
Creating an ILLiad Transaction Archive

Janetta Waterhouse, Systems Librarian

© University of Kansas Libraries
1425 Jayhawk Blvd.
Lawrence, KS 66045

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by KU ScholarWorks

https://core.ac.uk/display/213385044?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Table of Contents
Introduction.. 1
The transaction archive project ... 2
Designing the archive.. 2
Creating the archive database .. 3
Populating the archive... 4

Date range and field for selecting records....................................... 5
How to access and search the archive.. 5

Deleting data from the main database 6
Future directions for the archive.. 6
Appendices - SQL code .. 8

Appendix A - Create the transaction archive................................... 8
Appendix B - Select records from Transactions table 12
Appendix C - Select records from Notes table 13
Appendix D - Select records from History table 14
Appendix E - Select records from Tracking table 15
Appendix F - Delete records from Transactions and related tables
.. 16

1

Introduction
Libraries started with ILLiad1 lending during October 2003 and
borrowing and document delivery during February 2004. At the
time this project was finally implemented, University of Kansas
(KU) Libraries2 had over 115,000 loan requests and nearly 160,000

article and document delivery requests, representing approximately 200,000 lending,
52,000 borrowing and 23,000 document delivery transactions. This ILLiad database is
also shared with KU Medical Center (KUMC) Library, but the archive project is
specific to the main campus in Lawrence.

In this technical paper I will describe the process we followed to create a transaction
archive for KU Libraries’ ILLiad database. At the time of this writing, we are at ILLiad
version 7.2. I assume the reader has advanced user or administrative knowledge of his
or her own institution’s ILLiad software and related user data. I do not provide
extensive details at the Microsoft SQL Server level, only referring to some actions that
need to be performed on the server. I have included the SQL code I created for testing
purposes as appendices. There are undoubtedly other ways, some of them perhaps
more elegant, to achieve the same result with SQL. The code has been included here
for reference; please feel free to use it with caution. I am happy to respond to questions
or comments about this document, the code or the process described. Please direct
them to me at jan@janwaterhouse.com.

The KU ILLiad configuration is non-standard in two ways. First, as mentioned, the
Libraries share our locally managed server with KUMC. KU and KUMC Transactions
and Users thus are in the same table but appear separately through views. The SQL
code we used takes this into account, but I modified the code in the appendices of this
document to be mostly generic. Second, KU Libraries has multiple branches and uses
the NVTGC3 code as the pickup location. Patrons select a pickup location upon first
login, which modifies the value of the NVTGC field, and they can modify it and a few
other user values with the “Change User Information” option on the menu.

1 OCLC ILLiad is a software implementation of the interlibrary loan process. It began at Virginia Polytechnic
Institute and State University, has been developed by Atlas Systems, Inc. (see http://www.atlas-sys.com/),
and is now officially “OCLC ILLiad Resource Sharing Management Software”. I will refer to it as “ILLiad”.

2 KU Libraries is treated as a singular, proper noun in this document.

3 NVTGC, originally an acronym for Northern Virginia Tech Graduate Center, now refers to a pickup
location or processing site for libraries that want to distinguish between locations. For details see
http://www.atlas-sys.com/documentation/illiad/content/NVTGC.pdf

KU

 2

The transaction archive project
Unlike the Voyager integrated library system (ILS) used by KU Libraries, which
archives circulation transactions once an item is discharged and immediately
disassociates patron information, ILLiad retains interlibrary loan and document
delivery transactions and their related user data indefinitely unless some extra action is
taken. There are vendor procedures in place to remove transactions and to remove the
username from transaction records. However, simply removing the transactions was
not an acceptable solution for KU Libraries because we need to retain some requests
for copyright information for three years and would like to retain other information
related to transactions for bibliographic reports and workflow analysis indefinitely.
Removing the username from the transaction was not acceptable either since that
would also disassociate all patron information, and we particularly want to keep the
patron department, status and pick-up location related to a transaction for reporting
purposes. The solution proposed was to create a separate database without related
patron information for archived transactions.

Lars Leon, Head of Access Services and Resource Sharing, proposed a project to
archive non-patron transaction data and subsequently remove the transactions from
the ILLiad database. He specified which data were needed and outlined criteria for
selecting and deleting the records. The result of this project is a Microsoft SQL Server
database, external to ILLiad, that allows us to pull together information from a variety
of sources to maximize support for collection development as well as workflow
analysis. It is available to selected staff for searching and generating reports using
Microsoft Access.

Designing the archive
After clarifying some details for this project, I designed a simple database structure for
an archive based on the table structure in the ILLiad database, ILLData (see Figure 1).
The basic structure was determined by starting with a diagram provided by Atlas
Systems titled “Key Table Relationships”, available at
http://www.atlas-sys.com/documentation/illiad/content/ILLiadDatabaseDiagram.pdf This
Atlas document presents a simple, graphical representation of the main tables that we
used to decide what should be included in the archive. It is noteworthy that the Atlas
diagram is a version or update or two behind the current version. At the time of our
implementation, there were some fields in the Transactions table that were not listed in
the diagram. Figure 1 is a simple implementation of the initial test database that I
created using Microsoft Access as a mockup. Note that most of the fields in the
Transaction table are not included in the figure.

 3

FIGURE 1 Basic relational diagram of the transaction archive

The archive database includes the following tables:

• ReasonsForCancellation and LendingReasonsForCancellation, which need
to be populated once and updated only when reasons are added

• Tracking, History and Notes without modification
• Transactions with modification

In addition, the Status, Department, and NVTGC (pickup location) fields from the
Users table are pulled into the Transactions table in the archive for reporting purposes.
The Transactions table also has a date archived field.

Creating the archive database
Creating the archive database was fairly straightforward. The
SQL code in Appendix A used for creating the database was
produced with Microsoft SQL Server Query Analyzer. Selecting
the table of interest and right-clicking will give a set of options,

one of which is “Script Object to New Window As Create”. This creates a
window with the code to create that specific table. By selecting each table of interest,
six total, and copying the create table codes into one file, all that remains is to add the
initial line to create the database and code at the end to create an index. It is also

See Appendix A
 for the SQL code
used to create the
database.

 4

possible to create a script for the entire database within the Microsoft SQL Server
Enterprise Manager. However, the additional code and method for creating primary
keys seemed much more cumbersome.

Please note that the code in Appendix A has been created specifically for KU. A few
Transaction table fields that are not used here were omitted in both the database
creation and record selection code. As mentioned, three fields from the Users table are
pulled into the archive Transactions table: Status, Department and NVTGC. Libraries
with no special use for the NVTGC field will not need to include it in the archive.

Populating the archive
Data for populating the archive database is captured with select
statements that restrict by TransactionDate and a
TransactionStatus of either “Request Finished” or “Cancelled by
ILL Staff” and saved to a file that can be imported to the archive
by someone with appropriate access to the Microsoft SQL
Server. We added additional select criteria to restrict records to

KU Libraries and not KUMC that is noted in the comments in Appendices C, D and
E. Other libraries in a shared server environment will need to take this into account.

Considerations for selecting data:

1. ReasonsForCancellation and LendingReasonsForCancellation: This data
needs to be selected from ILLData and imported into the archive once
and then updated only when the reasons tables change. No code has been
provided for this in the appendices. A simple SELECT * from
[table_name] will capture all of the relevant data. Institutions such as KU
with a shared server may need to add the criteria WHERE NVTGC !=
‘value’.

2. Transactions table: These records are selected partially and related fields
are included. The Transactions fields Username and Patron will have
patron data and should not be selected if patron privacy is to be
maintained in the archive. Other fields unused at this institution are also
not selected, but the Status, Department and NVTGC fields from the
Users table are added to the transaction record.

3. Tracking, History and Notes tables: While it is possible to bring these
tables into the archive in their entirety, they may contain user data. The
fields [Tracking]Changedby, [History]Username, and [Notes]Addedby may
contain a patron’s username, system values or pertinent staff usernames
useful for workflow analysis. In order to remedy the patron privacy issue,
two versions of select were used for each table. One version compares the
field values in question with acceptable values and selects the entire record.
The other version selects records with patron data and replaces the

See Appendices B
through E for the
SQL code used to
select transactions and
related data for
populating the archive.

 5

appropriate field, ChangedBy, Username or AddedBy, with the text
“Patron” so that no user data is captured for the archive.4

Date range and field for selecting records
The transaction date range used in this code is for a specific period, “older than June 1,
2006”, and thus must be changed manually to match the desired range before
submitting the query. Once we have determined how often transactions will be
automatically archived, this will be replaced with different code to select non-active
transactions from more than x number of days ago. The date criteria would become
WHERE (TransactionDate < GETDATE() – 30), which would ignore transactions
from the past 30 days.

We have chosen to use the TransactionDate field in the Transactions table as the date
to select records for archiving and deletion. While this date changes often during the
course of an active transaction, it shouldn’t change once a transaction’s status has
changed to ‘Request Finished’ or ‘Cancelled by ILL Staff’. Rather than trawl related
Tracking records for another date field to use, we have chosen to keep it simple and
accept that this combination of status and date will be acceptable for our purposes.

How to access and search the archive
Creating and populating the archive all happens on the Microsoft SQL Server.
Authorized library staff are able to connect to, search and create reports from the
archive using Microsoft Access. In order to do this, an ODBC connection between the
archive database on the Microsoft SQL Server and Microsoft Access on individual staff
workstations must be created. The database system administrator will need to make
sure that users have the appropriate access to the archive and can assist in setting up
the Microsoft Access connection.

Note

Please use caution when using the SQL code included in this
document, especially Appendix F which will delete records from
the ILLData database.

4 The code in Appendices D and E compare the Username field from the Staff table. Additional select criteria
will need to be added for departed staff whose records have been removed from the Staff table via
Customization Manager or else the code will replace a valid, departed staff id with the text “Patron”.

 6

Deleting data from the main database
One of the main reasons for the archive is to remove historical
patron information. Once the archive was created and
populated, the next step was to delete transactions and related
records that had been archived from the main ILLiad database.
Deleting transactions from the ILLData database needs to be

done with care because the TransactionNumber, the primary key for the Transactions
table, references records in several other tables. If the related records aren’t removed
from the secondary tables prior to being removed from the Transactions table, they
will be ‘orphaned’ and difficult to find and remove. The “Table Fields” chapter of the
ILLiad Administrative Suite: Reference Guide, located at http://www.atlas-
sys.com/documentation/illiad/, lists all of the tables that use the TransactionNumber.
We reviewed the local data before choosing to delete from the Notes, Tracking and
History table prior to deleting from the Transactions table. It is also very important to
use the same date range for selecting and deleting records. The delete code in
Appendix F removes records from these secondary tables with a join based on
TransactionNumber using the same date and status criteria as the select statements
before deleting records from the Transactions table. It is also possible to delete
records from ILLiad using the Database Manager. Contact OCLC support for
assistance or check the ILLiad documentation5 for more information.

Future directions for the archive
One remaining step is to have a clearly defined date range for selecting, archiving and
deleting the records from the ILLiad database so that the process can be automated on
the server and more current records will be available in the archive for reports. One
unresolved issue related to this is identifying transactions with outstanding billing. To
date we have only selected transactions that are over a year old and have not been
concerned about selecting and subsequently removing transactions that have
outstanding billing issues. Since KU Libraries does not currently use ILLiad’s billing
module, we will need to develop another method for not selecting these transactions
before we begin archiving and deleting transactions from the recent past.

Removing transactions on a regular basis will help with the maintenance of patron
records. KU Libraries is just beginning to pre-register patrons by importing records
into the Users table. Since we will not remove patrons that are either currently active at
KU or have related records in the transactions table, more inactive patrons can be
removed as transactions are archived and removed from the main database.

5 For OCLC support see http://www.oclc.org/support/default.htm For Atlas ILLiad documentation see
http://www.atlas-sys.com/documentation/illiad/

See Appendix F
for the SQL code to
delete transactions
from the ILLData
database

 7

Now that the archive database is in place and it can be accessed via Microsoft Access,
Lars can begin the next project: converting his current Microsoft Access reports for
copyright payment and compliance, bibliographic reports and workflow analysis used
against the main ILLiad database to run against the transaction archive. Working with
the archive in this way will undoubtedly result in some modifications to the database
structure and perhaps changes to the way data is selected for import. For example, it
may not be necessary to capture all of the records or fields in the Notes, History or
Tracking. It would also be possible to retain some calculations created for reports in a
field for later use. Although the structure and processes may change or be refined over
time, getting the initial archive created and populated is the necessary first step.

 8

Appendices - SQL code
Appendix A - Create the transaction archive

CREATE DATABASE [ILLIAD_TRANSACTION_ARCHIVE]
GO

USE ILLIAD_TRANSACTION_ARCHIVE
CREATE TABLE [ReasonsForCancellation] (
 [ReasonNumber] int NOT NULL ,
 [NVTGC] varchar (20) NOT NULL ,
 [Reason] varchar (150) NULL ,
 [DefaultNote] varchar (255) NULL ,
 CONSTRAINT [ReasonNVTGC4_PK] PRIMARY KEY CLUSTERED
 (
 [ReasonNumber],
 [NVTGC]
) ON [PRIMARY]
) ON [PRIMARY]

CREATE TABLE [LendingReasonsForCancellation] (
 [ReasonNumber] int NOT NULL ,
 [NVTGC] varchar (20) NOT NULL ,
 [Reason] varchar (150) NULL ,
 [DefaultNote] varchar (255) NULL ,
 [OCLCCode] varchar (50) NULL ,
 [DoclineCode] varchar (50) NULL ,
 [RLINCode] varchar (50) NULL ,
 CONSTRAINT [LReasonNVTGC_PK] PRIMARY KEY CLUSTERED
 (
 [ReasonNumber],
 [NVTGC]
) ON [PRIMARY]
) ON [PRIMARY]

CREATE TABLE [Tracking] (
 [TransactionNumber] [float] NOT NULL ,
 [DateTime] datetime NOT NULL ,
 [ChangedTo] varchar (40) NOT NULL ,
 [ChangedBy] varchar (50) NULL ,
 CONSTRAINT [PK_Tracking_1__14] PRIMARY KEY CLUSTERED
 (
 [TransactionNumber],
 [DateTime],
 [ChangedTo]
) ON [PRIMARY]
) ON [PRIMARY]

 9

CREATE TABLE [History] (
 [TransactionNumber] int NOT NULL ,
 [DateTime] datetime NOT NULL ,
 [Entry] varchar (250) NOT NULL ,
 [Username] varchar (50) NULL ,
 CONSTRAINT [PK_History] PRIMARY KEY NONCLUSTERED
 (
 [TransactionNumber],
 [DateTime],
 [Entry]
) ON [PRIMARY]
) ON [PRIMARY]

CREATE TABLE [Notes] (
 [TransactionNumber] float NOT NULL ,
 [NoteDate] datetime NOT NULL ,
 [Note] varchar (800) NOT NULL ,
 [AddedBy] varchar (20) NULL ,
 [NoteType] varchar (50) NULL CONSTRAINT [DF_Notes_NoteType]
DEFAULT ('User'),
 CONSTRAINT [PK_Notes_1__12] PRIMARY KEY CLUSTERED
 (
 [TransactionNumber],
 [NoteDate],
 [Note]
) ON [PRIMARY]
) ON [PRIMARY]
GO

CREATE TABLE [Transactions] (
 [TransactionNumber] int NOT NULL ,
 [DateArchived] datetime NULL ,
 [Status] varchar (15) NULL ,
 [Department] varchar (255) NULL ,
 [PickupLocation] varchar (20) NULL ,
 [RequestType] varchar (8) NULL ,
 [LoanAuthor] varchar (100) NULL ,
 [LoanTitle] varchar (255) NULL ,
 [LoanPublisher] varchar (50) NULL ,
 [LoanPlace] varchar (30) NULL ,
 [LoanDate] varchar (30) NULL ,
 [LoanEdition] varchar (30) NULL ,
 [PhotoJournalTitle] varchar (255) NULL ,
 [PhotoJournalVolume] varchar (30) NULL ,
 [PhotoJournalIssue] varchar (30) NULL ,
 [PhotoJournalMonth] varchar (30) NULL ,
 [PhotoJournalYear] varchar (30) NULL ,
 [PhotoJournalInclusivePages] varchar (30) NULL ,
 [PhotoArticleAuthor] varchar (100) NULL ,
 [PhotoArticleTitle] varchar (250) NULL ,
 [CitedIn] varchar (40) NULL ,
 [NotWantedAfter] varchar (40) NULL ,

 10

 [TransactionStatus] varchar (40) NULL ,
 [TransactionDate] datetime NULL ,
 [ISSN] varchar (20) NULL ,
 [ILLNumber] varchar (32) NULL ,
 [ESPNumber] varchar (32) NULL ,
 [LendingString] varchar (150) NULL ,
 [BaseFee] [money] NULL ,
 [PerPage] [money] NULL ,
 [Pages] int NULL ,
 [DueDate] datetime NULL ,
 [RenewalsAllowed] varchar (3) NULL ,
 [SpecIns] varchar (40) NULL ,
 [Pieces] int NULL ,
 [LibraryUseOnly] varchar (3) NULL ,
 [AllowPhotocopies] varchar (3) NULL ,
 [LendingLibrary] varchar (16) NULL ,
 [ReasonForCancellation] varchar (100) NULL ,
 [CallNumber] varchar (100) NULL ,
 [Location] varchar (255) NULL ,
 [Maxcost] varchar (50) NULL ,
 [ProcessType] varchar (10) NULL ,
 [ItemNumber] varchar (10) NULL ,
 [LenderAddressNumber] [float] NULL ,
 [Ariel] varchar (3) NULL ,
 [PhotoItemAuthor] varchar (100) NULL ,
 [PhotoItemPlace] varchar (40) NULL ,
 [PhotoItemPublisher] varchar (40) NULL ,
 [PhotoItemEdition] varchar (40) NULL ,
 [DocumentType] varchar (15) NULL ,
 [InternalAcctNo] [float] NULL ,
 [PriorityShipping] varchar (3) NULL ,
 [Rush] varchar (30) NULL ,
 [WantedBy] varchar (25) NULL ,
 [SystemID] varchar (32) NULL ,
 [IFMCost] varchar (30) NULL ,
 [ShippingOptions] varchar (50) NULL ,
 [LendingChecksReceived] varchar (50) NULL ,
 [ReferenceNumber] varchar (50) NULL ,
 [CopyrightComp] varchar (3) NULL ,
 [TAddress] varchar (100) NULL ,
 [ReceivedVia] varchar (20) NULL ,
 [CancellationCode] varchar (50) NULL ,
 [CCSelected] varchar (3) NULL ,
 [OriginalTN] int NULL ,
 [OriginalNVTGC] varchar (20) NULL ,
 [InProcessDate] varchar (8) NULL ,
 [InvoiceNumber] int NULL ,
 [BorrowerTN] int NULL ,
 [WebRequestForm] varchar (100) NULL ,
 [TName] varchar (100) NULL ,
 [IFMPaid] varchar (3) NULL ,
 [BillingAmount] varchar (15) NULL ,
 [ConnectorErrorStatus] varchar (50) NULL ,
 [BorrowerNVTGC] varchar (20) NULL ,

 11

 [TISOPaymentMethod] varchar (10) NULL ,
 [CCCOrder] varchar (3) NULL ,
 [ISOStatus] varchar (50) NULL ,
 [ShippingDetail] varchar (50) NULL ,
 [OdysseyErrorStatus] varchar (50) NULL ,
 [WorldCatLCNumber] varchar (50) NULL ,
 [Locations] varchar (255) NULL ,
 CONSTRAINT [PK_Transactions] PRIMARY KEY NONCLUSTERED
 (
 [TransactionNumber]
) ON [PRIMARY]
) ON [PRIMARY]
GO

CREATE UNIQUE INDEX [byTransactionNumber] ON
[Transactions]([TransactionNumber]) ON [PRIMARY]
GO

 12

Appendix B - Select records from Transactions table

SELECT t.TransactionNumber,
 GETDATE()as DateArchived,
 t.Username,u.Status,
 u.Department,u.NVTGC,
 t.RequestType,
 t.LoanAuthor, t.LoanTitle,
 t.LoanPublisher,t.LoanPlace,
 t.LoanDate,t.LoanEdition,
 t.PhotoJournalTitle,t.PhotoJournalVolume,
 t.PhotoJournalIssue,t.PhotoJournalMonth,
 t.PhotoJournalYear,t.PhotoJournalInclusivePages,
 t.PhotoArticleAuthor,t.PhotoArticleTitle,
 t.CitedIn,t.NotWantedAfter,
 t.TransactionStatus,t.TransactionDate,
 t.ISSN,t.ILLNumber,
 t.ESPNumber,t.LendingString,
 t.BaseFee,t.PerPage,t.Pages,
 t.DueDate,t.RenewalsAllowed,
 t.SpecIns,t.Pieces,
 t.LibraryUseOnly,t.AllowPhotocopies,
 t.LendingLibrary,t.ReasonForCancellation,
 t.CallNumber,t.Location,t.Maxcost,
 t.ProcessType,t.ItemNumber,
 t.LenderAddressNumber,t.Ariel,
 t.PhotoItemAuthor,t.PhotoItemPlace,
 t.PhotoItemPublisher,t.PhotoItemEdition,
 t.DocumentType,t.InternalAcctNo,
 t.PriorityShipping,t.Rush,t.WantedBy,
 t.SystemID, t.IFMCost,t.ShippingOptions,
 t.CCCNumber,t.ReferenceNumber,
 t.CopyrightComp,t.TAddress,
 t.ReceivedVia,t.CancellationCode,
 t.CCSelected,t.OriginalTN,t.OriginalNVTGC,
 t.InProcessDate,t.InvoiceNumber,
 t.BorrowerTN,t.WebRequestForm,
 t.TName,t.IFMPaid,t.BillingAmount,
 t.ConnectorErrorStatus,t.BorrowerNVTGC,
 t.TISOPaymentMethod,t.CCCOrder,
 t.ISOStatus,t.ShippingDetail,
 t.OdysseyErrorStatus,t.WorldCatLCNumber,
 t.Locations
/* FROM Transactions t INNER JOIN [Users-KKU] u */
FROM Transactions t INNER JOIN Users u
ON t.Username = u.Username
WHERE t.TransactionDate < '06/01/2006'
AND (t.TransactionStatus='Request Finished'
OR t.TransactionStatus='Cancelled by ILL Staff')

 13

Appendix C - Select records from Notes table

/* Code to select records from Notes table
Notes: This select uses the TransactionDate from
the Transactions table because that is the date used to
select records from the Transactions table for the archive.

The first select retrieves records with patron information based on
the field NoteType=’User’ and replaces the username with the text
"Patron". The second select retrieves everything else as is.

For comparison, this is the code to select all, regardless of NoteType:
SELECT n.* from Notes n INNER JOIN Transactions t
ON n.TransactionNumber=t.TransactionNumber
INNER JOIN [Users-KKU] u
ON t.Username=u.Username
WHERE EXISTS (SELECT t.Username FROM [Users-KKU])
AND (TransactionStatus='Request Finished'
OR TransactionStatus='Cancelled by ILL Staff')
AND t.TransactionDate < '07/01/2006'
ORDER BY n.NoteType
*/

SELECT n.TransactionNumber, n.NoteDate, n.Note, 'Patron' as AddedBy, n.NoteType
FROM Notes n INNER JOIN Transactions t
ON n.TransactionNumber=t.TransactionNumber
WHERE n.NoteType ='User'
AND (TransactionStatus='Request Finished'
OR TransactionStatus='Cancelled by ILL Staff')
AND t.TransactionDate < '07/01/2006'

SELECT n.* from Notes n INNER JOIN Transactions t
ON n.TransactionNumber=t.TransactionNumber
WHERE n.NoteType !='User'
AND (TransactionStatus='Request Finished'
OR TransactionStatus='Cancelled by ILL Staff')
AND t.TransactionDate < '07/01/2006'

 14

Appendix D - Select records from History table

/* Code to select records from History table
Notes: This select uses the TransactionDate from
the Transactions table because that is the date used to
select records from the Transactions table for the archive.

The first select retrieves records with patron information and
replaces Username with the text "Patron". The second select
retrieves all records with staff usernames from the Staff table
or system information.

For comparison, this is the code to select all, regardless of Username:
SELECT h.*
FROM History h INNER JOIN Transactions t
ON h.TransactionNumber=t.TransactionNumber
INNER JOIN [Users-KKU] u
ON t.Username=u.Username
WHERE EXISTS (SELECT t.username FROM [Users-KKU])
AND (TransactionStatus='Request Finished'
OR TransactionStatus='Cancelled by ILL Staff')
AND t.TransactionDate < '07/01/2006'
ORDER BY h.Username
*/

SELECT h.TransactionNumber, h.DateTime, h.Entry, 'Patron' as Username
FROM History h INNER JOIN Transactions t
ON h.TransactionNumber=t.TransactionNumber
WHERE h.Username !='System'
AND h.Username !='Odyssey'
AND h.Username NOT IN (SELECT username FROM Staff)
AND (TransactionStatus='Request Finished'
OR TransactionStatus='Cancelled by ILL Staff')
AND t.TransactionDate < '07/01/2006'

SELECT h.* from History h INNER JOIN Transactions t
ON h.TransactionNumber=t.TransactionNumber
WHERE (h.username='System'
OR h.Username='Odyssey'
OR h.Username in (SELECT username FROM Staff))
AND (TransactionStatus='Request Finished'
OR TransactionStatus='Cancelled by ILL Staff')
AND t.TransactionDate < '07/01/2006'

 15

Appendix E - Select records from Tracking table

/* Code to select records from Tracking table
Notes: This select uses the TransactionDate from
the Transactions table because that is the date used to
select records from the Transactions table for the archive.

The first select retrieves records with patron information and
replaces ChangedBy with the text "Patron". The second select
retrieves all records with staff usernames from the Staff table
or system information.

For comparison, this is the code to select all, regardless of ChangedBy:
SELECT k.*
FROM Tracking k INNER JOIN Transactions t
ON k.TransactionNumber=t.TransactionNumber
INNER JOIN [Users-KKU] u on
t.Username=u.Username
WHERE EXISTS (SELECT t.Username FROM [Users-KKU])
AND t.TransactionDate < '06/01/2006'
AND (t.TransactionStatus='Request Finished'
OR t.TransactionStatus='Cancelled by ILL Staff')
ORDER BY k.ChangedBy
*/

SELECT k.TransactionNumber, k.DateTime, k.ChangedTo, 'Patron' as Username
FROM Tracking k INNER JOIN Transactions t
ON k.TransactionNumber=t.TransactionNumber
WHERE t.TransactionDate < '06/01/2006'
AND (t.TransactionStatus='Request Finished'
OR t.TransactionStatus='Cancelled by ILL Staff')
AND k.ChangedBy !='System'
AND k.ChangedBy !='Odyssey'
AND k.ChangedBy NOT IN (SELECT Username FROM Staff)

SELECT k.*
FROM Tracking k INNER JOIN Transactions t
ON k.TransactionNumber=t.TransactionNumber
WHERE t.TransactionDate < '06/01/2006'
AND (t.TransactionStatus='Request Finished'
OR t.TransactionStatus='Cancelled by ILL Staff')
AND (k.ChangedBy ='System'
OR k.ChangedBy ='Odyssey'
OR k.ChangedBy IN (SELECT Username FROM Staff))

 16

Appendix F - Delete records from Transactions and related tables

/* Notes: Records from the Notes, History and Tracking table must be deleted
before records from the Transactions table are deleted.

The inner join syntax used is not ANSI SQL compliant but is correct for
Transact SQL.

Use the same date criteria from the select statements used
to populate the archive.

Additional criteria for KU has been removed after the first join:
INNER JOIN [Users-KKU] u on
t.Username=u.Username
WHERE EXISTS (SELECT t.Username FROM [Users-KKU])
AND
remaining criteria here
*/

DELETE FROM Notes
FROM Notes n INNER JOIN Transactions t
ON n.TransactionNumber=t.TransactionNumber
WHERE (TransactionStatus='Request Finished'
OR TransactionStatus='Cancelled by ILL Staff')
AND t.TransactionDate < '07/01/2006'

DELETE FROM History
FROM History h INNER JOIN Transactions t
ON h.TransactionNumber=t.TransactionNumber
WHERE (TransactionStatus='Request Finished'
OR TransactionStatus='Cancelled by ILL Staff')
AND t.TransactionDate < '07/01/2006'

DELETE FROM Tracking
FROM Tracking k INNER JOIN Transactions t
ON k.TransactionNumber=t.TransactionNumber
WHERE t.TransactionDate < '06/01/2006'
AND (t.TransactionStatus='Request Finished'
OR t.TransactionStatus='Cancelled by ILL Staff')

DELETE FROM Transactions
WHERE TransactionDate < '06/01/2006'
AND (TransactionStatus='Request Finished'
OR TransactionStatus='Cancelled by ILL Staff')

