decreased performance. This scheme may be an excellent solution in the future,

27

when hardware limitations are no longer an issue. However, prime number labeling

scheme is not the optimal solution for the currently available resources. This research

introduces a new labeling scheme called rPNL that is a better alternative to PNL.

28

Chapter 4

Reusable Prime Number Labeling Scheme

A number of different approaches have been developed attempting to improve the

shortcomings of PNL scheme. For instance, Li, Ling and Hu propose a new algorithm

that allows reusing deleted labels in order to control the label size increase rate. Davy

Preuveneers and Yolande Berbers recommended decreasing the label size by labeling

each node with two different parent-labels that could then be factorized into a single

set of parent self-labels. The major contribution of this research is a new reusable

prime number labeling scheme called rPNL. The reusable prime number labeling

scheme attempts to improve on the same problem, the label size. If prime number

self-labels are reused, the resulting parent-labels will be considerably smaller. This

should increase model capacity and improve performance. Additionally, the rPNL

scheme uses the available number space much more efficiently by utilizing labels that

are located close to each other.

By definition, prime numbers are numbers that are not divisible by anything

except 1 and the number itself. This means that every non-prime number may be

expressed as a product of one or more prime numbers. According to the fundamental

29

theorem of arithmetic also known as the unique factorization theorem, every natural

number n greater than 1 can be written as a unique product of prime numbers pk.

na
k

aa pppn K21
21= (Lindemann 1933). This formula is very helpful if n and pk are used

as labels. Given n, factorization will reveal the list of all parent-labels. This process

may be done algorithmically, without the costly database requests. Note that

factorization is a computation intensive operation. In fact, modern cryptography

methods rely on the fact that factorization of very large numbers is computationally

infeasible. However, if n is a relatively small number, factorization costs are

negligible relative to the cost of multiple database requests. A simple experiment on

GNU/Linux factor command shows that the longest time to factor a 64-bit integer is

just over a tenth of a second. The largest integer most of the current databases can

handle is 64 bits long. Therefore, factoring integers of that size is in fact a more

efficient alternative to multiple queries. The reusable prime number labeling scheme

attempts to minimize parent-label n to take advantage of the factorization as a method

of deriving parent information.

Wu, Lee, and Hsu use the Chinese remainder theorem to record the global

order of the nodes. The proposed method uses the same idea to record the order of the

parents’ self-labels used. If prime numbers are allowed to be reused throughout the

hierarchy, repeating labels are bound to be created. Reusable prime number labeling

scheme distinguishes between the order of the prime numbers as well as their product.

The Chinese remainder theorem states that there exists a number n that

satisfies k simultaneous congruencies

30

kk mnnmnnmnn modmod,mod 2211 === K

if),gcd(mod jiji mmnn = for all i and j (Howard 2002). The solution n is then

congruent to the least common multiple of all mi. In other words,

)...,(mod 321 mmmlcmnn = . Because every modulo used is always prime, the

following holds true regardless of the prime numbers chosen.

∏
=

=
k

i
ik nnnnlcm

1
21),(K

1),gcd(21 =knnn K

The above solution proves that, because only prime numbers are allowed to be self-

labels, a simultaneous congruence (SC) number is guaranteed to exist for any

combination of the prime numbers. The SC number is also guaranteed to be less than

the product of all the prime numbers used. Therefore, as long as there is space for the

parent-label, there will be enough space to record the order of the prime numbers

used.

The reusable prime number labeling scheme uses SC number to encode the

position of the prime numbers used on the path such that ipiSC mod= . In order to

maintain functionality with this method, three rules must be enforced. First, only

unique prime numbers may be allowed on each individual path. In other words, it is

impossible to have two simultaneous congruencies with the same modulo but

different remainders. Second, only unique self-labels may be allowed among siblings.

In order to uniquely identify the siblings, they must have distinct self-labels. Third,

31

each self-label must be larger than the level at which it resides in order to avoid

confusion. For example, two different paths could generate identical numbers, e.g.

3mod43mod1 ==SC .

 Figure 4.1 shows rPNL database table as well as the actual hierarchy it

models. Note that according to the three rPNL rules, self-label 2 should have been

used for one of the first-generation nodes. However, two different self-labels were

deliberately chosen to demonstrate the fact that none of the three rPNL labels can

uniquely identify a node.

Figure 4.1: Reusable Prime Number Labeling Scheme

With this approach self-labels and parent-labels are assigned similarly to PNL

scheme. However, according to the three rules mentioned above, self-labels are not

required to be globally unique prime numbers. In fact, this scheme ensures that the

prime number chosen is the smallest possible number that is 1) bigger than its

position on the path 2) unique within the given path and 3) unique within the siblings.

This reduces the label size growth that is so problematic with PNL scheme. Also it

32

forces the deleted labels to be automatically reused which results in a much more

efficient use of the number space.

There is some redundancy in a way that rPNL scheme stores the labels. The

parent-label and SC number are based on the same set of prime numbers. However,

the parent-label does not contain ordering information and the SC number cannot be

uniquely factored. For example, a SC number 38 could mean self-label 5 in a third

position (35 mod 38 =) as well as a self-label 7 in the same position (37 mod 38 =).

Because of these imperfections, both of the numbers must be used. The general rule is

that if a prime divides the parent-label, it can be trusted that the SC number accurately

captured its position on the path.

All necessary parent information is encoded in two labels. Prime factors of the

parent-label represent self-labels of parent nodes and the SC number encodes their

order. Furthermore, the gathered information may be combined together to calculate

the parent-label and SC number of any parent node on the path. Then each parent

node may be retrieved because the self-label, parent-label and SC number uniquely

identify all nodes. This gives rPNL method the advantage of having no costly

database requests to determine ancestor information.

 Let’s consider an example leaf node with parent-label=165 and SC=322.

Factoring 165 shows that the prime numbers used to compose that number are 11, 5,

and 3. Besides 11, which is the self-label of the node, applying each prime to the SC

number reveals their order: 311mod322 = , 25mod322 = , and 13mod322 = . Note

that node’s depth is encoded in the SC number as well. This information may be used

33

to calculate the parent-labels as well as SC numbers for the parent node(s): first

parent, parent-label=3, SC number=1; second parent, parent-label=15, SC number=7.

This example shows how all ancestor information may be calculated rather then

retrieved.

The reusable prime number labeling scheme offers a more flexible alternative

to PNL scheme. It is deterministic, which means that relationships can be easily

identified by scanning all nodes. It is dynamic, as it allows adding new nodes to the

hierarchy without major re-labeling. All label changes are computationally light as

they rely on simple mathematical functions such as multiplication and division. The

rPNL scheme is proven to be more compact as it uses smaller labels by reusing the

prime numbers and is, therefore, more capable.

4.1 rPNL Label Relationship

There exists an interesting pattern between rPNL labels. The SC number of the child

nodes is congruent to the parent’s SC number modulo the parent’s parent-label. For

example, a node with a self-label=7 and ancestor path of 2.3.5 has a parent-label=30

and SC number=23. The child of this node, with a path 2.3.5.7 would have a parent-

label=210 and SC number=53. It is evident that 3230 mod 53 = , which is also the

parent node’s SC number.

The proof of this pattern is relatively simple. Assuming Xchild is the SC number

of the child, Xparent is the SC number of the parent, and i is the position of the prime,

the following must be true for all prime numbers on the parent’s path.

34

iparentichild pXipX modmod ==

parentichild XpX =mod

Since the last formula holds true for all prime number on the parent’s path, it must

hold true for their product as well. In other words

parentichild XpX =∏mod

This property of rPNL labels may be used for both direct child and descendent node

searches.

4.2 PNL and rPNL Capacity Comparison

It is difficult to model the exact label size requirements for the rPNL model as the

label size depends on the structure of the hierarchy. The general rule is that the deeper

the tree is the more labels are reused. Assuming a two-level hierarchy with only one

parent node and all its children at the first level, rPNL label size requirements will be

identical to PNL’s. The major advantage of rPNL is that it may reuse more labels at

the higher levels. In fact, the number of possible reusable labels is a little less than n!,

where n is the hierarchy depth. Because a different prime is used for a node at each

level, there will be n! possible combinations that result in the same product.

The actual number will be slightly less because certain small prime numbers

may not be used at the level that is equal to or more than the prime itself. When

modeling the two labeling schemes, we used MySQL v5.0.45 database. It can handle

integers up to 64 bits long or 191084.1 × , which limits the biggest label possible. This

influences the number of self-labels/levels any one branch may have. By definition, a

35

primorial (n#) is the product of all prime numbers less than or equal to n (Dubner

1987). The biggest value of the primorial that fits into the allocated number space is

171015.6#47 ×= . This means that there are 15 prime numbers that may be used to

describe the hierarchy: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, and 47.

Assuming that the prime number position must be less than the prime number itself,

there are nine prime numbers that are greater than 15. They may be organized in any

order. The first six prime numbers are smaller so some positions may be unavailable.

Table 4.1 outlines the availability of each of the 15 positions relative to each prime.

Table 4.1: rPNL Self-Label Availability

Position 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Prime Number 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47
Possible Positions 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
Unsuitable Positions 14 13 11 9 5 3 0 0 0 0 0 0 0 0 0
Available Positions 1 1 2 3 6 7 9 8 7 6 5 4 3 2 1

This table shows the first 15 prime numbers in order (position and prime number

rows). Each prime number may be located in any position, but only once (possible

positions row). Smaller prime numbers (2-13) may not be used at a position that is

greater than the prime number itself (unsuitable positions row). As a result, there is a

fixed amount of possible positions each prime number may assume. In fact, there are

 91,445,760 9!763211 =×××××× total possible combinations of the first 15 prime

numbers. The difference between PNL and rPNL schemes is that the discussed path is

the only 15-level path PNL scheme may have. It also must be the first path in the tree

assuming depth-first approach. Reusable prime number labeling scheme may have

36

over 91 million of such 15-level paths due to different combinations of the prime

numbers. Figure 4.2 shows PNL label size requirements for a symmetric tree with

fan-out and depth between 1 and 15 nodes. Figure 4.3 shows rPNL label size

requirements for the same tree.

Figure 4.2: PNL Parent-Label Size Growth

1 2 3 4 5 6 7 8 9
1
0

1
1

1
2

1
3

1
4

1
5

1

5

9
13

0

20

40

60

80

100

120

140

L
a
b

e
l

S
iz

e
 (

b
it

s
)

Fan-out

Depth

37

Figure 4.3: rPNL Parent-Label Size Growth

1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1

5

9

13

0

20

40

60

80

100

120

140

L
a
b

e
l

S
iz

e
 (

b
it

s
)

Fan-out

Depth

The label size is measured in the minimum number of bits required to represent it.

Assuming breadth first approach, the scheme proposed by Wu, Lee, and Hsu uses

every 15th prime at the beginning of each level as the rest of the prime numbers are

used by other nodes on that level. The proposed scheme allows prime number reuse,

so consecutive prime numbers will be used at the beginning of each level. The label at

the beginning of each level is guaranteed to be the smallest one on that level, which

makes the two graphs a best-case scenario for both labeling schemes. Reusable prime

number labeling scheme produces much smaller parent-labels, which requires roughly

half the space needed by PNL graph. The advantage of the rPNL scheme is that the

label size requirement grows very slowly. If the fan-out was larger than 15, the

difference would be even more dramatic.

38

4.3 Update Flexibility

There is a way to shift a branch up or down by updating the parent-label (division or

multiplication by a prime) and SC number (addition or subtraction of the SC number

components). Below are the detailed explanations of how it can be done. Table 4.2

shows the two nodes before and after their branch has been updated. ∏= ipN is the

product of all participating prime numbers p. Ni is the product of all prime numbers

except pi. Ri is the reciprocal of the prime number pi in ith position. Xi is the

simultaneous congruence component for each prime number and ∑= iXX is the

simultaneous congruence number.

Table 4.2: rPNL Hierarchy Update

Node Before Update Node After Update
 Ni Ri Xi Ni Ri Xi

2mod1=X 105 1 10511051 =×× 2mod1=X 21 1 211211 =××
3mod2=X 70 1 1401702 =×× 3mod2=X 14 1− 28)1(142 −=−××
5mod3=X 42 2− 252)2(423 −=−××
7mod4=X 30 3− 360)3(304 −=−×× 7mod3=X 6 1− 18)1(63 −=−××

53210mod360252140105 =−−+=X 1742mod182821 =−−=X

When shifting the branch down, a new parent-label is easily calculated by dividing

the old parent-label by the self-label of the node being removed. For the example

above the new parent-label would be 210/5=42. To generate a new SC number, we

need to remove the X3 of the respective prime and reduce any of the following SC

number components.

39

An interesting property of all reciprocals in a SC number is that their sum is

always N mod 1 , where N is the product of all prime numbers. This can be proven by

simply noting that, by definition, iii pRN mod1* = and ikk pRN mod0* = where

ki ≠ for all prime numbers. Therefore NRN ii mod1=∑ . This formula may be

decomposed into two parts, the stable part (before the node being deleted) and

remainder part (after the node being deleted). The stable part varies from node to

node as prime numbers and reciprocals change. However, there is a way to find a

reciprocal for each pi.

According to the Euler’s theorem na n mod1)(=ϕ if and only if 1),gcd(=na

(Guderson 1943). Thus, there is a way to find a reciprocal for a prime regardless of

the parent-label or other prime numbers used. In other words, i
p

i pN i mod1)(=ϕ if and

only if 1),gcd(=ii pN which is always true because, by definition, Ni is the product

of all prime numbers other than pi. Also, according to the definition of the Euler’s

totient function, it returns the number of positive integers less than or equal to n such

that each one is relatively prime to n. If n is prime, there will be n-1 of such integers

(all numbers between 1 and the prime itself). As a result, we get i
p

i pN i mod11 =− . The

SC number component related to p3 may be calculated as

126210 mod (210/5)*(210/5)*3 X -15
3 ==

Then the remainder of the SC number components will need to be modified by

36210 mod (210/3)-(210/2)-1 21
4

3
==∑

=i
iiRN

40

As a result the new SC number will be 17.42 mod 36)-126-(53 =

In order to shift a branch down, the same actions will have to be performed in

reverse. New parent-label would be 42*5=210. The SC number component related to

p3 may be calculated as

1265*42 mod (42)*(42)*3 X 1-5
3 ==

Then the remainder part of the SC number components will need to be modified by

1205*42 mod 42-5/3)*(42-5/2)*(42-1 421
4

3
==∑

=i
iiRN

The new SC number will be 535*42mod)126120(17 =++

A major issue with this kind of update is that the new prime must be unique

along the entire path to the nodes to be updated as well among the sibling nodes.

There is no way to tell which prime numbers are available for this update so a

globally unique prime should be used. Note that both kinds of updates could be

performed globally, regardless of the affected nodes location, based strictly on the

information available i.e. self-label of the parent node being added/removed and

previous ancestor information.

41

Chapter 5

Evaluation and Analysis

This section presents the experimental results of the benchmark comparison between

the original PNL scheme, the proposed the rPNL scheme and three other

representative schemes. All three hierarchical models are represented: Edge scheme

from the Recursive Expansion model, Range from the Nested Sets model, Path, PNL

and rPNL from the Materialized Path model.

5.1 Benchmark Setup

In order to conduct performance comparison between PNL scheme and the proposed

method we needed a highly structured hierarchy with considerable depth and fan-out.

The CNN website matches this description because it has multiple nested tables,

which adds to the depth of the tree. It is also saturated with links, which adds to the

fan-out. Additionally, because it is a web page, it has a highly unbalanced structure

i.e. body tag contains the majority of the data whereas head element has only a few

children. The original document did not validate as XHTML 1.0 so certain tags were

modified to improve readability and facilitate parsing process. Figure 5.1 shows the

XHTML tree used in the comparison (Aharef 2007). Yahoo website is represented by

42

very similar but simpler hierarchy. It is a much smaller tree, with fewer generations

but similar fanout. Figure 5.2 shows the XHTML tree used in the comparison (Aharef

2007). Also, in order to test the fan-out effects we needed a relatively shallow

hierarchy with very large fan-out. We used an XML encoded play "Hamlet" by

William Shakespeare (Bosak 1999). This specific document was often used by other

authors in their benchmark experiments. Figure 5.3 shows the XML tree used in the

comparison (Aharef 2007). A much simpler document, yet still with considerable fan-

out is "The Comedy of Errors" by William Shakespeare (Bosak 1999). Figure 5.7

shows the XML tree used in the comparison (Aharef 2007). Like in any other XML

compatible documents, each tag may have multiple children but at most one parent. If

there are inconsistencies with this rule in the graphs, it is purely for spacing purposes.

Table 5.1 outlines the important hierarchical properties of each tree.

Table 5.1: Test Tree Properties

Tree Max Depth Max Fan-Out Nodes Paths
CNN 14 20 840 444
Hamlet 6 174 6,636 1,205
Yahoo 10 21 473 248
Comedy 4 98 959 162

Such distinct tree compositions have been chosen purposefully to determine if there is

a relationship between the schemas’ performance and the structure of the tree being

modeled. Note that a wide range of depths and fan-outs is represented in order to

thoroughly test the performance of each labeling scheme.

43

Figure 5.1: CNN Tree Visualization (Aharef 2007)

Figure 5.2: Yahoo Tree Visualization (Aharef 2007)

44

Figure 5.3: Hamlet Tree Visualization (Aharef 2007)

Figure 5.4: Comedy Tree Visualization (Aharef 2007)

45

Hardware resources play a very important role in each model’s performance.

Some of the experiments were run on a slower hardware with a considerable

performance drop off. The experimental system configuration is outlined in Table 5.2.

Table 5.2: Test System Configuration

CPU Intel Pentium D 2.66GHz
RAM 2GB
OS MS Windows XP Professional
Database MySQL v5.0.45
Code PHP v.5.2.3 DOM/XML enabled

Additionally, network connection speed may have a great impact on the performance

on certain schemes. If a scheme relies on extensive computation on the client side that

results in very few queries being sent to the database server then network delay

effects are minimal. Conversely the Edge approach relies on recursive queries being

sent to the server. If the network connection is slow, this model’s performance will

suffer. Note that the code in all experiments accesses the database through a direct

socket connection, so no network delay is recorded.

The database schema composition may also influence the performance of

labeling schemes. Figure 5.5 shows the database structure used. Every labeling

scheme table refers to the tbl_nodes table to ensure consistency among multiple tree

representations. We did not implement any indexing or other optimization techniques

in order to test the true performance of each labeling scheme. The large numeric

labels in the PNL and rPNL models were stored as strings and converted to floating

point numbers on demand, as specified by the IEEE 754 standard, in order to

46

maintain the necessary precision. Otherwise the least relevant bit would be truncated,

which is catastrophic for number based labeling schemes.

Figure 5.5: Relational Database Setup

5.2 Tree Labeling

After modeling each tree, we compared the PNL and rPNL label sizes. Table 5.3

shows the PNL and rPNL maximum label sizes for all experiments as well as their

prime number usage.

Table 5.3: PNL and rPNL Maximum Label Sizes

 Max PNL Label Max rPNL Label PNL Primes rPNL Primes
CNN 41101.6 × (139 bits) 101091.9 × (37 bits) 840 28

Hamlet 19105.2 × (65 bits) 61038.3 × (22 bits) 6,636 178
Yahoo 281011.3 × (95 bits) 111021.8 × (40 bits) 473 30

Comedy 71054.5 × (26 bits) 31041.5 × (13 bits) 959 101

47

In addition to a much smaller parent-label that is much easier to factor, the rPNL

scheme used only 28 prime numbers to label the entire CNN tree. For the Yahoo tree,

the rPNL labeling scheme was forced to use 30 different prime numbers to label this

small tree because it has fewer paths and thus less opportunity to reuse existing self-

labels. However, it is better than the original prime number labeling scheme that has

reserved 473 unique primes for this tree. Note that for every tree, except the smallest

Yahoo tree, the PNL scheme produced very large labels that are very difficult to work

with. The rPNL scheme consistently produced small labels, which easily fit into the

64 bits available to the default modulo function, can be factorized, divided and

otherwise manipulated with a reasonable latency.

We also compared the tree representation sizes of each labeling scheme. Table

5.4 shows the comparison between the size of the original documents and each

scheme representation. The XML documents are the most compact of all

representations, which makes them an excellent format for transportation. However,

they can not be easily searched or analyzed and that is what labeling schemes are

especially good at.

Table 5.4: Tree Model Size Comparison

 XML Edge Path PNL Range rPNL
CNN 41,550 82,376 98,760 115,144 82,376 98,760

Hamlet 286,022 637,836 703,372 752,524 686,988 719,756
Yahoo 12,288 16,384 49,152 49,152 16,384 49,152

Comedy 49,152 114,688 147,456 163,840 131,072 163,840

The size, measured in bytes, is approximated from the database tables that were

created by each scheme. Note that many schemes generate representations of the

48

same size, especially in small trees e.g. Yahoo and CNN. This is because in small

trees the labels do not grow large enough to exceed the space allocated to each label

type by default. However, in large trees e.g. Comedy and Hamlet, each scheme’s

label size growth effects are more evident. Overall, the Edge approach produced the

most compact representation, followed by the Range labeling scheme. Reusable

prime number scheme was equal or better than PNL method regardless of the kind of

hierarchy being modeled. The rPNL method should be more compact than the Path

approach in especially deep tress because numeric multiplication increases label size

slower than string concatenation and because the proposed scheme has more

opportunities to reuse existing labels.

We also recorded the time it took each scheme to model a tree. Figure 5.6

shows that Range labeling scheme was the slowest of all models to record CNN tree

of only 840 nodes. The reason Range scheme was so slow is because a lot of

relabeling had to occur when a new node was inserted deep in the hierarchy. The

Edge and Path schemes recorded the tree very quickly since new label generation did

not require any computation or database requests. The Reusable prime number

labeling scheme was a little behind Edge and Path models because it had to request a

new label from the database before each new node was saved. Note that, depending

on the implementation, PNL scheme took 48 seconds, if the next available prime

must be requested each time (PNL-1), or 1.28 seconds, if consecutive prime numbers

are guaranteed to be unique with each new node being added (PNL-2).

49

Figure 5.6: CNN Tree Labeling Time

0.00

10.00

20.00

30.00

40.00

50.00

60.00

Edge Path PNL-1 PNL-2 Range rPNL

Labeling Scheme

T
im

e
 (

s
e
c
o

n
d

s
)

This experiment assumed that a new prime label must be requested from the

database to make sure it is unique relative to the schema’s constraints. This is usually

the case when there are multiple sources that populate the hierarchy or if it is built up

at different points of time. If, however, the entire tree is available from the start, the

overhead of requesting the next available prime may be eliminated completely. In

fact, our experiments have shown that PNL scheme may record the same hierarchies

40 times faster if it uses consecutive prime numbers from a pre-sorted source. PNL

scheme is a valid scheme that can successfully record hierarchical data. However, it

performs much worse than the rPNL scheme in a very likely scenario when the entire

tree to be modeled is not readily available.

50

The same experiment on the shallow hierarchies produced similar results.

Figure 5.7 shows the time it took to model the Comedy tree for each of the five

schemes.

Figure 5.7: Comedy Tree Labeling Time

0

10

20

30

40

50

60

70

80

90

100

Edge Path PNL Range rPNL

Labeling Scheme

Ti
m

e
(s

ec
on

ds
)

Again, the Edge and Path schemes had consistently good results as their label

generation algorithms are not influenced by the structure of the hierarchy. Range

labeling scheme has much better results recording this shallow tree. Assuming a

depth first approach, very little relabeling was needed. As a result, Range labeling

scheme was faster than the proposed reusable prime number labeling scheme. The

original prime number labeling scheme was the slowest in all experiments. The

reason PNL scheme took so long is not because it is time consuming to generate a

label, but because it takes long to ensure this label is globally unique. Figure 5.6

showed that if PNL scheme is guaranteed to have reliable labels, its performance

51

could be greatly increased. The proposed scheme, on the other hand, produced good

results without making this assumption for all hierarchies being modeled.

5.3 Node Labeling

We also compared the time it took to record each individual node in a hierarchy. Both

PNL and rPNL have strict rules about the uniqueness of the labels used. For PNL

scheme global uniqueness is required, which results in increasing delays as the tree

gets bigger. For the rPNL scheme only local uniqueness is needed. As a result, very

few records are referenced with every new node, which increases performance.

Figure 5.8 shows the time it took to record each node in CNN tree.

Figure 5.8: CNN Tree Labeling with PNL and rPNL

0

0.005

0.01

0.015

0.02

0.025

0.03

1 16 31 46 61 76 91 106 121 136 151 166 181 196

Nodes

Ti
m

e
(s

ec
on

ds
)

rPNL

PNL

The two labeling schemes are very close at the beginning because only a few

node labels must be checked for uniqueness. However, as the tree expands, the

52

number of labels increases and PNL scheme must check them all to ensure global

uniqueness. Reusable prime number labeling scheme, however, is only concerned

with relative/local uniqueness. The labels being checked with this scheme include

only the nodes on the path to the root, and sibling nodes. As a result, the delay is

relatively constant. The proposed scheme would not outperform PNL method in a

very shallow hierarchy with large fan-out. In fact, in this case the performance would

be almost identical because relative uniqueness would also be global.

This claim is supported by the experimental results shown on Figure 5.9. Both

schemes have nearly identical results at the beginning of the Comedy tree experiment

when the number of labels being checked is the same. The gradual increases and

drops in the rPNL scheme graph clearly show different paths being recorded. The

increase in the delay for both schemes is proportional to the number of labels that

must be checked. For rPNL scheme it is proportional to the fanout of a current

generation on a given path. For PNL it is proportional to the total number of already

labeled nodes. As more nodes are recorded, the PNL scheme falls behind rPNL. In

fact, the rPNL delay gets reset with every new path, whereas PNL delay grows

continuously.

53

Figure 5.9: Comedy Tree Labeling with PNL and rPNL

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

1 16 31 46 61 76 91 106 121 136 151 166 181 196

Nodes

Ti
m

e
(s

ec
on

ds
)

rPNL
PNL

Figure 5.10 and Figure 5.11 show a similar comparison between rPNL, Edge

and Path schemes for CNN and Comedy trees. The Edge and Path labeling schemes

are not influenced by the structure of the hierarchy. Therefore each node insertion

should take the same amount of time and result in a straight-line graph. The small

discrepancy in the Edge and Path graphs is due to hardware resource availability, hard

disk access times, etc. During the CNN tree experiment, the proposed scheme differs

from the Edge approach only slightly whenever the tree’s depth increases rapidly. For

example, the depth of the CNN tree depth goes from 4 to 13 and back to 4 generations

between the 10th and 40th nodes. In fact, the average difference between the two

schemes across the entire experiment was only 0.0007 seconds.

54

Figure 5.10: CNN Tree Labeling with rPNL and Edge

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

1 16 31 46 61 76 91 106 121 136 151 166 181 196

Nodes

Ti
m

e
(s

ec
on

ds
)

rPNL

Edge

Figure 5.11: Comedy Tree Labeling with rPNL and Edge

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

1 16 31 46 61 76 91 106 121 136 151 166 181 196

Nodes

Ti
m

e
(s

ec
on

ds
)

rPNL

Edge

55

Likewise the proposed scheme falls behind the Path approach whenever it has to deal

with a large number of siblings. For instance, Comedy tree nodes 70 to 140 are

siblings. Unlike the Range approach, the reusable prime number labeling scheme

maintains its performance across the entire tree without the need to re-label parts of it

as the new nodes get added.. A shallow Hamlet hierarchy does not have as many

relabeling incidents as the CNN tree experiment. However, they are much more

extreme because many more nodes must be referenced to determine if they need to be

relabeled.

Figure 5.12 and Figure 5.13 show that the proposed scheme does get affected

by the structure of the tree, but not as much as the Range model. The spikes in the

Range labeling scheme occur mostly when there is a number of sibling nodes to be

inserted deep inside the tree hierarchy (CNN nodes 18-24, 68-74, 137-141, and 177-

192). If the boundaries of the parent container are no longer large enough, the entire

branch must be re-labeled and ancestor boundaries expanded. Additionally, any of the

ancestor siblings’ containers must be shifted in order to prevent boundary

overlapping. This kind of re-labeling is very resource intensive and that is why the

peaks are so extreme. However, if enough adjustment has been provided, no further

updates should be necessary. This is why the peaks are very narrow. A shallow

Hamlet hierarchy does not have as many relabeling incidents as the CNN tree

experiment. However, they are much more extreme because many more nodes must

be referenced to determine if they need to be relabeled.

56

Figure 5.12: CNN Tree Labeling with rPNL and Range

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

1 16 31 46 61 76 91 106 121 136 151 166 181 196

Nodes

Ti
m

e
(s

ec
on

ds
)

rPNL

Range

Figure 5.13: Hamlet Tree Labeling with rPNL and Range

0

0.005

0.01

0.015

0.02

0.025

0.03

1 16 31 46 61 76 91 106 121 136 151 166 181 196

Nodes

Ti
m

e
(s

ec
on

ds
)

rPNL

Range

57

5.4 Direct Children Lookup

The goal of this experiment was to traverse the entire tree from top to bottom one

level at a time. For each node in a tree only its direct children were located. The

results are displayed in Figure 5.14, Figure 5.15, and Figure 5.16.

Figure 5.14: CNN Tree Top-Down Tree Traversal

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Edge Path PNL Range rPNL

Labeling Scheme

T
im

e
 (

s
e
c
o

n
d

s
)

58

Figure 5.15: Yahoo Tree Top-Down Tree Traversal

0

0.1

0.2

0.3

0.4

0.5

0.6

Edge Path PNL Range rPNL

Labeling Scheme

Ti
m

e
(s

ec
on

ds
)

Figure 5.16: Comedy Tree Top-Down Tree Traversal

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Edge Path PNL Range rPNL

Labeling Scheme

Ti
m

e
(s

ec
on

ds
)

59

Since the experiment focused on searching for nodes only one generation down, the

Edge model performed best as it involved fast number lookups. The PNL scheme also

used numerical lookups but it took some time to generate the necessary labels. The

Range approach performed well, because it best suited for descendent searches with a

small correction for depth in this case. The Reusable prime number labeling scheme

was a little behind PNL. Unlike PNL, rPNL parent-labels are not globally unique, so

fast number lookups were not possible. Instead a descendent search, similar to Range

scheme, was performed. The proposed scheme did far better than Path approach

because regular expression matching is much more complex and resource intensive

than modulo function.

5.5 Descendent Search

Descendent search is the most common requirement of the hierarchical models. It is a

very frequent practice to search only a specific branch or sub-tree of the hierarchy. In

fact, the rPNL scheme was developed for this specific purpose in mind. Figure 5.17

shows the results of the CNN descendent search experiment. The nodes being

searched are located on different depths between 5 and 11 generations. There are a

total of 71 paths being tested with 135 matching records. As expected from section

2.2 discussion, Range descendent search produced the best results because the only

function needed to identify the resulting nodes was a simple number comparison. The

Path scheme was also able to successfully locate all of the matching nodes; however,

regular expression matches fall behind a lightweight modulo function. The Reusable

prime number labeling scheme was able to locate the same nodes in considerably less

60

time. Both prime number based models had similar results on smaller depths and

smaller hierarchies, as demonstrated on Figure 5.18 and Figure 5.19. However, the

PNL scheme was not able to successfully complete the CNN tree experiment as it

failed to compute the relationships among nodes with such large labels. Edge scheme,

used recursive queries to traverse the entire sub-tree, analyzing each node

individually to determine if it matches the criteria. As a result, it took 0.09471

seconds to complete. This is almost forty times as slow as the rPNL scheme.

Figure 5.17: CNN Tree Descendent Search

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Edge Path PNL Range rPNL

Labeling Scheme

Ti
m

e
(s

ec
on

ds
)

61

Figure 5.18: Yahoo Tree Descendent Search

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

Edge Path PNL Range rPNL

Labeling Scheme

Ti
m

e
(s

ec
on

ds
)

Figure 5.19: Comedy Tree Descendent Search

0

0.01

0.02

0.03

0.04

0.05

0.06

Edge Path PNL Range rPNL

Labeling Scheme

Ti
m

e
(s

ec
on

ds
)

62

5.6 Ancestor Determination

Another very common functionality of hierarchal labeling schemes is ancestor

determination. It is used to establish a path from the current node to the root of the

hierarchy. This experiment measured the performance of this functionality among

different schemes. The results of the experiment are shown in Figure 5.20, Figure

5.21, Figure 5.22 and Figure 5.23. When the experiment was performed on CNN tree,

the Range model was able to locate all ancestors the fastest. This contradicts with the

prediction made by Tropashko in section 2.2. This is due to the fact that the tree was

relatively small, with limited fan-out and considerable depth.

Figure 5.20: CNN Tree Ancestor Determination

0

0.05

0.1

0.15

0.2

0.25

Edge Path Range rPNL PNL

Labeling Scheme

T
im

e
 (

s
e
c
o

n
d

s
)

63

Figure 5.21: Hamlet Tree Ancestor Determination

0

0.02

0.04

0.06

0.08

0.1

0.12

Edge Path Range rPNL PNL

Labeling Scheme

T
im

e
 (

s
e
c
o

n
d

s
)

Figure 5.22: Yahoo Tree Ancestor Determination

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

Edge Path PNL Range rPNL

Labeling Scheme

Ti
m

e
(s

ec
on

ds
)

64

Figure 5.23: Comedy Tree Ancestor Determination

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

Edge Path PNL Range rPNL

Labeling Scheme

Ti
m

e
(s

ec
on

ds
)

When the same experiment was performed on Hamlet tree (Figure 5.21), the Range

model performance did in fact suffer due to an increase in overall tree size and fan-

out. A similar phenomenon occurred during the experiments on the Comedy tree

(Figure 5.23). In fact, Range scheme ancestor determination in a shallow hierarchy is

more difficult than in a deep hierarchy.

The Path scheme did not involve any database requests regarding the parent-

labels. In fact, all necessary information was retrieved from the node’s path label.

This is the reason this model showed consistent results regardless of the hierarchy

being modeled. The Edge scheme involved a lot of recursive queries each one

performing a simple numeric label lookup. This is the reason Edge scheme was

always slower than Path model. The proposed reusable prime number labeling

65

scheme had consistently good results across all experiments. In fact, it was the fastest

of the five schemes during the Yahoo experiment (Figure 5.22).

The rPNL algorithm which is reverse of the one described in section 4.1 could

have been used for this experiment. However, due to the rounding error in MySQL

software a different approach has been implemented. With this approach, each parent-

label is factorized and the appropriate parent SC number is generated. Then each

parent node is located. This method is obviously much slower as it involves

factorization and multiple database requests. However, the factorization of smaller

rPNL labels is much faster than factorization of PNL labels. The native rPNL

ancestor determination algorithm involves a single query submitted to the database

with no factorization or SC number calculations. If the rounding error could be

eliminated, the rPNL scheme performance would be improved even more.

The results of this experiment have shown that both prime number schemes

were considerably slower than the rest, especially in larger hierarchies. Their

performance was proportional to the depth of the tree because both scheme

implementations relied on prime factorization functionality. For instance, in the CNN

tree experiment the PNL scheme was 604 times slower than Edge model and in

Hamlet tree experiment it was 16 times slower than Range scheme. However, even

with a slower algorithm implementation the rPNL scheme was on average 150 times

faster than PNL scheme. The overall performance of prime number scheme may be

greatly improved by introducing a more efficient prime factorization algorithm like

the ones presented by Connelly Barnes (Barnes 2004). However, because both

66

models rely on the same prime factorization function, their relative performance ratio

will remain constant.

5.7 Update Flexibility

Tree updates are one of the most complex operations available. They usually require a

number of nodes to be re-labeled in order to reflect ancestor removal/addition and

branch movement. The Edge labeling scheme is best suited for this purpose because

only a single node needs to be updated to in order to execute any kind of tree update.

The Range model is also quite flexible in this regard. It will require multiple

unrelated nodes to be relabeled in order to accommodate the changes. However, each

kind of update is relatively simple and could be performed globally. Additionally, this

scheme design assumes frequent updates. Therefore, if a good scheme

implementation is available, the tree can be successfully updated. Materialized path

models such as Path and PNL may also be updated. For Path labeling scheme each

individual update is not very complex. Even though string operations are much more

resource intensive than math ones, they are guaranteed to work at all depths of the

tree. PNL scheme can accommodate various types of updates as well. However, due

to extremely large labels that are common in deep hierarchies, some of the updates

might not be able to propagate through the entire sub-tree. The reusable prime

number scheme is especially difficult to update. It relies on relative label uniqueness

so branch movement is especially complicated. Vertical branch movement algorithm

has been described in section 4.3. Unfortunately, there is no simple way to move an

entire sub-tree within a hierarchy because there is no reliable way to ensure that the

67

prime numbers used in the destination branch are not also used in the sub-tree being

moved. The only way to accomplish this would be through individual node re-

labeling.

68

Chapter 6

Conclusions and Future Work

6.1 Conclusion

The purpose of hierarchical data modeling is a quick determination of relationships

among the nodes in a tree. In order to do that efficiently, a labeling scheme must be in

place that supports fast, computationally light queries. We have proposed a new

prime number labeling scheme that utilizes the unique characteristics of prime

numbers to encode the node position in a hierarchy. The rPNL scheme allows labels

to be reused throughout the tree while still being unique at the sibling level and along

the leaf-root path. This keeps the label size minimal, which in turn dramatically

improves performance. The reusable prime number labeling scheme allows capturing

larger hierarchies by encoding the order of the prime numbers with a simultaneous

congruence number. Section 4.2 discussed the mathematical reasoning behind label

size growth in both schemes and section 5.2 provided experimental evidence of the

rPNL scheme producing a much more compact tree representation comparable to the

path model. As shown in section 5.5, rPNL scheme is capable of searching deep

hierarchies better than PNL. The proposed scheme also showed a significant

69

improvement in performance relative to the original approach as demonstrated in

sections 5.5 and 5.6. Table 6.1 and Table 6.2 outline the results of the experiments

performed. Overall, the rPNL scheme is not the best performer. However, it is better

than PNL scheme for deep and shallow hierarchies.

Table 6.1: Scheme Comparison Summary for Deep Trees

 Edge Path PNL Range rPNL
Model Size 1 4 5 2 3
Tree Labeling 1 2 5 4 3
Direct Children Lookup 1 5 3 2 4
Descendent Search 5 3 4 1 2
Ancestor Determination 3 1 5 2 4
Update Flexibility 1 3 4 2 5

Table 6.2: Scheme Comparison Summary for Shallow Trees

 Edge Path PNL Range rPNL
Model Size 1 3 5 2 4
Tree Labeling 1 2 5 3 4
Direct Children Lookup 1 5 2 3 4
Descendent Search 5 4 3 1 2
Ancestor Determination 2 1 5 3 4
Update Flexibility 1 2 4 3 5

6.2 Summary of Contributions

This thesis presented a more capable labeling scheme that improves upon PNL

model. We described the reusable prime number labeling scheme in detail, outlined

its governing rules, and made conclusions regarding its expected capacity and overall

size. Additionally, we discussed the update limitations that our scheme has and

proposed an algorithm for vertical branch movement that does not require individual

node label re-generation. A number of experiments, comparing the reusable prime

70

number scheme to others representative methods, have been carried out. The results

of each experiment were analyzed and explained. We were able to demonstrate that

the proposed scheme is capable of accurately modeling hierarchies of high depth and

high fan-out within the available space. The proposed labeling scheme includes label

recycling functionality which is not natively supported by any other labeling scheme.

This research has shown that the rPNL labeling scheme is a valid method for

encoding hierarchical information into a relational database.

6.3 Future Work

This research focused on labeling scheme comparison with no optimizations of any

kind. This allowed true model performance to be isolated. In the future we would like

to research various model optimizations applicable to the rPNL scheme. Some of the

optimizations have been outlined by Wu, Lee, and Hsu in the context of PNL scheme.

One of the major disadvantages of both prime number labeling schemes is that all

searches must go through the entire tree. A further research into tree partitioning and

caching would reduce the issue of full table scans. Additionally, some of the issues

with both schemes were hardware limitations of the testing systems. Currently all

computations were done within the 32-bit computer architecture. Further research

could focus on scheme performance in 64-bit environments, on other operating

systems, more efficient programming languages, and other relational databases like

Oracle and MS SQL Server.

71

Bibliography

Abiteboul, S., Kaplan, H., and Milo, T. (2001), "Compact Labeling Schemes for
Ancestor Queries", In Proceedings of the Twelfth Annual ACM-SIAM
Symposium on Discrete Algorithms, Society for Industrial and Applied
Mathematics, pp. 547-556, Washington, DC.

Aharef, S. (2007), Websites as Graphs - An HTML DOM Visualizer Applet, Java

Applet, http://www.aharef.info/static/htmlgraph/

Amagasa, T., Yoshikawa, M., and Uemura, S. (2003), "QRS: A Robust Numbering

Scheme for XML Documents", In Proceedings of the 19th International
Conference on Data Engineering, pp. 705-707.

Atkinson, M., DeWitt, D., Maier, D., Bancilhon, F., Dittrich, K., and Zdonik, S.

(1992), "The Object-Oriented Database System Manifesto", Building an
Object-Oriented Database System: The Story of 02, Morgan Kaufmann
Publishers.

Barnes, C. (2004), Integer Factorization Algorithms, Technical Report, Department

of Physics, Oregon State University.

Böhme, T. and Rahm, E. (2004), "Supporting Efficient Streaming and Insertion of

XML Data in RDBMS", In Proceedings of the 3rd DIWeb Workshop, CAiSE,
pp. 70-81, Riga, Latvia.

Bosak, J. (1999), The Plays of Shakespeare in XML, http://www.oasis‐

open.org/cover/bosakShakespeare200.html

Brandon, D. (2005), "Recursive Database Structures", Journal of Computing Sciences

in Colleges, vol. 21, no. 5, pp. 295-304.

72

Buneman, P., Davidson, S., Hillebrand, G., and Suciu, D. (1996), "A Query Language
and Optimization Techniques for Unstructured Data", In Proceedings of the
1996 ACM SIGMOD International Conference on Management of Data, pp.
505-516, Montreal, Quebec.

Celko, J. (2004), Joe Celko’s SQL for Smarties: Trees and Hierarchies, Morgan

Kaufmann Publishers.

Christophides, V., Abiteboul, S., Cluet, S., and Scholl, M. (1994), "From Structured

Documents to Novel Query Facilities", In Proceedings of the 1994 ACM
SIGMOD International Conference on Management of Data, pp. 313-324,
Minneapolis, MN.

Cohen, E., Kaplan, H., and Milo, T. (2002), "Labeling Dynamic XML Trees", In

Proceedings of the 21st ACM SIGMOD-SIGACT-SIGART Symposium on
Principles of Database Systems, pp. 271-281, Madison, WI.

David, M. (2003), "ANSI SQL Hierarchical Processing Can Fully Integrate Native

XML", In Proceedings of the 2003 ACM SIGMOD International Conference
on Management of Data, vol. 32, no. 1, pp. 41-46.

Deutsch, A., Fernandez, M., and Suciu, D. (1999), "Storing Semistructured Data With

STORED", In Proceedings of the 1999 ACM SIGMOD International
Conference on Management of Data, pp. 431-442, Philadelphia, PA.

Deux, O. et al. (1990), "The Story of O2", IEEE Transactions on Knowledge and

Data Engineering, vol. 2, no. 1, pp. 91-108.

Dietz, P. (1982), "Maintaining Order in a Linked List", In Proceedings of the

Fourteenth Annual ACM Symposium on Theory of Computing, pp.122-127,
San Francisco, CA.

Dubner, H. (1987), "Factorial and Primorial Primes", Journal of Recreational

Mathematics, vol. 19, pp. 197–203.

Duong, M. and Zhang, Y. (2005), "LSDX: A New Labeling Scheme for Dynamically

Updating XML Data", In Proceedings of the 16th Australasian Database
Conference - Volume 39, vol. 103, pp. 185-193, Newcastle, Australia.

Elçi, A. and Rahnama, B. (2006), "XMLEase: A Novel Access and Space-Efficiency

Model for Maintaining XML Data in Relational Databases", In Proceedings of
the International Conference on Semantic Web and Web Services, pp. 186-
192, Las Vegas, NV.

73

Fernandez, M., Florescu, D., Levy, A., and Suciu, D. (1997), "A Query Language for
a Web-Site Management System", ACM SIGMOD Record, vol. 26, no. 3, pp.
4-11.

Fernández, M., Florescu, D., Kang, J., Levy, A., and Suciu, D. (1998), "Catching the

Boat With Strudel: Experiences With a Web-Site Management System", In
Proceedings of the 1998 ACM SIGMOD International Conference on
Management of Data, pp. 414-425, Seattle, WA.

Florescu, D. and Kossmann, D. (1999a), "Storing and Querying XML Data Using an

RDBMS", IEEE Data Engineering Bulletin, vol. 22, no. 3, pp. 27-34.

Florescu, D. and Kossmann, D. (1999b), A Performance Evaluation of Alternative

Mapping Schemes for Storing XML Data in a Relational Database, Research
Report no. 3680, INRIA, Rocquencourt, France.

Guderson, N. (1943), "Some Theorems of Euler’s Function", Bulletin of the American

Mathematical Society, vol. 49, pp. 278-280.

Härder, T., Haustein, M., Mathis, C., and Wagner, M. (2007), "Node Labeling

Schemes for Dynamic XML Documents Reconsidered", Data & Knowledge
Engineering, vol. 60, no. 1, pp. 126-149.

Haigh, T. (2006), "A Veritable Bucket of Facts: Origins of the Data Base

Management System", ACM SIGMOD Record, vol. 35, no. 2, pp. 33-49.

Howard, F. (2002), "A Generalized Chinese Remainder Theorem", The College

Mathematics Journal, vol. 33, no. 4, pp. 279-282.

IEEE Standards Committee 754, (1985), IEEE Standard for Binary Floating-Point

Arithmetic, ANSI/IEEE Standard 754-1985, Institute of Electrical and
Electronics Engineers, vol. 22 no. 2, pp. 9–25.

Jiang, H., Lu, H., Wang, W. and Yu, J. (2002a), "Path Materialization Revisited: An

Efficient Storage Model for XML Data", In Proceedings of the Thirteenth
Australasian Conference on Database Technologies, Australian Computer
Society, Inc., pp. 85–94, Melbourne, Victoria, Australia.

Jiang, H., Lu, H., Wang, W. and Yu, J. (2002b), "Xparent: An Efficient RDBMS-

Based XML Database System", In Proceedings of the 18th International
Conference on Data Engineering, IEEE Computer Society, p.335,
Washington, DC.

74

Khaing, A. and Thein, N. (2006), "A Persistent Labeling Scheme for Dynamic
Ordered XML Trees", In Proceedings of the 2006 IEEE/WIC/ACM
International Conference on Web intelligence, IEEE Computer Society, pp.
498-501.

Leonard, J. (2006), Strategies for Encoding XML Documents in Relational

Databases: Comparisons and Contrasts, Master Thesis, East Tennessee State
University.

Li, C. and Ling, T. (2005a), "QED: A Novel Quaternary Encoding to Completely

Avoid Re-Labeling in XML Updates", In Proceedings of the 14th ACM
International Conference on Information and Knowledge Management, pp.
501-508, Bremen, Germany.

Li, C. and Ling, T. (2005b), "An Improved Prefix Labeling Scheme: A Binary String

Approach for Dynamic Ordered XML", In Proceedings of the 10th
International Conference on Database Systems for Advanced Applications,
pp. 125-137.

Li, C., Ling, T., and Hu, M. (2006), "Reuse or Never Reuse the Deleted Labels in

XML Query Processing Based on Labeling Schemes", In Proceedings of the
11th International Conference on Database Systems for Advanced
Applications, DASFAA, pp. 659-673, Singapore.

Li, C., Ling, T. W., Lu, J., and Yu, T. (2005), "On Reducing Redundancy and

Improving Efficiency of XML Labeling Schemes", In Proceedings of the 14th
ACM International Conference on Information and Knowledge Management
pp. 225-226, Bremen, Germany

Li, Q. and Moon, B. (2001), "Indexing and Querying XML Data for Regular Path

Expressions", In Proceedings of the 27th International Conference on Very
Large Data Bases, Morgan Kaufmann Publishers, pp. 361-370, San Francisco,
CA.

Lindemann, F. (1933), "The Unique Factorization of a Positive Integer", Quarterly

Journal of Mathematics, vol. 4, pp. 319-320.

McHugh, J., Abiteboul, S., Goldman, R., Quass, D., and Widom, J. (1997), "Lore: A

Database Management System for Semistructured Data, ACM SIGMOD
Record, vol. 26, no. 3, pp. 54-66.

Mignet, L., Barbosa, D., and Veltri, P. (2003), "The XML Web: A First Study", In

Proceedings of 12th International World Wide Web Conference, ACM Press,
pp. 500-510, Budapest, Hungary.

75

O’Neil, P. and O’Neil, E. (2004), "ORDPATHs: Insert-Friendly XML Node Labels",
In Proceedings of the ACM SIGMOD International Conference on
Management of Data, pp. 1-6, Paris, France.

Papakonstantinou, Y., Abiteboul, S., and Garcia-Molina, H. (1996), "Object Fusion in

Mediator Systems", In Proceedings of the 22nd International Conference on
Very Large Data, Morgan Kaufmann Publishers, pp. 413-424, San Francisco,
CA.

Preuveneers, D. and Berbers, Y. (2006), Prime Numbers Considered Useful:

Ontology Encoding for Efficient Subsumption Testing, Technical Report,
Department of Computer Science, K.U.Leuven, Leuven, Belgium.

Quass, D., Rajaraman, A., Sagiv, Y., Ullman, J., and Widom, J. (1995), "Querying

Semistructured Heterogeneous Information", In Proceedings of the Fourth
International Conference on Deductive and Object-Oriented Databases,
Lecture Notes In Computer Science, vol. 1013, pp. 319-344, Springer-Verlag,
London.

Schmidt, A., Kersten, M. L., Windhouwer, M., and Waas, F. (2001), "Efficient

Relational Storage and Retrieval of XML Documents", In Selected Papers
From the Third International Workshop WebDB 2000 on the World Wide Web
and Databases, Lecture Notes In Computer Science, vol. 1997, pp. 137-150,
Springer-Verlag, London.

Shanmugasundaram, J., Tufte, K., Zhang, C., He, G., DeWitt, D., and Naughton, J.

(1999), "Relational Databases for Querying XML Documents: Limitations
and Opportunities", In Proceedings of the 25th International Conference on
Very Large Data Bases, Morgan Kaufmann Publishers, pp. 302-314, San
Francisco, CA.

Shoens, K., Luniewski, A., Schwarz, P., Stamos, J., and Thomas, J. (1993), "The

Rufus System: Information Organization for Semi-Structured Data", In
Proceedings of the 19th International Conference on Very Large Data Bases,
Morgan Kaufmann Publishers, pp. 97-107, San Francisco, CA.

Shui, W., Lam, F., Fisher, D., and Wong, R. (2005), "Querying and Maintaining

Ordered XML Data Using Relational Databases", In Proceedings of the 16th
Australasian Database Conference - Volume 39, ACM International
Conference Proceeding Series, vol. 103, pp. 85-94, Newcastle, Australia.

76

Tatarinov, I., Viglas, S., Beyer, K., Shanmugasundaram, J., Shekita, E., and Zhang,
C. (2002), "Storing and Querying Ordered XML Using a Relational Database
System", In Proceedings of the 2002 ACM SIGMOD International
Conference on Management of Data, pp. 204-215, Madison, WI.

Tropashko, V. (2005), "Nested Intervals Tree Encoding in SQL", In Proceedings of

the 2005 ACM SIGMOD International Conference on Management of Data,
vol. 34, no. 2, pp. 47-52.

Weigel, F., Schulz, K., and Meuss, H. (2005), "The BIRD Numbering Scheme for

XML and Tree Databases -- Deciding and Reconstructing Tree Relations
Using Efficient Arithmetic Operations", In Proceedings of the 3rd
International XML Database Symposium, pp. 49-67, Trondheim, Norway.

Wu, X., Lee, M., and Hsu, W. (2004), "A Prime Number Labeling Scheme for

Dynamic Ordered XML Trees", In Proceedings of the 20th International
Conference on Data Engineering, p. 66, Washington, DC.

Wunderlich, M (1983), "Recent Advances in the Design and Implementation of Large

Integer Factorization Algorithms", In Proceedings of the 1983 IEEE
Symposium on Security and Privacy, pp. 67-71, Washington, DC.

Yoshikawa, M. and Amagasa, T. (2001), "Xrel: A Path-Based Approach to Storage

and Retrieval of XML Documents Using Relational Databases", In ACM
Transactions on Internet Technology, vol. 1, no. 1, pp. 110-141.

