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Conceptualizing and Testing Random Indirect Effects and Moderated
Mediation in Multilevel Models: New Procedures
and Recommendations

Daniel J. Bauer, Kristopher J. Preacher, and Karen M. Gil
University of North Carolina at Chapel Hill

The authors propose new procedures for evaluating direct, indirect, and total effects in
multilevel models when all relevant variables are measured at Level 1 and all effects are
random. Formulas are provided for the mean and variance of the indirect and total effects and
for the sampling variances of the average indirect and total effects. Simulations show that the
estimates are unbiased under most conditions. Confidence intervals based on a normal
approximation or a simulated sampling distribution perform well when the random effects are
normally distributed but less so when they are nonnormally distributed. These methods are
further developed to address hypotheses of moderated mediation in the multilevel context. An
example demonstrates the feasibility and usefulness of the proposed methods.
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In psychology and other social sciences, hypotheses often
concern the causal pathways through which key predictors
transmit their effects to specific outcomes. For example,
Wei, Mallinckrodt, Russell, and Abraham (2004) examined
the extent to which attachment anxiety and avoidance were
related to maladaptive perfectionism and, in turn, depressive
mood. Similarly, Catanzaro and Laurent (2004) hypothe-
sized that alcohol expectancies play a role in drinking as a
means of coping, which then predicts a number of drinking
behaviors. In both of these cases, the causal effects of the
original predictor are transmitted at least partially through
an intervening variable, as diagrammed in Figure 1. In the
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diagram, the product of the paths labeled a and b represents
the indirect effect of X on Y, the path labeled ¢’ represents
the direct effect of Xon Y, and ¢ = ab + ¢’ is the total effect
of X on Y (Alwin & Hauser, 1975; Bollen, 1987, 1989).
Depending on the pattern of these effects, the variable M
may be called a mediator, a suppressor, or simply an inter-
vening variable (MacKinnon, Krull, & Lockwood, 2000).
We generally use the terms mediator and mediation to be
consistent with the focus of much of the literature on indi-
rect effects, although our exposition also pertains to other
patterns of indirect effects.

Within the context of linear regression and path analysis,
a number of methods have been proposed for evaluating
mediation, and this remains an active area of research (e.g.,
MacKinnon, Lockwood, Hoffman, West, & Sheets, 2002;
MacKinnon, Lockwood, & Williams, 2004; Shrout &
Bolger, 2002). Such methods are, however, inappropriate if
the analyzed data are actually hierarchical in nature (i.e.,
composed of two or more nested levels). Two forms of
hierarchical data are common in psychological research.
First, individuals may be assessed from a number of groups.
Individuals are then said to be nested within groups. To the
extent that individuals within a group share common expe-
riences, we would expect their scores on the outcome vari-
able to be correlated across members of the group, which
violates the independence assumption of many statistical
models. Second, repeated observations may be made on the
same individuals. In this case, the repeated measurements
are said to be nested within individuals. Repeated measure-
ments are typically correlated within persons, which again
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compromises the independence assumption. For both types of
hierarchical data, we refer to the lower level as Level 1 and the
upper level as Level 2. More than two levels of data are
possible, but we restrict our attention to two-level models.

Because the independence assumption is violated for
these data structures, multiple linear regression and path
analysis will produce biased tests of the effects in the model
(Hox, 2002; Kreft & de Leeuw, 1998; Raudenbush & Bryk,
2002). One way to appropriately model such data is to use
a multilevel model, also known as a hierarchical linear
model or a mixed-effects model. A key advantage of the
multilevel model is that it captures the correlations among
the Level 1 observations through the estimation of random
effects. These random effects can take the form of random
intercepts, reflecting differences in the overall level of the
outcome variable across Level 2 units; random slopes, re-
flecting differences in the effects of predictors across Level
2 units; or both. For instance, a multilevel model with a
random intercept produces a compound symmetric correla-
tion structure for the Level 1 observations. In addition to the
statistical advantages of multilevel models for correlated
data, random effects can have quite interesting substantive
interpretations. A random slope, for example, indicates that
the causal effect of the predictor on the outcome differs over
Level 2 units. This may then initiate the search for potential
moderators of the effect.

Another important feature of hierarchical data is that
predictors can reside at different levels of the data (e.g.,
individual- vs. group-level characteristics). Given this, me-
diation in multilevel models may take several forms, as
shown in Figure 2 (Kenny, Kashy, & Bolger, 1998; Krull &
MacKinnon, 2001). Upper level mediation exists when the
effect of a Level 2 predictor on a Level 1 outcome is
mediated by another Level 2 predictor (2 — 2 — 1 medi-
ation). Lower level mediation exists when the mediator is a
Level 1 variable. In some cases of lower level mediation the
effect of a Level 2 predictor is mediated 2 — 1 — 1
mediation), and in other cases the effect of a lower level
predictor is mediated (1 — 1 — 1 mediation).' Methods for
assessing upper level mediation have been proposed by
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Figure 1. Diagram of a simple mediation model. Variables are
indicated in boxes: X is the primary predictor, M is the mediator,
and Y is the distal outcome variable. Arrows originating from
variables indicate hypothesized causal effects. Labels for these
effects are indicated next to the arrows. Arrows not originating
from variables indicate residuals.

Level 2 Upper Level Mediation
(2 = 2 — 1 Mediation)
X s M
Level 1
Y
Level 2 Lower Level Mediation
of Upper Level Effect
e c' (2 —» 1 — 1 Mediation)
Level 1 3 \
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(1 - 1 — 1 Mediation)
Level 1 c}
x o~ u Y

Figure 2. Upper and lower level mediation in a two-level model:
Nested frames indicate levels of sampling, boxes indicate vari-
ables, arrows without circles represent fixed effects, arrows with
circles represent random effects, and arrows not originating from
variables indicate residuals.

Raudenbush and Sampson (1999) and Bauer (2003). Krull
and MacKinnon (1999, 2001) offered an alternative method
applicable to all three types of multilevel mediation that is
similar to the causal steps approach of Baron and Kenny
(1986) for ordinary regression models. More recently,
Pituch, Wittaker, and Stapleton (2005) examined several
approaches for testing indirect effects in2 —2 — 1 and 2 —
1 — 1 models for cluster-randomized treatment designs.
What all of these approaches hold in common is an
assumption that the causal effects are fixed (not random),

'As a reviewer pointed out, one could also consider other forms
of mediation for multilevel data. For instance, one might hypoth-
esize that an individual-level predictor affects a group-level me-
diator, which, in turn, affects a group- or individual-level outcome.
In this article, we consider only models in which the causal effects
reside at the same level or are transmitted from a higher to a lower
level variable.
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meaning that the magnitude of the effects is equal for all
Level 2 units. In lower level mediation, however, the causal
effects can be random because some predictors reside at
Level 1. In 2 — 1 — 1 mediation, the effect of the mediator
on the outcome may be random; in 1 — 1 — 1 mediation,
all three causal effects can be random. These random effects
are indicated in Figure 2 as circles on the causal paths. They
represent heterogeneity in the causal effects across Level 2
units and may be of considerable substantive interest. For
instance, in the empirical analysis to be presented later, we
analyze daily diary data to assess whether emotional reac-
tions to pain mediate the relation between physical pain and
stress in patients with sickle cell disease (SCD) and whether
the strength of mediation differs across participants.

Kenny, Korchmaros, and Bolger (2003) first called atten-
tion to the importance of random effects in lower level
mediation models, in particular in 1 — 1 — 1 models.
Furthermore, they proposed a method for fitting 1 — 1 — 1
models when all three causal pathways are random effects,
as depicted in the lower panel of Figure 2. The purpose of
the present article is to expand on this prior research to
improve the conceptualization and estimation of lower level
mediation with random effects in multilevel models. We
begin by showing how one can estimate the | — 1 — 1
model simultaneously using conventional multilevel or
mixed modeling software. We then clarify that, in the pres-
ence of random indirect effects, one may be interested in
two related but different questions. First, is there heteroge-
neity in the strength of the indirect, direct, and total effects
across units of the population? Second, how precisely can
we estimate the average effects in the population? After
distinguishing these questions, we proceed to a small sim-
ulation study designed to evaluate the quality of the average
effect estimates and their confidence intervals (CIs). Next,
we extend the model to include predictors of heterogeneity
in the indirect and direct effects. Last, we demonstrate the
value of estimating and predicting random indirect effects in
1 — 1 — 1 models with an empirical example. Our focus
throughout is on the estimation and testing of the indirect,
direct, and total effects of the distal predictor on the out-
come, not on the broader causal steps approach to mediation
outlined by Baron and Kenny (1986).

Lower Level Mediation Models With Random
Indirect Effects

Loosely following the notation of Kenny et al. (2003),
one can write the lower level mediation model depicted in
the lower panel of Figure 2 with two Level 1 equations as

Yy, = dy + bM; + c/X; + ey;. (D

The terms e,,; and ey;; are Level 1 residuals for M and Y,
respectively. The other five terms are interpreted similarly
to the intercepts and slopes of a standard regression model,
with the caveat that each coefficient is random, meaning that
the value of the coefficient varies across Level 2 units (as
indicated by the j subscript). That is, the intercepts for M
and Y are designated d,,; and dy;, respectively, the effect of
X on M is designated a, the effect of M on Y is designated
bj, and the direct effect of X on Y is designated cj’. The
random effects of the model permit heterogeneity in the
causal effects. For instance, if Level 1 represents repeated
measures, indexed by i, and Level 2 represents persons,
indexed by j, then this model can be used to assess how the
strength of the hypothesized causal relations among X, M,
and Y vary across individuals. For simplicity, we assume for
the time being that there are no Level 2 predictors of these
random effects.

A number of assumptions are required to make the model
estimable and ensure that the effects are unbiased. These
assumptions are inclusive of those that apply to all multi-
level models (as conventionally estimated) but include
features that are unique to multivariate multilevel models,
such as the lower level mediation model in Equation 1.
These unique features are italicized in the following list of
assumptions:>

1. The predictors are uncorrelated with the random effects
(intercepts and slopes) and residuals, both within and across
equations (e.g., X;; must be uncorrelated with de, a, and
ey; and uncorrelated with dy,;, b;, c;, and eyi)-

2. The residuals e,,; and e,,;; are each normally distributed
with an expected value of zero, and they are uncorrelated
with one another. Typically, the residuals for each outcome
are assumed to be independent and homoscedastic across i
within j, but these restrictions can and should be relaxed in
certain circumstances (e.g., when residuals are expected to
autocorrelate with repeated measures). The additional as-
sumption that the residuals are uncorrelated across out-
comes is required to identify the effect of M on Y.

3. The random effects are normally distributed with
means equal to the average effects in the population. Al-
though other assumptions are possible, we also assume that

2 Another assumption that is sometimes listed for these models
is that the predictors are fixed. This assumption seems to present a
problem for the model in Equation 1 because M appears in the
second equation as a fixed predictor but also appears in the first
equation as a random outcome variable. Like ordinary regression,
however, the assumption that the predictors are fixed is unneces-
sary as long as the predictors are uncorrelated with the errors, as
we note in Assumption 1 (Demidenko, 2004, p. 143). We can thus
consider M to be a random variable in both equations. Conse-
quently, we must now assume a distribution for M, namely that it
is conditionally normal (conditional on the random effects and X),
as indicated in Assumption 5.
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all of the random effects covary with one another. (Note that
the random effects of a multilevel model are often expressed
in deviation form, with the means subtracted, so that the
expected values of the random effects are zero.)

4. The Level 1 residuals are uncorrelated with the random
effects both within and across equations (e.g., e,y; is uncor-
related with d,;, a;, dy;, b, and ¢)).

5. Assumptions 2 and 3 imply that the distributions of M
and Y are conditionally normal. That is, the distribution of
M is normal conditional on X and the distribution of Y is
normal conditional on M and X.?

We show that Assumption 3 is particularly important for
deriving estimates of the indirect effects. We can write
Assumption 3 more formally as

dy;
4aj
dyj
bj
¢
dy \ | %4,
a Od,a; Ula,-
~ N|| dv || 40, Oaa, oG )
b, : dyib;  Oayb; io-dy,.,b/. 0‘12,j
¢ Oy Oa 1 Odye) T O

The means of the random effects are designated with the
same symbols as the random effects, absent the subscript j
to indicate they are constant over Level 2 units (e.g., @ is the
mean of a;). These are the fixed effects of the model. The
covariance matrix for the random effects captures the non-
independence of the observations collected at Level 1 and,
together with the variances of the Level 1 residuals, consti-
tutes the variance components of the model. The diagonal
elements of this matrix, the variances, characterize hetero-
geneity in the causal effects of the model across Level 2
units. For instance, o2 is the variance of the direct effect
(¢), indicating the extent to which the strength of the direct
effect differs over Level 2 units. The off-diagonal elements
of the matrix capture the covariance among the random
effects. For instance, a positive value for T, would indi-
cate that for Level 2 units for which the effect of X on M (@)
is high, the effect of M on Y (b)) is often also high.

To examine lower level mediation, Kenny et al. (2003)
estimated each Level 1 model in Equation 1 separately.
Unfortunately, this two-step approach sacrifices some im-
portant information. First, one cannot estimate directly the
covariance of random effects residing in different Level 1
models, including all of the elements enclosed in the dotted
square in Equation 2. As we show, this makes it difficult to
capture the dispersion of the indirect and total effects of the
model. Kenny et al. (2003) proposed an ad hoc solution to
the problem that involved estimating ordinary least squares

regression models for M and Y separately for each unit j,
collecting the slope estimates, and then calculating the sam-
ple covariance of the slope estimates. They acknowledged,
however, that this was not an optimal strategy. A second
limitation of the two-step approach is that the asymptotic
covariance matrix of the model estimates is similarly in-
complete. This matrix captures the sampling variability in
the estimates, and some of its missing elements are needed
to capture the standard errors of the average indirect and
total effects in the model.

The solution that we propose is to formulate the model
with a single Level 1 equation through the use of selection
(or indicator) variables. Researchers have used this strategy
in the past to aid in the estimation of other kinds of multi-
variate multilevel models (e.g., MacCallum, Kim, Malar-
key, & Kiecolt-Glaser, 1997), and it is equally useful in this
context. The basic idea is to form a new outcome variable—
for instance, Z— by stacking Y and M for each unit i within
J. This single outcome variable allows us to fit a “multivar-
iate” model using univariate multilevel modeling software.
To distinguish the two variables stacked in Z, we also create
two selection variables—for instance, S,, and Sy. The vari-
able S,, is set equal to 1 when Z refers to M and is 0
otherwise. Similarly, the variable S, is set equal to 1 when
Z refers to Y and is O otherwise. We retain the variables X
and M in the new data set, as they are needed as predictors
of Z. An example of this data rearrangement is presented in
Figure 3.

The purpose of rearranging the data in this fashion is that
we can now specify the lower level mediation model with a
single equation:

Zy = Sy(dy; + aXy) + Sy(dy;, + bMy; + ¢/ X;) + ez (3)
Notice that the two selection variables essentially toggle
from the model for M to the model for Y in Equation 3. For
instance, when Z is a value of M, then S,, = 1 and S, = 0,
and Equation 3 simplifies to Z; = d,;; + a;X;; + ez;. This
is the model for M from Equatlon I. Sumlarly, when Z is a
value of Y, then S, = 1 and S,, = 0, and Equation 3
simplifies to Z; = dy; + b;M;; + ¢;X;; + e;, or the model
for Y from Equatlon 1. Thus although we have stacked Y
and M into a single dependent variable for the purpose of

3 A reviewer correctly noted that the unconditional joint distri-
bution of M and Y would not be normal, given the contribution of
the a;b; product to Y. However, it is important to note that the
conditional distribution of M given X and Y given M and X can still
be normal and that it is this conditional distribution for which
normality is assumed. Although this assumption is common to all
linear multilevel models, it may often be unrealistic in practice.
Therefore, in our simulation study, we consider the consequences
of violating this assumption when the random effects are nonnor-
mally distributed.
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T Y M X
1 057 011 155
| 121 211 228
| 023 073 092
2 115 036 100
2 372 297 -119
2 38 256 -156

Restructuring the data

J Z Sy Su M X
1 0.57 1 0 0.11 155
1 0.11 0 1 011 155
1 1.21 1 0 211 228
1 2.11 0 1 211 228
1 0.23 1 0 073 092
1 0.73 0 1 073 092
2 115 1 0 036 1.00
2 0.36 0 1 036 1.00
2 372 1 0 297 -L19
2 297 0 1 297 -119
2 -3.86 1 0 256 -1.56
2 2.56 0 1 256 -1.56

Figure 3. In the top diagram, data are shown for two upper level
units (j = 1 and j = 2) for an outcome (Y), a mediator (M), and a
predictor (X) whose effect on Y is thought to be mediated by M.
This data set is then rearranged into the lower diagram through the
creation of a new variable Z that represents Y whenever the
selection variable Sy, = 1 (and S,, = 0) and represents M whenever
the selection variable S,, = 1 (and S, = 0). For each observation
in the top diagram, there are then two rows in the bottom diagram.
The values of M and X are repeated for these two rows.

fitting the model, the two outcomes continue to be distin-
guished in the model equations by the selection variables.

To aid in specifying the model, it is helpful to distribute
the selection variables in Equation 3 as follows:

Z; = dySui + af(SyXy) + dySy,
+ bj(Sy‘.jM“) + CJ-'(SYUX,-j) + ez D)

by
Equation 4 shows that one would specify a model for Z with
no intercept but with random effects for S,, and Sy (d,,; and
dy;, respectively) and with random effects for the product
variables S,,X, S,M, and S, X (a;, bj, and ¢/, respectively). In
addition, one must use some method to allow the residual
variance Var(ez;) to differ depending on S,, (or, equiva-
lently, S,). This represents a form of heteroscedasticity
because the residual variance for Z is then conditional on
S, Fortunately, most multilevel modeling software pro-
grams offer one or more options for modeling heterosce-
dasticity. Depending on the substantive context, more com-
plicated Level 1 residual variance (or covariance) structures
can also be entertained (see the example we provide later in the

article). Generic syntax for rearranging the data and fitting
the model in Equation 4 in SAS is provided on the Web
at http://dx.doi.org/10.1037/1082-989X.11.2.142.supp, al-
though other programs, such as SPSS, HLM, or MLwiN,
could also be used to fit the model.

Note that this specification strategy generalizes to models
with more than one mediator through the creation of addi-
tional selection variables. The key is to “trick” the software
into estimating a multivariate system of equations through
the creation of a single outcome variable Z. Given this
set-up, one can estimate the entire model simultaneously
using conventional software for univariate multilevel mod-
els. The resulting output includes the full covariance matrix
of the random effects and the full asymptotic covariance
matrix of the fixed effects estimates and variance compo-
nents, both of which are critical for our next developments.

To summarize to this point, we note that by using the
selection variable approach, we can estimate the complete
lower level mediation model simultaneously, providing all
of the necessary information for evaluating the hypothe-
sized causal effects of the model. We now turn to methods
for quantifying and testing variability in these causal effects.

Evaluating Random Indirect and Total Effects in
Multilevel Models

In this section, we consider two related questions: Given
the presence of random effects in a lower level mediation
model, how does one quantify variability in the indirect and
total effects across Level 2 units of the population, and how
does one obtain CIs for the average indirect and total
effects? Although these are related questions, they are quite
different in purpose. For the first question, we are interested
in variability across Level 2 units (i.e., heterogeneity in
causal effects). For the second question, we are interested in
variability in our estimates of the average effects across
Level 2 units (i.e., the precision of the average causal
effects). This distinction is analogous to the difference be-
tween the standard deviation of a variable and the standard
error of its mean. We now present the technical details for
evaluating each question. Additional details on the deriva-
tion of the results presented in this section are provided in
the Appendix. Readers who wish to see only the conclusions
of these developments can skip to the Summary of Proce-
dures subsection.

Investigating Heterogeneity in Causal Effects

The first question concerns how to characterize heteroge-
neity in the causal effects over Level 2 units. Let us consider
the indirect effect first. The indirect effect for a given unit j
is a;b;. As Kenny et al. (2003) noted, because a; and b; are
not necessarily independent, the expected value or average
of ajbj is (Goodman, 1960, p. 712):
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E(ab) = ab + o, 5)
As such, the average indirect effect in the population is a
function of the average effect of X on M (or a), the average
effect of M on Y (or b), and the covariance between the two
random effects (or o, ,,). One interesting implication of this
formula is that even if a and b are zero, the average indirect
effect can be nonzero through the contribution of o, ;. We
note that this formula does not require any assumptions on
the distributions of the random effects (Kendall & Stuart,
1969, p. 283).

Making the assumption that a; and b; are normally dis-
tributed, Kenny et al. (2003) showed that the variance of
a;b; is

Var(ab) = b’o, + a’o;, + 0,0, + 2abo,,, + o, ,.  (6)

/

This variance quantifies heterogeneity in the strength of the
indirect effect at Level 2. This value may be of considerable
interest, as it indicates the extent to which the indirect effect
of X on Y varies across the Level 2 sampling units. Simi-
larly, Kenny et al. (2003) noted that the average total effect,
ajbj +c¢/, can be expressed as

E(a;b; + ¢/) =ab + o, + . @)

Again with the assumption of normality of the random
effects, the variance of the random total effect can be
expressed as

Var(g;b; + ¢)) = b’o,, + d*o;, + 0., 0,

I J

+ 2ab0' a,bj

a

0'21/ y o-f/ +2bo, o+ 200, (8)

This variance, in turn, quantifies heterogeneity at Level 2 in
the strength of the total effect.

One nice property of maximum likelihood estimation, the
typical method for fitting multilevel models, is that any
function of maximum likelihood estimates (MLEs) is itself
an MLE (Raudenbush & Bryk, 2002, p. 52). As such, we
can obtain MLEs for the quantities in Equations 5 through
8 by inserting the estimates from the fitted model in place of
their population values. The simultaneous modeling ap-
proach we have described generates all of these estimates
from a single model. Of particular interest may be the
estimated average indirect and total effects, which we can
obtain by inserting the model estimates into Equations 5 and
7. Our second question is concerned with the precision of
these estimated average indirect and total effects.

Quantifying the Precision of the Estimated Average
Causal Effects

We begin by emphasizing that Equations 6 and 8 capture
heterogeneity in the indirect effects and total effects in the
population of Level 2 units.* If we are instead interested in

the precision of the estimated average indirect effect, @b +
G, and estimated average total effect, ab + Gyp T ¢,
then we can calculate the sampling variances of these esti-
mates as

Var(ab + 6,,,,) = b*Var(d) + a*Var(b)

+ Var(@)Var(h) + 2abCov(a, b)
+ Cov(d, b* + Var(6,,,) (9)

and

Var(ab + é,,,, + ¢') = b>Var(a) + a*Var(b)
+ Var(a)Var(h) + 2abCov(d, b) + Cov(a, b)* + Var(¢')

+2bCov(d, ¢') + 2aCov(b, ¢') + Var (6,,,). (10)
The variances and covariances in these equations (desig-
nated Var and Cov) represent the asymptotic sampling
variances and covariances of the fixed effect estimates d, b,
and ¢’ and the covariance estimate &, ;.

In practice, one must replace the population values in
Equations 9 and 10 with their sample estimates (the model
estimates and estimated asymptotic variances and covari-
ances of the estimates) to obtain the estimated sampling
variances of the average direct and indirect effects. Most
multilevel or mixed modeling software programs provide an
option to output the estimated variance—covariance matrix
of the model estimates. Note that only by estimating the full
model simultaneously can one estimate covariances be-
tween fixed effects residing in different equations—for ex-
ample, Cov(d, b) and Cov(d, ¢').

To make inferences concerning the average indirect and
total effects, we can form ClIs for the estimates. One method
for constructing CIs assumes normality for the sampling
distributions of the estimates. Under this assumption, 95%
CIs for the average indirect effect and average total effect
are obtained as

(ab + 6,,,) * 1.96 [Var(ab + 6,,,)]" an

and
(@b + 6, + ¢') = 1.96 [Var(ab + 6,,, + ¢)]"%  (12)

where £1.96 is the critical value of the z distribution and

Var is used to indicate the estimated sampling variance
obtained when the sample-based estimates are inserted into

4 Kenny et al. (2003) sometimes interpreted these equations to
give the sampling variances of the estimated average indirect and
total effects.
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Equation 9 or 10. Alternatively, one could perform a null
hypothesis test by forming the critical ratio of each estimate
to its standard error and comparing the result with the
critical value of the z distribution. In either case, the as-
sumption of normality for the sampling distributions will
not hold exactly, given that db is a product of normally
distributed estimates (and hence will not be normal). The
deviation from normality may be small enough, however,
that the CIs or significance tests will still be reasonably
accurate.

An alternative method for constructing CIs that may hold
promise is the Monte Carlo (MC) method of MacKinnon et
al. (2004). In this approach, the sampling distribution for the
effect of interest is not assumed to be normal and is instead
simulated from the model estimates and their asymptotic
variances and covariances (a form of parametric bootstrap-
ping). For instance, to simulate the sampling distribution of
the average indirect effect, one would define a multinormal
distribution with means equal to d, b, and G5, and covari-
ance matrix equal to the estimated covariance matrix of
these estimates. One would then take random values from
this multinormal distribution and plug them into Equation 5
to compute the average indirect effect. Collecting the results
over many draws provides a simulated sampling distribution
for the average indirect effect. One would then obtain con-
fidence limits for the average indirect effect by taking the
corresponding percentiles of this simulated sampling distri-
bution (e.g., 2.5th and 97.5th for a 95% CI). The advantage
of this approach is that it does not assume normality for the
sampling distributions of the average indirect and total
effects.

Summary of Procedures

In conclusion, when one estimates lower level mediation
models with random effects, interest may center on both the
average causal effects and potential heterogeneity in these
causal effects across the Level 2 units of the population. The
average indirect and total effects can be computed via
Equations 5 and 7. Estimates obtained from these equations
indicate the strength of the indirect and total effects for an
average Level 2 unit in the population. Allowing the indirect
and total effects to be random, however, also implies that
there is variability about these average values across Level
2 units. This heterogeneity in the strength of the indirect and
total effects in the population can be characterized by the
variance formulas given in Equations 6 and 8. Therefore, for
instance, the variance obtained from Equation 6 indicates
the extent to which the magnitude of the indirect effect
differs across Level 2 units.

We have also suggested two possible ways to make
inferences for the average indirect and total effect estimates.
In the first approach, the standard errors of the average
indirect and total effects are computed as the square roots of

Equations 9 and 10. One can then use these standard errors
to form Cls (or significance tests) by assuming that the
estimates of the average indirect and total effects have
normal sampling distributions, as shown in Equations 11
and 12. A second approach is to simulate the sampling
distributions of the average indirect and total effects. This
second approach is more difficult to implement, but it has
the advantage that the simulated sampling distributions of
the average indirect and total effect estimates will have the
theoretically correct (nonnormal) forms. Both tests are im-
plemented in a SAS macro available on the Web at http://
dx.doi.org/10.1037/1082-989X.11.2.142.supp. Given the
trade-offs involved, we now turn to a comparison of the
performance of these two alternative procedures for making
inferences about the average indirect and total effects.

Performance With Simulated Data

As a preliminary investigation of the accuracy of the
estimates and CIs just described, we conducted a modest
simulation study based on the example presented in Kenny
et al. (2003, pp. 122-123). In their example, the random
intercept for the M equation, de, had a mean of O and a
variance of .6, and the random intercept for the Y equation,
in, had a mean of zero and a variance of .4. These two
random effects were normally distributed and were uncor-
related with each other and with the other random effects in
the model. For the M equation, the Level 1 residual variance
was set to oﬁM = .65; for the Y equation, it was set to
0., = .45. The causal paths were simulated as follows: a;

ey

and b; were both normally distributed with means of a

b = .6 and variances of 07, = o3, = .16 and ¢/ was
normally distributed with a mean of ¢’ = .2 and a variance
of 0'(2, = .04. The covariance between a; and b; was o,

= 113, yielding a correlation of .706. Neither a]f nor b; was
correlated with ¢;. Last, the predictor X was simulated from
the equation X; = X, + ey;, where X; ~ N (0, 1) and
ex; ~ N(0,1).

To generate our own simulated data, we used this model
as a base from which we varied four design factors. In
varying these factors, we focused specifically on how they
might influence the average indirect effect estimate, as this
effect is typically of most interest (results differed little for
the average total effect). We chose the first two factors of
the simulation study to manipulate the effect size of the
average indirect effect as expressed in Equation 5. First, the
magnitude of the a@ and b parameters was set to either a =
b = .3 ora = b = .6. The higher values for a and b are
identical to those used by Kenny et al. (2003), whereas the
lower values are close to the smaller effect sizes considered
by Krull and MacKinnon (2001) for similar models. The
second design factor was the magnitude of the covariance
between a; and b;. This parameter was set to one of three
values, Oy —.113, 0, or .113 (correlations of —.706,
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.000, and .706, respectively). The next two design factors
manipulated the total sample size. We first set the number of
Level 2 units to N = 25, 50, 100, or 200. We then set the
number of observations per Level 2 unit to n; = 4,8, 16, or
32. These sample sizes are consistent with those used by
Krull and MacKinnon (2001). The final design factor con-
cerned the distributions of the random effects a; and b;. To
evaluate the robustness of the estimates, we simulated a; and
b; either from normal distributions or from X2(3) distribu-
tions, having skew 1.63 and kurtosis 4.

Together, these four factors combined to yield 144 con-
ditions in a fully factorial design. In addition, to investigate
Type I errors, we simulated supplemental data where a =
b =0 and o, 0 at each sample size and for both
distributional conditions, which resulted in an additional 24
conditions. Within each cell of the design, we simulated 500
samples of data, which resulted in a total of 84,000 repli-
cations (further details on the data generation are available
from Daniel J. Bauer on request). We then fitted the model
specified in Equation 4 to each data set using SAS PROC
MIXED with the restricted maximum likelihood estimator
and a maximum of 1,000 iterations.

We now consider four aspects of the results in turn. First,
given the complexity of the model, we evaluate potential
problems of estimation by examining the rate of model
nonconvergence and boundary solutions (e.g., solutions for
which a variance estimate is constrained to zero because it
would otherwise become negative). Second, we consider
under what conditions the estimate of the average indirect
effect is appreciably biased. As part of this evaluation, we
consider potential bias in the estimate of o, ,, in particular,
as we could not estimate this part of the average indirect
effect directly using the previous two-step approach (but it
is provided by the simultaneous modeling approach advo-
cated here). Third, we examine Type I error rates for the
null hypothesis test of the average indirect effect. Last, we
compare the coverage rates and power of Cls constructed
with the normal approximation and the MC method.

Difficulty of Estimation

The outcome of fitting each model was categorized as
either nonconverged, a boundary solution, or an uncon-
strained (nonproblematic) solution. Boundary solutions
were defined as solutions in which one or more random
effect was constrained to have a variance of zero or the
correlation between two random effects was constrained to
be 1 to obtain a solution in which all estimates attained
permissible values. Though constraints to boundary values
do not invalidate the model results, they are typically seen
as an undesirable result and suggest that the available data
are not sufficient to support the complexity of the model. It
is not surprising that the results shown in Table 1 indicate
that as the sample size increased, by increased N or n, fewer

replications resulted in nonconvergence and more replica-
tions produced unconstrained solutions. The two sample
size factors did not have an equal influence, however. Given
a finite number of total observations, the model becomes
more stable if there are more observations per Level 2 unit
at the expense of the number of Level 2 units. For instance,
with 800 possible observations, setting n; = 16 and N = 50
resulted in 92% unconstrained solutions, setting n; = 8 and
N = 100 resulted in 87% unconstrained solutions, and
setting n; = 4 and N = 200 resulted in 78% unconstrained
solutions. In addition to these results, small effects of the
other factors were also observed: The models were more
likely to produce unconstrained solutions if all of the ran-
dom effects were normally distributed, if the a and b values
were small (.3), and if the covariance of a; and b; was zero.
The latter effect can be understood as a consequence of the
population value for the corresponding correlation being
farther away from the boundary values of —1 and 1. Why
smaller values of a and b produced more unconstrained
solutions is less clear.

Bias of the Estimate

We next evaluated the bias of the average indirect effect
estimate. Bias was computed as the difference between the
mean estimate and the corresponding population value. The
average indirect effect in the population was computed from
the true parameter values and Equation 5. Across all 144
conditions in the factorial design, the mean bias for the
average indirect effect estimate was —.001, with a mini-
mum of —.076 and a maximum of .027. Further, the abso-
lute bias was less than .01 in all but 18 conditions.’ These
18 conditions included 14 conditions with nonnormal ran-
dom effects and 9 conditions with the minimum total sam-
ple size of N = 25 and n; = 4. A similar evaluation of the
bias in the covariance estimate for a; and bj revealed that,
across the 144 conditions, the mean bias was .0002, with a
minimum of —.033 and a maximum of .041. The absolute
bias was less than .01 in all but 12 conditions, all of which
were conditions for which n; = 4. Ten of the 12 conditions
included nonnormal random effects, and 7 of the 12 condi-
tions had the minimum number of Level 2 units (N = 25).

Overall, these results indicated that the estimate of the
average indirect effect (and the covariance estimate for g;

5 We also evaluated the relative bias of the estimates but quickly
ran into difficulty interpreting these values. That is, relative bias is
computed as the ratio of bias to the true parameter value, but if the
true parameter value is small even relatively trivial levels of bias
will result in high relative bias. Consistent with this, we found that
the relative bias was highest for conditions in which the population
parameter value was lowest. For this reason, we focus in the text
on bias as opposed to relative bias.
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Table 1

Result of Fitting the Lower Level Mediation Model With Random Causal Effects as a Function
of the Number of Level 2 Units (N) and the Number of Level 1 Units Within Each Level 2 Unit

(nj)
Result of model fitting (% of replications)
Failed to Boundary Unconstrained
Observations converge solution solution
N =25
n, =4 93.03 4.90 2.07
n, =8 56.63 23.10 20.27
n; = 16 16.18 23.02 60.80
N =50
n, =4 54.70 26.93 18.37
n, =8 13.93 28.10 57.97
n;, = 16 1.18 6.72 92.10
N =100
n, =4 16.52 34.13 49.35
n =8 1.80 10.97 87.23
n; = 16 0.37 0.67 98.97
N = 200
n, =4 2.50 19.52 77.98
n, =8 0.58 1.70 97.72
n; = 16 0.27 0.00 99.73
Note. Results are collapsed over conditions that vary in the population parameter values and in the distributions

of the random effects (normal or nonnormal).

and b;) was largely unbiased except for a few of the non-
normal random effects or very small sample conditions. It is
noteworthy that these are also the conditions for which it
was difficult to estimate the model, which provides con-
verging evidence that we need larger samples to obtain
reliable results.

Type I Errors

Using the 24 supplementary cells of the simulation design
for which the population value of the average indirect effect
was zero, we next considered the Type I error rates for tests
of the average indirect effect (setting the nominal error rate
at 5%). We calculated 95% ClIs using the normal approxi-
mation in Equation 11 and the MC method of MacKinnon et
al. (2004). The latter method involved taking 50,000 ran-
dom draws from the estimated sampling distribution of the
estimates (i.e., the multivariate normal sampling distribu-
tion of d, b, and G,.,)» calculating Equation 5 for each
draw, and then computing the 2.5th and 97.5th percentiles
of the resulting values. Both the normal approximation and
the MC method require an estimate of the covariance matrix
of the fixed effects (e.g., @ and b). Typically, one computes
these values by taking the inverse of the information matrix
for the estimates. For multilevel models, however, this

procedure is known to underestimate the sampling variabil-
ity of the fixed effect estimates because the variance com-
ponents of the model are treated as known (when they are,
in fact, estimated). Kackar and Harville (1984) provided a
method for inflating the elements of the covariance matrix
of the fixed effects to correct for this bias. We compare the
CIs we obtained by using the default covariance matrix of
the fixed effects versus the inflated Kackar—Harville (K-H)
covariance matrix of the fixed effects. To do so, we calcu-
lated Type I error rates as the percentage of replications in
which the 95% CI for the average indirect effect failed to
cover zero.

Tables 2 and 3 compare the Type I error rates for the four
types of Cls for normally and nonnormally distributed ran-
dom effects, respectively. The results indicate that all four
CIs tended to produce Type I error rates below the nominal
level, especially at the lower sample sizes. CIs based on the
MC method, however, reflected the nominal Type I error
rate better than the other Cls. Further examination of the
data indicated that, at the smallest sample sizes, the standard
errors of the average indirect effect estimate were overesti-
mated, producing CIs that were too wide and thus more
likely to include zero. We now consider whether this is also
the case when the null hypothesis is false.
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Table 2
Type I Error Rates: Normal Random Effects

Normal approximation

Monte Carlo method

Condition Replications® Usual cov® K-H cov® Usual cov® K-H cov®
N =25
l.n, =4 70 0.00 0.00 0.00 0.00
2.n;, =38 337 2.97 2.97 5.34 5.34
3.n,=16 484 2.48 2.48 4.34 4.13
N =50
4.n, =4 351 4.27 4.27 4.34 4.56
5.n, =38 486 3.70 3.70 4.12 4.12
6.n, = 16 500 3.20 3.20 4.20 4.20
N = 100
7.n; =4 482 4.98 4.98 5.39 5.39
8.n, =38 499 441 441 4.61 4.61
9.n, =16 500 6.00 6.00 6.20 6.00
N = 200
10. n; = 4 500 4.00 4.00 4.00 4.00
1. n; = 500 6.00 6.00 6.20 6.20
12.n;, = 16 500 4.80 4.60 5.00 4.60
Collapsing
1 through 12 5,209 4.24 4.22 4.86 4.76
2 through 12 5,139 4.30 4.28 4.92 4.83
4 through 12 4,318 4.61 4.59 4.96 4.86

Note. Results are presented by the number of Level 2 units (N) and the number of Level 1 units per Level 2

unit (1;). The nominal Type I error rate was set at 5%.

# Number of replications resulting in a converged solution from which Type I error rates were calculated (out

of 500, except for results collapsed over conditions).

® Covariance matrix of a and b estimated by the inverse

of the information matrix. © Covariance matrix of a and b estimated by the method of Kackar and Harville

(1984).

CI Coverage Rates

Coverage rates for the CIs are presented in Table 4 by
sample size and in Table 5 by the magnitude of the param-
eter values in the population model. Consistent with the
results on Type I errors, the CIs were too wide in the
smallest sample condition (N = 25, n; = 4) when the
random effects were normal. Outside of this condition,
however, the CIs actually tended to be too narrow, produc-
ing slightly lower than 95% coverage of the true population
parameter values. The dominant factor determining the cov-
erage rates of the ClIs was the distribution of the random
effects. In general, regardless of the method for computing
the Cls, the coverage rates hovered around 94% when the
random effects were normally distributed and dropped to
about 90% when the random effects were nonnormally
distributed. The lower coverage rates for the nonnormal
conditions reflected a general underestimation of the sam-
pling variances of all of the estimates in the model.

Tables 4 and 5 also point to some clear differences between
methods for computing the Cls. Across replications, the Cls
constructed via Equation 11 performed slightly better than
those computed via the MC method. This advantage of the
normal approximation method was seen for 105 of 144
conditions (73%) but was stronger when the random effects
were nonnormal. Additionally, Tables 4 and 5 show that the
K-H covariance matrix of the fixed effects produced CIs
with better coverage rates. Overall, we attained the best
coverage rates by combining the normal approximation of
Equation 11 with the K-H procedure. The MC method with
the K-H procedure performed nearly as well.

Finally, Tables 4 and 5 indicate that the effect of nonnor-
mal random effects on the coverage rates of the ClIs was
moderated by several factors. First, the coverage rates were
slightly better at the smallest sample sizes (low N combined
with low nj). Second, the coverage rates were least affected
by nonnormality when the covariance of the random effects
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Table 3
Type I Error Rates: Nonnormal Random Effects

BAUER, PREACHER, AND GIL

Normal approximation

Monte Carlo method

Condition Replications® Usual cov® K-H cov® Usual cov® K-H cov®
N =25
L.n =4 22 0.00 0.00 0.00 0.00
2.n;, =8 198 1.01 1.01 2.53 2.53
3.n; =16 435 2.07 2.07 3.45 3.45
N =50
4.n, =4 205 1.46 1.46 2.44 2.44
5.n; =8 450 4.67 4.44 4.67 4.67
6.n, = 16 495 4.65 4.65 5.25 5.25
N =100
T.n =4 428 5.14 5.14 5.61 5.61
8.n, =38 495 343 343 4.04 3.84
9.n, =16 500 4.20 4.20 4.80 4.80
N = 200
10.n; = 4 497 4.83 4.63 5.03 5.03
Il.n;, =38 500 4.00 4.00 4.40 4.20
12.n; = 16 500 4.60 4.60 5.00 5.00
Collapsing
1 through 12 4,725 3.92 3.87 4.49 4.44
5 through 12 3,865 4.42 4.37 4.84 4.79
Note. Results are presented by the number of Level 2 units (N) and the number of Level 1 units per Level 2

unit (n,). The nominal Type I error rate was set at 5%.

# Number of replications resulting in a converged solution from which Type 1 error rates were calculated (out

of 500, except for results collapsed over conditions).
of the information matrix.
(1984).

was zero, because of bias in the estimate of the covariance
when it was not zero. As would be expected, this effect was
greatest when the a and b parameters were small (reflecting
the then proportionally larger contribution of the covariance
to the expected value). In contrast, these same factors min-
imally affected the coverage rates when the random effects
were all normally distributed.

Power

To evaluate power, we calculated the proportion of rep-
lications with CIs for the average indirect effect excluding
zero for each of the 144 cells in the factorial design. The
results were consistent with the CI coverage rates. Because
the K-H procedure necessarily results in larger estimates of
sampling variability, this procedure produces wider CIs and,
hence, lower power. Across conditions, however, the aver-
age loss in power due to the use of the K-H procedure never
exceeded .0022 for either the normal approximation or the
MC method. Similarly, because the MC method produced
consistently narrower Cls than the normal approximation

® Covariance matrix of a and b estimated by the inverse
¢ Covariance matrix of a and b estimated by the method of Kackar and Harville

method, the MC method also resulted in superior power in
136 of the 144 conditions in the simulation study (94.4%).
These differences in power were, however, also quite small,
never differing by more than .0045.

Summary

In total, both the normal approximation method and the
MC method for constructing CIs performed well when the
random effects were normally distributed and the K-H pro-
cedure was used to estimate the sampling covariance matrix
of the fixed effects. Between the two, the MC method was
slightly more powerful and attained nominal Type I error
rates at smaller sample sizes but also had slightly lower CI
coverage rates. When the random effects were nonnormal,
effect estimates remained unbiased in most cells of the
design, but the CIs did not have accurate coverage rates.
One exception was when the null hypothesis was true, in
which case the CIs covered zero approximately 95% of the
time, yielding roughly 5% Type I error rates, except in the
smallest samples. We now turn to a slightly more compli-
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Table 4
Confidence Interval Coverage by Distribution and Sample Size
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Normally distributed a; and b,

Nonnormally distributed a; and b,

Normal approximation

Monte Carlo method

Normal approximation Monte Carlo method

Condition Usual cov®  K-Hcov®  Usual cov®  K-Hcov®  Usual cov®*  K-H cov®  Usual cov®  K-H cov®

N =25

n;, = 4 96.43 97.92 95.83 97.02 92.68 95.12 91.46 95.12

n; 8 93.75 94.55 93.62 94.43 92.71 93.82 91.89 93.31

n; 16 93.74 93.93 93.36 93.66 89.64 90.10 89.18 89.68
N = 50

n; = 4 93.51 94.70 93.57 94.52 91.43 92.97 91.04 92.49

n;, = 8 94.12 94.26 94.01 94.37 90.90 91.46 90.16 90.82

n; 16 94.63 94.63 94.59 94.69 91.02 91.09 90.41 90.55
N = 100

n; = 4 93.04 93.49 92.93 93.49 91.22 91.87 90.92 91.61

n; = 8 93.85 93.98 93.88 93.98 90.13 90.37 89.85 90.02

n; 16 94.76 94.83 94.73 94.76 90.27 90.34 89.74 89.87
N = 200

n;, = 4 94.08 94.35 94.18 94.15 89.29 89.50 88.91 89.05

n, = 8 94.63 94.63 94.33 94.46 90.67 90.77 90.64 90.74

n; = 16 94.60 94.60 95.00 95.00 89.68 89.75 89.78 89.88

All replications 94.14 94.39 94.10 94.35 90.44 90.77 90.06 90.43

Note. Results are presented by the number of Level 2 units (V) and the number of Level 1 units per Level 2 unit ().
 Covariance matrix of a and b estimated by the inverse of the information matrix. ® Covariance matrix of a and b estimated by the method of Kackar and

Harville (1984).

cated multilevel mediation model, one in which the strength
of the causal effects depends on other predictors in the
model.

Moderated Multilevel Mediation

Given evidence of significant random effects for either
the a; or b; paths, one may wish to add factors to the model
to explain this variability (Kenny et al., 2003). A simple
version of this model, with a single Level 2 predictor W, is
diagrammed in Figure 4. Significant prediction of either a;
or b; by W would represent a case of moderated mediation,
in which the strength of the indirect effect of the Level 1
predictor X depends on the Level 2 predictor W. The Level
2 predictor may also impact ¢/. Though this is not a case of
moderated mediation as usually defined, significant predic-
tion solely of ¢; still alters the balance of direct and indirect
effects relative to the total effects and may thus be of
substantive interest. The topic of moderated mediation (of
several forms) has been explored more extensively for sin-
gle-level regression models (e.g., James & Brett, 1984; Judd
& Kenny, 1981; Lance, 1988; Morgan-Lopez, 2003; Muller,
Judd, & Yzerbyt, 2005; Preacher, Rucker, & Hayes, 2006;
Wegener & Fabrigar, 2000). We now draw on this literature

as well as our preceding developments to propose a strategy
for investigating such effects in multilevel models.

The moderated multilevel mediation model diagrammed in
Figure 4 has the same Level 1 equations as before, namely,

My =dy; + a;X; + ey,

)

13)

but now each random coefficient is expressed as a linear
function of W in the Level 2 model:

dy; = Yao T Yaur Wi + Ugy;
a; =Yoo T YaW; + uy
dy, = Yao T Yau W, + gy
by = Yo + YW, + uy,
¢/ =Yoo T Yer Wy + 1. (14)

The assumption of normality previously made for a;, b;, and

¢; in Equation 2 now shifts to the residuals of the random
coefficients, designated by the symbol u. In particular, these
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Table 5
Confidence Interval Coverage by Distribution and Effect Size

Normally distributed a; and b,

Nonnormally distributed a; and b;

Normal approximation

Monte Carlo method

Normal approximation Monte Carlo method

Condition Usual cov®  K-H cov®  Usual cov®  K-H cov®  Usual cov®  K-H cov®  Usual cov®  K-H cov®

a=b=.3

Tyt —.113 94.95 95.14 94.75 94.85 91.12 91.41 90.51 95.12

O, = 0 95.07 95.27 94.78 94.90 93.72 93.96 93.34 93.31

Ou b, = 113 93.60 93.72 94.23 94.31 84.33 84.62 83.65 89.68
a=b=.6

Ou i, = —.113 93.78 94.21 93.42 93.92 91.90 92.41 91.53 92.49

O i, = 93.91 94.17 93.79 94.19 93.69 94.21 93.71 90.82

O, = 113 93.51 93.80 93.57 93.92 87.49 87.76 87.26 90.55

All replications 94.14 94.39 94.10 94.35 90.44 90.77 90.06 90.43

Note.

# Covariance matrix of a and b estimated by the inverse of the information matrix.

and Harville (1984).

residuals are assumed to be normal with an expected value
of zero and a full covariance matrix. The symbol 7y is
reserved for the fixed effects of the model. Note that one
may or may not wish to include W as a predictor of all of the
random slopes (aj, bj, and c;). However, when W is included
as a predictor of one of the random slopes for an equation,
we strongly recommend that it be included as a predictor of
the random intercept for the same equation.®
The conditional expected value of the indirect effect is

E(ajbj|Wj =w) = (Yoo T YaW) (Voo + Yuw) + 0, (15)

laj, Ubj*

To test moderation of the indirect effect, we can either test
Y, and v,, separately (the default of most software) or,
perhaps preferably, perform a joint test of vy,, and v,

Level 2
w
|
Level 1 <j
\
)
X g M b Y

Figure 4. Moderated lower level mediation model: Nested
frames indicate levels of sampling, boxes indicate variables, ar-
rows without circles represent fixed effects, arrows with circles
represent random effects, and arrows not originating from vari-
ables indicate residuals. Note that the arrows from W to the random
effects indicate moderation of the hypothesized causal effects.
Predictions of M and Y by W are not shown on the diagram but
would be included in the model.

Results are presented by the value of fixed effects in the population (a and b) and the covariance of the random effects in the population (a'a/’,j).

® Covariance matrix of a and b estimated by the method of Kackar

(Raudenbush & Bryk, 2002, pp. 58—61). Note that this joint
test is only possible with the simultaneous estimation strat-
egy advocated in this article. Regardless of which testing
strategy is taken, rejection of the null hypothesis would
provide evidence of moderated mediation.

Given evidence of moderated mediation, we may wish to
evaluate the simple indirect effects, that is, the value of
Equation 15 at various levels of W. Inference tests of the
simple indirect effects are also possible. Note that in the
special case in which W = 0, the simple indirect effect
obtained from Equation 15 is simply

E(ajbj|VVJ = O) = Ya0 Vb0 + O-uu/,uh,' (16)

In this special case, Equation 16 is of the same basic form
as Equation 5, and we can calculate the sampling variance
of the simple indirect effect with the analogue to Equation
9, or

Var(9,090 + 6-u[,j,u/,,-) = 1/ﬁovar(’i’ao) + Yiovar(’)/bo)

+Var(§,0)Var(9,0) + 2%.0Y50C0oV(J.0, ¥50)
+ Cov(Y.0,Pr0)” + Var(6,,.,). (17)

® When a Level 2 covariate predicts a random slope, this results
in a cross-level interaction. Likewise, when a Level 2 covariate
predicts a random intercept, this results in a main effect. One can
see this by forming the reduced form equation for the model (i.e.,
by substituting the Level 2 equations into the Level 1 equations).
Typically, one should always include main effects when evaluating
interactions. See Bauer and Curran (2005) for additional discus-
sion of these issues for multilevel models.
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Replacing the population values in Equation 17 with our sample
estimates, we can use the normal approximation or MC method
to construct a CI for the simple indirect effect at W = 0.

Given these simplifications, one way to conduct tests of
simple indirect effects at other levels of W is to rescale W so
that the value of interest is equal to zero, much as is often
done to evaluate other types of simple effects (e.g., see
Aiken & West, 1991). For example, suppose w is the
conditional value of W that is of interest. We can form a new
variable W, = W — w that is centered on this value. If we
reestimate the model, replacing W with Wy, the coeffi-
cients for the fixed effects will adjust to account for the
change in scale, but the model will be equivalent. With
these new coefficients, we can now apply Equations 16 and
17 to obtain the estimate and sampling variance of the
simple indirect effect at W = w (or Wy = 0). In this way,
we can compute a CI for the simple indirect effect at W =
w. The simulation study conducted in the prior section
suggests that these CIs will be reasonably accurate when the
distributions of the random effects are fairly normal but less
so when these distributions are nonnormal.

Similarly, the simple direct effect is

E(c]|W; = w) = v + vy w. (18)

Here, the test of moderation is carried by a single parameter
estimate, J,,. If this estimate is significantly different from
zero, we may wish to probe the simple direct effects of X on
Y. Again, by forming a new variable W, centered at a
conditional value of interest for W, we can obtain tests of the
simple direct effects through the test of 9,,. The simple total
effects of X on Y are the sum of the simple indirect and
direct effects, and inference tests can be conducted on the
summed estimates in a similar fashion. More complex methods
for probing moderation effects in multilevel models, including
the calculation of regions of significance, are given in Bauer
and Curran (2005) and could also be extended to moderated
mediation models (Preacher et al., 2006).

Empirical Example

We now implement the procedures we have outlined with
data from a study concerning perceptions of pain and stress
in African American adolescents and adults with SCD (Gil
et al., 2003, 2004). As noted in the introduction, multilevel
models are applicable both to the case of individuals nested
within groups and to the case of repeated measures nested
within individuals. In this application, the latter structure is
present. The 94 participants first completed a baseline in-
terview and were then asked to complete a daily diary each
evening for up to 6.5 months. The number of days diaries
were completed ranged from 2 to 196, with a median of 69
days (a 75% completion rate). Diaries included three
100-mm visual analogue scales designed to measure the

average physical sensation of pain (PHYS), emotional dis-
comfort of the pain (EMOT), and level of stress (STRESS)
that the participant experienced over the day. Scores were
scaled to range from O to 10, with higher values indicating
greater pain or stress.

Given the study design, the Level 1 units are the daily
reports of pain and stress by the participants, and the Level
2 units are the participants. The model under investigation
posits that the experience of physical pain will increase
stress but that this effect will be largely mediated by the
emotional response to the pain, that is, its perceived un-
pleasantness. Further, given evidence of individual differ-
ences in the direct and indirect effects of physical pain, we
seek to explain these differences on the basis of Level 2
covariates collected at the baseline interview (i.e., extending
to a moderated mediation model). To simplify our analysis
of the data, the model we fit assumes that missing data,
including data that are missing due to attrition, are missing
at random (Raudenbush & Bryk, 2002, pp. 199-200). In
actuality this may be untrue, and a more complex analysis
may be required (Schafer & Graham, 2002, provided a
review of current approaches to modeling nonignorably
missing data). Finally, we used the K-H method for esti-
mating the covariance matrix of the fixed effects and the
MC method for estimating 95% CIs for the average indirect
and total effects, although in all cases the inferences made
would have been identical if we had used the normal ap-
proximation method. SAS code for implementing the mod-
els presented here is listed on the Web at http://dx.doi.org/
10.1037/1082-989X.11.2.142.supp.

For our initial model, the Level 1 equations were speci-
fied as

Emot; = dg; + a;Phys; + eg;
Stress; = dg; + b;Emot; + ¢/Phys; + eg; (19)

where the subscript i references the repeated assessment and
the subscript j references the participant. The coefficients a;,
bj, and c/-’ were all also allowed to be random, and all of the
random effects were allowed to covary. Homogeneity of
variance of the Level 1 residuals was assumed within each
equation, but the residual variances were allowed to differ
across equations, as shown here:

Var(eg;) = o
Var(eg;) = os. (20)

Aside from the random effects of the model, serial autocor-
relation is a second common source of dependence in daily
diary data (Schwartz & Stone, 1998; West & Hepworth,
1991). That is, ratings made close in time to one another are
typically more highly correlated than ratings made farther
apart in time. Although a variety of methods can be used to
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account for serial autocorrelation (Beal & Weiss, 2003;
West & Hepworth, 1991), in the present case we assumed a
continuous-time autoregressive structure for both outcomes
in Equation 19 following the recommendation of Schwartz
and Stone (1998). This error structure assumes that the
correlation between the residuals across assessments de-
clines as an exponential function of the time lag between
assessments and allows for varying time intervals between
assessments. More formally, for any two observations i and
i’, the covariance between the residuals was specified as

COV(eEij aeEi'j) = a'épgi'

COV(eSij’eSi’j) = 0§p§ 5 (21

where d;; is the number of days elapsed between observa-
tions i and i’, pg is the autoregressive parameter for emo-
tional reactions to pain, and pg is the autoregressive param-
eter for stress ratings. We estimated the full model with
restricted maximum likelihood using the specification strat-
egy detailed earlier in the article.

The results for the initial model are reported in Table 6. All
three causal paths, a, b/ and c;, varied significantly across
persons and, on average, were positive and significantly dif-
ferent from zero. To better understand this pattern of effects,
we next estimated the expected value and variance of the
random indirect and total effects, ajbj and ajbj + ¢/, respec-

Table 6
Empirical Analysis Results

tively. The formulas for the variances require normality of the
random effects to be exact, so we first checked this assumption
by plotting the distributions of the empirical Bayes estimates
for the random coefficients. We noted some nonnormality, as
depicted in Figure 5 for the a; and b; estimates.

Next, noting that the covariance between a; and b; was
estimated as .01 (r = .26), we determined the estimated
average indirect effect to be .29 (95% CI = .16, .41) and the
estimated average total effect to be .43 (95% CI = .36, .51).
Given the nonnormality of the random effects, the results of
our simulation study suggest that these CIs may be too
narrow and should be interpreted with caution. In contrast,
the effect estimates are probably unbiased, indicating that,
on average, about 67% of the total effect of physical pain on
stress was indirect (mediated by the emotional reaction to
pain). Individual differences in the indirect effect were
characterized by Equation 6 to have a variance of .11 (SD =
.33). The variance of the total effect across participants was
estimated from Equation 8 to be .08 (SD = .29). Although
it may at first appear odd that the variance of the total effect
was less than the variance of the indirect effect, the reason
for this finding is that the direct effect was negatively
correlated with both components of the indirect effect. That
is, as the indirect effect went up, the direct effect went
down, and vice versa, resulting in less variability in the total
effect than in the indirect effect.

95% confidence limits

Effect Estimate SE Lower Upper
Fixed (average) effects
dy 0.028 0.026 —0.025 0.081
dg 1.050 0.013 0.794 1.306
a 0.909 0.014 0.880 0.937
b 0.302 0.069 0.163 0.441
¢’ 0.148 0.059 0.029 0.267
Level 1 residual structure
o 0.206 0.003 0.199 0.212
og’ 2.501 0.046 2.417 2.596
Pe 0.059 0.014 0.031 0.087
Ps 0.296 0.012 0.272 0.320
Covariance/correlation matrix of random effects®
1 2 3 4 5
1. dEj 0.050 0.275 —-0.276 —0.140 0.321
2. dS] 0.070 1.319 —0.040 —0.346 0.104
3.q —0.007 —0.005 0.014 0.258 —0.228
4. b; —0.011 —0.137 0.011 0.119 —0.495
5.¢f 0.016 0.026 —0.006 -0.037 0.048

# The variances of the random effects are shown on the diagonal, the covariances of the random effects are shown

below the diagonal, and the correlations among the random effects are shown above the diagonal.
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Figure 5. Diagnostic plots for judging the normality assumption for the random slopes involved
in the indirect effect estimate. Top panels are histograms for the empirical Bayes (EB) estimates of
the random effects obtained by fitting the initial model to the sickle cell disease data; bottom panels
are normal quantile—quantile plots for the EB estimates.

To better understand individual differences in the
strength of the direct, indirect, and total effects, we next
extended the model we have described by adding a Level 2
predictor. The predictor of interest was the number of major
acute complications of SCD (ACUTE) the patient reported
having experienced within the past year. This predictor was
added to the equation for each random effect. Of greatest
interest was whether acute complications of SCD would
moderate the indirect effect, or ajbj. The coefficient esti-
mates indicated that higher levels of acute complications
reduced the role of emotional reactions to pain as a mediator
between physical pain and stress; however, the simulta-
neous test of these coefficients was not significant, ¥*(2) =
4.75, p = .093. In contrast, higher levels of acute compli-
cations appeared to increase the direct effect of physical
pain on stress, but this was also not significant, #(24.4) =
1.82, p = .080.

Given that the moderating effects of ACUTE on the three
causal paths were nonsignificant, the analysis would typi-
cally end here. However, simply to demonstrate the meth-
odology described in the preceding section, we proceeded to
probe the simple direct, indirect, and total effects of phys-
ical pain on stress at each observed count of acute compli-
cations, zero through six. As can be seen in Figure 6,
although the total effect was relatively unaffected by the
moderator, the balance of the direct and indirect effects
shifted markedly. For participants reporting zero acute SCD
complications in the past year, the effect of physical pain on
stress was essentially all indirect. As the number of acute
SCD complications reported by the participant rose, how-
ever, this indirect effect diminished to nearly zero, and the
direct effect of physical pain on stress increased to higher
levels. Inferential tests of the simple direct and indirect
effects revealed significant indirect effects for participants
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Figure 6. Bars indicate the decomposition of the average causal effect of physical pain on stress
into a direct effect and an indirect effect through emotional reactions to pain. The total height of each
column conveys the magnitude of the total effect, with the exception of the first column, where the
direct effect is negative and the total effect is indicated with a white horizontal line. Note that the
total effect of physical pain on stress is relatively constant but that the mediation of this effect by
emotional reactions to pain wanes as the severity of sickle cell disease (SCD) increases.

reporting four or fewer acute SCD complications in the past
year and significant direct effects for participants reporting
three or more complications. The simple total effects were
relatively stable and statistically significant across all ob-
served levels of acute SCD complications.

Epistemological Issues in Assessing Mediation

Having established and demonstrated procedures for eval-
uating hypotheses of lower level mediation in multilevel
models, we now review several important epistemological
issues that must be considered whenever mediation is to be
assessed. The foremost assumption of any mediation model
is that the distal predictor and the mediator exert causal
effects on their respective dependent variables. Necessary
preconditions for causal inference are that (a) the variables
involved must covary with each other, (b) causes must occur
before their presumed effects, and (c) sources of spurious
covariation should be eliminated (Frazier, Tix, & Barron,
2004). To satisfy the second condition, X should be mea-
sured prior to M and M should be measured prior to Y
whenever possible (Gollob & Reichardt, 1987, 1991). Ex-
perimental manipulation of X can greatly strengthen the
causal inference, as can secondary manipulation of M
(Spencer, Zanna, & Fong, 2005). With respect to the third
condition, MacKinnon et al. (2002) and Holland (1988)
noted that the independence assumption made for the cross-
equation residuals in Equation 1 is particularly question-
able. Violation of this assumption can occur in a number of
ways, including the omission of important variables, the
presence of common method variance, and model misspeci-

fication. The result may be bias in the indirect effect esti-
mate. Confidence in the independence assumption can be
increased through the inclusion of potential common causes
of Y and M (other than X) in the model and through the use
of multiple methods of data collection. Further recommen-
dations for improving causal inferences can be found in
Berk (1988, 2004), Cole and Maxwell (2003), Gollob and
Reichardt (1987, 1991), and Hoyle and Robinson (2004).

With regard to model specification, one issue that is
unique to the lower level mediation model is the partitioning
of the covariance structure for the Level 1 observations. If
the Level 1 residual covariance structure is not correctly
specified, then this may lead one to overestimate the vari-
ance components for the random effects. As a consequence,
one could conclude that there is more heterogeneity in the
hypothesized causal effects of the model than is in fact
present in the population of Level 2 units. A second spec-
ification issue unique to the multilevel setting is which
effects should have random versus fixed components. This
issue is important because misspecification of the random
effects could also bias the indirect effect estimate. Ideally,
the theoretical model of the causal processes will indicate
which of the causal effects may show heterogeneity across
Level 2 units. If, however, theory does not provide strong
guidance, then researchers may wish to empirically evaluate
the issue by including random effects for each causal path
and assessing the magnitude of the estimated variance com-
ponents for these effects.

In our view, it is rarely the case that an investigator is able
to address all of the aforementioned issues simultaneously.
For instance, for the SCD analyses we have presented, the
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measures are contemporaneous, and questions could be
raised about whether the causal effects are in the correct
direction (or bidirectional), whether the estimates are in-
flated by common method variance, and whether an autore-
gressive structure was sufficient to capture the over-time
residual correlations. Like the SCD analyses, definitive ev-
idence of mediation is often not obtained from a single
model; instead, multiple studies are typically necessary.

Limitations and Future Directions

Although we believe that the simultaneous approach we
have proposed to modeling random indirect effects in 1 —
1 — 1 multilevel mediation models has a number of
strengths, we would be remiss if we did not also note its
limitations. First, our simulation study considers only a
small set of the possible conditions that might be encoun-
tered in practice. Indeed, our own analysis of the SCD data
involves unbalanced data, potentially nonrandom attrition,
and serial dependence, none of which is considered in the
simulation study. We thus view our results as a preliminary
indication of when and where the performance of the pro-
posed procedures can be expected to suffer when the as-
sumptions of the model are unmet, but more studies are
needed to make more definitive conclusions.

One clear implication of our simulation study is that
additional thought must be given to the best way to accom-
modate nonnormal random effects. One possibility is to
retain the current model but implement a nonparametric
bootstrap. Recently, Pituch, Stapleton, and Kang (in press)
evaluated bootstrapping for conducting tests of mediation in
multilevel models and obtained promising results. Their
research was, however, restricted to models with normally
distributed random effects and without random indirect
effects. Unfortunately, the computational burden involved
in bootstrapping the more complex models we consider may
be prohibitive. For instance, the initial model we fitted to the
SCD data took 40 min to estimate. Running the same model
on 1,000 resampled data sets would thus take about 28 days
of computing time. Some way must be found to improve the
efficiency of the process if bootstrapping is to be a feasible
option for these models.

An additional limitation of the present approach is that the
model requires that the residuals for the mediator and the
distal outcome be uncorrelated, an assumption that may not
hold for reasons discussed in the prior section. For single-
level models, one can potentially address this assumption by
using a structural equation model (SEM) in which M and Y
are latent variables and the residuals of the indicators for the
latent variables covary across constructs (see, e.g., Bollen,
1989, p. 324). SEMs also account for potential measure-
ment error in the observed variables and can be used to
partial out common method variance (Bollen & Paxton,
1998; Kenny & Zautra, 2001). Despite many recent ad-

vances in multilevel structural equation modeling, however,
it is currently infeasible to estimate a | — 1 — | mediation
model with random direct and indirect effects among the
latent variables. The principal difficulty is that the typical
estimators for multilevel SEMs allow for random intercepts
but not random slopes (Bentler & Liang, 2003; Goldstein &
MacDonald, 1988; B. O. Muthén, 1994; B. O. Muthén &
Satorra, 1995). In principle, maximum likelihood with numer-
ical integration (L. K. Muthén & Muthén, 2004) or Bayesian
estimation techniques (Ansari, Jedidi, & Dube, 2002) can be
used to include random slopes in a multilevel SEM. Future
research should explore the potential use of these new methods
with 1 — 1 — 1 models for latent variables.

A number of practical difficulties may also be encoun-
tered by applied researchers wishing to fit these models.
Foremost, in prototypical form, the model includes two
random intercepts and three random slopes. In general, the
estimation of a multilevel model becomes more difficult and
computationally demanding as the number of random ef-
fects increases, and the present case is no exception. The
identification of the variance components depends heavily
on the number of Level 1 observations per Level 2 unit,
whereas the accuracy with which they are estimated de-
pends on the number of Level 2 units (Hox, 2002). In our
simulation study, we encountered serious difficulty estimat-
ing the model when the number of Level 1 observations was
small (e.g., four). Given this, certain kinds of study designs
are more likely to permit the estimation of this model than
others. For instance, studies using ecological momentary
assessment (e.g., diary studies) typically yield many observa-
tions per unit and hence may be ideally suited for the estima-
tion of lower level mediation models. In contrast, studies with
fewer observations per unit may not support the estimation of
five random effects, forcing the investigator to simplify the
model by removing one or more random effects.

Conclusions

The ability to investigate heterogeneity in causal effects is
one of the most attractive features of multilevel models.
Most approaches for investigating mediation in multilevel
models have, however, exclusively focused on fixed causal
effects. In an important next step, Kenny et al. (2003)
proposed an approach to evaluating | — 1 — 1 mediation
when the causal paths are random. In this model, the direct,
indirect, and total effects vary in strength across the Level 2
units of the population. The present article extends the work
of Kenny et al. (2003) in two important ways. First, we
present a simultaneous modeling approach that provides all
of the necessary information to calculate the variances of
the random indirect and total effects as well as the standard
errors of the average indirect and total effects. We believe
that the formulas for calculating these standard errors are
new results. Additionally, this simultaneous modeling ap-
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proach offers the opportunity to conduct tests of moderated
mediation when the components of the random indirect
effect are predicted by a Level 2 variable. Second, we
provide an initial study of the robustness of the estimates
and CIs for the average indirect effect using simulation
methodology. This study indicates that the estimate of the
average indirect effect was unbiased under most conditions.
The ClIs also provided fairly accurate coverage rates when
the random effects were normal, although they were too
narrow when the random effects were nonnormal. With this
caveat in mind, we believe that the developments we have
presented offer applied researchers an improved approach
for estimating indirect effects in 1 — 1 — 1 multilevel
mediation models. Future developments such as those we
have suggested may offer further improvements, enabling
applied researchers to more fully address hypotheses of
mediation in multilevel data structures.
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Appendix

Derivation of Variance Estimates

This appendix addresses the derivation of four variances men-
tioned in the text:

1. variance of the indirect effect among Level 2 units
(Equation 6),

2. variance of the total effect among Level 2 units (Equa-
tion 8),

3. sampling variance of the mean estimated indirect effect
(Equation 9), and

4. sampling variance of the mean estimated total effect
(Equation 10).

All derivations that follow rely on a large statistics literature
stretching back to the 1930s addressing the distribution of the
product of two random variables. The variances may be derived in
a number of ways; for the sake of brevity, we rely on proofs using
a second-order elaboration of the well-known multivariate delta
method (Rao, 1965) for deriving the variance of an approximated
function of variables. The idea behind this method is to expand the
function of interest using a second-order Taylor series around the
population means of the variables involved and then to find the
variance of this expression. Under the assumption of normality,
this method yields an exact result for the variances needed here.

Heterogeneity of the Indirect Effect Among Level 2
Units (Equation 6)

Kenny et al. (2003, Equation 11) quantified the variability of
this indirect effect in multilevel modeling as

Var(a;b)) = b’o,, + a’o, + 0,03 + 2abo, , + oﬁjv,,]. (Al)

In what follows, we use a second-order elaboration of the multi-
variate delta method for deriving the variance of a function of
random variables. In compact matrix notation,

Var(g) = D'2(6)D + Yarr{(HX(0))*}, (A2)

where 0 is a vector of the variable elements of g, D is the gradient
(vector of first derivatives) of g with respect to 0 evaluated at the
means of a; and b;, H is the Hessian (matrix of second derivatives)
of g with respect to 6, and 2(6) is the covariance matrix of 6. When
g = a;b,, (8g/8a)|,, = band (8g/8b)|,, = a,and hence D’ =
[b a]. Here,

a’i o-a,,hj
2(0):[ N } (A3)
and
01
n-| Vo) (A%)

SO

Var(g) = d’o;, + b'o,, + o,

i

o7, + 2aba,

j i aj»

b 0L (AS)

Heterogeneity of the Total Effect Among Level 2
Units (Equation 8)

Kenny et al. (2003) represented variability in the total effect by

Var(a;b; + ¢f) = b’o,, + d’o}, + 0,05,
+ 2aba,,,, + o 4, + 00+ 2boy, 200, (A6)

Again, in matrix notation,

Var(g) = D'2(0)D+ Yarr{(H2(0))*}. (A7)
When g = a,b; +c/, (8g/3a) lose = b, (8g/8D) |,p = a, and
(8g/8¢") |upe = 1, and hence D’ = [b a 1]. Here,
(ng 0-(1,-,!7,' a-aj,cj'
2(0) = O’(&j,b/ 0_}2)] O-b,,c,' (AS)
O’”/v‘i/ Ubf“'f// O-Z/
and
01 0
H=|1 0 0|, (A9)
000
SO

Var(g) = @03, + PP + 707

i bj

+ 2abo, ,, + 03, + 0o + 2bo, 200, .

,bj < aj,Cj

(A10)

Sampling Variability of the Mean Estimated Indirect
Effect (Equation 9)

The sampling variance of the mean estimated indirect effect
may be obtained by similar procedures. The mean indirect effect is

g=ab + o, (A11)
Using the second-order delta method requires the gradient and

Hessian of g and the asymptotic covariance matrix of parameter
estimates. Here, D' = [b a 1],

S = O
S O =
o OO

1, (A12)

and
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ol o 0
2
0y O 0
2
0 0 Uz”m, by

2(0) = (A13)

(asymptotic covariances between fixed and random effect param-
eters are zero). Thus,

Var(g) = D'2(6)D + Vatr{(HZ(0))*} = b0’

+ aza'; + 0'20727 + 2abo,+ (0,0 + of,} . (A14)

In practice, the sample estimates of these quantities are substituted
for their population counterparts.

Sampling Variability of the Mean Estimated Total
Effect (Equation 10)

The mean estimated total effect is
g=ab+c +o,,. (A15)
Using the second-order delta method requires the gradient and

Hessian of g and the asymptotic covariance matrix of parameter
estimates. Here, D' =[b a 1 1],

01 0 0
|1 0 00
H=1"09 010 0| (A16)
0 0 0 O
and
0i a0 0
Oa) 0’2 Tp ¢ 0
2(0) = Gow G O 0 (A17)
0 0 0 0'(2»,“’_1)’
Thus,

Var(g) = D'S(0)D + Yarr{(HZ(6))%
= V0% + d’0, + 2aboyy,+ 2ba,, + 2a0;,.

+ o2

Gay by

+ 0% + oo, + (0,7 (A18)

In practice, the sample estimates are substituted for their popula-
tion counterparts.
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