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Abstract
The information explosion in today’s electronic world has created the need for 

information filtering techniques that help users filter out extraneous content to identify 

the right information they need to make important decisions. Recommender systems are 

one approach to this problem, based on presenting potential items of interest to a user 

rather than requiring the user to go looking for them. In this paper we propose a 

recommender system that recommends research papers of potential interest to the author 

from the CiteSeer database. For each author participating in the study, we create a user 

profile based on their previously published papers.  Based on similarities between the 

user profile and profiles for documents in the collection, additional papers are 

recommended to the author.  We introduce a novel way of representing the user profiles 

as tree of concepts and an algorithm for computing the similarity between the user 

profiles and document profiles using a tree-edit distance measure.  Experiments with a 

group of volunteers show that our tree based algorithm provides better recommendations 

than a traditional vector-space model based technique.
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Chapter 1: Introduction

1.1 Motivation
The web has grown tremendously since its inception. Traditional search engines gave the 

same results to all the users without considering their specific user needs. However the 

nature of information available on the web, its applications, and its user base has 

diversified significantly. In addition, a user’s ability to locate relevant content would be 

based on their ability to construct good queries. This has lead to the development of 

systems that identify the needs of individual users and provide them with very specific 

information to satisfy their requirements. “Recommender systems” which recommend 

items to the users by capturing their interests and needs, are one approach to 

implementing personalized information filtering systems [20].  

Recommender systems have been used to recommend different types of items. For 

example, websites like Amazon.com use recommendation engines to make personalized 

recommendations of the products to its users, and digital libraries like CiteSeer [23] make 

recommendations of technical papers to its users. Most existing recommender systems 

use a form of recommendation called as collaborative filtering [22]. In this approach, 

every user in the system has a neighborhood of similar users who share many of the 

current user’s interests. The recommendations provided for the current user are provided 

as a function of ratings provided by the users in their neighborhood. However, this 

approach requires the availability of sufficient number of ratings for the items which is 

always not the case.  Even when there are a large numbers of users to provide 

recommendations and large numbers of items to be recommended; only a small portion 
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of items receive a sufficient number of ratings to form the neighborhood. Consequently, 

the recommendations are isolated to only a subset of the available items. Also, when a 

new item is introduced, there are no ratings available for its recommendation. These 

problems can be avoided if the recommendation is based on the content of the item. 

Digital libraries such as CiteSeer consist of mostly textual data. Previous research has 

shown that recommendation is a very valuable service to the users of digital libraries 

[21]. The large amount of textual information can be leveraged to provide content based 

recommendations. Traditional content based recommender systems [24] have used the 

TF-IDF [3] similarity measure to compute the similarity between documents. In this 

model, the documents are modeled as vector of keywords and similarity is computed 

using a distance metric such as cosine similarity measure. However, this model relies 

heavily on the exact keyword match and does not consider factors like synonyms of the 

words, polysemy, i.e., words with multiple related meanings, or other ambiguities present 

in natural language. Our work is based on the belief that such issues can be addressed if 

the documents are represented in a way that the main idea/topic is included in its 

representation.  In this work, we propose a content based recommender system called 

“Author Recommender” that represents documents and the user profiles as trees of 

concepts and computes the similarity between the documents and user profile using a 

simplified version of the tree-edit distance algorithm. 
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This thesis has two main objectives:

1. Study the effectiveness of using concept trees for providing technical paper 

recommendations in a digital library like CiteSeer. 

2. Study the influence of year of publication on the recommendations to the user.
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Chapter 2: Related Work
In this chapter, we review some of the work done by others on recommender systems.  

Recommender systems typically have a utility function that identifies the usefulness of an 

item to the user of the item. Given a set of users and items, the main idea of the 

recommender system is to select items for users so as to maximize this utility function. 

This utility function is generally represented to the user as a set of ratings from a 

particular scale, i.e., (1-5, 1-10, etc,) or as a list of Top N recommendations.  There are 

three major categories of recommender systems:

1) Content based recommender systems: These recommend new items to the user 

based on the content of the previously purchased/used items. 

2) Collaborative filtering recommender systems: These try to simulate the word of 

mouth phenomenon practiced by humans by recommending items based on the 

likes/dislikes of other users.  They are especially useful for recommending non-

textual items such as music, movies, products, etc., where it is difficult to extract 

the content of the item.

3) Hybrid recommender systems: These systems usually combine both collaborative 

and content based recommendation approaches.

In the sections below, we discuss some examples of the different types of recommender 

systems with more emphasis given to recommendation systems for textual data such as 

book recommendations and digital library recommendations since these are directly 

related to our work. 
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2.1 Content Based Recommender Systems: 
In this section, we describe some of the applications where content based 

recommendations have proven to be useful. [8] and [10] describe the application of 

recommendation engines to the problems of distributing conference papers to conference 

reviewers and suggesting news items to the users of a mobile device, respectively. [18] 

takes a slightly different approach and focuses on the problem of recommending novel 

items instead of just recommending known items. Various algorithms for detecting 

novelty and redundancy have been proposed and evaluated. 

In [8], the authors model the task of assigning technical papers to conference reviewers as 

a problem of recommending the papers to the authors based on their interests. They 

propose a system wherein they analyze the effect of combining different sources of 

information using WHIRL [9], an information integration system, on problem of 

recommendation.  WHIRL is a conventional database with an extension to handle 

heterogeneous sources of text based on similarity of values instead of using just the strict 

equality measure. The similarity is computed based on the TF-IDF [3] scheme.  Using 

WHIRL, the multiple information sources are handled in two ways:

1) QueryConcat: In this method, multiple sources are combined into a single 

source by taking the union of the words appearing in the two sources before 

including it as part of the query submitted to the database.

2) QueryConjunct: In this method, the multiple sources are included in the query 

independently as part of its WHERE clause. The final similarity score is 

computed as the product of the individual similarity scores. 
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They consider two main sources of information, papers and reviewers. Each is 

represented as vector of keywords. The paper sources include information obtained from 

title, abstract, and a set of keywords from a pre-specified list. The information sources for 

the reviewers include the reviewer’s home page and the papers that are referenced from 

the home page. Using WHIRL, each comparison between a reviewer’s representation and 

the paper representations is implemented as a query that returns a rank ordered list of 

papers. A score is then assigned to each query based on the some evaluation measure 

such as “precision” at Top N. 

They evaluated their algorithms on a set of 256 papers submitted to the AAAI-98 

conference using the actual preferences stated by the 122 reviewers as the ground truth 

value.  They used the random assignment of papers as their baseline method.  Results of 

their experiments showed that the “QueryConcat” method performed better than the 

“Query Conjunct” method and their method outperformed the baseline by a factor of 2 to 

5.  They achieved their best result when the abstract was treated as the paper source and 

the homepage was treated as the reviewer source. They also found that as adding more 

information sources to the WHIRL query led to better results. 

[10], describes a content based recommender system for recommending news items for 

users of handheld devices such as PDA’s and cell phones. Implicit information is 

collected and is modeled as a profile describing the user’s interest. A content based 

machine learning algorithm then learns this model and provides recommendations for the 

news items. The central component of the system is an Adaptive Information Server 
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(AIS) that maintains a database containing information on current news items and 

personal user preferences. The news items are categorized into different categories such 

as top stories, politics, business, etc. that are displayed as menus in user interface of the 

handheld device. As the user navigates through the interface, news items are presented as 

headlines. These headlines are rank ordered according to the user profiles.  Selecting a 

headline fetches its first paragraph and is treated as positive feedback. Scores are 

assigned incrementally as more and more information is requested for the news item from 

the server.  In contrast, skipping a story is treated as a negative feedback. The algorithm 

used for learning the user profiles modeled both the short term and the long term interests 

of the user. The short term model is based on the Nearest Neighbor text classification 

algorithm [11] that represents the news items as vector of keywords and the long term 

model used a probabilistic learning algorithm, a naïve Bayesian classifier that assessed 

the probability that a news item is interesting give a specific set of features representing 

the news item.  The learning algorithm can be summarized as shown in the figure 2.1:

Figure 2. 1 Algorithm for Learning Short and Long Term Interests

If the Story can be classified by short term model
{

Score = weighted average over nearest neighbors
If story is too close to known story

Score = score * SMALL_CONSTANT
} 

Else
{

If Story can be classified by long term model
Score = probability estimated by naïve Baye’s

Else
Score = DEFAULT_SCORE
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They evaluated their approach by comparing their adaptive news items with static news 

items without any personalization. They conducted their experiments for a period of ten 

days and measured the mean rank of all the stories selected by the users. They found that 

the personalized stories were on the top 2 headline positions 93.6 % of the time when 

compared to 72.8 % for the static news items. They concluded that effective 

personalization can be achieved without requiring any extra effort from the user. 

In [18], the authors propose algorithms for extending information filtering systems to 

identify novelty and redundancy of relevant documents. They propose solutions for 

overcoming the common problem of distinguishing between relevant documents 

containing new information and relevant documents that contain already known 

information. The task of identifying redundant information is divided into two stages:

1) calculate a redundancy score for each document with respect to a user profile, 

2) identify documents with redundancy scores above a specific threshold.  

The first of the two points mentioned above is the focus of their research paper. The 

algorithms for calculating a redundancy score for the document discussed below:  

Let,

A, B: sets of documents,

dt: a document being evaluated for redundancy at time t,

D (t): set of all documents delivered to the profile before time t,

DR (t): set of all relevant documents delivered to the profile. 

R (dt): redundancy measure for dt,

di: a relevant document delivered before dt
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 Set Difference: The documents are represented as set of words. It is based on the 

idea that a word wi occurring frequently in dt but not in di represents some new 

information in dt.  The corpus specific and topic specific stop words are smoothed 

by dividing the document’s word frequencies with the word counts from the 

previously seen documents.  Thus, redundancy measure of document dt given di

is,

R (dt| di) = | Set (dt ) (intersect) Set’(di )|

          Where:

Wj belongs to Set (d) iff Count(Wj ,d) > k

                         Count (Wj, d) = alpha1 * term frequency of word Wj   in document d +

                              alpha2 * no. of filtered documents that contain Wj   + alpha3

                  * no. of delivered relevant documents that contain word Wj 

 Cosine Similarity: Here the documents are represented as vector of keywords  and 

the redundancy score between dt and di is measured  as cosine of the angle 

between the two vectors:

R (dt |di) = cos (dt, di)

 Distributional similarity: Here a document d is represented as a unigram word 

distribution Θ. The Kullback-Leibler (KL) [19], similarity measure is used for 

measuring the redundancy of dt given di. 

R (dt| di ) = -KL (Θdt ,Θdi )

   = - ∑ P(Wj|Θdt ) log (P(Wj|Θdi ) / P(Wj|Θdt ) ) 

where θ is found using the Maximum likelihood estimation technique (MLE):

   P(Wi |d ) = tf (Wi ,d) / ∑Wj tf (Wj , d)
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 Mixture Model:  In this case the authors assume that the relevant document is 

generated from three language models: 1) a general English language model “Θe” 

which represent words such as “is” or “was” in the document, 2) topic specific 

language model “Θt” that identify words representing the main topic of the 

document and 3) document specific model “Θd”. As “Θd” represents the core 

information of the document, the redundancy is computed using the KL measure 

as :

R (dt| di) = KL (Θdt, Θdi)

Using this model, both relevant and redundant documents can be identified. If the focus is 

to identify relevant document then similarity is computed using “Θt” which identifies 

documents relevant to a particular topic whereas “Θd” can be used to identify redundant 

documents by focusing on the actual content of the document. 

The authors  evaluated the different algorithms on  a subset of data obtained from the 

TREC CDs. For a total of 50 topics, assessors were asked to judge whether or not a 

document was redundant, based on previously seen documents about a paticular topic. 

Their judgments were considered as truth values. By running their algorithms on this test 

data, they found that the Cosine similarity model and the Mixture model perfomed better 

than the others. 

As we can see, most of the current content based recommendation has only been applied 

to textual data. This is because it is difficult to extract semantic features for the content of 

non-textual data such as music or movies. 
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2.2 Collaborative Filtering Recommender systems: 
In this section we describe two model-based [25] approaches to collaborative filtering 

applied to movie recommendation. [12], uses a probabilistic model for recommending 

movies to the users whereas in [16] the authors apply dimensionality reduction 

techniques such as singular value decomposition to reduce the complexity of the 

collaborative filtering algorithm before applying the vector based model nearest 

neighborhood calculation.

In [12], the authors propose a flexible mixture model (FMM) for collaborative filtering 

The FMM models the users and the items as separate clusters and allows for each item 

and user to be in multiple clusters. The graphical model for FMM is as shown below:

Figure 2. 2. Graphical Model representation for Flexible Mixture Model

Here,
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X = number of items,

Y = number of users, 

R = number of ratings,

Zx and Zy = Latent variables that indicate the class membership for items and users 

respectively,

P (Zy) = multinomial distribution on the user classes,

P (Zx) = multinomial distribution on the item classes

P (X| Zx) = conditional probability of items X given a specific item class Zx,

P (Y| Zy) = conditional probability of users Y given a specific user class Zy,

P (r| Zx, Zy) = conditional probability of ratings r given a specific item class Zx and 

specific user class Zy.

With the above annotations, the joint probability P(x, y, r) for FMM can be written as:

             P(x, y, r) = ∑ P(Zx) P(Zy) P(x| Zx) P(y| Zy) P (r| Zx, Zy)            (1)

The training procedure for building the model is carried out using a modified version of 

EM algorithm [14] called Annealed EM algorithm [15]. The algorithm consists of two 

stages. In the expectation stage, the joint posterior probabilities of the latent variables 

{Zx, Zy} are calculated which are then used to update the model parameters in the 

maximization step.  A variable ‘b’ is introduced in the expectation stage as a control 

parameter.  The prediction ratings for the test user yt on unseen items is based on the set 

of observed ratings for the test user yt. The core idea of the prediction process is to 

estimate the joint probability of the rating, item and the test user and to predict the rating 

with an expectation. The joint probability is calculated as shown below:

P(x, yt, r) = ∑ P(Zx) P(Zy) P(x| Zx) P(yt | Zy) P (r| Zx, Zy)
          (2)
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The joint probability the prediction of rating on item x by user y is as given below:

Ry
t  (x) = ∑r * (P(x, yt, r) / ∑P(x, yt, r) )      (3)

         

The authors argue that even though two users A and B may have the same likes and 

dislikes, their ratings may differ. For example, A may have a very strict nature and might 

rate bad movies as 1 and good movies as 3, whereas user B with the same taste might 

have a moderate nature and rate them as 3 and 5 respectively. To account for this 

problem they suggest converting the ratings into the “true” preference ratings and use this 

preference value instead of the ratings to make the predictions. They call this model as 

“decoupled model” (DM).  Two factors are taken into account when converting the 

ratings into preference value viz. 1) the percentage of items with ratings <= ‘r’ and 2) the 

percentage of items that have been rated as ‘r’.  Based on this the preference probability 

for rating ‘r’ from user ‘y’ can be given as:

P_Ry(r) = P (Rating <= r| y) – P (Rating = r| y)/2         (4)

Similarly the rating ‘r’ for an estimated preference value Vy(x) is given as the preference 

probability that is closest to the estimated probability.

Ry(x) = argmin | P_Ry(r) - Vy(x) | (5)

The DM model can then be combined with the FMM to predict the ratings. The idea is to 

first convert the ratings ‘r’ for the known items in the training database into their 

corresponding preference values using DM model and then use this preference value to 

predict the ratings on unseen items by converting the preference value back to ratings 
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using equation (5). They evaluated their algorithm on two datasets of movie ratings each 

consisting between 100 – 400 users. They compared their algorithms with other 

collaborative filtering algorithms like Pearson Correlation Coefficient method (PCC), 

Vector similarity method (VS), Aspect model and Personality Diagnosis model 

(PD).They found that the proposed FMM model performed better than all the other 

algorithms. They also compared the performance of FMM with and without the DM and 

found that the FMM/DM model outperformed the one without the DM model. 

In [16], the authors describe experimental results of applying the singular value 

decomposition (SVD), a dimensionality reduction technique to recommender systems. 

Collaborative filtering systems have always had the problem of sparse ratings where there 

isn’t enough overlap of items among the users and hence not much correlation among 

them. By applying dimensionality reductions techniques like SVD the authors aim to 

provide meaningful recommendations even for sparsely populated cases.  The authors 

apply SVD to:

1) Capture the relationships between the users and the products and use it to make 

predictions that a user likes a particular product and

2) Produce a low dimensional representation of the user-product space, compute 

the neighborhood information and use that to generate a list of Top N 

recommendations for the customer. 

By reducing the dimensionality of the input space the authors aim to reduce the 

complexity of the nearest neighborhood calculations used by the collaborative filtering 

algorithms.  
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To make predictions, they start with a sparse user-product matrix, fill in the null values 

with product average, and normalize the matrix by subtracting the customer average for 

each rating. Then, the steps mentioned in [17] are followed to obtain a low ranked 

matrices Uk, Sk
1/2, Vk.  The dot product between the between the matrices Uk Sk

½   and Sk

½ Vk
   is used to compute the prediction for the new item.  For generating the 

recommendations they again apply the dimensionality reduction techniques mentioned 

above and use the cosine similarity measure to form the neighborhood in the reduced 

space. Once the neighborhood is formed, a frequency count list on all the products 

purchased by the neighbors is generated. The list is then sorted to produce the Top N 

recommendations for the target user. 

They evaluated their algorithm on datasets obtained from ’MovieLens’ and an e-

commerce company. They used the CF algorithm, based on the Pearson nearest neighbor 

algorithm, as their baseline for the prediction experiment and an algorithm that computes 

the cosine similarity in high dimensional space to form the neighborhood as the baseline 

for the recommendation experiment. The results showed that, for the prediction 

experiment, the SVD algorithm performed better than the CF algorithm when the training 

data was sparse. However, the CF algorithm performed better when sufficient training 

data was available.  For the recommendation experiment, the recommendation quality in 

the low dimensional space performed better than their counterparts in the high 

dimensional space. 
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2.3 Hybrid Recommender systems: 
Hybrid recommendations systems were developed to overcome the limitations of both the 

content and the collaborative recommendation systems. Researchers identified that the 

two systems complemented each other. [7], describes one of the earliest hybrid 

recommendation engine developed to recommend web pages to its users. [2] and [5] 

focuses on providing recommendations for digital libraries. While [2] uses a subset of 

CiteSeer itself as its dataset, [5] describes the analogy between buying books in a e-

commerce book store and lending books in a digital library and uses data from a Chinese 

e-commerce book store to evaluate its recommendation algorithm. 

In [7], the authors propose ‘Fab’, a content-based collaborative recommender system for 

recommending web pages to its users. The recommendation process consists of two 

stages: 

1) collection of items to create an index or database 

2) selection of items from the database to a particular user. 

The ‘Fab’ system is divided into three main modules, i.e., the selection agent, the 

collection agent, and the central router. During the collection stage, pages relevant to 

specific topics are gathered by the collection agent. The pages are then delivered to many 

users at the selection stage by the selection agent. Each agent maintains a profile based on 

the content of the web pages. The selection agent’s profile represents the interests of a 

user whereas the collection agent’s profile represents a particular topic. A central router 

acts as a controller module, receives the web pages from the collection agents, maps them 

according to the user profiles and forwards them to the selection agents. Thus, each user 

receives pages based on their selection agent profile. In addition, the selection agent uses 
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explicit feedback from the users to update their profiles which enables the system to 

adapt to their changing interests.  

They evaluated their system in a controlled experiment with a small number of users. 

Participating users were asked to choose a topic of interest in advance. The chosen topics 

ranged from computer graphics and game programming to cookery, music, and evolution.  

The experiments were conducted for several days and feedback was periodically 

collected from the users, which was then used to create a preference ranking for each user 

against which the system output was compared. In particular, the distance between the 

user’s rankings and the system rankings predicted using the user profiles was measured. 

The authors found that adding more and more examples to the profiles enabled the 

system to become a much better predictor of user’s rankings over time.  The system 

output was also compared to web pages obtained from other sources such as randomly 

selected web pages, pages from the human selected “cool sites” of the day, and pages 

best matching the average of all the user profiles in the system.  The result of the 

experiment showed that the recommendations provided by the Fab system clearly 

outperformed the pages from the other sources.

In [2], the authors suggest a combination of collaborative filtering (CF) and content based 

filtering (CBF) approaches to building a recommender system for digital libraries.  They 

propose ten recommender algorithms, two CF, three CBF, and five hybrid that are 

obtained by combining the pure CF and CBF algorithms in different ways. All the 

algorithms take an input list of citations and generate an ordered list of citations as the 
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recommendations. The standard K-nearest neighbor algorithm is used as the basis for the 

CF algorithms. “Pure-CF” takes the list of citations for the current paper as input while 

the “Dense-CF” augments the input list with the list of citations cited by all the papers 

that the current paper cites. 

All of the CBF algorithms are based on the TF-IDF [3] similarity measure. “Pure-CBF” 

generates similar documents based on the current paper’s text, “CBF-Separated”, extends 

the Pure-CBF by also generating similar papers for all the papers cited by the current 

paper and then combining the individual lists into a single list. “CBF-Combined”, is a 

variation of CBF-Separated which merges the text of the current paper and its citations 

into one large chunk of text. This single chunk of text is then used to obtain a single 

output list. 

Each hybrid algorithm contains two independent modules, a CF module and a CBF 

module. The authors create their hybrid algorithms by using two types of combination 

techniques described by Burke [4], “feature augmentation” and “mixed. “Feature 

augmentation” combinations use the output of one module as the input for the other. In 

contrast, “mixed” combinations run the two modules in parallel, independently of each 

other. The output from both modules is then combined to produce the final output list. 

They evaluated their algorithms on a set of 102,000 research papers obtained from the 

CiteSeer database. They used a combination of offline and online experiments to evaluate 

their results. For offline experiments, they removed a random citation from the paper and 
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checked to see if the citation was recommended by their algorithms. They also conducted 

an online study in which participants were asked to rate the recommendations. They 

found that different algorithms produced better recommendations depending on the genre 

of papers.  Some were better at recommending broad overview papers, such as survey or 

overview papers whereas others were better at recommending introductory papers, or 

novel papers, etc. However, in general, the Fusion algorithm performed significantly 

better than all the other algorithms.  

Other approaches treat the problem of recommendations as a graph search problem. In 

[5], the authors describe a graph based hybrid recommender system applied to 

recommending books for a Chinese book store. The online records for the book contents, 

customer information, purchase histories in the book store are analogous to the document 

content information, user’s personal attributes, and their usage history in the digital 

library environments. They model the information obtained from the bookstore as a two 

layered extended graph that incorporates book-to-book, user-to-user, and book-to-user 

correlations. 

Their approach consists of two stages of computation. In the first stage, the customers 

and the books are represented as feature vectors. The feature vector for the customer is 

comprised of the customer’s demographic data and the feature vector for the book 

consists of both the attributes of the book such as author, edition, and publisher, as well 

as content extracted from the title and body. Tin the second stage, book-to-book 

similarity and user-to-user similarity is computed using some similarity function. In the 
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second stage, the books, customers, and purchase histories are modeled as a two layered 

graph. The first layer is called the book layer wherein a book is represented as a node and 

the links between the nodes represent similarity between the books. The second layer is 

called the customer layer wherein a customer is represented as a node in the graph and 

the similarities between customers are represented by the links between the nodes. These 

two layers are then connected by links representing the purchase of the book by a 

customer. Each link in the graph has a weight between 0 and 1 that represents the degree 

of similarity between the nodes. Once this model is set up, the recommendation activity 

reduces to a graph search task. 

For example, consider the following sample graph. The book layer consists of 3 books 

B1, B2, B3 and the customer layer consists of 2 customers C1 and C2. The degree of 

similarity is represented by the weights associated with the links between the nodes in the 

graph. 
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Figure 2. 3 Graph Based Model for Recommender System

Recommendation of a book to a customer is based on the association strength between 

the customer and the book that is obtained by combining the strength of all the paths 

between customer and the book in the graph. The association strength of a path is defined 

as the product of the weights associated with the links in the path. This approach can be 

seen as a combination of both the collaborative and the content based approaches. If we 

derive the result only by considering the book-to-book similarity information, it becomes 

a content based approach. On the other hand, if we use only customer-to-customer 

similarity information, it becomes a collaborative approach. Thus, the graph model 

incorporates all the three approaches generally used by the recommender systems and 

allows for greater degree of flexibility and experimentation without changing the model. 
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The authors evaluated their system on a dataset containing 9,695 books, 2,000 customers, 

and 18,771 transactions. They experimented with both a simple different weight 

propagation algorithms and found that the hybrid approach outperforms both the pure 

content based and the pure collaborative approaches [6]. They also conducted a 

subjective evaluation of their recommendations using human evaluations and found that 

the content based approach outperformed both the collaborative and the hybrid 

approaches. Thus, the message produced by this study is mixed.

From the survey above, we can see that most pure content based recommendation 

systems represent the user profiles as vectors of keywords and use TF-IDF for similarity 

calculations whereas pure collaborative recommendation systems try to generate a model 

from the existing data and make predictions using the model. Our work is similar to the 

other content based recommender systems in that the profile information for the user is 

generated based on the actual content of the data, however like [5] we differ in the way 

the profile information is modeled. [5], models them as a graph and treats the 

recommendation as graph search problem while we model them as a tree of concepts and 

obtain the recommendations using a tree similarity algorithm.
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Chapter 3: Approach

3.1 Overview
The Author Alert system for CiteSeer recommends papers by first constructing a

conceptual profile for each document in the collection.  It then creates a conceptual user 

profile for an author.  It then uses similarities between these profiles to find papers of 

interest for an author. 

As part of [27], all the documents in CiteSeer were categorized into a predefined set of 

concepts according to the ACM's Computing Classification system taxonomy [28]. This 

taxonomy is 3 levels deep with 368 concepts. Thus, each document in the CiteSeer has an 

associated set of concepts that represent the central ideas in the document. We extract this 

concept information associated with each of the author’s publications from the CiteSeer 

database to construct the user profile. The CiteSeer database is then searched for 

documents that are represented by a similar set of concepts as those present in the user 

profile using a similarity computation algorithm. The top N papers from the final list are 

output as recommended papers for the author. The classification of documents into 

predefined set of concepts is done by the classifier module. The profile building is done 

by the profiler module and the similarity comparison is then done by the Recommender 

module. Each of these modules is explained in detail in the following sections.

3.2 System Architecture
The Architectural diagram for the Author Recommender system for CiteSeer is shown 

below:
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Figure 3. 1 Author Recommender System for CiteSeer

The system consists of 3 main modules:

1) Classifier Module

2) Profiler module and 

3) Recommender module

Let us now look at each module in detail.

3.2.1 Classifier:

As part of [27], all the documents in the CiteSeer database were classified into a set of 

predefined concepts obtained from the ACM's Computing Classification system 

taxonomy.  The classification consists of two stages: 
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1) Training stage: During this stage, certain documents are pre-assigned one or more 

concepts in the taxonomy either manually or by some other method. These 

documents form the training set for the classifier. The classifier uses these 

training set to learn the model for each concept in the taxonomy. 

2) Classification stage: In this stage the classifier uses the model learnt in the 

training stage to classify the input documents. The output is a list of concepts for 

each input document along with their corresponding weights which indicate the 

degree of association between the concept and the document. The top 3 concepts 

for each document were retained and stored in the CiteSeer database.  

Experiments with KNN, SVM and Rocchio classifiers showed that Rocchio gave the best 

performance and hence Rocchio classifier was used for classifying all the documents in 

the CiteSeer database.

3.2.2 Profiler:

The main objective of the profiler module is to create a user profile for the author, for 

whom we are trying to recommend papers. The user profile attempts to capture the 

interests of the author at a higher level of abstraction than provided by keywords. The 

input to the profiler module is a list of documents from the CiteSeer database that were 

published by the author within a particular time frame. We have considered a time period 

of eleven years from 1994-2005 for our experiments. We retrieve this list by querying the 

CiteSeer search engine with the author's first, last or other common names used by them 

in their publications. The result of the query is then manually examined to ensure that the 
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author indeed is the publisher of the document and if the publication date is within the 

considered time period. The documents not published by the author that are retrieved 

because they contain the author's name as text or in a citation are discarded manually. Let 

us call this list of documents the input list, or IList, for the author. This IList is then 

provided as input to the profiler module. 

As mentioned earlier, each document in the CiteSeer database has 3 concepts associated 

with it and is represented as a list of (concept, wt) pairs. The wt represents the degree of 

strength of association between the document and the associated concept as calculated by 

the document profiling system. We use this category and weight information to construct 

the user profile. For each document in the IList, we retrieve the set of associated concepts 

and sort them in decreasing order by wt. If two or more documents are associated with 

the same concept then the wt contributed by each document is added to represent the final 

wt for that particular concept in the user profile. 

wt(cpj)  =   ∑ wt(dk, cp) , for all k documents in the IList

where

wt (cpj)     =   wt of concept c in the profile p of author j

wt (dk, cp) =   wt of the document dk  associated with concept c

Thus, the output of the profiler module is a vector of (concept, wt) pairs which 

encapsulates the interest areas of the author.
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Let us now consider an example in which the IList consists of 2 documents, D1 and D2, 

published by a particular author. The profiler is provided with this list and then retrieves 

the associated set of concepts for the documents D1 and D2 from the CiteSeer database. 

Let ((A, 0.1), (B, 0.3), (C, 0.2)) and ((D, 0.3), (B, 0.5), (E, 0.6)) represent the associated 

set of (concept, wt) pairs for documents D1 and D2 respectively. It then constructs the 

profile as a list of concepts arranged according to their wts in decreasing order. Thus, 

after document D1 is processed the profile initially becomes, 

B    0.3

C 0.2

A 0.1

After Document D2 is processed, the profile is becomes:

B 0.8 (0.5 + 0.3)

E 0.6

D 0.3

C 0.2

A 0.1

The list encapsulates the importance of a particular category to the user profile in its 

order. 

3.2.3 Recommender:

The output from the Profiler is provided as input to the Recommender module. The 

output of the Recommender module is a list of recommended papers for the author. Let 

us call this list as the RList. For each category x in the user profile, the recommender 
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module searches the CiteSeer database for documents which have the category x in its 

associated category set. The number of categories (β) to be considered from the user 

profile is passed in as a parameter to the recommender module. If a match is found, the 

document is added to the RList. When adding the document to the RList the wt associated 

with the category x in the profile is multiplied by the wt associated with the document. 

wt(i, j) = wt(cpj) * wt(i, cpj)

where 

wt(i,j)  =  the weight of document i added to the RList for author j

wt(cpj)  =   weight of concept c in the profile of author j

wt(i, cpj)  = weight of document i associated with the same category c in the user 

profile of author j

Finally, the document is checked to see if it was published within the time period 

considered. If the year of publication does not fall within the desired time period, the 

document is not added to the RList. 

After processing the concepts in the user profile, the RList holds the list of document 

identifiers (DIDs) that are associated with the concepts in the author’s profile.  The final 

step is to rank order these documents in decreasing order of their likely interest to the 

author.  Thus, for each document in the RList, the Recommender module retrieves all of 

the associated categories.  Next, it uses the "Conceptual Tree Edit Distance Algorithm" 

[27] to compute the distance between the document and the user profile. This algorithm 
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calculates the cost of modifying the document profile to match the user profile.  The 

closer the two profiles, the lower the cost of the required modifications.  Thus, the 

Recommender module calculates the cost of transforming each document profile into the 

author profile, which is effectively a measurement of the distance between the profiles.  It 

then sorts the documents in the RList in increasing order so that the closest documents 

appear first and the most distant documents appear last. The closest 10 documents are 

then displayed to the author as the recommended set of papers.

3.2.3.1 User-Document Distance Computation: 

Let us now examine the “Concept Tree Model” that has been used to compute the 

distance between the user profile and the documents in more detail. Traditionally, content 

based recommendations used the vector space model for this purpose. In that model, the 

documents are treated as a vector of keywords and the cosine similarity measure is used 

to find the similarity between the documents. This model, although simple to implement, 

assumes that the keywords in the vector are independent of each other which is often not 

the case and it requires an exact match between the keywords. It does not take into 

account the ambiguity of natural language due to factors such as synonymy and polysemy 

Another way to look at this problem is to represent the documents based on their central 

ideas instead of their keywords. We can achieve this by classifying the documents into a 

predefined set of concepts using a text classifier and then represent the documents as 

vector of concepts rather than a vector of keywords. However, we find that the categories 

are often hierarchical in nature, having inter-relationships among themselves. By treating 
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the documents as vector of concepts, we are ignoring this hierarchical structure. To 

exploit this natural inter-relationship, we make use of a document representation based on 

a tree of concepts [27]. 

Figure 3. 2. Algorithm for Converting Vector of Concepts to Tree of Concepts

In this work, the Recommender module first converts the document and user profiles 

from Vector of Concepts into Tree of Concepts using the algorithm shown in Figure 3.2.  

The input to the algorithm is a Vector of Concepts representing the user or document 

profile. The output of the algorithm is a weighted Tree of Concepts. This conversion is 

performed by first adding each concept and its weight into the tree and then recursively 

adding the parent concepts and their weights into the tree until the root of the taxonomy is 

Tree vector_to_tree (Categories) 
{

for each cat in (Categories)
{

add_to_tree (cat, Tree);
             }
             return tree;
}

void add_to_tree (category, Tree)
{

if(category == root) 
return;

else
{

Tree.add (category);
Tree.add (category.wt);
parent = getParent (category);
parent.wt +=  * category.wt;
add_to_tree (parent, Tree);

}
}
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reached.  Essentially, the concepts in the representations come from a hierarchical 

concept space, and their weights are propagated up the tree until the (possibly disjoint) 

subtrees are all reconnected.  A tuning parameter called ‘’ is introduced to control the 

percent of weight that is propagated by the child concept to its parent. The weight of the 

Parent is calculated as follows:

Wtp +=  * Wtc

where

Wtp = Weight of the parent concept,

Wtc = Weight of the parent concept

 = tuning parameter which varies between 0 and 1.

Once the user profile and the documents are represented as trees, the problem of 

computing the distance between them is reduced to finding the distance between the two 

trees. Based on previous research [27], we use the Tree-Edit distance measure to 

calculate the cost of transforming one tree into another with the minimum number of 

operations where operations are defined as follows: 

1) insertion: Inserting a new node into the tree

2) deletion : Deleting a existing node from the tree

3) substitution: The cost of transforming the one node into another

The cost of deletion or insertion of a node is equal to the weight associated with the node 

and the cost of substitution is equal to the difference between weights of the substituted 

nodes. For a more detailed explanation please refer [27] 
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3.2.4 Time Vs Timeless: 
As one of our objectives, we study the influence of year of publication on recommending 

technical papers to an author. In this work, we compare two approaches for 

recommending relevant papers. 

 Time Variant: In this case more importance is given to recently published 

documents over older documents. The assumption is that, among relevant papers, 

the author is more interested in finding recent publications than older ones. This is 

implemented by introducing a new parameter, time_wt. Based on their year of 

publication; recently published documents receive more time_wt than the older 

ones. To weigh the documents differently based on their age, the concept vectors 

for the documents in the RList are pre-multiplied by time_wt before they are input 

to the Recommender.

 Time Invariant: As a baseline for comparison, in this case no importance is given 

to the publication date. All documents receive a time_wt equal to 1.
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Chapter 4: Evaluations and Results
In this chapter we evaluate the two goals stated in Chapter 1. To evaluate our first goal, 

using concept trees in technical paper recommendations, we compare our concept tree 

algorithm with the traditional vector based algorithm.  By varying the  parameter, we 

generate the two versions of the concept tree algorithm, one where the weight associated 

with the child concept is propagated to its parent concept ( > 0) and the other where the 

weight associated with the child is not propagated to the parent concept ( = 0) which is 

essentially a concept vector approach. We then compare the two versions of the concept 

tree algorithm with the vector based algorithm.  To evaluate our second goal (i.e.) the 

influence of publication date on the recommendations to the user, we again vary the 

‘time_wt’ parameter as mentioned in chapter 3 and obtain Time Variant and the Time 

Invariant versions of the algorithm. We then compare the two versions with the vector 

based algorithm. In all cases, comparisons between the algorithms were done based on 

the ratings given by the users. In summary, our experiments were designed to test the 

following two hypotheses: 

Hypothesis 1:  The algorithm computing the similarity using the Tree of concepts (

> 0) is better than the algorithm computing the similarity using vector of concepts (

= 0) which is in turn better than the algorithm computing the similarity using vector 

of keywords.

Hypothesis 2: The year of publication of the document affects the interest of the 

users positively; i.e., users would consider the more recent documents as better 

recommendations than older documents. 
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4.1 Data set
CiteSeer is a search engine and digital repository of scientific and academic papers. It is a 

collection of over 700,000 documents primarily in the field of computer and information 

science. We used a subset of that document collection published from 1994-2005 as the 

dataset for carrying out our experiments. 

4.2 Subjects
To establish truth for the recommended documents, we conducted a user study. Since we 

needed published authors as subjects (in order to use their publication records for the user 

profiles), we contacted 20 computer science and computer engineering professors from 

KU and other universities.  Ultimately, 8 professors were included for the study, after 

registering with the evaluation system. During registration, the professors entered basic 

information such as their First Name, Last Name, Email Address and any common names 

that they used in their published papers. This information is used when querying the 

CiteSeer search engine for generating the IList. Figure 4.1 shows a screen shot of the web 

interface for the registration process is as shown below:
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Figure 4. 1 Registration Page of Evaluation System

After an author registers with a system, the common names are fed as query terms to the 

CiteSeer search engine to obtain a list of papers containing the author’s name. This list is 

then filtered as explained in chapter 3 to obtain the IList.  The IList is then used to create 

the user profile for the author that is used to recommend papers to them in the baseline 

experiment and in our experiments on conceptual recommender systems.  

4.3 Baseline Vector Space Method  
CiteSeer has a built-in recommender system that can compute the similarity between 

documents using different semantic features [1].  The TF-IDF [3] scheme is used to 

measure the similarity between documents by treating them as word vectors. CiteSeer 

also uses the string matching algorithms to find the similarity between the headers in the 

document. Headers contain the author, title, institution and other such information that is 

given in the start of the document before its actual content. It can also use citations 
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present in the document as an indication of the document similarity. All the documents 

cited by the document ‘A’ are handpicked by the author and hence is a direct 

representation of its relatedness to document ‘A’.  In addition, it can also use the location 

of the citation within the document text to find the context in which the cited document is 

related to document ‘A’. 

As our baseline method for comparison, we have used the TF-IDF scheme implemented 

by CiteSeer.  In order to identify the most similar documents for a registered author, for 

each document in the author’s IList, we use CiteSeer to retrieve the most similar 

documents based on TF-IDF similarity. Thus, for each document in the IList, we get a list 

of the most similar document in the database which includes the document identifier and 

a weight signifying the degree of similarity. The list is presented in decreasing order by 

similarity and the highest weighted ten documents for each IList document are retained.  

These lists are then merged together to create the final list by including the unique 

documents in each list in decreasing order of their weights. If more than one list 

contained the same document then the weights belonging to each list is added together to 

produce the final weight for that document. The top 10 documents from the final list are 

then treated as the final set of recommendations produced by the baseline method and is 

then presented to the author for evaluation.

4.4 Conceptual Recommendation Method  
The common names of the authors obtained from the registration process are input to the 

CiteSeer search engine and the list of documents obtained as results are then filtered to 

create the IList as mentioned in the section 3.2.2. The same IList is then used by the 
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baseline method for generating the recommendations and by the concept tree method to 

generate user profile for the author. The profiler module uses the concepts associated 

with each document in IList to construct the user profile.  Once the user profile is 

constructed the recommender module constructs a tree out of it and uses the tree 

matching algorithm described in Section 3.2.3 to generate the set of recommendations for 

the author.

4.5 Experiments 
4.5.1 Naming Conventions:

In this section, we discuss the input parameters to the system, experiments conducted by 

varying the input parameters and the outcome of the experiments.  

As discussed in chapter 3, the Author Recommender system has three main input 

parameters. 

 Weight Propagation factor (): This parameter determines the amount of weight 

propagated by the child node to its parent during the similarity computation using 

the concept tree algorithm. We test four different values, i.e., 0, 0.33, 0.67, 1.00, 

of this parameter. When the weight propagation factor is zero, no weight 

information is propagated from the child node to its parent. Thus the concepts are 

treated as vectors instead of trees during the similarity computation. 

 Number of user profile categories (β):  The user profile consists of a list of 

(concept, wt) pairs. The number of such pairs to be considered from the list when 

performing the similarity match is passed into the Recommender module as a 

parameter.  We considered three values viz. 15, 10 and 5 for this parameter in our 

experiments.  The authors whose user profile consisted of less than 15 categories 
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were not considered for our experiment. This was due to the lack of sufficient 

number of author’s publications in the CiteSeer database.  After such pruning we 

had 8 authors at the end whose user profiles consisted of more than 15 categories. 

These 8 authors form the basis for our experiments.

 Time/ Timeless: As discussed in Chapter 3.2.4, the two cases are represented 

using a Boolean flag called Time and is passed as a parameter into the 

Recommender module. Time and the Timeless versions are represented when the 

Time flag is set to 1 and 0 respectively.

For each value of ‘β’ considered, the flag representing the time factor is varied to obtain 2 

outputs representing the time invariant and the time variant versions of the algorithm. Let 

us denote the time invariant algorithm as ‘TL β’ and time variant algorithm as ‘T β’. For 

example, when ‘β’ has a value 15 the algorithms are denoted as ‘TL15’ and ‘T15’ 

respectively.  For a given value of ‘’, 6 different versions of the algorithm viz. T5, T10, 

T15 and TL5, TL10 and TL15 are generated.  This process is repeated for each value of 

‘’ and there are four different ‘’ values. Thus a total of 24 different combinations were 

used to generate different set of recommendations for an author.

No of iterations = No of  values * No of β values * 2

              = 4*3*2 = 24.

The outcome of each of the iteration is an RList that provides a set of recommendations.  

We consider each RList as the results of a different version of the Tree concept 

recommender. However, we do not need to have multiple versions of individual 
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documents judged by our human subjects.  So, to reduce their work, we remove the 

duplicate documents from each RList and merge the top ten documents from each RList. 

The duplicate documents if any within an RList are removed using a Perl script. This 

unique list of documents is then presented to the author for evaluation. 

4.5.2 Collecting User Feedback: 

Once the recommended papers have been identified, the author is emailed to notify them 

that they have papers to review.  For easier and more efficient interactions, a web 

interface was provided for rating the documents. The author logs in to a URL provided in 

the email notification using the email Id that he entered during the registration process to 

view the recommended documents.  The papers are displayed to the author in random 

order, and they are asked to submit their ratings.  For each recommended document, the 

following information was included to facilitate the evaluation process:

1) The title of the document

2) The abstract of the document

3) The link to the original document

The author is then asked to rate the documents using on of four ratings described below:

 1 – I could have written it

 2 – I should refer it

 3 – I should read it for background info

 4 – I have no interest in this paper.

While rating each paper, the authors were only required to use the abstracts and the title 

information. Reading the entire document was optional and the link to the original 

document could be used for that purpose if the author felt that the abstract information 
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was insufficient to correctly rate the document or if he/she was really interested in 

reading the document.  A few screen shots of the evaluation page are as shown below. 

Figure 4. 2 Screen Shot 1 of Evaluation System

As shown in Figure 4.2, each paper is represented by a row and each row has 3 columns. 

The middle column displays the title, the abstract, and the hyperlink to the full document. 

The author can use this information to rate each document by clicking any one of the 

radio buttons on the right column of each row.  The first row represents the document ID 

used by CiteSeer to represent each document internally. All the documents had to be 

rated before the evaluations could be submitted.  If an author tried to submit partial 

ratings, a list of documents that they had not yet rated was displayed to them, as shown in 

Figure 4.3. 
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Figure 4. 3 Screen Shot 2 of Evaluation System

4.5.3 Evaluation Metric:
As mentioned earlier, the result of the user evaluations is a set of ratings (1-4) that 

indicates the closeness of the document to the author’s interest. In order to evaluate the 

different output from the Author Recommender system and the baseline method, the 

number of documents with each rating among the top ten is considered as a metric. Thus 

for each version of the algorithm, the number of documents with each rating is calculated 

and each algorithm is represented as a vector of 4 values viz. (R1, R2, R3, R4) where R1 

represents the number of documents with rating 1 in the list, R2 is the number of 

documents with rating 2 in the list and so on. The process is repeated for each author and 

the final (R1, R2, R3, R4) output vector for each version of the algorithm is the 

represented as the average value taken over all the authors. 
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Definition of a Good Recommendation:

R1: In this case we consider only the documents with ratings 1 as good recommendation.  

So the total score the algorithm receives is the number of documents among the top ten 

with rating 1. This is a very strict measure of good recommendation. 

R1+R2: In this case we consider only the documents with ratings 1 and 2 as good 

recommendations.  So the total score the algorithm receives is the sum of the total 

number of documents with ratings 1 and 2 among the top ten in the RList.

R1+R2+R3: In this case we consider the documents with ratings 1, 2 and 3 to be good 

recommendations for the author. The total score the algorithm receives is the sum of the 

total number of documents with ratings 1, 2 and 3 among the top ten in the RList.

4.5.4 Results:

In this section, we describe the experiments and the results that were conducted to test the 

hypotheses stated earlier. We then discuss the statistical significance of our results.

Let, 

Best = Best performing algorithm,

BTL = Best performing time invariant algorithm,

BTL () = Best performing time invariant algorithm for a given  value.

BT = Best performing time variant algorithm,

BT () = Best performing time variant algorithm for a given   value.

Baseline = Algorithm based on the vector space model used as a baseline for 

comparison.
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Evaluation of Hypothesis 1: 

The first hypothesis states that the recommender system based on the Tree of Concepts is 

better than the algorithm using the Vector of Concepts which in turn is better than the 

Vector of Keywords.  To evaluate this, we compared the best performing algorithm that 

uses the Tree of Concepts with the best performing algorithm that uses the Vector of 

Concepts and the Baseline method that uses a Vector of Keywords. As mentioned in 

Section 4.4.1, when  > 0, we get the tree of concepts algorithm and when  = 0 we get 

the vector of concepts algorithm. 

To ignore the effect of time for this experiment, we set the Boolean Time flag to 0 for all 

runs and vary β to get the best performing algorithm (BTL ()) for a given value of . 

We consider BTL ( = 0) as the best performing vector of concept algorithm 

(BestVectorConcept). We obtain the best performing tree concept algorithm (BestTreeConcept) by 

comparing all the BTL ( > 0). Finally we compare the BestTreeConcept, BestVectorConcept and 

the Baseline method to get the best performing algorithm. All the comparisons are done 

based on the definitions of good recommendation, as explained in section 4.6. Figure 4.4 

illustrates these steps.
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Figure 4. 4. Experiment to Test Hypothesis 1

The resulting comparison graphs are shown in Figures 4.5 and 4.6. The X-axis represents 

the ratings given to the documents and the Y-axis represents the number of documents 

with that particular rating. The graph in Figure 4.5 represents the result of comparing all 

BTL ( > 0). We get the best result for the Tree of Concepts algorithm when  = 0.33

and β = 10. The graph in the Figure 4.6 represents the result of comparing the algorithms 

representing the Best of Tree of Concepts, Best of Vector of Concepts and the Baseline 

methods. We get the best result for Vector of Concepts algorithm when  = 0 and β = 10. 

The graph shows that the Tree of Concepts algorithm performs better than the Vector of 

/*
  * Find out the best performing time invariant 
  * algorithms for each value of .
  */

for each ‘I’ in ,
{

BTL (I) = compare (TL5, TL10, TL15);
}

/* 
* Find out the best performing tree concept algorithm 
*/
BestTreeConcept = compare (BTL (1.0), BTL (0.67), BTL (0.33));

/*
*Let the best performing algorithm with  = 0 be called BestVectorConcept

*/
BestVectorConcept = BTL (0);

/* 
* Comparison between Tree of concepts, Vector of concepts and 
* vector of  keywords to test Hypothesis 1
*/
Best 1 = compare (BestTreeConcept, BestVectorConcept, Baseline)
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Concepts algorithm which in turn performs better than the Baseline algorithm for the 

second and third definitions of the good recommendation considered earlier.  Hence, we 

consider the statement in hypothesis 1 to be true.
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Figure 4. 5 Best of Tree of Concepts Algorithm
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Figure 4. 6. Tree of Concepts vs. Vector of Concepts vs. Baseline

However for definition 1, the vector based algorithm performs better than the tree based 

algorithm.  This is expected because vector based method only looks at the keywords and 

we can obtain very similar matches when there are lots of keywords that overlap. 

However, it is also possible that the vector method gives completely non-matching 

documents (false positives) because it does not consider the meanings of the keywords. 

Such cases can be avoided when we represent the documents as concepts instead of 

keywords as in our concept tree matching algorithm.

Significance Test: 

We verified the statistical significance of our results for hypothesis 1 by performing a one 

tailed t-test between the following:

1. Best performing method based on the tree concept algorithm when   > 0. (M1)
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2. Best performing method based on the tree concept algorithm when   = 0.(M2)

3. Baseline method. (M3)

The t-test tests the probability ‘p’ with which the null hypothesis is true. If the probability 

value of ‘p’ is below the critical value then we can safely reject the null hypothesis stated. 

The critical value of ‘p’ is set as 0.10.  Let the null hypothesis be stated as, Mi < Mj is 

true (i.e.) the method Mi does not perform better than the method Mj.  When p < = 0.10 

we can say that there is at most only 10% chance that Mi < Mj and we can reject the null 

hypothesis.  The results of the test are as shown below.

Null 

Hypothesis
R1 R1+R2 R1+R2+R3

LHS<RHS
Mean 

LHS

Mean 

RHS

Improvem

ent (%)
P value

Mean 

LHS

Mean 

RHS

Improvem

ent (%)
P value

Mean 

LHS

Mean 

RHS

Improve

ment (%)
P value

M1 < M3 1.5 2.3 -8 0.19 4.7 3.6 11 0.09 8.6 5.1 35 0.001

M2 < M3 0.6 2.3 -17 0.005 4.1 3.6 5 0.1 7.8 5.1 27 0.001

M1 < M2 1.5 0.6 9 0.17 4.7 4.1 6 0.16 8.6 7.8 8 0.17

Table 4.1 Significance Test Results for Hypothesis 1

The results in Table 4.1 confirm that the method based on a conceptual representation of 

the documents performed better than the traditional keyword based representation and 

these results are found to be statistically significant. However, we can also see that 

although the graphs showed that the concept tree method (  > 0 ) performed better than 

the concept vector method (  = 0 ) for most cases, the result was not found to be 

statistically significant. This could partly be due to the small number of authors involved 

in the user study. Some authors who were willing to participate in the user study had to 

be excluded because of two main reasons:
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1) They did not have sufficient number of publications  in the CiteSeer database to 

generate a user profile

2) The profile generated did not have the minimum number of concepts required to 

perform our experiments.

Evaluation of Hypothesis 2:

According to the second hypothesis, we expect that authors would be more interested in 

recent publications in their interest areas as compared to older publications.  To evaluate 

this, we performed a similar experiment in which we first set the Boolean Time flag to 1 

and obtained the best performing algorithm for each value of .  

Figure 4. 7. Experiment to Test Hypothesis 2

/*
  * Find out the best performing time variant
  * algorithms for each value of .
  */
for each ‘I’ in ,
{

BT (I) = compare (T5, T10, T15);
}

/* 
* Find out the best performing time variant algorithm and 

* Time invariant algorithm 
*/
BT = compare (BT (1.0), BT (0.67), BT (0.33), BT (0));
BTL = BestTreeConcept

/*
* Comparison between best of time invariant algorithm, time variant algorithm 
* Baseline to test Hypothesis 2
*/
Best 2 = compare (BTL, BT, Baseline)
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The graph in the Figure 4.8 shows the result of comparing BT () for all the values of . 

We obtained the best result (BT) in the Time Variant category when  = 0.33 and β = 10. 

Finally we compared the best performing Time Invariant Algorithm (BTL), BT and 

Baseline algorithms. We considered BestTreeConcept obtained from the previous experiment 

as the best performing Time Invariant algorithm. This process is illustrated in the Figure 

4.7.
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Figure 4.9 Time Invariant vs. Time Variant vs. Baseline

The graph shown in the Figure 4.9 illustrates the result of comparing the best performing 

Time Invariant, Time Variant, and Baseline algorithms. To our surprise we see that the 

Time Invariant algorithm performs better than the Time Variant algorithm for all the 

definitions of a good recommendation. This is an indication that the users are more 

interested in seeing relevant papers regardless of when they were published (within the 

11 year time span covered by our collection). These results prove that the statement for 

hypothesis 2 is not true. However, previous research suggests that users with different 

levels of experience perceive recommendations differently and different kinds of 

algorithms are suited for recommending different kinds of papers [2]. We plan to conduct 

more detailed experiments regarding this in the future. 
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Significance Test:

Similar to previous experiment, we verified the statistical significance of hypothesis 2 by 

performing a one tailed t-test between the following:

1) Best performing Time Variant Algorithm (M1)

2) Best performing Time Invariant Algorithm (M2)

Let the null hypothesis state that M1 < M2, i.e., the Time Variant algorithm does not 

perform better than the Time Invariant Algorithm.  We again set the critical value of ‘p’ 

as 0.10

Null 

Hypothesis
R1 R1+R2 R1+R2+R3

LHS<RHS
Mean 

LHS

Mean 

RHS

Improvem

ent (%)
P value

Mean 

LHS

Mean 

RHS

Improvem

ent (%)
P value

Mean 

LHS

Mean 

RHS

Improve

ment (%)
P value

M1 < M2 1.1 1.5 -4 0.36 4.3 4.7 -4 0.17 8.4 8.6 -2 0.13

Table 4.2 Significance Test Results for Hypothesis 2

The test showed that the ‘p’ value was above the threshold for all the three definitions of 

a good recommendation.  This confirms that the Null Hypothesis is true. Thus the authors 

are more interested in finding relevant papers regardless of the year of publication.
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Chapter 5 Conclusions and Future work

5.1 Conclusions

In this work, we presented a novel way recommending technical papers to the users of the 

CiteSeer. We represent the user profiles and the documents as tree of concepts and used a 

tree matching algorithm to compute the similarity between them. We also studied the 

influence of time in recommending technical papers to the author. To evaluate our system 

we conducted a user study where some professors from KU and other universities 

participated. From the CiteSeer database, user profiles were generated for them and 

recommendations were made.  The authors rated each recommended paper within a scale 

of 1-4 with ‘1’ being the most relevant and ‘4’ being the least relevant.  We obtained the 

best results when  = 0.33, β = 10 and with no importance given to time. 

We conclude that the following from our results:

1) The concept tree matching algorithm performed much better than the traditional 

algorithm based on keywords for providing recommendations. The result was

found to be statistically significant. We found an improvement of 8% and 31 % 

on the average for the second and third definitions of good recommendation.

2) The tree of concepts ( > 0) method performed better than the vector of concepts 

( = 0) method. We found an improvement of 6 to 9 % on the average. However 

this result was not statistically significant. We stated our reasons for this and plan 

to conduct more experiments in the future.

3) We also found that authors are most interested in seeing the most relevant papers, 

regardless of their publication date, rather than seeing more recent papers that 
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might be slightly less relevant.  This was confirmed by the rejection of our 

hypothesis that including publication date in the recommendation ranking would 

improve the recommendations.  Although the Time Invariant algorithm showed a 

slight improvement of 2 to 4% over the Time Variant algorithm, this 

improvement was not statistically significant.

5.2 Future Work

The algorithm currently considers only the publications of the author for building the user 

profile. A simple extension could be to build a better profile by also considering all the 

documents which the current document cites as references. Also the current 

implementation is not adaptive. The recommendation process could be improved by 

capturing the short term and long term interests of the user and updating the user profile 

accordingly.  The traditional content based recommendation systems fail to provide good 

recommendations for non-textual data. Our method could be extended to provide 

recommendations for non-textual data such as videos or images. By categorizing them 

into concepts, one can use similar tree matching algorithms to provide recommendations. 

This is a very interesting application of our method and forms a good topic for future 

research. Our algorithm could be combined with other similarity computation algorithms 

like TF-IDF, citation [1] methods used by CiteSeer to improve the overall 

recommendations to the user.

We used a very simple tree matching algorithm to compute the similarity between the 

user profiles and documents. One of the reasons for using such a simple algorithm is that 

all our concepts are derived from a single taxonomy. It would be interesting to see how 
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the algorithm performs when the concepts are derived from multiple taxonomies or when 

other sophisticated algorithms are used for tree similarity computation.

As mentioned earlier it would be interesting to see the results of performing the 

experiments with more number of users with different levels of expertise and consider a 

more extended time period than the one that we considered here for our experiments.
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