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Exploratory Factor Analysis in Behavior Genetics
Research: Factor Recovery with Small Sample Sizes
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Results of a Monte Carlo study of exploratory factor analysis demonstrate that in studies char-
acterized by low sample sizes the population factor structure can be adequately recovered if
communalities are high, model error is low, and few factors are retained. These are conditions
likely to be encountered in behavior genetics research involving mean scores obtained from sets
of inbred strains. Such studies are often characterized by a large number of measured variables
relative to the number of strains used, highly reliable data, and high levels of communality. This
combination of characteristics has special consequences for conducting factor analysis and in-
terpreting results. Given that limitations on sample size are often unavoidable, it is recommended
that researchers limit the number of expected factors as much as possible.
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many dependent measures but few underlying latent
variables. Failure to first perform factor analysis on
dependent measures derived from test batteries and
multidimensional scales has been shown to adversely
affect interpretation of complex behaviors, such as
emotionality and intelligence (Royce, Holmes, and
Poley, 1975). Whenever a multidimensional construct
is treated as unidimensional in statistical analyses,
proper interpretation of results is nearly impossible, and
solutions are unstable across similar studies. EFA can
be used as an intermediate step to help identify clus-
ters of variable correlated because of a mutual depen-
dence on underlying latent variables, which in turn can
guide researchers in test battery development, variable
selection, and interpretation of results.

The typical potential application of EFA in animal
behavior genetics involves those cases where a large
number of dependent measures is administered to a lim-
ited number of inbred strains or F1 crosses (typically
numbering under 30 and sometimes fewer than 10).
Whereas these conditions are usually considered far
from appropriate for EFA (as we discuss in detail later),
these studies often have redeeming characteristics. For
example, the “individual scores” submitted to an EFA
of genetic factors are group means derived from many
individuals, and thus provide relatively accurate (highly
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Researchers in the field of behavior genetics who
use inbred strains in breeding designs, or who exam-
ine strain distribution patterns of recombinant inbred
strain means, often hesitate to employ exploratory fac-
tor analysis (EFA) to investigate the number and na-
ture of unobservable genetic factors underlying patterns
of correlations among the strain means of their vari-
ables. This reluctance is not surprising, given the var-
ious “rules of thumb” encountered in the literature
regarding the sample size, N, required for factor analy-
sis, where N in these cases represents the number of
strains involved in the study. Popular recommendations
regarding the minimum necessary sample size range
from N 5 100 (e.g., Gorsuch, 1983) to N 5 250 (e.g.,
Cattell, 1978), values well beyond the number of strains
typically employed in behavior genetics research. Sim-
ilarly, recommendations regarding the proper factor-to-
variable ratio range from 3–6 (Cattell, 1978) to at least
10 (Everitt, 1975).

Use of factor analysis can be valuable in behavior
genetic research, where a given study will often include
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reliable) characterizations of individual strains on the
dependent measures.

The goal of EFA is to identify a limited number
of underlying (latent) variables responsible for ob-
served variances and covariances. The number of
factors to retain is decided upon by the researcher, and
is ideally based on a combination of statistical and
interpretational criteria (Fabrigar, Wegener, MacCal-
lum, and Strahan, 1999). EFA is not to be confused
with principal components analysis (PCA), which
refers to a model with a different set of applications
and an underlying philosophy distinct from that of
EFA (Floyd and Widaman, 1995; Preacher and Mac-
Callum, 2000).

DETERMINANTS OF SUCCESSFUL
APPLICATION OF EFA

The utility of EFA hinges on its ability to yield
stable, accurate, and interpretable estimates of factor
loadings. One of the most common questions that arises
in applications of EFA regards the minimum sample
size required for the analysis. This question can be
examined from the statistical power perspective [i.e.,
how many cases are required to achieve a given level
of power for statistical tests of model fit (MacCallum,
Browne, and Sugawara, 1996)], the precision perspec-
tive (i.e., how many cases are necessary to achieve
acceptably stable parameter estimates), or from the va-
lidity perspective (i.e., how many cases are required in
order to recover the population factor structure). It
is upon the third perspective that this paper focuses,
because population factor recovery is arguably the most
important requirement for good interpretation and
inference.

Several model and design characteristics play a
role in EFA’s ability to adequately recover population
factor loadings. Specifically, the sample size (N) em-
ployed, the number of factors (m) retained, the number
of variables (p) examined, the level of communality
(h), and the degree of model error3 each contribute to
factor recovery (MacCallum, Widaman, Zhang, and
Hong, 1999; MacCallum, Widaman, Preacher, and
Hong, 2002). Previous studies examining the influence
of N have shown that its effects depend on levels of
other design characteristics. Therefore, it should be ev-
ident that general rules of thumb regarding the mini-
mum required N are not valid. In applications of EFA

154 Preacher and MacCallum

encountered in behavior genetics research, character-
istics of factor models commonly include small Ns, a
small factor-to-variable ratio (low overdetermination),
and high communalities. This combination of charac-
teristics has consequences for the degree of successful
factor recovery researchers can expect to achieve.

Using a framework established by MacCallum and
Tucker (1991) to represent the various sources of error
in factor analysis, MacCallum et al. (1999) used a
Monte Carlo approach to investigate the determinants
of population factor recovery. They demonstrated that
at high levels of communality (in the neighborhood of
h 5 .6 to .8) low overdetermination contributes to rel-
atively poor factor recovery and that factor recovery
drops off only slightly as N is lowered. At lower lev-
els of h, on the other hand, factor recovery suffers
greatly as a function of low N and low overdetermi-
nation. High communalities, then, tend to offset the
deleterious effects of small sample sizes and low
overdetermination. MacCallum et al. (2002) followed
this research by examining model error (the degree to
which a model accurately represents relationships
among variables in the population) as a possible de-
terminant of factor recovery. Besides replicating ef-
fects observed by MacCallum et al. (1999), they found
that lack of fit of the common factor model in the pop-
ulation did not seriously influence the degree of fac-
tor recovery. In research in behavior genetics, sample
sizes are usually quite low, but communalities are typ-
ically high (over .8), and overdetermination and model
fit are likewise usually high, so there is still a good
chance of adequately recovering population factors
with small Ns. However, small Ns can have a negative
effect on aspects of a factor analysis other than factor
recovery.

One consequence of employing small Ns is that
researchers often cannot take advantage of model fit
indices requiring the chi-square likelihood ratio test sta-
tistic, which is obtained through maximum likelihood
(ML) parameter estimation. ML estimation involves the
iterative minimization of a function involving S21, the
inverse of the sample covariance matrix S. The result
of this process is a test statistic distributed as chi-square
(x2). This x2 statistic can be used as a test of model fit
for a given number of factors m,and can be used as one
criterion to help determine the appropriate number of
factors to retain. The matrix S21, a necessary compo-
nent of the ML minimization function, is undefined
when the number of variables exceeds N. Inability to
use ML estimation prohibits the use of x2, which in turn
prohibits the use of many fit statistics, such as the root

3 Model error is defined as the lack of fit of the model in the popu-
lation. Model error is independent of sampling error.



mean square error of approximation (RMSEA; Steiger
and Lind, 1980), which are useful in determining not
only the degree to which the model is consistent with
data, but in deciding how many factors to retain and
in conducting power analyses. A second consequence
of using small Ns is the danger of obtaining unstable
estimates of factor loadings, an issue still warranting
investigation.

MONTE CARLO STUDY

Because small sample sizes relative to the num-
bers of dependent measures are common characteris-
tics of correlational research using strain means in be-
havior genetics, there may be concerns about the use
of EFA in this area. However, because highly reliable
data and high communality levels are also likely, good
factor recovery may still be achieved in some situations
despite small sample sizes and large test batteries. It is
possible that some researchers, fearing that their data
are lacking in some respect, avoid using EFA when it
would have been both appropriate and informative or
that some legitimate uses of EFA with small Ns have
not passed peer review.

With these concerns in mind, we wished to inves-
tigate the degree of population factor recovery under
various combinations of sample size (N), degree of over-
determination, and model error commonly found in
behavior genetics research. Model fit (f ) was defined
in terms of the population root mean squared residual
(RMSR).4 Overdetermination, the ratio of factors to
variables, was separated into number of factors (m) and
number of variables (p) in order to examine the effects
of each model characteristic individually.

We seek to extend prior research by examining
how N, f, m,and p influence factor recovery in designs
with very small Ns, a design limitation frequently en-
countered in behavior genetics research using inbred
strains. It is unknown whether the effects observed in
prior research will hold under these conditions, but we
expect to replicate many of the results from earlier stud-
ies (e.g., MacCallum et. al.,1999, 2002). For example,

we expect N to be a primary determinant of factor re-
covery. Because overdetermination had a significant
effect on factor recovery in prior research, we also ex-
pect to see main effects for m, p,or both m and p. We
do not expect f to have a very large effect (if any), given
prior research and the restricted range of model fit we
employ.

Method

Communalities were kept uniformly high; h ranged
between approximately .8 to .9 for each variable in the
population. We systematically varied sample size (N 5
10, 20, 30, 50), the number of factors retained (m 5 2,
4), the number of observed variables (p 5 10, 25, 40),
and the degree of model fit (f ) in the population in terms
of the population root mean squared residual (RMSR5
.00, .03, .06). Respectively, these values of RMSRcor-
respond to perfect, good, and fair model fit in the pop-
ulation. The range of f was restricted to the “acceptable”
region because poor model fit is difficult to reconcile
with high communalities. We felt that the chosen ranges
for m, p, f,and N cover the majority of applications of
EFA in behavior genetics research.

Using a method developed by Tucker, Koopman,
and Linn (1969), 18 population correlation matrices
were generated to correspond to the 18 combinations
of m, p,and f. Using a method developed by Wijsman
(1959), sample correlation matrices were generated
from the population matrices to correspond to each of
the four selected Ns. Enough sample matrices were
generated within each of the 72 conditions defined
by combinations of m, p, f,and N so that at least 100
matrices in each cell exhibited no Heywood cases when
factor analyzed. All subsequent analyses were con-
ducted on two sets of matrices: one which retained
the first 100 matrices showing no Heywood cases (com-
munalities . 1) when factor analyzed (the screened
sample) and one retaining the first 100 matrices, re-
gardless of the presence of Heywood cases (the un-
screened sample).

Each population matrix was submitted to a factor
analysis using the iterative principal factors method
(equivalent to ordinary least squares) with oblique
direct quartimin rotation (Jennrich and Sampson, 1966),
specifyingm as the number of known population fac-
tors. Then all sample matrices were factor analyzed
using the iterative principal factors method and retain-
ing m factors. The obtained factors were rotated to sim-
ple structure by using both direct quartimin and oblique
least-squares target rotation, using the population solu-
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4 , where P is the population correla-

tion matrix and p is the number of measured variables. The RMSR
index yields an estimate of the average degree of discrepancy
between corresponding elements of the population correlation
matrix and the correlation matrix implied by a factor model with
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tion as a target. All factor rotations were conducted
using the Comprehensive Exploratory Factor Analysis
(CEFA) program of Browne, Cudeck, Tateneni, and
Mels (1998). As in MacCallumet al. (1999, 2002),
ANOVAs were carried out both for samples screened
and unscreened for Heywood cases. Because results
were virtually identical, we chose to report the results
corresponding to the unscreened samples only.

To assess the degree of factor recovery, two in-
dices were computed: K, the average coefficient of
congruence across the m factors (Tucker, 1951); and g,
the root mean squared deviation between sample and
population loadings (Velicer and Fava, 1998). We also
computed d, the mean deviation between correspond-
ing sample and population loadings, as a measure of
bias. Details regarding the calculation of these indices
can be found in MacCallum et al. (2002). Suggested
guidelines for the interpretation of K (Tucker, personal
communication, 1987), are: .98 to 1.00 5 excellent,.92
to .98 5 good, .82 to .92 5 borderline, .68 to .82 5
poor, and below .68 5 terrible. In summary, high val-
ues of K and low values of g are considered indicators
of good factor recovery, and values of d that depart
from zero indicate the presence of bias.

To summarize the design, 100 sample correlation
matrices were generated for each of 72 conditions de-
fined by four levels of sample size, two levels of fac-
tors retained, three levels of observed variables, and
three levels of model fit. The resulting 7,200 sample
matrices were each factor analyzed using the iterative
principal factors method, rotated to both oblique direct
quartimin and oblique least-squares target solutions,
and compared to corresponding population loadings.
Measures of sample-population congruence (K and g)
and bias (d) were obtained.

Results

Indices K, g, and d were submitted to a 4 (N) 3 3
( p) 3 3 (f) 3 2 (m) ANOVA. As in MacCallum et al.
(1999, 2002), we expected virtually all effects to be sta-
tistically significant, so interpretation is based primar-
ily on effect size as measured by ˆq2, an estimate of the
proportion of variance accounted for in the population
by each effect (Maxwell and Delaney, 1990).

As expected, virtually all main effects and inter-
actions in the ANOVAs involving K, g, and d were
statistically significant. The results of analyses re-
garding the d measure of bias indicated a small effect
of sample size, such that less bias was associated (not
surprisingly) with larger sample sizes. However, we
stress that this effect was quite small, so no ANOVA
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tables or plots are presented for d. The overall aver-
age difference between corresponding sample and
population factor loadings was only .012, with the
largest average difference (.043) occurring in the de-
sign cell corresponding to p 5 40, m5 2, f 5 fair model
fit (RMSR5 .06), and N 5 10.

Results of the ANOVAs5 for the congruence index
K are reported in Table I.6 MacCallum et al. (1999,
2002) found communality to be the most important de-
terminant of factor recovery. Here, population com-
munalities were held uniformly high. In the present
study, sample size was the most important predictor
of K (q̂2 5 .51), followed by the number of factors
(q̂2 5 .29), such that samples with larger Ns and fewer
factors tended to show greater degrees of congruence.
All other effect size estimates were negligible.

Results of the ANOVAs for the root mean squared
deviation index g are presented in Table II. The only
non-negligible effect was that of sample size ( ˆq2 5
.66), such that larger sample sizes demonstrated lower
values of g.

Cell means for K and g are presented in Fig. 1 and
2, respectively. Error bars represent lower and upper
bounds of asymptotic 95% confidence intervals (e.g.,–
K 6 1.96(S–

K)).7 Where comparisons to prior research
can be made, these analyses and plots replicate trends
demonstrated in MacCallum et al. (1999, 2001) in cir-
cumstances involving small sample sizes and low lev-
els of model error, conditions commonly encountered
in behavior genetics research.

DISCUSSION AND RECOMMENDATIONS

As assessed by both indices K and g, recovery of
the population factor structure was quite good in most
conditions examined. The remainder of the discussion
is organized by aspects contributing to factor recovery.

5 The same general pattern of results for K, g, and d was obtained
by using direct quartimin rotated solutions and target rotated
solutions. Similarly, the same pattern of results held whether so-
lutions were screened or unscreened for the presence of Heywood
cases. Therefore, all ANOVA results and mean plots refer to analy-
ses of target rotated solutions, unscreened for Heywood cases. Re-
sults and plots from analyses involving oblique direct quartimin
rotated solutions and/or Heywood cases can be found at the au-
thors’ website: http://quantrm2.psy.ohio-state.edu/maccallum/pm/
results.htm.

6 Values of f were transformed to normality by means of the Fisher
r-to-z transformation before inclusion of the K index in ANOVAs.

7 These confidence intervals assume normality. K and g, of course,
are not normally distributed, but the sampling distributions of their
means are near-normal. Consequently, standard errors of the mean
were used to construct intervals. Because the error of estimation is
assumed to be symmetric about the mean, only the lower half of
each error bar is presented.



Model Fit

Consistent with the findings of MacCallum et al.,
model fit had little effect on factor recovery. This find-
ing is perhaps due to the fact that all three levels of
model fit examined (RMSR5 .00, .03, and .06) repre-
sent relatively good fit. As indicated earlier, the range
of f was restricted because it is probably very rare in
practice to find factor models exhibiting simultaneously
high communalities and poor fit, so results involving
such a combination would have had limited generaliz-
ability.

Sample Size

Within the range of model characteristics included
in our design, N had by far the largest effect on factor
recovery, which exhibited a sharp drop-off below Ns
of 20 or so. To the extent that researchers may collect
data from larger samples, they would be well advised
to do so. However, we recognize that behavior genet-
ics research involving strain means is often limited in
this capacity, and that many designs have Ns so low
that they also preclude the use of the x2 fit statistic.
Given that methods for calculating power have been
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Table I. ANOVA Results for the Measure of Congruence (K)

Source df MS F Prob. ˆv2

Model fit (f ) 2 1.33 27.36 0.00 0.00
No. of factors (m) 1 566.21 11661.89 0.00 0.29
No. of variables (p) 2 3.58 73.83 0.00 0.00
Sample size (N) 3 330.42 6805.42 0.00 0.51
f 3m 2 4.85 99.97 0.00 0.00
f 3p 4 1.94 39.95 0.00 0.00
m3p 2 2.27 46.83 0.00 0.00
f 3m3p 4 2.44 50.33 0.00 0.00
f 3N 6 0.02 0.48 0.83 0.00
m3N 3 0.25 5.23 0.01 0.00
f 3m3N 6 0.08 1.74 0.11 0.00
p3N 6 0.50 10.26 0.00 0.00
f 3p3N 12 0.10 2.09 0.01 0.00
m3p3N 6 0.05 1.01 0.41 0.00
f 3m3p3n 12 0.04 0.92 0.52 0.00
Error 7128 0.05

Note.Prob. 5 probability; v̂2 5 estimated proportion of variance accounted for in the
population by each effect.

Table II. ANOVA Results for the Root Mean Squared Error (g)

Source df MS F Prob. ˆv2

Model fit (f ) 2 0.01 14.63 0.00 0.00
No. of factors (m) 1 0.37 686.16 0.00 0.03
No. of variables (p) 2 0.02 32.89 0.00 0.00
Sample size (N) 3 3.03 5600.38 0.00 0.66
f 3m 2 0.02 45.23 0.00 0.00
f 3p 4 0.01 11.51 0.00 0.00
m3p 2 0.02 37.06 0.00 0.00
f 3m3p 4 0.01 19.93 0.00 0.00
f 3N 6 0.00 0.84 0.54 0.00
m3N 3 0.02 45.11 0.00 0.01
f 3m3N 6 0.00 0.94 0.47 0.00
p3N 6 0.01 23.38 0.00 0.01
f 3p3N 12 0.00 1.06 0.39 0.00
m3p3N 6 0.00 1.49 0.18 0.00
f 3m3p3n 12 0.00 0.77 0.69 0.00
Error 7128

Note.Prob. 5 probability;  v̂2 5 estimated proportion of variance accounted for in
the population by each effect.



Fig. 1. Cell means for index of congruence (K). Each panel represents a different combination of p, m, N,and f. The vertical axis shows mean K
between sample and population factors. Error bars show intervals within which 95% of the values of K lie for each cell (not visible when the width
of the error bar is smaller than the symbol representing the mean). p 5 number of variables; m 5 number of factors; N 5 sample size; f 5 model
fit in terms of RMSR.
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Fig. 2. Cell means for index of root mean squared deviation (g).



developed only for those fit statistics involving x2

(MacCallum et al.,1996; MacCallum and Hong, 1997),
the appropriate N must be based on the desired degree
of factor recovery, the desired stability of factor load-
ings, or both. Inspection of Fig. 1 and 2 reveals that
good factor recovery may still be achieved despite
small Ns.

Overdetermination

To make comparisons with prior research in this
area easier, note that if p is held constant, varying m
results in different levels of factor overdetermination.
Thus, holding p constant, overdetermination is higher
when m 5 2 than when m 5 4. The main effect of m
in the present study thus conceptually replicates the
main effect of overdetermination found in earlier stud-
ies (MacCallum et al.,1999, 2002), such that better fac-
tor recovery is associated with higher overdetermina-
tion (fewer factors). The results of the present study
suggest that the number of factors, rather than the num-
ber of variables, is what drove the overdetermination
effect in prior studies, although the role of p may be
greater in designs with larger samples and/or smaller
communalities.

This finding may appear to suggest that researchers
are more likely to improve factor recovery by reducing
the number of factors rather than by adding indicators,
but note that communalities were held constant in the
present study. Reducing the number of factors in prac-
tical applications will tend to reduce communalities,
which may drastically affect factor recovery. Based on
the results of MacCallum et al. (1999, 2002) we sus-
pect that if communalities were even a little lower, the
observed pattern of effects would be exaggerated.

What, then, should be done regarding the number
of factors and number of variables? In any application
of EFA, retaining too few factors will negatively im-
pact communalities, whereas retaining too many can
compromise interpretability. The number of factors
explaining interrelationships among variables is often
beyond the control of the experimenter and thus not
susceptible to manipulation anyway. We recommend
that researchers use established methods to determine
the number of factors to retain (Fabrigar et al., 1999;
Floyd and Widaman, 1995), being careful not to retain
factors that add little explanatory power to the model.
Our practical finding regarding overdetermination is
that, for studies with small Ns and high communali-
ties such as are commonly found in the field of be-
havior genetics, designs with a small number of well-
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determined factors have the best chance of successful
factor recovery regardless of the number of variables
examined. If factor recovery is poor, adding variables
is unlikely to improve matters.

GENERAL RECOMMENDATIONS

Unfortunately for most animal research where the
observations of interest are strain means, Ns are nec-
essarily small. Given that, our recommendation is to
design studies characterized by small expected num-
bers of factors (this is the only reasonable way in which
the number of factors may be manipulated). Although
only two values of m were examined in the present
study, factor recovery is clearly better in situations in-
volving fewer underlying factors. Because the number
of factors is in some sense beyond the control of the
experimenter, it makes sense to design studies in which
the number of expectedfactors is small.

The other point we wish to emphasize is that good
factor recovery may be achieved even with very small
sample sizes, assuming other conditions hold. This con-
clusion might be somewhat surprising to those famil-
iar with conventional rules of thumb regarding sample
size in factor analysis. As long as communalities are
high, the number of expected factors is relatively small,
and model error is low (a condition which often goes
hand-in-hand with high communalities), researchers
and reviewers should not be overly concerned about
small sample sizes.
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