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Results of a Monte Carlo study of exploratory factor analysis demonstrate that in studies char-
acterized by low sample sizes the population factor structure can be adequately recovered if
communalities are high, model error is low, and few factors are retained. These are conditions
likely to be encountered in behavior genetics research involving mean scores obtained from sets
of inbred strains. Such studies are often characterized by a large number of measured variables
relative to the number of strains used, highly reliable data, and high levels of communality. This
combination of characteristics has special consequences for conducting factor analysis and in-
terpreting results. Given that limitations on sample size are often unavoidable, it is recommended
that researchers limit the number of expected factors as much as possible.
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Researchers in the field of behavior genetics who many dependent measures but few underlying latent
use inbred strains in breeding designs, or who exam-variables. Failure to first perform factor analysis on
ine strain distribution patterns of recombinant inbred dependent measures derived from test batteries and
strain means, often hesitate to employ exploratory fac- multidimensional scales has been shown to adversely
tor analysis (EFA) to investigate the number and na- affect interpretation of complex behaviors, such as
ture of unobservable genetic factors underlying patternsemotionality and intelligence (Royce, Holmes, and
of correlations among the strain means of their vari- Poley, 1975). Whenever a multidimensional construct
ables. This reluctance is not surprising, given the var-is treated as unidimensional in statistical analyses,
ious “rules of thumb” encountered in the literature proper interpretation of results is nearly impossible, and
regarding the sample siz, required for factor analy-  solutions are unstable across similar studies. EFA can
sis, whereN in these cases represents the number ofbe used as an intermediate step to help identify clus-
strains involved in the study. Popular recommendationsters of variable correlated because of a mutual depen-
regarding the minimum necessary sample size rangedence on underlying latent variables, which in turn can
from N = 100 (e.g., Gorsuch, 1983) b= 250 (e.g., guide researchers in test battery development, variable
Cattell, 1978), values well beyond the number of strains selection, and interpretation of results.
typically employed in behavior genetics research. Sim- The typical potential application of EFA in animal
ilarly, recommendations regarding the proper factor-to- behavior genetics involves those cases where a large
variable ratio range from 3-6 (Cattell, 1978) to at least number of dependent measures is administered to a lim-
10 (Everitt, 1975). ited number of inbred strains or F1 crosses (typically

Use of factor analysis can be valuable in behavior numbering under 30 and sometimes fewer than 10).
genetic research, where a given study will often include Whereas these conditions are usually considered far

from appropriate for EFA (as we discuss in detail later),
[ these studies often have redeeming characteristics. For
, Department of Psychology, The Ohio State University. example, the “individual scores” submitted to an EFA
To whom correspondence should be addressed: 142 Townshend . .
Hall, 1885 Neil Ave. Mall, The Ohio State University, Columbus, of genetic factors are group means derived from many
OH 43210-1222. e-mail: preacher.2@osu.edu individuals, and thus provide relatively accurate (highly
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reliable) characterizations of individual strains on the encountered in behavior genetics research, character-
dependent measures. istics of factor models commonly include smidl, a

The goal of EFA is to identify a limited number small factor-to-variable ratio (low overdetermination),
of underlying (latent) variables responsible for ob- and high communalities. This combination of charac-
served variances and covariances. The number ofteristics has consequences for the degree of successful
factors to retain is decided upon by the researcher, andactor recovery researchers can expect to achieve.
is ideally based on a combination of statistical and Using a framework established by MacCallum and
interpretational criteria (Fabrigar, Wegener, MacCal- Tucker (1991) to represent the various sources of error
lum, and Strahan, 1999). EFA is not to be confusedin factor analysis, MacCallumat al. (1999) used a
with principal components analysis (PCA), which Monte Carlo approach to investigate the determinants
refers to a model with a different set of applications of population factor recovery. They demonstrated that
and an underlying philosophy distinct from that of at high levels of communality (in the neighborhood of
EFA (Floyd and Widaman, 1995; Preacher and Mac- h = .6 to .8) low overdetermination contributes to rel-
Callum, 2000). atively poor factor recovery and that factor recovery
drops off only slightly adN is lowered. At lower lev-
els of h, on the other hand, factor recovery suffers
greatly as a function of loW and low overdetermi-
nation. High communalities, then, tend to offset the

The utility of EFA hinges on its ability to yield deleterious effects of small sample sizes and low
stable, accurate, and interpretable estimates of factoroverdetermination. MacCalluet al. (2002) followed
loadings. One of the most common questions that ariseghis research by examining model error (the degree to
in applications of EFA regards the minimum sample which a model accurately represents relationships
size required for the analysis. This question can beamong variables in the population) as a possible de-
examined from the statistical power perspective [i.e., terminant of factor recovery. Besides replicating ef-
how many cases are required to achieve a given levelfects observed by MacCalluet al. (1999), they found
of power for statistical tests of model fit (MacCallum, that lack of fit of the common factor model in the pop-
Browne, and Sugawara, 1996)], the precision perspec-ulation did not seriously influence the degree of fac-
tive (i.e., how many cases are necessary to achieveor recovery. In research in behavior genetics, sample
acceptably stable parameter estimates), or from the vasizes are usually quite low, but communalities are typ-
lidity perspective (i.e., how many cases are required inically high (over .8), and overdetermination and model
order to recover the population factor structure). It fit are likewise usually high, so there is still a good
is upon the third perspective that this paper focuses,chance of adequately recovering population factors
because population factor recovery is arguably the mostwith smallNs. However, smalNs can have a negative
important requirement for good interpretation and effect on aspects of a factor analysis other than factor
inference. recovery.

Several model and design characteristics play a One consequence of employing smidf is that
role in EFA’s ability to adequately recover population researchers often cannot take advantage of model fit
factor loadings. Specifically, the sample sid g€m- indices requiring the chi-square likelihood ratio test sta-
ployed, the number of factore retained, the number tistic, which is obtained through maximum likelihood
of variables @) examined, the level of communality (ML) parameter estimation. ML estimation involves the
(h), and the degree of model eff@ach contribute to iterative minimization of a function involving?, the
factor recovery (MacCallum, Widaman, Zhang, and inverse of the sample covariance mat8ixThe result
Hong, 1999; MacCallum, Widaman, Preacher, and of this process is a test statistic distributed as chi-square
Hong, 2002). Previous studies examining the influence (x?). Thisx? statistic can be used as a test of model! fit
of N have shown that its effects depend on levels of for a given number of factors,and can be used as one
other design characteristics. Therefore, it should be ev-criterion to help determine the appropriate number of
ident that general rules of thumb regarding the mini- factors to retain. The matri® !, a necessary compo-
mum requiredN are not valid. In applications of EFA nent of the ML minimization function, is undefined

when the number of variables exceadlsinability to

% Model error is defined as the lack of fit of the model in the popu- UYS€ ML estimation prOhibitSf the qsexft whichin turn
lation. Model error is independent of sampling error. prohibits the use of many fit statistics, such as the root

DETERMINANTS OF SUCCESSFUL
APPLICATION OF EFA
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mean square error of approximation (RMSEA; Steiger we expeciN to be a primary determinant of factor re-
and Lind, 1980), which are useful in determining not covery. Because overdetermination had a significant
only the degree to which the model is consistent with effect on factor recovery in prior research, we also ex-
data, but in deciding how many factors to retain and pect to see main effects for, p,or bothmandp. We

in conducting power analyses. A second consequencedo not expectto have a very large effect (if any), given
of using smaliNs is the danger of obtaining unstable prior research and the restricted range of model fit we
estimates of factor loadings, an issue still warranting employ.

investigation.

Method

MONTE CARLO STUDY . . .
Communalities were kept uniformly highranged

Because small sample sizes relative to the num-between approximately .8 to .9 for each variable in the
bers of dependent measures are common characterispopulation. We systematically varied sample site=(
tics of correlational research using strain means in be-10, 20, 30, 50), the number of factors retainad=( 2,
havior genetics, there may be concerns about the usetl), the number of observed variablgs= 10, 25, 40),
of EFA in this area. However, because highly reliable and the degree of model fit)in the population in terms
data and high communality levels are also likely, good of the population root mean squared residRMER=
factor recovery may still be achieved in some situations .00, .03, .06). Respectively, these valueRbSRcor-
despite small sample sizes and large test batteries. It isespond to perfect, good, and fair model fit in the pop-
possible that some researchers, fearing that their datailation. The range dfwas restricted to the “acceptable”
are lacking in some respect, avoid using EFA when it region because poor model fit is difficult to reconcile
would have been both appropriate and informative or with high communalities. We felt that the chosen ranges
that some legitimate uses of EFA with smiddl have for m, p, f,andN cover the majority of applications of
not passed peer review. EFA in behavior genetics research.

With these concerns in mind, we wished to inves- Using a method developed by Tucker, Koopman,
tigate the degree of population factor recovery under and Linn (1969), 18 population correlation matrices
various combinations of sample si28,(degree of over-  were generated to correspond to the 18 combinations
determination, and model error commonly found in of m, p,andf. Using a method developed by Wijsman
behavior genetics research. Model fi) (vas defined (1959), sample correlation matrices were generated
in terms of the population root mean squared residualfrom the population matrices to correspond to each of
(RMSR.# Overdetermination, the ratio of factors to the four selectedNs. Enough sample matrices were
variables, was separated into number of factoysad generated within each of the 72 conditions defined
number of variablesp) in order to examine the effects by combinations ofm, p, f,andN so that at least 100
of each model characteristic individually. matrices in each cell exhibited no Heywood cases when

We seek to extend prior research by examining factor analyzed. All subsequent analyses were con-
how N, f, m,andp influence factor recovery in designs ducted on two sets of matrices: one which retained
with very smallNs, a design limitation frequently en- the first 100 matrices showing no Heywood cases (com-
countered in behavior genetics research using inbredmunalities> 1) when factor analyzed (the screened
strains. It is unknown whether the effects observed in sample) and one retaining the first 100 matrices, re-
prior research will hold under these conditions, but we gardless of the presence of Heywood cases (the un-
expect to replicate many of the results from earlier stud- screened sample).
ies (e.g., MacCallumet. al.,1999, 2002). For example, Each population matrix was submitted to a factor

analysis using the iterative principal factors method
(equivalent to ordinary least squares) with oblique

) P b _py direct quartimin rotation (Jennrich and Sampson, 1966),
4 ‘ zlz( i~ Fi) , _ specifyingm as the number of known population fac-
RMSR =2 where Pis the population correla- .
\ p(p +1) tors. Then all sample matrices were factor analyzed

tion matrix andp is the number of measured variables. RMSR using the iterative principal factors method and retain-
index yields an estimate of the average degree of discrepancying mfactors. The obtained factors were rotated to sim-

between corresponding elements of the population correlation le struct b ina both direct timi d obli
matrix and the correlation matrix implied by a factor model with ple structure by using bo Irect quartimin and oblique

m factors. least-squares target rotation, using the population solu-
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tion as a target. All factor rotations were conducted
using the Comprehensive Exploratory Factor Analysis
(CEFA) program of Browne, Cudeck, Tateneni, and
Mels (1998). As in MacCallunet al. (1999, 2002),

ANOVAs were carried out both for samples screened

Preacher and MacCallum

tables or plots are presented forThe overall aver-
age difference between corresponding sample and
population factor loadings was only .012, with the
largest average difference (.043) occurring in the de-
sign cell corresponding = 40,m = 2,f = fair model

and unscreened for Heywood cases. Because resultdit (RMSR= .06), andN = 10.

were virtually identical, we chose to report the results
corresponding to the unscreened samples only.

To assess the degree of factor recovery, two in-

dices were computed, the average coefficient of
congruence across thefactors (Tucker, 1951); argl

Results of the ANOVAXfor the congruence index
K are reported in Table®MacCallumet al. (1999,
2002) found communality to be the most important de-
terminant of factor recovery. Here, population com-
munalities were held uniformly high. In the present

the root mean squared deviation between sample andtudy, sample size was the most important predictor

population loadings (Velicer and Fava, 1998). We also
computedd, the mean deviation between correspond-

of K (@ = .51), followed by the number of factors
(@ = .29), such that samples with largés and fewer

ing sample and population loadings, as a measure offactors tended to show greater degrees of congruence.
bias. Details regarding the calculation of these indices All other effect size estimates were negligible.

can be found in MacCallurat al. (2002). Suggested
guidelines for the interpretation Kf(Tucker, personal
communication, 1987), are: .98 to 1.8Gexcellent,92
to .98 = good,.82 to .92= borderline, .68 to .82=
poor,and below .68= terrible. In summary, high val-
ues ofK and low values ofj are considered indicators
of good factor recovery, and values &that depart
from zero indicate the presence of bias.

To summarize the design, 100 sample correlation

matrices were generated for each of 72 conditions de-

fined by four levels of sample size, two levels of fac-

Results of the ANOVAs for the root mean squared
deviation indexg are presented in Table Il. The only
non-negligible effect was that of sample sizé €
.66), such that larger sample sizes demonstrated lower
values ofg.

Cell means foK andg are presented in Fig. 1 and
2, respectively. Error bars represent lower and upper
bounds of asymptotic 95% confidence intervals (e.g.,
K + 1.96()).” Where comparisons to prior research
can be made, these analyses and plots replicate trends
demonstrated in MacCalluet al. (1999, 2001) in cir-

tors retained, three levels of observed variables, andcumstances involving small sample sizes and low lev-

three levels of model fit. The resulting 7,200 sample

els of model error, conditions commonly encountered

matrices were each factor analyzed using the iterativein behavior genetics research.

principal factors method, rotated to both oblique direct

guartimin and oblique least-squares target solutions,
and compared to corresponding population loadings.

Measures of sample-population congrueri€eand g)
and bias §) were obtained.

Results

IndicesK, g,andd were submitted to a Nj X 3
(p) X 3 (f) X 2 (M) ANOVA. As in MacCallumet al.
(1999, 2002), we expected virtually all effects to be sta-
tistically significant, so interpretation is based primar-
ily on effect size as measured &% an estimate of the
proportion of variance accounted for in the population
by each effect (Maxwell and Delaney, 1990).

As expected, virtually all main effects and inter-
actions in the ANOVAs involvinKK, g, andd were
statistically significant. The results of analyses re-
garding theéd measure of bias indicated a small effect

DISCUSSION AND RECOMMENDATIONS

As assessed by both indicksandg, recovery of
the population factor structure was quite good in most
conditions examined. The remainder of the discussion
is organized by aspects contributing to factor recovery.

5The same general pattern of results Korg, and 8 was obtained
by using direct quartimin rotated solutions and target rotated
solutions. Similarly, the same pattern of results held whether so-
lutions were screened or unscreened for the presence of Heywood
cases. Therefore, all ANOVA results and mean plots refer to analy-
ses of target rotated solutions, unscreened for Heywood cases. Re-
sults and plots from analyses involving oblique direct quartimin
rotated solutions and/or Heywood cases can be found at the au-
thors’ website: http://quantrm2.psy.ohio-state.edu/maccallum/pm/
results.htm.

5 Values ofd were transformed to normality by means of the Fisher
r-to-z transformation before inclusion of theindex in ANOVAs.

" These confidence intervals assume normaktyandg, of course,
are not normally distributed, but the sampling distributions of their

of sample size. such that less bias was associated (notmeans are near-normal. Consequently, standard errors of the mean

surprisingly) with larger sample sizes. However, we
stress that this effect was quite small, so no ANOVA

were used to construct intervals. Because the error of estimation is
assumed to be symmetric about the mean, only the lower half of
each error bar is presented.
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Table I. ANOVA Results for the Measure of Congruen&g (

Source df MS F Prob. »Z
Model fit (f) 2 1.33 27.36 0.00 0.00
No. of factors () 1 566.21 11661.89 0.00 0.29
No. of variables ) 2 3.58 73.83 0.00 0.00
Sample sizeN) 3 330.42 6805.42 0.00 0.51
fXm 2 4.85 99.97 0.00 0.00
fXp 4 1.94 39.95 0.00 0.00
mxp 2 2.27 46.83 0.00 0.00
fXxXmxp 4 2.44 50.33 0.00 0.00
f XN 6 0.02 0.48 0.83 0.00
mxN 3 0.25 5.23 0.01 0.00
fXmxN 6 0.08 1.74 0.11 0.00
pPXN 6 0.50 10.26 0.00 0.00
fXpXN 12 0.10 2.09 0.01 0.00
mxpxN 6 0.05 1.01 0.41 0.00
fXmXpXxn 12 0.04 0.92 0.52 0.00
Error 7128 0.05

Note.Prob. = probability;&?> = estimated proportion of variance accounted for in the
population by each effect.

Model Fit Sample Size

Consistent with the findings of MacCalluet al., Within the range of model characteristics included
model fit had little effect on factor recovery. This find- in our designN had by far the largest effect on factor
ing is perhaps due to the fact that all three levels of recovery, which exhibited a sharp drop-off beldls
model fit examinedRMSR= .00, .03, and .06) repre- of 20 or so. To the extent that researchers may collect
sent relatively good fit. As indicated earlier, the range data from larger samples, they would be well advised
of f was restricted because it is probably very rare in to do so. However, we recognize that behavior genet-
practice to find factor models exhibiting simultaneously ics research involving strain means is often limited in
high communalities and poor fit, so results involving this capacity, and that many designs haigeso low
such a combination would have had limited generaliz- that they also preclude the use of tfefit statistic.
ability. Given that methods for calculating power have been

Table Il. ANOVA Results for the Root Mean Squared Errgy (

Source df MS F Prob. »?
Model fit (f) 2 0.01 14.63 0.00 0.00
No. of factors ) 1 0.37 686.16 0.00 0.03
No. of variables p) 2 0.02 32.89 0.00 0.00
Sample sizeN) 3 3.03 5600.38 0.00 0.66
fXxXm 2 0.02 45.23 0.00 0.00
fxp 4 0.01 11.51 0.00 0.00
mxp 2 0.02 37.06 0.00 0.00
fXmxp 4 0.01 19.93 0.00 0.00
fXN 6 0.00 0.84 0.54 0.00
mxN 3 0.02 45.11 0.00 0.01
fXmxN 6 0.00 0.94 0.47 0.00
pXN 6 0.01 23.38 0.00 0.01
fXpxN 12 0.00 1.06 0.39 0.00
mXpXN 6 0.00 1.49 0.18 0.00
fXmXpxn 12 0.00 0.77 0.69 0.00
Error 7128

Note.Prob.= probability; &% = estimated proportion of variance accounted for in
the population by each effect.
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developed only for those fit statistics involving determined factors have the best chance of successful
(MacCallumet al.,1996; MacCallum and Hong, 1997), factor recovery regardless of the number of variables
the appropriat& must be based on the desired degree €xamined. If factor recovery is poor, adding variables
of factor recovery, the desired stability of factor load- is unlikely to improve matters.

ings, or both. Inspection of Fig. 1 and 2 reveals that

good factor recovery may still be achieved despite GENERAL RECOMMENDATIONS

smallNs. )
Unfortunately for most animal research where the

observations of interest are strain medws,are nec-

Overdetermination essarily small. Given that, our recommendation is to
To make comparisons with prior research in this design studies characterized by small expected num-
area easier, note thatpfis held constant, varying bers of factors (this is the only reasonable way in which

results in different levels of factor overdetermination. the number of factors may be manipulated). Although
Thus, holdingp constant, overdetermination is higher ©nly two values oim were examined in the present
whenm = 2 than wherm = 4. The main effect ofn study, factor recovery is clearly better in situations in-
in the present study thus conceptually replicates theVvolving feV\_/er_ underlying factors. Because the number
main effect of overdetermination found in earlier stud- Of factors is in some sense beyond the control of the
ies (MacCallunet al., 1999, 2002), such that better fac- experimenter, it makes sense _to design studies in which
tor recovery is associated with higher overdetermina- the number oexpectedactors is small.
tion (fewer factors). The results of the present study The other point we wish to emphasize is that good
suggest that the number of factors, rather than the numfactor recovery may be achieved even with very small
ber of variables, is what drove the overdetermination SaMPple sizes, assuming other conditions hold. This con-
effect in prior studies, although the role pimay be _clusu_)n might bg somewhat surprising to those famil-
greater in designs with larger samples and/or smalleri@r With conventional rules of thumb regarding sample
communalities. size in factor analysis. As long as communalities are
This finding may appear to suggest that researchershigh, the number _of expected fa(_:t_ors is r_elatively small,
are more likely to improve factor recovery by reducing @nd model error is low (a condition which often goes
the number of factors rather than by adding indicators, "@nd-in-hand with high communalities), researchers
but note that communalities were held constant in the @nd reviewers should not be overly concerned about
present study. Reducing the number of factors in prac-Small sample sizes.
tical applications will tend to reduce communalities,
which may drastically affect factor recovery. Based on ACKNOWLEDGMENTS
the results of MacCallunat al. (1999, 2002) we sus-
pect that if communalities were even a little lower, the
observed pattern of effects would be exaggerated.
What, then, should be done regarding the number
of factors and number of variables? In any application
of EFA, retaining too few factors will negatively im-
pact communalities, whereas retaining too many can
compromise interpretability. The number of factors REFERENCES
explaining interrelationships among variables is often gowne, M. W., Cudeck, R., Tateneni, K., and Mels, G. (1998).
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