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In the airborne space-time adaptive processing (STAP) setting,

a priori information via knowledge-aided covariance estimation

(KACE) is employed in order to reduce the required sample

support for application to heterogeneous clutter scenarios. The

enhanced FRACTA (FRACTA.E) algorithm with KACE as well

as Doppler-sensitive adaptive coherence estimation (DS-ACE)

is applied to the KASSPER I & II data sets where it is shown

via simulation that near-clairvoyant detection performance is

maintained with as little as 1/3 of the normally required number

of training data samples. The KASSPER I & II data sets are

simulated high-fidelity heterogeneous clutter scenarios which

possess several groups of dense targets. KACE provides a priori

information about the clutter covariance matrix by exploiting

approximately known operating parameters about the radar

platform such as pulse repetition frequency (PRF), crab angle,

and platform velocity. In addition, the DS-ACE detector is

presented which provides greater robustness for low sample

support by mitigating false alarms from undernulled clutter

near the clutter ridge while maintaining sufficient sensitivity

away from the clutter ridge to enable effective target detection

performance.
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ACRONYMS

ACE Adaptive coherence estimate
AMF Adaptive matched filter
APR Adaptive power residue
CA-CFAR Cell-averaging constant false alarm rate
CBP Concurrent block processing
CPI Coherent processing interval
CSR Censoring stopping rule (FRACTA

enhancement)
CTD Censored training data
DS-ACE Doppler-sensitive ACE
CUT Cell-under-test
FML Fast maximum likelihood
FRACTA FML, RC, APR, CBP, TWM, and ACE
FRC Fast RC (FRACTA enhancement)
GC Global censoring (FRACTA

enhancement)
GCM General clutter model
ITD Initial training data
KACE Knowledge-aided covariance estimation
KASSPER Knowledge-aided sensor signal

processing and expert reasoning
LSMI Loaded sample matrix inverse
RC Reiterative censoring
SWP Sliding window processing
TWM Two-weight method
UTD Uncensored training data.

I. INTRODUCTION

A fundamental issue in space-time adaptive
processing (STAP) for the airborne/space-based
radar scenario is the accurate estimation of the
clutter covariance matrix. In the presence of severely
heterogeneous interference, it is desired to employ
low sample support for covariance matrix estimation.
For low (or small) enough sample support it can be
assumed that the interference in the training data is
locally stationary (representative) thereby inhibiting
smearing of the interference covariance estimate.
However, a certain nominal amount of data is required
to estimate effectively the interference covariance
which, in the case of low sample support, must be
supplemented by some other means. In this paper,
we investigate the use of a priori knowledge of the
clutter covariance matrix to maintain a prescribed
performance at low sample support.
Under the condition of low sample support,

we examine the performance of the enhanced
FRACTA (FRACTA.E) algorithm [1—4] when
supplemented with knowledge-aided covariance
estimation (KACE) [5—7] and the Doppler-sensitive
adaptive coherence estimate (DS-ACE) detector
[8]. FRACTA.E is a “meta-algorithm” comprised
of simpler algorithms and metrics, some of which
can be shown to possess optimality properties.
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For the airborne/space-based radar setting, the
FRACTA.E algorithm has been demonstrated [3, 4]
to be proficient at excising outliers that closely
resemble targets (i.e., that match the desired steering
vector) from the training data thereby enabling
the effective detection of densely clustered targets
in the presence of heterogeneous interference in
an efficient manner. In this paper, the FRACTA.E
algorithm is supplemented with KACE and DS-ACE
and applied to the knowledge-aided sensor signal
processing and expert reasoning (KASSPER) I &
II [9, 10] datasets1 in order to ascertain the benefit
of employing estimated prior knowledge when
low sample support is required. The KASSPER
datasets were generated by a high-fidelity clutter
model developed by the Defense Advanced Research
Projects Agency (DARPA) and the Air Force Research
Laboratory (AFRL) and possess several groups
of densely spaced moving ground targets which
cause severe performance degradation for standard
adaptive matched filter (AMF) processors. Previously,
the original FRACTA algorithm was shown [2] to
perform well for environments with dense targets,
heterogeneous clutter, and jamming for three
databases: for the RLSTAP [11] and KASSPER I [9]
simulated databases and the multi-channel airborne
radar measurements (MCARM) [12] measured
database.
The airborne radar space-time adaptive processing

(STAP) configuration is comprised of a radar antenna
system that consists of an N-element uniform linear
array that provides N RF input signals or channels.
Time delayed samples of these N inputs are to be
combined via AMF linear weighting [13]. The time
delayed samples correspond to M identical pulses
with pulse repetition interval (PRI) equal to T which
constitute the coherent processing interval (CPI).
Hence, there is a length MN space-time sample vector
corresponding to each individual range cell.
The solution to the AMF problem results in a

maximization of the output signal-to-noise ratio
(SNR). The maximum output SNR is attained
when the covariance matrix is perfectly known
thereby yielding clairvoyant filter weights. Due to
the lack of knowledge of the external environment,
adaptive techniques require a certain amount of
data to estimate the MN £MN covariance matrix
effectively. The amount of data (the number of
statistically independent and identically distributed
(IID) samples per input sensor) required so that the
performance of the adaptive processor is within 3 dB
of the optimum is called the convergence measure of
effectiveness (MOE) of the processor. It was shown

1Available by request from AFRL/SNRT, 26 Electronic Pky., Rome,
NY 13441-4514.

in [14] that for the standard sample matrix inverse
(SMI) of a full rank MN £MN matrix the MOE is
K = 2MN samples. Further reducing the convergence
MOE is important since the characteristics of the
external interference change rapidly with space and
time in many environments which has led to the
development of techniques such as loaded sample
matrix inverse (LSMI) [15], principal components
inverse [16, 17], the multistage Wiener filter [18, 19],
fast maximum likelihood (FML) [20], and reduced
dimensionality STAP [21]. The convergence MOE
for these techniques is approximately 2J where
J <MN is the number of dominant eigenvalues of
the MN £MN covariance matrix.
Typically for adaptive radar applications, the

sample covariance matrix is estimated using training
data from range cells close to the range cell under test
(CUT) under the assumption that the second-order
statistics of the surrounding range cells are relatively
homogeneous with the CUT. For the standard sliding
window processor (SWP) method, the covariance
matrix is recomputed for each CUT with a number
of guard cells (usually between 3 and 7) on each
side of the CUT excluded from the training data.
However, the presence of outliers in the training data
can skew the covariance matrix estimate such that
a true target in the CUT is suppressed. It has been
shown [1—3] that the FRACTA algorithm, through the
use of concurrent block processing (CBP), reiterative
adaptive power residue (APR) censoring, and adaptive
coherence estimate (ACE) detection, is robust to
target-like outliers in the training data and performs
effectively even in the presence of dense groups
of targets. Furthermore, the censoring stage of the
FRACTA algorithm has since been enhanced [4]
(resulting in FRACTA.E) such that the numerical
efficiency surpasses the standard SWP methodology.
Besides outliers in the training data, another

obstacle to realizing effective STAP performance
is nonstationarity of the second-order statistics
of range cells near the CUT, which gives rise
to nonrepresentative training data. Employing
nonrepresentative training data for the estimation of
the interference covariance matrix results in reduced
probability of detection and increased probability of
false alarm due to undernulled interference [22]. On
the other hand, the reduction in the sample support
in order to maintain homogeneity can cause the
processor to be deficient of the samples necessary to
attain the convergence MOE.
To combat the effects of heterogeneous

nonstationary interference, this paper revisits the
concept of KACE [5, 6] which is based upon the
a priori “bald Earth” radar clutter scenario established
in [23]. For certain known (or estimated) radar
operating parameters, KACE generates an estimate
of the clutter covariance matrix which can be used to
supplement the covariance matrix estimate obtained
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from the training data in order to substantially reduce
the necessary sample support in heterogeneous
environments. To enable further robustness at low
sample support, this paper also develops the DS-ACE
detector which was briefly introduced in [8]. The ACE
detector [24] yields a test statistic for each individual
range/Doppler cell and is known to be quite effective
at discriminating between targets and false alarms that
result from space-time filter sidelobes. The DS-ACE
detector computes jointly the ACE thresholds for
different Doppler bands according to their individual
proximity to the clutter ridge. As a result, undernulled
clutter that occurs due to insufficient sample support
does not cause undue false alarms while sensitivity is
still maintained for the detection of targets off of the
clutter ridge peak.
Other STAP approaches have been proposed

which employ a priori knowledge in one way or
another. In [25] Melvin et al. discussed the use of
prior knowledge from databases such as digital terrain
elevation data (DTED), synthetic aperture radar,
hyperspectral imagery, etc. to enhance the overall
STAP architecture. Prewhitening of received radar
data using a priori knowledge was discussed in [26].
Additional work on knowledge-aided STAP can be
found in, for example, [27]—[30].
The remainder of the paper is organized as

follows. Section II presents a brief overview of the
FRACTA.E algorithm. Section III discusses KACE
and its application to FRACTA.E. In Section IV the
DS-ACE detector is introduced. Finally, Section V
presents simulation results from applying the
FRACTA.E-KACE algorithm to the KASSPER I &
II datasets.

II. THE FRACTA ALGORITHM

FRACTA is an acronym for the systematic
combination of the following algorithms or methods:
FML algorithm, reiterative censoring (RC), the
adaptive power residue (APR metric), concurrent
block processing (CBP), two-weight method
(TWM) computation, and the adaptive coherence
estimate (ACE) metric. FRACTA is therefore a
“meta-algorithm” that is comprised of several
algorithms/detectors that perform the individual
functions of censoring outliers from the data,
covariance matrix estimation, target detection, etc.
Although no optimality claims for FRACTA are
made here or elsewhere, it is found to yield effective
performance in heterogeneous clutter scenarios.
Given the length-MN space-time steering vector

s (which is equal to the Kronecker product of the
M-length desired temporal steering vector and the
N-length desired spatial steering vector [23]), it is
well known [13] that the conjugate weighting that
maximizes the signal-to-interference power ratio of
the length-MN snapshot (or data vector) z associated

with the CUT is given by

w=R¡1s (1)

where R is the true MN £MN interference covariance
matrix for the CUT.
In practice, R is not known and must be estimated

from the available data (typically from the length-MN
sample vectors associated with the range cells
surrounding the CUT exclusive of guard cells). The
FML algorithm [20] is a “reduced-rank” approach
based upon a maximum likelihood formulation and is
used to estimate the unknown covariance matrix from
the K surrounding data vectors (K¿ 2MN snapshots
that are required for SMI [14]). The FML covariance
matrix is assumed to be composed of a known
diagonal matrix (without loss of generality assumed to
be identity after normalization by the internal system
noise power) plus an unknown positive semi-definite
Hermitian matrix.
Some of the K training data vectors z1,z2, : : : ,zK ,

used by FML to estimate the interference covariance
matrix may contain outliers that coalign with the
space-time steering vector s. Censoring of the training
data is therefore required so that potential targets are
not suppressed. The censoring of outliers for a block
of training data is accomplished by first computing the
APRs for the K data vectors within the data block as

APR: fjsHR̃¡1zkj2g, k = 1,2, : : : ,K (2)

in which R̃ is the covariance matrix estimated by
FML from the set of K data vectors and (¢)H is the
complex conjugate transpose (or Hermitian) operation.
Applied in this way, the APR metric is a relative
measure of how closely each snapshot matches the
desired steering vector thereby providing an indication
as to the potential presence of a target. The snapshot
with the largest APR is removed (i.e., censored) from
the set of training data, FML is used to estimate the
covariance matrix from the remaining K ¡ 1 data
vectors, and then the process is repeated reiteratively
(hence RC). This continues until a predetermined
number of snapshots have been censored; either a
maximum allowable number of censored snapshots or
when some stopping criteria is reached. The stopping
criteria is met when a probe vector which is appended
to the training data set is identified as the snapshot
with the largest APR. The probe vector takes the form

probe: ®ps (3)

where ®p is a predetermined magnitude that is set
such that the probe vector is nominally detectable
(10—15 dB above the noise floor after integration).
RC is performed globally in range whereby, for

a given space-time steering vector, all range cells
are included in the training data set. RC is then
performed for each individual Doppler frequency.
Global censoring (GC), as opposed to local censoring
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on smaller blocks of the training data, is especially
useful in areas where dense clusters of targets are
present such that the covariance matrix estimate would
otherwise be skewed if the block of data were not
sufficiently large. The presence of many targets in
an insufficiently large data block can result in low
APR values for the targets and therefore hinder proper
censoring of targets.
As noted previously, the SWP approach exacts

a high computational cost due to repeated matrix
inversions. The use of CBP greatly alleviates much
of the computational burden experienced by SWP
by eliminating the guard cells and designating
a block of KCUT data vectors within the set of
K training data vectors as pertaining to a set of
CUTs. The consolidation of a set of CUTs into a
single training data block effectively reduces by a
factor of KCUT the number of times that covariance
matrix estimation/inversion and censoring need
to be undertaken thereby substantially reducing
computation. Also, the use of RC eliminates the need
for guard cells by adaptively removing target-like
snapshots from the training data. By a process of
RC, each data vector in the set of initial training data
(ITD), which consists of all K training data vectors,
is assigned to either the set of KC censored training
data (CTD) which appear to be target-like snapshots
or the set of KU uncensored training data (UTD). Thus
ITD =UTD[CTD.
To enable the censored potential targets to stand

out further from the quiescent noise level, two
adaptive weight vectors are computed; one each for
the CTD and the UTD. The CTD weight vector wC is
computed using the UTD covariance matrix estimate
R̃U as

wC = R̃
¡1
U s (4)

because it is assumed that all snapshots that resemble
targets have been removed. The UTD weight vector
wU is computed using the ITD covariance matrix R̃I
estimated from the complete set of K training data
vectors as

wU = R̃
¡1
I s (5)

since the UTD is assumed to contain no snapshots
with targets and the ITD has more samples than the
UTD thus providing a more accurate estimate of
the covariance matrix. The weight vectors wC and
wU are then applied to the respective censored and
uncensored snapshots that constitute the set of CUTs.
This procedure is denoted as the TWM. It was shown
in [1] that TWM yields better performance than the
standard one-weight method.
The use of TWM results in targets standing

out dramatically from the suppressed noise and
interference thus greatly improving the detectability
of small target returns. Care must be taken, however,
because censored cells that do not contain targets

Fig. 1. General FRACTA operation.

will stand out somewhat as well. For this reason, in
addition to the usual cell-averaging constant false
alarm rate (CA-CFAR) detector, the ACE metric is
also employed as a measure of target detection. The
ACE metric for range index k is defined as [24]

ACE(k) =
jsHR̃¡1k zkj2

(sHR̃¡1k s)(z
H
k R̃

¡1
k zk)

(6)

where R̃k is the respective covariance matrix (i.e.,
R̃I or R̃U) for the kth range index and Doppler of
interest. The ACE screens out potential detections
that are not coaligned with the desired steering
vector s, such as undernulled clutter or targets in the
antenna/Doppler filter sidelobes.
A functional block diagram of the FRACTA

algorithm as a whole is shown in Fig. 1. The
complete detection mechanism used for the FRACTA
algorithm consists of three detection stages: censoring,
CA-CFAR, and ACE. APR censoring is applied to
the set of ITD fz1,z2, : : : ,zKg such that the ITD is
divided into a set of UTD and a set of CTD. The
UTD is used to compute the adaptive weight vector
wC which is applied to the CTD to generate the
censored output power residues. The ITD is used
to compute the adaptive weight vector wU which is
applied to the UTD to generate the uncensored output
power residues. The censored output power residues
are subjected to a local CA-CFAR detector which uses
the uncensored output power residues in the proximity
of the CUT to estimate the quiescent level. The cells
passing the CFAR detector are then tested with an
ACE detector that compares the ACE of the respective
candidate cells with some predetermined threshold.
Cells that pass the ACE detector are declared as
detections.
In [4], enhancements to the FRACTA algorithm

were presented which greatly increase its numerical
efficiency as well as provide some improvement
in performance. Specifically, these enhancements
pertain to censoring which is the most computational
intensive portion of the FRACTA algorithm as well as
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being the first level of detection. The enhancements
consists of GC, fast reiterative censoring (FRC), and
censoring stopping rule (CSR). GC involves using a
large block (if not all) of the data vector samples to
perform censoring for each individual Doppler under
the assumption that cells containing targets constitute
a relatively small portion of the total number of cells.
Hence, target cells tend to be nulled the least and
therefore will most likely possess the largest APR
values. Fast RC involves the replacement of the FML
algorithm with the well-known LSMI for which
RC of the data sample vectors from the covariance
matrix estimate is then accomplished by means of
Woodbury’s identity [31], thereby eliminating the
need for repeated matrix inversions. Finally, the
CSR appends a vector to the training data that takes
the form of the desired steering vector scaled to be
nominally detectable (say 10—15 dB). When the probe
is censored, it is assumed that all detectable target
cells have been censored for the particular Doppler,
thus censoring is halted. Also, potential false alarms
are reduced due to fewer overall censored cells. The
FRACTA algorithm, with these enhancements, is
denoted as the FRACTA.E algorithm. Additional
information regarding the FRACTA.E algorithm can
be found in [32].

III. KNOWLEDGE-AIDED COVARIANCE ESTIMATION

KACE employs partial approximate knowledge
of the clutter covariance matrix based upon the
simplified general clutter model (GCM) [5, 15].
The spatial input channels are assumed to be highly
matched (or calibrated). Prior knowledge is assumed
for the number of antenna elements and pulses in
the CPI, the radar ¯ parameter [23] (the number of
half-wavelengths traversed by the platform between
successive pulses which measures the slope of the
clutter ridge in azimuth-Doppler), the crab angle,
the clutter power, the model for the intrinsic clutter
motion (i.e., Gaussian [33], Billingsley [34], etc.)
and its associated parameters, the element-spacing
to wavelength ratio, an antenna transmit pattern
(approximate), and the look direction azimuth and
depression angles. All of these are either system
design parameters or are readily measurable (but not
necessarily accurate). In general, at a given nominal
range from the radar, the KACE covariance matrix
takes the form [6]

R̃KACE =
NcX
`=1

»`(¡`¯b`bH` )− (a`aH` ) (7)

where Nc is the number of independent clutter patches
evenly distributed in azimuth, »`, ¡`, b`, and a` are
the power, intrinsic clutter covariance matrix (ICM),
M £ 1 temporal steering vector, and N £ 1 spatial

steering vector, respectively, of the `th clutter patch
which are functions of the a priori parameters listed
previously. The operators ¯ and − are the Hadamard
and Kronecker matrix product operators, respectively.
The N-length temporal and M-length spatial steering
vectors are defined as

a`(n) = exp
µ
j(n¡1)2¼ d

¸0
cosµ` sinÁ`

¶
,

`= 1,2, : : : ,Nc, n= 1,2, : : : ,N (8)

and

b`(m) = exp
µ
j(m¡1)2¼ d

¸0
¯ cosµ` sin(Á`+Áa)

¶
,

`= 1,2, : : : ,Nc, m= 1,2, : : : ,M (9)

where d is the distance between adjacent antenna
elements, ¸0 is the wavelength of the center frequency
of the transmitted waveform, (Á`,µ`) is the true
azimuth and depression angles of the `th clutter patch
measured from the reference of the antenna platform,
Áa is the misalignment angle (or crab angle), and ¯ =
2vT=d in which v is the platform velocity. Following
the development in [5, 6], the ICM is modeled by a
constant M £M matrix, ¡ , using the Gaussian clutter
spectral model [33] where

¡q,r = ½
(q¡r)2 , q,r = 1,2, : : : ,M (10)

where ½ is the clutter correlation parameter and is
necessarily close to 1. Finally, known array channel
mismatch effects as a function of Á` and µ` can be
included in b`(m), albeit these effects are not included
in the present formulation of R̃KACE.
For the bald Earth model the clutter patch

powers are assumed to be uniform in azimuth and
are set according to the average measured clutter
power over range. Hence, R̃KACE is scaled such that
each of its diagonal elements is the average of the
diagonal elements of the data-estimated covariance
matrix R̃. Of course, superior performance could
be expected if the individual patch powers for each
particular range cell were available via some a priori
knowledge database. However, this would necessitate
the calculation of R̃KACE for each individual range cell
which is quite computationally burdensome.
KACE is employed in the computation of the

AMF weight vectors as [5]

ŵ=
³
R̃+ R̃KACE

´¡1
s (11)

such that the effective covariance matrix is comprised
of both clutter covariance information measured
directly from the environment in the form of the data
vector samples and estimated a priori information
via KACE. We utilize KACE to supplement the
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FRACTA.E algorithm under the condition of low
sample support due to heterogeneous interference.
Thus R̃KACE acts as a colored loading term similar
to that used in [26] and [35] which provides an
approximation to the information contained in the
data-estimated clutter covariance matrix R̃ thereby
enabling sample support lower than the usual
2J samples required by standard rank reduction
techniques [15—20].
The a priori clutter covariance matrix R̃KACE

resulting from the bald Earth approximation and
Gaussian clutter spectral model for the ICM is by
definition slightly mismatched to the true clutter
covariance matrix R. In addition, radar platform
parameters such as crab angle and platform velocity
are estimates and thus may contain errors. However,
as discussed in [5], there are still important features of
the true clutter covariance matrix that are incorporated
into R̃KACE. Furthermore, the part of R that is not
known or properly incorporated into R̃KACE is
contained partially in the data-estimated covariance
matrix R̃. The use of R̃KACE thus provides a means of
(at least approximately) estimating the true covariance
matrix R when too few samples are available due to
clutter heterogeneity.

IV. DOPPLER-SENSITIVE ACE DETECTOR

The ACE detector, which is the last detection stage
for the FRACTA.E algorithm, has been found to be
effective at discriminating true targets from large
returns associated with space-time sidelobes, thereby
minimizing false alarms [2, 24]. In general, the ACE
values close to the clutter ridge in Doppler tend to
be larger than those farther away due to the possible
presence of undernulled clutter. As the sample support
for the AMF weight vector estimation decreases,
the amount of undernulled clutter subsequently
increases. Hence, it would be prudent to employ
an ACE threshold that is Doppler dependent and
increases according to its proximity to the clutter ridge
in order to improve the robustness of FRACTA.E to
undernulled clutter.
It is known that for side-mounted antenna arrays

and small crab angle, the Doppler frequency of the
clutter ridge for the spatial direction of interest is
approximately [23]

fc(µlook,Álook) =
2v
¸0
cosµlook sinÁlook (12)

where µlook and Álook are the depression and azimuth
angles for the spatial look direction, respectively. At
a given spatial look direction, when the clutter ridge
Doppler frequency is higher than PRF=2 (such as may
occur with low PRF radars), the clutter ridge is aliased

to the Doppler frequency

fc,alias =
·µ
fc+

PRF
2

¶
modPRF

¸
¡ PRF

2
(13)

where xmody represents the “x modulo y” operation.
For each individual Doppler bin, the ACE

threshold should be set according to its proximity
to the clutter ridge (taking into account the potential
wrap-around in Doppler frequency) and the desired
false alarm probability. Hence, a large ACE threshold
should be set for Dopplers close to the clutter ridge
and the Dopplers further from the clutter ridge
are then allowed to have a relatively low ACE
threshold thereby maintaining the sensitivity to detect
targets. This methodology is denoted as the DS-ACE
detector.
The DS-ACE methodology can be implemented

in a data-dependent manner by taking a CFAR-like
approach (i.e., setting the respective ACE thresholds
according to the surrounding quiescent ACE levels). It
is assumed that local snapshots (in terms of range)
that may potentially contain a target have been
censored such that the set of K ITD snapshots has
been separated into a set of Kc CTD snapshots and
a set of Ku UTD snapshots (where K =Kc+Ku). As
with (4) and (5), two covariance matrix estimates are
computed; R̃U, the UTD covariance matrix estimate
comprised of only the uncensored local snapshots, and
R̃I, the ITD covariance matrix estimate composed of
both censored and uncensored local snapshots. The
UTD covariance matrix estimate R̃U is employed
in (6) to compute the ACE values for the block of
kc = 1,2, : : : ,Kc local censored snapshots zCTD,kc for
each of the m= 1,2, : : : ,M Doppler frequency bands
using the associated steering vector sm as

ACECTD(m,kc) =
jsHmR̃¡1U zCTD,kc j2

(sHmR̃
¡1
U sm)(z

H
CTD,kc

R̃¡1U zCTD,kc)
:

(14)

It is this value that is to be compared with the ACE
threshold to determine if a target exists at a particular
range cell and Doppler.
To determine the level of the ACE threshold we

compute a quiescent ACE level which corresponds
to the H0 hypothesis where no target is present. This
is accomplished by determining the ACE values
for the block of ku = 1,2, : : : ,Ku local uncensored
snapshots zUTD,ku for each of the m= 1,2, : : : ,M
Doppler frequency bands as

ACEUTD(m,ku) =
jsHmR̃¡1I zUTD,ku j2

(sHmR̃
¡1
I sm)(z

H
UTD,ku

R̃¡1I zUTD,ku)
:

(15)

To set the local relative quiescent level for the M
Doppler bins of the ACE detector we average the
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Fig. 2. DS-ACE computed threshold for KASSPER II.

local UTD ACE values for each Doppler over the
block of local uncensored range cells which yields
the M-length vector

° =

2666666664

1
Ku

KuX
ku=1

ACEUTD(1,ku)

...

1
Ku

KuX
ku=1

ACEUTD(M,ku)

3777777775
(16)

in which each element of the vector will lie between
0 and 1. As an example, Fig. 2 illustrates the ACE
threshold values computed for KASSPER II in
which the peak of the clutter ridge in Doppler
from (12) and (13) is located at ¡414 Hz. In
order to obtain the desired level of false alarm,
° is scaled to yield the DS-ACE threshold vector
¿ = ®° where ® is a constant scale factor (across
the Doppler bins) used to control the false alarm
probability and is set such that the smallest value
of ¿ is the minimum desired threshold level ¿min.
Note that to some degree a nonadaptive approach
similar to the DS-ACE is already employed in most
pulse-Doppler radars whereby returns in Doppler
bins near the clutter ridge peak are simply excluded
from detection. The benefit of DS-ACE therefore
lies in the fact that it adaptively controls the ACE
threshold at the “shoulders” of the clutter ridge
outside of the excluded Doppler bands where targets
are detectable yet undernulled clutter may still
exist.

V. SIMULATION RESULTS

In this section, the performance of the FRACTA.E
algorithm supplemented with KACE and DS-ACE is
evaluated using the KASSPER I challenge datacube
[9] and CPI 22 of the KASSPER II data [10] (for
which there is ground truth to compare). Other
researchers [36, 37] have presented promising results
for the KASSPER I datacube. Both KASSPER I
and II datasets contain dense groups of targets
which are known to degrade performance for the
standard STAP processors. The simulated radar
in KASSPER II has the added difficulty of being
operated at a higher frequency with approximately
the same PRF as the KASSPER I scenario which
gives rise to significant aliasing of the clutter
for the KASSPER II dataset thereby resulting in
a considerably higher concentration of clutter.
Therefore, the clutter in KASSPER II requires more
adaptive degrees-of-freedom to adequately suppress.
Due to range/Doppler sidelobes resulting from

pulse compression and Doppler filtering, it is common
for a target to spread into nearby range-Doppler
cells. For this reason, it is standard procedure for a
radar to cluster target detections such that a detection
in a given range-Doppler cell is associated with a
target that lies in a contiguous range cell or Doppler
band. For the results reported here, we cluster §1
cells in range and §1 bands in Doppler for all
processing schemes. In other words, if a censored
range/Doppler cell which exceeds both the CFAR and
ACE thresholds falls within the 3£ 3 range/Doppler
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Fig. 3. Incident power versus range and Doppler for KASSPER I.

grid centered on a real target (based upon the
available KASSPER ground truth) it is declared a
true detection. If not, it is deemed a false alarm. Note
that in this way several targets may be counted from a
single detection but each is counted only once (i.e., no
repetition of counted targets). While in practice these
targets could not be separately counted, this approach
provides an easy means for comparison in terms of
target detection performance.
For both KASSPER I and II data sets, clairvoyant

knowledge results are obtained by applying the
available clairvoyant covariance matrices available
with the respective data sets. The clairvoyant
covariance matrices contain the true second-order
statistical information of the clutter for each individual
range cell. Following the application of the weight
vector that results from using the clairvoyant
covariance matrix, the ACE metric is computed and
compared with a threshold to determine if it is to be
declared a detection.

A. Performance of FRACTA.E-KACE for KASSPER I

The incident power on the first antenna element
for KASSPER I is presented in Fig. 3. The operating
parameters for KASSPER I are given in Table I.
The KASSPER I dataset is simulated high-fidelity
airborne radar data for the nonhomogeneous terrain
near Olancha, CA which consists of mountains and
deserts. The average power incident upon a single
antenna element relative to the noise floor is depicted
in Fig. 4 in which the dynamic range is found to
be roughly 28 dB and the average power is 37 dB

above the noise floor. The peaks and troughs in
range are believed to be the result of shadowing
due to mountains. The simulated airborne radar was
flying at 3000 m altitude with an average velocity of
100 m/s traveling due east (270± measured from true
north) with a 3± average crab angle. Some random
fluctuation was present in the platform velocity and
crab angle representative of actual platform motion
over the CPI. The 11 (virtual) antenna array elements
were spaced slightly less than a half-wavelength apart
at 0.1092 m (0.9028 half-wavelength spacing), and
the antenna boresight was pointed at 177± with a 5±

depression angle. The radar operating parameters
can be found in Table I which were those employed
for the KACE covariance matrix in (7) and are thus
inclusive of any errors introduced due to platform
motion and array calibration errors which are on
the order of 5—10 deg. Finally, the KASSPER I
dataset is found to possess a sample covariance
matrix with roughly 50 dominant eigenvalues
so that according to the 2J rule established in
[16], the required sample support is at least
100 samples.
It has been shown in [4] that given sufficient

sample support for the KASSPER I datacube the
FRACTA.E approach is capable of attaining nearly the
same target detection performance as when clairvoyant
knowledge of the clutter is available (which it is not
in practice). Fig. 5 illustrates the effects of KACE
on FRACTA.E in terms of target detections for a
single false alarm as a function of sample support
for the computation of the AMF weight vectors.
FRACTA.E requires roughly 100 samples at which
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Fig. 4. Range profile of incident power for KASSPER I.

TABLE I
Operating Parameters for KASSPER I High-Fidelity Datacube

Parameter Value

carrier frequency 1240 MHz
bandwidth 10 MHz
number of pulses (M) 32
number of array channels (N) 11
minimum range 35 km
maximum range 50 km
number of range cells 1000
pulse repetition frequency 1984 Hz
beta 0.923
peak power 15 kW
platform speed 100 m/s
crab angle 3±

point it detects 192 out of the 268 targets present
for a single false alarm, the same as clairvoyant.
However, when KACE is used to supplement the
AMF covariance matrix the sample support can be
as low as 30 and near-clairvoyant target detection
performance is maintained. Also, FRACTA.E with
and without KACE significantly outperforms the SWP
method using LSMI primarily due to the density of
targets which SWP does not censor from the training
data.
When the DS-ACE detector is used, the detection

performance of FRACTA.E with and without KACE
for a single false alarm is shown in Fig. 6. While
the FRACTA.E algorithm with DS-ACE does not
quite reach clairvoyant performance (because the
threshold is now estimated from the data), it does

achieve a higher number of target detections for
low sample support (steady state reached at » 60
samples) than when DS-ACE was not employed.
Also, supplementing FRACTA.E with KACE results
in detection performance that is close to clairvoyant
for a sample support of only 20. Furthermore, with
zero sample support (i.e., essentially nonadaptive) 144
targets are detected by FRACTA.E with KACE and
DS-ACE whereas 100 are detected when DS-ACE is
not used. As expected, KACE improves performance
by replacing some of the deficient clutter covariance
information when sample support is low. Also, the
DS-ACE detector is found to add some additional
robustness to the FRACTA.E algorithm since it
reduces the probability of false alarms being detected
near the clutter ridge where undernulled clutter may
exist, especially for low sample support.

B. Performance of FRACTA.E-KACE for KASSPER II

The incident power on the first antenna element
for KASSPER II is presented in Fig. 7. The
KASSPER II datacube is also simulated high-
fidelity airborne radar data for the nonhomogeneous
mountainous/desert terrain near Olancha, CA. The
average power incident upon a single antenna element
relative to the noise floor is depicted in Fig. 8
where the dynamic range is roughly 50 dB and
the average clutter power is 29 dB above the noise
floor. Compared with KASSPER I, the KASSPER II
datacube suffers from more severe shadowing with
deep nulls such as near range index 1400. The
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Fig. 5. FRACTA.E with/without KACE applied to KASSPER I.

Fig. 6. FRACTA.E using DS-ACE with/without KACE applied to KASSPER I.

simulated airborne radar was flying at 7000 m altitude
traveling at an average velocity of 150 m/s due east
(270± measured from true north) with a 3± average
crab angle. The 12 input channels are obtained
after subarray beamforming on 96 antenna array
elements in which the antenna elements were spaced

exactly a half-wavelength apart, and the antenna
boresight was pointed at 182± with a 5± depression
angle. The operating parameters for KASSPER II
are given in Table II. The sample covariance matrix
for KASSPER II is found to possess roughly 150
dominant eigenvalues.
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Fig. 7. Incident power versus range and Doppler for KASSPER II.

Fig. 8. Range profile of incident power for KASSPER II.

For KASSPER II we examine the performance of
FRACTA.E using DS-ACE with and without KACE.
For the KASSPER II dataset, the relatively low PRF
for the 10 GHz operating frequency causes Doppler
aliasing of the clutter. The result is a less distinct
clutter ridge in range/Doppler space. Therefore, it is
likely that substantial undernulled clutter will exist

after the application of the AMF weight vector. It is
common practice for pulse-Doppler radar to censor
a number of the Dopplers surrounding the expected
location of the clutter ridge peak (which can be
estimated via (12) and (13) for a given space-time
steering vector) as the false alarms generated in those
Dopplers would greatly outweigh the possibility
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Fig. 9. FRACTA.E with/without KACE applied to KASSPER II.

TABLE II
Operating Parameters for KASSPER II High-Fidelity Datacube

Parameter Value

carrier frequency 10 GHz
bandwidth 10 MHz
number of pulses (M) 38
number of array channels (N) 12
minimum range 30 km
maximum range 55 km
number of range cells 1667
pulse repetition frequency 2081 Hz
beta 9.616
peak power 10 kW
platform speed 150 m/s
crab angle 3±

of detecting targets. To that end, the returns in the
Doppler bin corresponding to the peak of the clutter
ridge and 3 Doppler bins on either side of the peak
are not considered for detection. The DS-ACE
detector therefore mitigates the undernulled clutter
around the “shoulders” of the clutter ridge.
Using clairvoyant knowledge of the clutter

covariance matrices yields 82 detected targets out
of the 127 targets present for a single false alarm.
However, 21 of these targets lie within a 3 range cell
cluster almost exactly at the peak of the clutter ridge.
Therefore, eliminating the 21 targets at the clutter
ridge peak since they are apparently not moving, the
clairvoyant case yields 61 target detections for a single
false alarm. As depicted in Fig. 9, the FRACTA.E
algorithm detects 47 targets for a single false alarm

when the sample support reaches 250. When KACE
is employed to supplement FRACTA.E, the number
of target detections drops to 36 for the same sample
support. However, KACE provides as many as 25
more target detections when the sample support is low
(less than 50).
As illustrated in Fig. 10, using DS-ACE with

FRACTA.E boosts the number of detection for a
single false alarm to 55 when the sample support
reaches 250. When using KACE as well, the same
level of detection performance is achieved for a
sample support of 80, a 3-fold reduction in required
sample support. Hence, even for severely aliased
clutter, the FRACTA.E algorithm coupled with KACE
and DS-ACE achieves near-clairvoyant performance
(outside of the clutter peak) even for very low sample
support.

VI. CONCLUSIONS

The FRACTA.E has been shown previously
to be an effective STAP methodology for the
airborne/space-based radar configuration. In
this paper, the performance of FRACTA.E was
examined when low sample support is required
due to heterogeneity of the interference. To enable
satisfactory performance at low sample support,
FRACTA.E was supplemented with prior knowledge
via KACE which supplies some of the clutter
covariance information that is deficient due to
low sample support. In addition to KACE, a
DS-ACE detector was introduced that provides
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Fig. 10. FRACTA.E using DS-ACE with/without KACE applied to KASSPER II.

further robustness for the FRACTA.E algorithm to
undernulled clutter which is especially problematic
at low sample support. For the KASSPER I & II
high-fidelity simulated radar datasets, the combination
of KACE and DS-ACE allowed the FRACTA.E
algorithm to achieve near-clairvoyant performance
for sample support as low as 1/3 of that normally
required to achieve near ideal detection
performance.
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