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The concept of radar satellite constellations, or clusters, for

synthetic aperture radar (SAR), moving target indicator (MTI),

and other radar modes has been proposed and is currently

under research. These constellations form an array that is

sparsely populated and irregularly spaced; therefore, traditional

matched filtering is inadequate for dealing with the constellation’s

radiation pattern. To aid in the design, analysis, and signal

processing of radar satellite constellations and sparse arrays in

general, the characterization of the resolution and ambiguity

functions of such systems is investigated. We project the radar’s

received phase history versus five sensor parameters: time,

frequency, and three-dimensional position, into a phase history

in terms of two eigensensors that can be interpreted as the

dimensions of a two-dimensional synthetic aperture. Then, the

synthetic aperture expression is used to derive resolution and

the ambiguity function. Simulations are presented to verify the

theory.
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I. INTRODUCTION

As evidenced by recent literature [1–4] and by the
theme of a recent radar conference, 2001: Radar’s
Odyssey into Space [5], there is currently much
interest in moving radar technology onto spaceborne
platforms. The advantages of moving radar into
space are numerous [3, 6–7]. First, spaceborne radars
provide global coverage, as opposed to airborne radars
that are limited by airspace restrictions. Satellite radars
may also reduce the amount of personnel needed to
support surveillance operations, since no on-board
crew is necessary. Furthermore, support personnel and
the radar asset are not as vulnerable to military threats
as they would be on an airborne platform.

One proposed concept for a space-based radar
(SBR) system is to place multiple transmitters and
receivers into space, each on their own, small satellite
[8–11]. These satellites, called microsats, would
fly in a formation called a satellite constellation.
Each satellite in the constellation would be able to
coherently sample the signal transmitted from each of
the transmitters in the constellation. In this way, the
constellation would work as a single, virtual radar able
to operate in multiple modes including interferometric,
synthetic aperture radar (SAR), and moving target
indicator (MTI).

The advantages of a microsat constellation are
numerous [2, 8–9, 12–14]. First, it may be less
expensive to launch several microsats than to launch a
large satellite with the same overall antenna aperture
due partly to the possibility of using microsats
to optimize a launch vehicle’s payload capacity.
Manufacturing costs are also reduced through the
benefits of mass production. In addition, a microsat
constellation degrades gracefully as individual
microsats fail, either as expected or prematurely, and
the constellation can be reconfigured to optimize
its configuration after a failure [15]. Failure in a
monolithic satellite, however, is catastrophic for the
entire radar system. When microsat failure causes
system performance to fall below an acceptable level,
the hardware and launch costs of a few replacement
microsats are much less than an entire replacement
system. Furthermore, microsat replacement can
be stretched out over time as funding becomes
available, and system upgrades can be performed
by either replacing failed microsats or augmenting
constellations with new, upgraded microsats.

The main disadvantage of a microsat constellation
is that the constellation will constitute a sparsely
populated, nonuniform, three-dimensional array.
Although planar, regularly spaced, tightly packed
satellite clusters have been discussed, the fuel
requirements for maintaining such a constellation
are prohibitive. Consequently, radar signal
processing algorithms previously developed for
SAR and MTI are not applicable. The traditional
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displaced-phase-center-antenna (DPCA) and
space-time adaptive processing (STAP) algorithms
assume uniform, linear arrays aligned along the
direction of travel and have been applied primarily
to sidelooking scenarios. For example, the Joint
Surveillance Target Attack Radar System (JSTARS)
uses a 24 ft phased array in along-track that is
mechanically scanned in cross-track [3, 16]. The
microsat constellation, therefore, amounts to a unique
challenge for radar engineers. New algorithms must
be developed to accommodate the unique array
structure and wide range of look geometries that will
be encountered.
Before effective algorithms can be developed,

however, a method for analyzing important system
characteristics must be established. Specifically, the
constellation’s resolution and ambiguity function must
be determined. The importance of these parameters
is obvious for SAR, but also has significance for
MTI because they determine clutter rank, which is a
measure of the degrees of freedom in the collected
data used up by ground clutter. The radar system’s
resolution and ambiguity function will depend
on five sensor parameters: time, frequency, and
three-dimensional spatial location. Resolution and
ambiguity are typically determined by coherent
processing interval (CPI) and signal bandwidth, but
this may not be the case for large constellations that
have very small spatial beamwidths. Characterizing a
constellation’s resolution and ambiguity function as
determined by the sensor’s five parameters, therefore,
is a critical step in determining if SAR and MTI are
achievable for a given microsat constellation and in
developing appropriate signal processing algorithms.
The rest of this paper is dedicated to characterizing

a 3D satellite constellation’s resolution and ambiguity
function. In Section II, we describe the radar model,
including system geometry, and derive the phase of
the received signal as a function of the five sensor
parameters. In Section III, we derive a transformation
that projects the 5D sample structure into a 2D
synthetic aperture. The 2D synthetic aperture is
analogous to the along-track synthetic aperture that is
the well-understood interpretation of SAR. In Section
IV, we use the synthetic aperture to determine the
constellation’s resolution and ambiguity function,
and we also present simulation results to confirm the
theory. We make our conclusions in Section V.

II. RADAR MODEL

The assumed radar geometry is shown in Fig. 1.
The spaceborne system travels in the positive
x-direction at velocity v, and the array phase
reference at time zero is located at the origin of the
coordinate system. Therefore, assuming a flat Earth,
the z-coordinate of all targets on the ground is h,
where h is the altitude of the array phase reference.

Fig. 1. Radar geometry for constellation of radar satellites.

For this paper we consider a single transmit element
surrounded by multiple, isotropic receive elements.
The path traveled by the transmit element passes
through the coordinate system origin at time zero.

From Fig. 1, the vector defining the position
of a spot on the Earth’s surface x is given by x=
[x y h]† where ( )† denotes the matrix or vector
transpose operation. Since the transmitter is located
at the array phase reference, which passes through the
origin at time t= 0, its position at any given time is
rt = vt where v is the radar system’s velocity vector,
v= [v 0 0]†. The location of a receiver at t= 0 is
defined as r= [rx ry rz]

†.
The complex signal d at the output terminals of a

receiving antenna due to a stationary scatterer depends
on the field intensity pattern of the transmitter g(x),
the inverse of the square of the scatterer’s range
R(x), the two-way propagation delay ¿(x,r, t), the
scatterer’s reflection coefficient °(x), and on the
sensor’s five measurement parameters. We assume
here that the scatterer’s reflection coefficient does not
vary with time, frequency, or aspect angle. Therefore,
the received signal due to a single scatterer is

d(x,r,!, t) =
°(x)g(x)
R(x)2

w(r,!, t)exp[ j!¿(x,r, t)]

(1)

where ! is angular frequency and w(r,!, t) is a weight
function describing the sensor response across the
measurement parameters of time, frequency, and
space. For example, the behavior of w(r,!, t) versus
frequency describes the bandwidth of the transmit
signal and the sensor’s receiver. Letting the sensor
measurement parameters be represented by a single
vector, s= [r† ! t]†, the phase of (1) is represented
by

ª (x,s) = !¿ (x,r, t), (2)

and the received signal response in (1) is

d(x,s) =
°(x)g(x)
R(x)2

w(s)exp[ jª (x,s)]: (3)
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From (3), it is apparent that several variables affect
the phase of the received radar response due to a
single scatterer. The phase varies with sensor time,
space, and frequency as well as the location of the
scatterer. The only scatterer-dependent parameters that
affect how the received phase varies are the x and y
coordinates of the scatterer. Since the scatterers only
have two variables that affect their response at the
radar, it is reasonable to assume that only two sensor
dimensions are needed for representing the SAR data.
Therefore, the hypothesis is that although the phase
expression of (3) varies versus five sensor parameters,
those sensor parameters can be projected into the
coordinates of two independent eigensensors. The
projection of a sensor’s time, space, and frequency
parameters onto these two eigensensors forms a 2D
synthetic sensor that can be used to characterize SAR
and MTI performance. We further note that although a
flat-Earth approximation has been made here, a 2D
synthetic aperture can be generated for stationary
scatterers located on any 2D surface because only
two independent variables are needed to define a
scatterer’s location.

III. SPACE-TIME-FREQUENCY SYNTHETIC APERTURE

The manner in which ª varies over scatterer
position and sensor parameters determines resolution
and the radar ambiguity function. For sidelooking
arrays with large bandwidths, long CPI lengths, and
relatively small physical arrays, the along-track and
cross-track directions decouple and we understand
very well the resulting along-track and cross-track
resolutions [17]. For the microsat concept, however,
this may not be the case. Even for sidelooking
geometries, if the physical array is wide enough that
the mainlobe of the array pattern dominates resolution
rather than bandwidth and CPI length, then the two
main axes of resolution may rotate away from along-
and cross-track. Furthermore, the satellite constellation
may be steered to look forward or backward. In
this case, the size and orientation of the resolution
cell are not straightforward to determine. We need
a method of predicting the ambiguity function and
size and shape of a resolution cell for a wide range
of transmitted signals, physical arrays, and look
geometries.
In this section, we derive a method for determining

a radar system’s resolution and ambiguity function.
We expand the received phase response using Taylor
expansions to demonstrate that the five sensor
parameters of space, time, and frequency can be
projected into an equivalent two-dimensional sensor
that we call the 2D synthetic aperture. The 2D
synthetic aperture is analogous to the 1D synthetic
aperture interpretation of traditional SAR. In SAR,
one or more receivers are placed on a moving
platform. As the platform moves over successive

samples, the measurements obtained are equivalent
to a set of measurements obtained by a nonmoving
array with element spacing dependent on the pulse
repetition interval (PRI); hence, time and along-track
position are related by the sensor velocity. More
generally, however, we can say that two sensor
parameters, time and along-track position, are
transformed into an equivalent 1D aperture. Similarly,
we take five sensor parameters and project them into
a 2D synthetic aperture. The advantage is the same as
for traditional SAR. We analyze the synthetic aperture
to understand the resolution and ambiguity function
of the moving radar system. Here, we use the 2D
synthetic aperture to understand the resolution and
ambiguity function of a radar system that moves
with time, samples over a certain bandwidth, and
has receive elements offset in along-track and two
cross-track dimensions.

A. Synthetic Aperture Derivation

First-order Taylor expansions of the phase of the
radar response are performed in two steps. First, ª is
expanded around the radar sensor parameters s. The
result is

ª(x,s) ª (x, s̄) + ( sª x,s̄)
†¢s (4)

where

s̄= [rx0 ry0 rz0 !0 t0]
†

s= [@=@rx @=@ry @=@rz @=@! @=@t]†

¢s= s s̄= [rx rx0 ry ry0 rz rz0 ! !0 t t0]
†

:

(5)

In (4), s̄ is the set of sensor parameters around which
the expansion is performed. Using the array phase
reference, mean sensor time, and mean frequency,
the sensor parameters around which the expansion is
performed are given by

s̄= [0 0 0 !0 0]†: (6)

The first term in (4) is a constant phase term with
respect to changes in the sensor parameters, ¢s. As
such, we can assume without a loss of generality that
it is zero. The second term of (4) contains all the
measurement information about a target at x. To see
this, we explicitly write the derivatives implied by the
gradient operation:

ª (x,s) =
@ª

@rx x,s̄
rx+

@ª

@ry x,s̄

ry +
@ª

@rz x,s̄

rz

+
@ª

@! x,s̄
(! !0) +

@ª

@t x,s̄
t: (7)

The derivatives in the first three terms show the
change of measurement phase with respect to sensor
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position in each of three spatial directions. These
are, by definition, the spatial frequencies kx(x),
ky(x), and kz(x) of the wave scattered from a target
at x. Likewise, the fourth term provides the change
in measurement phase with respect to temporal
frequency, which is the definition of the propagation
delay to the target. The final term shows the change
in measurement phase as a function of time, which
defines the target’s Doppler frequency. Recognizing
these definitions, (7) can be written as

ª(x,s) = kx(x)rx+ ky(x)ry + kz(x)rz

+ ¿(x)(! !0) +!D(x)t (8)

where kx, ky, and kz are the spatial frequencies,
¿ is the delay, and !D is the Doppler frequency
associated with the scattered signal from a target at
x. Hence, we can view a radar as a sensor that collects
measurements across five dimensions: space, time, and
frequency, providing information about five scattered
signal frequencies: kx, ky, kz, ¿ , and !D.
Returning to (4), which was the phase function

after expanding around the sensor parameters, the
sensor-dependent component of phase is written as

ª (x,s) = ks(x)
†¢s (9)

where ks(x) = sª x,s̄ is used to emphasize similarity
with the standard wavenumber vector. Next, the
first-order Taylor expansion of ks(x)

† around the
position of the scatter on the ground is performed.
Defining x̄= [x0 y0 h]† as the central point of
illumination on the ground and the point around
which the expansion is performed, the expansion
is

ks(x)
† ks(x̄)

† +¢x†[ xks(x)
†
x̄] (10)

where
¢x= x x̄= [x x0 y y0]

† (11)

and

x = [@=@x @=@y]†: (12)

The received phase then becomes

ª (x,s) ks(x̄)
†¢s+¢x†[ xks(x)

†
x̄,s̄]¢s

= [(k0s )
† +¢x†¤s]¢s (13)

where k0s = ks(x̄) = sª x̄,s̄, and ¤s = x( sª )
†
x̄,s̄ is

coined the sensor transformation matrix. In (13), k0s is
a five-dimensional vector describing the center signal
frequencies. These are the average frequency values of
the scattered signals from across the illuminated area
and correspond to the signal frequencies due to the
center location x̄. Therefore, the second term in (13),
¢x†¤s, is a vector that represents the deviation from
the center signal frequencies, resulting from a target
located at x̄+¢x. The matrix ¤s thus transforms

the two-dimensional target position vector x into the
five-dimensional scattered signal frequency vector that
corresponds to that target.

Using (13), the received signal in (3) becomes

d(x,¢s) =
°(x)g(x)
R(x)2

w(¢s)exp j[(k0s )
†¢s+¢x†¤s¢s] :

(14)

Next, attention is turned to the radiation pattern
g(x) of the transmitting antenna. The transmitting
antenna is a single aperture that is much smaller than
the volume spanned by the sparse receive array. For
microsat constellations, this corresponds to having
only one satellite transmitting. The antenna pattern
is given by

g(x) =
SA

wl(l) exp[ jªl(x, l)]dl: (15)

In (15), wl(l) is the antenna’s complex current or field
distribution, l= [lx ly lz]

† is a vector to a point on the
antenna’s conducting structure or aperture, SA is the
surface of the conducting structure or aperture, and
ªl(x, l) is the relative phase shift over the antenna due
to a slightly varying range to the scatterer location x.
The phase shift ªl(x, l) is given by

ªl(x, l) =
!0
c
l x : (16)

Since the antenna distribution wl(l) is complex, it can
be written as

wl(l) = wl(l) exp[ jªa(l)]: (17)

The phase in (15) is similar to the phase used
previously to derive the sensor response. The range to
a point x on the scattering surface varies slightly over
the antenna structure. The radiation pattern is obtained
by integrating this variation over the antenna structure
as indicated by (15). Performing Taylor expansions
similar to those performed earlier for the sensor
parameters, the phase of the antenna distribution can
be expressed as

ªl(x, l) = (k
0
l )
†¢l+¢x†¤l¢l (18)

where

k0l = lªl x̄,l̄, (19)

¤l = x( lªl)
†
x̄,̄l, (20)

l = [@=@lx @=@ly @=@lz]
†, (21)

¢l= l l̄, (22)

l̄ is the point on the antenna structure around
which the first expansion is performed, and ¤l is
termed the antenna transformation matrix. Using (18),
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the transmit pattern is

g(x) =
SA

wl(l) exp j[ªa(l)+ (k
0
l )
†¢l+¢x†¤l¢l] dl:

(23)

Last, the transmitting antenna can be focused on the
mean scatterer location x̄ by forcing a phase taper of

ªa(l) = (k0l )
†¢l: (24)

Then, the transmit pattern is

g(x) =
SA

wl(l) exp( j¢x†¤l¢l)dl: (25)

B. Synthetic Aperture Interpretation

The performance of a traditional, single-aperture,
sidelooking SAR is relative easy to evaluate and
understand. a target’s position in cross-track is
determined from the signal delay, while its along-track
position is determined by Doppler. Moreover, the
cross-track resolution is determined by the frequency
bandwidth of the transmit signal, and the along-track
resolution is determined by the processing timewidth,
or CPI.
Alternatively, the behavior of proposed

sparse-array radars appears difficult to evaluate. These
sensors, in general, will not be sidelooking, and
the spatial extent of the satellite array can be large
enough to affect sensor resolution. As a result, all
five signal frequencies may be jointly dependent on
both the along-track and cross-track positions of the
target. This complex coupling between target position
and scattered signal frequencies is demonstrated by
the sensor transformation matrix ¤s. In general, all
elements of this matrix will be non-zero, showing that
each signal parameter is dependent on each dimension
of target position. Accordingly, the sensor provides
along-track and cross-track resolutions that are both
jointly dependent on frequency bandwidth, CPI, and
the spatial size of the 3D array. Resolution will be
determined by some or all of these parameters, as
opposed to just one. Moreover, resolution will be a
function of look angle, so that there exists no simple,
direct relationship between sensor resolution and
sensor bandwidth, CPI, and array size.
However, analysis of the sensor transformation

matrix provides a method for projecting the five
signal frequencies and five sensor measurements
into a two-dimensional space. We find that these
projections are orthogonal, such that each projected
measurement corresponds to target position in one
of two orthogonal directions. In this manner, a
two-dimensional synthetic aperture is constructed from
the original five-dimensional set of measurements.

To create this synthetic aperture, we begin by
expressing the sensor transformation matrix in terms
of its singular value decomposition (SVD), given by

USV† =¤s (26)

where

U= [u1 u2] (27)

S=
¾1 0 0 0 0

0 ¾2 0 0 0
(28)

and
V= [v1 v2 v3 v4 v5]: (29)

Then, with the SVD explicitly expanded, the received
phase is

ª(x,s) (k0s )
†¢s+¾1(¢x

†u1)(v
†
1¢s) +¾2(¢x

†u2)(v
†
2¢s)

= (k0s )
†¢s+ k®®+ k¯¯ (30)

where k® = ¾1¢x
†u1, k¯ = ¾2¢x

†u2, ®= v
†
1¢s, and

¯ = v†2¢s. The sensor transformation matrix can be
interpreted using (30). The basis vectors, v1 and v2,
for the rows of ¤s project the five sensor parameters
into two independent dimensions of a 2D synthetic
aperture, ® and ¯. Based on their interpretation
using eigenanalysis, the two dimensions are termed
eigensensors. The first eigensensor is obtained through
the inner product of the sensor parameter vector
¢s with v1, and the second eigensensor is obtained
through the inner product of the sensor parameter
vector ¢s with v2. Consequently, the coordinates
of an element in the synthetic aperture are given by
®= v†1¢s and ¯ = v

†
2¢s. When these two dimensions

are used as the measurement dimensions, then they
are the only two dimensions needed because they
are the only two dimensions with non-zero singular
values. The other three dimensions: v3, v4, and v5, are
associated with zero singular values, and a change in
the position of a scatterer produces no change in the
measurements obtained in these three dimensions.
Therefore, only the first two dimensions provide
information about stationary scatterers, and these two
dimensions preserve all the information collected by
the sensor in space, time, and frequency.

In addition to preserving all the sensor information
in just two dimensions, the two eigensensors are
also independent. Therefore, the two eigensensors
provide information about two orthogonal frequencies
that are obtained through inner products with the
basis vectors, u1 and u2 for the columns of ¤s. The
values of the new spatial frequencies are given by
k® = ¾1¢x

†u1 and k¯ = ¾2¢x
†u2.

The eigensensors provide the opportunity to
characterize radar behavior with the same simplicity
as with standard, sidelooking SAR. Just as signal
delay and Doppler correspond, respectively, to target
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cross-track and along-track position, the signal
frequencies k® and k¯ correspond, respectively,
to target position in orthogonal directions u1 and
u2. Also, just as target resolution in cross-track
and along-track depend, respectively, on sensor
bandwidth and CPI, target resolution in u1 and u2
depend, respectively, on the extent, or width, of sensor
measurements ® and ¯.
Note that for an individual antenna, ¤l performs a

function similar to what ¤s performs for the sensor
samples. ¤l takes any point on the structure of an
antenna and projects that point onto a plane. The
plane is perpendicular to boresight of the antenna as
defined by x̄. Therefore, the antenna transformation
matrix ¤l takes an antenna aperture described in
3D space and transforms it into a 2D antenna that
has an equivalent illumination pattern for the region
surrounding the point x̄. In addition, ¤l projects
the original spatial frequencies corresponding to
the x and y positions of the scatterer to new spatial
frequencies that are measured by the primary axes of
the equivalent 2D antenna.

C. Sidelooking Example

Although the SVD of ¤s must generally be
performed numerically, a sidelooking sensor geometry
provides a case where algebraic expressions of the
SVD can be determined. The results describe the
known behavior of a sidelooking SAR, and provide
support to both the validity and utility of this method.
From the geometry and vectors defined earlier, the
range from the transmitter to a scatter at x is given by

Rtx = rt x = (vt x)2 + y2 + h2: (31)

Likewise, the range from the scatterer back to a
receiver is given by

Rrx = r+ vt x = (rx+ vt x)2 + (ry y)2 + (rz + h)2

(32)
and the two-way propagation delay is

¿(x,r, t) =
1
c

(rx+ vt x)2 + (ry y)2 + (rz +h)
2

+ (vt x)2 + y2 +h2 : (33)

In terms of derivatives, ¤s is given by

¤s =

@2

@x@rx

@2

@x@ry

@2

@x@rz

@2

@x@!

@2

@x@t

@2

@y@rx

@2

@y@ry

@2

@y@rz

@2

@y@!

@2

@y@t

ª

x̄,s̄

:

(34)

Substituting (33) and (2) into (34) and evaluating at s̄
and x̄, the sensor transformation matrix becomes

¤s=
!0
c

(h2 + y20)

R30

x0y0
R30

x0h

R30

2x0
!0R0

2v(h2 + y20)

R30

x0y0
R30

(h2 + x20)
R30

y0h

R30

2y0
!0R0

2vx0y0
R30

(35)

where R0 = h2 + x20 + y
2
0. For sidelooking, x0 = 0,

and ¤s becomes

¤s =

1
R0

0 0 0
2v
R0

0
h2

R30

y0h

R30

2y0
!0R0

0
: (36)

Substituting (36) back into (13), the phase response is

ª(x,s) = (k0s )
†¢s+

!0
c
(y y0)

2y0
!0R0

(! !0)
h2

R30
ry

y0h

R30
rz

!0
c

x

R0
(rx+2vt) (37)

and (14) becomes

d(x,¢s)

=
1

R(x)2
w(¢s)exp[ j(k0s )

†¢s]

exp j
!0
c
(y y0)

2y0
!0R0

(! !0)
h2

R30
ry

y0h

R30
rz

exp j
!0
c

x

R0
(rx+2vt)

SA

wl(l) exp( j¢x†¤l¢l)dl: (38)

Looking at (38), it is seen that the along- and
cross-track dimensions contribute independent
components. In (38), the first line contains the
attenuation due to spreading and the measured phase
due to the mean target frequencies. The second
line describes the cross-track component, the third
line describes the along-track component, and the
fourth line accounts for the radiation pattern of the
transmitter. Isolating the along-track component and
noting that !0x=cR0 kx, the along-track component is

½x = exp[kx(rx+2vt)]: (39)

Equation (39) is the along-track response
commonly used in SAR and MTI analysis. It shows
that the along-track spatial frequency component
is sampled by a synthetic aperture with elements
located at (rx+2vt). Consequently, (13) is awarded
a degree of confidence based on proper prediction of
the along-track component for the sidelooking case.
Simulations presented later in this paper demonstrate
that (13) is valid for a wide span of scenarios.
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IV. SENSOR RESOLUTION AND AMBIGUITY
FUNCTION

Now that (13) provides a method for projecting
all sensor parameters into a synthetic 2D aperture,
it is straightforward to evaluate the radar system’s
resolution and ambiguity function. The beampattern
of the resulting synthetic aperture can be determined
in the same manner as any physical aperture, albeit
with results in terms of spatial frequencies k® and
k¯ . The resulting pattern can be directly projected
onto an illuminated surface, along the coordinate
system defined by u1 and u2. This projection
results in the function commonly referred to as the
sensor’s ambiguity function and effectively displays
the correlation of one target’s response with the
response from targets at all other locations. The
sensor characteristics that can be discerned from
this function include resolution and target ambiguity,
where target ambiguity is manifested as grating lobes
and sidelobes.
In the first part of this section, expressions

are derived that define the resolution of sparse
radar arrays. The efficacy of these expressions is
demonstrated by comparing their predictions with
ambiguity functions generated from a numeric radar
simulator. In the latter section, measurement ambiguity
in the form of both grating lobes and sidelobes is
addressed.

A. Resolution

Radar resolution is traditionally considered in
terms of the correlation between two adjacent targets.
This correlation can, of course, be expressed in terms
of a matched-filter response; therefore, we begin this
analysis by determining the output of a matched filter
in the presence of two targets. The filter is matched
to the first signal, which is due to a target at x= x̄.
Initially, we assume that the transmit aperture has a
Gaussian amplitude taper with size and orientation
described by the matrix Jl and phase taper according
to (24), such that

wl(l) =
1

(2¼)3=2 Jl
exp[ 1

2¢l
†J 1
l ¢l]exp[j(k

0
l )
†¢l]:

(40)

The received signal due to a scatterer at x̄ with a
scattering coefficient of °1 is

d1(x̄,¢s) =
°1
R(x̄)2

w(¢s) exp[ j(k0s )
†¢s]

1

(2¼)3=2 Jl
exp[ ¢l†J 1

l ¢l]d¢l

=
°1
R(x̄)2

w(¢s) exp[ j(k0s )
†¢s]g(x̄): (41)

The received signal due to a second scatterer located
at x̄+¢x with a scattering coefficient of °2 is

d2(x̄+¢x,¢s)

=
°2

R(x̄+¢x)2
w(¢s)exp[ j(k0s )

†¢s]

exp[ j¢x†¤s¢s]

SA

1

(2¼)3=2 Jl
exp[ 1

2¢l
†J 1
l ¢l]

exp[ j¢x†¤l¢l]d¢l: (42)

By completing the square in the integrand of (42), d2
is

d2(x̄+¢x,¢s)

=
°2

R(x̄+¢x)2
w(¢s)exp[ j(k0s )

†¢s]

exp[ j¢x†¤s¢s]

g(x̄) exp[ 1
2¢x

†¤lJl¤
†
l¢x]: (43)

A filter matched to the response from the first target
can be implemented by correlating with the function
hc given by

hc =
R(x̄)2

g(x̄)
w(¢s) exp[j(k0s )

†¢s]: (44)

We assume also that the sensor weight function w(¢s)
is Gaussian with width and orientation described by
the covariance matrix Js. Although this assumption
appears to be restrictive and unrealistic, we show
that this Gaussian assumption leads to a result that is
also very accurate for other sensor weight functions.
Therefore, the sensor weight function, w(¢s), is
expressed as

w(¢s) =
1

(2¼)5=4 Js 1=4
exp( 1

4¢s
†J 1
s ¢s): (45)

The output » of the correlation filter is

» =
S

(d1 + d2 + ni)hcd¢s

= °1
S

w(¢s) 2d¢s

+ °2
R(x̄)2

R(x̄+¢x)2
exp[ 1

2¢x
†¤lJl¤

†
l¢x]

S

w(¢s) 2 exp[ j¢x†¤s¢s]d¢s+ no

(46)

where ni and no are additive Gaussian noise at the
input and output of the filter, respectively, and the
integrations are performed over the full range of each
sensor measurement parameter. The first term in (46)
is simply an integration over a 5D Gaussian function;
therefore, the integral goes to one and the first term
becomes the desired output, °1. Since the filter is
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matched to the first scatterer, the second term in (46)
depends on the correlation between d1 and d2. The
second term, which is temporarily designated as
»2, is

»2 = °2
R(x̄)2

R(x̄+¢x)2
exp( 1

2¢x
†¤lJl¤

†
l¢x)

exp( 1
2¢x

†¤sJs¤
†
s¢x): (47)

Noting that
R(x̄)2

R(x̄+¢x)2
1 (48)

when ¢x is small, the output of the correlation filter
becomes

» = °1 + °2 exp[
1
2¢x

†(¤sJs¤
†
s +¤lJl¤

†
l )¢x] + no:

(49)

Equation (49) shows that the output of the correlation
filter depends on three terms. The first term is the
desired output—the reflectance due to the pixel of
interest. The second term is the error due to leakage
of the second target into the filter output. It depends
on the exponential term, which we now recognize as
the correlation between the two scatterers. The last
term is the error due to noise that passes through the
matched filter.
1) Resolution Defined by Target Correlation: We

use two criteria for defining sensor resolution. The
first uses the more traditional approach where two
targets are resolvable if their responses are sufficiently
uncorrelated. From (49), the correlation between the
responses of targets located at x̄ and x̄+¢x is

∙c = exp[
1
2¢x

†(¤sJs¤
†
s +¤lJl¤

†
l )¢x]: (50)

We can use this expression to determine the
correlation between two targets displaced by ¢x,
or we can fix the correlation ∙c to a specified value
and determine the locations of all targets that are
correlated by the same amount. Taking the natural
logarithm of (50), we get elliptical contours of
constant correlation defined by

2ln∙c =¢x
†(¤sJs¤

†
s +¤lJl¤

†
l )¢x: (51)

If the constant ∙c represents the correlation required
for target resolution, then the resulting contour can
be considered the resolution ellipse, a contour that
indicates both the size and orientation of the mainlobe
of the sensor ambiguity function. The size of the
ellipse depends on both the value of ∙c and on the
resulting matrix in parentheses. For example, the
size of the ellipse depends inversely on the matrix’s
determinant. If the sensor’s measurement extent is
increased (e.g., its bandwidth and/or CPI is increased),
the variances in Js become larger, and the determinant
of the matrix increases. As a result, the resolution

ellipse decreases in size, indicating an expected
improvement in sensor resolution.

Typically, the transmit antenna does not impact
radar sensor resolution. Accordingly, the determinant
of ¤lJl¤

†
l is relatively small, and (51) can be

approximated as

2ln∙c =¢x
†¤sJs¤

†
s¢x: (52)

2) Resolution Defined by Estimation Error:
The second approach to resolution is based on the
Cramer–Rao lower bound (CRLB). The matched filter
output value » can be used to estimate the complex
reflection coefficient °1. Due to measurement noise
and the presence of a second target with unknown
reflectance °2, this estimate will exhibit error that
depends on the estimator implemented. The CRLB,
however, provides a lower bound on the error variance
produced by any unbiased estimator.

We begin by determining the Fisher information
matrix [18], defined as

J= E [ °(lnp(» °))][ °(lnp(» °))]† : (53)

Given that the noise and complex target reflectances
can be accurately described as independent Gaussian
random variables, J is determined to be

J=

1
¾2n
+
1
¾2°

∙c
¾2n

∙c
¾2n

∙2c
¾2n
+
1
¾2°

(54)

where E[ °1
2] = E[ °2

2] = ¾2° , E[°1°2] = 0, and
E[ no

2] = ¾2n . The CRLB is contained in the inverse
of this information matrix,

J 1 =
1

¾2n +¾2°(1+∙2c)

¾2° (¾
2
n +¾

2
°∙
2
c ) ∙c¾

4
°

∙c¾
4
° ¾2° (¾

2
n + ¾

2
° )

:

(55)

The lower bounds for the estimation error variance
of the two target reflectances are given on the main
diagonal of (55). Therefore, the CRLB of the error
variance of the estimate °̂1(») is

E[ °1 °̂1(»)
2] ¾2°

1+
¾2°
¾2n

∙2c

1+
¾2°
¾2n
(1+ ∙2c )

∙2e : (56)

We see in (56) that the estimation error depends on
the signal-to-noise ratio (SNR) through the ratio
¾2°=¾

2
n .
From (56), the target correlation in terms of the

CRLB is

∙2c =
¾2°¾

2
n ∙2e¾

2
° ∙2e¾

2
n

¾2° (∙2e ¾2° )
: (57)
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Inserting (50) into (57), we form the following
relationship:

ln
¾2°¾

2
n ∙2e¾

2
° ∙2e¾

2
n

¾2° (∙2e ¾2° )
=¢x(¤sJs¤s+¤lJl¤l)¢x:

(58)
For a desired value of estimate error variance,

∙2e , the above expression can be solved for ¢x.
The set of all such solutions can be used to map
contours of equal error variance, which again will
be elliptically shaped. Therefore, (51) and (58) each
define a resolution ellipse, providing a graphical
indication of sensor resolution. Equation (51) uses
target correlation as the resolution criterion whereas
(58) uses estimation error variance. Although the
target correlation is the more traditional criterion, (58)
uses a criterion more directly dependent on sensor
parameters, specifically SNR and desired estimate
error variance.
3) Simulations: Using (51), we have predicted

the resolution ellipses for several cases and compared
them with ambiguity functions obtained numerically
using a multiple aperture radar simulator. The numeric
simulator was developed in-house. It computes the
in-phase and quadrature analog-to-digital converter
samples for a scatterer at a given location x. The
samples are computed for every array element,
slow-time sample, and frequency (fast-time)
sample. The sets of measurements due to all
illuminated scatterers can be weighted by their
corresponding scattering reflectivities and summed
to obtain a simulated version of the complete radar
measurements. Then, the radar measurements can
be input into a SAR or MTI processor. In addition,
the data samples from each scattering location can
be correlated to arrive at a numerically generated
ambiguity function. a more detailed description of the
simulator is available in [19].
In the first three cases that follow, Gaussian

tapers were used for the time and frequency sensor
dimensions. a uniform taper, however, was applied
across the physical array, with the spatial-dependent
elements of Js calculated according to a variance
measure of the sparse array. For example, the (x,y)
component of Js, J

xy
s , was calculated according to

Jxys =
S

(rx rx0)(ry ry0)drxdry: (59)

In the fourth example, all five sensor parameters had
uniform tapers with elements of Js calculated in a
manner equivalent to (59).
Fig. 2 shows a sidelooking scenario with a sparse,

but relatively small, physical array. The physical array
in this case is small enough that the transmit signal’s
bandwidth and CPI length are the dominant factors
in determining resolution. The 2D and 3D views
are shown in Figs. 2(a) and 2(b), respectively. The
resolution ellipse, shown as black in the 3D view

Fig. 2. Simulated ambiguity function and theoretically predicted
resolution ellipse for a sidelooking geometry with small physical

array. (a) 2D view. (b) 3D view.

and white in the 2D view, is correctly predicted with
its axes aligned with the along-track and cross-track
directions. The resolution axes align with the along-
and cross-track dimensions in this case because
resolution is controlled by bandwidth and CPI length.
From the 3D view, it is seen that the predicted
resolution ellipse intersects the numerical ambiguity
function at approximately the specified correlation
level, which was ∙c = 0:707.

When the physical array is extremely large,
however, the result is as seen in Fig. 3. In this
case, the ellipse becomes smaller because the array
beamwidth is smaller than the resolution provided
by the sensor’s bandwidth and CPI. Moreover, even
though the scenario is still sidelooking, the axes of
the resolution ellipse rotate away from along- and
cross-track because the array formed by the satellite
constellation has no along- and cross-track symmetry.
In addition, since the physical array is the dominant
component and it is sparsely populated with a
uniform taper, the sidelobes in the ambiguity function
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Fig. 3. Simulated ambiguity function and theoretically predicted
resolution ellipse for sidelooking geometry with large physical

array that affects resolution. (a) 2D view. (b) 3D view.

are much larger in Fig. 3 than they were in
Fig. 2.
In Fig. 4, the physical array is again relatively

large, but now the scenario is forward looking. The
resolution ellipse’s size and orientation are correctly
predicted by (51). The axes of the resolution ellipse
do not align with along- and cross-track because of
the forward-looking geometry and the orientation
of the satellite array. Sidelobes are again significant
because the dominant sensor measurements that
determine the mainlobe shape and size are the
measurements obtained by the sparse, uniformly
weighted, satellite array.
Last, we demonstrate in Fig. 5 that the Gaussian

assumption made in deriving (51) is not as restrictive
as it may appear. In the simulations that produced Fig.
5, each of the five sensor measurement parameters:
time, frequency, and 3D space, were given uniform
amplitude tapers. The elements of Js were calculated
according to the variance of the uniform tapers, as
demonstrated for the (x,y) component in (59). The

Fig. 4. Simulated ambiguity function and theoretically predicted
resolution ellipse for forward-looking geometry with large physical

array that affects resolution. (a) 2D view. (b) 3D view.

scenario is forward looking with a moderately sized
constellation. Therefore, all five sensor parameters had
an effect on total system resolution. The results shown
in Fig. 5 demonstrate that by using the variance of
the uniform tapers, the resolution of the system can
still be determined effectively. Furthermore, since
many realistic frequency spectra, time windows, and
array functions are closer in shape to a Gaussian taper
than to a uniform taper, we conclude that the Gaussian
assumption used to derive (51) does not significantly
restrict the range of scenarios or sensor functions to
which (51) can be applied.

B. Sensor Ambiguity Function

In addition to resolution, a fundamental
performance characteristic of a sparse radar array
is the sidelobe structure exhibited in the sensor
ambiguity function. At a minimum, no grating lobes,
which result from perfect measurement correlation
between dissimilar targets, should occur within the
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Fig. 5. Simulated ambiguity function and theoretically predicted
resolution ellipse for forward-looking geometry with moderately
sized physical array that affects resolution. Uniform tapers applied

to all five sensor measurement parameters. (a) 2D view.
(b) 3D view.

sensor ambiguity function. In addition, the sidelobes
of the ambiguity function should ideally be small.
Again considering the traditional sidelooking,
single-aperture SAR, significant sidelobes within the
sensor ambiguity function can be directly determined
from knowledge of the transmit pulse repetition
frequency (PRF). However, for a sparse radar array,
the concept of the synthetic aperture, as discussed
in Section III, must be implemented to determine
sensor ambiguity. The complexity of this sensor:
five sensor measurement parameters, forward- and
backward-looking geometries, and the large but sparse
spatial array, make a more direct analysis problematic.
For the analysis in this section, we assume the

radar transmits a simple coherent pulse train at a
constant PRF. As a result, the sensor weight function
for the time parameter wt(¢t) is represented as a
periodic series of time samples separated by 1/PRF
across the sensor’s CPI. Similarly, the weight function

for the frequency parameter wf(¢!) is represented as
a periodic series of frequency samples separated by
2¼PRF across the sensor bandwidth. Since the receive
array formed by the satellite constellation likewise
represents sampling in three dimensions of space,
the entire sensor weight function w(¢s) represents
a five-dimensional array. This array can be then be
projected into a two-dimensional synthetic array, using
the projection vectors described in Section III.

As stated earlier, the sensor ambiguity function
for a sparse radar array is determined from the
two-dimensional synthetic aperture or array, as
described in Section III. As with any aperture or
array, the sidelobe levels of the resulting pattern
depend on the aperture function since the two are
related by a Fourier transform. As a result, the
2D synthetic aperture function of a sparse radar
array can provide direct insight into the behavior
of this sensor. For example, the size of the aperture
in each orthogonal measurement direction will
determine sensor resolution. Likewise, to avoid large
sidelobes, the aperture or array must be filled—that is,
measurements must be made across the entire aperture
extent. Additionally, grating lobes can occur if the
synthetic aperture or array has periodicities.

More specifically, to evaluate the sidelobe
performance of a synthetic array, the concept of a
coarray is used. The coarray is the autocorrelation of
the array and is a measure of the spatial lags sampled
by the array. The far-field power pattern produced by
an array is simply the Fourier transform of its coarray.
Regularly spaced arrays and coarrays are defined as
having spacing that can be laid out on an underlying,
evenly spaced grid. Therefore, the distances between
samples are always multiples of each other. If samples
are missing such that the Nyquist criterion is not
satisfied, the array is said to be sparsely populated.
If no underlying grid can be found on which to locate
the samples, then the array is said to be randomly, or
non-uniformly, spaced.

There are two cases where true grating lobes do
not occur: when a regularly spaced coarray is Nyquist
sampled or when the coarray is irregularly spaced. If
a regular coarray results in grating lobes, then their
separations from the mainlobe are determined by
the minimum separation between coarray samples.
Therefore, a regularly spaced, sparse array will not
have true grating lobes if some of its coarray samples
are closely spaced. For an irregular coarray, high
sidelobes are possible, but the lack of a periodic
structure prevents true grating lobes. Therefore,
a sparse array radar system based on the satellite
constellation concept will not likely have true grating
lobes, although high sidelobes could be present. For
randomly placed arrays such as we have assumed
for microsat constellations, the number of apertures
in the array strongly controls sidelobe levels. This
is because by adding more apertures within the
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Fig. 6. Comparison of (a) numerically generated ambiguity
function with (b) ambiguity function generated using synthetic

array.

same constellation area, the sample density of the
synthetic array is increased and the result is a more
appropriately sampled system. a more detailed
discussion of coarrays is available in [20].
First, we demonstrate in Fig. 6 that the synthetic

array derived in Section III does, indeed, accurately

Fig. 7. (a) 2D synthetic array for relatively small constellation generates synthetic coarray in (b). Ambiguity function of system shown
in (c).

predict the sensor’s ambiguity function. We generated
ambiguity functions for a forward-looking scenario
with both our numeric radar simulator and the
synthetic array. The ambiguity function obtained
from the simulator is shown in Fig. 6(a), and the
ambiguity function obtained from the synthetic array
is shown in Fig. 6(b). There are some differences in
the ambiguity functions since the approximations
made in deriving the synthetic array do not apply to
the numerical simulation. Specifically, we see that
the differences are more apparent at the edges of the
ambiguity function. This is because these regions are
further from the center of the illuminated area where
the second Taylor expansion was performed. However,
although there are some differences, the ambiguity
functions in Fig. 6a and 6b are generally in good
agreement.

Figs. 7 and 8 demonstrate the application of the
synthetic coarray. In Fig. 7(a), the 2D synthetic array
for a system with a five-element satellite constellation
is shown; hence, Fig. 7(a) shows the projection of
every physical array element, slow-time sample, and
fast-time sample into the 2D eigensensor system.
Some periodic samples along dimension ® can be
seen. These are due to periodic slow-time samples.
Likewise, the periodic samples that are seen along
dimension ¯ are due to periodic fast-time samples.
Additional nonperiodic samples in Fig. 7(a) are due to
random array-element spacings projected onto the 2D
eigensensor.

In this example, the size of the constellation is
relatively small compared with the synthetic aperture
spanned by the eight fast-time and eight slow-time
samples. Hence, many of the synthetic array samples
overlap, and bandwidth and CPI rather than the size of
the constellation primarily determine the overall size
of the synthetic array. By taking the autocorrelation
of the synthetic array, we generate the synthetic
coarray shown in Fig. 7(b). Because of the random
nature of the spatial sampling, there is no underlying
sample grid for either the synthetic array or coarray.
Therefore, the corresponding ambiguity function
shown in Fig. 7(c) has no true grating lobes.
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Fig. 8. (a) 2D synthetic array for relatively large constellation generates synthetic coarray in (b). Ambiguity function of system shown
in (c).

The random-array ambiguity function, however,
does show effects of both the periodic sampling of
the radar signal and the sparse, nonperiodic sampling
of the satellite constellation. Since there is periodic
sampling in both time and frequency, there are
hints of range-Doppler ambiguities in the resulting
ambiguity function. The potential range-Doppler
ambiguities are multiplied by sidelobes of the radar
constellation’s radiation pattern to arrive at the
sidelobes seen in Fig. 7c. Since the array pattern
is random in nature, the expected sidelobe levels
depend on the sample density in the synthetic array
and coarray [20]. This density, in turn, depends on the
system PRF, the overall size of the constellation, and
the number of satellites in the constellation.
In Fig. 8, we present the results of a final

experiment to demonstrate the effect of sample density
on the system ambiguity function. The constellation
used to generate the results shown in Fig. 7 was
relatively small. As a result, many elements of the
synthetic array overlapped, the size of the synthetic
array was primarily determined by the transmit
signal, the density of samples in the synthetic coarray
was relatively high, and the sidelobes immediately
surrounding the ambiguity function’s mainlobe were
small. In Fig. 8, however, the satellite constellation is
much larger. As a result, the synthetic coarray shown
in Fig. 8(a) has wide regions without any samples.
The overall size of the synthetic array has increased
because of the huge size of the constellation, but the
sample density seen in the synthetic coarray of Fig.
8(b) is much less than the density seen in Fig. 7(b).
Hence, although resolution has improved through
the wider extent of the synthetic array, the reduced
sampling density results in high sidelobes immediately
surrounding the ambiguity function’s mainlobe. The
ambiguity function for this case is shown in Fig. 8(c).
The compromise between resolution and sample

density is a primary issue for processing of sparse
radar arrays. Of course, we desire a high sample
density over a wide extent, resulting in good
resolution and low sidelobe levels, but this may not
be achievable. We can, however, use the simulations

in Figs. 7 and 8 to make some judgments about
when sparse arrays can be effectively processed for
SAR and MTI. The situation in Fig. 8 is one where
resolution has improved through the large size of the
constellation. In essence, the number of resolution
cells in the SAR map has increased, but the number
of measurements for estimating the scattering from
those cells has remained constant. Therefore, we
cannot expect to be able to perform SAR processing
effectively. If, however, we design a system such
that bandwidth and CPI are the dominant factors
in determining resolution, we ensure a sufficient
sampling density such that quality SAR processing
is achievable. In other words, the synthetic coarray
analysis shows that since the time and frequency
measurement dimensions are more sufficiently
sampled than the spatial measurement dimensions,
they should be the dimensions that largely determine
resolution. For extremely wide satellite constellations,
this may require very long CPIs and wide signal
bandwidths.

V. CONCLUSIONS

There is currently an emphasis on moving
radar technology into space, and one proposed
concept for doing so is a cooperative constellation
of formation-flying micro-satellites. Although
there are many advantages to the microsat concept,
current signal processing algorithms are, in general,
not applicable due to the constellation’s sparsely
populated physical array. Furthermore, little effort
is reported in the literature for dealing with sparsely
sampled, irregularly spaced, physical arrays for
application to SAR and MTI.

To develop appropriate signal processing
algorithms, the ability to describe a radar system’s
important characteristics is needed. To that end, we
have derived a method for quickly and efficiently
determining a radar system’s resolution and ambiguity
characteristics. The technique transforms a radar’s
full sensor parameters: time, frequency, and spatial
position, into a two-dimensional synthetic aperture.
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The synthetic aperture’s overall size determines
its mainlobe width and, therefore, the total system
resolution. Also, the synthetic aperture can be used
to generate a synthetic coarray that can be used for
ambiguity and sidelobe analysis.
A significant advantage of this sensor

representation is that it is robust for both forward- and
sidelooking scenarios and for both large and small
physical arrays. The analysis is valid for fully filled
physical arrays as well as sparse arrays. However,
since the derivation is based on Taylor expansions,
far-field and narrowband conditions are assumed.
While these assumptions may be restrictive for
very large physical arrays and bandwidths, we have
demonstrated through simulation that the synthetic
array can be valid for systems where the physical
array beamwidth controls resolution rather than
bandwidth and coherent integration time. Therefore,
based on the 2D synthetic aperture’s ability to predict
system characteristics over a wide range of sensor
structures and look geometries, the method presented
in this paper should be a valuable tool for analyzing
the performance of radar systems that extend beyond
airborne, sidelooking scenarios.
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