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This article examines effects of sample size and other design features on correspondence
between factors obtained from analysis of sample data and those present in the population
from which the samples were drawn.  We extend earlier work on this question by examining
these phenomena in the situation in which the common factor model does not hold exactly
in the population.  We present a theoretical framework for representing such lack of fit and
examine its implications in the population and sample.  Based on this approach we
hypothesize that lack of fit of the model in the population will not, on the average,
influence recovery of population factors in analysis of sample data,  regardless of degree of
model error and regardless of sample size.  Rather, such recovery will be affected only by
phenomena related to sampling error which have been studied previously.  These
hypotheses are investigated and verified in two sampling studies, one using artificial data
and one using empirical data.

This article extends previous studies of the question of the level of
sample size (N) in factor analysis studies that is necessary to achieve
accurate recovery of major common factors present in the population.  This
question has been examined in a variety of studies over many years.
Simulation studies (e.g., Browne, 1968; Pennell, 1968; Velicer, Peacock, &
Jackson, 1982) have investigated effects of sample size on recovery of
population factors, as well as interactions between sample size and other
factors such as loading size, number of variables, and number of factors.
Some sampling studies using empirical data (e.g., Arrindell & van der Ende,
1985; Barrett & Kline, 1981) have examined congruence between factors
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obtained from an extremely large sample and those obtained from
subsamples of various sizes.  In addition, investigators have proposed a range
of rules of thumb for minimum N, specifying minimum N as a function of
number of variables, number of parameters being estimated, or as some
absolute level (e.g., Cattell, 1978; Comrey & Lee, 1992; Gorsuch, 1983;
Guilford, 1954).

Much of this literature has been reviewed in recent articles by
MacCallum, Widaman, Zhang, and Hong (1999) and Velicer and Fava
(1998).  Both studies showed that rules of thumb are not valid and that the
minimum level of N is dependent on other aspects of design.  Level of
communality has an especially strong interaction with N such that when
communalities are high, good recovery of population factors can be achieved
with relatively small samples.  However, when communalities are low,
recovery of population factors is difficult to achieve unless N is extremely
large.  MacCallum et al. also showed how these aspects of design interact
with level of overdetermination of factors, meaning the degree to which each
common factor is well defined by a set of indicators.  The main effects of N
and communality level on recovery of population factors are more dramatic
when factors are less well determined.

Based on earlier work by MacCallum and Tucker (1991) on sources of
error in factor analysis, MacCallum et al. (1999) provided a formal
theoretical framework to account for these effects.  These phenomena were
verified in a Monte Carlo study, with results consistent with findings by
Velicer and Fava (1998).  A limitation of that theoretical framework and of
the Monte Carlo studies conducted by MacCallum et al. and by Velicer and
Fava is that all of that work was based on the ideal case of exact fit of the
common factor model in the population.  This same limitation applies to all
previous Monte Carlo studies of the sample size question in factor analysis
of which we are aware.  This limitation is of concern because it represents
a condition that will almost certainly never hold in practice.  A widely
accepted perspective regarding mathematical models of psychological
phenomena is that such models will never hold exactly in practice.  In the
context of factor analysis and structural equation modeling, for example, this
perspective has been discussed in detail by Cudeck and Henly (1991) and
MacCallum and Tucker (1991), among others.  Considering here the
common factor model, there are many influences that will cause the model
not to hold in practice.  These include, for instance, the influences of large
numbers of minor factors, nonlinear influences of factors on indicators, and
violation of the assumption that factor loadings are the same for every
individual. For present purposes, we lump these various influences together
and refer to them in the aggregate as “model error.”  This same aggregate
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lack of fit has been called “discrepancy of approximation” by Cudeck and
Henly in the context of covariance structure modeling.  Because these and
other phenomena are likely to be operating in any real-world setting, the best
we can hope for in empirical studies is to obtain a parsimonious model that
fits the data well and yields interpretable parameter estimates.  If such a
finding is obtained, we must be fully aware that the resulting model and
solution are not an exact or complete representation of phenomena operating
in the real world, but only a parsimonious approximation.

Previous studies of the sample size question in factor analysis have not
explicitly taken into account the existence or influence of model error.  In
particular, the mathematical framework presented by MacCallum et al.
(1999) was based on an assumption that the model holds exactly in the
population.  Simulation studies conducted by MacCallum et al. and by Velicer
and Fava (1998) used simulated population correlation matrices whose
structure was exactly consistent with the common factor model using a
specified (small) number of factors.  In the present study we address this
limitation.  We first extend the theoretical framework used by MacCallum et
al. so as to  represent model error explicitly, and we use this extended version
to predict effects of sample size and other aspects of design in the presence
of such error.  We then investigate these predictions in two sampling studies,
one using artificial data containing model error and one using empirical data.
Given the prevalence of model error in applied work using factor analysis, the
outcomes of the present study are more relevant than are previous results to
the sample size question in empirical applications of factor analysis.

Theoretical Framework

We first review key aspects of the mathematical approach used by
MacCallum et al. (1999), which was extracted from more general earlier
work by MacCallum and Tucker (1991).  For a column vector y of scores on
p measured variables for a random individual, let the common factor model
be represented as follows:

(1) y = �x
c
 + �x

u

where � is a p × r matrix of loadings for p measured variables on r common
factors, � is a p × p diagonal matrix of unique factor loadings, x

c
 is a vector

of scores on the r common factors for the random individual, and x
u
 is a

vector of scores on the p unique factors for the random individual.  All
variables are assumed to have zero means.  Defining unique factors as
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uncorrelated with each other and with common factors in the population, we
can derive the following covariance structure from Equation 1:

(2) �
yy

 = ���� + �2

where �
yy

 is the p × p population covariance matrix for the measured
variables and � is the r × r population correlation matrix for the common
factors (assuming factors are standardized in the population).  This is the
standard version of the common factor model for a population covariance
matrix.  Following similar algebraic procedures, we could derive a structure
for a sample covariance matrix, C

yy
.  However, in such a derivation we can

not assume that unique factors are uncorrelated with each other or with
common factors in the sample.  Although such correlations will be zero in
the population, they will not generally be zero in a sample due to random
sampling variability.  Thus, the structure of C

yy
 would be given by

(3) C
yy

 = �C
cc

�� + �C
cu

� + �C
uc

�� + �C
uu

�

Matrices C
cc

, C
cu

, C
uc

, and C
uu

 are sample covariance matrices among
common and unique factors as indicated by subscripts c and u, respectively.
If Equation 1 holds for all individuals in the population, then Equation 3 holds
for any sample from that population.  The most important aspect of Equation
3 involves the presence of nonzero sample correlations among unique factors
in C

uu
, and of unique with common factors in C

cu
 and C

uc
.  This phenomenon

is the reason that the model in Equation 2 will not hold in a sample, even if
Equation 1 holds for all individuals.  Thus, the existence of nonzero sample
correlations among unique factors, and of unique with common factors,
represents a primary aspect of sampling error in the common factor model.
If sample covariances among common and unique factors matched
corresponding population values, the model in Equation 2 would apply to a
sample covariance matrix as well as to a population covariance matrix.  This
circumstance suggests an alternative representation of Equation 3 as
follows:

(4) C
yy

 = ���� + �2 + �
SE

where �
SE

 represents lack of fit of the model in Equation 3 arising from this
primary source of sampling error (hence the subscript SE).  If sample
covariances involving common and unique factors were to match exactly
their population values (that is, C

cc
 = �; C

cu
 and C

uc
 are zero; and C

uu
 = I),

then �
SE

, would be null.  Clearly, the most critical phenomenon here is the
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existence in the sample of nonzero covariances of unique factors with each
other and with common factors, rendering C

cu
 and C

uc
 nonzero and C

uu
 non-

diagonal.
MacCallum et al. (1999) used this perspective to examine the impact of

sample size on factor analysis solutions.  As N increases, sample variances
and covariances among unique and common factors will approach population
values, thus reducing the impact of �

SE
 and causing sample factor analysis

solutions to be more similar to population solutions.  They also noted, based
on Equation 3, that the magnitude of unique factor weights in � plays a
critical role.  As those weights decrease (or, equivalently, as communalities
increase), the contents of C

cu
, C

uc
, and C

uu
 become less relevant, meaning

that sample size will have less impact on factor analysis solutions when
communalities are high.  MacCallum et al. also discussed the issue of
overdetermination of factors, meaning the extent to which each factor is
represented by a distinct set of indicators.  They noted that recovery of
population factors will deteriorate when factors are weakly overdetermined,
but that this phenomenon would also be attenuated when communalities are
high.  MacCallum et al. verified these predicted effects in a Monte Carlo
study using simulated population data drawn from the classic study of factor
analysis methods by Tucker, Koopman, and Linn (1969).  Results verified
that, when communalities are high, sample factor solutions correspond
closely to population solutions even when N, is small and factors are weakly
overdetermined.  When communalities are not high, sample size and level of
overdetermination have much stronger effects on quality of sample
solutions.  Similar phenomena were reported by Velicer and Fava (1998).

As noted earlier, the theoretical framework used by MacCallum et al.
(1999) and summarized above, as well as the Monte Carlo studies of
MacCallum et al. and of Velicer and Fava (1998), are based on the
assumption that the common factor model holds exactly in the population.
We next consider extending that work to the case where lack of fit, or model
error, is present in the population so that we can determine whether effects
of sample size, communality level, and overdetermination are altered in that
more realistic context.

Following the approach used by MacCallum and Tucker (1991), we
begin by modifying the basic model in Equation 1 as follows:

(5) y = �x
c
 + �x

u
 + y

d

where y
d
 is a vector containing that part of the measured variables in y that

is not accounted for by the common factor model; that is, y
d
 reflects

discrepancies between the model and the measured variables.  Note that y
d
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does not contain portions due to error of measurement or specific variances;
those aspects of y are accounted for by the unique factor portion of the model
in Equation 5.  Rather, y

d
 arises from phenomena such as those mentioned

above; for example, influences of minor common factors and nonlinear
influences of common factors on measured variables.  That portion of the
variables in y that is explained by the model will be designated y

m
 and

represented as follows:

(6) y
m
 = �x

c
 + �x

u

The variables in y
m
 were referred to as “modeled variables” by MacCallum

and Tucker (1991).  Substitution of Equation 6 into 5 yields

(7) y = y
m
 + y

d

representing the measured variables in y as a sum of two parts, that part
accounted for by the common factor model and that part not accounted for.

It is instructive to consider the structure of the population covariance
matrix of the measured variables in the presence of model error.  From
Equation 7, this covariance matrix �

yy
 could be represented as a sum of four

matrices as follows:

(8) �
yy

 = �
ymym

 + �
ymyd

 +�
yd ym

 + �
yd yd

The first of these four component matrices is the covariance matrix for the
modeled variables, which would be exactly fit by the common factor model:

(9) �
ymym

 = ���� + �2

The remaining three component matrices arise from lack of fit of the model
in the population.  They are not present in this formulation if the model holds
exactly in the population.  These three components can be aggregated into
a single matrix, �

ME(P)
, representing model error in the population covariance

structure:

(10) �
ME(P)

 = �
ym yd

 + �
ydym

 + �
ydyd

Substituting from Equations 9 and 10 into Equation 8 yields a representation
of the factorial structure of a population covariance matrix in the presence
of model error:
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(11) �
yy

 = ���� + �2 + �
ME(P)

In one sense this expression is intuitively obvious in that matrix �
ME(P)

 can be
viewed as representing lack of fit of the model specified earlier in Equation
2.  However, the developments in Equations 6 through 11 provide a more
explicit representation of the nature of this lack of fit.  In addition, as shall
be seen, this approach aids in providing a basis for understanding effects of
sample size in factor analysis of sample data.

Let us consider next the structure of a sample covariance matrix in the
presence of model error as defined in Equation 7.  Based on that equation,
we can represent a sample covariance matrix, C

yy
, as a sum of four

component matrices:

(12) C
yy

 = C
ymym

 + C
ymyd

 + C
yd ym

 + C
ydyd

Note that matrix C
ym ym

 would have the structure represented in Equations 3
and 4; that is,

(13) C
ymym

 = �C
cc

�� + �C
cu

� + �C
uc

�� + �C
uu

�
= ���� + �2 + �

SE

Recall that �
SE

 represents lack of fit due to sampling error, arising primarily
from nonzero sample covariances of unique factors with each other and with
common factors.  Considering further Equation 12 we can identify another
source of lack of fit of the model in a sample.  The last three component
covariance matrices in Equation 12 arise from the presence of model error
in the sample; these matrices would not be present if the model in Equation
1 held for every individual.  These three matrices can be considered in the
aggregate as defining a matrix �

ME(S)
 representing lack of fit due to effects

of model error in the sample:

(14) �
ME(S)

 = C
ymyd

 + C
yd ym

 + C
ydyd

Substitution from Equations 13 and 14 into Equation 12 yields the following
expression:

(15) C
yy

 = ���� + �2 + �
SE

 + �
ME(S)

This expression represents the structure of a sample covariance matrix and
includes terms representing lack of fit of the common factor model due to two
sources of error:  sampling error and model error.  Of course in practice these
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two sources of error act in concert to produce overall lack of fit of the model
in a sample.

Based on this framework for representing sources of error in the
common factor model in both the population and sample, we now examine the
issue of correspondence between factors present in the population and those
obtained from sample data, focusing on the role of sample size.  Consider first
Equation 11 where model error in the population is explicitly represented.
According to this equation, a model could be fit to �

yy
 and the solution would

provide population values of parameters in �, �, and �2.  It is interesting to
note that the particular set of parameter values obtained depends on the
method used to fit the model to �

yy
.  That is, different methods (e.g.,

maximum likelihood, ordinary least squares) would yield different residual
matrices �

ME(P)
 and different values of parameters in �, �, and �2.  From

this perspective, there is no single true set of parameter values when the
model does not hold exactly in the population.  Rather, parameter values
depend on the way in which lack of fit is defined.  This phenomenon was
discussed and demonstrated by MacCallum and Tucker (1991).  For present
purposes, suppose a particular fitting method is used, thus yielding a specific
set of parameter values.  We focus especially on factor loadings in �
because we are interested primarily in recovery of factors present in the
population.

Next consider Equation 15, representing the structure of the sample
covariance matrix C

yy
.  If the model is fit to C

yy
 by the same method used to

fit the model to �
yy

, we obtain factor loading estimates, $� , and we are
interested in the correspondence between $�  and �.  A comparison of
Equations 11 and 15 provides a basis for understanding what would cause
these solutions to differ.  Clearly, any difference between these solutions
arises from the role of the two discrepancy terms:  �

ME(P)
 in the population, and

[�
SE

 + �
ME(S)

] in the sample.  If these two discrepancy terms were identical,
then $�  would match �, implying exact correspondence of sample and
population factors.  However, to the extent that the two discrepancy terms
differ, the sample solution will differ from the population solution, resulting in
poorer correspondence between factors found in the sample and those present
in the population.  Thus, we must examine phenomena that affect the similarity
of the two discrepancy terms.  Most apparent is the presence of the sampling
error term �

SE
 in the residual portion of the model for C

yy
.  Obviously, sampling

error affects a solution obtained from C
yy

, but not one obtained from �
yy

.
MacCallum et al. (1999) examined these influences in detail, describing and
demonstrating effects of N, communality level, and degree of
overdetermination of factors as mentioned above.  The present developments
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indicate that these phenomena should operate in the same manner when model
error is present as when it is absent (as examined in previous studies), as
indicated by the difference between Equations 11 and 15.

The second major difference between the lack-of-fit terms in Equations
11 and 15 is the distinction between model error in the population [�

ME(P)
] and

model error in the sample [�
ME(S)

].  These terms were defined in Equations
10 and 14, respectively.  To the extent that these terms are similar, population
factors will be recovered more accurately in analysis of sample data.  If
these terms were to match exactly, then differences between sample and
population factors would be due only to sampling error.  What would make
these terms be similar?  First, they will be more similar as model error
becomes small in magnitude.  In such a situation, �

ME(P)
 and �

ME(S)
 would both

be very small and would have a negligible impact on results.  Second, these
matrices will be more similar as N becomes large.  That is, �

ME(S)
 will

approach �
ME(P)

 as N increases.  However, a more critical point is that,
regardless of N, we would expect that, over repeated sampling, the average
contribution of model error in the sample will approximately equal that in the
population.  This means that, on  average, model error will not influence
the difference between factors obtained from a sample and those
present in the population.  In turn, this means that, on average, such
differences will be due to influences of sampling error only.

To summarize, over repeated sampling, we hypothesize that mean
recovery of population factors will not be influenced by the presence of
model error.  Rather, on average, such recovery will be influenced only by
sampling error, with effects corresponding to those demonstrated by
MacCallum et al. (1999) in their study of recovery of factor solutions in the
absence of model error.  In the remainder of this article, these hypotheses
are investigated in two sampling studies, the first using simulated data and the
second using a large set of empirical data.

Monte Carlo Study

MacCallum et al. (1999) conducted a Monte Carlo study to investigate
effects of sample size, communality, and overdetermination on recovery of
population factors under conditions in which the common factor model holds
in the population.  We followed similar procedures to investigate these
effects under conditions in which the model does not hold exactly in the
population.  We then compared our results with their results to verify the
predicted effects described in the previous section.
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Method

In their study, MacCallum et al. (1999) used selected population
correlation matrices generated in the Monte Carlo study of factor analytic
methods by Tucker et al.  (1969).  Those selected matrices were generated
from the common factor model with no model error.  Tucker et al. also
constructed population correlation matrices for which the model did not hold
exactly.  This was accomplished by simulating effects of large numbers of
minor common factors. For full details about the procedure used to generate
these population correlation matrices, refer to Tucker et al. (1969).

In the present project we generated 18 population correlation matrices
using methods described by Tucker et al. (1969).  As in the MacCallum et
al. (1999) study, the matrices varied in number of factors and level of
communality, but the number of measured variables (p) was held constant
at 20. Number of factors was either three (highly overdetermined) or seven
(relatively weakly overdetermined).  For a given number of variables and
factors, the Tucker et al. simulation procedure generates a population factor
loading matrix that exhibits good, but not perfect, simple structure.  Like
loading matrices typically encountered in empirical studies, these simulated
matrices exhibit variation in importance of major factors as well as numerous
small to moderate secondary loadings.   Following Tucker et al., we varied
the contribution of these major common factors in accounting for the
variance of each measured variable.  Tucker et al. referred to this quantity
as b

1
2 and assigned a value of b

1
2 to each measured variable.  We used the

same values of b
1
2 as did Tucker et al.  In generating a given matrix, the level

of b
1
2 for each measured variable was specified as high (.6 to .8), wide (.2

to .8), or low (.2 to .4).  Given the presence of minor common factors, as
described below, the level of b

1
2 will not be equivalent to level of communality,

although communalities vary with b
1
2.  In the present study, population

correlation matrices generated under high, wide, and low levels of b
1
2  yielded

mean communalities of .70, .55, and .35, respectively.  For simplicity of
presentation, we will henceforth refer to our Monte Carlo design as including
high, wide, and low levels of communality.  The communality levels
correspond inversely to levels of importance of unique factors. High
communalities imply low unique variances and vice versa.

In addition to manipulating overdetermination and communality levels,
we controlled the degree of model fit in the population. The Tucker et al.
(1969) procedure for introducing lack of fit involved simulating effects of a
large number (set at 180) of minor factors.  Degree of misfit can be
manipulated by varying the proportion of variance in each measured variable
attributable to minor factors as well as a data generation parameter (called
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ε by Tucker et al.) that determines the relative contribution of successive
minor factors; larger values of ε cause the contribution of the minor factors
to be more skewed in favor of the earlier factors in the sequence.  In the
present study, we manipulated ε and the proportion of variance due to minor
factors so as to yield population correlation matrices exhibiting good, fair, and
poor fit, respectively, to the common factor model.  We used the root mean
squared error of approximation (RMSEA,  Steiger & Lind, 1980) as an index
of model fit. Steiger (1989) and Browne and Cudeck (1993) suggest
guidelines for the interpretation of RMSEA: values in the range of 0.00 to
0.05 indicate close fit, those between 0.05 and 0.08 indicate fair fit, and those
between 0.08 and 0.10 indicate mediocre fit. RMSEA values above 0.10
indicate unacceptable fit. In order to represent the broad range of model
misfit researchers are likely to encounter in practice, we generated
population matrices with RMSEA values corresponding to the mid-point of
each of the “acceptable” ranges (very good fit: RMSEA = 0.025; fair fit:
RMSEA = 0.065; poor fit: RMSEA = 0.090). One population correlation
matrix was selected to represent each condition defined by two levels of
number of factors, three levels of communality, and three levels of model
misfit, yielding 18 population correlation matrices.1

Sample correlation matrices were generated from each of these 18
population correlation matrices using a procedure suggested by Wijsman
(1959) and used in the MacCallum et al. (1999) study.  Population distributions
were defined as multivariate normal. Sample size was 60, 100, 200, or 400.
These sample sizes were chosen for comparison with results obtained by
MacCallum et al. (1999).  We generated 100 samples for each condition
defined by three levels of communality, two levels of overdetermination, three
levels of model misfit, and four levels of sample size.  Each sample correlation
matrix was factor analyzed using maximum likelihood factor analysis,
specifying the number of factors retained as equal to the known number of
factors in the population (i.e., either three or seven).   All factor analyses were
conducted using the Comprehensive Exploratory Factor Analysis (CEFA)
software of Tateneni, Mels, Cudeck, and Browne (1998).

In conducting these factor analyses it was necessary to determine
how best to deal with solutions that yielded Heywood cases or that had
not converged (after a limit of 250 iterations).  MacCallum et al. (1999)
conducted their entire study twice, once screening such samples and
generating new samples until each cell was filled with samples yielding
convergent and proper solutions, and again with no such screening.

1 The 18 population matrices, along with corresponding population factor patterns and
communalities, can be found at the website of Robert C. MacCallum (http://
quantrm2.psy.ohio-state.edu/maccallum).
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Screening was found to have virtually no effect on results.  In the current
study, we carried out analyses both with and without screening in two
cells expected to yield large numbers of solutions with Heywood cases
(low communalities, p:r = 20:7, N = 60, poor fit and fair fit).  Again,
results in terms of indexes described below were nearly identical whether
or not samples were screened.  Given this finding along with results
described by MacCallum et al., we conducted our full-scale study without
screening.

We followed procedures used by MacCallum et al. (1999) to compare
solutions obtained from sample correlation matrices with those obtained
from the corresponding population matrices.  Maximum likelihood factor
solutions for the population correlation matrices were obtained, and these
population factors were rotated by direct quartimin rotation.  Maximum
likelihood solutions obtained from sample correlation matrices were
rotated by oblique least-squares target rotation, using the corresponding
rotated population factor loading matrix as the target.2  To assess
similarity between factors obtained in the population and in a sample, we
first calculated the coefficient of congruence (�) between each
population factor and the corresponding sample factor. Following
MacCallum et al. (1999), a summary index of recovery of population
factors in each sample solution was defined as the mean coefficient of
congruence across the r (three or seven) factors. This index is designated
as K:

(16) K
r

k
k

r

= =
∑�

1
.

Higher values of K indicate more accurate recovery of the population factors
in the sample solution. Tucker (personal communication, 1987) suggested
guidelines for interpreting the value of K: .98 to 1.00 = excellent, .92 to
.98 = good, .82 to .92 = borderline, .68 to .82 = poor, and below .68 =
terrible.

To further assess the degree of factor recovery, we computed an
additional index of the discrepancy between sample factor solutions and their
corresponding population factor solutions: the root mean squared deviation

2 All subsequent analyses were also conducted using sample solutions rotated by direct
quartimin rather than target rotation.  The general pattern of results was not affected by
this difference in rotation, although some trends were slightly more noisy.  Plots of results
based on direct quartimin rotation are available at the website of Robert C. MacCallum
(http://quantrm2.psy.ohio-state.edu/maccallum).
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(designated g, as in Velicer & Fava, 1998). This index represents the degree
of discrepancy between corresponding sample and population loading
matrices:

(17) g

Trace

pr
=

− ′ −
L
NM

O
QP

R

S
||

T
|
|

U

V
||

W
|
|

� � � �$ $
/

e j e j
1 2

.

To investigate possible bias in estimates of factor loadings, we calculated
the mean deviation between sample loadings and their corresponding
population loadings. This index is designated as �:

(18)
�

� �

=
−

==
∑∑ ( )ij ij
j

r

i

p

pr

$

11

In summary, 100 sample correlation matrices were generated under
each of 72 conditions defined by (a) three levels of population
communality (high, wide, low), (b) two levels of overdetermination of
the factors (p:r = 20:3, 20:7), (c) three levels of model misspecification
(RMSEA = .025, .065, .090), and (d) four levels of sample size (N = 60, 100,
200, 400). The resulting 7,200 sample matrices were each analyzed using
maximum likelihood factor analysis with the known correct number of
factors specified. Each of the resulting 7,200 solutions was rotated to the
corresponding direct-quartimin population solution, using oblique target
rotation. For each of the rotated sample solutions, measures of congruence
between sample and population factors (K and g) and bias (�) were obtained.

Results

We wished to investigate whether the conclusions of MacCallum et al.
(1999) regarding influences on recovery of population factors still hold under
conditions where model error is present. Indexes K, g, and � were treated
as dependent variables in four-way ANOVAs using sample size, level of
communality, overdetermination, and population model fit as independent
variables. Given the large number of replications in the full design (7,200), it
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was anticipated that virtually all main effects and interactions would be
statistically significant.  Therefore, our interpretation of effects was based
primarily on effect size as measured by $�2 .  This measure provides an
estimate of the proportion of variance accounted for in the population by
each effect (Maxwell & Delaney, 1990).

Table 1 presents results of the four-way ANOVA3 for the congruence
measure, K.  Note that all main effects and nearly all interactions were
statistically significant. The largest effect was the main effect of level of
communality ( $�2  = .42), and substantial effect-size estimates also were
obtained for overdetermination ( $�2  = .23) and for sample size ( $�2  = .27), just
as in the MacCallum et al. (1999) Monte Carlo study. Effect sizes for all

3 Because the distribution of � becomes more skewed as � approaches 1.0, values of � were
transformed into normal deviates by means of the Fisher r to z transformation before inclusion of
the K index in ANOVAs.

Table 1
ANOVA Results for the Measure of Congruence (K) in Monte Carlo Study

Source df SS F Prob. $�2

Sample size (N) 3 806.25 12663.70 <.0001 .27
Communality (h) 2 1260.63 29700.90 <.0001 .42
Overdetermination (d) 1 695.08 32752.82 <.0001 .23
Model fit (f) 2 18.45 434.64 <.0001 .01
d × f 2 7.70 181.38 <.0001 .00
h × f 4 17.52 206.33 <.0001 .00
h × d 2 26.54 625.25 <.0001 .01
N × f 6 0.25 1.94 0.071 .00
N × d 3 7.69 120.72 <.0001 .00
N × h 6 3.64 28.59 <.0001 .00
h × d × f 4 34.35 404.63 <.0001 .01
N × d × f 6 0.09 0.72 0.636 .00
N × h × d 6 4.51 35.41 <.0001 .00
N × h × f 12 0.98 3.86 <.0001 .00
N × h × d × f 12 1.17 4.60 <.0001 .00
Error 7128 151.27

Note. Prob. = probability; $�2  = estimated proportion of variance accounted for in the
population by each effect.
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interactions were small. Importantly, even though the main effect for model
error was statistically significant, its effect-size was quite small ( $�2  = .0061).

Table 2 presents results of the four-way ANOVA for the root-mean-
square deviation measure, g. As with K, all main effects and nearly all
interactions were statistically significant. The largest effect was the main
effect of sample size ( $�2  = .41), followed closely by that of communality
level ( $�2  = .33).  Overdetermination had a lower effect-size estimate ( $�2  = .07),
and the effect-sizes for all other main effects and interactions were small to
negligible. As with K, even though the main effect for model error was
statistically significant, its effect-size was quite small ( $�2  = .0021).

Cell means for K are presented in Figure 1, and cell means for g are
presented in Figure 2.  The error bars around each point in all of the plots in
Figures 1 and 2 represent intervals within which approximately 95% of the
values of K (or g) lie for each cell mean (e.g., K  � 1.96S

K
).  As hypothesized,

all of the main effects and interactions reported in MacCallum et al. (1999)

Table 2
ANOVA Results for the Root Mean Squared Error (g) in Monte Carlo Study

Source df SS F Prob. $�2

Sample size (N) 3 4.12 7837.64 <.0001 .41
Communality (h) 2 3.36 9588.25 <.0001 .33
Overdetermination (d) 1 0.79 4531.38 <.0001 .08
Model fit (f) 2 0.02 61.99 <.0001 .00
d × f 2 0.02 52.36 <.0001 .00
h × f 4 0.13 191.81 <.0001 .01
h × d 2 0.06 166.02 <.0001 .01
N × f 6 0.00 1.98 0.065 .00
N × d 3 0.01 13.92 <.0001 .00
N × h 6 0.21 202.82 <.0001 .02
h × d × f 4 0.13 154.89 <.0001 .01
N × d × f 6 0.01 6.02 <.0001 .00
N × h × d 6 0.06 58.72 <.0001 .01
N × h × f 12 0.01 2.60 0.002 .00
N × h × d × f 12 0.01 4.07 <.0001 .00
Error 7128 1.25

Note. Prob. = probability; $�2  = estimated proportion of variance accounted for in the
population by each effect.
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were replicated.  In both sets of reported results, the most important
determinant of population factor recovery was communality level,
regardless of the presence of model error.  The other factors had little effect
when communalities were high, and only when the communalities became
low did N and overdetermination become important determinants of
recovery of population factors.  As discussed by MacCallum et al. (1999),
these results show that with high communalities and strongly determined
factors, sample size has relatively little impact on the solutions and good
recovery of population factors can be achieved even with fairly small
samples.  However, even when the degree of overdetermination is strong,
sample size has a much greater impact as communalities enter the wide or
low range.

Of primary interest is the comparison of plots within Figures 1 and 2 in
terms of model fit, or the comparison between the situations in which the
common factor model has poor, fair, or very good fit in the population.Visual
inspection of the mean plots reveals no major difference among fit levels.  That
is, comparison of panels 1, 3, and 5 within each figure, as well as comparison
of panels 2, 4, and 6 within each figure, shows very little effect of the level of
model error on these indexes of factor recovery.  This observation is of course
consistent with the ANOVA results indicating very small effect sizes for
model fit as well as small interactions of model fit with other factors.  Thus,
results show no appreciable influence of model error on correspondence
between sample and population factors, with this finding being consistent
across levels of other design features considered here (sample size,
communality level, and overdetermination).  Finally, and importantly, levels of
K in Figure 1 are very similar to corresponding levels in Figure 1 of MacCallum
et al. (1999), where data contained no model error, providing further support
for our hypothesis that correspondence between sample and population
factors is not influenced by the presence or degree of model error.

No detailed results will be presented for the analysis of the bias measure,
�, since analyses showed essentially no bias in estimation of factor loadings
under any of the conditions included in our study.  The grand mean of � was
-.006, and the cell mean deviating furthest from zero was only -.023.

In summary, results of the Monte Carlo study support our hypotheses
about the impact of model error on results of factor analysis of sample data.
Effects of sample size, communality level, and overdetermination on
recovery of population factors are essentially identical regardless of the
presence of model error.  These results indicate that conclusions regarding
overdetermination, sample size, and level of communality drawn by
MacCallum et al. (1999) should generalize to data for which the common
factor model does not hold exactly.  Results also showed essentially no bias
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Figure 1
Cell Means for Index of Congruence (K) in Monte Carlo Study
Each panel represents a different combination of p:r ratio and model fit.  The vertical axis
shows mean K between sample and population factors.  Error bars show intervals within
which 95% of the values of K lie for each cell (not visible when the width of the error bar is
smaller than the symbol representing the mean). p = number of variables; r = number of
factors.
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Figure 2
Cell Means for Index of Root Mean Squared Deviation (g) in Monte Carlo Study
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in estimation of factor loadings.  However, because this Monte Carlo study
involved the generation of artificial data, we sought to demonstrate the
validity of these conclusions in empirical data in which the nature of model
error is not controlled.

Empirical Sampling Study

We conducted an empirical sampling study to determine whether the
trends hypothesized from the theoretical framework presented earlier and
verified in the Monte Carlo study would generalize to analyses of empirical
data.  We employed a data set obtained from the Department of
Developmental Services (DDS) of the State of California containing
measures on a 66-item inventory of adaptive behaviors for a large sample of
mentally retarded or developmentally disabled persons.

Method

Samples.  The total number of persons who were assessed in 1991 was
79,595. However, data from only those who were at least 15 years old in 1991
(N = 55,085) were used for this study because data from those who were less
than age 15 might be less reliable.  This group was considered to be a
population from which samples were drawn as described below.

Instrument.  The inventory of adaptive behaviors mandated by the
California DDS is called the Client Development Evaluation Report
(CDER).  Widaman, Gibbs, and Geary (1987) found a highly stable six-factor
structure for the CDER that was clearly replicated across 14 samples of
persons with mental retardation.  Widaman et al. labeled the six factors
Motor Development (12 items), Independent Living Skills (10 items),
Cognitive Competence (14 items), Social Competence (6 items), Social
Maladaptation (10 items), and Personal Maladaptation (7 items).

Design. To investigate the issues of concern in the present study, we
employed these empirical data and our knowledge of their factor structure
to define various sets of measured variables that represented different levels
of overdetermination and communalities. Two different levels of
overdetermination were represented, as defined by the ratio p:r.  These
ratios were 12:3 and 18:3.  More specific information on the selection of the
variables and factors will be given later in this section.

In order to establish a method for manipulating level of communality, we
performed preliminary factor analyses on selected sets of single items and
other analyses on selected two-item parcels.  Two-item parcels were formed
by summing scores on two related items.  Cattell and Burdsal (1975) showed
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that the clarity and strength of the factorial description of parcels of items
is greater than that of the constituent items if all items combined into a given
parcel have the same factorial composition.  As a result, the communality of
a parcel should be higher than that of the individual items that comprise the
parcel.  Thus, two levels of communality were employed in the study: low
(analyses based on items), and high (analyses based on two-item parcels).

Of the six CDER factors, three with a sufficient number of items (10 or
more) were used for the present study; the three factors were Motor
Development, Cognitive Competence, and Social Maladaptation.  Items and
parcels representing these three factors were selected so as to define data
sets representing p:r ratios of 12:3 and 18:3.  For the low communality
conditions, four items per factor were selected for the 12:3 condition of
overdetermination, and six items per factor were selected for the 18:3
condition of overdetermination.  For the high communality conditions at each
p:r level, items which had not been selected were paired with previously
selected items, with resulting sums representing two-item parcels serving as
indicators of the factors.  Several items were used twice in forming two-item
parcels to achieve high communalities.

A series of preliminary factor analyses conducted on the full population
verified that the use of items and parcels did affect communality.  Across the
two solutions for which single items served as indicators, the mean
communality of indicators was .58; for the two solutions having two-item
parcels as indicators, the mean communality of indicators was .79.  This
manipulation of level of communality in the present empirical study must be
considered small.  In comparison to the Monte Carlo study presented earlier,
note that the communalities in the “low” condition in the empirical sampling
study (mean = .58) are not nearly as low as those in the low condition of the
Monte Carlo study (range .2 to .4).  As a result, effects of level of
communality and its interactions in the empirical sampling study should be
considered underestimates of potential effects on properties of factor
analysis solutions.

For each combination of communality level (high, low) and level of
overdetermination (18:3, 12:3), 100 random samples were drawn for each
level of N.  We used the same levels of N as in the simulation study: 60, 100,
200, and 400.  Data from each of these samples were then factor analyzed
using methods identical to those used in the preceding simulation study.  As
in the Monte Carlo study, samples resulting in Heywood cases were not
screened out.  (Frequency of Heywood cases was much lower in the
empirical study due to the absence of a truly low-communality condition.)
The congruence measures, K and g, and the bias measure, �, as defined in
the simulation study, were computed for each sample solution.
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Evaluating Design Effects. In order to evaluate effects of sample size,
level of communality, and level of overdetermination on quality of the factor
solutions, the measures K, g, and � were used as dependent variables in
three-way ANOVAs.  The ANOVA design was a 4 (levels of sample size)
× 2 (levels of communality) × 2 (levels of overdetermination) design.  It was
hypothesized that results would follow the same pattern as in the Monte
Carlo study, with one likely major difference:  The effect of communality
level would be less dramatic in the empirical study because the manipulation
of this feature was smaller in the empirical study than in the simulation study.
As in the simulation study, interpretation of ANOVA results will focus on
effects showing substantial values of $�2 , regardless of statistical
significance.

Results and Discussion

Let us first consider the fit of the common factor model in the empirical
population of N = 55,085.  Using maximum likelihood factor analysis, a three-
factor model was fit to each of four population correlation matrices
representing the four conditions of this design:  communality level (high vs.
low), and overdetermination (18:3 vs. 12:3).  The resulting RMSEA values for
each of these analyses were as follows:  for high communality and p:r = 18:3,
RMSEA = .099; for high communality and p:r = 12:3, RMSEA = .067; for low
communality and p:r = 18:3, RMSEA = .090; for low communality and p:r = 12:3,
RMSEA = .064.  These results show higher levels of model error in those
data sets where there were more indicators for the same three factors,
regardless of communality level.  This observation implies that adding more
indicators may not always be beneficial because it may introduce additional
model error, for instance in the form of more or stronger minor factors.

The ANOVA summary for the dependent variable K is presented in
Table 3.  The most prominent effects were the main effects of sample size
( $�2  = .31), communality level ( $�2  = .52), and overdetermination ( $�2  = .01).
Effects involving communality level were much lower than in the Monte
Carlo study because of the weaker manipulation of communality level in the
empirical study.  ANOVA summary results for g, which agree with the
results for K, are presented in Table 4.  To aid in interpretation of effects, cell
means for K are presented in Figure 3 and those for g are presented in Figure
4.  Effects of communality level and sample size followed the same pattern
as observed in the Monte Carlo study.  On average, good recovery of
population factors was achieved under all conditions.  Mean values of K were
above .94 in all cells, and were above .99 for the high communality condition
even when N was small.  Recall that in the Monte Carlo study poor recovery
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Table 3
ANOVA Results for the Measure of Congruence (K) in Empirical Sampling
Study

Source df SS F Prob. $�2

Sample size (N) 3 155.14 1042.56 <.0001 .31
Communality (h) 1 262.33 5288.75 <.0001 .52
Overdetermination (d) 1 4.48 90.38 <.0001 .01
h × d 1 0.00 0.03 0.865 .00
N × d 3 0.11 0.75 0.521 .00
N × h 3 0.26 1.78 0.150 .00
N × h × d 3 0.09 0.61 0.606 .00
Error 1584 78.57

Note. Prob. = probability; $�2  = estimated proportion of variance accounted for in the
population by each effect.

Table 4
ANOVA Results for the Root Mean Squared Error (g) in Empirical Sampling
Study

Source df SS F Prob. $�2

Sample size (N) 3 0.70 652.21 <.0001 .33
Communality (h) 1 0.76 2116.97 <.0001 .36
Overdetermination (d) 1 0.01 32.35 <.0001 .01
h × d 1 0.00 2.42 0.120 .00
N × d 3 0.00 0.05 0.984 .00
N × h 3 0.09 80.52 0.000 .04
N × h × d 3 0.00 0.22 0.881 .00
Error 1584 0.57

Note. Prob. = probability; $�2  = estimated proportion of variance accounted for in the
population by each effect.
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was observed when communalities were low.  That apparent discrepancy in
results is illusory, however, because the empirical study contained no
comparable low-communality condition.  The low-communality condition in
the empirical study is more comparable to the wide-communality condition
in the Monte Carlo study.

The effect of level of overdetermination, as well as its interactive effect
with level of communality, was found to be much weaker in the empirical
study than in the Monte Carlo study.  The lack of a significant interaction
between overdetermination and communality level can probably be

Figure 3
Cell Means for Index of Congruence (K) in Empirical Sampling Study

Figure 4
Cell Means for Root Mean Squared Deviation (g) in Monte Carlo Study
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attributed to the weaker manipulation of communality in the empirical study.
The difference between the main effects of overdetermination in the two
studies may be attributable to the difference in the way in which this feature
was manipulated.  In the Monte Carlo study, levels of overdetermination
were represented by p:r ratios of 20:3 and 20:7.  That is, the number of
indicators was held constant while the number of factors was varied.  In the
empirical study, levels of overdetermination were represented by p:r ratios
of 18:3 and 12:3.  The number and nature of the three factors were held
constant, and the number of indicators was varied.  Given that the three
factors in the empirical study were well represented by the 12 indicators, the
addition of two more indicators per factor did not result in a substantial
change in recovery of those factors.  By comparison, the Monte Carlo results
showed a more dramatic effect in attempts to recover seven vs. three factors
using a fixed number of indicators (p = 20).  This finding of a difference in
the effect of overdetermination depending on whether p or r is varied is
consistent with speculations by MacCallum et al. (1999, p. 90) based on their
theoretical framework.

From another perspective, the small influence of overdetermination on K
and g lends further support to our primary hypothesis that recovery of factors
is unaffected by model error.  Recall that factor analyses of the four
“population” correlation matrices for the empirical study showed poorer fit
for the matrices involving 18 variables than for those involving 12 variables.
Importantly, results of analysis of K and g show that correspondence
between sample and population factors was not appreciably different in
those conditions, despite the difference in model fit.

Results for analysis of the bias measure, �, will not be presented in detail.
As in the Monte Carlo study, no evidence of bias was found, with mean
values of � being near zero in every cell.

In summary, results of the empirical sampling study verify that the
phenomena observed in the Monte Carlo study generalize to empirical data.
Most importantly, as long as communalities are high and factors are
adequately overdetermined, population factors will, on the average, be
recovered accurately in analysis of sample data even when N is relatively
small.  Furthermore, correspondence between sample and population factors
does not appear to be influenced by the degree of model error.

General Discussion

In this article we have examined the issue of sample size in factor
analysis in the presence of model error.  This study extends recent work by
MacCallum et al. (1999) and Velicer and Fava (1998), as well as earlier



R. MacCallum, K. Widaman, K. Preacher and S. Hong

MULTIVARIATE BEHAVIORAL RESEARCH 635

studies of this issue, which made use of the context where no model error
was present.  While theoretically interesting, such a perspective is
empirically unrealistic.  Our current approach made use of a theoretical
framework presented by MacCallum and Tucker (1991) to represent model
error explicitly in the population and sample and to differentiate the roles of
model error and sampling error.  This approach provided a basis for
predicting influences of model error, sample size, and other aspects of design
and data on recovery of population factors in sample data.  The primary
hypothesis was that, on average, recovery of population factors would not be
adversely affected by the presence of model error.  This prediction was
verified in our simulation and empirical sampling studies.  Results showed
that effects of sample size, communality level, and level of
overdetermination of factors on recovery of population factors were
essentially unaltered by the presence of model error.

A limitation of the current study is that all factor analyses were
conducted using the known correct number of factors.  As has been
established in previous studies (e.g., Fava & Velicer, 1992, 1996), retention
of an incorrect number of factors, especially retention of too few factors, can
cause major distortion of loading patterns.  Although underfactoring can be
considered as a source of major model error, our results regarding lack of
effects of model error on factor recovery do not generalize to such a
situation.  Our findings pertain primarily to influences of an aggregated
variety of relatively minor sources of model error, rather than the type of
major misspecification represented by failure to retain a major common
factor.  Given the serious consequences of underfactoring, it is clear that
users of factor analysis should be very rigorous in making the number-of-
factors decision and should err in the direction of overfactoring when the
evidence is ambiguous.

Certainly other limitations apply to our Monte Carlo study, as is the case
with any such study.  The range of conditions considered and the nature of
the simulated data cannot fully represent the variety of conditions and data
structures encountered in empirical research.  Given these limitations, it is
important to keep in mind that the hypotheses based on our theoretical
framework and confirmed in our Monte Carlo study were also strongly
supported in our sampling study using empirical data.

It is important to consider how our results should be viewed relative to
the use of exploratory versus confirmatory factor analysis.  On one hand, our
Monte Carlo and empirical sampling studies involved exploratory factor
analysis.  However, our theoretical framework involved the general common
factor model, and the resulting hypotheses should be equally valid in both
exploratory and confirmatory settings.  Although we have shown the
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hypothesized effects to be present in exploratory analyses, testing these
same effects in confirmatory factor analysis would require careful
consideration of some issues that distinguish exploratory from confirmatory
approaches.  Especially relevant in this context would be the nature of model
error.  The increased potential for misspecification in confirmatory analyses
introduces additional and different kinds of model error beyond those
evaluated in our sampling studies.  The validity of our hypotheses in the
presence of such model error may be a topic for further study.  We are
confident, though, that the effects described in the current article should
generalize from exploratory to confirmatory analyses as long as the
confirmatory model is not badly misspecified.

Within the context of exploratory factor analysis, our results have more
relevance than do previous results for empirical studies because of the
explicit incorporation of model error, which will always be present to some
degree in practice.  Our results also reinforce the evidence regarding the
critical role of communality level, while demonstrating the limited value of
traditional rules of thumb regarding sample size in factor analysis.  For
example, one common rule of thumb regarding sample size is that, to ensure
stability of a factor solution, a researcher should have a ratio of subjects to
variables that is 4:1 or larger.  However, our results show that if
communalities are high, recovery of population factors in sample data is
normally very good, almost regardless of sample size, level of
overdetermination, or the presence of model error.  Thus, samples somewhat
smaller than traditionally recommended are likely sufficient when
communalities are high.  When communalities are lower, much larger
samples are needed, with this phenomenon being amplified by poorly
overdetermined factors.  Indeed, sample sizes may have to be much larger
than typically recommended (e.g., a 20:1 subjects-to-variables ratio) when
communalities are low and factors are not highly overdetermined.  Our
theoretical framework along with results of sampling studies, in combination
with those of MacCallum et al. (1999), provide a more informed view of the
issue of sample size in factor analysis.  It is now clear that it is not possible
to make blanket recommendations regarding this issue without considering
other important aspects of design.
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