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Abstract — Calculating the current distribution and radiation

patterns for ground-penetrating radar antennas is a challenging
problem because of the complex interaction between the antenna,
the ground, and any buried scatterer. Typically, numerical tech-
niques that are well suited for modeling the antennas themselves
are not well suited for modeling the heterogeneous grounds, and
visa versa. For example the finite-difference time-domain (FDTD)
technique is well suited for modeling fields in heterogeneous
media, whereas the method of moments (MoM) is well suited for
modeling complex antennas in free space. This paper describes
a hybrid technique, based upon the equivalence principle, for
calculating an antenna’s current distribution radiation pattern
when the antenna is located near an air-ground interface.
The original problem is decomposed into two coupled equivalent
problems: one for the antenna geometry and the other for the
ground geometry, with field information passing between them
via a rapidly converging iterative procedure. The fields in each
region may be modeled using numerical techniques best suited to
them. Results for several test cases are presented, using FDTD to
model the ground problem and MoM for the antenna problem,
that demonstrate the accuracy of this hybrid technique.

Index Terms — Antenna radiation patterns, finite difference
methods, ground, iterative methods, radar.

I. INTRODUCTION

ROUND-PENETRATING radars (GPR’s) present
Ga number of unique challenges to electromagnetic
modelers. Most of these challenges are in one way or another
related to the ground itself, which has a significant impact on
the signals that are transmitted and received by GPR’s. Since
the ground usually is a lossy dielectric, integral-equation
techniques such as the method of moments are not well suited
for these geometries. This is because they would require either
the use of a complicated Green’s function or an enormous
number of unknowns for modeling the ground.

One technique that has shown itself to be well suited to a
number of the special problems imposed by GPR’s is the finite-
difference time-domain (FDTD) technique [1]. Since FDTD
is a partial differential-equation technique, the presence of a
ground does not seriously impact the number of unknowns
that must be determined. This technique has been used for a
number of years to model GPR’s whose antennas are located
either close to [2], [3] or far from the air—ground interface [4],
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[5]. During this period, a number of improvements to FDTD
have been developed to handle several special difficulties
generic to GPR modelers. Examples include the ability to
model stratified grounds for plane—wave incident fields [6],
a near-to-far-field transformation for buried scatterers [4], and
improved absorbing-boundary conditions.

In spite of these strides in adapting FDTD for GPR mod-
eling, one important modeling problem has remained: the
modeling of complex GPR antennas. Although FDTD is well
suited for modeling simple antennas such as dipoles, it is
not as well suited for modeling antennas that are not easily
resolved by a rectangular grid. More complicated antennas
involving wires and surfaces extended at nonorthogonal angles
can be modeled by either the use of subgrids or curved-surface
formalisms [7], [8]. However, these techniques tend to make
most FDTD codes more numerically intensive, while still not
providing the kind of accuracy routinely found with integral
equation techniques such as the method of moments (MoM)
[9].

In this paper, we describe a hybrid technique that combines
FDTD and MoM to model GPR’s with complex antennas.
This technique uses the equivalence principle to separate a
GPR geometry into two subgeometries that are easily modeled
using FDTD and MoM, respectively. A rapidly converging
iterative technique then passes boundary—field information
between these subgeometries, resulting in a full-wave solution
that correctly models the performance of the antenna in the
presence of the ground. Numerical results are presented that
demonstrate the accuracy of this technique.

II. HYBRID TECHNIQUE

Consider the typical GPR geometry shown in Fig. 1. Here,
an antenna is located above a ground that contains a buried
object. To invoke the Schelkunoff equivalence principle [10],
an imaginary closed surface S (Huygens’ surface) with an
outward normal vector n is placed around the antenna. Two
coupled-equivalent problems are established: one problem
equivalent to the original problem internal to S and the other
equivalent to the original problem external to S, as shown in
Fig. 1.

The internal problem (antenna geometry) contains the origi-
nal antenna geometry, the original fields inside S, and the null
fields outside S. Support of this field configuration requires
that surface currents —Js and —M s be impressed on S in
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Fig. 1. Decomposition of an original GPR geometry into two subgeometries:
antenna geometry and ground geometry.

addition to the original impressed sources on the antenna,
where

Js=nxH (D
Ms=E xn. )

Similarly, the external problem (ground geometry) contains
the original ground geometry, the original fields external to
S, and the null fields inside S. To support the fields for
this configuration requires surface currents J¢ and Mg be
impressed on S, where F and H are the electric and magnetic
fields along S in the original problem. In the discussion that
follows, we will assume that the antenna does not contact
the ground, so that the Huygens’ surface does not cross the
air—ground boundary.

Dividing the original geometry shown in Fig. 1 into two
subgeometries has the obvious advantage that the ground
geometry does not contain the antenna, and the antenna
geometry does not contain the ground and buried scatterer.
However, the cost of this split is that each subgeometry has
unknown surface currents that must somehow be found in
order to model either or both subgeometries. There are a
number of ways in which these currents can be handled,
but they generally can be classed either as direct or iterative
techniques.

Direct solution techniques typically are methods whereby
the exact solution is obtained using a fixed number of opera-
tions. Solving a linear system of equations using direct-matrix
integration is an example. For this two-subgeometry problem,
a direct solution would require that the unknown currents on
the Huygens’ surface be represented as unknowns in both
subgeometries. One example of this kind of scheme is found in
[11], where the MoM was used on two subgeometries bounded
by a small aperture, resulting in a large system of equations.
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As attractive as direct problem solvers are, however, we
chose to use an iterative technique to solve for the transmitted
and scattered fields in our GPR modeler. There were two
reasons for this choice. The first is that the addition of
electric and magnetic current unknowns along the Huygens’
surface would add a large number of unknowns to the antenna
geometry. Unlike [11], where the bounding surface between
the two regions was electrically small, the Huygens’ surface in
our case would have to enclose the GPR antenna completely
in order to be modeled, which may be many wavelengths in
dimension. The second reason is that adding surface electric
and magnetic currents as unknowns in standard MoM codes
(such as the Numerical Electromagnetics Code (NEC) [12])
would require a significant amount of additional coding.

To circumvent these problems with direct techniques, we
developed an iterative scheme that analyzes each subgeome-
try alternately, while sharing the surface current information
between iterations. This scheme produces accurate results in
surprisingly few iterations and demands only minimal changes
in “standard” FDTD and MoM codes.

A flow chart of the iterative scheme is shown in Fig. 2. This
scheme starts by using MoM to analyze the antenna geometry
under the assumption that the initial electric and magnetic
surface currents are zero. Evaluating the electric and mag-
netic fields just inside the Huygens’ surface yields first-order
estimates of the electric and magnetic surface currents Jg;
and M ¢, respectively. These currents are then used as source
currents in an FDTD model of the ground—scatterer geometry.
Second-order estimates Jgo and Mgy are then obtained by
evaluating the magnetic and electric fields just outside the
Huygens’ surface. These second-order estimates can then be
used as source currents (along with the voltage and/or current
sources that drive the antenna directly) in a subsequent MoM
analysis of the antenna geometry. Third-order estimates Js3
and M g3 can then be obtained by evaluating £ and H just
inside the Huygens’ surface.

By continuing this procedure, the surface currents and fields
in both subgeometries can be updated until they converge
to their exact values. The iteration-to-iteration changes in
the equivalent currents are due to the coupling between the
antenna and the ground that is calculated with increasing
accuracy as the iterative procedure progresses. Convergence
can be checked either by comparing the fields or surface
currents obtained after subsequent iterations or by testing
to see that the null fields in either subgeometry are indeed
negligible. Although we are not aware of a mathematical proof
of convergence for this technique, our experience has shown
it to be convergent for all cases we have encountered.

III. IMPLEMENTING THE HYBRID
TECHNIQUE WITH STANDARD EM CODES

A number of numerical techniques can be used to implement
this hybrid technique as long as they are well suited to model
the two subgeometries (the antenna and ground geometries).
In this paper, MoM is chosen to model the antenna geometry
because there is only a complex antenna in free space and
no ground and no buried scatterers. FDTD is used to model
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Fig. 2. Flow chart of the iterative procedure used in the hybrid technique.

the ground geometry, since no complex antenna is in this
geometry.

Since FDTD 1is more restrictive spatially than MoM, the
Huygens’ surface is chosen to conform to the FDTD spatial
lattice, with the sides lying along tangential E-field sam-
ple points. By doing this, the electric and magnetic surface
currents also conform to the FDTD lattice.

In this section, the changes needed to use standard MoM
and FDTD codes in the iterative scheme are outlined.

A. Modifications to MoM

Regardless of what integral equation is used and the kind
of basis and testing functions chosen, an MoM formulation
of an antenna or scattering geometry reduces to a system of
equations of the form

[Z][1] = [V]. 3

In this expression, the elements of impedance [Z] are the reac-
tions of the basis and testing functions, the unknown current
vector [I] contains the unknown basis-function coefficients,
and the excitation vector [V] contains the reactions between the
testing functions on the scatterer and the source fields. These
sources can either be lumped sources, such as voltage sources
or incident fields from distant sources. Although a number
of Green’s functions can be used in conjunction with MoM,
here we assume the use of the free-space Green’s function,
since it is assumed that the FDTD algorithm is responsible for
accounting for the ground parameters.

When using an MoM code in conjunction with the iterative
scheme, the equivalent electric and magnetic currents along
the Huygens’ surface are not treated as unknowns, since
their values are determined via the previous iteration (i.e.,
from FDTD). Hence, these currents impact the solution via
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the excitation vector [V]. To accomplish this, all that is
necessary is to calculate the reactions of the fields generated
by the equivalent surface currents with the testing functions
on the surface of the antenna and add these to contributions
from the lumped sources on the antenna. This is a simple
operation, since the surface currents can be approximated by
a distribution of short filamentary currents on the rectangular
grid, whose radiated fields are simple functions of position
[12]. The fields generated by the surface currents can be
obtained by superposition of the fields generated by all electric
and magnetic filamentary-current moments on the Huygens’
surface.

Once (3) has been solved for the current distribution on
the antenna, updated electric and magnetic currents can be
found simply by calculating the E- and H-fields just inside
the Huygens’ surface and using (1) and (2), respectively.

B. Modifications to FDTD

The only change that must be made to a standard FDTD
code in order to implement the hybrid scheme is the modifying
of the field-advance equations to allow for the presence of
the electric and magnetic surface currents along the Huygens’
surface. The presence of the ground is modeled simply by
specifying the ground-constitutive parameters in each cell. The
bottom of the ground region can be closed numerically by
using standard absorbing-boundary conditions, modified only
by using the appropriate values of the ground permittivity [4].

In general, the equivalent currents cause all of the field
components to exhibit discontinuities across the Huygens’
surface. The way in which the field-advance equations need to
be modified depends on whether the component in question is
evaluated on or off the Huygens’ surface.

Fig. 3(a) shows a portion of a Huygens’ surface that lies in
the xz plane. For this case, the component H, is evaluated
one half-cell to either side of the surface. Using Faraday’s law
to advance the component H, (i + 1), we find

- E-dl://Ms-ds—i-ug//H-ds (4)
., ot
S] Sl

where the contour ¢; extends up to but does not include the
Huygens’ surface [so there is no contribution to the magnetic
surface-current integral on the right-hand side of (4)]. Even
though FE. is discontinuous at the Huygens’ surface, the
value E'F(z) along the right-hand edge of the contour can be
expressed in terms of the average value F.(i) at the surface
using (2), which yields

EZ(i g k+5)Y = EX(i, 5,k +5) + M) (i, 5,k + 5). (5

Similarly, the value F (¢) on the other side of the Huygens’
surface is given by

EX(i,j.k+35)" = EL(i,j, k+3) — 5 My (i, 1,k + 3). (6)

As a result, the only correction to the standard field-advance
equation for H, on either side of the Huygens’ surface is to
replace £, with either (5) or (6), depending upon which side
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Fig. 3.
the y component of the electric field on the xz plane.

of the surface is being considered. The resulting field-advance
equation for H, is

Hyt /2 <L + %J/% + %) — Hy~ <L + %JA + %)
At [Eg(i—k Ljk+3)— Er(i, 5,k + %)}
b Az
At {Eg(wr Lhk+1)—EMi+ 31,7, k)}
b Az

At (1
- MMU <L,J,I€ + 5) (7)

A similar correction can be derived for the component H...
In (7), EZ(i,j,k + 3) is the average value of the electric-
tangential field on both sides of the magnetic-current sheet.
When an equivalent electric-surface current Jgs is present,
the average electric-field value is calculated via the modified
field-advance formula given in the next paragraph. A similar
correction can be derived for the component H...

To update the average value of £, on the Huygens’ surface,
the integral form of Ampere’s law is used

) at
So Sz

where the contour c; lies in the xz plane and is shown in
Fig. 3(b). Since this contour straddles the Huygens’ surface,
the electric-current integral will be nonzero whenever an
equivalent current .J, is present. Even though the component
H, is discontinuous across the Huygens’ surface, this disconti-
nuity is automatically accounted for if the average value H (%)
is used in the expression. The same is true for £,. Hence, the

Ax

(®)

(a) Integral contour for advancing the y component of the magnetic field at the right side of the xz plane. (b) Integral contour for advancing

resulting field-advance equation for £, becomes (9), as shown
at the bottom of the page. A similar correction can be derived
for the component E .

C. Evaluating the Surface Currents

Field information is exchanged between the antenna and
the ground geometries via the electric and magnetic surface
currents. At the end of each iteration, the tangential electric
and magnetic fields are sampled at the Huygens’ surface, and
the resulting currents are then evaluated. In the case of the
MoM iterations, the electric and magnetic fields are evaluated
just inside the Huygens’ surface at points corresponding to
FDTD tangential £-field points. From these, Js and Mg are
found using (1) and (2), respectively.

In order to obtain the correct electric and magnetic currents
at the end of each FDTD iteration, the discontinuities of these
fields across the Huygens’ surface must be accounted for,
remembering that the E-field and H-field values calculated
by FDTD at the boundaries are average values. The tangential
E fields just outside the Huygens’ surface can be obtained
from the average values using either (5) or (6), depending
on whether the evaluation point is to the right or left of the
surface. The tangential magnetic fields must be determined at
the same points. However, since the magnetic and electric-
field points are interlaced, H-field values on both sides of the
Huygens’ surface must first be averaged. The discontinuity
due to the currents can then be accounted for using equations
similar to (5) and (6).

Since FDTD and MoM work in the time and frequency
domains, respectively, it is necessary to transform the electric
and magnetic currents from one domain to the other at the end

nf . o1 ot f . ., 1
Ey<l,j+§,/€>—Ey <’L,j+§,/€)

At

Hy ™05+ L ket ) — M

Az

€

_ At
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s 7+ 3.k At o1
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Fig. 4. Thin wire dipole in free space. (a) Geometry, (b) and (c) Electric field
E;. (b) is 0.4 m and (c) is 0.8 m from the dipole center with solid curves
calculated by FDTD and dotted curves calculated by the FDTD/MoM hybrid
technique. (d) Electric field E, from dipole end, inside Huygens’ surface,
with solid curve representing actual field calculated by FDTD and the dotted
curve representing the field radiated by Huygens’ currents.

of each iteration. This is accomplished by using a Fast Fourier
Transform (FFT) routine.

IV. NUMERICAL RESULTS

A. Dipole in Free Space

The modifications to the FDTD equations needed for mod-
eling the surface currents are an important part of the hybrid
technique. To check the accuracy of these modifications, we
first chose to model a dipole in free space aligned along the
FDTD lattice. Such simple geometry can be modeled either
by FDTD alone or with the iterative procedure, using FDTD
for both the interior and exterior geometries. The iterative
procedure for this case should produce an exact result after
just one cycle, since the exterior geometry contains only free
space.

The dipole is a thin, 0.6-m-long wire along the x axis, driven
by a 6-ns, double-peak Gaussian-pulse voltage source. The
solution space is a 70 x 50 x 70-cell FDTD space, with a
cell size of 0.04 m. The Huygens’ surface is 30 x 10 x 10
cells, symmetrically surrounding the dipole.

Fig. 4(a) shows the geometry for this case. Fig. 4(b) and
(c) each show the field £, as calculated by FDTD alone
(solid curves) and by the FDTD/MoM hybrid technique (dotted
curves) at distances 0.4 and 0.8 m from the dipole center,
respectively. These curves show excellent agreement between
the two techniques. The difference between them is less than
—30 dB. Fig. 4(d) shows the field E, a distance 0.2 m from the
dipole tip. The solid curve shows the actual field, calculated
by FDTD alone. The dotted curve shows the field radiated
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by the Huygens’ currents alone. Since this point is inside the
Huygens’ surface, this curve is nearly zero, as it should be.

B. Skewed Dipole Above a Homogeneous Ground

For a simple verification of the full-hybrid technique, con-
sider the geometry shown in Fig. 5, which shows a skewed
dipole consisting of a thin wire (0.6 m long) offset from the
z direction by 30°. The center of the dipole is 0.56 m above
a ground that has relative permittivity of 4.0 and is lossless.
The dipole is driven at its center by a continuous wave-voltage
source at a frequency of 150 MHz.

To model this geometry using the hybrid technique, we
chose the Huygens’ surface to be a 0.4 x 04 x 1.2-m
volume, symmetrically surrounding the dipole. For the ground
geometry, we used a 70 x 50 x 70-cell numerical lattice for
FDTD. We also used the Numerical Electromagnetics Code
(NEC) [12], a widely used MoM code, to model the antenna
geometry. The antenna-voltage feed was a 1.5-ns Gaussian
pulse. The FDTD calculations were computed out to 40 ns
so as to adequately take into account multiple interactions
between the ground and the antenna.

The dotted curves in Fig. 6 are the » component of the
electric field on a z-directed line, 0.32 m away from the an-
tenna (calculated using the hybrid technique at three different
iterations). The solid curve is the result calculated using NEC
alone, which is capable of singlehandedly modeling the fields
above (but not beneath) the ground for this geometry. These
curves show that the fields calculated by the hybrid technique
do indeed converge to the correct result.

Fig. 7 shows the calculated antenna-current distribution as
a function of the iteration number. Also shown is the result
calculated by the NEC code. As can be seen, the iterative-
technique results converge quickly. Since the ground in this
case was lossless, the effect on the antenna-current distribution
was not large. Even so, it is evident from Fig. 7 that the ground
has forced a slight asymmetry of the current, as would be
expected.

C. Bow-Tie Antenna Above a Stratified Ground

A final experiment that shows the type of complex ge-
ometries that can be modeled by this iterative technique
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code in free space, the NEC code with the ground present, and the FDTD/MoM
hybrid technique.

is shown in Fig. 8. Here, a bow-tie antenna is positioned
above a stratified ground. The bow-tie antenna consists of
two equilateral triangles with 0.22-m sides made of thin metal
wires. The antenna is driven by a 150-MHz voltage source at
its center and is located 0.4 m above the ground. The ground
is complex, consisting of 30 layers, each with a thickness of
0.04 m (the deepest layer extends to infinity). The relative
permittivity of each layer varies linearly with depth from 3.0
to 6.0, and the conductivity of each layer is 0.001 S/m. The
stratified ground is modeled using the formalism found in [6].
The FDTD space is 70 x 50 x 70 cells, and the Huygens’
surface is a 30 x 10 x 10-cell rectangle (1.2 x 0.4 x 0.4 m)
that surrounds the bow-tie antenna symmetrically. Since the
round-trip time from the antenna to the bottom-ground strata
was roughly 20 ns, performing the FDTD calculations out to
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Fig. 8. Bow-tie antenna above a stratified ground. Each strata is 0.04 thick,
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Fig. 9. Magnitude of the « component of the electric field, radiated by the
bow-tie antenna, sampled at 0.4 m under the ground, along the x direction.
Results are evaluated by the FDTD/MoM hybrid method.

40 ns was adequate to model the multiple reflections between
the antenna and the ground.

The iterative procedure was run for three full iterations.
A convergent result was obtained at the end of the second
iteration. Fig. 9 shows the magnitude of £, sampled 0.4
m under the ground (directly under the antenna) after two
iterations. Here, the field level changed markedly between the
first and second iterations, since the ground in this case was
lossy.

D. Computational Requirements

Our experience has shown that this iterative scheme typi-
cally produces useful results after one complete iteration (i.e.,
one interior geometry and one exterior geometry calculation)
and essentially exact results after two complete iterations.
When using MoM for the antenna geometry and FDTD for
the ground geometry, the computational requirements for each
MoM calculation were usually negligible compared to those
required for each FDTD calculation.

Given this, it generally can be said that the computational
cost of the iterative technique is roughly twice the cost of a
comparable FDTD simulation that uses the same cell size.
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V. CONCLUSIONS

We have presented a hybrid technique for modeling complex
antennas in the presence of heterogeneous grounds. This
technique allows two dissimilar electromagnetic-numerical
methods to be used to model different aspects of a complex
geometry. It is easy to implement with MoM and FDTD
but also possible with other suitable numerical methods. This
technique also provides a less-expensive way of characterizing
an antenna above an inhomogeneous ground, because it avoids
the expensive evaluation of the Green’s function. Numerical
simulations of modeling complex GPR antennas have been
performed on common workstations or desktop PC’s.

This hybrid technique greatly increases the range of an-
tennas that can be modeled in the presence of a ground
by using ordinary electromagnetic codes that are well suited
to the characteristics of the antenna in free space instead
of heterogeneous ground. Furthermore, the hybrid technique
can easily be extended to model multiple-antenna GPR’s by
setting up multiple-antenna subgeometries. Antenna modeling
is usually the weak link of most numerical GPR modelers, so
this hybrid technique should greatly enhance the modeling of
real GPR’s.
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