
Use of the Extreme Groups Approach: A Critical Reexamination and
New Recommendations

Kristopher J. Preacher
University of North Carolina at Chapel Hill

Derek D. Rucker
Ohio State University

Robert C. MacCallum
University of North Carolina at Chapel Hill

W. Alan Nicewander
Pacific Metrics Corporation

Analysis of continuous variables sometimes proceeds by selecting individuals on the basis of
extreme scores of a sample distribution and submitting only those extreme scores to further
analysis. This sampling method is known as the extreme groups approach (EGA). EGA is
often used to achieve greater statistical power in subsequent hypothesis tests. However, there
are several largely unrecognized costs associated with EGA that must be considered. The
authors illustrate the effects EGA can have on power, standardized effect size, reliability,
model specification, and the interpretability of results. Finally, the authors discuss alternative
procedures, as well as possible legitimate uses of EGA. The authors urge researchers, editors,
reviewers, and consumers to carefully assess the extent to which EGA is an appropriate tool
in their own research and in that of others.
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In psychological research, one technique used to examine
the relationship between two variables x and y, when at least
x is continuous, consists of selecting individuals on the basis
of extreme scores of x (most commonly, upper and lower
tertiles or quartiles) and examining the relationship between
x and y only for those extreme scoring individuals. For
example, Pontari and Schlenker (2000) assessed accuracy of
recall in a role-playing task only for people scoring in the
outer tertiles of an introversion/extraversion scale. Simi-
larly, Deffenbacher, Huff, Lynch, Oetting, and Salvatore
(2000) administered the Driving Anger Scale to a large
sample as a screening instrument, retaining for further anal-
ysis only those individuals scoring in the upper and lower
quartiles. Likewise, a researcher interested in the effects of

extraversion on social interaction might use a quartile split
to identify individuals who are “clearly” extraverted versus
introverted and then examine the behavior of only those
individuals in conversations, with the intent of generalizing
results to individuals across the full range of extraversion.
We refer to this and similar sampling procedures collec-
tively as the extreme groups approach (EGA). For addi-
tional recent examples see Bernichon, Cook, and Brown
(2003); Cross, Morris, and Gore (2002); and Verplanken
and Holland (2002).

Various modifications of EGA exist. For example, extreme
groups need not be equal in size or cover the same range of
scores. For a scale for which scores range from 2.1 to 11.6, the
low group may have scores ranging from 2.1 to 2.7, whereas
the high group may have scores ranging from 7.8 to 11.6.
Extreme groups are sometimes chosen on the basis of sample-
dependent quantiles, cutoff points derived from population
norms, or even the inherent nature of the scale itself. Finally,
the scores retained as a result of EGA are often coded and
analyzed in terms of low versus high (or young versus old,
etc.), reducing individual differences to a simple binary code.
This practice involves ignoring individual-differences informa-
tion in favor of creating quasi-arbitrary groups assumed to be
homogeneous on the variable of interest. We wish to empha-
size that EGA, as we define it, does not encompass studies that
limit generalizations to one extreme or the other, such as those
restricting attention to severely depressed people or to academ-
ically gifted children.
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EGA has been widely used in various disciplines for
several decades. An early use of EGA is found in a study
published by Alfred Binet (1900). Binet used a sample of 11
children selected as being the 5 most intelligent (intelli-
gents) and the 6 least intelligent (inintelligents) out of a
class of 32 children. The performance of these children on
a large battery of mental tests (e.g., reaction time, digit
memory, counting) was examined with respect to the chil-
dren’s presumed intellectual capacity. EGA was considered
in a series of methodological papers published mainly in the
1940s and 1950s. Kelley (1939) proposed sampling extreme
groups to enhance statistical power. Some methodologists
(Bartlett, 1949; Gibson & Jowett, 1957; Nair & Banerjee,
1942; Nair & Shrivastava, 1942; Wald, 1940) proposed
creating subgroups to simplify the complex task of fitting a
line to data. Peters (1941; Peters & Van Voorhis, 1940)
advocated the use of extreme groups for the purpose of
cutting costs associated with data collection. Subsequent to
these publications, EGA has been used in numerous exam-
ples of applied research throughout the social sciences for a
variety of reasons, and its popularity has not waned in recent
years. This is evident by the broad use of variants of EGA
in articles appearing in numerous top-ranked American Psy-
chological Association journals between 1999 and 2004,
including but not limited to, Behavioral Neuroscience,
Journal of Abnormal Psychology, Journal of Applied Psy-
chology, Journal of Comparative Psychology, Journal of
Consulting and Clinical Psychology, Journal of Counseling
Psychology, and Journal of Personality and Social Psychol-
ogy. In addition, EGA is used with some regularity in the
field of genetics (e.g., for selective genotyping; Darvasi &
Soller, 1992; Henshall & Goddard, 1999; Muranty &
Goffinet, 1997).

Despite the use of EGA across a wide variety of disci-
plines within the social sciences, a thorough, modern con-
sideration of its advantages and disadvantages is lacking.
Several authors have investigated statistical advantages
granted by EGA (e.g., Abrahams & Alf, 1978; Alf &
Abrahams, 1975; Borich & Godbout, 1974; Feldt, 1961;
Flanagan, 1939; Kelley, 1939). Furthermore, several have
voiced support for its use (e.g., Kagan, Snidman, & Arcus,
1998; Sorrentino & Short, 1977; Torgesen, 1991). However,
EGA has also been the target of much criticism. Humphreys
and Dachler (1969a, 1969b) and Humphreys (1978) ad-
dressed drawbacks associated with EGA followed by anal-
ysis of variance (ANOVA). McClelland and Judd (1993)
pointed out that it is unwise to discard data when testing for
interaction effects. Wherry (1984) addressed some statisti-
cal consequences of EGA, calling it “a favorite dodge of
lazy researchers” (p. 49).

Our goal is to inform researchers of both the benefits and
costs associated with EGA. We provide a summary of past
discussions and critical analyses of EGA, as well as a more
comprehensive investigation of both the benefits and costs
associated with this technique. In doing so, we provide new

recommendations about when the procedure is likely to be
appropriate versus inappropriate, as well as a discussion of
precautions that should be taken when analyzing extreme
groups data.

Past Statistical Investigations of EGA

Feldt (1961) presented one of the first serious examina-
tions of EGA. In Feldt’s treatment, measures x and y are
assumed to bear some substantively interesting linear rela-
tionship and to be bivariate normally distributed in the
population. The purpose of Feldt’s investigation was to
determine the percentage of the sample that must be in-
cluded in the tails of the x distribution in order to maximize
the statistical power of the t test of the difference between x
group means on variable y. Feldt found that, assuming
normality, maximum power is achieved when the propor-
tion included in each tail is somewhere between .25 and .27
(i.e., approximately a quartile split) and that this proportion
remains remarkably constant over a wide range of popula-
tion correlations.1 Feldt further investigated the difference
in power between the traditional correlational approach, in
which all values for x and y are retained, and a t test
conducted after a quartile split on x, assuming varying levels
of population correlation between x and y. He found that a
t test following EGA often provided a more powerful test,
unless retaining more than about 80% of the sample was
feasible, in which case he recommended using a correla-
tional approach instead.

Alf and Abrahams (1975) extended Feldt’s (1961) work
by comparing three analytic strategies for examining an x–y
relationship. Strategy 1 involved selecting a subsample on
the basis of extreme x scores and correlating y with the

1 An identical finding was reported earlier by Jensen (1928;
derivation due to T. L. Kelley) in the context of job placement in
education and by Kelley (1939) in the context of item validation.
When x and y are bivariate normally distributed, when the retained
x scores are dichotomized, and when �xy � 0, the variance of the
maximum-likelihood estimate of �xy is minimized when the pro-
portion retained in each tail of the x distribution is � � .2702. This
finding, which came to be known as the twenty-seven per cent rule,
was later supported analytically by Mosteller (1946), Kelley
(1947), Cureton (1957), and McCabe (1980) and empirically by
Garg (1983) via simulation. Flanagan (1939) used this rule to
create a chart to ease the burden of computing Pearson product–
moment correlations in the context of item validation. Feldt (1961)
found that as �xy increases, � decreases but stays in the neighbor-
hood of .27. D’Agostino and Cureton (1975) showed that as the
correlation between x and y increases, the optimal proportion of
cases that should be retained in each tail to maximize power of the
subsequent t test approaches .21. Contrary to these findings, Ross
and Weitzman (1964) and Ross and Lumsden (1964) showed that
as �xy increases, � also increases. Both camps showed that the
power to reject the null hypothesis �xy � 0 is maximized when �
is in the neighborhood of .27 and �xy is small.
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extreme x scores (Strategy 1 is equivalent to EGA). Strategy
2 involved selecting a subsample on the basis of extreme x
scores and comparing group means on y, an approach iden-
tical to that of Feldt. Strategy 3 involved simply retaining
the full range of continuous scores on x and y and comput-
ing the sample correlation rxy. Given equal sample sizes for
all three strategies, after investigating the power of each
approach, the authors concluded that Strategy 1 was uni-
versally more powerful than Strategies 2 or 3, except when
the Strategy 1 data were composed of scores from the full
range of x. Under the latter condition, Strategies 1 and 3 are
formally equivalent, and both were found to be superior to
Strategy 2.

Uses and Misuses of EGA

In the following sections we examine in detail some of the
more common rationales offered for the selection and anal-
ysis of extreme groups, including increased cost-efficiency,
improved power, enhanced effect size, and improved reli-
ability. We explore the legitimacy of these rationales and
discuss potential pitfalls. In subsequent sections we describe
some potentially legitimate applications of EGA and offer
some recommendations for practice.

EGA and Cost-Efficiency

Cost can be a limiting factor in data collection. A measure
of some variable y may be expensive to administer or may
require so much time to administer that obtaining a large
sample is not feasible. EGA was originally developed
largely to reduce the sample size necessary to observe an
effect without compromising statistical power (Abrahams &
Alf, 1978; Alf & Abrahams, 1975; Feldt, 1961; Peters,
1941). Given a fixed sample size, EGA improves cost-
efficiency by allowing researchers to selectively sample
those regions of the x distribution that will maximize the
power of subsequent tests. Improvement of cost-efficiency
is a clear benefit of EGA.

EGA and Statistical Power

Perhaps the primary reason for the continued use of EGA
is the belief that it increases power in subsequent statistical
tests (see, e.g., the advice of A. Tybout in Iacobucci, 2001,
pp. 48–49). This assumption is correct and is straightfor-
ward to demonstrate. We now illustrate the effect of EGA
on power both analytically and via simulation. Alf and
Abrahams (1975) presented a power parameter (noncentral-
ity parameter) for t tests of correlations, which they bor-
rowed and adapted from Feldt (1961), who in turn borrowed
and adapted it from E. S. Pearson and Hartley (1956):

�r �
�xy�pN

�1 � �xy
2 , (1)

where �xy represents the population correlation using full-
range data, N is the original full-range sample size, and p
represents the proportion of N retained in each half of the
distribution of x, assuming normality. Thus, 2p is the pro-
portion of N used in the analysis. They presented a similar
noncentrality parameter for tests of correlations computed
with extreme groups:

�r� �

�xy��1 �
xh

p �pN

�1 � �xy
2 , (2)

where x is the z-score cutting off the top pN subjects, and h
is the ordinate of the standard normal distribution at x. Thus,
both �r and �r� involve using the same sample size, 2pN,
and Equation 2 simplifies to Equation 1 when EGA is not
used, that is, when x � 0. Given x, h is easily calculated as
follows:

h �
1

�2�
e�� x2

2� . (3)

The xh/p term is never negative and increases with the
extremity of group selection. Therefore �r� will be larger
than �r for more extreme groups, illustrating that all else
being equal, EGA tends to increase power, with larger
increases resulting from more extreme selection.

Operating on a suggestion of Alf and Abrahams (1975),
we present a short illustration of the effects of EGA on
power. The quantity pN was held constant at 50 so that the
curtailed sample size was a constant 100. For full sample
N � 100–500, the p necessary to yield 2pN � 100 was
calculated. The z scores (x) corresponding to those values of
p were then computed. Alf and Abrahams reported the ratio
of �r� to �r with the following expression:

�r�

�r
� �1 �

hz

p
. (4)

The ratio of noncentrality parameters conveniently does not
depend on either �xy or N. The ratio �r�/�r thus permits
indirect examination of the relative power of tests of r� and
r for any values of N and �xy. For p � {0.001. . . 0.500}, in
steps of .001, the ratio �r�/�r was calculated2 and plotted,
with the results shown in Figure 1. Two points worth noting
are that (a) the relation is never less than 1.0, indicating that,
apart from sampling variability, power is generally en-
hanced after EGA relative to no extreme group selection,
and (b) the more extreme the extreme groups become (i.e.,
the smaller p is), the greater the power benefits become.

To illustrate the effects of EGA on power more directly,

2 x depends on p, and h depends on x, so p is all that needs to be
manipulated.
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we generated data corresponding to cells of a 3 (�xy � .1, .3,
.5) � 6 (N � 24, 60, 120, 240, 360, and 480) � 3 (propor-
tion of data omitted � .00, .33, .50) design. The proportions
of data omitted were chosen to reflect no data omitted, a
tertile split, and a quartile split, respectively. These splits
were selected because they represent common types of EGA
found in the literature. For each cell, 10,000 samples of raw
data were generated with a procedure described by Kaiser
and Dickman (1962). Each sample was generated to be of
size N�1 � po�

�1, where po is the proportion of data omitted.
For each sample, two variables were generated and their
sample correlation (rxy) was computed. The statistical sig-
nificance of rxy was determined by calculating the t statistic
associated with rxy:

t �
rxy�N � 2

�1 � rxy
2 . (5)

Results are reported in Figure 2. Each panel in Figure 2
corresponds to a value of �xy. Each point in the plots
represents the proportion of times, out of 10,000, in which
t exceeded the critical value for one-tailed significance at
� � .05 and df � N � 2. This proportion can be interpreted
as empirical power. As expected, power increases as N and
�xy increase. It was also found (although not depicted in
Figure 2) that the proportion of significant results fluctuates
around � when �xy � 0 and that power was uniformly close
to 1.0 for values of �xy above .5. Comparison of lines within
each panel shows a clear tendency for successively more
extreme splits to more strongly enhance empirical power,
especially for small sample sizes.

In summary, EGA will usually improve power relative to
analysis of full-range data. However, increases in power are

not necessarily always desirable. We reiterate the frequent
admonition (e.g., Kirk, 1996, 2001; Wilkinson & the APA
Task Force on Statistical Inference, 1999) that the primary
focus of research should not be to obtain significant p values
but rather to determine what the data tell us about the
phenomena of interest—that is, effect size and practical
significance. Judging EGA to be appropriate because it
increases the power of a subsequent statistical test repre-
sents a focus on significance-seeking. Whereas EGA may be
applied for the purpose of making efficient use of a sample

Figure 2. Empirical power of the test of �xy � 0 when upper and
lower halves, tertiles, and quartiles of x are used. Each point in a
given panel represents the proportion of tests (out of 10,000)
significant at � � .05. Sample size represents the number of cases
collected from a larger sample of size N�1 � po�

�1, where po is
the proportion of cases omitted on the basis of the extreme groups
approach. Power increases with sample size, population correla-
tion (�xy), and for a given sample size (vertical slice), with the
extremity of the split.

Figure 1. Ratio of the noncentrality parameters (�r�/�r) for cor-
relation coefficients computed by use of curtailed (extreme groups)
data and full-range data under conditions of the extreme groups
approach (EGA). Noncentrality is a measure of effect size in units
of a test statistic. This ratio is never less than 1.0, meaning that
power is always enhanced by EGA, with greater power resulting
from more extreme splits.
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of a given size or to increase the power to detect an effect,
EGA often may be implemented for no theoretical or em-
pirical reason beyond the fact that it lowers p values to
levels generally regarded as significant. We recognize that
increasing the likelihood of statistical significance is, in one
sense, the purpose of EGA; however, we strongly empha-
size that modern recommendations regarding statistical
methodology and reporting of results characterize practical
significance or effect size as ultimately more important than
achieving statistical significance (Wilkinson & the APA
Task Force on Statistical Inference, 1999). Finally, it is
important to emphasize that the power improvement asso-
ciated with EGA does not apply when data are gathered
from across the full range of x and then discarded from the
middle of the x distribution (a procedure we describe as post
hoc subgrouping; see the Recommendations for Practice
section). The power benefit applies only when one compares
EGA with the analysis of full-range data using the same
sample size.

EGA and Effect Size

Effect size refers to the magnitude of an effect, for exam-
ple the degree of linear dependence or amount of shared
variance. Estimates of effect size can be classified as un-
standardized or standardized. Unstandardized effect size
estimates reflect the magnitude of an effect in raw units of
whatever is being measured. For example, unstandardized
regression weights reflect the degree of linear relationship in
units of the dependent variable. Standardized effect size
estimates (such as rxy, R2, 	2, 
2, and Cohen’s d) are
expressed in common metrics unrelated to the raw scales of
measurement of the observed variables. Thus, correlations
express the degree of linear dependency between x and y on
a scale ranging from �1.0 to �1.0 regardless of the metrics
of x and y, and Cohen’s d expresses mean differences in
standard deviation units.

Measures of both unstandardized and standardized effect
size are valuable tools in psychological research. However,
even though standardized effect size measures are used
widely in psychology, some authors have pointed out lim-
itations. For example, Lenth (2001) pointed out that it is all
too easy for researchers to fall into the trap of inappropri-
ately using a particular value of a standardized effect size
measure (e.g., Cohen’s d � 0.5) as a target in a priori power
analysis or sample size determination. P. Cohen, Cohen,
Aiken, and West (1999) noted that standardized scores can
be misleading when they are derived from samples of con-
venience that limit their generalizability or are based on
skewed distributions. They further point out that commonly
used benchmarks for standardized effect size measures may
be misleading; for example, a Cohen’s d of 0.2 may repre-
sent a small effect in many contexts but a large effect in
others.

These are not inherent problems with the measures them-

selves but rather are potential misuses sometimes perpe-
trated by uninformed researchers. Standardized effect size
estimates used responsibly can be important indicators of
the extent or magnitude of an effect. They express degrees
of relationship and differences in easily understood com-
mon metrics. When extreme groups are analyzed, standard-
ized effect size tends to be “inflated dramatically” (Hum-
phreys, 1985, p. 15), which in turn is associated with
increased power. However, as Feldt (1961) pointed out,
EGA should be used only to decide upon the presence of a
linear effect in the population, not its strength (see also Pitts,
1993). Echoing the concerns of McNemar (1960), Feldt
pointed out, “such a methodology is almost certain to be
abused, for it can easily lead the experimenter to exaggerate
the importance of trivial results” (p. 314).

To illustrate the effect EGA can have on standardized
effect size, we conducted a simulation study. We generated
data corresponding to three proportions of data omitted
from the x distribution (.00, .33, .50). Using a constant
sample size of 1,000, we simulated 51,000 bivariate data
sets corresponding to values of �xy ranging from 0.00 to 1.00
in steps of 0.02 (i.e., 1,000 data sets per value of �xy). The
mean sample correlation was computed for each value of
�xy, and the difference between sample correlations based on
either tertile- or quartile-split data and full-range data were
computed. These differences, plotted in Figure 3, represent
the average gain in standardized effect size for values of �xy,
ranging from small to large for tertile and quartile splits,
assuming bivariate normality and a linear relationship be-
tween x and y. The gain in standardized effect size can be
quite large, especially for modest values of �xy. Near the
extremes of the range of �xy, there is little change in stan-
dardized effect size after conducting EGA. For all values of
�xy between these extremes, however, the discrepancy be-
tween full-range data and data subjected to EGA will be
somewhat further from zero. The slight asymmetry and
irregularity in Figure 3 can be attributed to differences in the
variability of correlation coefficients for different values of
�xy (as �xy increases, the standard error of rxy decreases).

Of course, improving effect size is one of the motivations
for using EGA. However, it is inappropriate to interpret
measures of standardized effect size as descriptive of pop-
ulation effects if they were derived from analyses performed
on extreme groups. It is also inappropriate to statistically
compare such estimates to each other or to apply meta-
analysis to standardized effect size estimates based on ex-
treme groups data. Because EGA almost always results in
upwardly biased estimates of standardized effect size, to use
EGA is to misrepresent the practical significance of effects
in the population by inflating those estimates. In light of
recent work on the appropriateness of unstandardized rela-
tive to standardized effect size measures (Bond, Wiitala, &
Richard, 2003), we recommend researchers either use full-
range data to estimate standardized effect size or report raw
regression weights in lieu of rxy when appropriate. We
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recognize that measuring strength of association, and hence
standardized effect size, is not always the scientist’s goal.
However, in many instances, such as when the degree of
linear relationship or proportion of explained variance is the
primary quantity of interest, selection of extreme groups
should be avoided. The effect of EGA on effect size is
particularly important in light of recent recommendations
by Wilkinson and the APA Task Force on Statistical Infer-
ence (1999), which urged researchers to “always present
effect sizes for primary outcomes” (p. 599). EGA thus has
the potential to compromise some of the most important
information reported in research when that information is
communicated in the form of standardized effect size.

If EGA has been used, one may obtain an estimate of the
full-range population correlation by using a curtailment of
range formula provided by K. Pearson (1903, p. 23) and
Wherry (1984). These formulas are used mainly to correct
the underestimation of rxy when a restricted range of x is
observed, often as a result of selection of individuals above
or below some threshold. In the present context, the same
formula can be used to correct the overestimation of a
correlation coefficient when only the extreme ranges of x
are observed (Wherry, 1984, provides an example on p. 50).
Although this is a potentially valid use of correction for
range restriction, we have not seen such a correction used in
any recent application of EGA.

Our observations on standardized effect size inflation may
be pertinent to experimental designs more generally. Exper-
iments with manipulated independent variables may pro-
duce misleading standardized effect sizes. For example, a

researcher manipulating the variable distraction may use
two extreme levels of distraction (e.g., no distraction versus
high distraction). Interpretation of any standardized esti-
mates of the magnitude of the effect in the population would
necessarily be limited to the chosen levels of distraction and
may or may not apply to other levels. This line of inquiry is
interesting in its own right and deserving of future research.

EGA and Reliability

One rationale for EGA often mentioned in informal dis-
cussion with colleagues is that it improves power not only
by enhancing standardized effect size but also by removing
influences (such as unreliability in the middle of the distri-
bution of x) that obscure an effect that really is present.
Hence, selecting cases from the extremes of the distribution
of x is thought to increase the reliability of a scale. In fact,
as we show, EGA usually results in the omission of the
most, not the least, reliable scores.

The most important concern here is whether it is generally
true that measures are less reliable in the central part of the
score distribution than in the extremes. It may be tempting
to address the question of reliability by obtaining estimates
of reliability before and after deleting data from the middle
of the distribution. If reliability seems to increase after
EGA, the researcher may want to conclude that using EGA
was the proper thing to do. However, such a conclusion
would be invalid; the apparent increase in reliability can be
shown to be an artifact of the EGA procedure. Specifically,
from the perspective of classical test theory, reliability is the

Figure 3. Mean difference between extreme-group and full-data sample correlations for tertile-
split and quartile-split data. These curves represent the average gain in standardized effect size after
tertile and quartile splits for values of population correlation (�xy) ranging from small to large. The
unevenness is attributable to sampling error in rxy, which increases as rxy decreases in magnitude.
EGA � extreme groups approach.
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ratio of true variance to observed variance, where observed
variance is the sum of true variance plus error variance. By
deleting the middle of the distribution, EGA serves to in-
crease true variance while leaving error variance un-
changed, thus increasing reliability artifactually. This ap-
parent increase in reliability is not due to elimination of less
reliable scores, but rather to this manipulation of true vari-
ance. Therefore, simply computing reliability estimates be-
fore and after EGA is not informative regarding this ques-
tion. True score theory (classical test theory) is not rich
enough theoretically for answering questions about reliabil-
ity in various regions of either the observed or true-score
distributions. Item response theory (IRT), on the other hand,
provides a more complete and appropriate framework for
examining issues of relative reliability in different regions
of a score distribution. Under the assumption of a normal
distribution defining the latent trait being measured (�), it is
fairly easy to derive the reliability of observed scores in
various regions of the latent trait distribution.

IRT defines a function relating the latent trait to item
responses. One common function, the 2-parameter logistic
model, has two item parameters: a, the item discrimination,
and b, the item difficulty (or item endorsability). Some
general guidelines for IRT are (a) reliable items (.3 or
higher) have a values greater than or equal to 1 and (b)
medium-difficulty, or medium-endorsable, items have b val-
ues in the vicinity of 0 (difficult items, or items that are
infrequently endorsed, have b values greater than or equal to
1, and the b values for easy, or frequently endorsed, items
are less than or equal to �1).

Researchers can quickly and visually determine where a
measure is reliable and where it is not by using the infor-
mation function, I�� �, of IRT. The information function for
a collection of test items is the square of the standardized
slope of the regression of the test score on the latent trait
being measured.3 Where this slope is steep, the true scores
on the test are changing rapidly with changes in the latent
trait, and hence the scores are reliable. In regions of the
latent trait where the regression slope is shallow, true scores
change very little with changes in theta; consequently, the
test is not reliable for measuring this part of the latent trait
distribution.

Consider a measure with 15 items; all a values are equal
to unity in order to emulate a personality measure. The b
values and their frequencies are –.50(2), –.25(2), 0(7),
.25(2), and .50(2). The information function for this mea-
sure is given in Figure 4, and reliability information is
reported in Table 1. It can be shown, by application of the
delta theorem from statistics, that the information function
I�� � for a test composed of binary items can be interpreted
as the local true-over-error variance for the observed score;
therefore, a local reliability coefficient is I�� �/�I�� � � 1	.

3 In more detail, the information function for the number-correct
score at a fixed value of the latent trait (theta) is equal to

(slope of score on �)2

(conditional variance of score on �)
. If the information function

is used for specifying the precision of measurement (as indexed by
the conditional standard error of measurement), no assumptions
about the distribution of the latent trait are necessary.

Figure 4. The item response theory information function for an arbitrary 15-item scale. Theta is
the unobserved trait. Information is approximately the reciprocal of the error variance at each value
of theta.
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The reciprocal of this same information function may also
be interpreted as the conditional error variance of the max-
imum-likelihood estimate of �. It is clear from this infor-
mation function that observed scores are most reliable in the
middle of the theta distribution and that observed scores will
have low reliability in the extremes. It is very important to
note that by examining the distribution of b values, one can
determine where a measure will be most accurate: lower b
values will produce higher reliability at the lower end of the
latent distribution, and higher b values will result in higher
reliability at the upper end of the latent distribution. If we
assume that theta is normally distributed, the values in Table
1 can be obtained by numerically integrating the conditional
distributions. The overall reliability is .81. The reliability in
the middle half of the distribution ( � .67� to � .67�)
equals 0.42. (This reduction in reliability is due principally
to a decrease in true variance rather than to an increase in
error variance.) In both the lower and upper 25% of the theta
distribution, the observed scores have reliability equal to
0.35; in both cases the decreases in reliability are due
mainly, not to increased error variance, but rather to dimin-
ished true variance. The reliability in the combined ex-
tremes is 0.88. This illustrative example makes it clear that
for measures composed of moderately endorsable personal-
ity items (or cognitive items of moderate difficulty), there is
likely to be greater reliability in the central portion of the
distribution of the variable being measured (latent or ob-
served). In order for the reliability of the extremes to in-
crease as a result of EGA, the distribution of b values would
need to follow an extremely unlikely U-shaped distribution,
such that the pool of items consisted almost entirely of very
low-endorsability or very high-endorsability items. In addi-
tion, the reliability in each of the extremes will never be
equal to the reliability of a test in the entire population.
Moreover, it is not true that EGA increases reliability only
when the b values are clustered in the two extremes and if
the extremes are combined into a single population; the true
variance spuriously increases because of this concatenation.

One important aspect of the above IRT-based example is
that the latent distribution rather than the observed distribu-
tion was partitioned. In practice, of course, EGA is applied
to an observed distribution. However, it is quite problematic
for researchers to investigate reliability when selecting

scores on the observed distribution. Such selection induces
nonzero correlations between true scores and errors, often
highly negative. The existence of such correlations plays
havoc with definitions of reliability and yields different
estimates of reliability depending on which definition is
used. Selecting on the latent distribution avoids this prob-
lem and should not yield misleading findings. As an illus-
tration of the problems caused if one were to partition
subpopulations through use of observed scores, in the upper
25% subpopulation, on the basis of observed scores in the
example above, the reliability varies between –0.23 (for the
1 � ��e

2/�x
2� definition of reliability) and 1.75 (for the

�True
2 /�x

2 definition). This discrepancy is because true and
error scores are correlated –.62 in this subpopulation in the
example. We believe the results of the demonstration above
are sufficiently strong to make the case that the notion of
middle scores being less reliable is not sensible in practice.
Discussion of reliability at all in the context of EGA is
problematic. For any selected observed score, true scores
and errors are negatively correlated. For any selected latent
score, the problem of correlated true scores and errors is
avoided, but typically researchers do not have access to
latent scores.

The issues considered here also relate to the question of
the effect of EGA on statistical power. Reliability of the
dependent variable is not directly related to the power of a
statistical test (Nicewander & Price, 1983). The magnitude
of within-group variance (the sum of true and error vari-
ances) is the major determinant of power. Control of indi-
vidual differences is one of the goals of experimental de-
sign, and this concept translates directly into decreasing true
variance. EGA is a form of experimental design, and in
cases such as the one illustrated above, individual differ-
ences are reduced. The true variance in each extreme is
much smaller than in the middle group; as a result, the
average within-group variance is diminished. Thus, when
EGA grants an advantage in terms of power, it is not likely
a result of ridding the data of the unreliable middle, but
rather of decreasing within-group variance by reducing true
variance.

It was not our intent to prove anything in general about
the reliability of measurement in various locales of a latent
distribution. Our intent was to show, by application of a
simple IRT model for binary items, that the middle of a
distribution is not necessarily where scores are least reliable.
Furthermore, our example made clear that low reliability is
as apt to result from low true variance as it is from excessive
error variance. The information function for binary items
indicates where the observed scores on a measure will be
most reliable. For more complicated IRT models—for ex-
ample the partial credit model used for Likert and other
items requiring multicategory responses—one may use the
information function for the more complex model to indi-
cate where the measure is most and least reliable. Again, for
the case of more complex IRT models, the region(s) of the

Table 1
Reliability Information Derivable From IRT Information Function

Quantity

Portion of latent distribution

Lower Middle Upper Total

Reliability 0.35 0.42 0.35 0.81
True variance 1.25 2.51 1.25 12.01
Error variance 2.28 3.49 2.28 2.88
Mean scale score 3.01 7.50 11.99 7.50

Note. IRT � item response theory.
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latent distribution where measurement precision is highest
can be controlled by choosing items on the basis of their
location (or difficulty) parameters. It is arguable that most
measures are composed of items located in the central
portion of the distribution of the latent trait being measured;
therefore, many instruments will be most reliable for those
in the middle.

To summarize, we wish to emphasize that two issues are
important with regard to reliability in the middle of a
distribution. First, scores are typically not less reliable in the
middle of a score distribution; central scores are almost
always more reliable than are those in the extremes. Second,
when EGA is applied, reliability estimates for the combined
extremes are typically elevated with respect to reliability for
the entire distribution, but this is an artifact of the EGA
procedure, attributable to an artifactual increase in true
score variance. Application of IRT permits the appropriate
assessment of reliability in different regions of a distribution
and recognition of the effects of EGA on relevant variances.

EGA and Model Misspecification

The use of EGA involves the implicit assumption that the
form of the x–y relationship across the range of x is the same
as that in the extreme groups. The validity of the results
rests in part on the correctness of this assumption; violations
of this assumption are not difficult to envision and are
probably quite common in practice (J. Cohen, Cohen, West,
& Aiken, 2003). For example, a situation described by
Sorrentino and Short (1977) involves a strong relationship
between x and y at the tails of the x distribution but the
absence of a stable relationship toward the middle. In other
words, the relationship between x and y can sometimes be
moderated nonlinearly by unmeasured situational vari-
able(s) z. Of course, unstable relationships between x and y
need not be limited to the middle of the x distribution. The
true function relating y to x could be nonlinear in a variety
of ways, but ignoring a segment of the population where
nonlinearity may be evident could destroy the researcher’s
capability of finding it, essentially forcing linearity (McNe-
mar, 1960). Thus, EGA has the potential to heighten the
chances of model misspecification.

EGA would appear to increase the power of a subsequent
test of the linear relationship between x and y but at the cost
of rendering detection of any relationship other than linear
improbable, in part because such effects would probably not
be investigated by the researcher. This problem has been
recognized before (e.g., Humphreys & Fleishman, 1974;
Zedeck, 1971) but is rarely considered in practice. When the
possibility of a nonlinear relationship between x and y
cannot be legitimately dismissed, EGA should not be used.
EGA should be considered “only when the assumption of
linearity is strongly tenable” (Feldt, 1961, p. 314).

An alternative approach that reduces the odds of model
misspecification is to avoid restricting attention to extreme

groups data and instead fit different, possibly more complex
models to full-range data (see, e.g., Bjerve & Doksum,
1993). Future research should weigh the practical simplicity
of linear regression models applied to extreme groups data
against the complexity of newly developed techniques ap-
plied to full-range data.

EGA and Group Assignment

Researchers may believe that a given construct is dichot-
omous by nature, despite the fact that the instrument used to
assess it yields essentially continuous scores—in other
words, it is often believed that latent taxons underlie ob-
served individual differences in x. Arnold (1984), describ-
ing the frequent use of EGA in the context of moderator
(interaction) analysis, characterized this rationale for EGA
as “shift[ing] the measures into line with their underlying
psychological values” (p. 222). For example, self-monitor-
ing is an individual difference measure that taxometric
analysis has suggested is composed of two distinct catego-
ries: low and high (Gangestad & Snyder, 1985; but see
Miller & Thayer, 1989). Although taxometric procedures
may be used to identify cutoff points, such techniques are
rarely used for situations in which it is appropriate to do so.
Instead, the existence of underlying taxons is often merely
assumed. In this context, researchers sometimes use EGA to
create two groups which, it is confidently (and conve-
niently) believed, represent these latent, categorical taxons.
This use of EGA is commonly followed by dichotomization
of the extreme scores into two categories. This may seem
logical given early research by Feldt (1961). However, Alf
and Abrahams (1975) showed that correlational analysis
following the creation of extreme groups is more powerful
than a t test comparing y means for extreme x groups. Their
work shows that if EGA is to be used, researchers should
not further reduce information by dichotomizing scores.
Another reason not to dichotomize after EGA is that reliable
information about individual differences is lost, as is the
possibility to investigate nonlinear relationships between x
and y. For additional problems associated with dichotomi-
zation of continuous scores see studies by J. Cohen (1983),
Irwin and McClelland (2003), and MacCallum, Zhang,
Preacher, and Rucker (2002).

Beyond the statistical problems associated with dichoto-
mization, there are several problems with using EGA for the
purpose of group assignment. First, it presumes that under-
lying classes or taxons exist—specifically, two taxons—and
that observed scores would reflect taxon membership were
it not for the presence of measurement error. We suggest
that true dichotomies are not common in psychology and
that even when they exist there are rigorous statistical
procedures that can be used to determine whether the un-
derlying distribution is discrete or continuous (e.g., Waller
& Meehl, 1998).

Second, there is no guarantee that group assignment after
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dichotomization is accurate, yet there is no allowance for
this possibility built into the statistical tests used after di-
chotomization. Thus, even when the presence of underlying
classes can be justified, some individuals may still be mis-
classified. Misclassification represents a source of error
above and beyond the usual measurement error assumed
under classical test theory.

Third, use of EGA for purposes of group assignment
involves the implicit assumption that the proportions of
cases belonging to each group in the population are equal,
yet it is doubtful that taxons are ever of equal size. For
example, consider the case in which underlying taxons
exist, but the population proportions for taxon membership
are .25 (for low) and .75 (for high). A tertile split would
include in the low group about 8.3% of those individuals
who should have been classified as high. Even when there is
a substantial middle group such that extreme groups in the
sample consist only of those who really are low and high,
unequal low and high population taxons cannot be well
represented by equally sized extreme groups in the sample.
Fourth, even if group assignment is accurate, there is no
guarantee that group constituency will be stable across
samples or across repeated measurements of the same
sample.

To summarize, assignment of individual scores to arbi-
trary groups is problematic because it involves making
possibly unwarranted assumptions about the existence of
taxons, accuracy of group assignment, group size, and the
stability of group membership.

EGA and Interaction Effects

Some researchers have suggested that creation of sub-
groups may be necessary in order to test some interaction or
moderation hypotheses, particularly those involving differ-
ences in strength or degree of the relationship between
variables x and y conditional on values of moderator z
(Arnold, 1984; Sharma, Durand, & Gur-Arie, 1981). Sub-
group analysis, as it is sometimes called in the marketing,
medical, and industrial/organizational psychology literature,
often proceeds by identifying a moderator variable z, creat-
ing groups on the basis of a median split or EGA, and
comparing the relationship between variables x and y for the
resulting z subgroups (Sharma et al., 1981). Investigation of
the interaction effect proceeds by statistically comparing rxy

or R2 from the two subgroups. However, comparison of
quasi-arbitrary groups can be considered another form of
model misspecification. Most interaction hypotheses are
more appropriately tested by use of regression methods
involving product terms as predictors (see Aiken & West,
1991). These methods are generally regarded as preferable
because they (a) maintain the continuous nature of the
potential moderator variable, (b) are often more appropri-
ate for the hypotheses of interest (Stone & Hollenbeck,
1989; but see Arnold, 1982, 1984; Sharma et al., 1981), and

(c) do not involve many of the costs associated with
dichotomization.

Humphreys and Dachler (1969a) noted that selection of
extreme groups on two variables followed by dichotomiza-
tion and a two-way ANOVA is a problematic strategy. If the
two variables subjected to EGA are correlated in the pop-
ulation, dichotomizing both variables results in a pseudo-
orthogonal design, as the two independent variables will
appear to be uncorrelated (orthogonal) in the sample even if
they are actually correlated in the population. In such de-
signs, effect sizes (standardized and unstandardized) and p
values can be severely biased (Humphreys & Dachler,
1969a, 1969b; MacCallum et al., 2002).

EGA and Regression to the Mean

Campbell and Kenny (1999) noted that problems associ-
ated with the regression to the mean phenomenon are espe-
cially likely to occur with extreme groups. EGA is con-
ducted on the presumption that extreme scores in the sample
represent the extremes of the distribution of true scores in
the population. However, those cases selected to be in the
extremes in one instance may not be in the extremes if
sampled at another time. The implication is that a phenom-
enon found to be statistically significant using EGA may be
the result, at least in part, of a regression artifact.

To illustrate the problem of regression to the mean in the
EGA context, we present a small demonstration. Two vari-
ables (x1 and x2) were generated from a bivariate normal
distribution to represent repeated measures of selection vari-
able x with N � 1,000. The test–retest correlation, a fre-
quently used index of stability over time (test–retest reli-
ability), was defined to be relatively high at rxx � .90 in
both the population and the sample. Separate tertile and
quartile splits were performed on x1 and x2. For each type of
split, cases were categorized into one of nine groups, de-
pending on their pattern of extremity across two trials. The
results reported in the upper half of Table 2 demonstrate
that, for the tertile split condition, only about 81% of cases
that were extreme at Time 1 maintained their extreme status
at Time 2, whereas about 37% of the cases omitted at Time
1 were retained as extreme scorers at Time 2. For the
quartile split condition, approximately 76% of extreme
cases at Time 1 were also extreme at Time 2, whereas 24%
of middle scorers at Time 1 became extreme at Time 2.
Overall, little more than 75% of the cases maintained their
extremity status (whether midrange or extreme) from Time
1 to Time 2. This demonstration was repeated with rxx

� .80, a more realistic value in many realms of psycho-
logical research. Regression to the mean is more pro-
nounced when rxx is smaller (see the lower half of Table 2).
Overall, little more than two thirds of the cases maintained
their extremity status from Time 1 to Time 2. If EGA were
effective at retaining extreme scorers from Time 1 to Time
2, Table 2 would contain near-diagonal matrices. Thus, we
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should be careful about assuming that extreme scorers at
Time 1 can be relied upon to remain extreme at Time 2, at
least in examples such as those simulated here.

Potential Applications of EGA

Given the problems outlined in this article, we find the
usefulness and appropriateness of EGA as a methodological
technique to be somewhat limited. If EGA is used, greater
power may result, but the researcher will also be obligated
to (a) avoid interpreting inflated standardized effect size
measures, (b) risk model misspecification by making pos-
sibly unwarranted assumptions about linearity and group
membership, and (c) recognize that reliability is most likely
reduced rather than increased. However, in this section we
consider possible circumstances in which EGA may repre-
sent exemplary practice or the most appropriate course of
action given constraints on study design, data collection, or
the state of knowledge in a field. We hasten to add that
typical uses of EGA are unlikely to have been the result of
seriously weighing the advantages and disadvantages of the
technique and that all of these potential uses bear close
examination to determine whether they are in fact legitimate
or useful in a given setting. Therefore, the following spec-
ulative suggestions should be considered directions for fu-
ture research rather than endorsements for appropriate uses
of EGA.

Cost-Efficiency and the Power to Detect Effects

The use of EGA may be a matter of necessity in situations
when a researcher has limited resources and wishes to
maximize the power for detecting the presence of an effect.
Cost, in terms of either time or money, may not permit
examination of the full range of data. In such situations, and
with proper considerations, EGA may be a useful tool to

improve the odds of detecting an effect, if it truly exists. In
pilot studies and exploratory research in which little prior
knowledge exists, EGA can be useful to detect general
trends in the data. The exact functional form linking y to x
may be immaterial in the early stages of research, as long as
there is evidence of a relationship. However, we caution that
in such situations the researcher must remain vigilant with
regard to several facts.

First, using EGA in pilot studies will result in inflated
standardized effect size estimates, which in turn have the
potential to lead to false expectations when it comes time to
conduct the study proper. The use of EGA to enhance the
likelihood of detecting an effect also carries a real risk of
model misspecification. The researcher must be able to
support the assumption that the same model applicable to
the extremes also applies to the omitted middle, an assump-
tion that may be supportable on theoretical grounds or on
the basis of previous research. In general, therefore, EGA
may represent a valuable tool for determining (a) whether
an effect exists and (b) the direction of an effect but not for
determining the size of an effect (Brunswik, 1955; Cortina
& DeShon, 1998; Feldt, 1961; Pitts, 1993), at least in
standardized units. Only those effects reported in unstand-
ardized units will remain unbiased after EGA is used.

Nonnormal Data

In many cases, data are nonnormally distributed or so
severely skewed that standard parametric statistics may not
be appropriate. For example, smoking behavior is com-
monly assessed by measuring the frequency of smoking
over some period of time. Depending on the population, the
smoking frequency distribution may be highly skewed. In
such situations EGA could be used to create groups (e.g.,
nonsmoker and heavy smoker). Cureton (1957) and Fowler
(1992) investigated the effects of violating the normality

Table 2
Pattern of Extremity Across Repeated Trials

Group at Time 1

Group at Time 2
(tertile split)

Group at Time 2
(quartile split)

Low Middle High Low Middle High

rxx � .90

Low 272 60 1 189 61 0
Middle 57 212 65 61 382 57
High 4 62 267 0 57 193

rxx � .80

Low 241 76 16 172 77 1
Middle 83 183 68 78 346 76
High 9 75 249 0 77 173

Note. The number in each cell represents the frequency of cases (out of 1,000) in a particular group at Time
1 that were in a particular group at Time 2.
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assumption on the power of t tests performed after EGA
followed by dichotomization, finding that power is maxi-
mized when 27% (or slightly more) of the cases are retained
in each tail. However, the consequences of using EGA
under severe skewness or kurtosis, while maintaining the
continuous nature of the data, has yet to be formally inves-
tigated. Procedures such as Poisson regression (J. Cohen et
al., 2003), developed specifically for analysis of count data,
would be more appropriate in many instances.

EGA and Interaction Effects

Humphreys and Dachler (1969a, 1969b) found that cre-
ating unrepresentative subgroups for use in ANOVA de-
signs is problematic. On the other hand, in their investiga-
tion of difficulties associated with detecting interaction
(moderation) effects in observational research, McClelland
and Judd (1993) found that the optimal design for detecting
interactions—that is, the situation in which statistical power
for the test of the multiplicative effect of two variables
predicting a third variable is maximized—is one in which
there are jointly extreme scores in the distributions of pre-
dictor variables x and z. If sample size is fixed and a
researcher is given the choice of where in the ranges of x
and z to allocate subjects, the findings of McClelland and
Judd (1993) imply that the extremes are the natural choice,
because the result would be an optimal design and thus
would possess more power to detect the interaction effect of
interest relative to a design including data from the middle
of the distributions of x or z. Indeed, McClelland and Judd
(1993) and Pitts (1993) suggested that one way researchers
can achieve a near-optimal design for detecting interactions
is to oversample extreme observations. Oversampling rep-
resents a less extreme form of EGA in that midrange scores
are still collected and retained, but extreme scores occur in
numbers disproportionate to their natural frequencies. Mc-
Clelland and Judd noted that unlike correlation coefficients,
which are standardized indices of linear association, the
expected values of unstandardized regression coefficients
will not change after oversampling strategies like EGA (if
linearity is assumed; see also Pitts, 1993). However, they
cautioned that oversampling seriously inflates R2. Thus,
oversampling (or EGA) can be used to increase the power to
detect interaction effects only if the assumption of linearity
can be made, but no conclusions should be drawn about the
standardized effect size in terms of the percentage of vari-
ance explained.

Recommendations for Practice

There are some productive, justifiable uses for EGA.
EGA can be beneficial in terms of improving cost-effi-
ciency. If sample size is limited, EGA often can be used to
increase the power to detect an effect, if an effect exists to
be found. Thus, EGA appears to be well-suited for use in

pilot studies or in the exploratory phase of research, when
the exact functional form of a relationship is unknown but
there is reason to make conjectures about the existence and
direction of an effect. EGA may be useful for the detection
of hypothesized lower order interaction effects. In addition,
unstandardized effect size estimates (such as raw regression
weights) will be unbiased whether or not EGA is used.
When the sample size is large enough to support the col-
lection of data representative of the full range of x, the data
permit the use of more sophisticated techniques, such as
multilevel modeling, linear and nonlinear multiple regres-
sion, and structural equation modeling. Mixture modeling or
taxometric analysis might be used in conjunction with these
modeling techniques to investigate the presence or absence
of distinct groups. When more information is available,
richer knowledge can be extracted from data.

We recommend that researchers should, as the default
choice, use traditional full-data correlation and regression
approaches to analyze naturally continuous data when con-
ditions allow it. As long as the assumptions of linearity,
homoscedasticity, and residual normality are met (or at least
reasonably approximated), parameter estimates obtained
from ordinary regression and correlation approaches are
unbiased and informative. Furthermore, inferences about
the population can be drawn, predictions can be made, and
effects can be compared. We believe the use of EGA should
be rare rather than common. However, if a researcher finds
it necessary or advantageous to use EGA, we encourage
adhering to the following recommendations.

Justify the Use of EGA

Researchers should provide explicit justifications for the
decision to use EGA. Was EGA used to improve cost
efficiency? Was EGA used to increase power for the detec-
tion of some hypothesized effect? Before using EGA to
increase power, researchers should demonstrate that prob-
lems of low power exist (e.g., because of a limited sample
size, a small effect). Furthermore, can the assumption of a
linear relationship between x and y safely be assumed? We
strongly discourage the use of EGA as a mechanical tool
that is used simply because it was used in the past or
because it results in smaller p values. However, our reading
of the literature indicates that (a) EGA is often used even
when conditions permit collection of data across the full
range of x, and (b) conclusions drawn from analyses after
EGA is used can be easily overstated.

Do Not Dichotomize Data After Extreme Group
Selection

Perhaps the single most important change that should be
made to current use of EGA is to avoid dichotomizing data
as part of the procedure. Alf and Abrahams (1975) demon-
strated that after extreme groups have been selected, fitting
a line to continuous data was more powerful than was a t
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test performed on grouped data. If x and y are related in a
nonlinear fashion, dichotomization removes the possibility
of identifying the true relationship (Humphreys & Fleish-
man, 1974). Furthermore, because power is actually lost
following dichotomization, dichotomization is rarely a good
idea (MacCallum et al., 2002).

Avoid Post Hoc Subgrouping

A different procedure, which we refer to as post hoc
subgrouping, consists of obtaining data for both variables x
and y for all individuals in a sample but analyzing data on
y only for those individuals scoring at the extremes on
variable x. This approach is used for reasons other than
cost-efficiency, such as the unfounded belief that an analysis
of the extremes improves statistical power by reducing error
variance (thereby increasing reliability) or increasing effect
size.

Unlike EGA, subgrouping does not improve cost-effi-
ciency, because data on y have already been collected for all
individuals. In addition, relative to analysis of the full
sample, subgrouping usually lowers the power of subse-
quent hypothesis tests. In fact, if error variability can be
assumed constant across the range of x, Alf and Abrahams
(1975) showed analytically that power for the test of a null
hypothesis that �xy � 0 cannot be enhanced by removing
cases. Post hoc subgrouping is similarly ill-advised when
one attempts to detect interactions. McClelland and Judd
(1993) demonstrated that adding a midrange value to an
optimal design can only increase the power of the test of an
interaction effect. It follows that removing such a value
when present would decrease power, and they rightly char-
acterized this procedure as “unwise” (p. 386) Given that
there appear to be no clear advantages to subgrouping, we
strongly recommend against the common practice of apply-
ing tertile and quartile splits to otherwise full data sets.

Conclusion

McNemar (1960), in his presidential address to the West-
ern Psychological Association, noted that, “By the extreme
groups method, everybody is kept in a state of blissful
ignorance” (p. 298). By this he meant that if some data are
ignored and the remaining data are assigned to groups via
dichotomization, the researcher has no idea what the miss-
ing data could tell us, and that trivial results can easily be
magnified out of proportion. We agree with McNemar’s
concerns, and we further caution that the conclusions that
can be based on the results of EGA, although sometimes
useful, are limited relative to those based on analysis of
full-range, continuous data. Furthermore, the use of EGA
encourages a small-scale, bivariate approach to solving sci-
entific problems in situations in which multivariate analysis
may be more appropriate. In addition, EGA almost always
limits the usefulness of tests of nonlinear effects; the form

of the relationship between x and y must remain in doubt if
EGA is used.

On the other hand, it sometimes may be appropriate to
make claims about the presence and general direction of a
relationship even if its size and shape are debatable. If
resources are limited or if research is still in the exploratory
stage in which there is little prior research to guide theory
development, EGA can sometimes be used to enhance the
detectability of effects. If a researcher does not have reason
to use EGA beyond the fact that it increases the odds of
achieving statistical significance, we strongly caution
against the use of EGA. Given the risks associated with
EGA, we suggest that any implementation of its use should
be accompanied by careful consideration and clear justifi-
cations. Furthermore, even if EGA appears justified, we
urge researchers to incorporate the recommendations for
using EGA suggested in this article, such as avoiding mak-
ing claims beyond those supported by the data and keeping
the data in their original, continuous form. We urge review-
ers, editors, and consumers to consider the appropriateness
of instances of EGA encountered in the literature.
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