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A Matched-Filter-Based Reverse-Time Migration
Algorithm for Ground-Penetrating Radar Data
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Abstract—Ground-penetrating radar (GPR) is a remote sensing
technique used to obtain information on subsurface features from
data collected over the surface. The process of collecting data
may be viewed as mapping from the object space to an image
space. Since most GPRs use broad beamwidth antennas, the
energy reflected from a buried structure is recorded over a large
lateral aperture in the image space. Migration algorithms are
used to reconstruct an accurate scattering map by refocusing the
recorded scattering events to their true spatial locations through
a backpropagation process. The goal of this paper is to present
a pair of finite-difference time-domain (FDTD) reverse-time
migration algorithms for GPR data processing. Linear inverse
scattering theory is used to develop a matched-filter response for
the GPR problem. The reverse-time migration algorithms, devel-
oped for both bistatic and monostatic antenna configurations, are
implemented via FDTD in the object space. Several examples are
presented.

Index Terms—Finite-difference time domain (FDTD), ground
penetrating radar (GPR), matched filter, reverse time migration,
synthetic aperture radar (SAR).

I. INTRODUCTION

GROUND-penetrating radar (GPR) is a mature remote
sensing technique employed by engineers and scientists

to obtain information from subsurface structures [1]. These
structures range from manmade objects, such as buried utilities,
pavements, and unexploded ordnance, to geological forma-
tions. The type of information extracted from a GPR depends
in part on the manner in which data are collected. GPR data
collection may be viewed as a mapping from the object space
( ), characterized by the object’s spatial location and
reflectivity, to the image space as shown in Fig. 1. The image
space may be viewed in the space-time domain ( ), where
the recorded scattered signals are displayed as a function of
lateral position and time, or in the F–K domain ( ),
where the two image sets are related by spatial–temporal
Fourier transforms (FTs). Additionally, data may be recorded
in the space-frequency domain ( ), as would be the case
with a frequency-domain GPR. Fourier transforms allow easy
conversions between the three image domains.
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Fig. 1. Relationship between the object space and the three image spaces for
GPR, where Fand F denote temporal and spatial FTs, respectively.

Spatial location and reflectivity are the typical information
obtained from GPR. Since most GPRs use broad beamwidth an-
tennas, the energy reflected from a buried structure is recorded
over a large lateral aperture in the image space. For example,
in a monostatic survey, the data collected over a discrete ob-
ject, such as a pipe, will appear as a diffraction hyperbola in the
space-time image. No further processing may be needed if the
goal is simply to detect the pipe. Imaging algorithms must be
used, however, to move the observed scattering events to their
true spatial location and to estimate the target’s reflectivity.

Various imaging or migration techniques have been devel-
oped to refocus the scattered signals in the image space back
to their true spatial location in the object space. Migration may
be viewed as the inverse of data collection. It is the mapping
from the image space to the object space [2], [3]. Some excel-
lent reviews of the various migration techniques are presented
in [3]–[5]. To summarize, migration algorithms may be imple-
mented in the object space or in image space. Most algorithms
are wave equation based, although a few are formulated on geo-
metric considerations.

Many of the imaging algorithms used for GPR originated
within the geophysical community and were developed with
seismic applications in mind. Even though the wave excitation,
scattering, and measurement associated with the practices of
GPR and seismic applications are quite different, these tech-
niques are frequently used because they often accomplish the
initial goal of producing an image. The main scope of this paper
is to present a comprehensive development of a generalized

0196–2892/01$10.00 © 2001 IEEE



930 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 39, NO. 5, MAY 2001

GPR imaging algorithm that is firmly based on electromagnetic
theory and radar principles. By presenting this development in
such a manner, we intend to give further understanding of the
physical processes involved within GPR collection and imaging,
present the assumptions necessary for the development and ap-
plication of the algorithm and provide insight into the specific
properties that are represented in an image.

The development of this algorithm is based on the notion of a
matched filter, which is used extensively in radar applications.
The matched-filter concept can be explained as a correlation of
the received signal with the expected or estimated signal from
a specific target. If this correlation produces a large value, then
it is likely that the target is present. The implementation of a
matched filter involves the estimation of this expected signal
and an interpretation of the convolution. When electromagnetic
scattering theory is used to determine the expected signal and
the necessary assumptions are made, the resulting convolution
takes on the form of a forward scattering problem. In fact, the
resulting algorithm can be directly related to reverse-time mi-
gration (RTM) [6]–[10]. Using this development, an image can
be perceived as a backpropagated wave-field reconstruction of
the dielectric contrast within the ground.

In the following section, a matched-filter formulation for mi-
grating GPR data for all source-receiver antenna configurations
is developed using Born scattering theory for time-harmonic
electromagnetic fields. A separate matched filter is then de-
rived for the special case of the monostatic configuration. These
matched filters are then implemented in the object space as
FDTD reverse-time migration algorithms.

II. M ATCHED-FILTER FORMULATION

In this section, a reverse-time migrating algorithm is devel-
oped using the concept of a matched filter. Mathematically, the
matched-filter transfer function is expressed as the complex
conjugate of the expected received waveform due to the target
to which the filter is being matched. The output of the matched
filter for transmitters, located at the position vectors, and
an -element receiver array, located at the position vectors,
is expressed as

(1)

where is the received waveform due to theth transmitter.
In this formulation, the matched filter is taken directly from the
expected received waveform, making it necessary to conjugate
the collected data prior to filtering.

This section begins by estimating the time-harmonic electro-
magnetic fields scattered from an arbitrary object with a single
receiver–transmitter configuration. This general result is then
used to compute the expected scattering response from an iso-
lated pixel containing one dominant point scatterer, which then
leads to the matched filter for that pixel. In this development, the
bistatic mode refers to any source-receiver antenna separation,
while the monostatic mode indicates zero-offset data collection.
Also, since a time-harmonic approach is taken, the frequency
dependencies of the fields and signals have been omitted from
the development and will be reintroduced later.

Fig. 2. Ground-penetrating radar (GPR) problem geometry.

A. Electromagnetic Scattering

Consider the problem geometry depicted in Fig. 2, consisting
of two half spaces. Region 1 corresponds to free space while an
inhomogeneous ground, characterized by constitutive parame-
ters , is denoted as Region 2. A weakly scattering
object of finite size with constitutive parameters is
located within the ground. Transmit and receive antennas are lo-
cated at and , respectively.

Define a pair of wavenumbers with and without the scattering
object present as

Region 1

Region 2

Object

(2)

and
Region 1

Region 2
(3)

respectively. By introducing an object profile as the difference
between the dielectric constants in region 2

(4)

and following the development in [11], [12], the time-harmonic
scattered field at due to an impressed source at may be
expressed as

(5)

where is the background dyadic Green’s function that
satisfies the equation

(6)

with being the unit dyad and being the total electric field
inside the scattering object.

Since the total field inside the scatterer is a function of the
object profile, (5) is a nonlinear integral equation. A Born ap-
proximation, which states that the total field inside the scatterer
is approximately equal to the incident field, may be used to lin-
earize (5), resulting in

(7)

where the incident field is expressed by the transmit signal
and transmit antenna polarization,, as

(8)

The final migrated data may be viewed as an image consisting
of a number of pixels. Assume that each pixel has one dominant
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point scatterer that can be modeled as an impulse in the object
profile located at , the center of the pixel. The scattered field
recorded at due to this isolated point scatterer is

(9)

The received waveform, in volts, is related to the scattered field,
in V/m, by the relationship [13]

(10)

where is the antenna effective length in meters, andis the
open circuit voltage developed across the antenna terminals. If
linear scattering is assumed (i.e., no interaction between scat-
tering centers), then the matched filter for a point scatterer is
taken directly from the received waveform by substituting (8)
into (9) and projecting the scattered field onto

(11)
where denotes the complex conjugate, andis the receive
antenna effective length.

The final image is expressed by applying the complex conju-
gate of measured data to the filter

(12)
Through reciprocity, the arguments of the first Green’s function
have been reversed.

Equation (12) gives the migrated data as a function of
frequency and the transmit and receive antenna locations. It
is at this point that we take a step back from the mathematics
of this expression and look at the physical interpretation.
Equation (12) is divided into two values on the right-hand
side. The first term is the electric field generated by a current
source . If the time dependency of the received
signal is introduced, this source is expressed as a derivative and
time reversal . We will refer to the
field generated by this source as the backpropagated electric
field . The second term is simply the incident field .
Reintroducing the frequency dependencies and referring to (1),
a complete expression for the migrated data is now shown as

(13)

(14)

(15)

where the subscripts and denote the field or signal due to
the th transmitter and th receiver. These equations are now
applied to bistatic and monostatic surveys.

B. Implementation

In the bistatic mode, data are collected fromtransmitter
and receiver locations. Equation (13) indicates that is
polarization dependent and therefore multivalued with respect
to different combinations of and the definition of the

pixel profile . A physical explanation of migrated data is
obtained by recalling that the value of the pixel profile
was set equal to one in the previous section. Using this defini-
tion, the currents induced on the object by the incident field are

, while the scattered field is a direct result of
these induced currents. Similarly, the collected data represent
the currents induced on the receiving antenna by the scattered
fields. In (14), these currents, associated with the
term, are reintroduced at the receive antenna locations and prop-
agated through the object space via the same Green’s function
that described the propagation of the scattered field from the ob-
ject to the receiving antenna during the collection process.

The final migrated data may then be represented in the time
domain as the convolution of the incident electric field with the
backpropagated electric field evaluated at time zero

(16)

This expression is physically interpreted as the intersection
of the backpropagated field with the incident field and conse-
quently has strong ties to the reflector mapping formula used in
seismic migration [14]. In fact, if the incident field in perceived
to excite induced currents within the ground, this expression
can be directly related to the excitation-time imaging condition
[15].

The monostatic mode, or zero offset, is characterized by co-
incident transmit and receive locations and polarization,
and . From (12), the migrated data takes the form

(17)
For the ideal case when the transmit waveform is an impulse

, (17) is reduced to

(18)

which is in a form similar to (14).
At this point, zero-offset or monostatic migration may be rep-

resented using the exploding reflector model [16] as depicted in
Fig. 3. The original problem has antennas located on the surface,
which radiate an incident field into the ground. The incident
field produces induced sources in the scatterer. These induced
sources reradiate back toward the antennas along the same path
as the incident field. In the exploding reflector model, induced
sources are placed over the surface of the scatterer and are al-
lowed to radiate upward at one half the speed of the original
problem, or equivalently over twice the distance. By invoking
reciprocity, these sources are moved to the surface and allowed
to propagate back into the ground. The mathematical statement
of the exploding reflector model when applied to electromag-
netic propagation and scattering is

(19)

where the squared term, representing the two-way propagation,
has been replaced by a one-way propagation over twice the dis-
tance.
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Fig. 3. Exploding reflector model.

Reintroducing the frequency dependencies and summing
over the aperture results in

(20)

(21)

which is simply the back-propagated electric field in a space
where all dimensions are increased by a factor of two. Finally,
converting to the time domain yields

(22)

which is related to the time-zero imaging condition [17]. Equa-
tion (22) is seen as an electromagnetic reverse-time migration
algorithm and involves three basic steps: time reversing and dif-
ferentiating the measured data, introducing these data as current
sources at their receiver locations, and propagating the fields
back into the ground until time zero. From here on, it is assumed
that all spatial dimensions are increased by a factor of two for
the monostatic configuration.

III. I MPLEMENTATION VIA FDTD REVERSE-TIME MIGRATION

In the previous section, matched filters for bistatic and mono-
static migration were developed in the space-frequency image
space. In this section we present a method of implementing mi-
gration in the object space via the finite-difference time-domain
(FDTD) method. FDTD implementation offers several advan-
tages: direct calculation of the half-space Green’s function is
avoided, any known inhomogeneities can be directly incorpo-
rated into the FDTD lattice, dispersive properties of the soil can
be included, and multiple traces may be back propagated simul-
taneously. The need for corrections due to elevation changes
is eliminated because the FDTD method allows the sources to
be placed anywhere within the lattice. Also, the FDTD method
provides a full vector solution of the wave equation. This elimi-
nates the need to approximate (16) and (22) with scalar solutions
and also allows for the inclusion of polarization measurements.
The FDTD method was chosen due to the reasons stated above.
However, the implementation of (16) and (22) are not limited
by the FDTD method. Any forward-scattering technique is ap-
plicable to these equations and in some cases, another method
may prove to be favorable.

(a)

(b)

Fig. 4. Progression of the monostatic reverse-time migration algorithm. (a)
Raw data from two localized targets are applied to the algorithm. (b) Illustration
of the propagation of the wave where the image exists at time zero.

A. Monostatic and Bistatic Implementation

To implement (22) using FDTD, the -measured traces,
denotedas ,arereversedintime ,andthetime
derivatives are introduced into the object space as time-varying
sources at the location where the individual traces were recorded.
Usingthetime-reversedtracesasspatialimpulsivesources,FDTD
is then used to back propagate the recorded fields into the object
space. The final migrated data, corresponding to a wavefront
reconstruction,occursat time 0.

Fig. 4 illustrates the intermediate steps in the FDTD re-
verse-timemigrationprocess formonostaticdata.Fig.4(a)shows
50 traces of simulated data collected over a time window of
37.5nsinthepresenceoftwolocalizedtargets.Thelocationsofthe
individualtargetsareclearlyseenattheapexofthetwohyperbolas.
Implementingthereverse-timemigrationbeginsbyreversingand
differentiatingthedataintime, introducingthetime-reverseddata
assources in theFDTD latticeat the individual receiver locations,
and simultaneously exciting all 50 sources. Fig. 4(b) illustrates
the progression of the backpropagated electric field with respect
to time. The positive orientation of time in this figure is chosen to
coincide with the forward scattering of the exploding reflector
model,whilethereverse-timemigrationisorientedinthenegative
time direction. Focusing begins to appear as the time approaches
zero.

As discussed previously, the bistatic algorithm is imple-
mented by convolving the incident field with the measured
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(a)

(b)

(c)

Fig. 5. Progression of bistatic reverse-time migration algorithm. The raw data (a) from two localized targets are applied to the algorithm. (b) Illustration of the
incident and back-propagated fields with respect to time. (c) The final image is shown by the intersection of the two fields.

fields that have been backpropagated in time. There are several
ways to implement this algorithm. One approach is to propagate
each field individually while saving each field at every time
step and then performing the convolution. This approach,
although straightforward, requires an excessive amount of

memory. The approach presented here is more efficient and is
accomplished by propagating one of the fields in reverse while
simultaneously propagating the other field forward. The image
is expressed as a running sum of the product or intersection of
the two fields as time progress.
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Specifically, the incident field is propagated forward in time
while recording the fields for every time step at the absorbing
boundaries and the entire field at the last time step.

The purpose of the absorbing boundaries is to eliminate any
reflections at the boundaries of the lattice [18], [19]. This field
can then be propagated in reverse by using a negative time step
in FDTD and reintroducing the fields recorded at the boundaries
merely as an alternative to the absorbing boundaries. As this in-
cident field is propagated in reverse, the time-reversed recorded
data are simultaneously propagated in another FDTD space by
reintroducing the measured fields as sources at the receiver lo-
cations. As stated above, the convolution is accomplished by
keeping a running sum of the product of the two fields.

Implementation of the bistatic algorithm is presented in
Fig. 5. Here, bistatic data were simulated again for two localized
objects. The raw data, collected at 49 receiver locations with
the transmitter located directly above one of the two targets, are
shown in Fig. 5(a). The bistatic algorithm requires propagation
of both the incident and back-propagated fields. Fig. 5(b)
shows the progression of the incident and backpropagated
fields in time. Since the migrated data are obtained from the
convolution of the incident field with the backpropagated field,
contributions to the final image occur where the two fields
intersect. For the present example this occurs at two locations,
which are labeled in the figure. The result of the convolution is
shown in Fig. 5(c).

B. Experimental Results

Data were collected in a 5 m 4 m 2 m deep, sand-filled,
indoor GPR test facility at the University of Kansas, Lawrence.
All measurements were collected using a Sensors and Software
Pulse Ekko 1000 impulsive radar system with a bandwidth and
center frequency of about 900 MHz. A sampling interval of 20 ps
was chosen to meet the stability criteria of the finite-difference
time-domainmethod,whileatotalof1500sampleswerecollected
foreachtracecorrespondingtoatimeintervalof30ns.

The first experimental configuration, depicted in Fig. 6, con-
sisted of four 10-cm PVC pipes buried in dry sand. All the pipes
were oriented along the-axis simplifying the experiment into
a two-dimensional (2-D) space of and . The configuration
shown in Fig. 6 indicates the relative locations of the PVC pipes,
the concrete walls of the test facility, and 30 antenna positions.
The three pipes at the surface were purposely separated by 20
and 30 cm center-to-center to investigate the lateral resolution
of the algorithm, while the fourth pipe near the bottom is a per-
manent fixture of the box.

Data were recorded in a monostatic configuration. The indi-
vidual traces, shown in Fig. 7(a), were collected with-polar-
ized antennas at each of the 30 locations. A linear gain was ap-
plied to the data only to bring out some of the deeper events in
the figure, and it should be noted that this gain was not applied
to the data prior to the match-filter processing. Once the monos-
tatic data were recorded, implementing FDTD reverse-time mi-
gration was easily completed. The image shown in Fig. 7(b)
is the result of the FDTD reverse-time migration along with a
quadratic gain to account for spherical spreading.

Data were next recorded in a bistatic configuration. Due to
the large number of transmitter and receiver combinations,

Fig. 6. Antenna and PVC pipe geometry for experiment number 1.

(a)

(b)

Fig. 7. Monostatic results for experiment number 1. (a) Raw data and (b)
FDTD reverse-time migrated data.

a limited data set was collected. Seven common-shot data
sets were recorded. Referring back to Fig. 6, location #1
corresponds to the far right antenna location, while the numbers
proceed to location #30 on the far left. Using this configuration,
the seven transmitter locations include #2, #6, #10, #14, #18,
#22, and #26. The traces shown in Fig. 8(a) were collected
with the transmitter polarized in the-direction at location #6
with the receiver polarized in the-direction at all 30 locations.
The three traces near the transmitter were zeroed out since
the receiving and transmitting antennas were in too close
proximity. The image shown in Fig. 8(b) is a result of FDTD
reverse-time migration of the recorded data convolved with
the incident pulse. Again, a quadratic gain was applied due
to spherical spreading. The same procedure was done on the
bistatic data collected from location #22. The image in Fig. 8(c)
shows the sum of the images produce by both locations #6 and
#22. Finally the data from all eight of the transmitter locations
were combined to produce the image shown in Fig. 8(d).
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(a)

(b)

(c)

(d)

Fig. 8. Bistatic results for experiment number 1. (a) Common-shot raw data
for the transmitter at location #6. (b) FDTD reverse-time migrated data based on
this one common-shot data set. (c) FDTD reverse-time migrated data using two
common-shot data sets collected at transmitter locations #6 and #22. (d) FDTD
reverse-time migrated data using all eight common-shot data sets.

The second experimental configuration consists of five 7.6
cm conduction spheres buried in an “L” shape at a depth of 60
cm as shown in Fig. 9(a). Measurements were collected simi-
larly to the first configuration. However, since the objects were
not homogeneous with respect to the-axis, measurements were
needed in both the- and -directions on the surface. A total of
400 monostatic measures were collected to form a 7.6 cm grid
over the surface. The migrated data corresponding to a constant
depth of approximately 60 cm are shown in Fig. 9(b) and were
generated using a three-dimensional (3-D) FDTD code.

(a)

(b)

Fig. 9. Results for experiment number 2. (a) Problem geometry for experiment
number 2 and (b) monostatic reverse-time migrated data.

IV. DISCUSSION

The problem of migrating GPR data has been investigated in
this paper. Migration algorithms were first developed for pro-
cessing seismic data sets and later brought over to process GPR
data. The main goal of this paper was to develop a migration al-
gorithm suitable for GPR applications. The motivation for this
goal was to address two questions: what are the specific assump-
tions used when a migration algorithm is applied to GPR data,
and what is the interpretation of the image generated by such an
algorithm?

Using electromagnetic propagation and scattering theory
along with the matched-filter definition, a migration algo-
rithm was developed in a general sense [20] with a focus on
reverse-time migration. The assumptions of this algorithm are
stated as follows. First, the object profile is approximated by
a set of point scatterers allowing a separate filter to be deter-
mined for each pixel. Next, each filter is made independent by
assuming linear scattering. Finally, as with most imaging algo-
rithms, some initial idea of the background media is necessary
to propagate the fields. In addition, for the monostatic case, the
assumptions inherent in the exploding reflector model apply.

From the above assumptions, the requirements for GPR
wave migration include knowledge of the background media
and weak scattering objects. The first requirement can usually
be estimated by other means such as drilling cores or common
midpoint surveys. However, the second requirement is rather
vague and no definite limit can be expressed. For example,
the 3-D experiment presented in Fig. 9 of this paper used con-
ducting spheres, which are not weak scattering. Nevertheless,
the correct results were obtained. For this case, as with many
methods, the algorithm worked without completely satisfying
all the assumptions. Thus, this second requirement provides a
good rule of thumb, but the application of this algorithm can
be expanded for most objects.
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The image generated by the reverse-time migration is a wave-
front reconstruction. Since the algorithm is based on a matched
filter, the image is expressed mathematically as a correlation of
the received signal and the signal estimated in the presence of
an object. The image is interpreted as an indication of the ex-
istence of the object, which in this case is the object profile or
change in permittivity. As a result, the interpretation of an image
is completely determined by the object profile. Using the nota-
tions used in the development, the image can now be defined as
a wavefront reconstruction indicating a change in permittivity.

In this paper, GPR migration was viewed as a matched-filter
process and implemented using FDTD. Implementing re-
verse-time migration algorithms with FDTD is effective.
Because the recorded traces are treated as sources in the migra-
tion process, all traces or any subset may be backpropagated
simultaneously. In addition, anya priori information may
easily be incorporated in the FDTD lattice. For zero-offset
or monostatic data, an image is obtained by superimposing
waves obtained from backpropagating the measured data in the
object space. For the bistatic case, the image is obtained by
convolving the incident field with the backpropagated field. The
examples presented in Fig. 8 illustrate the image quality im-
provement as a function of the number of common-transmitter
surveys. As expected, image quality improves as the number of
common-transmitter surveys increases. Although no examples
were presented here, the bistatic algorithm is general enough to
apply to nearly any transmitter receiver configuration.
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