
Concept Based Author Recommender System for CiteSeer

Kannan Chandrasekaran

 B.E., Computer Science and Engineering,

Arulmigu Kalasalingam College of Engineering, Krishnan Kovil

Madurai Kamaraj University,

India – May 2003

Master’s Thesis

Submitted to the Department of Electrical Engineering and Computer Science and the

Faculty of the Graduate School of the University of Kansas in partial fulfillment of the

requirements for the degree of Master of Science in Computer Science

Thesis Committee:

Chairperson: Prof. Joseph Evans

Co-Chairperson: Prof. Susan Gauch

Dr. Arvin Agah

Dr. Luke Huan

Date defended:

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by KU ScholarWorks

https://core.ac.uk/display/213385297?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ii

The Thesis Committee for Kannan Chandrasekaran certifies

that this is the approved Version of the following thesis:

Concept Based Author Recommender System for CiteSeer

Thesis Committee:

Chairperson: Prof. Joseph Evans

Co-Chairperson: Prof. Susan Gauch

Dr. Arvin Agah

Dr. Luke Huan

Date Approved:

iii

Abstract
The information explosion in today’s electronic world has created the need for

information filtering techniques that help users filter out extraneous content to identify

the right information they need to make important decisions. Recommender systems are

one approach to this problem, based on presenting potential items of interest to a user

rather than requiring the user to go looking for them. In this paper we propose a

recommender system that recommends research papers of potential interest to the author

from the CiteSeer database. For each author participating in the study, we create a user

profile based on their previously published papers. Based on similarities between the

user profile and profiles for documents in the collection, additional papers are

recommended to the author. We introduce a novel way of representing the user profiles

as tree of concepts and an algorithm for computing the similarity between the user

profiles and document profiles using a tree-edit distance measure. Experiments with a

group of volunteers show that our tree based algorithm provides better recommendations

than a traditional vector-space model based technique.

iv

To Almighty and my Family

v

Acknowledgements

I would like to express my deepest gratitude to Dr. Susan Gauch for the opportunity she

gave me to work with her. I am amazed and thankful to the patience she showed in

answering the infinite number of questions that I asked her. Her association has helped

me grow both professionally and personally. I thank her for the constant support and

guidance that she provided not only during this research work but throughout my

Master’s Degree

I am honored and thankful to Dr. Joseph Evans, for agreeing to be the chair of my thesis

committee and to Dr. Arvin Agah and Dr. Luke Huan for agreeing to be part of my

committee. Their valuable feedback has helped me improve my work. I also thank the

committee for their willingness to attend my Thesis defense in spite of the bad weather

on that day. Special Thanks to Students, Praveen Lakkaraju and Mirco Speretta for their

timely help during my research work. Their inputs really helped me familiarize with the

existing system which enabled me to complete my research work on time.

I would also like to thank my Family and all my Friends who have helped me in every

aspect of my life. I am forever indebted to them for their continuous support. Lastly I

thank the almighty without whom none of the wonderful things that has happened to me

would have been possible. I thank him for the Courage, Wisdom and Hope that he gives

me everyday to face the challenges in life.

vi

Table of Contents

Abstract ... iii
Chapter 1: Introduction .. 2
1.1 Motivation.. 2
Chapter 2: Related Work ... 5
2.1 Content Based Recommender Systems: .. 6
2.2 Collaborative Filtering Recommender systems:.. 12
2.3 Hybrid Recommender systems: ... 17
Chapter 3: Approach ... 24
3.1 Overview.. 24
3.2 System Architecture... 24

3.2.1 Classifier: ... 25
3.2.2 Profiler: .. 26
3.2.3 Recommender: ... 28
3.2.4 Time Vs Timeless: ... 33

Chapter 4: Evaluations and Results ... 34
4.1 Data set.. 35
4.2 Subjects ... 35
4.3 Baseline Vector Space Method:.. 36
4.4 Conceptual Recommendation Method:... 37
4.5 Experiments .. 38

4.5.1 Naming Conventions: .. 38
4.5.2 Collecting User Feedback .. 40
4.5.3 Evaluation Metric... 42
4.5.4 Results.. 43

Chapter 5 Conclusions and Future work.. 53
5.1 Conclusions.. 53
5.2 Future Work ... 54
References.. 56

vii

List of Figures

FIGURE 2. 1 ALGORITHM FOR LEARNING SHORT AND LONG TERM INTERESTS 8

FIGURE 2. 2. GRAPHICAL MODEL REPRESENTATION FOR FLEXIBLE MIXTURE MODEL 12

FIGURE 2. 3 GRAPH BASED MODEL FOR RECOMMENDER SYSTEM..................................... 22

FIGURE 3. 1 AUTHOR RECOMMENDER SYSTEM FOR CITESEER .. 25

FIGURE 3. 2. ALGORITHM FOR CONVERTING VECTOR OF CONCEPTS TO TREE OF CONCEPTS

... 31

FIGURE 4. 1 REGISTRATION PAGE OF EVALUATION SYSTEM... 36

FIGURE 4. 2 SCREEN SHOT 1 OF EVALUATION SYSTEM.. 41

FIGURE 4. 3 SCREEN SHOT 2 OF EVALUATION SYSTEM.. 42

FIGURE 4. 4. EXPERIMENT TO TEST HYPOTHESIS 1 .. 45

FIGURE 4. 5 BEST OF TREE OF CONCEPTS ALGORITHM .. 46

FIGURE 4. 6. TREE OF CONCEPTS VS. VECTOR OF CONCEPTS VS. BASELINE....................... 47

FIGURE 4. 7. EXPERIMENT TO TEST HYPOTHESIS 2 .. 49

FIGURE 4. 8. BEST OF TIME VARIANT ALGORITHM .. 50

FIGURE 4. 9 TIME INVARIANT VS. TIME VARIANT VS. BASELINE 51

2

Chapter 1: Introduction

1.1 Motivation
The web has grown tremendously since its inception. Traditional search engines gave the

same results to all the users without considering their specific user needs. However the

nature of information available on the web, its applications, and its user base has

diversified significantly. In addition, a user’s ability to locate relevant content would be

based on their ability to construct good queries. This has lead to the development of

systems that identify the needs of individual users and provide them with very specific

information to satisfy their requirements. “Recommender systems” which recommend

items to the users by capturing their interests and needs, are one approach to

implementing personalized information filtering systems [20].

Recommender systems have been used to recommend different types of items. For

example, websites like Amazon.com use recommendation engines to make personalized

recommendations of the products to its users, and digital libraries like CiteSeer [23] make

recommendations of technical papers to its users. Most existing recommender systems

use a form of recommendation called as collaborative filtering [22]. In this approach,

every user in the system has a neighborhood of similar users who share many of the

current user’s interests. The recommendations provided for the current user are provided

as a function of ratings provided by the users in their neighborhood. However, this

approach requires the availability of sufficient number of ratings for the items which is

always not the case. Even when there are a large numbers of users to provide

recommendations and large numbers of items to be recommended; only a small portion

3

of items receive a sufficient number of ratings to form the neighborhood. Consequently,

the recommendations are isolated to only a subset of the available items. Also, when a

new item is introduced, there are no ratings available for its recommendation. These

problems can be avoided if the recommendation is based on the content of the item.

Digital libraries such as CiteSeer consist of mostly textual data. Previous research has

shown that recommendation is a very valuable service to the users of digital libraries

[21]. The large amount of textual information can be leveraged to provide content based

recommendations. Traditional content based recommender systems [24] have used the

TF-IDF [3] similarity measure to compute the similarity between documents. In this

model, the documents are modeled as vector of keywords and similarity is computed

using a distance metric such as cosine similarity measure. However, this model relies

heavily on the exact keyword match and does not consider factors like synonyms of the

words, polysemy, i.e., words with multiple related meanings, or other ambiguities present

in natural language. Our work is based on the belief that such issues can be addressed if

the documents are represented in a way that the main idea/topic is included in its

representation. In this work, we propose a content based recommender system called

“Author Recommender” that represents documents and the user profiles as trees of

concepts and computes the similarity between the documents and user profile using a

simplified version of the tree-edit distance algorithm.

4

This thesis has two main objectives:

1. Study the effectiveness of using concept trees for providing technical paper

recommendations in a digital library like CiteSeer.

2. Study the influence of year of publication on the recommendations to the user.

5

Chapter 2: Related Work
In this chapter, we review some of the work done by others on recommender systems.

Recommender systems typically have a utility function that identifies the usefulness of an

item to the user of the item. Given a set of users and items, the main idea of the

recommender system is to select items for users so as to maximize this utility function.

This utility function is generally represented to the user as a set of ratings from a

particular scale, i.e., (1-5, 1-10, etc,) or as a list of Top N recommendations. There are

three major categories of recommender systems:

1) Content based recommender systems: These recommend new items to the user

based on the content of the previously purchased/used items.

2) Collaborative filtering recommender systems: These try to simulate the word of

mouth phenomenon practiced by humans by recommending items based on the

likes/dislikes of other users. They are especially useful for recommending non-

textual items such as music, movies, products, etc., where it is difficult to extract

the content of the item.

3) Hybrid recommender systems: These systems usually combine both collaborative

and content based recommendation approaches.

In the sections below, we discuss some examples of the different types of recommender

systems with more emphasis given to recommendation systems for textual data such as

book recommendations and digital library recommendations since these are directly

related to our work.

6

2.1 Content Based Recommender Systems:
In this section, we describe some of the applications where content based

recommendations have proven to be useful. [8] and [10] describe the application of

recommendation engines to the problems of distributing conference papers to conference

reviewers and suggesting news items to the users of a mobile device, respectively. [18]

takes a slightly different approach and focuses on the problem of recommending novel

items instead of just recommending known items. Various algorithms for detecting

novelty and redundancy have been proposed and evaluated.

In [8], the authors model the task of assigning technical papers to conference reviewers as

a problem of recommending the papers to the authors based on their interests. They

propose a system wherein they analyze the effect of combining different sources of

information using WHIRL [9], an information integration system, on problem of

recommendation. WHIRL is a conventional database with an extension to handle

heterogeneous sources of text based on similarity of values instead of using just the strict

equality measure. The similarity is computed based on the TF-IDF [3] scheme. Using

WHIRL, the multiple information sources are handled in two ways:

1) QueryConcat: In this method, multiple sources are combined into a single

source by taking the union of the words appearing in the two sources before

including it as part of the query submitted to the database.

2) QueryConjunct: In this method, the multiple sources are included in the query

independently as part of its WHERE clause. The final similarity score is

computed as the product of the individual similarity scores.

7

They consider two main sources of information, papers and reviewers. Each is

represented as vector of keywords. The paper sources include information obtained from

title, abstract, and a set of keywords from a pre-specified list. The information sources for

the reviewers include the reviewer’s home page and the papers that are referenced from

the home page. Using WHIRL, each comparison between a reviewer’s representation and

the paper representations is implemented as a query that returns a rank ordered list of

papers. A score is then assigned to each query based on the some evaluation measure

such as “precision” at Top N.

They evaluated their algorithms on a set of 256 papers submitted to the AAAI-98

conference using the actual preferences stated by the 122 reviewers as the ground truth

value. They used the random assignment of papers as their baseline method. Results of

their experiments showed that the “QueryConcat” method performed better than the

“Query Conjunct” method and their method outperformed the baseline by a factor of 2 to

5. They achieved their best result when the abstract was treated as the paper source and

the homepage was treated as the reviewer source. They also found that as adding more

information sources to the WHIRL query led to better results.

[10], describes a content based recommender system for recommending news items for

users of handheld devices such as PDA’s and cell phones. Implicit information is

collected and is modeled as a profile describing the user’s interest. A content based

machine learning algorithm then learns this model and provides recommendations for the

news items. The central component of the system is an Adaptive Information Server

8

(AIS) that maintains a database containing information on current news items and

personal user preferences. The news items are categorized into different categories such

as top stories, politics, business, etc. that are displayed as menus in user interface of the

handheld device. As the user navigates through the interface, news items are presented as

headlines. These headlines are rank ordered according to the user profiles. Selecting a

headline fetches its first paragraph and is treated as positive feedback. Scores are

assigned incrementally as more and more information is requested for the news item from

the server. In contrast, skipping a story is treated as a negative feedback. The algorithm

used for learning the user profiles modeled both the short term and the long term interests

of the user. The short term model is based on the Nearest Neighbor text classification

algorithm [11] that represents the news items as vector of keywords and the long term

model used a probabilistic learning algorithm, a naïve Bayesian classifier that assessed

the probability that a news item is interesting give a specific set of features representing

the news item. The learning algorithm can be summarized as shown in the figure 2.1:

Figure 2. 1 Algorithm for Learning Short and Long Term Interests

If the Story can be classified by short term model
{

Score = weighted average over nearest neighbors
If story is too close to known story

Score = score * SMALL_CONSTANT
}

Else
{

If Story can be classified by long term model
Score = probability estimated by naïve Baye’s

Else
Score = DEFAULT_SCORE

9

They evaluated their approach by comparing their adaptive news items with static news

items without any personalization. They conducted their experiments for a period of ten

days and measured the mean rank of all the stories selected by the users. They found that

the personalized stories were on the top 2 headline positions 93.6 % of the time when

compared to 72.8 % for the static news items. They concluded that effective

personalization can be achieved without requiring any extra effort from the user.

In [18], the authors propose algorithms for extending information filtering systems to

identify novelty and redundancy of relevant documents. They propose solutions for

overcoming the common problem of distinguishing between relevant documents

containing new information and relevant documents that contain already known

information. The task of identifying redundant information is divided into two stages:

1) calculate a redundancy score for each document with respect to a user profile,

2) identify documents with redundancy scores above a specific threshold.

The first of the two points mentioned above is the focus of their research paper. The

algorithms for calculating a redundancy score for the document discussed below:

Let,

A, B: sets of documents,

dt: a document being evaluated for redundancy at time t,

D (t): set of all documents delivered to the profile before time t,

DR (t): set of all relevant documents delivered to the profile.

R (dt): redundancy measure for dt,

di: a relevant document delivered before dt

10

 Set Difference: The documents are represented as set of words. It is based on the

idea that a word wi occurring frequently in dt but not in di represents some new

information in dt. The corpus specific and topic specific stop words are smoothed

by dividing the document’s word frequencies with the word counts from the

previously seen documents. Thus, redundancy measure of document dt given di

is,

R (dt| di) = | Set (dt) (intersect) Set’(di)|

 Where:

Wj belongs to Set (d) iff Count(Wj ,d) > k

 Count (Wj, d) = alpha1 * term frequency of word Wj in document d +

 alpha2 * no. of filtered documents that contain Wj + alpha3

 * no. of delivered relevant documents that contain word Wj

 Cosine Similarity: Here the documents are represented as vector of keywords and

the redundancy score between dt and di is measured as cosine of the angle

between the two vectors:

R (dt |di) = cos (dt, di)

 Distributional similarity: Here a document d is represented as a unigram word

distribution Θ. The Kullback-Leibler (KL) [19], similarity measure is used for

measuring the redundancy of dt given di.

R (dt| di) = -KL (Θdt ,Θdi)

 = - ∑ P(Wj|Θdt) log (P(Wj|Θdi) / P(Wj|Θdt))

where θ is found using the Maximum likelihood estimation technique (MLE):

 P(Wi |d) = tf (Wi ,d) / ∑Wj tf (Wj , d)

11

 Mixture Model: In this case the authors assume that the relevant document is

generated from three language models: 1) a general English language model “Θe”

which represent words such as “is” or “was” in the document, 2) topic specific

language model “Θt” that identify words representing the main topic of the

document and 3) document specific model “Θd”. As “Θd” represents the core

information of the document, the redundancy is computed using the KL measure

as :

R (dt| di) = KL (Θdt, Θdi)

Using this model, both relevant and redundant documents can be identified. If the focus is

to identify relevant document then similarity is computed using “Θt” which identifies

documents relevant to a particular topic whereas “Θd” can be used to identify redundant

documents by focusing on the actual content of the document.

The authors evaluated the different algorithms on a subset of data obtained from the

TREC CDs. For a total of 50 topics, assessors were asked to judge whether or not a

document was redundant, based on previously seen documents about a paticular topic.

Their judgments were considered as truth values. By running their algorithms on this test

data, they found that the Cosine similarity model and the Mixture model perfomed better

than the others.

As we can see, most of the current content based recommendation has only been applied

to textual data. This is because it is difficult to extract semantic features for the content of

non-textual data such as music or movies.

12

2.2 Collaborative Filtering Recommender systems:
In this section we describe two model-based [25] approaches to collaborative filtering

applied to movie recommendation. [12], uses a probabilistic model for recommending

movies to the users whereas in [16] the authors apply dimensionality reduction

techniques such as singular value decomposition to reduce the complexity of the

collaborative filtering algorithm before applying the vector based model nearest

neighborhood calculation.

In [12], the authors propose a flexible mixture model (FMM) for collaborative filtering

The FMM models the users and the items as separate clusters and allows for each item

and user to be in multiple clusters. The graphical model for FMM is as shown below:

Figure 2. 2. Graphical Model representation for Flexible Mixture Model

Here,

13

X = number of items,

Y = number of users,

R = number of ratings,

Zx and Zy = Latent variables that indicate the class membership for items and users

respectively,

P (Zy) = multinomial distribution on the user classes,

P (Zx) = multinomial distribution on the item classes

P (X| Zx) = conditional probability of items X given a specific item class Zx,

P (Y| Zy) = conditional probability of users Y given a specific user class Zy,

P (r| Zx, Zy) = conditional probability of ratings r given a specific item class Zx and

specific user class Zy.

With the above annotations, the joint probability P(x, y, r) for FMM can be written as:

 P(x, y, r) = ∑ P(Zx) P(Zy) P(x| Zx) P(y| Zy) P (r| Zx, Zy) (1)

The training procedure for building the model is carried out using a modified version of

EM algorithm [14] called Annealed EM algorithm [15]. The algorithm consists of two

stages. In the expectation stage, the joint posterior probabilities of the latent variables

{Zx, Zy} are calculated which are then used to update the model parameters in the

maximization step. A variable ‘b’ is introduced in the expectation stage as a control

parameter. The prediction ratings for the test user yt on unseen items is based on the set

of observed ratings for the test user yt. The core idea of the prediction process is to

estimate the joint probability of the rating, item and the test user and to predict the rating

with an expectation. The joint probability is calculated as shown below:

P(x, yt, r) = ∑ P(Zx) P(Zy) P(x| Zx) P(yt | Zy) P (r| Zx, Zy)
 (2)

14

The joint probability the prediction of rating on item x by user y is as given below:

Ry
t (x) = ∑r * (P(x, yt, r) / ∑P(x, yt, r)) (3)

The authors argue that even though two users A and B may have the same likes and

dislikes, their ratings may differ. For example, A may have a very strict nature and might

rate bad movies as 1 and good movies as 3, whereas user B with the same taste might

have a moderate nature and rate them as 3 and 5 respectively. To account for this

problem they suggest converting the ratings into the “true” preference ratings and use this

preference value instead of the ratings to make the predictions. They call this model as

“decoupled model” (DM). Two factors are taken into account when converting the

ratings into preference value viz. 1) the percentage of items with ratings <= ‘r’ and 2) the

percentage of items that have been rated as ‘r’. Based on this the preference probability

for rating ‘r’ from user ‘y’ can be given as:

P_Ry(r) = P (Rating <= r| y) – P (Rating = r| y)/2 (4)

Similarly the rating ‘r’ for an estimated preference value Vy(x) is given as the preference

probability that is closest to the estimated probability.

Ry(x) = argmin | P_Ry(r) - Vy(x) | (5)

The DM model can then be combined with the FMM to predict the ratings. The idea is to

first convert the ratings ‘r’ for the known items in the training database into their

corresponding preference values using DM model and then use this preference value to

predict the ratings on unseen items by converting the preference value back to ratings

15

using equation (5). They evaluated their algorithm on two datasets of movie ratings each

consisting between 100 – 400 users. They compared their algorithms with other

collaborative filtering algorithms like Pearson Correlation Coefficient method (PCC),

Vector similarity method (VS), Aspect model and Personality Diagnosis model

(PD).They found that the proposed FMM model performed better than all the other

algorithms. They also compared the performance of FMM with and without the DM and

found that the FMM/DM model outperformed the one without the DM model.

In [16], the authors describe experimental results of applying the singular value

decomposition (SVD), a dimensionality reduction technique to recommender systems.

Collaborative filtering systems have always had the problem of sparse ratings where there

isn’t enough overlap of items among the users and hence not much correlation among

them. By applying dimensionality reductions techniques like SVD the authors aim to

provide meaningful recommendations even for sparsely populated cases. The authors

apply SVD to:

1) Capture the relationships between the users and the products and use it to make

predictions that a user likes a particular product and

2) Produce a low dimensional representation of the user-product space, compute

the neighborhood information and use that to generate a list of Top N

recommendations for the customer.

By reducing the dimensionality of the input space the authors aim to reduce the

complexity of the nearest neighborhood calculations used by the collaborative filtering

algorithms.

16

To make predictions, they start with a sparse user-product matrix, fill in the null values

with product average, and normalize the matrix by subtracting the customer average for

each rating. Then, the steps mentioned in [17] are followed to obtain a low ranked

matrices Uk, Sk
1/2, Vk. The dot product between the between the matrices Uk Sk

½ and Sk

½ Vk
 is used to compute the prediction for the new item. For generating the

recommendations they again apply the dimensionality reduction techniques mentioned

above and use the cosine similarity measure to form the neighborhood in the reduced

space. Once the neighborhood is formed, a frequency count list on all the products

purchased by the neighbors is generated. The list is then sorted to produce the Top N

recommendations for the target user.

They evaluated their algorithm on datasets obtained from ’MovieLens’ and an e-

commerce company. They used the CF algorithm, based on the Pearson nearest neighbor

algorithm, as their baseline for the prediction experiment and an algorithm that computes

the cosine similarity in high dimensional space to form the neighborhood as the baseline

for the recommendation experiment. The results showed that, for the prediction

experiment, the SVD algorithm performed better than the CF algorithm when the training

data was sparse. However, the CF algorithm performed better when sufficient training

data was available. For the recommendation experiment, the recommendation quality in

the low dimensional space performed better than their counterparts in the high

dimensional space.

17

2.3 Hybrid Recommender systems:
Hybrid recommendations systems were developed to overcome the limitations of both the

content and the collaborative recommendation systems. Researchers identified that the

two systems complemented each other. [7], describes one of the earliest hybrid

recommendation engine developed to recommend web pages to its users. [2] and [5]

focuses on providing recommendations for digital libraries. While [2] uses a subset of

CiteSeer itself as its dataset, [5] describes the analogy between buying books in a e-

commerce book store and lending books in a digital library and uses data from a Chinese

e-commerce book store to evaluate its recommendation algorithm.

In [7], the authors propose ‘Fab’, a content-based collaborative recommender system for

recommending web pages to its users. The recommendation process consists of two

stages:

1) collection of items to create an index or database

2) selection of items from the database to a particular user.

The ‘Fab’ system is divided into three main modules, i.e., the selection agent, the

collection agent, and the central router. During the collection stage, pages relevant to

specific topics are gathered by the collection agent. The pages are then delivered to many

users at the selection stage by the selection agent. Each agent maintains a profile based on

the content of the web pages. The selection agent’s profile represents the interests of a

user whereas the collection agent’s profile represents a particular topic. A central router

acts as a controller module, receives the web pages from the collection agents, maps them

according to the user profiles and forwards them to the selection agents. Thus, each user

receives pages based on their selection agent profile. In addition, the selection agent uses

18

explicit feedback from the users to update their profiles which enables the system to

adapt to their changing interests.

They evaluated their system in a controlled experiment with a small number of users.

Participating users were asked to choose a topic of interest in advance. The chosen topics

ranged from computer graphics and game programming to cookery, music, and evolution.

The experiments were conducted for several days and feedback was periodically

collected from the users, which was then used to create a preference ranking for each user

against which the system output was compared. In particular, the distance between the

user’s rankings and the system rankings predicted using the user profiles was measured.

The authors found that adding more and more examples to the profiles enabled the

system to become a much better predictor of user’s rankings over time. The system

output was also compared to web pages obtained from other sources such as randomly

selected web pages, pages from the human selected “cool sites” of the day, and pages

best matching the average of all the user profiles in the system. The result of the

experiment showed that the recommendations provided by the Fab system clearly

outperformed the pages from the other sources.

In [2], the authors suggest a combination of collaborative filtering (CF) and content based

filtering (CBF) approaches to building a recommender system for digital libraries. They

propose ten recommender algorithms, two CF, three CBF, and five hybrid that are

obtained by combining the pure CF and CBF algorithms in different ways. All the

algorithms take an input list of citations and generate an ordered list of citations as the

19

recommendations. The standard K-nearest neighbor algorithm is used as the basis for the

CF algorithms. “Pure-CF” takes the list of citations for the current paper as input while

the “Dense-CF” augments the input list with the list of citations cited by all the papers

that the current paper cites.

All of the CBF algorithms are based on the TF-IDF [3] similarity measure. “Pure-CBF”

generates similar documents based on the current paper’s text, “CBF-Separated”, extends

the Pure-CBF by also generating similar papers for all the papers cited by the current

paper and then combining the individual lists into a single list. “CBF-Combined”, is a

variation of CBF-Separated which merges the text of the current paper and its citations

into one large chunk of text. This single chunk of text is then used to obtain a single

output list.

Each hybrid algorithm contains two independent modules, a CF module and a CBF

module. The authors create their hybrid algorithms by using two types of combination

techniques described by Burke [4], “feature augmentation” and “mixed. “Feature

augmentation” combinations use the output of one module as the input for the other. In

contrast, “mixed” combinations run the two modules in parallel, independently of each

other. The output from both modules is then combined to produce the final output list.

They evaluated their algorithms on a set of 102,000 research papers obtained from the

CiteSeer database. They used a combination of offline and online experiments to evaluate

their results. For offline experiments, they removed a random citation from the paper and

20

checked to see if the citation was recommended by their algorithms. They also conducted

an online study in which participants were asked to rate the recommendations. They

found that different algorithms produced better recommendations depending on the genre

of papers. Some were better at recommending broad overview papers, such as survey or

overview papers whereas others were better at recommending introductory papers, or

novel papers, etc. However, in general, the Fusion algorithm performed significantly

better than all the other algorithms.

Other approaches treat the problem of recommendations as a graph search problem. In

[5], the authors describe a graph based hybrid recommender system applied to

recommending books for a Chinese book store. The online records for the book contents,

customer information, purchase histories in the book store are analogous to the document

content information, user’s personal attributes, and their usage history in the digital

library environments. They model the information obtained from the bookstore as a two

layered extended graph that incorporates book-to-book, user-to-user, and book-to-user

correlations.

Their approach consists of two stages of computation. In the first stage, the customers

and the books are represented as feature vectors. The feature vector for the customer is

comprised of the customer’s demographic data and the feature vector for the book

consists of both the attributes of the book such as author, edition, and publisher, as well

as content extracted from the title and body. Tin the second stage, book-to-book

similarity and user-to-user similarity is computed using some similarity function. In the

21

second stage, the books, customers, and purchase histories are modeled as a two layered

graph. The first layer is called the book layer wherein a book is represented as a node and

the links between the nodes represent similarity between the books. The second layer is

called the customer layer wherein a customer is represented as a node in the graph and

the similarities between customers are represented by the links between the nodes. These

two layers are then connected by links representing the purchase of the book by a

customer. Each link in the graph has a weight between 0 and 1 that represents the degree

of similarity between the nodes. Once this model is set up, the recommendation activity

reduces to a graph search task.

For example, consider the following sample graph. The book layer consists of 3 books

B1, B2, B3 and the customer layer consists of 2 customers C1 and C2. The degree of

similarity is represented by the weights associated with the links between the nodes in the

graph.

22

Figure 2. 3 Graph Based Model for Recommender System

Recommendation of a book to a customer is based on the association strength between

the customer and the book that is obtained by combining the strength of all the paths

between customer and the book in the graph. The association strength of a path is defined

as the product of the weights associated with the links in the path. This approach can be

seen as a combination of both the collaborative and the content based approaches. If we

derive the result only by considering the book-to-book similarity information, it becomes

a content based approach. On the other hand, if we use only customer-to-customer

similarity information, it becomes a collaborative approach. Thus, the graph model

incorporates all the three approaches generally used by the recommender systems and

allows for greater degree of flexibility and experimentation without changing the model.

23

The authors evaluated their system on a dataset containing 9,695 books, 2,000 customers,

and 18,771 transactions. They experimented with both a simple different weight

propagation algorithms and found that the hybrid approach outperforms both the pure

content based and the pure collaborative approaches [6]. They also conducted a

subjective evaluation of their recommendations using human evaluations and found that

the content based approach outperformed both the collaborative and the hybrid

approaches. Thus, the message produced by this study is mixed.

From the survey above, we can see that most pure content based recommendation

systems represent the user profiles as vectors of keywords and use TF-IDF for similarity

calculations whereas pure collaborative recommendation systems try to generate a model

from the existing data and make predictions using the model. Our work is similar to the

other content based recommender systems in that the profile information for the user is

generated based on the actual content of the data, however like [5] we differ in the way

the profile information is modeled. [5], models them as a graph and treats the

recommendation as graph search problem while we model them as a tree of concepts and

obtain the recommendations using a tree similarity algorithm.

24

Chapter 3: Approach

3.1 Overview
The Author Alert system for CiteSeer recommends papers by first constructing a

conceptual profile for each document in the collection. It then creates a conceptual user

profile for an author. It then uses similarities between these profiles to find papers of

interest for an author.

As part of [27], all the documents in CiteSeer were categorized into a predefined set of

concepts according to the ACM's Computing Classification system taxonomy [28]. This

taxonomy is 3 levels deep with 368 concepts. Thus, each document in the CiteSeer has an

associated set of concepts that represent the central ideas in the document. We extract this

concept information associated with each of the author’s publications from the CiteSeer

database to construct the user profile. The CiteSeer database is then searched for

documents that are represented by a similar set of concepts as those present in the user

profile using a similarity computation algorithm. The top N papers from the final list are

output as recommended papers for the author. The classification of documents into

predefined set of concepts is done by the classifier module. The profile building is done

by the profiler module and the similarity comparison is then done by the Recommender

module. Each of these modules is explained in detail in the following sections.

3.2 System Architecture
The Architectural diagram for the Author Recommender system for CiteSeer is shown

below:

25

Figure 3. 1 Author Recommender System for CiteSeer

The system consists of 3 main modules:

1) Classifier Module

2) Profiler module and

3) Recommender module

Let us now look at each module in detail.

3.2.1 Classifier:

As part of [27], all the documents in the CiteSeer database were classified into a set of

predefined concepts obtained from the ACM's Computing Classification system

taxonomy. The classification consists of two stages:

Author
Details

Citeseer Search
engine

Profiler

Recommender
Module

Citeseer
Database

Documents

Concept information

RList Recommended
set of papers

User
Profile

Is the
document

published by
the author
within the

specific time

Concept information

IList

Tras
hYes

No

Classifier
Module

DID

(DID, Concept IDs)

ACM
Taxonomy

26

1) Training stage: During this stage, certain documents are pre-assigned one or more

concepts in the taxonomy either manually or by some other method. These

documents form the training set for the classifier. The classifier uses these

training set to learn the model for each concept in the taxonomy.

2) Classification stage: In this stage the classifier uses the model learnt in the

training stage to classify the input documents. The output is a list of concepts for

each input document along with their corresponding weights which indicate the

degree of association between the concept and the document. The top 3 concepts

for each document were retained and stored in the CiteSeer database.

Experiments with KNN, SVM and Rocchio classifiers showed that Rocchio gave the best

performance and hence Rocchio classifier was used for classifying all the documents in

the CiteSeer database.

3.2.2 Profiler:

The main objective of the profiler module is to create a user profile for the author, for

whom we are trying to recommend papers. The user profile attempts to capture the

interests of the author at a higher level of abstraction than provided by keywords. The

input to the profiler module is a list of documents from the CiteSeer database that were

published by the author within a particular time frame. We have considered a time period

of eleven years from 1994-2005 for our experiments. We retrieve this list by querying the

CiteSeer search engine with the author's first, last or other common names used by them

in their publications. The result of the query is then manually examined to ensure that the

27

author indeed is the publisher of the document and if the publication date is within the

considered time period. The documents not published by the author that are retrieved

because they contain the author's name as text or in a citation are discarded manually. Let

us call this list of documents the input list, or IList, for the author. This IList is then

provided as input to the profiler module.

As mentioned earlier, each document in the CiteSeer database has 3 concepts associated

with it and is represented as a list of (concept, wt) pairs. The wt represents the degree of

strength of association between the document and the associated concept as calculated by

the document profiling system. We use this category and weight information to construct

the user profile. For each document in the IList, we retrieve the set of associated concepts

and sort them in decreasing order by wt. If two or more documents are associated with

the same concept then the wt contributed by each document is added to represent the final

wt for that particular concept in the user profile.

wt(cpj) = ∑ wt(dk, cp) , for all k documents in the IList

where

wt (cpj) = wt of concept c in the profile p of author j

wt (dk, cp) = wt of the document dk associated with concept c

Thus, the output of the profiler module is a vector of (concept, wt) pairs which

encapsulates the interest areas of the author.

28

Let us now consider an example in which the IList consists of 2 documents, D1 and D2,

published by a particular author. The profiler is provided with this list and then retrieves

the associated set of concepts for the documents D1 and D2 from the CiteSeer database.

Let ((A, 0.1), (B, 0.3), (C, 0.2)) and ((D, 0.3), (B, 0.5), (E, 0.6)) represent the associated

set of (concept, wt) pairs for documents D1 and D2 respectively. It then constructs the

profile as a list of concepts arranged according to their wts in decreasing order. Thus,

after document D1 is processed the profile initially becomes,

B 0.3

C 0.2

A 0.1

After Document D2 is processed, the profile is becomes:

B 0.8 (0.5 + 0.3)

E 0.6

D 0.3

C 0.2

A 0.1

The list encapsulates the importance of a particular category to the user profile in its

order.

3.2.3 Recommender:

The output from the Profiler is provided as input to the Recommender module. The

output of the Recommender module is a list of recommended papers for the author. Let

us call this list as the RList. For each category x in the user profile, the recommender

29

module searches the CiteSeer database for documents which have the category x in its

associated category set. The number of categories (β) to be considered from the user

profile is passed in as a parameter to the recommender module. If a match is found, the

document is added to the RList. When adding the document to the RList the wt associated

with the category x in the profile is multiplied by the wt associated with the document.

wt(i, j) = wt(cpj) * wt(i, cpj)

where

wt(i,j) = the weight of document i added to the RList for author j

wt(cpj) = weight of concept c in the profile of author j

wt(i, cpj) = weight of document i associated with the same category c in the user

profile of author j

Finally, the document is checked to see if it was published within the time period

considered. If the year of publication does not fall within the desired time period, the

document is not added to the RList.

After processing the concepts in the user profile, the RList holds the list of document

identifiers (DIDs) that are associated with the concepts in the author’s profile. The final

step is to rank order these documents in decreasing order of their likely interest to the

author. Thus, for each document in the RList, the Recommender module retrieves all of

the associated categories. Next, it uses the "Conceptual Tree Edit Distance Algorithm"

[27] to compute the distance between the document and the user profile. This algorithm

30

calculates the cost of modifying the document profile to match the user profile. The

closer the two profiles, the lower the cost of the required modifications. Thus, the

Recommender module calculates the cost of transforming each document profile into the

author profile, which is effectively a measurement of the distance between the profiles. It

then sorts the documents in the RList in increasing order so that the closest documents

appear first and the most distant documents appear last. The closest 10 documents are

then displayed to the author as the recommended set of papers.

3.2.3.1 User-Document Distance Computation:

Let us now examine the “Concept Tree Model” that has been used to compute the

distance between the user profile and the documents in more detail. Traditionally, content

based recommendations used the vector space model for this purpose. In that model, the

documents are treated as a vector of keywords and the cosine similarity measure is used

to find the similarity between the documents. This model, although simple to implement,

assumes that the keywords in the vector are independent of each other which is often not

the case and it requires an exact match between the keywords. It does not take into

account the ambiguity of natural language due to factors such as synonymy and polysemy

Another way to look at this problem is to represent the documents based on their central

ideas instead of their keywords. We can achieve this by classifying the documents into a

predefined set of concepts using a text classifier and then represent the documents as

vector of concepts rather than a vector of keywords. However, we find that the categories

are often hierarchical in nature, having inter-relationships among themselves. By treating

31

the documents as vector of concepts, we are ignoring this hierarchical structure. To

exploit this natural inter-relationship, we make use of a document representation based on

a tree of concepts [27].

Figure 3. 2. Algorithm for Converting Vector of Concepts to Tree of Concepts

In this work, the Recommender module first converts the document and user profiles

from Vector of Concepts into Tree of Concepts using the algorithm shown in Figure 3.2.

The input to the algorithm is a Vector of Concepts representing the user or document

profile. The output of the algorithm is a weighted Tree of Concepts. This conversion is

performed by first adding each concept and its weight into the tree and then recursively

adding the parent concepts and their weights into the tree until the root of the taxonomy is

Tree vector_to_tree (Categories)
{

for each cat in (Categories)
{

add_to_tree (cat, Tree);
 }
 return tree;
}

void add_to_tree (category, Tree)
{

if(category == root)
return;

else
{

Tree.add (category);
Tree.add (category.wt);
parent = getParent (category);
parent.wt += * category.wt;
add_to_tree (parent, Tree);

}
}

32

reached. Essentially, the concepts in the representations come from a hierarchical

concept space, and their weights are propagated up the tree until the (possibly disjoint)

subtrees are all reconnected. A tuning parameter called ‘’ is introduced to control the

percent of weight that is propagated by the child concept to its parent. The weight of the

Parent is calculated as follows:

Wtp += * Wtc

where

Wtp = Weight of the parent concept,

Wtc = Weight of the parent concept

 = tuning parameter which varies between 0 and 1.

Once the user profile and the documents are represented as trees, the problem of

computing the distance between them is reduced to finding the distance between the two

trees. Based on previous research [27], we use the Tree-Edit distance measure to

calculate the cost of transforming one tree into another with the minimum number of

operations where operations are defined as follows:

1) insertion: Inserting a new node into the tree

2) deletion : Deleting a existing node from the tree

3) substitution: The cost of transforming the one node into another

The cost of deletion or insertion of a node is equal to the weight associated with the node

and the cost of substitution is equal to the difference between weights of the substituted

nodes. For a more detailed explanation please refer [27]

33

3.2.4 Time Vs Timeless:
As one of our objectives, we study the influence of year of publication on recommending

technical papers to an author. In this work, we compare two approaches for

recommending relevant papers.

 Time Variant: In this case more importance is given to recently published

documents over older documents. The assumption is that, among relevant papers,

the author is more interested in finding recent publications than older ones. This is

implemented by introducing a new parameter, time_wt. Based on their year of

publication; recently published documents receive more time_wt than the older

ones. To weigh the documents differently based on their age, the concept vectors

for the documents in the RList are pre-multiplied by time_wt before they are input

to the Recommender.

 Time Invariant: As a baseline for comparison, in this case no importance is given

to the publication date. All documents receive a time_wt equal to 1.

34

Chapter 4: Evaluations and Results
In this chapter we evaluate the two goals stated in Chapter 1. To evaluate our first goal,

using concept trees in technical paper recommendations, we compare our concept tree

algorithm with the traditional vector based algorithm. By varying the parameter, we

generate the two versions of the concept tree algorithm, one where the weight associated

with the child concept is propagated to its parent concept (> 0) and the other where the

weight associated with the child is not propagated to the parent concept (= 0) which is

essentially a concept vector approach. We then compare the two versions of the concept

tree algorithm with the vector based algorithm. To evaluate our second goal (i.e.) the

influence of publication date on the recommendations to the user, we again vary the

‘time_wt’ parameter as mentioned in chapter 3 and obtain Time Variant and the Time

Invariant versions of the algorithm. We then compare the two versions with the vector

based algorithm. In all cases, comparisons between the algorithms were done based on

the ratings given by the users. In summary, our experiments were designed to test the

following two hypotheses:

Hypothesis 1: The algorithm computing the similarity using the Tree of concepts (

> 0) is better than the algorithm computing the similarity using vector of concepts (

= 0) which is in turn better than the algorithm computing the similarity using vector

of keywords.

Hypothesis 2: The year of publication of the document affects the interest of the

users positively; i.e., users would consider the more recent documents as better

recommendations than older documents.

35

4.1 Data set
CiteSeer is a search engine and digital repository of scientific and academic papers. It is a

collection of over 700,000 documents primarily in the field of computer and information

science. We used a subset of that document collection published from 1994-2005 as the

dataset for carrying out our experiments.

4.2 Subjects
To establish truth for the recommended documents, we conducted a user study. Since we

needed published authors as subjects (in order to use their publication records for the user

profiles), we contacted 20 computer science and computer engineering professors from

KU and other universities. Ultimately, 8 professors were included for the study, after

registering with the evaluation system. During registration, the professors entered basic

information such as their First Name, Last Name, Email Address and any common names

that they used in their published papers. This information is used when querying the

CiteSeer search engine for generating the IList. Figure 4.1 shows a screen shot of the web

interface for the registration process is as shown below:

36

Figure 4. 1 Registration Page of Evaluation System

After an author registers with a system, the common names are fed as query terms to the

CiteSeer search engine to obtain a list of papers containing the author’s name. This list is

then filtered as explained in chapter 3 to obtain the IList. The IList is then used to create

the user profile for the author that is used to recommend papers to them in the baseline

experiment and in our experiments on conceptual recommender systems.

4.3 Baseline Vector Space Method
CiteSeer has a built-in recommender system that can compute the similarity between

documents using different semantic features [1]. The TF-IDF [3] scheme is used to

measure the similarity between documents by treating them as word vectors. CiteSeer

also uses the string matching algorithms to find the similarity between the headers in the

document. Headers contain the author, title, institution and other such information that is

given in the start of the document before its actual content. It can also use citations

37

present in the document as an indication of the document similarity. All the documents

cited by the document ‘A’ are handpicked by the author and hence is a direct

representation of its relatedness to document ‘A’. In addition, it can also use the location

of the citation within the document text to find the context in which the cited document is

related to document ‘A’.

As our baseline method for comparison, we have used the TF-IDF scheme implemented

by CiteSeer. In order to identify the most similar documents for a registered author, for

each document in the author’s IList, we use CiteSeer to retrieve the most similar

documents based on TF-IDF similarity. Thus, for each document in the IList, we get a list

of the most similar document in the database which includes the document identifier and

a weight signifying the degree of similarity. The list is presented in decreasing order by

similarity and the highest weighted ten documents for each IList document are retained.

These lists are then merged together to create the final list by including the unique

documents in each list in decreasing order of their weights. If more than one list

contained the same document then the weights belonging to each list is added together to

produce the final weight for that document. The top 10 documents from the final list are

then treated as the final set of recommendations produced by the baseline method and is

then presented to the author for evaluation.

4.4 Conceptual Recommendation Method
The common names of the authors obtained from the registration process are input to the

CiteSeer search engine and the list of documents obtained as results are then filtered to

create the IList as mentioned in the section 3.2.2. The same IList is then used by the

38

baseline method for generating the recommendations and by the concept tree method to

generate user profile for the author. The profiler module uses the concepts associated

with each document in IList to construct the user profile. Once the user profile is

constructed the recommender module constructs a tree out of it and uses the tree

matching algorithm described in Section 3.2.3 to generate the set of recommendations for

the author.

4.5 Experiments
4.5.1 Naming Conventions:

In this section, we discuss the input parameters to the system, experiments conducted by

varying the input parameters and the outcome of the experiments.

As discussed in chapter 3, the Author Recommender system has three main input

parameters.

 Weight Propagation factor (): This parameter determines the amount of weight

propagated by the child node to its parent during the similarity computation using

the concept tree algorithm. We test four different values, i.e., 0, 0.33, 0.67, 1.00,

of this parameter. When the weight propagation factor is zero, no weight

information is propagated from the child node to its parent. Thus the concepts are

treated as vectors instead of trees during the similarity computation.

 Number of user profile categories (β): The user profile consists of a list of

(concept, wt) pairs. The number of such pairs to be considered from the list when

performing the similarity match is passed into the Recommender module as a

parameter. We considered three values viz. 15, 10 and 5 for this parameter in our

experiments. The authors whose user profile consisted of less than 15 categories

39

were not considered for our experiment. This was due to the lack of sufficient

number of author’s publications in the CiteSeer database. After such pruning we

had 8 authors at the end whose user profiles consisted of more than 15 categories.

These 8 authors form the basis for our experiments.

 Time/ Timeless: As discussed in Chapter 3.2.4, the two cases are represented

using a Boolean flag called Time and is passed as a parameter into the

Recommender module. Time and the Timeless versions are represented when the

Time flag is set to 1 and 0 respectively.

For each value of ‘β’ considered, the flag representing the time factor is varied to obtain 2

outputs representing the time invariant and the time variant versions of the algorithm. Let

us denote the time invariant algorithm as ‘TL β’ and time variant algorithm as ‘T β’. For

example, when ‘β’ has a value 15 the algorithms are denoted as ‘TL15’ and ‘T15’

respectively. For a given value of ‘’, 6 different versions of the algorithm viz. T5, T10,

T15 and TL5, TL10 and TL15 are generated. This process is repeated for each value of

‘’ and there are four different ‘’ values. Thus a total of 24 different combinations were

used to generate different set of recommendations for an author.

No of iterations = No of values * No of β values * 2

 = 4*3*2 = 24.

The outcome of each of the iteration is an RList that provides a set of recommendations.

We consider each RList as the results of a different version of the Tree concept

recommender. However, we do not need to have multiple versions of individual

40

documents judged by our human subjects. So, to reduce their work, we remove the

duplicate documents from each RList and merge the top ten documents from each RList.

The duplicate documents if any within an RList are removed using a Perl script. This

unique list of documents is then presented to the author for evaluation.

4.5.2 Collecting User Feedback:

Once the recommended papers have been identified, the author is emailed to notify them

that they have papers to review. For easier and more efficient interactions, a web

interface was provided for rating the documents. The author logs in to a URL provided in

the email notification using the email Id that he entered during the registration process to

view the recommended documents. The papers are displayed to the author in random

order, and they are asked to submit their ratings. For each recommended document, the

following information was included to facilitate the evaluation process:

1) The title of the document

2) The abstract of the document

3) The link to the original document

The author is then asked to rate the documents using on of four ratings described below:

 1 – I could have written it

 2 – I should refer it

 3 – I should read it for background info

 4 – I have no interest in this paper.

While rating each paper, the authors were only required to use the abstracts and the title

information. Reading the entire document was optional and the link to the original

document could be used for that purpose if the author felt that the abstract information

41

was insufficient to correctly rate the document or if he/she was really interested in

reading the document. A few screen shots of the evaluation page are as shown below.

Figure 4. 2 Screen Shot 1 of Evaluation System

As shown in Figure 4.2, each paper is represented by a row and each row has 3 columns.

The middle column displays the title, the abstract, and the hyperlink to the full document.

The author can use this information to rate each document by clicking any one of the

radio buttons on the right column of each row. The first row represents the document ID

used by CiteSeer to represent each document internally. All the documents had to be

rated before the evaluations could be submitted. If an author tried to submit partial

ratings, a list of documents that they had not yet rated was displayed to them, as shown in

Figure 4.3.

42

Figure 4. 3 Screen Shot 2 of Evaluation System

4.5.3 Evaluation Metric:
As mentioned earlier, the result of the user evaluations is a set of ratings (1-4) that

indicates the closeness of the document to the author’s interest. In order to evaluate the

different output from the Author Recommender system and the baseline method, the

number of documents with each rating among the top ten is considered as a metric. Thus

for each version of the algorithm, the number of documents with each rating is calculated

and each algorithm is represented as a vector of 4 values viz. (R1, R2, R3, R4) where R1

represents the number of documents with rating 1 in the list, R2 is the number of

documents with rating 2 in the list and so on. The process is repeated for each author and

the final (R1, R2, R3, R4) output vector for each version of the algorithm is the

represented as the average value taken over all the authors.

43

Definition of a Good Recommendation:

R1: In this case we consider only the documents with ratings 1 as good recommendation.

So the total score the algorithm receives is the number of documents among the top ten

with rating 1. This is a very strict measure of good recommendation.

R1+R2: In this case we consider only the documents with ratings 1 and 2 as good

recommendations. So the total score the algorithm receives is the sum of the total

number of documents with ratings 1 and 2 among the top ten in the RList.

R1+R2+R3: In this case we consider the documents with ratings 1, 2 and 3 to be good

recommendations for the author. The total score the algorithm receives is the sum of the

total number of documents with ratings 1, 2 and 3 among the top ten in the RList.

4.5.4 Results:

In this section, we describe the experiments and the results that were conducted to test the

hypotheses stated earlier. We then discuss the statistical significance of our results.

Let,

Best = Best performing algorithm,

BTL = Best performing time invariant algorithm,

BTL () = Best performing time invariant algorithm for a given value.

BT = Best performing time variant algorithm,

BT () = Best performing time variant algorithm for a given value.

Baseline = Algorithm based on the vector space model used as a baseline for

comparison.

44

Evaluation of Hypothesis 1:

The first hypothesis states that the recommender system based on the Tree of Concepts is

better than the algorithm using the Vector of Concepts which in turn is better than the

Vector of Keywords. To evaluate this, we compared the best performing algorithm that

uses the Tree of Concepts with the best performing algorithm that uses the Vector of

Concepts and the Baseline method that uses a Vector of Keywords. As mentioned in

Section 4.4.1, when > 0, we get the tree of concepts algorithm and when = 0 we get

the vector of concepts algorithm.

To ignore the effect of time for this experiment, we set the Boolean Time flag to 0 for all

runs and vary β to get the best performing algorithm (BTL ()) for a given value of .

We consider BTL (= 0) as the best performing vector of concept algorithm

(BestVectorConcept). We obtain the best performing tree concept algorithm (BestTreeConcept) by

comparing all the BTL (> 0). Finally we compare the BestTreeConcept, BestVectorConcept and

the Baseline method to get the best performing algorithm. All the comparisons are done

based on the definitions of good recommendation, as explained in section 4.6. Figure 4.4

illustrates these steps.

45

Figure 4. 4. Experiment to Test Hypothesis 1

The resulting comparison graphs are shown in Figures 4.5 and 4.6. The X-axis represents

the ratings given to the documents and the Y-axis represents the number of documents

with that particular rating. The graph in Figure 4.5 represents the result of comparing all

BTL (> 0). We get the best result for the Tree of Concepts algorithm when = 0.33

and β = 10. The graph in the Figure 4.6 represents the result of comparing the algorithms

representing the Best of Tree of Concepts, Best of Vector of Concepts and the Baseline

methods. We get the best result for Vector of Concepts algorithm when = 0 and β = 10.

The graph shows that the Tree of Concepts algorithm performs better than the Vector of

/*
 * Find out the best performing time invariant
 * algorithms for each value of .
 */

for each ‘I’ in ,
{

BTL (I) = compare (TL5, TL10, TL15);
}

/*
* Find out the best performing tree concept algorithm
*/
BestTreeConcept = compare (BTL (1.0), BTL (0.67), BTL (0.33));

/*
*Let the best performing algorithm with = 0 be called BestVectorConcept

*/
BestVectorConcept = BTL (0);

/*
* Comparison between Tree of concepts, Vector of concepts and
* vector of keywords to test Hypothesis 1
*/
Best 1 = compare (BestTreeConcept, BestVectorConcept, Baseline)

46

Concepts algorithm which in turn performs better than the Baseline algorithm for the

second and third definitions of the good recommendation considered earlier. Hence, we

consider the statement in hypothesis 1 to be true.

Best of Tree of Concepts Algorithm

0

1

2

3

4

5

6

7

8

9

10

1 1+2 1+2+ 3

Ratings

N
o.

 o
f D

oc
s

Alpha 1.0, TL 15

Alpha 0.67, TL 10

Alpha 0.33, TL 10

Figure 4. 5 Best of Tree of Concepts Algorithm

47

Tree of Concepts vs Vector of Concepts vs Baseline

0

1

2

3

4

5

6

7

8

9

10

1 1+2 1+2+ 3

Ratings

N
o.

 o
f D

oc
s

Vector

Alpha 0.33, TL 10

Alpha 0, TL 10

Figure 4. 6. Tree of Concepts vs. Vector of Concepts vs. Baseline

However for definition 1, the vector based algorithm performs better than the tree based

algorithm. This is expected because vector based method only looks at the keywords and

we can obtain very similar matches when there are lots of keywords that overlap.

However, it is also possible that the vector method gives completely non-matching

documents (false positives) because it does not consider the meanings of the keywords.

Such cases can be avoided when we represent the documents as concepts instead of

keywords as in our concept tree matching algorithm.

Significance Test:

We verified the statistical significance of our results for hypothesis 1 by performing a one

tailed t-test between the following:

1. Best performing method based on the tree concept algorithm when > 0. (M1)

48

2. Best performing method based on the tree concept algorithm when = 0.(M2)

3. Baseline method. (M3)

The t-test tests the probability ‘p’ with which the null hypothesis is true. If the probability

value of ‘p’ is below the critical value then we can safely reject the null hypothesis stated.

The critical value of ‘p’ is set as 0.10. Let the null hypothesis be stated as, Mi < Mj is

true (i.e.) the method Mi does not perform better than the method Mj. When p < = 0.10

we can say that there is at most only 10% chance that Mi < Mj and we can reject the null

hypothesis. The results of the test are as shown below.

Null

Hypothesis
R1 R1+R2 R1+R2+R3

LHS<RHS
Mean

LHS

Mean

RHS

Improvem

ent (%)
P value

Mean

LHS

Mean

RHS

Improvem

ent (%)
P value

Mean

LHS

Mean

RHS

Improve

ment (%)
P value

M1 < M3 1.5 2.3 -8 0.19 4.7 3.6 11 0.09 8.6 5.1 35 0.001

M2 < M3 0.6 2.3 -17 0.005 4.1 3.6 5 0.1 7.8 5.1 27 0.001

M1 < M2 1.5 0.6 9 0.17 4.7 4.1 6 0.16 8.6 7.8 8 0.17

Table 4.1 Significance Test Results for Hypothesis 1

The results in Table 4.1 confirm that the method based on a conceptual representation of

the documents performed better than the traditional keyword based representation and

these results are found to be statistically significant. However, we can also see that

although the graphs showed that the concept tree method (> 0) performed better than

the concept vector method (= 0) for most cases, the result was not found to be

statistically significant. This could partly be due to the small number of authors involved

in the user study. Some authors who were willing to participate in the user study had to

be excluded because of two main reasons:

49

1) They did not have sufficient number of publications in the CiteSeer database to

generate a user profile

2) The profile generated did not have the minimum number of concepts required to

perform our experiments.

Evaluation of Hypothesis 2:

According to the second hypothesis, we expect that authors would be more interested in

recent publications in their interest areas as compared to older publications. To evaluate

this, we performed a similar experiment in which we first set the Boolean Time flag to 1

and obtained the best performing algorithm for each value of .

Figure 4. 7. Experiment to Test Hypothesis 2

/*
 * Find out the best performing time variant
 * algorithms for each value of .
 */
for each ‘I’ in ,
{

BT (I) = compare (T5, T10, T15);
}

/*
* Find out the best performing time variant algorithm and

* Time invariant algorithm
*/
BT = compare (BT (1.0), BT (0.67), BT (0.33), BT (0));
BTL = BestTreeConcept

/*
* Comparison between best of time invariant algorithm, time variant algorithm
* Baseline to test Hypothesis 2
*/
Best 2 = compare (BTL, BT, Baseline)

50

The graph in the Figure 4.8 shows the result of comparing BT () for all the values of .

We obtained the best result (BT) in the Time Variant category when = 0.33 and β = 10.

Finally we compared the best performing Time Invariant Algorithm (BTL), BT and

Baseline algorithms. We considered BestTreeConcept obtained from the previous experiment

as the best performing Time Invariant algorithm. This process is illustrated in the Figure

4.7.

Best of Time Variant Algorithms

0

1

2

3

4

5

6

7

8

9

1 1+2 1+2+3

Ratings

N
o.

 o
f D

oc
s

Alpha 1.0, T10

Alpha 0.67, T 10

Alpha 0.33, T 10

Alpha 0, T 10

Figure 4. 8. Best of Time Variant Algorithm

51

Time Invariant Vs Time Variant Vs Baseline

0

1

2

3

4

5

6

7

8

9

10

1 1+2 1+2+3

Ratings

N
o.

 o
f D

oc
s

Vector

Alpha 0.33, TL 10

Alpha 0.33, T 10

Figure 4.9 Time Invariant vs. Time Variant vs. Baseline

The graph shown in the Figure 4.9 illustrates the result of comparing the best performing

Time Invariant, Time Variant, and Baseline algorithms. To our surprise we see that the

Time Invariant algorithm performs better than the Time Variant algorithm for all the

definitions of a good recommendation. This is an indication that the users are more

interested in seeing relevant papers regardless of when they were published (within the

11 year time span covered by our collection). These results prove that the statement for

hypothesis 2 is not true. However, previous research suggests that users with different

levels of experience perceive recommendations differently and different kinds of

algorithms are suited for recommending different kinds of papers [2]. We plan to conduct

more detailed experiments regarding this in the future.

52

Significance Test:

Similar to previous experiment, we verified the statistical significance of hypothesis 2 by

performing a one tailed t-test between the following:

1) Best performing Time Variant Algorithm (M1)

2) Best performing Time Invariant Algorithm (M2)

Let the null hypothesis state that M1 < M2, i.e., the Time Variant algorithm does not

perform better than the Time Invariant Algorithm. We again set the critical value of ‘p’

as 0.10

Null

Hypothesis
R1 R1+R2 R1+R2+R3

LHS<RHS
Mean

LHS

Mean

RHS

Improvem

ent (%)
P value

Mean

LHS

Mean

RHS

Improvem

ent (%)
P value

Mean

LHS

Mean

RHS

Improve

ment (%)
P value

M1 < M2 1.1 1.5 -4 0.36 4.3 4.7 -4 0.17 8.4 8.6 -2 0.13

Table 4.2 Significance Test Results for Hypothesis 2

The test showed that the ‘p’ value was above the threshold for all the three definitions of

a good recommendation. This confirms that the Null Hypothesis is true. Thus the authors

are more interested in finding relevant papers regardless of the year of publication.

53

Chapter 5 Conclusions and Future work

5.1 Conclusions

In this work, we presented a novel way recommending technical papers to the users of the

CiteSeer. We represent the user profiles and the documents as tree of concepts and used a

tree matching algorithm to compute the similarity between them. We also studied the

influence of time in recommending technical papers to the author. To evaluate our system

we conducted a user study where some professors from KU and other universities

participated. From the CiteSeer database, user profiles were generated for them and

recommendations were made. The authors rated each recommended paper within a scale

of 1-4 with ‘1’ being the most relevant and ‘4’ being the least relevant. We obtained the

best results when = 0.33, β = 10 and with no importance given to time.

We conclude that the following from our results:

1) The concept tree matching algorithm performed much better than the traditional

algorithm based on keywords for providing recommendations. The result was

found to be statistically significant. We found an improvement of 8% and 31 %

on the average for the second and third definitions of good recommendation.

2) The tree of concepts (> 0) method performed better than the vector of concepts

(= 0) method. We found an improvement of 6 to 9 % on the average. However

this result was not statistically significant. We stated our reasons for this and plan

to conduct more experiments in the future.

3) We also found that authors are most interested in seeing the most relevant papers,

regardless of their publication date, rather than seeing more recent papers that

54

might be slightly less relevant. This was confirmed by the rejection of our

hypothesis that including publication date in the recommendation ranking would

improve the recommendations. Although the Time Invariant algorithm showed a

slight improvement of 2 to 4% over the Time Variant algorithm, this

improvement was not statistically significant.

5.2 Future Work

The algorithm currently considers only the publications of the author for building the user

profile. A simple extension could be to build a better profile by also considering all the

documents which the current document cites as references. Also the current

implementation is not adaptive. The recommendation process could be improved by

capturing the short term and long term interests of the user and updating the user profile

accordingly. The traditional content based recommendation systems fail to provide good

recommendations for non-textual data. Our method could be extended to provide

recommendations for non-textual data such as videos or images. By categorizing them

into concepts, one can use similar tree matching algorithms to provide recommendations.

This is a very interesting application of our method and forms a good topic for future

research. Our algorithm could be combined with other similarity computation algorithms

like TF-IDF, citation [1] methods used by CiteSeer to improve the overall

recommendations to the user.

We used a very simple tree matching algorithm to compute the similarity between the

user profiles and documents. One of the reasons for using such a simple algorithm is that

all our concepts are derived from a single taxonomy. It would be interesting to see how

55

the algorithm performs when the concepts are derived from multiple taxonomies or when

other sophisticated algorithms are used for tree similarity computation.

As mentioned earlier it would be interesting to see the results of performing the

experiments with more number of users with different levels of expertise and consider a

more extended time period than the one that we considered here for our experiments.

56

References
1) Bollacker K., Lawrence S., Giles C.L., "CiteSeer: An Autonomous Web Agent

for Automatic Retrieval and Identification of Interesting

Publications," Agents’98, 2nd International ACM Conference on Autonomous

Agents, 116-123, 1998.

2) Torres, R.; McNee, S.M.; Abel, M.; Konstan, J.A.; Riedl, J. Enhancing digital

libraries with TechLens, Digital Libraries, 2004. Proceedings of the 2004 Joint

ACM/IEEE Conference on Volume , Issue , 7-11 June 2004 Page(s): 228 – 236

3) Salton, G. and C.Buckley, Term weighting approaches in automatic text retrieval.

Information Processing and Management, 24(5), 1988, p. 513-523.

4) Burke, R. Hybrid Recommender systems: Survey and Experiments. User

Modeling and User-adapted Interaction, 12(4), 2002, pp. 331-370.

5) Huang, Zan and Chung, Wingyan and Ong, Thian-Huat and Chen, Hsinchun

(2002) A Graph-based Recommender System for Digital Library. In Proceedings

Joint Conference on Digital Libraries, pages pp. 65-73, Portland.

6) Chen, H., Ng, T. An Algorithmic Approach to Concept Exploration in a Large

Knowledge Network (Automatic Thesaurus Consultation): Symbolic Branch-and-

Bound Search vs. Connectionist Hopfield Net Activation. Journal of the American

Society for Information Science, 46 (5), (1995). 348-369

7) Balabanović, Shoham, Fab: content-based, collaborative recommendation,

Communications of the ACM, v.40 n.3, p.66-72, March 1997

http://clgiles.ist.psu.edu/papers/Agents-1998-citeseer-agent.pdf
http://clgiles.ist.psu.edu/papers/Agents-1998-citeseer-agent.pdf
http://clgiles.ist.psu.edu/papers/Agents-1998-citeseer-agent.pdf

57

8) Basu C., Hirsh H., Cohen W., and Nevill-Manning C.. Technical paper

recommendation: A study in combining multiple information sources. Journal of

Artificial Intelligence Research, 14:231--252, 2001

9) Cohen W. The WHIRL approach to information integration. In Trends and

Controversies, Marti Hearst ed., IEEE Intelligent Systems, October 1998. IEEE

Press.

10) Billsus D, Pazzani, M. J., and Chen, J. "A learning agent for wireless news

access." Proceedings of the 2000 International Conference on Intelligent User

Interfaces , 2000, Pages 33 - 36.

11) Allan J., Carbonell J., Doddington G., Yamron J., and Yang Y. Topic detection

and tracking pilot study: Final report. In Proceedings of the DARPA Broadcast

News Transcription and Understanding Workshop, 1998.

12) Si L. and Jin R., “Flexible Mixture Model for Collaborative Filtering,” Proc. 20th

Int’l Conf. Machine Learning, Aug. 2003.

13) Hofmann T. & Puzicha J. (1999). Latent Class Models for Collaborative Filtering.

In the Proceedings of International Joint Conference on Artificial Intelligence.

14) Arthur Dempster, Nan Laird, and Donald Rubin. "Maximum likelihood from

incomplete data via the EM algorithm". Journal of the Royal Statistical Society,

Series B, 39(1):1–38, 197

15) Hofmann T. & Puzicha J. (1998). Statistical models for co-occurrence data

(Technical eport). Artificial Intelligence Laboratory Memo 1625, M.I.T.

58

16) Sarwar B., Karypis G., Konstan J., and Riedl J. Application of dimensionality

reduction in recommender systems--a case study. In ACM WebKDD Workshop,

2000

17) Deerwester S., Dumais S. T., Furnas, G. W., Landauer, T. K., & Harshman, R.

(1990). Indexing by latent semantic analysis. Journal of the American Society for

Information Science, 41(6), 391-407.

18) Zhang, Y, Callan, J & Minka, T (2002). Novelty and redundancy detection in

adaptive filtering. Proc. ACM SIGIR 2002, pp.81-88.

19) http://en.wikipedia.org/wiki/Kullback-Leibler_divergence

20) Brusilovsky P., Kobsa A., and Nejdl W.(Eds.): The Adaptive Web, LNCS 4321,

pp. 54 – 89, 2007

21) Geisler, G., McArthur, D., and Giersch, S. 2001. Developing recommendation

services for a digital library with uncertain and changing data. In Proceedings of

the 1st ACM/IEEE-CS Joint Conference on Digital Libraries (Roanoke, Virginia,

United States). JCDL '01. ACM Press, New York, NY, 199-200.

22) Brusilovsky P., Kobsa A., and Nejdl W.(Eds.): The Adaptive Web, LNCS 4321,

pp. 291 – 324, 2007

23) http://citeseer.ist.psu.edu/

24) Brusilovsky P., Kobsa A., and Nejdl W.(Eds.): The Adaptive Web, LNCS 4321,

pp. 325 – 341, 2007

25) Adomavicius, G. and Tuzhilin, A. Toward the next generation of recommender

systems: A survey of the state-of-the-art and possible extensions. IEEE Trans. On

Knowledge and Data Engineering 17, 6 (June 2005), 734-749

59

26) Breese J.S., Heckerman D. and Kadie C., “Empirical Analysis of Predictive

Algorithms for Collaborative Filtering,” Proc. 14th Conf. Uncertainty in Artificial

Intelligence, July 1998

27) Lakkaraju P. Document Similarity Based on Concept Tree Distance, Masters

Thesis at KU

28) http://acm.org/class/1998/

