Growth of Superconducting Hg-1212 Very-Thin Films L. Fang, S. L. Yan, T. Aytug, A. A. Gapud, B. W. Kang, Y. Y. Xie, and J. Z. Wu Department of Physics and Astronomy, University of Kansas, Lawrence, KS 66045, USA Abstract—High quality epitaxial HgBa₂CaCu₂O_{6+ δ} (Hg- High 1212) films with thickness less than 100 nm have been successfully synthesized using cation-exchange process. The films show the superconducting transition up to ~118 K which is close to the intrinsic value of 124 K for Hg-1212 phase, and critical current densities up to $1.1 \times 10^7 \text{A/cm}^2$ at 5 K, $1.14 \times 10^6 \text{A/cm}^2$ at 77 K and $2.59 \times 10^5 \text{A/cm}^2$ at 100 K in zero field. #### I. INTRODUCTION The discovery of superconductivity in Hg-based high-T_c superconductors (Hg-HTSs: $HgBa_2Ca_{n-1}Cu_nO_{2n+2+d}$, n=1-5) has attracted considerable interest due to the high critical temperature (T_c) of these materials [1,2]. Despite the difficulties associated with the high volatile nature of the Hgbased compounds, considerable progress has been made recently in fabrication of high-quality Hg-1212 and Hg-1223 films [3-7]. Typically, the thickness of these films is in the range of 0.5-1 µm and the minimum thickness is still above 200 nm. For many microelectronic applications, such as optical devices, high-quality very-thin films with their thickness less than 100 nm are necessary. The major difficulty in fabrication of thinner films of the Hg-based HTSs rises from the liquefying of the material during the film crystallization in the post Hg-vapor annealing, resulting in unconnected islands when the film thickness is below certain threshold. In addition, the severe air-sensitivity of the cuprate precursor (Ba₂Ca_{n-1}Cu_nO_x) used in the currently adopted two-step process further complicates the processing and results in poor sample reproducibility even for thick films. In order to solve these problems, we have recently developed a new precursor film scheme. Instead of using un-reacted Ba₂Ca_{n-1}Cu_nO_x precursor, a pre-reacted Tl_vBa₂Ca_{n-1}Cu_nO_x film (y=1 or 2, n=2 or 3) is subjected to the same Hg-vapor annealing [8] to replace Tl by Hg. In this cation-exchange process, an epitaxial template can be formed in the precursor film. This allows growth of very-thin Hg-HTS films through a completely different mechanism and eliminates the airdetrimental effect since the Tl_vBa₂Ca_{n-1}Cu_nO_x precursor films are stable in air. In this article, we report fabrication of epitaxial Hg-1212 very thin film with their thickness less than 100 nm on (001) LaAlO₃ substrates using the cationexchange process. Epitaxial Tl-1212 thin films were used as precursor films, which were annealed in Hg vapor to form Hg-1212 thin film. Manuscript received September 15, 1998. This work was supported in part by AFOSR, NSF, NSF EPSCOR, and DEPSCOR ## II. EXPERIMENT Tl-1212 precursor films were prepared using dc-magnetron sputtering and post-annealing method. Non-superconducting precursor films were sputtered from a pair of superconducting Tl-1212 targets onto LaAlO₃ (001) single-crystal substrates in a mixture of Ar and O₂ gases (Ar/O₂=4/1) at total pressure of 20 mTorr. The as-deposited film was amorphous with the metal composition of Tl:Ba:Ca:Cu = 1:2:1:2. The thickness of the films is dependent on the sputtering time and is typically controlled in the range from 50-200 nm. The as-deposited films were annealed in 1 atm O₂ using crucible process at temperatures ranging from 800-850°C. The precursor films of Tl-1212 were then sealed in a precleaned and evacuated quartz tube with bulk pellets of Ba₂Ca₂Cu₃O_x and HgBa₂Ca₂Cu₃O_x and annealed in Hg vapor at high temperature, typically 760-780°C for 3-4 hours to form Hg-1212 films. The mass ratio between the two bulk pellets was adopted to be 1:2.5~3 in order to maintain proper Hg vapor pressure. After the sintering, the films were further annealed at 300°C in a flowing O₂ atmosphere for 1 hour to optimize the oxygen content of the films. Material phase(s) and orientation were determined using x-ray diffraction (XRD) θ -2 θ scans from Cu K α radiation. Scanning electron microscopy (SEM) was used to determine film surface morphology. $T_c s$ of the Tl-1212 films and Hg-1212 films was determined by both electrical transport four-probe method and magnetic measurement. The critical current density (J_c) can be estimated from magnetic measurements with the magnetic field applied perpendicular to the plane of the film. ### III. RESULTS The precursor thin films of Tl-1212 films are superconducting with T_c about 80 K. The surface morphology of the films observed by SEM is typically smooth and uniform. Fig. 1(a) shows the XRD spectrum of a 80 nm thick Tl-1212 thin film annealed at 825°C. As indicated in Fig. 1(a), the sample is dominated by Tl-1212 phase with a negligible portion of impurity phases. The Tl-1212 phase grows with c-axis orientation perpendicular to the substrate surface as indicated by the (001) peaks. The XRD θ -2 θ pattern of the film after Hg-vapor annealing process is presented in Figure 1(b), which shows a nearly unchanged spectrum as expected from the same crystalline the Tl-1212 and Hg-1212 phases have. The transformation from Tl-1212 Fig. 1. The x-ray diffraction patterns for (a) the Tl-1212 film 80nm thick annealed at 825°C and (b) the Hg-1212 film (80 nm thick) annealed at 780°C for 3 h. Fig. 3. J_c of Hg-1212 film (80 nm thick) as function of temperature and magnetic field. to Hg-1212 is, however, confirmed by T_c measurement. Fig. 2 shows the temperature (T) dependence of the zero-field-cooled (ZFC) dc magnetization (M) of the same Hg-1212 film in a 5 Gauss magnetic field measured in a superconducting quantum interference device (SQUID) magnetometer. The T_c of the Hg-1212 film is as high as 118 K, which is close to the intrinsic value of 124 K for Hg-1212 phase and is comparable to the T_c (120-124 K) obtained on thick (thickness > 200nm) Hg-1212 films [8]. It has been noticed that this T_c value is about 38 K higher than that of the precursor Tl-1212 film. In addition, the smooth transition near T_c indicates a nearly complete transformation from Tl-1212 to Hg-1212 phase after the Hg-vapor annealing. To estimate the magnitude of J_c from the M-H loops measured at different temperatures for the same Hg-1212 film, the Bean formula was used: $J_c = 20(M_+-M_-)/R$. Here M_+ and M are the upper and lower branches of the M-H hysteresis loop, respectively. R, the circulation radius of the current, is estimated for a rectangular film sample using, R=b(1-a/3b) where a and b represent the short and long dimensions of the sample. The calculated J_cs are shown in Fig. 3 as functions of the magnetic field and temperature. In calculation of the J_c values, the total film area (5 mm by 2.4 mm) was used so that the calculation gives a lower bound estimates for J_c. At zero field, J_c is 1.1×10⁷ A/cm² at 5 K and drops to 1.14×10⁶ A/cm² at 77 K. These values are lower than the best obtained on thicker films by a factor of 2-4 [9]. At higher temperatures, the reduction of J_c becomes more significant. At 100 K and 110 K, Jcs are, respectively, 2.59×10⁵A/cm² and 9.1×10⁴ A/cm², which are a factor of 5-7 lower than the best reported for a thick Hg-1212 film. Further optimization of processing conditions is necessary to improve Fig. 2. Zero-field-cooled dc magnetization of (80 nm-thick) Hg-1212 film as a function of temperature in a 5 G magnetic field. Fig. 4. SEM pictures of 80nm-thick Hg-1212 film made by cation-exchange process. the quality of the very-thin Hg-1212 films. On the other hand, it should be mentioned that such reduction in T_c and J_c is not uncommon and has been reported on other high- T_c superconducting (HTS) very-thin films [10]. Since a protection layer could considerably decrease this reduction, it is argued that oxygen depletion near the film surface may be responsible for the degraded superconducting properties of HTS very-thin films. A comparative investigation of sample quality with or without protection layer would provide insights in this issue. Figure 4 shows a typical SEM image of 80 nm-thick Hg-1212 films. Smooth morphology and dense crystal structure can be seen clearly on the surface. No evident grain boundary structure or cracks are visible, indicating a well-connected film at the thickness of 80 nm. ### IV. CONCLUSIONS Superconducting Hg-1212 films with their thickness less than 100 nm have been fabricated on LaAlO₃ substrates by annealing epitaxial Tl-1212 precursor films in a controlled Hg-vapor. The T_c up to 118K was obtained in these films. At zero applied field, J_c is up to 1.1×10^7 A/cm² at 5 K and close to 1×10^5 A/cm² at 110K. These very-thin films are very promising for various microelectronic applications. #### REFERENCES - S.N. Putilin, E.V. Antipov, O. Chmassem, and M. Marzio, "Superconductivity at 94 K in HgBa₂CuO_{4+δ}", Nature (London) 362, 226 (1993). - [2] A. Schilling, M. Cantoni, J.D. Go, and H.R. Ott, "Superconductivity above 130 K in the Hg-Ba-Ca-Cu-O system", *Nature* 363, 56 (1993). - [3] S.H. Yun and J.Z Wu, "Superconductivity above 130 K in high-quality mercury-based cuprate thin films", Appl. Phys. Lett. 68, 862 (1996). - [4] S.H. Yun, J.Z. Wu, S.C. Tidrow, D.W. Eckart, "Growth of HgBa₂CaCu₃O_{6+δ} thin films on LaAlO₃ substrates using fast temperature ramping Hg-vapor annealing", Appl. Phys. Lett. 68, 2565 (1996). - [5] F. Foong, B. Bedard, Q.L. Xu, and S.H. Liou, "C-oriented (Hg,Tl)-based superconducting films with T_c>125 K", Appl. Phys. Lett. 68, 1153 (1996). - [6] C. C. Tsuei, A. Gupta, G. Trafas, and D. Mitzi, "Superconducting Mercury-Based Cuprate Films with a Zero-Resistance Transition Temperature of 124 Kelvin", Science 263, 1259 (1994). - [7] J.Z. Wu, S.H.Yun, A.Gapud, B.W.Kang, W.N. Kang, S.C. Tidrow, T.P. Monahan, X.T. Cui, and W.K. Chu, "Epitaxial Growth of HgBa₂CaCu₂O_{6+δ} thin films on SrTiO₃ substrates", *Physica C* 277, 219 (1997). - [8] J.Z. Wu, S.L. Yan and Y.Y. Xie, "Cation Exchange: A New Scheme for Synthesis of High-Quality Epitaxial Hg-Based Superconducting Thin Films", submitted to Applied Physics Letters. - [9] S.L. Yan, Y.Y. Xie, J.Z. Wu, T. Aytug, A.A. Gapud, B.W. Kang, L. fang, M. He, S.C. Tidrow, K.W. Kirchner, J.R. Liu, W.K. Chu, "High critical current density in epitaxial HgBa₂CaCu₂O_{6+δ} thin films", Appl. Phys. Lett. 73, 2989 (1998). - [10] X.X. Xi, J. Geerk, G. Linker, Q. Li, and O. Meyer, "Preparation and superconducting properties of ultrathin YBa₂Ca₃O_{7-x}films", Appl. Phys. Lett. 54, 23 (1989).