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A Group-Theoretic Analysis of Symmetric Target
Scattering With Application to Landmine Detection

James M. StilesSenior Member, IEEEAbhjit V. Apte, and Beng Beh

Abstract—tandmines are generally constructed such thatthey A radar collects information about an object by observing a
posses a high level of geometric symmetry and are then buried in portion of its scattered response as a function of time/frequency,
amanner that preserves this symmetry. The scattered response of g, a1i5| position (e.g., bistatic scattering angle), and polarization.

such a symmetric target will likewise exhibit the symmetry of the . byt e
target, as well as the electromagnetic reciprocity exhibited by all Therefore, a target can be correctly identified only if this scat-

scatterers. Group theory provides a mathematic tool for describing  tered response is knovarpriori and is unique with respect to all
geometric symmetry, and it can likewise be used to describe the other possible targets. Some investigators have used measured
symmetries inherent in the bistatic scattering from mines. Specif- radar data of both mines and clutter to identify unique scattering
ically, group theory can be used to determine specific forms of the responses [3], [4], whereas others have developed algorithms

dyadic Green'’s function of symmetric scatterers, such that mul- that rel ic elect tic f lati ¢ ¢
tiple scattering solutions can be determined from a knowledge of a at fely on numeric elieciromagnetc iormuiations 1o compute

single bistatic geometry. Likewise, group theory can be used both to the scattered responses of mines [5], [6]. These processors have
determine and analyze degenerate cases, wherein specific bistatiqproven to be very powerful and have significantly reduced the
responses can be identified as zero regardless of target size, shapefa|se-alarm rate associated with many GPR sensors.

or material. These results suggest a method for classifying subsur- A seemingly unavoidable problem faced by any target identi-
face targets as either symmetric or asymmetric. From the group- . . : - . . -

theoretic analysis, scattering features can be constructed that are fication technique, however, is the va_st dlver5|ty of mine target
indicative of target symmetry, but invariant with respect to other ~ responses. Worldwide, hundreds of different mine models have
target parameters such as size, shape, or material. These featuresbeen, or are currently being, produced. Additionally, the scat-
provide a physically based, target-independent value to aid in mine  tering responses from these mines are dependent on other fac-
detection and/or clutter rejection. To test the efficacy of this idea, tors such as soil dielectric and mine depth. Investigators have

an extensive collection of bistatic ground-penetrating radar (GPR) d | d statistical t tfor th tri
measurements was taken for both a symmetric and an asymmetric evelopea statistical processors 1o accountfor these parametric

target. The two targets were easily discernable using symmetry fea- Uncertainties [7], but the general problem of implementing a
tures only, a result that suggests symmetry features can be effective specific processor for each mine remains.

in identifying subsurface targets. An argument can be made, however, that taiggttification
Index Terms—Bistatic radar, ground-penetrating radar (GPR), IS not explicitly required for demining. Rather, targgassifi-
group theory, landmines, symmetry. cationis an acceptable objective. In other words, a sensor that

either could accurately declare a target as a mine or as a be-
nign clutter object would be sufficient; specifically identifying
the type or model of the mine is not required. A classification
G ROUND-PENETRATING radar (GPR) has long beeensor could, therefore, implement just a single processor, one
considered as a sensor for detecting the presencetliedt generically recognizes the scattering from any mine. Of
buried landmines [1], [2]. For obvious reasons, the requiregurse, a prerequisite for this approach is the existence of a de-
probability of detection for any demining sensor is typitectable scattering response common to all mines, yet distinct
cally extremely high, which unfortunately can lead to higlrom every clutter object. If such a response exists, a processor
false-alarm rates when subsurface clutter (e.g., rocks, shetlependent of mine type could be created. Given the wide vari-
casings) are present. As a result, a GPR system using simg@iee of possible mine sizes, shapes, and materials, as well as
energy detection is generally insufficient for mine detectiowariations in buried depth and the surrounding soil characteris-
target discrimination is also required. A GPR sensor musics, such a common response might seem unlikely.
therefore, collect sufficient information such that a subsurfaceHowever, there is one physical feature that is not only
object can be detected and then correctly classified as eithefoammon to most buried mines, but is generally not exhibited
mine or a clutter object. by clutter objects. Since mines are man-made, they typically
exhibit structural symmetries that are not commonly found
Manuscript received August 6, 2001, revised January 14, 2002. This wdﬂ natural objects, such as rocks. Furthermore, unlike other
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This paper attempts to provide some answers to these ques-
tions. In Section Il, the mathematical subject of group theory
is briefly discussed, as well as its application to the analysis
of geometric symmetry. In Section lll, this group-theoretic ap-
proach is extended to describe bistatic observations of a sym-
metric target. It is shown that target symmetry results in spa-
tial and polarization symmetry in the scattering response. A
new group, referred to as thmstatic group is defined to de-
scribe the symmetries of the electromagnetic scattering from
symmetric targets. In Section IV, it is shown that the bistatic
group can also be used to determine the general form of the
dyadic Green'’s function of a symmetric object, regardless Bfy. 1. Arbitrary object after operation by each element of grBuplote the
its other physical parameters. Finally, in Section V, the resuf@$ulting objects have shapes that are not congruent.
of Section IV are used to construct symmetry measures from
bistatic measurements, measures that provide a numeric indica-
tion of the observed target symmetry. An experiment is then d~ ;
scribed wherein these symmetry measures were calculated fri | !
alarge collection of bistatic measurements. Itis then shown th
these values provide an effective scattering feature for clas:
fying a subsurface object as either symmetric or asymmetric.

(@

Il. TARGET SYMMETRY ; ®)

Three'.dimenSional (S'D) obj_ects Oﬁen' exhibit geomeFriﬁg_ 2. Three objects [(a), (b), and (c)] that are congruent under all operations
symmetries with regard to rotation, reflection, and translatioof.groupP, X,, andX.., respectively.

These types of symmetries are visually intuitive and are evident
in art and architecture throughout antiquity. During the 20tthotted line, with the result depicted in Fig. 1(b). If a second re-
century, group theory [8], [9] was used to form a mathematicfiéction is performed, the object returns to its original state [see
description of geometric symmetry, thus providing an analytlig. 1(a)]. Thus, a double reflection is equivalent to an identity
tool for solving physical problems where symmetry appearsperation: the object is not modified by the operation. Note this
most notably in the fields of physical chemistry and quantuset of two operations is closed, i.e., any sequence of these opera-
mechanics [10]. In recent years, group theory has also ba#ms is equivalent to one or the other of these operations. Addi-
more frequently applied to problems in electrical engineerintionally, each operation is also its own inverse. Thus, these two
including signal processing, and the analysis of symmetgeometric operations—identity and reflection—define a point
networks, components, antennas, and scatterers [11]-[{@iup of order two, denoted &.
pp. 252-263]. The object in Fig. 1(a) is not congruent under all operations
A groupg of transformations is defined as a set™fopera- of R, as the reflection operation modifies the original object
tionsg,. This set must be closed: any two sequential operatiosisape. The object, therefore, does not posses the reflection sym-
must be equivalent to another element in the groupdigg, = metry defined byR, nor, in fact, does it posses the symmetry
gx)- Additionally, a group must include an identity operatign of any nontrivial point group. Conversely, the object displayed
as well as an inverse operatigfi* (such thaty, g, ! = ¢) for in Fig. 2(a) is congruent under every operation of gra@mre-
each element of the group. The operations of a group are adtecting the object across the vertical plane results in precisely
ciative, but may not be communitive. Operations representediye original shape. Since this object is congruent under every
group elemeny,, can include geometric transformations, sucbperation of groupR, it is described as possessing reflection
as rotations, reflections, and combinations thereof. Groups cdor bilateral) symmetryR. Furthermore, the object of Fig. 2(b)
sisting of these operations are referred to as point groups axthibits rotational symmetry, as it is congruent under rotations
are used to specify the geometric symmetry of an object. Maitbf-= /2. This object possess€g symmetry (using the Schoen-
ematically, the symmetry exhibited by an object is defined as #ies notation [18]), wher& 4 denotes the cyclic point group of
invariance to all operations of a specific point group. In otherder 4. Finally, Fig. 2(c) displays an object that exhibits both
words, if an object is congruent under every geometric transfeeflection and rotational symmetry; it posses€gs symmetry,
mation (i.e., element) of a given point group, then the objectvghere the subscript denotes that the reflection plane includes
said to posses the symmetry of that group. The order of a grathe axis of rotational symmetry (it could alternatively be orthog-
is defined as the number of closed operatidhthat define the onal to it). Accordingly, this third object is congruent under all
group, so that the symmetry of an object can be characterizeddight operations of grou@,,.
this order—the higher the order, the more symmetric the object.Square landmines typically possd&g, symmetry, whereas
For example, consider the object displayed in Fig. 1(a). Wectangular mines ha,, symmetry. Additionally, many land-
can reflect this object across the vertical plane defined by thenes exhibit shapes that are (or nearly are) bodies of revo-
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(@) (b)

Fig.3. (a)Bistatic measurementthatis invariant with respect to gPaygerating on the target. This is equivalent to (b), where the operatidharmefalternatively
applied to the bistatic measurement. The two resulting bistatic measurements (primed and unprimed) must, therefore, be identical.

lution (BOR). These objects are said to possesg (or O2) in Fig. 3(b). A pair of bistatic elements is reflected across the
symmetry, as BORs are congruent under an infinite numberpdfne of target symmetry; since this operation is identical to re-
angular rotations. Additional point groups include the dihedrélecting the object with respect to the bistatic elements, the two
group, the rotation-reflection group, and the groups associatsidtatic measurements will be equal (to within measurement
with regular polyhedra [19]. As the symmetries associated wignror).
these groups are not generally exhibited by landmines, they aréikewise, this concept can be applied to subsurface targets
not explicitly addressed in this paper. with higher orders of symmetry. All the geometric operations
of a point group of ordeN can alternatively be applied to the
geometry of a single bistatic observation. The result will be the
IIl. BISTATIC GROUP geometries forV — 1 new bistatic observations (the identity op-
eration, by definition, results in the original bistatic geometry).
Consider a bistatic GPR observation, as demonstrated Ibthe observed target also possesses the symmetry of this group,
Fig. 3(a). The two arrows define the position and orientation ¢ien each of these bistatic observations will result in equal mea-
a bistatic antenna pair (we assume Hertzian dipoles), locategtements. Conversely, the set'éf- 1 bistatic measurements
just above the soil, while the observed target is buried beneaiti almost certainly be dissimilar if the subsurface target is
the surface. This target is a half-sphere, oriented such tlatymmetric. This result illustrates the strength of group theory
its flat side is parallel to the plang = 0. Since this object and why it is applied in a wide variety applications. Once one
exhibits bilateral symmetry across the plane= 0, applying solution is found, the solution for many other problems can be
any geometric operation of grodp to the target will result in determined by applying the operations of a relevant group. Per-
an identical object. As such, the bistatic measurement of ttiaps more important, group theory also allows for the system-
target after each operation will be identical: just like the targetic identification of all such solutions.
shape, the measurement is invariant with regards to operations addition to the geometric operations of rotation and re-
of groupR. In contrast, consider the case where the geometfiection, another operation is relevant when considering bistatic
operations of th€4 group are applied. Since the target in Fig. Bneasurements. Say, for example, that the source and sensor are
does not posses rotation symmetry, rotating the targét 9@ansposegdso the transmitter is attached to the receive antenna
will almost certainly result in a dissimilar bistatic observatiorand vice versa. From a group-theoretic perspective, we can view
In this case, the bistatic measurement is not invariant owdis operation as a permutation of the source and sensor, and
operations of th&, group, since the target does not possesisus can describe the two bistatic geometries (the original and its
C4 symmetry. transpose) as being related by the operations of the second-order
This invariance in bistatic scattering suggests a method foermutation grougSz. Assuming the antennas, the scatterer,
discriminating between objects with geometric symmetriesd its surrounding media consist of simple (i.e., linear and
(e.g., mines) and those without (e.g., clutter). Of course, buriesbtropic) material, electromagnetic reciprocity requires that the
objects cannot be rotated or reflected to evaluate the invariame® bistatic observations be equal. Thus, we can say a bistatic
of a bistatic observation. However, rotating or reflecting ameasurement is invariant under the operations of gr8up
object with respect to a bistatic antenna pair is equivalent towever, unlike the operations of other point groups, this mea-
rotating or reflecting the bistatic antenna pair with respect gurement invariance is independent of the observed object: the
the object, the difference simply being the local coordinatavariance is observed for both symmetric and asymmetric scat-
system considered fixed. For example, consider the case shaeners.
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TABLE |
ELEMENT MULTIPLICATION TABLE OF THE BISTATIC GROUP X 44,

S0 | 21| 8 | 8 | 84 25| Z6| &7 2| % | Lo} i1 |82 B3| 8ua] 85
o | 20 | & g | 8 | 8 | 8 | 8 | & | 8 | & [Go | u | L1z | 83| L1a | E15
g1 & g4 | 8 | B | & | 8 | & | S | o | &u | & | 28 | 213 | &4 15| B2
2> 2 | 2o | g2 | g8 g7 | g5 | & g 184 &1 83 & [ &1} & 243
g3 23 2 | B2 | o g [ 13| &1 21 | 14} 84 | 815 &7 22 gs 28 | g0
g4 ) 24| 27| 8 | & | S | o | 811 & | 22 | 8 | & | 8 | 4 | 815 | 12 | 813
gs | & g | 8 |83 | 8o | 8 |82 & | g [&5] &4 | 24} 6 | 83 | B | B
s 26 o | 13| & | 81 | 14| &4 2 | B15 | & | 82| 8o gs gs | 8Blo | £
g7 18 | B 8o |81 8 | & | & | 84| 8 | B | 2 | B | 85| 812} 813 | 814
g1 28 | & | 84 | 214 | B2 | 81 {83 | 20| B | 82| 27 | 85| B | 8 | 8 | Lu
Co | & | 811 | 14| &4 2 | g5 | & g6 | 812 &0 | 13| &1 g8 | 80| & 25
Z1o0 ) 210 | 88 g7 | 815 | 85 g4 | B1a| &2 g1 | 213 ) & | 81z 11 ] Lo 26 23
g | gn g | 815 | g7 g6 | 12 [ o 2o | 13| 81 214 | 84 | 10 &2 25 28
12 ] &2 | 15| & g2 | 14| 811 ] 810 | 13| &9 £8 g6 gs g0 27 24 21
i3] 2131 iz | & 25 | 15 ) 83 2 | 24| 811 ] 80| & 23 £1 2o g7 24
4] 14 | 813 | & 2 | 12 | Ze g | 815 | 83 2 | 11| g0 | &4 21 2o 27
Ci5) 215 | 14| 11 | 10 | 813 | & 28 | 212 | Z6 g5 23 22 27 24 £1 £0

A. Generation of Bistatic Grou@nar group ofCn, R, andS2. Adjoining two groups will result in

These three basic operations (reflection, rotation, and trafsEW group whose order is the product ,Of the order of each
pose) can be combined to form another discrete point group, &{@_mal group. For example, the grodfas, is formed by ad-
that describes the symmetry of the electromagnetic field schtning groupCM (_or_derM) ar_1d’R (order 2) and thus has order
tered from a symmetric object. In the nomenclature of group - Further adjoiningyra with S produces a new group of
theory, these three operations are grgeperators—all the el-  0rder4M, which, using the notation of Baum [12], we denote
ements of the resulting group can be completely expresseoaﬁgMar' The grongMar |s_f0rmed_u5|n.g the gengrato@w,

a series of these basic operations [20]. For example, a rotatfon 21d7 in combination. Since a bistatic observation of an ob-
of ¢a = 2 /M is a generator for the cyclic groufns. Sym- ject withCpr, §ymmetry (or higher) WI|! remain invariant under
bolically denoting this operation &%, we can represent a se-2ll 4M operations of groufnar, we will refer toCpar as the
quence ofn rotations ag”}}, resulting in a total rotation angle bistatic group. , o )

of ¢ = m2r /M. The elements of tha/-order cyclic group can For example, consider the bistatic groQp,.. This group,

thus be completely expressed in terms of terms of the generé’f'(};\JCh is formed with gengrato@ (f’]‘ /2 rotat_lon)_, consists
operationC,y of 16 elements, representing all uniqgue combinations of reflec-

tions, rotations, and permutations. Table | provides a description
of each element in the group in terms of generatqrs’,y, and
Cyv = {e,Cn.C3,Chys. ... Cy T Y (1) . Likewise, Table Il shows the multiplication table for these
group elements. Note that the group is not communitive, so that
The symbole represents the identity operation, a required eléhe table must be interpreted as the product of the row element

ment for.all groups. This identity operation can likewise be eXollowed by the column element (.gsg5 = g14 # 9596)-
pressed in terms of the generator operatian ase = C}7, an
operation corresponding to a full rotation &f rad. Similarly,
we can denote the reflection operationogs and since: = o2
(i.e., a sequence of two reflections returns the object to its orig-A matrix representatiorof any group ordefV can be formed
inal state), this operation generates the elements of the reflectivith a set of vV matricesgn. Each matrix of this representa-
groupR = {e, o, }. Additionally, denoting the transpose opertion must correspond to an elemept of the group, and the
ation asw, the elements of a second-order permutation grompatrices must follow the group multiplication table, such that if
(S2) are created, whei$, = {e, 7} ande = 72, 9i9; = g, thengigj = &. From the definition of a group,
The set of generatofe’y, 7., 7} can also be used in com-it is evident that a representation must consist of square, non-
bination to form a group, which is described as #toined singular matrices. In a procedure analogous to identifying the

B. Bistatic Group Representation
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TABLE I identical to that ofR, provided that matrixe corresponds to
ELEMENTS OF BISTATIC GROUP X 4,,, REPRESENTED INTERMS . o Aoy e
OF GENERATOR OPERATIONSG . C'a, AND 7 operatione, _ando-a 10 7,. _The matricese gnq o ., therefore,
form a matrix representation grod®. In a similar manner, the
matrix = (wherew 7= = e) can form a representation &%,

g=8 = ¢ o LM, _

> and powers oz, (WhereC,, = e) form a representation of
8 =8 = C Cm.
g,=¢'= o A matrix representation of the bistatic groGgsa. is like-

= wise formed from all possible products of the matrix generators
8=8 = 7 Cu, 0, and . A total of 4M distinct matrices are formed

g, =g C? from these products, each one representing one of Aieel-
ements oCnar. Each matrixg,, is expressed in terms of the
generator matrices in precisely the same form that each element
g =g'= Cnr gn IS expressed in terms of the group generators. For example,
for groupC4a,r we note from Table | thag,s = C4o-a7r there-

fore g1304a 7. The complete set of 16 matrlcﬁl forms

2= g5 Cio a matrix representation growh,,.. Accordingly, the multipli-
cation table presented in Table | likewise expresses the matrix

i

bA
I
&
I
@
Q

o
~
I
gql
I
Q

-1 2
8=8 = C products ofgn (i.e,if gig; = g thEnEiEj = Ek).
gw=8.= Cio Matrix representations are often used in group theory to study
» " the properties of a group. By examining the properties of the
81=8 = G matrices (e.g., the trace) that form representations of a group,
g,=81= or the structure and characteristics of a group and/or its elements
S can be quantified. Matrix representations are likewise helpful
8;=8:= nC,0o if they have a direct physical interpretation, which is specifi-
g =gl= 7Co cally why thg generators Qescribed i_n (2) were chosen._ The re-
~ sulting matrix representation &y, iS by no means unique;
8i5=8s= oC,xm much simpler representations can be formed with matrices of

smaller dimension. However, this particular representation pro-
vides a physical interpretation of the group operations that will
elements of groug 4., Using group generators, a matrix reprepe useful in the mathematical analysis of Section IV.

sentation of the bistatic group can be formed using matrix gen-

erators. We begin by defining threex® matriceSEM, 7 4, and IV. BISTATIC SCATTERING DYADIC

= as follows: Group theory provides an elegant mathematical structure to

describe and examine the effects of target and sensor symmetry
on bistatic scattering observations. However, its usefulness in
engineering applications is perhaps dependent on its ability to
reveal solutions that are not otherwise obvious. In this section,
the matrix representation of the bistatic gralya,, will be used
to define the general response of a symmetric scatterer com-
pletely, including all dependent responses in terms of both spa-
L tial location and polarization. The results will be similar in form
to that provided by reciprocity, but significantly more extensive.
The scattered electric fiel@(7) from a linear, isotropic,
time-invariant target, illuminated by an electric current density
J(r,1), is expressed as

<«
Cwnm

O OO o o

(=l ool =)
SO OO O
|
—
O oo oo

/ G77,t—t)( tyav'dt  (3)
v

or, if the source is represented in the frequency domain, as

)

37
Il

E(r;w) = a(F, 7 0) (7 w)dV 4
v

O = OO OO
O oo oo
oo oo o
SO ORrRrR OO O LR OO0 OO

- wherea(f, 7;t — t') represents the dyadic Green’s function
Multiplying o, with itself results in a 6< 6 identity matrix, of the scatterer. This dyadic function completely describes the

denoted as . Thus, it is apparent the matrices, and e form scattering response of the buried target as a function of time/fre-

a second-order group. The multiplication table for this group @giency, spatial location, and polarization. In addition to the size,
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y [from sourceJ, ()] with J,(7) equal to the reaction dE,(7)
with J(7)

//Va/ja(f) .f}b(f)dv://%/jb(f).f;a(f)dv_ ©)

Defining the reaction operation a(s? (7) - E(F)>, (4) and (6)
can be combined to express reciprocity as

//J (3ar) - Gl Tu(r) ) av
_ / A f / (3, - G(r, 7)) ) av. (@)

Jo(7)

J, (7
b( ) Since (7) is true for all current densities and scatterers, it follows
9 that the dyadic Green'’s function must satisfy the expression [21]
— T
G(r,7)=G (¥,7). (8)

To simplify the analysis, we assume that the current elements are

Fig. 4. Description of the bistatic measurement geometry for subsurfagfertzian dipoles, located at pOSitiOﬂ,’Sande. The reciprocity
sensing. The surface lies on the plane= 0. Therefore, the target is located expression (7) is therefore

below this plane{ < 0), while the antenna elemends, () andJ (i) are
located abovez( > 0). - —

Jo(7a) - Glras ) Ts () = To(m) - G(roy 7a)Fa(7a)  (9)

shape, and material of the scatterer, the dyadic Green’s functherea(;M Fo) = aT(fm ).
of a buried target is also dependent on the target’s depth and the€onsider now the case where the scatterer poss€sses
electromagnetic properties of the surrounding medium. symmetry. As discussed previously, applying any operation of
The dyadic Green'’s functioz(7, 7) (the time/frequency the bistatic groufma, to the dipole geometry will leave the
variable will be suppressed for the remainder of the paper) calectromagnetic response unchanged. The reaction values of
be represented as &3 matrix of independent scalar functionq9) are, therefore, invariant with respect to all operations of
the bistatic group, when applied to current densiﬁg&f) and

J,(7), ie.,
- Saca:(Fv f/) Swy(Fv f/) Swz(Fv f/) _ = DN
G 7Y = | spelrot) sp(rt) o) [ ) ele) =Ta(7) - Gl ) Ta(m)
5ealT7) 2y (77) 3ea(,7) — 0 {3,600} - Elror)a, (T} (20)

Since the electromagnetic detection of shallow subsurface eind
jects is inherently a near-field problem, no further simplification o - P
of this matrix can be applied. Specifically, this matrix cannot (7, 7a) =J0(70) - G(70: Ta)Ja(7a)
be reduced to a & 2 matrix with a transformation of the co- —gn {jb(ﬁ))} - G 7y, 7o) n {ja(fa)} (11)

ordinate system (e.gs, and h): G(7,7) is assumed to be full

rank. For a given scatterer, the nine scalar functiong@f,7/) Whereg, {} indicates that the geometric operation of group ele-
can be determined either by an electromagnetic calculation®8gNtg~ is applied. If each reaction, andc, is invariant with

by measurement. In general, neither technique is easily accdfEPect to the operations of the bistatic group, then the sum of the
plished. However, group-theoretic techniques can be partié@-‘ues is likewise invariant. This resulting invariant value can be
larly helpful in reducing this difficulty, provided the target dis-cOmMpactly expressed by defining the six-dimensional (6-D) po-
plays geometric symmetry. For this case, the scalar functionsS§fon vectork

a(f, 7) are related, such that one solution can be used to deter- R= [ 7] T (12)
mine several others. Group theory provides a tool for identifying @t
all such relations and solutions. as well as the 6-D vectqf R
- -, o, T
A. Generalized Reciprocity for Symmetric Targets J(R) = [JZ(Fa)vJE(Fb)} . (13)

Consider Fig. 4, showing a scatterer in the presence of tw

electric current elements, describedJagr) andJ,(7). With g, rement geometry, specifying both dipole location and orien-

this geometry, we can consider two bistatic observations: ghion. Using these definitions, we define the scalar val(&)
therJ,(7) is the source and,(7) the sensor, or the reciprocal ;¢

case wherd,, (7) is the source and, () the sensor. From reci- . - .
procity, we know that the reaction of the scattered fiBlg{7)  «(R) = J(R) - G(R)T (R) = ao(7q, ) + (s, 7s) (14)

CThe two vectorsk and.J R completely define a bistatic mea-
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whereG (R) is a 6x 6 matrix given as Therefore we have
— o =T — _ S5-1
E(R) B 0 G(7a, 7s) G(g,R =8, G(R)g, n=012..N-1 (22
B a(fb,fa) 0 Thus, from a given solution of the dyadic Green’s function

. aT(ﬁ”%) as) g(i, F:), as representeq bG(R), N — 1.oth.er solutione
a(ﬁ, 7o) 0 G(g,R) can be determined fr(()_)m (22). Likewise, extracting
) ) , _the dyadic Green’s function fro§ (g, R) using (15),N — 1
For a scatter possessi@gr, symmetry, the invariance of( R) new solutions. denoted aa(f 7Y, can be derived. The
with respect to the operations &f 1., is stated as ! in . . .
group-theoretic approach ensures that this set of solutions is
a(R) =F(R)- GR)F(R) closed, i.e., there are no other solutions that can be determined
o Y 2 o - from G(7, 7).
=n {j(R)} -G(R)gn {j(R)} (16) For example, applying (21) using elemens of groupCay,

we can determine the following relation:
whereg, {J(R)} defines the bistatic geometry after the loca;

tions and orientations of the dipole elements have been tra@(ﬂ 13,713)
formed by thenth element of grounar. We denote this new Gy (F 7)) Gug(F 7)) =gy (7 7)
geometry as7,(R), so that = | 9" 7)  Guu(F7)  —gu(F, ) (23)

e N D —Gyz Fa 7_J —Gxz 7_’, 7_J 92z Fa 77/
Foll) =0, {TB)). ) A7) 0T 90T |
where vectorg; ; and7 ; define the bistatic geometry resulting
Since (17) describes a linear operation on vecforand.7 from the application of operatiog 3 on+ ands”, an operation
that, likewise, result in vector®,, and.7,., the operatiory,, consisting of a rotation, reflection, and transpose. Equation
can alternatively be expressed as a matrix multiplication, i.e.(23) indicates, for example, that. (713, 713) = gy, (7,7) and
- - - . . - . 922(T13,T13) = —gy-(7, 7). These relationships are similar to
R, = g.{R} = g,RandJ, = g, {J} =8nJ. (18) those resulting from reciprocity [€.Qj, (7', 7) = gy (7, 7)].
Therefore, (22) can be thought of as a more general form of

In other words, the locations of the dipole elements are tra’?ﬁectromagnetlc reciprocity, applicable specifically to sym-
formed by the operatiol,, = g R, whereas the direction of yetric targets.

J(R) is modified by the operat|017 = g,.J. For the bistatic

groupCavar, the set of matrices,, that satisfy (18) is identical B- Degenerate Scattering Solutions

to the set that forms the matrix representatio@f,. presented  For the backscattering geometry, whete= 7, the reci-

in Section Il [generated from the matrices defined in (2)]. Fasrocity relationship of (8) specifies that symmetric off-diagonal
example, again consider the bistatic grdl,. A rotation of - glements ofG(7, ) must be equal, regardless of the scattering
the bistatic geometry by /2 rad will result in new dipole l0- t5yget. For symmetric targets, similar relationships can be found
cationsR; = g;{R} = glR C4R as well as new dipole for other specific scattering geometries. Group-theoretic tech-
0r|entat|ona71 = gl{j} = glj c4j The remainder of niques can be used, first to determine these scattering geome-
the matrices ,, in this representation can, likewise, be shown tisies, and then determine the resulting forn(p(h 7). Thisis
provide the geometric operation associated with group elemé@scomplished by examining tliegenerateases of the group

gn. Recall that this matrix representation is not unique: it wagpresentation. A degenerate case occurs when the operations of

constructed specifically so that the elemegts would satisfy WO or more group elements provide an identical result—these
(18). elements are thus equivalent for a degenerate case. For example,

From (18), it is apparent that (17) can be written as a bistatic geometry® would be considered degenerate if there
were two (or more) different elemengs, such that

-

Tn(R,) = gy, {5(R)} _E.F(E. R). (19

Combining (16) and (19), we can write the functie(i) as In other words, a geometry is considered degenerate if it can be
- related to a second geometry by two (or more) dissimilar group
operations. Note that since the inverse of a group element must

g;R = 8 ;Rwherei # j. (24)

:Enj(g R,)- E(Rn)gn also be an element of the group, this second geometry is also
L =1 degenerate.
xJ(&, R) Using (24) we can define degenerate geometries as those vec-
=F(R)- gT g(g R)g nJ(R)- (20) torst that satisfy the equation
PR PIN
Since this relationship is valid for all scatterers and dipoles, it R=g, g;Rwherei # j. (25)
follows that 1,
It is apparent from (25) that eigenvectors®f & ; with unit-

—

E(EnR)gn. (21) valued (i.e,A» = 1) eigenvalues define degenerate bistatic ge-

_ =T
n

G(R) =&
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ometries. It also appears that for a group of orffethere are thus providing an exact scattering solution for any object with

N(N-1) matricesg;lgj (with # ;). However, the matrices C4a Symmetry. These zero-valued solutions are analogous to the

2 represent a group. Therefore, the maBhe ; is a group el- far—l‘_lgld backscattenng.case where it is well known that a BOR
" - ' 1, exhibits no cross-polarized response [22]. Equation (27), how-

ement, as i€, . As aresult, every matrig, 8&; isequalto ever, provides all zero-valued solutions for more general scat-

one of theN matrix eIementfs?n, and thus (25) can be effec-tering cases (i.e., near-field, bistatic), as well as for more gen-

tively written as eral target symmetries.

Ry, = &,Ryy, (26) V. SUBSURFACETARGET IDENTIFICATION
whereR,,, denotes a degenerate geometry derived from matrix The results of Section IV demonstrate that scattering from
En- symmetric targets exhibits a multitude of dependencies in terms

It is apparent from (26) that each eigenvector of maEix of spatial location as well as polarization. From the standpoint of

with a unit-valued eigenvalue describes a degenerate bistiPsurface target classification, the appearance of these depen-
geometryr,,, as does any linear combination of these eigeﬁi_enmes in bistatic measurements would suggest the presence of

vectors. The resulting bistatic geometry is degenerate with fSymmetric target (i.e., a landmine), whereas the absence of
spect to any two dissimilar group operatitﬁ§ and & where these relationships would indicate a honsymmetric target (e.g.,
Hp_ J subsurface clutter). A strength of this idea is that these spa-

8, 8, = 8,.Perhapsthe easiestway tointerpreta degenergig scattering dependencies are exhibited by all symmetric tar-
geometry is to evaluate (25) for the case whgeds the iden- gets that posses the symmetry of a given group, regardless of
tity operation (i.e.g; = e). In this case, (25) reduces to (26) iftarget size, shape, or material. Additionally, for symmetric ob-
Ej -z, meaning that the eigenvaluesE;L form geometries jects buried in a dielectric half-space (e.g., soil), these scattering
that are degenerate with respect to operatE)@& < andEn. dependencies are valid regardless of depth or properties of the

. s%rrounding soil. As a result, scattering features can be con-
In other words, a geometry produced from the eigenvalues o
e o ) structed from sets of bistatic measurements such that the sym-
matrix g,, will not be modified by the operatiog,: for the de-

. val he identi ) metry of an observed target could be indicated. Moreover, these

gegera:)g geomzeztryn 'j eZquva e?t tot he ' ent:ty operatien  foatures can be constructed such that they are invariant to target
ombining (22) and (26), we form the result size, shape, material, etc. This is in contrast to the temporal scat-
prg oTo ol tering response of targets, wherein no such invariant feature can
G(Ran) = 8, G(Ban)8, - (27) " pe constructed.

From this expression, the general form of the dyadic Green’sGiven the scattered field defined in (3), the complex measure-
functionG(#, 7,) can be determined for all degenerate geom&€ntv(t) of a bistatic radar can be described as

tries. For example, matrigg of the groupC4a, has just one . L LN B /

eigenvector withA = 1, specifically7ys = [0 0 1 0 0 1]7. v(t) = v e w(rst, ) - E(7, ¢)dV dt (29)
This indicates that any geometry where the source and senFfkre w(r; ¢, #') describes the spatial and temporal response

are collocated at a point on theaxis is degenerate with respeciyf ihe receiver and its antenna, including any temporal signal
to operationg: andgg. Therefore, from (27) we can determ'”eprocessing. In general, the respon€g) is dependent entirely

R on the radar and target parameters. However, for many of the
G(7 d6» 7d6) d . . . . K . .
- -, o, o, egenerate bistatic geometries described in Section 1V, the ori-
9“’“’(7;‘16’7;76) gw(idﬁvﬁgze) 9”(7;‘16’7;;16) entation of a receive vecto¥ and a source vectaf can be
= | 9ya(7as, 7;;16) 9uy (a6, 7;;16) 9y=(Tas, 7;76) chosen such that the response from a symmetric target will be
[ 9z0(7a6:Tag)  92y(Ta: Tag)  922(Tas: Tag) zero (i.e,u(t) = 0), regardless of other target or sensor param-
Gyy(Ta6, Tas)  —Gay(das,Tas)  —Gzy(Tds, Tas) eters. Thus, a nonzero response from such a degenerate bistatic
= | —9ye(Tas; Tug)  Gua(Tae, Tag)  Gza(Tas, Tg) (28) measurement, or set of measurements, would indicate a non-
| —9u=(Td6: Tug)  —02=(Tds: Tug)  Gez(Tdss Tyg) symmetric target. The converse, of course, is not true. A zero-

tvalued response from a set of degenerate measuremegis-
dicate a symmetric target, but this null response would likewise
be observed if no target were present. Therefore, in addition
_ IR to zero-valued degenerate measurements, other scattering mea-
off-diagonal elements afi(7ag, 74s) are zero. surements are required to both detect and classify an object.
Essentially, (27) provides the general polarimetric responseyjeasurements using nondegenerate bistatic geometries can
of symmetric targets for the bistatic measurement geometrig.ise be used to evaluate target symmetry. Unlike degen-
described by (26). Since the matrix representation of g€alP  erate geometries, where a single bistatic observation can indi-
consists of 16 element,,, (26) provides 16 sets of eigenveccate symmetry, pairs of nondegenerate measurements must be
tors from which to construct degenerate geometries; and fr@aluated. As stated before, two bistatic measurements related
(27), a general form of the scattering dyadi¢7a.,7,,) can by an operatiory,, of a specific bistatic group will be iden-
be determined for each of these 16 degenerate geometries.tfead if the target has the corresponding group symmetry—a re-
many of the 16 solutions, the off-diagonal elements are zemylt mathematically expressed by (22). Therefore, a symmetric

where position vectorg,s and7; both indicate the same poin

on thez axis (i.e., a degenerate geometry ag). Evaluating
(28), itis evident thal,.(Fus, 745) = gyy(Tas, 7g) and that all
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(@) (b)

Fig. 5. Diagram of targets used in the symmetry detection experiement. Target (a) exhibits bilateral (i.e., reflection) symmetry with respkuide the0,
while target (b) does not.

target would be indicated if the two related measurements pra{n), formed from different bistatic geometries, would be im-
duced identical responses, whereas dissimilar responses wqlénented in order to make a target classification. For a sym-
indicate a nonsymmetric object. Although nondegenerate gretric target, all of the values.(n) would be small, whereas
ometries require two bistatic measurements to evaluate targetasymmetric target would produce some large values ef)
symmetry (as opposed to a single measurement for degeneaditeost certainly. However, considerations such as costand com-
cases), this method has the advantage that each measureplerity limit the practical number of measurements and thus co-
will almost certainly be nonzero when a target is present. Thiefficients m(n) that can be determined for a given target. A
a pair of bistatic measurements, relateddhy provides infor- question then is, can symmetry be effectively used to classify
mation useful for both target detection and classification.  subsurface targets? Given measurement error and the fact that
Of course, when observing a symmetric target, a pair of resymmetric targets may appear symmetric, can we accurately
lated bistatic observations will never legactlyidentical, nor discriminate between symmetric mines and asymmetric clutter,
will a degenerate measurement be exactly zero. Measurengisen a limited set of bistatic measurements?
error including noise, antenna asymmetry, measurement bias[o provide some insight into these questions, an extensive
and positioning error can corrupt the bistatic measuremersst of bistatic measurements, covering 2-6 GHz, was taken in
Additionally, the illuminated target may be imperfectly symthe GPR test facility at the Radar Systems and Remote Sensing
metric: surface roughness, soil inhomogeneity, orimperfect otiaboratory (RSL) at the University of Kansas. More than 2000
entation of the object will perturb the measurement symmettyistatic measurements were made by positioning transmitter and
Therefore, to provide a numeric value of the similarity betweeneceiver antennas at all possible locations on a 5.0-cm Carte-
two bistatic measurements, the following measure has been @ian lattice, extending over a surface area of 30.6<@38.0 cm.
posed [23, pp. 992-1002]: These measurements were taken on a target that possessed re-
flection symmetry across the= 0 plane (i.e., groufR), as well
as on another that did not posses this symmetry. Each bistatic
measurement was paired with its reflection acrossathe 0
plane, i.e., the bistatic pairs were related by the operatios
where the bistatic geometry that producg§) is related to that ¢, . Each bistatic measurement was processed by subtracting the
of v, (t) by group operation,,. Note that this function producesaverage specular surface response and then time gating such
a real, nonnegative coefficient that is zero valued when the tireat the surface response was removed. A coefficient denoted
measurements are identical. The denominator of (30) is effeg{o,,) was then calculated for each bistatic pair, with the ex-
tively a normalization factor, so that the expected value:0f)  ception of cases where the bistatic pairs were, likewise, related
approaches 1.0 as measurement the signal-to-noise ratio (SN{R)he transpose operatian For these degenerate geometries,
is reduced to zero. Accordingly, bistatic measurements of suffeciprocity would ensure that the symmetry coefficiens,,)
cient SNR will ideally produce a coefficient(n) < 1 forany would equal zero, regardless of the symmetry of the target.
symmetric target, regardless of size, shape, depth, or material. The same object was employed as both the symmetric and
Again, the converse is not necessarily true: a single pair asymmetric target. A metal half-disk, 2.5-cm thick and with a
bistatic observations of an asymmetric target may also produeglius of 8.0 cm, was used as the subsurface scatterer. The ob-
nearly identical measurements and, therefore, a small valugaaft was oriented so that its plane of reflection symmetry was
m(n). Ideally then, a large and diverse collection of measuregther parallel with ther = 0 plane, producing a symmetric

_ Jlwo(®) — ()] dt
[ vo(t) +va(8)]* dt

m(n) (30)
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Fig. 6. Histogram ofn(o.) coefficient values calculated from a set of 2000 bistatic measurements. For a symmetric target (a), most values were much less than
one, whereas the asymmetric target (b) produced values over a wide range.

target with respect to the measurements, or perpendicular toldrge values ofn(o,) result from bistatic measurements with

z = 0 plane, producing an asymmetric target with respect fmor SNR. Conversely, the values s, ) resulting from asym-

the measurements (see Fig. 5). This method was chosen in ordetric target measurements are distributed across a wide range

to provide a controlled experiment; with the exception of theof values, from nearly zero to greater than 8.0. The results are as

orientation, the two targets are identical in every respect. Thgpected. The values for the symmetric target are small but not

differences in the two sets of bistatic data can, therefore, be etactly zero, a result of normal measurement error. Addition-

tributed completely to differences in their reflection symmetrglly, the target was not oriented nor aligned with any precision

across the plang = 0. other than that provided by the human eye, and no effort was
The bistatic measurements were used to calculate more thaede to flatten the sand surface. With regard to the asymmetric

700 different values af:(o,, ) for both the symmetric and asym-target, we note that a significant portion of the valugs,,) are

metric targets. The results are presented in Fig. 6 in histogramuch less than one.

form. It is apparent that for the symmetric target, nearly all Thus, these data verify that a symmetric target will neaHy

values are much less than one (ix(o,) < 1). The few waysappear symmetric(s,) < 1), whereas an asymmetric



1812 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 40, NO. 8, AUGUST 2002

Probability of Detection vs. Probability of False Alarm
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Fig. 7. Results of Monte Carlo symmetry detection test, presented as ROC. Random collections of three mirrored bistatic measurements wergeiézq for cu
while curve (b) shows the results when random collections of five bistatic measurements were used.

target will often appear asymmetric. Given this ambiguity, daration was made using a “unanimous voting rule” approach,
guestion remains as to the efficacy of target classification basgderein the target was declared symmetric onlgviérymea-

on the symmetry measure(o,). To provide an answer, atsurement indicated target symmetry (i.e., mgo,) > ~ in

least for this specific experiment, a target detection evaluatithre collection). If measurements of the symmetric target were
was performed using Monte Carlo analysis. To begin the anaked, and the target was correctly declared symmetric, a detec-
ysis, a small collection of bistatic pairs (relateddy) was ran- tion was recorded. Alternatively, a false alarm was recorded if
domly selected from the overall set of bistatic measurements foeasurements of the asymmetric target were used and if the
each target. The symmetry measuré,, ) from a given bistatic target was incorrectly identified as symmetric. A new collec-
pair was then compared to a thresheldlf m(s,) < ~, the tion of bistatic measurements was then randomly selected from
target was classified as symmetric; otherwise it was classifidte overall measurement set, and the above procedure was re-
as asymmetric. This comparison was repeated for each bistatated. After this procedure was performed on a large number
pair of the small measurement collection, and then a final demf-random collections, a probability of detection was determined
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as the percentage of declared symmetric target detections, whil&nother obvious problem is that for demining applications,

the probability of false alarm was similarly determined from th#he location of the target is not known. How can symmetric

number of false alarms. The entire Monte Carlo procedure wésstatic measurements be constructed, if the location of a sym-

likewise, repeated using different values of threshgldrom metric plane or axis of rotation is unknown? A symmetric sensor

~ = 0 to a large value where the probability of false alarm benust first be constructed and then scanned across a test area.

came equal to one. At each location, a hypothesis is tested: is there a target here,
The results of this Monte Carlo analysis are presented as aaed does it appear to be symmetric? When the sensor symmetry

ceiver operating curve (ROC) in Fig. 7. Curves for classificationligns with the target's, the answer should be affirmative. This

using collections of three bistatic pairs and seven bistatic paégproach is consistent with mine detection equipment; either

are presented, and they show that for this particular measunand-held or vehicle-mounted, the sensor moves across a given

ment set, nearly perfect classification can be achieved usingagiga, testing the mine hypothesis at every location.

few as three values ofi(c,,). This experiment does not prove

or otherwise provide a specific numerical determination of the VI. CONCLUSIONS

general efficacy of symmetry features for classifying subsur-

face targets, particularly with respect to discriminating between . . )
. . . hysical problems where symmetries exist. An example of such
landmines and clutter objects. The problem is, of course, v 2’problem is the electromagnetic scattering from landmines
scenario dependent, and results will be a function of the subsu P . o gnet 9 . '
. - which typically exhibit geometric symmetry. In this paper,

face environment, sensor parameters, and the specific targets in- . .
. e have demonstrated how group-theoretic techniques can

volved. Nevertheless, these experimental results do suggest that . ; . ;
o . : . e used to identify the general form of the dyadic Green’s
bistatic symmetry measures can likely provide useful informa-" ~° : . ;
. e . . ~function of a symmetric scatter, including all dependent
tion for target classification—information that does not require

training data nor any othex priori knowledge about mine tar- relationships of posmon_ and pc_)Ianzatlon. Likewise, it was
gets shown that group-theoretic techniques can be used to determine

. || zero-valued scattering responses of a symmetric target,
Hovv_ever, it should be _stated that several problems C(.)Lﬁ:gjsponses that are independent of other target parameters.
potentially reduce the efficacy of symmetry-based detectio

Foremost among these is the problem of clutter targets Iocaf%l(q1 ough the analysis focused on scattering from targets

. o . . - possessin€ 4, symmetry (typical of mines), the results could
In proximity to a mine. This occurrence could destroy scatterlrfgso be applied to targets with dihedral or rotation-reflection

symmetry and potentially result in poor detection performance.mmetry' as well as regular polyhedra.

X . . .S
Ultimately, this problem is dependent on sensor resolqunYThlS group-theoretic analysis showed that a symmetric target
the GPR must be able to separate the mine response from . . L
i . . ) roduces a scattering response with a surprising number of de-
surrounding clutter, including the surface. A GPR suitable for L - L
. . . - .pendencies in terms of position and polarization. These depen-
mine symmetry detection would require sufficient aperture SIZE,\cies provide a mechanism for evaluating the symmetry of
and bandwidth to provide subsurface resolution on the order ol? P 9 y y

the phvsical dimensions of a mine. As a result. the mine Wou?n unknown target, a mechanism that is otherwise independent
pny ' ! of target parameters. Laboratory tests indicate that these sym-

likely be the dominant scatterer within a resolution cell, and th etric scattering responses are sufficiently powerful to facilitate

scattering assomate_d with that ceI_I would appear symmet, rget classification, given the presence of normal measurement
For example, work is currently being conducted using GPerror

bistatic antenna arrays to provide spatial resolution, as well 8%t course. as with other approaches, conditions can occur that
symmetry evaluation for every subsurface resolution cell. . ’ . '
. will defeat symmetry detection, such as severe clutter, low SNR,
Of course, the subsurface clutter environment can become_gQ . . tric mines. or symmetric clutter objects. However, sym-

severe that symmetry detection will be defeated, regardlessng try feature detection is perhaps unique in that it provides a

sensor symmetry or processing. This, however,is arguably & ection method that does not require training data or specific

f_or a]l feature-based detecpon t_echnlques. The rel_evant qugééttering formulations. Further, it is independent of soil mois-
tion is how robust a technique is when encountering subs%

s , ture or target depth. Thus, a detector can potentially be con-
face clutter. It is important to note that the technique descrlbgéucted that is independent of specific mine type or soil con-

in this section does not require perfect scattering symmetry,(ﬂﬁ
this cannot be achieved. Rather, the symmetry coefficieis
provide a continuous measure of ttlegreeof apparent sym-
metry: small values indicate high symmetry, while large values
indicate low symmetry. As FigS. 6and7 suggest, a mine can bdll L. P. Peters, J. J. Da_nlels, and J. D. Young, “Ground-penetrating radar
disti ished i lutt . tif th . . as a subsurface environmental sensing toBidc. IEEE vol. 82, pp.

istinguished in a clutter environment if the mine appears sig- 18021822, Dec. 1994.
nificantly moresymmetric than the surrounding clutter objects [2] T. P. Montoya and G. S. Smith, “Landmine detection using a ground-
(e_g_’ I’OCkS). In other words, the appearanceperﬂ‘ecttarget penetrating radar based on loaded vee dipol&EE Trans. Antennas

. . £ discriminati Propagat, vol. 47, pp. 1795-1806, Dec. 1999.

symmetry Is not a requ!remeqt 1[0 perform target !scrlmlnathn [3] P.D. Gader, B. Nelson, H. Frigui, G. Vaillette, and J. Keller, “Landmine
based on symmetry. With sufficient sensor resolution and a sig-  detection in ground-penetrating radar using fuzzy logkuzzy Logic
nificant collection of symmetry measuresn), a mine residing Signal Process.vol. 80, pp. 1069-1084, June 2000. o
. | . d likel . _[4] P. D. Gader, M. Mystkowski, and Y. Zhao, “Landmine detection with
In a clutter en\./”‘.onr_nem WOUICHI eY appear more symmetric ground-penetrating radar using hidden Markov moddBEE Trans.
than rocks residing in that same environment. Geosci. Remote Sensingl. 39, pp. 1231-1244, June 2001.

Group theory provides a mathematical tool for analyzing

on.
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