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Abstract 

Hierarchical data structures are an important aspect of many computer science fields 
including data mining, terrain modeling, and image analysis. A good representation of 
such data accurately captures the parent–child and ancestor–descendent relationships 
between nodes. There exist a number of different ways to capture and manage 
hierarchical data while preserving such relationships. For instance, one may use a 
custom system designed for a specific kind of hierarchy. Object oriented databases 
may also be used to model hierarchical data. Relational database systems, on the 
other hand, add an additional benefit of mature mathematical theory, reliable 
implementations, superior functionality and scalability. 
 Relational databases were not originally designed with hierarchical data 
management in mind. As a result, abstract information can not be natively stored in 
database relations. Database labeling schemes resolve this issue by labeling all nodes 
in a way that reveals their relationships. Labels usually encode the node’s position in 
a hierarchy as a number or a string that can be stored, indexed, searched, and 
retrieved from a database. Many different labeling schemes have been developed in 
the past. All of them may be classified into three broad categories: recursive 
expansion, materialized path, and nested sets. Each model has its strengths and 
weaknesses. Each model implementation attempts to reduce the number of 
weaknesses inherent to the respective model. 
 One of the most prominent implementations of the materialized path model 
uses the unique characteristics of prime numbers for its labeling purposes. However, 
the performance and space utilization of this prime number labeling scheme could be 
significantly improved. This research introduces a new scheme called reusable prime 
number labeling (rPNL) that reduces the effects of the mentioned weaknesses. The 
proposed scheme advantage is discussed in detail, proven mathematically, and 
experimentally confirmed. 
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Chapter 1  

Introduction 

Real world information often consists of multiple pieces that are somehow related to 

each other. As a result, there exists a great demand for data management systems that 

can easily store, retrieve and search this kind of information. One type of such 

abstract data is hierarchy. Hierarchical structures are a very common representation of 

business organization, work breakdown, or any data that can be organized in a tree. 

Hierarchical data representations are often referred to as trees because of their 

similarity in shape. The root node is an ancestor of all other nodes, and the entire 

hierarchy is composed of branches of nodes starting from the root. 

 Hierarchical data management is not a new concept. In fact, hierarchical and 

network databases like IMS, MRI and TOTAL were quite popular during mainframe 

computing before relational databases took over (Haigh 2006). Hierarchical 

relationships within given data provide a very interesting insight into how the 

information is organized in real life. Hierarchical models are especially useful for 

organizing large amounts of data into related categories. The most common 

application of a hierarchical model is the file system on any modern operating system. 
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It allows thousands of files to be neatly organized into appropriate folders, subfolders, 

etc. Another popular hierarchical model is the Domain Name System (DNS) which 

organizes server names based on predefined structure: top level domain (e.g. edu, 

com, net), second level domain (e.g. wikipedia.com, google.com, yahoo.com), and 

multiple sub-domains (e.g. maps.google.com, mail.google.com, tv.yahoo.com). Both 

of these labeling schemes are variations of the materialized path model discussed in 

section 2.3. Each one specifies the path from the root of the hierarchy to a specific 

node. This results in an accurate representation of node relationships in a tree that is 

so difficult to recreate in relational databases. 

A defining distinction between hierarchical and relational data management is 

the way each method locates data. Hierarchical systems are best suited for gradual 

refinement of the search criteria or limiting the search to a specific category, 

subcategory, etc. Due to their advanced indexing ability, relational database systems 

excel at searches based on exact criteria. Both kinds of functionality are very useful; 

however, no one system can provide both of them. In fact, this is why modern 

operating systems generate a flat file system index, an optimized inventory of system 

files, in addition to maintaining all files in a hierarchy. As an alternative, attempts 

have been made to add the hierarchical functionality to an already existing relational 

database. This research is focused on the latter topic. 
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1.1 Justification 

Florescu and Kossmann discuss three classical approaches to managing hierarchical 

data. The most apparent approach is to build a custom system specifically designed 

and optimized towards handling this kind of information. The authors discuss some of 

the most prominent research prototypes such as Rufus, Lore, and Strudel (Florescu 

and Kossmann 1999b).  

Rufus is a system based on an object-oriented database with extensible class 

hierarchy and text search functionality (Shoens, Luniewski, Schwarz, Stamos, and 

Thomas 1993). Lightweight Object Repository (Lore) is a database management 

system (DBMS) designed specifically for managing semistructured data that uses 

DataGuides instead of conventional database schema. The DataGuides are essentially 

structural summaries of the data used to maintain the hierarchical relationships 

(McHugh, Abiteboul, Goldman, Quass, and Widom 1997). Strudel is a website 

content and structure management system that supports abstract data management by 

maintaining the hierarchical relationships separately from externally stored data 

(Fernández, Florescu, Kang, Levy, and Suciu 1998). Deutsch, Fernandez, and Suciu 

presented a semistructured to relational data (STORED) query language and storage 

schema. STORED performs various data mining operations in order to extract the 

scheme from existing data and then build the appropriate relations. This custom 

solution is very similar to other products such as Lorel (Quass, Rajaraman, Sagiv, 

Ullman, and Widom 1995), UnQL (Buneman, Davidson, Hillebrand, and Suciu 
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1996), MSL (Papakonstantinou, Abiteboul and Garcia-Molina 1996), and StruQL 

(Fernandez, Florescu, Levy, and Suciu 1997, Fernández et al. 1998). 

A similar approach involves using an object-oriented database system that 

models the nodes in a hierarchy as objects and edges as properties. Object data types 

allow flexible storage capabilities and easily updatable trees. Florescu and Kossmann 

focus on two commercial products that implement this method, O2 and Objectsore 

(Deux et al. 1990). Atkinson, DeWitt, Maier, Bancilhon, Dittrich, and Zdonik 

outlined the main features and desired characteristics of object oriented database 

management systems (OODBMS). They also performed a comprehensive survey of 

many existing products including Gemstone, Vision, Orion, Flavors, Lore, Simula, 

Vbase and O2. DeWitt et al. compared these systems in regards to extensibility, data 

persistence, concurrency and recovery functionality. The authors concluded that 

many of the considered products had satisfactory results, which made those 

OODBMS a viable solution for storing hierarchical data.  

The third approach is to use an existing relational database system and map the 

semistructured data onto the database tables. Florescu and Kossmann focused on the 

performance of all of the mentioned solutions. The authors concluded that modeling 

hierarchical data in a relational database is the most favorable. In fact, the Florescu 

and Kossmann demonstrated that relational data management solutions could 

outperform other approaches, especially when given complex queries on large 

datasets (Florescu and Kossmann 1999b). A supporting argument by Jiang, Lu, 
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Wang, and Yu states that relational database solutions can outperform special purpose 

XML repositories such as Lore (Jiang et al. 2002a). 

1.2 RDBMS Hierarchical Labeling Problem 

The goal of hierarchical labeling schemes is to capture structured data into relational 

databases while maintaining the accuracy of the real world relationships. The reason 

such abstract data is not stored in its raw format is because relational databases offer 

greater flexibility, performance and scalability. Figure 1.1 shows an example 

hierarchy that needs to be stored in a flat database table.  

Figure 1.1: RDBMS Hierarchical Labeling Problem 

 

As one can see, certain relationship information is lost. That is why labeling schemes 

are needed. They record additional information that captures the relationships among 

nodes. The goal of each labeling scheme is to minimize the space required to record 

this information while maximizing the performance and available functionality. 

Different labeling schemes employ various encoding techniques to achieve this goal. 

Each label encoding varies in size and ability. Some tree models allow fast searches, 
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while others facilitate simple updates without the need for re-labeling. Label size is 

also an issue when modeling hierarchies. Physical computer limitations put a definite 

limit on the maximum label size that can be managed with the necessary precision. 

Theoretically, there is no fundamental limit on label size. Modern computers can 

successfully determine relationships between labels of arbitrary length. However, that 

kind of computations would take up a lot of time and resources. As a result, there are 

limits on the label sizes that allow acceptable response time.  

This research is focused on improving labeling scheme performance by 

reducing the label size. Smaller labels result in faster computations that improve 

overall performance. Additionally, smaller labels are located closer to each other (e.g. 

numeric labels) so overall label size grows slowly. As a result, labeling schemes with 

small labels produce more compact model representations and are capable of 

capturing more complex hierarchies because they do not run out of space as quickly. 

This research introduces a new labeling scheme that is able to harness all of the 

benefits associated with small labels. 

1.3 Significance 

Each labeling model implementation can be optimized by introducing more clever 

ways of encoding the label information. This thesis is focused on the performance and 

space utilization problem of the prime number labeling (PNL) scheme, introduced by 

Wu, Lee, and Hsu. This scheme attempts to reduce the model size by storing 

aggregate information from which the original labels can be inferred. PNL scheme 

uses consecutive prime numbers and their products to label each node and its 
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ancestors. Since self-labels use unique prime numbers, their products (i.e. the 

ancestor labels) grow exponentially. Figure 4.2 demonstrates this problem 

graphically. The performance of the PNL scheme decreases rapidly when the 

products of continuously growing labels become so large that they can no longer be 

managed with the necessary precision. This shows inefficient utilization of the 

available number space. 

Theoretically, the PNL scheme does not lack anything. It is able to accurately 

record and retrieve hierarchical information from a relational database. However, as 

the size of the hierarchy increases, the space and processing requirements grow 

accordingly. These two requirements are limited by the physical characteristics of the 

hardware. Even though modern technology has drastically improved the storage and 

processing capabilities, there are still distinct limitations on the numbers that can be 

manipulated. For example, MySQL v5.0.45 database can only handle integers up to 

64 bits long or 191084.1 × . Besides using very big labels, which take longer to 

process, the PNL scheme does not utilize the available number space efficiently, 

which in turn limits the model utility. A desired improvement would decrease the size 

of the labels, thus making the computations easier, improving performance, and 

increasing model capacity. 

1.4 Expected Contributions  

We propose a more capable labeling scheme that improves upon the PNL model. Our 

reusable prime number labeling (rPNL) scheme is able to reuse small prime numbers 

throughout the tree, which decreases the label size and improves performance. The 
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scheme also inherits all of the strengths of the PNL model such as fast descendant 

searches and simple ancestor determination. The proposed scheme is especially suited 

for deep hierarchies up to 15 levels. It generates parent labels that are approximately 

half the size of the PNL scheme. Additionally, the proposed method has superior 

model capacity and a label recycling functionality that is not present in the PNL 

model. In fact, the rPNL model can successfully record over 91 million maximum 

depth paths whereas the PNL scheme can only handle one. 

1.5 Evaluation Criteria 

Initially, we introduce the rPNL labeling scheme and the mathematical rules and 

concepts that it is based on. We then prove that the proposed solution is, in fact, 

capable of accurately capturing and retrieving hierarchical data. We compare PNL 

and rPNL label size growth patterns and determine the effect they have on each 

model’s capacity. Finally, we perform benchmark testing of PNL, rPNL, and other 

representative models on several hierarchies with different depth and fan-out. We 

measure performance of each scheme against the most common functional 

requirements: tree labeling, direct child lookups, descendent searches, ancestor 

determination, and overall model update flexibility. All experiments are conducted 

five times, and an average measurement is noted in order to decrease the effect of any 

interfering software processes. Trial testing has shown that there are no significant 

changes in experiment results when they were ran more than five times. The results 

are presented as graphs and discussed in detail. 
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1.6 Thesis Organization 

The thesis is organized into the following chapters: 

 Chapter 1: Introduction – The background of the problem, significance and a 

justification of a solution. 

 Chapter 2: Previous Work – The current state of the art in RDBMS labeling 

schemes in tree categories: recursive expansion, nested set, and materialized path. 

 Chapter 3: Prime Number Labeling Scheme – The prime number labeling 

scheme and some of its limitations. 

 Chapter 4: Reusable Prime Number Labeling Scheme – The proposed 

reusable prime number labeling scheme and calculations and proofs that 

demonstrate the validity of the suggested model. 

 Chapter 5: Evaluation and Analysis – The experimental results, their 

explanations and analysis. 

 Chapter 6: Conclusions and Future Work – The conclusions and future 

research direction in the field. 
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Chapter 2  

Previous Work 

In order for any labeling scheme to be successful, it should ensure that the parent–

child relationship among the nodes is readily available or easily computable. A 

number of techniques are used by different schemes in order to accurately model a 

tree. As Joe Celko specified, inheritance is another very important property of any 

hierarchical model (Celko 2004). Therefore, a good labeling scheme should support 

multigenerational ancestor–descendent relationships. 

Vadim Tropashko identified two major categories in SQL representation of 

hierarchies: recursive expansion and tree encodings. Tree encodings are further 

divided into two groups: materialized path and nested sets (Tropashko 2005). This 

chapter covers examples of all three models and outline their benefits and drawbacks.  

2.1 Recursive Expansion Model 

The recursive expansion model allows access to only one node at a time. In order to 

expand one’s view of the tree, additional requests must be performed and 

intermediate results saved. The adjacent list method is an example of a recursive 

expansion model. It is probably the most natural way to store hierarchical data, 
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especially for procedural programming language developers who are used to the 

concept of recursion. Each record contains a self-label and a label of a direct parent. 

Oracle was the first commercial database to use such an approach (Celko 2004). 

Storing hierarchical data by shredding it into rows of a relational database table is still 

a widely used technique (Shanmugasundaram, Tufte, Zhang, He, DeWitt, & 

Naughton 1999). Figure 2.1 shows the adjacent list database table as well as the 

actual hierarchy it models. 

Figure 2.1: Adjacent List Labeling Scheme 

 

Given a node, its direct parent-label is available. Since all siblings share the 

same parent-label, sibling queries become trivial. Adding a node to an existing tree 

requires no additional operations. Ancestor queries are much more difficult. A 

number of requests must be performed, each retrieving the label of a previous parent 

in the hierarchy. Recursion is an extremely powerful concept, but it may require 

significant computer resources even if the computations are very simple. Certain 

programming languages such as Lisp and Prolog were specifically designed with 
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recursion in mind. However, the majority of other programming languages are not as 

fit for recursion and, as a result, recursive expansion model implementations are 

usually quite slow and resource intensive (Celko 2004). Additionally, descendent 

searches are extremely inefficient, especially in large trees, in which intermediate 

results must be stored in temporary tables or kept in the memory. 

 The adjacent list method uses consecutive integers as its labels. It is a very 

compact model because every possible number is likely to be utilized. Reusing 

deleted labels, however, is not a default behavior of this scheme so an uneven number 

distribution is possible if the hierarchy is modified frequently. Several papers have 

been written about successfully using this model through recursive queries (Brandon 

2005) and multiple self-joins (Shui, Lam, Fisher, and Wong 2005, Florescu and 

Kossmann 1999a, David 2003).  

The Edge approach presented by Florescu and Kossmann implements the 

adjacency list model. It involves only one normalized self-referencing table that 

stores pointers to source and destination nodes. A similar approach, called Monet, 

stores the pointers to source and destination nodes across multiple small, semantically 

homogeneous relations. In other words, all nodes on the same level are placed in the 

same relation. For example, a path naaa K21 − will result in 1+n  relations. As a 

result, the individual relations are much smaller, but there are a great number of them. 

In fact, there must be a relation for each possible path (Schmidt, Kersten, 

Windhouwer, and Waas 2000). Yet another related approach, called XMLEase, 

introduces redundant links between each node and all of its ancestors. The entire 



13 

hierarchy resides in single relation, where the number of ancestor attributes 

determines the maximum tree depth. For example, a tree with a maximum path 

node1–node2…noden will require n ancestor attributes (Elçi and Rahnama 2006). 

Clearly this kind of labeling scheme wastes a lot of space and is not very well fit for 

dynamic trees with varying depth. 

2.2 Nested Set Model 

The majority of performance issues in hierarchical models are related to descendent 

searches. In particular, it is difficult to quickly determine all nodes that are ancestors 

of a given parent. This task is especially difficult for recursive expansion model. 

Ideally, this function should be very simple, similar to determining if one number is 

bigger than the other. The interval based labeling scheme, called Range, does just 

that. Each node receives a number range as a label and then an ancestor–descendent 

relationship may be calculated by determining if one number range is contained 

within another. This technique is called Dietz’s numbering scheme (Dietz 1982). 

Figure 2.2 shows the interval based database table as well as the actual hierarchy it 

models.  
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Figure 2.2: Interval Labeling Scheme 

 

Each node receives two numbers as a label. The numbers represent the beginning and 

the end of a number range. For example, the node with 3:8 range is a parent of all 

labels starting with 4 or more and ending with 7 or less. Interval based labeling 

scheme is the fastest way to do descendent search, which is difficult for other 

schemes to accomplish (Tropashko 2005). Another advantage of the nested set 

method is that labels may be assigned a fixed size, which allows database 

optimization and improves performance (Shui et al. 2005). The performance 

advantage of this method is strictly in descendent searches, as it is computationally 

easy to locate all numbers within a range. Tropashko stated that ancestor searches 

would be especially slow for this model, because it is considerably more difficult to 

search all the ranges that contain a specific number (Tropashko 2005). 

A major disadvantage of this scheme is that frequently changing tree 

structures will require a considerable number of label adjustments as the changes will 

stretch/shrink multiple number ranges. Assuming that any node has an equal chance 
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on being changed, an average update will cause half of the tree structure to be re-

labeled. In order to avoid this, a labeling scheme that allows new labels to be inserted 

or removed without re-labeling is needed. Böhme and Rahm were able to achieve this 

with a dynamic level numbering (DLN) scheme by padding the existing container so 

that the new labels will have enough space. This requires anticipating the number of 

future nodes, which is not very reliable.  

The dyadic rational number encoding scheme and its Farey fractions 

alternative are also capable to reducing the re-labeling issue (Tropashko 2005). Both 

methods use fraction properties to reduce the need to re-label, as there always exists a 

third fraction that is between the two existing ones. The resulting hierarchy may be 

quickly searched and easily updated. However, it does not utilize the number space 

efficiently and does not scale well. A similar scheme called Quartering-Regions 

Scheme (QRS) was developed by Amagasa, Yoshikawa, and Uemura. It uses floating 

point numbers and their binary equivalents as self labels that allow new nodes to be 

inserted without re-labeling. This approach does not completely eliminate the 

problem of re-labeling, but it does improve it significantly. 

The XML indexing and storage system (XISS) is another variant of interval 

encoding (Li & Moon 2001). Instead of head and tail labels, there are head and size 

labels. The tail label is calculated, which reduces the space required for the labeling 

scheme and improves the update flexibility. Additionally, this approach uses the 

concept of extended preorder in order to handle future node insertions. In other 

words, extra space is reserved at each node region in order to avoid future re-labeling. 
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A similar labeling scheme is called BIRD - Balanced Index-based numbering scheme 

for Reconstruction and Decision (Weigel, Schulz, & Meuss 2005). This approach 

follows the same labeling technique, but does not utilize consecutive numbers. Both 

schemes simply delay the need for re-labeling as they allow only a limited number of 

new nodes to be inserted before a global re-labeling must occur. 

In response to this issue, a few authors proposed schemes specifically 

designed to allow unlimited node insertions without the need for re-labeling. The 

quaternary encoding for dynamic XML data (QED) scheme supports label insertion 

without re-labeling by utilizing the lexicographical and not numerical ordering (Li & 

Ling 2005a). Four numbers are used to encode each node’s region. As a result, this 

scheme minimizes the individual label size while supporting infinite inserts between 

any two existing labels (Li & Ling 2005a). LSDX, a labeling scheme for dynamically 

updating XML data, uses both letters and numbers to describe the depth of the node 

as well as its order (Duong & Zhang 2005). The root node receives 0a as a label 

because its depth is 0 and it is the first node in its generation. The first child of the 

root node will be labeled 1a.b, second 1a.c, etc. These labels uniquely identify each 

node and allow additional nodes to be inserted easily. For instance, a new node 

between 1a.z and 1a.zb would receive a label 1a.zbb according to the lexicographical 

ordering.  

Khaing and Thein pointed out a problem with LSDX labeling scheme. The 

authors consider a case when one node must be inserted between 1a.z and 1a.zb and 

another between 1a.zb and 1a.zc. In both cases the same label 1a.zbb will be 
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generated. Because of such collisions, the authors conclude that LSDX scheme does 

not allow arbitrary node insertions. Khaing and Thein also propose a solution to the 

label collision problem that occurs when the self-label of each node is limited to 

numbers or digits only. The authors developed a labeling scheme for dynamic trees 

that is very similar to LSDX, but uses a combination of numbers and digits as self 

labels. 

2.3 Materialized Path Model 

The prefix-based labeling scheme proposed by Cohen, Kaplan and Milo is a typical 

example of materialized path model. It is very simple to understand as each new node 

inherits its parent’s path and appends its own label to it. This makes determining the 

parent–child relationship a matter of comparing label prefixes. Unlike the nested sets 

approach, this labeling scheme allows inserting new nodes without any re-labeling. 

The great benefit of path enumeration models is that parent information is encoded in 

the node’s label itself. In fact, node relationships are usually clearly visible to a 

human scanning though a list of nodes. This also eliminates the need to make costly 

database requests to determine the node’s ancestors. Additionally, searching a 

materialized path tree does not involve any kind of recursion or expensive joins.  

The path from the node to root is usually enumerated with numbers of a 

specified length or encoded with delimited strings. Figure 2.3 shows the prefix-based 

database table as well as the actual hierarchy it models.  
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Figure 2.3: Prefix-Based Labeling Scheme 

 

The Dewey decimal system, which is standard in library catalogs, uses numbers as 

well as periods and letters to categorize books. For example PHP Hacks: Tips & 

Tools For Creating Dynamic Websites by Jack Herrington has 005.133 Dewey 

classification number associated with it. This means it can be categorized under the 

following subjects: "Computer programming, programs, data" (005), "Programming" 

(005.1), "Programming languages" (005.13), and "Specific programming languages" 

(005.133).  

The ORDPATH labeling scheme is an improved version of the Dewey 

decimal system for storing hierarchical data in a relational database (O’Neil & O’Neil 

2004, Leonard 2006). Since label growth is an issue with materialized path schemes, 

this approach utilizes few optimizations such as assigning odd-number labels to 

newly inserted nodes thus leaving even number labels for future additions (Leonard 

2006). 
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Another very common example of path enumeration labeling model is the US 

Postal Service ZIP code. This label is structured in such a way that each digit carries 

some geographical information. The information ranges from more general, such as 

postal region and state, to more specific, such as city and post office location (Celko 

2004, Böhme and Rahm 2004). Such a five-digit label can handle up to 100,000 

unique values, which is sufficient for relatively small hierarchies. However, if the tree 

grows, label size must also increase. The ZIP code decimal scheme also produces a 

strictly balanced structure with limited fan-out, which means that there are at most ten 

root branches that must be equal in size. Because only ten digits may be used, any 

node may have at most ten children. The problems occur if a node has more than ten 

children, e.g. densely populated state, or if some nodes only have a few children, they 

are wasting the allocated space.  

In deep hierarchies, some paths may be lengthy and their encodings take up a 

significant amount of space. Using more compact numerical labels instead of 

character based ones has additional advantage in which some queries may be sped up 

by using fast numeric comparisons. Scanning character labeled paths usually involves 

complex pattern matching, which is slow and inefficient. However, if numbers are 

used (e.g. ZIP code encoding), a mathematical function may be used to quickly locate 

and update the necessary nodes. Path enumeration label length usually increases 

linearly as the depth of the hierarchy grows. As a result, performance is negatively 

affected because no fixed amount of space may be allocated for hierarchical 
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information (Shui et al. 2005). This makes path enumeration model best suited for 

relatively small, balanced, and static hierarchies.  

The XParent approach implements a materialized path model (Jiang, Lu, 

Wang, & Yu 2002b). Unlike Edge, this scheme explicitly stores available paths in a 

separate relation. Unlike Monet, the path information is contained in a single table. 

This data may be materialized into a new table to support ancestor–descendant 

relationships (Jiang et al. 2002b). An alternative to XParent, called XRel, is able to 

model hierarchical information in terms of a combination of path and region 

(Yoshikawa & Amagasa 2001). Similarly to Monet, a separate relation is created for 

each node type. Unlike Monet, XRel stores all existing paths in a separate relation. 

Since this scheme does not maintain edge information, sibling nodes must be 

uniquely identified. In order to preserve the ordering and containment relationship 

among nodes, XRel records the region (start and end position) of each node. Scheme 

combinations such as this one often introduce better functionality at the cost of 

increased complexity and size. 

 A very interesting encoding technique is discussed by Tropashko. Given two 

co-prime numbers a and b such that ab ≤≤1  and certain information may be 

encoded and decoded. For example, to encode a path 1.2.3.4.5 one would simplify the 

following continued fraction. 

157
225

5
14

13

12

11 =

+
+

+
+
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The Euclidean algorithm is used to decode the path. 

15 0  5
54 1 21
213  5   68

682 21 157
1571  68 225

×+=
×+=
×+=
×+=
×+=

 

This kind of encoding is not very computationally intensive and it accurately captures 

the path with relatively small labels. The resulting labels are unique and could be 

indexed for improved performance. However, ancestor information is not easily 

accessible without actually decoding the labels, which makes descendant searches 

extremely slow.  

2.4 Other Approaches 

Provided there is a well-known hierarchy structure (maximum fan-out, depth, etc), an 

optimized database schema may be generated. A table may be created for every level 

in a hierarchy and then easily searched using existing one-to-many relationships 

between the tables. This technique may be used to create an entire database schema 

based on document type definition (DTD) to store documents of previously known 

structure (Shanmugasundaram et al. 1999, Christophides, Abiteboul, Cluet, & Scholl 

1994). This approach is clearly the fastest, because it takes full advantage of the 

database optimization algorithms, indexes, etc. However, the structure of the 

hierarchy is rarely known ahead of time, which limits the utilization of this approach. 
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Chapter 3  

Prime Number Labeling Scheme 

A recent work by Wu, Lee, and Hsu introduces a new way to encode the hierarchy 

information with prime number labeling scheme. In this top-down scheme each node 

receives two numbers: a unique prime number called self-label and another number 

called parent-label. Each parent-label is divisible by all of its ancestors’ self-labels, 

because the label is in fact a product of all ancestor self-labels and the self-label of the 

node. Figure 3.1 shows the prime number labeling database table as well as the actual 

hierarchy it models.  

Figure 3.1: Prime Number Labeling Scheme 
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This labeling scheme allows determining the relationship between two nodes 

by simply comparing two numbers. If the self-label of node X divides node Y’s 

parent-label, then node X is considered to be a parent of node Y. Likewise, all nodes 

whose parent-labels are divisible by prime P are descendants of the node with P as a 

self-label. A lightweight modulo function may be utilized for this purpose. A modulo 

function is a way to determine if a given number is divisible by another number 

without a remainder. It is not computationally intensive and can quickly operate on 

very large numbers.  

The PNL scheme inherits all the benefits of the materialized path model while 

introducing much smaller, numeric labels that can be managed by fast and 

lightweight mathematical functions. Adding a node to such a tree is very simple. A 

self-label is assigned a value of any unused prime number and a parent-label is simply 

a product of this prime with a parent-label of the parent node (Wu, Lee, and Hsu 

2004). Unlike the rigid nested-sets method, this approach is very flexible as no re-

labeling is required when new nodes are added to the tree. 

One valid disadvantage of PNL scheme is the fact that each descendant search 

must go through the entire dataset in order to determine the parent–child 

relationships. This may be particularly slow on very large datasets. However, this 

method of searching the hierarchy is a better alternative to multiple joins especially in 

very deep hierarchies as implemented in the recursive expansion model. Parent-labels 

in this scheme cannot be indexed or sorted in any particular way to minimize the 

number of operations needed for each scan. Another major disadvantage of PNL 
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scheme is that each prime number may only be used once. This helps establish the 

uniqueness of the labels but also causes the magnitudes of each subsequent parent-

label to increase rapidly. This shortcoming is especially apparent in deep hierarchies. 

Even though the authors propose a number of optimizations to improve the label 

space usage, these improvements provide only a limited result.  

3.1 PNL Label Size Issues 

The authors also show that the size of the label grows mostly due to the increasing 

depth of the tree, which requires multiple prime numbers to be multiplied. A more 

detailed discussion of this issue is covered in section 4.2. Fan-out, on the other hand, 

affects the label size very slightly as the increase is due to relative difference between 

consecutive prime numbers. Figure 3.2 shows the label size requirements for a 

number of nodes on the same level. 
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Figure 3.2: Effect of Fan-Out on Label Size in PNL 
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The label length is measured in the minimum number of bits required to represent the 

label. The graph shows the fan-out of the tree at level one, which means that the label 

is the same as the prime assigned to the node. In other words, this graph models the 

size requirements for storing consecutive prime numbers (PNL & rPNL) and 

consecutive integers (Edge). This graph clearly shows that prime number labels are 

much bigger and grow faster than Edge labels. Li, Ling and Hu did multiple 

comparisons of this scheme to two variants of the nested set model and a Dewey 

prefix scheme. The PNL scheme required considerably more storage and had a much 

longer response time. 

After comparing their prime number labeling scheme to two other prefix-

based dynamic labeling schemes Wu, Lee, and Hsu concluded that when the 

hierarchy has a large fan-out but limited depth their method consumes less storage 
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space. However, when the hierarchies are very deep with limited fan-out, the prime 

number labeling scheme is not the best option. The authors believe that the PNL 

scheme is appropriate, as the majority of analyzed XML documents have less than 8 

levels of nesting and fan-outs up to 10,000 (Mignet, Barbosa, and Veltri 2003). Even 

though this encoding scheme is not the most compact, it is least affected by the 

structure of the hierarchy (Wu, Lee, and Hsu 2004). PNL scheme scalability is limited 

by the label size restrictions. However, it uses numerical labels, which allows taking 

advantage of standard relational database optimizations. Härder, Haustein, Mathis, 

and Wagner performed benchmark experiments with PNL scheme modeling trees up 

to 37 levels deep and a maximum fan out of several millions. The author concluded 

that PNL scheme was not the most optimal solution for such complicated hierarchies.  

3.2 Problem Statement 

There are multiple areas of improvement in PNL model. For instance, the prime 

number labeling scheme does not allow self labels to be reused. This causes parent-

labels to grow exponentially, which significantly limits the model capacity, increases 

overall model size, and slows down performance. In fact, there is a discernible limit 

on the maximum depth and fan-out dictated by the hardware limitations. This issue 

has been identified by the authors and confirmed by independent research. 

Additionally, this approach does not natively support label recycling. Ability to reuse 

deleted labels results in much higher number space utilization and improves all of the 

mentioned drawbacks. This functionality may be implemented with PNL at the cost 

of decreased performance. This scheme may be an excellent solution in the future, 
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when hardware limitations are no longer an issue. However, prime number labeling 

scheme is not the optimal solution for the currently available resources. This research 

introduces a new labeling scheme called rPNL that is a better alternative to PNL. 
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Chapter 4  

Reusable Prime Number Labeling Scheme 

A number of different approaches have been developed attempting to improve the 

shortcomings of PNL scheme. For instance, Li, Ling and Hu propose a new algorithm 

that allows reusing deleted labels in order to control the label size increase rate. Davy 

Preuveneers and Yolande Berbers recommended decreasing the label size by labeling 

each node with two different parent-labels that could then be factorized into a single 

set of parent self-labels. The major contribution of this research is a new reusable 

prime number labeling scheme called rPNL. The reusable prime number labeling 

scheme attempts to improve on the same problem, the label size. If prime number 

self-labels are reused, the resulting parent-labels will be considerably smaller. This 

should increase model capacity and improve performance. Additionally, the rPNL 

scheme uses the available number space much more efficiently by utilizing labels that 

are located close to each other. 

By definition, prime numbers are numbers that are not divisible by anything 

except 1 and the number itself. This means that every non-prime number may be 

expressed as a product of one or more prime numbers. According to the fundamental 
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theorem of arithmetic also known as the unique factorization theorem, every natural 

number n greater than 1 can be written as a unique product of prime numbers pk. 

na
k

aa pppn K21
21=  (Lindemann 1933). This formula is very helpful if n and pk are used 

as labels. Given n, factorization will reveal the list of all parent-labels. This process 

may be done algorithmically, without the costly database requests. Note that 

factorization is a computation intensive operation. In fact, modern cryptography 

methods rely on the fact that factorization of very large numbers is computationally 

infeasible. However, if n is a relatively small number, factorization costs are 

negligible relative to the cost of multiple database requests. A simple experiment on 

GNU/Linux factor command shows that the longest time to factor a 64-bit integer is 

just over a tenth of a second. The largest integer most of the current databases can 

handle is 64 bits long. Therefore, factoring integers of that size is in fact a more 

efficient alternative to multiple queries. The reusable prime number labeling scheme 

attempts to minimize parent-label n to take advantage of the factorization as a method 

of deriving parent information.  

Wu, Lee, and Hsu use the Chinese remainder theorem to record the global 

order of the nodes. The proposed method uses the same idea to record the order of the 

parents’ self-labels used. If prime numbers are allowed to be reused throughout the 

hierarchy, repeating labels are bound to be created. Reusable prime number labeling 

scheme distinguishes between the order of the prime numbers as well as their product.  

The Chinese remainder theorem states that there exists a number n that 

satisfies k simultaneous congruencies  
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kk mnnmnnmnn modmod,mod 2211 === K  

if ),gcd(mod jiji mmnn = for all i and j (Howard 2002). The solution n is then 

congruent to the least common multiple of all mi. In other words, 

)...,(mod 321 mmmlcmnn = . Because every modulo used is always prime, the 

following holds true regardless of the prime numbers chosen. 

∏
=

=
k

i
ik nnnnlcm

1
21 ),( K  

1),gcd( 21 =knnn K  

The above solution proves that, because only prime numbers are allowed to be self-

labels, a simultaneous congruence (SC) number is guaranteed to exist for any 

combination of the prime numbers. The SC number is also guaranteed to be less than 

the product of all the prime numbers used. Therefore, as long as there is space for the 

parent-label, there will be enough space to record the order of the prime numbers 

used. 

The reusable prime number labeling scheme uses SC number to encode the 

position of the prime numbers used on the path such that ipiSC mod= . In order to 

maintain functionality with this method, three rules must be enforced. First, only 

unique prime numbers may be allowed on each individual path. In other words, it is 

impossible to have two simultaneous congruencies with the same modulo but 

different remainders. Second, only unique self-labels may be allowed among siblings. 

In order to uniquely identify the siblings, they must have distinct self-labels. Third, 



31 

each self-label must be larger than the level at which it resides in order to avoid 

confusion. For example, two different paths could generate identical numbers, e.g. 

3mod43mod1 ==SC . 

 Figure 4.1 shows rPNL database table as well as the actual hierarchy it 

models. Note that according to the three rPNL rules, self-label 2 should have been 

used for one of the first-generation nodes. However, two different self-labels were 

deliberately chosen to demonstrate the fact that none of the three rPNL labels can 

uniquely identify a node.  

Figure 4.1: Reusable Prime Number Labeling Scheme 

 

With this approach self-labels and parent-labels are assigned similarly to PNL 

scheme. However, according to the three rules mentioned above, self-labels are not 

required to be globally unique prime numbers. In fact, this scheme ensures that the 

prime number chosen is the smallest possible number that is 1) bigger than its 

position on the path 2) unique within the given path and 3) unique within the siblings. 

This reduces the label size growth that is so problematic with PNL scheme. Also it 
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forces the deleted labels to be automatically reused which results in a much more 

efficient use of the number space. 

There is some redundancy in a way that rPNL scheme stores the labels. The 

parent-label and SC number are based on the same set of prime numbers. However, 

the parent-label does not contain ordering information and the SC number cannot be 

uniquely factored. For example, a SC number 38 could mean self-label 5 in a third 

position ( 35 mod 38 = ) as well as a self-label 7 in the same position ( 37 mod 38 = ). 

Because of these imperfections, both of the numbers must be used. The general rule is 

that if a prime divides the parent-label, it can be trusted that the SC number accurately 

captured its position on the path. 

All necessary parent information is encoded in two labels. Prime factors of the 

parent-label represent self-labels of parent nodes and the SC number encodes their 

order. Furthermore, the gathered information may be combined together to calculate 

the parent-label and SC number of any parent node on the path. Then each parent 

node may be retrieved because the self-label, parent-label and SC number uniquely 

identify all nodes. This gives rPNL method the advantage of having no costly 

database requests to determine ancestor information. 

 Let’s consider an example leaf node with parent-label=165 and SC=322. 

Factoring 165 shows that the prime numbers used to compose that number are 11, 5, 

and 3. Besides 11, which is the self-label of the node, applying each prime to the SC 

number reveals their order: 311mod322 = , 25mod322 = , and 13mod322 = . Note 

that node’s depth is encoded in the SC number as well. This information may be used 
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to calculate the parent-labels as well as SC numbers for the parent node(s): first 

parent, parent-label=3, SC number=1; second parent, parent-label=15, SC number=7. 

This example shows how all ancestor information may be calculated rather then 

retrieved. 

The reusable prime number labeling scheme offers a more flexible alternative 

to PNL scheme. It is deterministic, which means that relationships can be easily 

identified by scanning all nodes. It is dynamic, as it allows adding new nodes to the 

hierarchy without major re-labeling. All label changes are computationally light as 

they rely on simple mathematical functions such as multiplication and division. The 

rPNL scheme is proven to be more compact as it uses smaller labels by reusing the 

prime numbers and is, therefore, more capable. 

4.1 rPNL Label Relationship 

There exists an interesting pattern between rPNL labels. The SC number of the child 

nodes is congruent to the parent’s SC number modulo the parent’s parent-label. For 

example, a node with a self-label=7 and ancestor path of 2.3.5 has a parent-label=30 

and SC number=23. The child of this node, with a path 2.3.5.7 would have a parent-

label=210 and SC number=53. It is evident that 3230 mod 53 = , which is also the 

parent node’s SC number. 

The proof of this pattern is relatively simple. Assuming Xchild is the SC number 

of the child, Xparent is the SC number of the parent, and i is the position of the prime, 

the following must be true for all prime numbers on the parent’s path.  
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iparentichild pXipX modmod ==  

parentichild XpX =mod  

Since the last formula holds true for all prime number on the parent’s path, it must 

hold true for their product as well. In other words 

parentichild XpX =∏mod  

This property of rPNL labels may be used for both direct child and descendent node 

searches. 

4.2 PNL and rPNL Capacity Comparison 

It is difficult to model the exact label size requirements for the rPNL model as the 

label size depends on the structure of the hierarchy. The general rule is that the deeper 

the tree is the more labels are reused. Assuming a two-level hierarchy with only one 

parent node and all its children at the first level, rPNL label size requirements will be 

identical to PNL’s. The major advantage of rPNL is that it may reuse more labels at 

the higher levels. In fact, the number of possible reusable labels is a little less than n!, 

where n is the hierarchy depth. Because a different prime is used for a node at each 

level, there will be n! possible combinations that result in the same product.  

The actual number will be slightly less because certain small prime numbers 

may not be used at the level that is equal to or more than the prime itself. When 

modeling the two labeling schemes, we used MySQL v5.0.45 database. It can handle 

integers up to 64 bits long or 191084.1 × , which limits the biggest label possible. This 

influences the number of self-labels/levels any one branch may have. By definition, a 
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primorial (n#) is the product of all prime numbers less than or equal to n (Dubner 

1987). The biggest value of the primorial that fits into the allocated number space is 

171015.6#47 ×= . This means that there are 15 prime numbers that may be used to 

describe the hierarchy: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, and 47. 

Assuming that the prime number position must be less than the prime number itself, 

there are nine prime numbers that are greater than 15. They may be organized in any 

order. The first six prime numbers are smaller so some positions may be unavailable. 

Table 4.1 outlines the availability of each of the 15 positions relative to each prime. 

Table 4.1: rPNL Self-Label Availability 

Position 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Prime Number 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47
Possible Positions 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 
Unsuitable Positions 14 13 11 9 5 3 0 0 0 0 0 0 0 0 0 
Available Positions 1 1 2 3 6 7 9 8 7 6 5 4 3 2 1 

 

This table shows the first 15 prime numbers in order (position and prime number 

rows). Each prime number may be located in any position, but only once (possible 

positions row). Smaller prime numbers (2-13) may not be used at a position that is 

greater than the prime number itself (unsuitable positions row). As a result, there is a 

fixed amount of possible positions each prime number may assume. In fact, there are 

 91,445,760  9!763211 =×××××× total possible combinations of the first 15 prime 

numbers. The difference between PNL and rPNL schemes is that the discussed path is 

the only 15-level path PNL scheme may have. It also must be the first path in the tree 

assuming depth-first approach. Reusable prime number labeling scheme may have 
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over 91 million of such 15-level paths due to different combinations of the prime 

numbers. Figure 4.2 shows PNL label size requirements for a symmetric tree with 

fan-out and depth between 1 and 15 nodes. Figure 4.3 shows rPNL label size 

requirements for the same tree.  

Figure 4.2: PNL Parent-Label Size Growth 

1 2 3 4 5 6 7 8 9
1
0

1
1

1
2

1
3

1
4

1
5

1

5

9
13

0

20

40

60

80

100

120

140

L
a
b

e
l 

S
iz

e
 (

b
it

s
)

Fan-out

Depth

 



37 

Figure 4.3: rPNL Parent-Label Size Growth 

1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1

5

9

13

0

20

40

60

80

100

120

140

L
a
b

e
l 

S
iz

e
 (

b
it

s
)

Fan-out

Depth

 

The label size is measured in the minimum number of bits required to represent it. 

Assuming breadth first approach, the scheme proposed by Wu, Lee, and Hsu uses 

every 15th prime at the beginning of each level as the rest of the prime numbers are 

used by other nodes on that level. The proposed scheme allows prime number reuse, 

so consecutive prime numbers will be used at the beginning of each level. The label at 

the beginning of each level is guaranteed to be the smallest one on that level, which 

makes the two graphs a best-case scenario for both labeling schemes. Reusable prime 

number labeling scheme produces much smaller parent-labels, which requires roughly 

half the space needed by PNL graph. The advantage of the rPNL scheme is that the 

label size requirement grows very slowly. If the fan-out was larger than 15, the 

difference would be even more dramatic. 
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4.3 Update Flexibility 

There is a way to shift a branch up or down by updating the parent-label (division or 

multiplication by a prime) and SC number (addition or subtraction of the SC number 

components). Below are the detailed explanations of how it can be done. Table 4.2 

shows the two nodes before and after their branch has been updated. ∏= ipN  is the 

product of all participating prime numbers p. Ni is the product of all prime numbers 

except pi. Ri is the reciprocal of the prime number pi in ith position. Xi is the 

simultaneous congruence component for each prime number and ∑= iXX is the 

simultaneous congruence number.  

Table 4.2: rPNL Hierarchy Update 

Node Before Update Node After Update 
 Ni Ri Xi  Ni Ri Xi 

2mod1=X  105  1 10511051 =××  2mod1=X  21 1 211211 =××  
3mod2=X  70  1 1401702 =××  3mod2=X  14  1−  28)1(142 −=−××
5mod3=X  42  2−  252)2(423 −=−××     
7mod4=X  30  3−  360)3(304 −=−×× 7mod3=X  6  1−  18)1(63 −=−××

53210mod360252140105 =−−+=X  1742mod182821 =−−=X  
 

When shifting the branch down, a new parent-label is easily calculated by dividing 

the old parent-label by the self-label of the node being removed. For the example 

above the new parent-label would be 210/5=42. To generate a new SC number, we 

need to remove the X3 of the respective prime and reduce any of the following SC 

number components.  
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An interesting property of all reciprocals in a SC number is that their sum is 

always N mod 1 , where N is the product of all prime numbers. This can be proven by 

simply noting that, by definition, iii pRN mod1* =  and ikk pRN mod0* = where 

ki ≠  for all prime numbers. Therefore NRN ii mod1=∑ . This formula may be 

decomposed into two parts, the stable part (before the node being deleted) and 

remainder part (after the node being deleted). The stable part varies from node to 

node as prime numbers and reciprocals change. However, there is a way to find a 

reciprocal for each pi. 

According to the Euler’s theorem na n mod1)( =ϕ  if and only if 1),gcd( =na  

(Guderson 1943). Thus, there is a way to find a reciprocal for a prime regardless of 

the parent-label or other prime numbers used. In other words, i
p

i pN i mod1)( =ϕ  if and 

only if 1),gcd( =ii pN  which is always true because, by definition, Ni is the product 

of all prime numbers other than pi. Also, according to the definition of the Euler’s 

totient function, it returns the number of positive integers less than or equal to n such 

that each one is relatively prime to n. If n is prime, there will be n-1 of such integers 

(all numbers between 1 and the prime itself). As a result, we get i
p

i pN i mod11 =− . The 

SC number component related to p3 may be calculated as 

126210 mod (210/5)*(210/5)*3 X -15
3 ==  

Then the remainder of the SC number components will need to be modified by  

36210 mod (210/3)-(210/2)-1 21
4

3
==∑

=i
iiRN  
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As a result the new SC number will be 17.42 mod 36)-126-(53 =  

In order to shift a branch down, the same actions will have to be performed in 

reverse. New parent-label would be 42*5=210. The SC number component related to 

p3 may be calculated as 

1265*42 mod (42)*(42)*3 X 1-5
3 ==  

Then the remainder part of the SC number components will need to be modified by 

1205*42 mod 42-5/3)*(42-5/2)*(42-1 421
4

3
==∑

=i
iiRN  

The new SC number will be 535*42mod)126120(17 =++  

A major issue with this kind of update is that the new prime must be unique 

along the entire path to the nodes to be updated as well among the sibling nodes. 

There is no way to tell which prime numbers are available for this update so a 

globally unique prime should be used. Note that both kinds of updates could be 

performed globally, regardless of the affected nodes location, based strictly on the 

information available i.e. self-label of the parent node being added/removed and 

previous ancestor information. 
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Chapter 5  

Evaluation and Analysis 

This section presents the experimental results of the benchmark comparison between 

the original PNL scheme, the proposed the rPNL scheme and three other 

representative schemes. All three hierarchical models are represented: Edge scheme 

from the Recursive Expansion model, Range from the Nested Sets model, Path, PNL 

and rPNL from the Materialized Path model. 

5.1 Benchmark Setup 

In order to conduct performance comparison between PNL scheme and the proposed 

method we needed a highly structured hierarchy with considerable depth and fan-out. 

The CNN website matches this description because it has multiple nested tables, 

which adds to the depth of the tree. It is also saturated with links, which adds to the 

fan-out. Additionally, because it is a web page, it has a highly unbalanced structure 

i.e. body tag contains the majority of the data whereas head element has only a few 

children. The original document did not validate as XHTML 1.0 so certain tags were 

modified to improve readability and facilitate parsing process. Figure 5.1 shows the 

XHTML tree used in the comparison (Aharef 2007). Yahoo website is represented by 
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very similar but simpler hierarchy. It is a much smaller tree, with fewer generations 

but similar fanout. Figure 5.2 shows the XHTML tree used in the comparison (Aharef 

2007). Also, in order to test the fan-out effects we needed a relatively shallow 

hierarchy with very large fan-out. We used an XML encoded play "Hamlet" by 

William Shakespeare (Bosak 1999). This specific document was often used by other 

authors in their benchmark experiments. Figure 5.3 shows the XML tree used in the 

comparison (Aharef 2007). A much simpler document, yet still with considerable fan-

out is "The Comedy of Errors" by William Shakespeare (Bosak 1999). Figure 5.7 

shows the XML tree used in the comparison (Aharef 2007). Like in any other XML 

compatible documents, each tag may have multiple children but at most one parent. If 

there are inconsistencies with this rule in the graphs, it is purely for spacing purposes. 

Table 5.1 outlines the important hierarchical properties of each tree.  

Table 5.1: Test Tree Properties 

Tree Max Depth Max Fan-Out Nodes Paths 
CNN 14 20 840 444 
Hamlet 6 174 6,636 1,205 
Yahoo 10 21 473 248 
Comedy 4 98 959 162 

 

Such distinct tree compositions have been chosen purposefully to determine if there is 

a relationship between the schemas’ performance and the structure of the tree being 

modeled. Note that a wide range of depths and fan-outs is represented in order to 

thoroughly test the performance of each labeling scheme. 
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Figure 5.1: CNN Tree Visualization (Aharef 2007) 

 

 

 

Figure 5.2: Yahoo Tree Visualization (Aharef 2007) 
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Figure 5.3: Hamlet Tree Visualization (Aharef 2007) 

 

 

 

Figure 5.4: Comedy Tree Visualization (Aharef 2007) 
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Hardware resources play a very important role in each model’s performance. 

Some of the experiments were run on a slower hardware with a considerable 

performance drop off. The experimental system configuration is outlined in Table 5.2.  

Table 5.2: Test System Configuration 

CPU Intel Pentium D 2.66GHz 
RAM 2GB 
OS MS Windows XP Professional 
Database MySQL v5.0.45 
Code PHP v.5.2.3 DOM/XML enabled 

 

Additionally, network connection speed may have a great impact on the performance 

on certain schemes. If a scheme relies on extensive computation on the client side that 

results in very few queries being sent to the database server then network delay 

effects are minimal. Conversely the Edge approach relies on recursive queries being 

sent to the server. If the network connection is slow, this model’s performance will 

suffer. Note that the code in all experiments accesses the database through a direct 

socket connection, so no network delay is recorded.  

The database schema composition may also influence the performance of 

labeling schemes. Figure 5.5 shows the database structure used. Every labeling 

scheme table refers to the tbl_nodes table to ensure consistency among multiple tree 

representations. We did not implement any indexing or other optimization techniques 

in order to test the true performance of each labeling scheme. The large numeric 

labels in the PNL and rPNL models were stored as strings and converted to floating 

point numbers on demand, as specified by the IEEE 754 standard, in order to 



46 

maintain the necessary precision. Otherwise the least relevant bit would be truncated, 

which is catastrophic for number based labeling schemes. 

Figure 5.5: Relational Database Setup 

 

5.2 Tree Labeling 

After modeling each tree, we compared the PNL and rPNL label sizes. Table 5.3 

shows the PNL and rPNL maximum label sizes for all experiments as well as their 

prime number usage.  

Table 5.3: PNL and rPNL Maximum Label Sizes 

 Max PNL Label Max rPNL Label PNL Primes rPNL Primes 
CNN 41101.6 ×  (139 bits) 101091.9 ×  (37 bits) 840 28 

Hamlet 19105.2 ×  (65 bits) 61038.3 ×  (22 bits) 6,636 178 
Yahoo 281011.3 ×  (95 bits) 111021.8 ×  (40 bits) 473 30 

Comedy 71054.5 ×  (26 bits) 31041.5 ×  (13 bits) 959 101 
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In addition to a much smaller parent-label that is much easier to factor, the rPNL 

scheme used only 28 prime numbers to label the entire CNN tree. For the Yahoo tree, 

the rPNL labeling scheme was forced to use 30 different prime numbers to label this 

small tree because it has fewer paths and thus less opportunity to reuse existing self-

labels. However, it is better than the original prime number labeling scheme that has 

reserved 473 unique primes for this tree. Note that for every tree, except the smallest 

Yahoo tree, the PNL scheme produced very large labels that are very difficult to work 

with. The rPNL scheme consistently produced small labels, which easily fit into the 

64 bits available to the default modulo function, can be factorized, divided and 

otherwise manipulated with a reasonable latency.  

We also compared the tree representation sizes of each labeling scheme. Table 

5.4 shows the comparison between the size of the original documents and each 

scheme representation. The XML documents are the most compact of all 

representations, which makes them an excellent format for transportation. However, 

they can not be easily searched or analyzed and that is what labeling schemes are 

especially good at.  

Table 5.4: Tree Model Size Comparison 

 XML Edge Path PNL Range rPNL 
CNN 41,550 82,376 98,760 115,144 82,376 98,760 

Hamlet 286,022 637,836 703,372 752,524 686,988 719,756 
Yahoo 12,288 16,384 49,152 49,152 16,384 49,152 

Comedy 49,152 114,688 147,456 163,840 131,072 163,840 
 

The size, measured in bytes, is approximated from the database tables that were 

created by each scheme. Note that many schemes generate representations of the 
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same size, especially in small trees e.g. Yahoo and CNN. This is because in small 

trees the labels do not grow large enough to exceed the space allocated to each label 

type by default. However, in large trees e.g. Comedy and Hamlet, each scheme’s 

label size growth effects are more evident. Overall, the Edge approach produced the 

most compact representation, followed by the Range labeling scheme. Reusable 

prime number scheme was equal or better than PNL method regardless of the kind of 

hierarchy being modeled. The rPNL method should be more compact than the Path 

approach in especially deep tress because numeric multiplication increases label size 

slower than string concatenation and because the proposed scheme has more 

opportunities to reuse existing labels. 

We also recorded the time it took each scheme to model a tree. Figure 5.6 

shows that Range labeling scheme was the slowest of all models to record CNN tree 

of only 840 nodes. The reason Range scheme was so slow is because a lot of 

relabeling had to occur when a new node was inserted deep in the hierarchy. The 

Edge and Path schemes recorded the tree very quickly since new label generation did 

not require any computation or database requests. The Reusable prime number 

labeling scheme was a little behind Edge and Path models because it had to request a 

new label from the database before each new node was saved. Note that, depending 

on the implementation, PNL scheme took 48 seconds, if the next available prime 

must be requested each time (PNL-1), or 1.28 seconds, if consecutive prime numbers 

are guaranteed to be unique with each new node being added (PNL-2). 
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Figure 5.6: CNN Tree Labeling Time 
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This experiment assumed that a new prime label must be requested from the 

database to make sure it is unique relative to the schema’s constraints. This is usually 

the case when there are multiple sources that populate the hierarchy or if it is built up 

at different points of time. If, however, the entire tree is available from the start, the 

overhead of requesting the next available prime may be eliminated completely. In 

fact, our experiments have shown that PNL scheme may record the same hierarchies 

40 times faster if it uses consecutive prime numbers from a pre-sorted source. PNL 

scheme is a valid scheme that can successfully record hierarchical data. However, it 

performs much worse than the rPNL scheme in a very likely scenario when the entire 

tree to be modeled is not readily available.  
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The same experiment on the shallow hierarchies produced similar results. 

Figure 5.7 shows the time it took to model the Comedy tree for each of the five 

schemes.  

Figure 5.7: Comedy Tree Labeling Time 
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Again, the Edge and Path schemes had consistently good results as their label 

generation algorithms are not influenced by the structure of the hierarchy. Range 

labeling scheme has much better results recording this shallow tree. Assuming a 

depth first approach, very little relabeling was needed. As a result, Range labeling 

scheme was faster than the proposed reusable prime number labeling scheme. The 

original prime number labeling scheme was the slowest in all experiments. The 

reason PNL scheme took so long is not because it is time consuming to generate a 

label, but because it takes long to ensure this label is globally unique. Figure 5.6 

showed that if PNL scheme is guaranteed to have reliable labels, its performance 
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could be greatly increased. The proposed scheme, on the other hand, produced good 

results without making this assumption for all hierarchies being modeled. 

5.3 Node Labeling 

We also compared the time it took to record each individual node in a hierarchy. Both 

PNL and rPNL have strict rules about the uniqueness of the labels used. For PNL 

scheme global uniqueness is required, which results in increasing delays as the tree 

gets bigger. For the rPNL scheme only local uniqueness is needed. As a result, very 

few records are referenced with every new node, which increases performance. 

Figure 5.8 shows the time it took to record each node in CNN tree. 

Figure 5.8: CNN Tree Labeling with PNL and rPNL 

0

0.005

0.01

0.015

0.02

0.025

0.03

1 16 31 46 61 76 91 106 121 136 151 166 181 196

Nodes

Ti
m

e 
(s

ec
on

ds
)

rPNL

PNL

 

The two labeling schemes are very close at the beginning because only a few 

node labels must be checked for uniqueness. However, as the tree expands, the 
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number of labels increases and PNL scheme must check them all to ensure global 

uniqueness. Reusable prime number labeling scheme, however, is only concerned 

with relative/local uniqueness. The labels being checked with this scheme include 

only the nodes on the path to the root, and sibling nodes. As a result, the delay is 

relatively constant. The proposed scheme would not outperform PNL method in a 

very shallow hierarchy with large fan-out. In fact, in this case the performance would 

be almost identical because relative uniqueness would also be global. 

This claim is supported by the experimental results shown on Figure 5.9. Both 

schemes have nearly identical results at the beginning of the Comedy tree experiment 

when the number of labels being checked is the same. The gradual increases and 

drops in the rPNL scheme graph clearly show different paths being recorded. The 

increase in the delay for both schemes is proportional to the number of labels that 

must be checked. For rPNL scheme it is proportional to the fanout of a current 

generation on a given path. For PNL it is proportional to the total number of already 

labeled nodes. As more nodes are recorded, the PNL scheme falls behind rPNL. In 

fact, the rPNL delay gets reset with every new path, whereas PNL delay grows 

continuously. 
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Figure 5.9: Comedy Tree Labeling with PNL and rPNL 
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Figure 5.10 and Figure 5.11 show a similar comparison between rPNL, Edge 

and Path schemes for CNN and Comedy trees. The Edge and Path labeling schemes 

are not influenced by the structure of the hierarchy. Therefore each node insertion 

should take the same amount of time and result in a straight-line graph. The small 

discrepancy in the Edge and Path graphs is due to hardware resource availability, hard 

disk access times, etc. During the CNN tree experiment, the proposed scheme differs 

from the Edge approach only slightly whenever the tree’s depth increases rapidly. For 

example, the depth of the CNN tree depth goes from 4 to 13 and back to 4 generations 

between the 10th and 40th nodes. In fact, the average difference between the two 

schemes across the entire experiment was only 0.0007 seconds. 
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Figure 5.10: CNN Tree Labeling with rPNL and Edge 
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Figure 5.11: Comedy Tree Labeling with rPNL and Edge 
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Likewise the proposed scheme falls behind the Path approach whenever it has to deal 

with a large number of siblings. For instance, Comedy tree nodes 70 to 140 are 

siblings. Unlike the Range approach, the reusable prime number labeling scheme 

maintains its performance across the entire tree without the need to re-label parts of it 

as the new nodes get added.. A shallow Hamlet hierarchy does not have as many 

relabeling incidents as the CNN tree experiment. However, they are much more 

extreme because many more nodes must be referenced to determine if they need to be 

relabeled.  

Figure 5.12 and Figure 5.13 show that the proposed scheme does get affected 

by the structure of the tree, but not as much as the Range model. The spikes in the 

Range labeling scheme occur mostly when there is a number of sibling nodes to be 

inserted deep inside the tree hierarchy (CNN nodes 18-24, 68-74, 137-141, and 177-

192). If the boundaries of the parent container are no longer large enough, the entire 

branch must be re-labeled and ancestor boundaries expanded. Additionally, any of the 

ancestor siblings’ containers must be shifted in order to prevent boundary 

overlapping. This kind of re-labeling is very resource intensive and that is why the 

peaks are so extreme. However, if enough adjustment has been provided, no further 

updates should be necessary. This is why the peaks are very narrow. A shallow 

Hamlet hierarchy does not have as many relabeling incidents as the CNN tree 

experiment. However, they are much more extreme because many more nodes must 

be referenced to determine if they need to be relabeled.  
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Figure 5.12: CNN Tree Labeling with rPNL and Range 
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Figure 5.13: Hamlet Tree Labeling with rPNL and Range 
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5.4 Direct Children Lookup 

The goal of this experiment was to traverse the entire tree from top to bottom one 

level at a time. For each node in a tree only its direct children were located. The 

results are displayed in Figure 5.14, Figure 5.15, and Figure 5.16.  

Figure 5.14: CNN Tree Top-Down Tree Traversal 
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Figure 5.15: Yahoo Tree Top-Down Tree Traversal 
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Figure 5.16: Comedy Tree Top-Down Tree Traversal 
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Since the experiment focused on searching for nodes only one generation down, the 

Edge model performed best as it involved fast number lookups. The PNL scheme also 

used numerical lookups but it took some time to generate the necessary labels. The 

Range approach performed well, because it best suited for descendent searches with a 

small correction for depth in this case. The Reusable prime number labeling scheme 

was a little behind PNL. Unlike PNL, rPNL parent-labels are not globally unique, so 

fast number lookups were not possible. Instead a descendent search, similar to Range 

scheme, was performed. The proposed scheme did far better than Path approach 

because regular expression matching is much more complex and resource intensive 

than modulo function.  

5.5 Descendent Search 

Descendent search is the most common requirement of the hierarchical models. It is a 

very frequent practice to search only a specific branch or sub-tree of the hierarchy. In 

fact, the rPNL scheme was developed for this specific purpose in mind. Figure 5.17 

shows the results of the CNN descendent search experiment. The nodes being 

searched are located on different depths between 5 and 11 generations. There are a 

total of 71 paths being tested with 135 matching records. As expected from section 

2.2 discussion, Range descendent search produced the best results because the only 

function needed to identify the resulting nodes was a simple number comparison. The 

Path scheme was also able to successfully locate all of the matching nodes; however, 

regular expression matches fall behind a lightweight modulo function. The Reusable 

prime number labeling scheme was able to locate the same nodes in considerably less 
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time. Both prime number based models had similar results on smaller depths and 

smaller hierarchies, as demonstrated on Figure 5.18 and Figure 5.19. However, the 

PNL scheme was not able to successfully complete the CNN tree experiment as it 

failed to compute the relationships among nodes with such large labels. Edge scheme, 

used recursive queries to traverse the entire sub-tree, analyzing each node 

individually to determine if it matches the criteria. As a result, it took 0.09471 

seconds to complete. This is almost forty times as slow as the rPNL scheme.  

Figure 5.17: CNN Tree Descendent Search 
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Figure 5.18: Yahoo Tree Descendent Search 

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

Edge Path PNL Range rPNL

Labeling Scheme

Ti
m

e 
(s

ec
on

ds
)

 

Figure 5.19: Comedy Tree Descendent Search 
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5.6 Ancestor Determination 

Another very common functionality of hierarchal labeling schemes is ancestor 

determination. It is used to establish a path from the current node to the root of the 

hierarchy. This experiment measured the performance of this functionality among 

different schemes. The results of the experiment are shown in Figure 5.20, Figure 

5.21, Figure 5.22 and Figure 5.23. When the experiment was performed on CNN tree, 

the Range model was able to locate all ancestors the fastest. This contradicts with the 

prediction made by Tropashko in section 2.2. This is due to the fact that the tree was 

relatively small, with limited fan-out and considerable depth.  

Figure 5.20: CNN Tree Ancestor Determination 
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Figure 5.21: Hamlet Tree Ancestor Determination 

0

0.02

0.04

0.06

0.08

0.1

0.12

Edge Path Range rPNL PNL

Labeling Scheme

T
im

e
 (

s
e
c
o

n
d

s
)

 

Figure 5.22: Yahoo Tree Ancestor Determination 
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Figure 5.23: Comedy Tree Ancestor Determination 
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When the same experiment was performed on Hamlet tree (Figure 5.21), the Range 

model performance did in fact suffer due to an increase in overall tree size and fan-

out. A similar phenomenon occurred during the experiments on the Comedy tree 

(Figure 5.23). In fact, Range scheme ancestor determination in a shallow hierarchy is 

more difficult than in a deep hierarchy.  

The Path scheme did not involve any database requests regarding the parent-

labels. In fact, all necessary information was retrieved from the node’s path label. 

This is the reason this model showed consistent results regardless of the hierarchy 

being modeled. The Edge scheme involved a lot of recursive queries each one 

performing a simple numeric label lookup. This is the reason Edge scheme was 

always slower than Path model. The proposed reusable prime number labeling 
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scheme had consistently good results across all experiments. In fact, it was the fastest 

of the five schemes during the Yahoo experiment (Figure 5.22). 

The rPNL algorithm which is reverse of the one described in section 4.1 could 

have been used for this experiment. However, due to the rounding error in MySQL 

software a different approach has been implemented. With this approach, each parent-

label is factorized and the appropriate parent SC number is generated. Then each 

parent node is located. This method is obviously much slower as it involves 

factorization and multiple database requests. However, the factorization of smaller 

rPNL labels is much faster than factorization of PNL labels. The native rPNL 

ancestor determination algorithm involves a single query submitted to the database 

with no factorization or SC number calculations. If the rounding error could be 

eliminated, the rPNL scheme performance would be improved even more. 

The results of this experiment have shown that both prime number schemes 

were considerably slower than the rest, especially in larger hierarchies. Their 

performance was proportional to the depth of the tree because both scheme 

implementations relied on prime factorization functionality. For instance, in the CNN 

tree experiment the PNL scheme was 604 times slower than Edge model and in 

Hamlet tree experiment it was 16 times slower than Range scheme. However, even 

with a slower algorithm implementation the rPNL scheme was on average 150 times 

faster than PNL scheme. The overall performance of prime number scheme may be 

greatly improved by introducing a more efficient prime factorization algorithm like 

the ones presented by Connelly Barnes (Barnes 2004). However, because both 
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models rely on the same prime factorization function, their relative performance ratio 

will remain constant. 

5.7 Update Flexibility 

Tree updates are one of the most complex operations available. They usually require a 

number of nodes to be re-labeled in order to reflect ancestor removal/addition and 

branch movement. The Edge labeling scheme is best suited for this purpose because 

only a single node needs to be updated to in order to execute any kind of tree update. 

The Range model is also quite flexible in this regard. It will require multiple 

unrelated nodes to be relabeled in order to accommodate the changes. However, each 

kind of update is relatively simple and could be performed globally. Additionally, this 

scheme design assumes frequent updates. Therefore, if a good scheme 

implementation is available, the tree can be successfully updated. Materialized path 

models such as Path and PNL may also be updated. For Path labeling scheme each 

individual update is not very complex. Even though string operations are much more 

resource intensive than math ones, they are guaranteed to work at all depths of the 

tree. PNL scheme can accommodate various types of updates as well. However, due 

to extremely large labels that are common in deep hierarchies, some of the updates 

might not be able to propagate through the entire sub-tree. The reusable prime 

number scheme is especially difficult to update. It relies on relative label uniqueness 

so branch movement is especially complicated. Vertical branch movement algorithm 

has been described in section 4.3. Unfortunately, there is no simple way to move an 

entire sub-tree within a hierarchy because there is no reliable way to ensure that the 
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prime numbers used in the destination branch are not also used in the sub-tree being 

moved. The only way to accomplish this would be through individual node re-

labeling. 
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Chapter 6  

Conclusions and Future Work 

6.1 Conclusion 

The purpose of hierarchical data modeling is a quick determination of relationships 

among the nodes in a tree. In order to do that efficiently, a labeling scheme must be in 

place that supports fast, computationally light queries. We have proposed a new 

prime number labeling scheme that utilizes the unique characteristics of prime 

numbers to encode the node position in a hierarchy. The rPNL scheme allows labels 

to be reused throughout the tree while still being unique at the sibling level and along 

the leaf-root path. This keeps the label size minimal, which in turn dramatically 

improves performance. The reusable prime number labeling scheme allows capturing 

larger hierarchies by encoding the order of the prime numbers with a simultaneous 

congruence number. Section 4.2 discussed the mathematical reasoning behind label 

size growth in both schemes and section 5.2 provided experimental evidence of the 

rPNL scheme producing a much more compact tree representation comparable to the 

path model. As shown in section 5.5, rPNL scheme is capable of searching deep 

hierarchies better than PNL. The proposed scheme also showed a significant 
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improvement in performance relative to the original approach as demonstrated in 

sections 5.5 and 5.6. Table 6.1 and Table 6.2 outline the results of the experiments 

performed. Overall, the rPNL scheme is not the best performer. However, it is better 

than PNL scheme for deep and shallow hierarchies. 

Table 6.1: Scheme Comparison Summary for Deep Trees 

 Edge Path PNL Range rPNL 
Model Size 1 4 5 2 3 
Tree Labeling 1 2 5 4 3 
Direct Children Lookup 1 5 3 2 4 
Descendent Search 5 3 4 1 2 
Ancestor Determination  3 1 5 2 4 
Update Flexibility 1 3 4 2 5 

 

Table 6.2: Scheme Comparison Summary for Shallow Trees 

 Edge Path PNL Range rPNL 
Model Size 1 3 5 2 4 
Tree Labeling 1 2 5 3 4 
Direct Children Lookup 1 5 2 3 4 
Descendent Search 5 4 3 1 2 
Ancestor Determination  2 1 5 3 4 
Update Flexibility 1 2 4 3 5 

 

6.2 Summary of Contributions 

This thesis presented a more capable labeling scheme that improves upon PNL 

model. We described the reusable prime number labeling scheme in detail, outlined 

its governing rules, and made conclusions regarding its expected capacity and overall 

size. Additionally, we discussed the update limitations that our scheme has and 

proposed an algorithm for vertical branch movement that does not require individual 

node label re-generation. A number of experiments, comparing the reusable prime 
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number scheme to others representative methods, have been carried out. The results 

of each experiment were analyzed and explained. We were able to demonstrate that 

the proposed scheme is capable of accurately modeling hierarchies of high depth and 

high fan-out within the available space. The proposed labeling scheme includes label 

recycling functionality which is not natively supported by any other labeling scheme. 

This research has shown that the rPNL labeling scheme is a valid method for 

encoding hierarchical information into a relational database. 

6.3 Future Work 

This research focused on labeling scheme comparison with no optimizations of any 

kind. This allowed true model performance to be isolated. In the future we would like 

to research various model optimizations applicable to the rPNL scheme. Some of the 

optimizations have been outlined by Wu, Lee, and Hsu in the context of PNL scheme. 

One of the major disadvantages of both prime number labeling schemes is that all 

searches must go through the entire tree. A further research into tree partitioning and 

caching would reduce the issue of full table scans. Additionally, some of the issues 

with both schemes were hardware limitations of the testing systems. Currently all 

computations were done within the 32-bit computer architecture. Further research 

could focus on scheme performance in 64-bit environments, on other operating 

systems, more efficient programming languages, and other relational databases like 

Oracle and MS SQL Server. 
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