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Fitting propensity (FP) is defined as a model’s average ability to fit diverse data pat-
terns, all else being equal. The relevance of FP to model selection is examined in the
context of structural equation modeling (SEM). In SEM it is well known that the
number of free model parameters influences FP, but other facets of FP are routinely
excluded from consideration. It is shown that models possessing the same number of
free parameters but different structures may exhibit different FPs. The consequences
of this fact are demonstrated using illustrative examples and models culled from pub-
lished research. The case is made that further attention should be given to quantifying
FP in SEM and considering it in model selection. Practical approaches are suggested.

Models are commonly constructed in an attempt to approximate or explain some
process of scientific interest that cannot be directly observed. The ability to predict
other (or future) data arising from the same latent process is often seen as a mark of
a model’s usefulness or quality, and it is commonly assumed that a model’s fit to a
given sample provides a good clue to this predictive ability.1 But it is also recog-
nized that some models are simply better able to fit data than other, more parsimo-
nious models; that is, competing models often differ in terms of their fitting pro-
pensity (FP), or average ability to fit data. Consequently, model fit adjusted for FP
is often used as a way to distinguish between competing models, taking into ac-
count differences in model parsimony. Adjusted fit is traditionally quantified by
combining two properties of a model: parsimony and goodness of fit. In this article,
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I address the balance between parsimony and fit in structural equation modeling
(SEM) and how this balance affects the practice of model selection. I argue that the
traditional approach of adjusting fit indices for the number of free model parame-
ters can yield misleading judgments of relative model quality.

To illustrate the problem introduced by FP, consider Figure 1. Models A and B
might represent two competing theories about how V1, V2, and V3 are related in the
population. Using methods discussed in more detail later, I generated 10,000 ran-
dom 3 × 3 correlation matrices and fit both Models A and B to all of the data. In
terms of absolute fit, the average root mean squared residual (RMSR) associated
with Model A was .246 (poor by most standards), whereas the average RMSR as-
sociated with Model B was .082 (much better). Thus, Model B fit random data
better than did Model A overall (note that sample size was irrelevant in this exam-
ple). Figure 2 contains cumulative distribution plots of RMSR for both models.
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FIGURE 1 Two path models, each with five free parameters.



Both models are able to fit some data sets well, but Model B possesses a clear ad-
vantage. If the researcher’s goal is to select the model that most accurately predicts
data generated by the underlying process, Model B might be chosen for reasons
that have little to do with the quality of the theory it represents and more to do with
the model’s intrinsic ability to fit data arising from other processes. Note that
Models A and B each have five free parameters and, in that limited sense, might be
considered equally parsimonious.

GOALS AND ORIENTATION

My motivations are to (a) explicate the concept of FP to researchers who employ
SEM, (b) show that adjusting fit indices for FP by traditional means is not an opti-
mal approach, and (c) suggest means by which FP can be routinely (and more thor-
oughly) considered in applications of model selection in SEM. To limit confusion,
I use terminology that does not conflict with existing terms (e.g., I use the term FP
rather than scope, complexity, or flexibility, which are commonly used in the math-
ematical psychology literature but would be potentially ambiguous in the SEM
context).

Throughout what follows, my emphasis is on model selection rather than on the
evaluation of models in isolation or on hypothesis testing. Model selection is an
approach to science that does not derive directly from the hypothetico-deductive
tradition currently prevalent in the social sciences. Although model evaluation and
hypothesis testing are important, my emphasis on model selection is in accord with
the current zeitgeist in the philosophy of science, which holds that relatively little
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FIGURE 2 Cumulative frequency distributions of root mean squared residual for Models A
and B fit to the same 10,000 random correlation matrices.



information of scientific value is gained by evaluating models against arbitrary
benchmarks. In model selection, at least two theories are compared in light of ob-
served data to determine which one is preferable. Over several replications, evi-
dence will tend to accrue in favor of the theory that fits data well and in the most
parsimonious manner (Lakatos, 1970; Meehl, 1990). When rival theories are to be
compared using fit to real data, sampling variability and uncertainty about the
models’ relative difference in FP can complicate the selection process.

First, I present an overview of the literature to orient the reader to basic ideas
and associated concepts. Second, I explain how FP is currently quantified in the
SEM paradigm. Third, by adapting an approach devised by Botha, Shapiro, and
Steiger (1988), I demonstrate how quantifying FP by traditional means can lead
to problems of interpretation and inference in SEM. Finally, I suggest that re-
search should be devoted to developing ways to quantify FP routinely in the
evaluation and comparison of structural equation models. Specifically, attention
will be devoted to extending two selection criteria—the uniform index-of-fit
(UIF) of Botha et al. and the minimum description length (MDL) criterion of
Rissanen (1989)—for practical application in SEM. The general concepts pre-
sented here can be understood without reference to any particular fit index or es-
timation method, although I make use of specific methods for the sake of illus-
trating important concepts.

FP AND RELATED CONCEPTS

In this section I discuss several concepts crucial to understanding the issues at
stake, including FP, goodness of fit, parsimony, generalizability, and overfitting.
Afterward I discuss how these concepts facilitate a greater understanding of the
importance of FP.

FP

FP is the ability of a model to fit a diverse array of data patterns well by some crite-
rion of fit (Dunn, 2000; Myung & Pitt, 1997, 2004; Pitt, Myung, & Zhang, 2002).
FP is also commonly called model complexity, scope, or flexibility. Closely allied
concepts are Meehl’s (1990) tolerance and Bamber and van Santen’s (2000) pre-
diction range. It is useful to think of FP as the average fit of a model to regions of
the data space, or the space containing all empirically obtainable data patterns rel-
evant to a particular modeling domain (the data space is what Meehl, 1990, termed
Spielraum and what Bamber and van Santen, 2000, termed outcome space). FP can
be understood as the complement to parsimony. Models with greater FP than their
competitors enjoy an advantage in terms of goodness of fit for reasons potentially
unrelated to the model’s approximation to the data-generating process. FP per se is
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not an undesirable property of a model. All models have some ability to fit data,
otherwise their usefulness would be very limited. But without devoting explicit at-
tention to FP, it is impossible to know how much of a model’s good fit is due to a
theory’s genuine predictive ability and how much is due to the model’s inherent
ability to fit data arising from unrelated processes and random error. FP is the sub-
ject of increasing attention in mathematical psychology and allied fields (e.g.,
Collyer, 1985; Cutting, Bruno, Brady, & Moore, 1992; Dunn, 2000; Myung,
Balasubramanian, & Pitt, 2000; Myung, Forster, & Browne, 2000) but has yet to
attract serious attention in the SEM literature.

Goodness of Fit

Goodness of fit is the empirical correspondence between a model’s predictions and
observed data. If the match between the model’s predictions and observed data is
deemed adequate (by reaching or exceeding some benchmark), the model is said to
show good fit, an indication that the theory represented by the model has received
support. When a fit index is used to evaluate a model in opposition to at least one
other theoretical model, the index is termed a model selection criterion because the
object is to select the model that is optimal in some sense, given the data.

Parsimony and Degree of Falsifiability

A model’s parsimony2 can be cast as its ability to constrain possible outcomes
(Popper, 1959; Roberts & Pashler, 2000) or restrict the proportion of data sets con-
sistent with the model. Parsimony is closely related to degree of falsifiability, the
capacity of a model to be empirically disconfirmed. It is important that a model
have the potential to be disconfirmed by data inconsistent with theory (Popper,
1959), otherwise a theory could not be realistically subjected to scientific scrutiny
in the form of risky tests. But falsifiability alone is often not enough to permit truly
risky tests. Some models, even if they are technically falsifiable, possess the ability
to easily fit a wide array of data. Such models often possess an advantage in model
selection when compared to more parsimonious rival models.

Generalizability

Generalizability is a model’s ability to fit regularity (reliable, theoretically mean-
ingful variability that is liable to remain stable across repeated sampling from the
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tively many degrees of freedom in the factor analysis and SEM literature (Mulaik, 2001; Mulaik et al.,
1989). The terms are used here in their broader sense to encompass all factors contributing to a model’s
degree of falsifiability.



same reference population) in data (Myung & Pitt, 2004; Myung, Pitt, & Kim,
2004). Ultimately, researchers are interested not only in how well a model can de-
scribe the data in hand but also in how well a model (or, more precisely, a model
with its parameters constrained to a particular set of estimated values) can describe
other data generated by the same underlying process (Forster & Sober, 1994;
Linhart & Zucchini, 1986; Pitt et al., 2002). Thus, generalizability can also be un-
derstood as predictive validity, or the potential to cross-validate well using
Bentler’s (1980) tight replication strategy, in which all of a model’s free parame-
ters are fixed to values estimated in one sample before fitting the model to a valida-
tion sample drawn from the same population. Good fit in the validation sample re-
flects high generalizability.

Generalizability represents a balance between goodness of fit and parsimony
and is often quantified by combining a measure of model fit with some measure of
FP by penalizing fit for FP. Unfortunately, generalizability and goodness of fit, al-
though both desirable characteristics of a model, are not always positively related
(Myung, Balasubramanian, & Pitt, 2000).

Overfitting

Overfitting is the tendency for a model to show good fit by capturing error (noise)
as well as regularity. Overfitting is a common danger when FP is not adequately
considered. A model with relatively high FP may fit a given data set very well but
may not generalize to other samples easily (Forster & Sober, 1994; Roberts &
Pashler, 2000) or may not cross-validate well using Bentler’s (1980) tight replica-
tion strategy.

Summary

The relationships among FP, goodness of fit, parsimony, generalizability, and
overfitting are illustrated in Figure 3. The y-axis in Figure 3 loosely represents
goodness of fit, unadjusted for FP. Models with higher FP (lower parsimony) tend
to exhibit better fit to data relative to models with lower FP. On the other hand,
generalizability reaches a maximum and then decreases as FP increases (Pitt &
Myung, 2002). As FP progresses beyond the point of maximum generalizability,
overfitting occurs. The implication is that selecting one model from a set of com-
peting alternatives solely on the basis of superior fit may favor the retention of
models with higher FP yet lower generalizability (see, e.g., Browne & Cudeck,
1992; Collyer, 1985; Cudeck & Henly, 1991; Forster & Sober, 1994). In addition to
generalizability, assessment of the overall quality of a model is (ideally) also based
on some combination of parameter estimates, substantive interpretability, faithful-
ness to theory, explanatory adequacy, ability to generate new research, and the
model’s historical performance relative to other models intended to account for the
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same phenomena (Cutting et al., 1992; Marsh & Balla, 1994; Myung & Pitt, 2004).
However, among these aspects of a model’s quality, generalizability is the only as-
pect that has the potential to be quantified and objectively assessed, specifically by
trading off fit and parsimony. Consequently, it is desirable that FP and goodness of
fit be gauged as accurately as possible to enable fair model comparison. The fol-
lowing is a brief discussion of some of the factors that affect FP and an explanation
of how these factors are manifested in SEM.

MODEL FIT AND FP IN SEM

Overview of SEM

SEM involves specifying theory-implied, usually linear relationships among a set of
latent and observed variables. The formal representation of the model is Σ = Σ(θ).
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FIGURE 3 The relationship between generalizability, goodness of fit, and overfitting. As fit-
ting propensity (FP) increases, goodness of fit increases. However, generalizability reaches a
maximum. If a model is too complex, overfitting is a danger. The three models below the plot
are arranged in increasing order of FP. The model on the left does not fit the data well. The
model on the right fits very well, but overfits the data and is not likely to fit well in future sam-
ples. Only the model in the middle maximizes generalizability. Adapted from Trends in Cogni-
tive Science, 6(10), M. A. Pitt and I. J. Myung, When a good fit can be bad, p. 424, Copyright
2002, with permission from Elsevier.



The parameters of these models (θ) are traditionally specified as either freely esti-
mated or fixed to specific values. The fitting process involves finding a set of pa-
rameter estimates which minimize a loss function, F, usually the maximum
likelihood (ML) or ordinary least squares (OLS) discrepancy function. The esti-
mates minimizing F yield an implied covariance matrix as similar as possi-
ble to the observed covariance matrix (S) of measured variables. To the degree that

resembles S, (the minimized F) will tend to be small, reflecting good fit.
When = S, = 0, denoting perfect fit. Good fit is typically interpreted as sup-
port for the model and therefore as support for the theory the model represents.

Factors Affecting FP in SEM

The number of free parameters. A number of model characteristics affect FP.
Chief among these is the effective number of free model parameters (q), defined as
the number of free parameters minus the number of functional constraints placed
on otherwise free elements of θ. All else being equal, models with larger q are
better able to fit data (Forster & Sober, 1994; Jeffreys, 1957; Wrinch & Jeffreys,
1921). In model selection settings in which all competing models are posited to ac-
count for relationships among the same p variables, the degrees of freedom (df) of
the models contain information inversely related to q. Freeing model parameters
reduces the number of dimensions in which observed data are free to differ from
model-implied data (Mulaik, 2001, 2004). FP granted by free parameters is termed
parametric complexity (Markon & Krueger, 2004). The tendency for more free pa-
rameters to lead to better fit could create situations in which a model is selected not
because it is the best in any meaningful sense but simply because it has greater
parametric complexity (James, Mulaik, & Brett, 1982; Myung, 2000; Roberts &
Pashler, 2000; Steiger & Lind, 1980).

Functional form. Most fit indices and selection criteria represent trade-offs
between fit and parsimony, with parsimony defined strictly in terms of q. However,
FP is not governed completely by q (Keuzenkamp & McAleer, 1997). Functional
form also contributes to FP (Jeffreys, 1931; Pitt & Myung, 2002; Roberts &
Pashler, 2000; Wrinch & Jeffreys, 1921). Functional form refers to the specific
means by which relationships among variables are expressed as functions of free
model parameters. In SEM, functional form refers to the set of simultaneous equa-
tions relating observed variances and covariances to free parameters. Models with
different functional forms usually have different FPs. For example, Model B in
Figure 1 has a greater FP than Model A, even though the two models have the same
q. However, models that are chi-square equivalent (i.e., those models that are indis-
tinguishable on the basis of fit for any S; see MacCallum, Wegener, Uchino, &
Fabrigar, 1993) have equal FP even though their structures may appear at first to be
distinct. FP granted by a model’s unique functional form is termed structural com-
plexity (Markon & Krueger, 2004).
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Quantification of Model Fit in SEM

Many indices have been suggested to help researchers judge the match between
model and data. Various indices adjust for FP in different ways. Some include no
adjustment. An example of an index that does not adjust for FP is the RMSR
(Jöreskog & Sörbom, 1996), used earlier in the introductory example. RMSR is
defined as

For correlation matrices, RMSR is equivalent to the standardized root mean
squared residual (Bentler, 1995).

In recognition of the fact that models with more free parameters tend to yield
better fit, many indices penalize models for q. For example, the root mean square
error of approximation (RMSEA, or ε; Browne & Cudeck, 1992; Steiger & Lind,
1980) is an index reflecting the difference between the population covariance ma-
trix and the implied (reproduced) covariance matrix (Cudeck & Henly, 1991). A
sample estimate of RMSEA is 1/2, where is an estimate of the
population ML discrepancy function value. Because models with fewer df have
more free parameters, RMSEA favors models with fewer free parameters, all else
being equal (Browne & Cudeck, 1992; Steiger, 2000). However, for models with
the same q but different functional forms, RMSEA is likely to favor models with
greater structural complexity. Another fit index that includes an adjustment for q is
the Tucker-Lewis Index (Tucker & Lewis, 1973). In addition, James et al. (1982)
and Mulaik et al. (1989) suggest that a parsimony ratio, the ratio of df in the tested
model to df in an appropriately specified null model, can be multiplied by most fit
indices to yield parsimony-adjusted indices. For indices employing q or df in their
formulae, the inclusion of q or df was not always included as an adjustment for FP
per se.

Model selection criteria are indices intended select the simplest model that still
adequately explains the observed data. Examples include the Akaike Information
Criterion (Akaike, 1973) and the expected cross-validation index (Browne &
Cudeck, 1989). Model selection criteria can be seen as formalizations of Occam’s
razor. These measures tend to be sensitive to sample size, selecting models with
higher FP as the sample size increases (Cudeck & Browne, 1983; Cudeck & Henly,
1991; McDonald & Marsh, 1990). This is to be expected; more information ac-
crues with larger samples, and models with higher FP can be selected with greater
confidence. At small sample sizes, these criteria are more conservative. Thus, the
FP adjustment employed in such criteria is moderated by sample size (Marsh &
Hau, 1996).
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When multiple models are to be compared, it is assumed that p is constant;
that is, all of the competing models are intended to explain relationships ob-
served among the same p variables. For a fixed p, df is a simple function of q.
For a given set of competing models, it follows that using df as a penalty for FP
reduces to adjusting for q for purposes of model selection. Even when the ex-
press intent was to adjust for FP, no indices were ever claimed to account for FP
completely. Because functional form is also known to contribute to FP,
suboptimal models may be selected when FP is equated with q alone (Raykov &
Marcoulides, 1999). In the next section I present a graphical simulation ap-
proach to assessing FP in SEM.

INVESTIGATING FP IN SEM

Goals for Illustrative Examples

A straightforward and intuitive way to gauge relative FP is to generate data uni-
formly representative of the theoretical domain (the data space described earlier),
apply the competing, theory-derived models to the generated data, and assess how
well the models fit the data relative to one another. Fitting models to representative
data has been suggested as an accurate way to discover what, exactly, a theory pre-
dicts (Roberts & Pashler, 2000) and is how FP is operationalized in advanced
model selection criteria such as the UIF (Botha et al., 1988) and MDL (Rissanen,
1989) criteria to be described in a later section. Roberts and Pashler suggested lim-
iting the data space to consist not of all possible data patterns but to all plausible
ones in particular. Criteria for deciding what might constitute plausible data are
addressed in the Discussion section. In the study presented here, the plausible data
space was limited to uniform coverage of correlation matrices lying in the positive
manifold.3 The requirement of uniform coverage was considered important be-
cause it was desirable to test models using data representative of every part of the
plausible data space. The data generation method employed here owes much to the
logic and approach of Botha et al. (1988).
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a set of variables to be positively intercorrelated. For the models considered in this study, positive mani-
fold correlation matrices were judged to be an adequate representation of the data space for most SEMs,
at least for the sake of illustration.



Data Generation

Random correlations. A correlation matrix (R) is defined as a standardized
covariance matrix—any symmetric, positive semidefinite matrix with unit diago-
nal elements and with off-diagonal elements rij, i ≠ j, such that {–1.0 ≤ rij ≤ 1.0}.
For our purposes here, Rs are defined to be positive definite (i.e., all eigenvalues
must be greater than zero) and are restricted to contain no negative elements. To
simulate the data space, I generated random4 Rs such that every possible posi-
tive-manifold R had an equal probability of being generated. I chose this criterion
for randomness because it does not rely on preconceived ideas about data patterns
that are more or less likely to appear in practice. Matrices generated according to
this criterion can be considered uniformly distributed across the data space of in-
terest (Botha et al., 1988).

Three algorithms for generating random Rs were suggested and used by Botha
et al. (1988).5 One strategy, the uniform correlation matrix (UCM) method, in-
volves generating random square, symmetric matrices with ones along the diago-
nal and off-diagonal elements drawn from a {0, 1} uniform distribution. Only posi-
tive semidefinite matrices are retained. This method yields matrices that are
distributed uniformly on the data space of interest but becomes increasingly ineffi-
cient as matrix order increases. A new strategy was sought to yield matrices with
the desirable distributional characteristics of Botha et al.’s UCM method, yet with
greater efficiency. Therefore, a Markov Chain Monte Carlo (MCMC; see Gilks,
Richardson, & Spiegelhalter, 1996) algorithm was employed. The MCMC ap-
proach employs much the same logic as the UCM method; that is, it searches the
space containing all matrices with unit diagonals and off-diagonal elements in {0,
1} for matrices meeting the criteria and evaluates each matrix separately on an ac-
cept/reject basis. However, the MCMC algorithm narrows the search to a region
likely to yield acceptance (see the Appendix for greater detail).

ILLUSTRATIVE EXAMPLES

It is well known that if Model A is nested in Model B, Model B will show equal or
better fit to data than will Model A, all else being equal (barring convergence prob-
lems). However, it is instructive to illustrate how differential structural complexity
has the potential to lead to the selection of an inappropriate model from among a
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5It should be emphasized that sample size has no role in the data generation process. The Rs
produced by this algorithm are neither sample nor population matrices.



set of competing alternatives. In Example 1, two models differing only in func-
tional form are compared in terms of FP. Example 2 explores the relative impor-
tance of functional form and the number of free parameters in determining FP.
Finally, Example 3 presents models drawn from published research, and illustrates
some consequences associated with incompletely considering differences in FP.

The relative FP of competing models was assessed by determining how well
each model fits representative data relative to its competitors. Because frequent es-
timation problems (nonconvergence and improper solutions) were encountered
with ML estimation in preliminary simulations, the OLS discrepancy function was
chosen. Each model was fit to 10,000 random data matrices. I chose RMSR as a fit
index because it incorporates no adjustment for q or functional form, thus allowing
the relative FPs of alternative models to be illustrated by simply noting differences
in fit with respect to the same data. Cumulative distribution functions (CDFs) of
RMSR were plotted. Even in the absence of a benchmark criterion value for good
fit, nonoverlapping CDFs are sufficient to illustrate that two or more models differ
in terms of FP. For fitting models to data, RAMONA 4.0 for DOS (Browne &
Mels, 1990) was chosen for its ability to quickly estimate many models sequen-
tially. Sample size was set to 1,000 for all analyses.6 Most models converged be-
fore reaching the iteration limit.7

Example 1: FP due to Functional Form

Consider the models in Figure 4 (Models 1A and 1B). Model 1A is an unrestricted
simplex model, generally applied in situations in which a more or less band-diago-
nal correlation matrix8 is expected. Model 1B is a contrived 1-factor model, with
two loadings constrained to equality so that Models 1A and 1B will have the same
number of free parameters (q = 11). Model 1B is expected to have greater FP than
Model 1A because Model 1A is designed to account well only for Rs conforming
to a band-diagonal pattern, whereas Model 1B is designed to account well for a
broader array of potential correlation patterns.
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cision of parameter estimates in OLS but does not alter the point estimates themselves.

7In Monte Carlo studies, one can include improper solutions, exclude them, or constrain solutions
to be proper (Gerbing & Anderson, 1993). In this and all subsequent analyses, the maximum number of
iterations was set to 2,000 to allow a reasonable amount of time for models to reach convergence.
Although not all models converged, fit indices were always produced, indicating the best fit obtainable
after 2,000 iterations.

8Band-diagonal correlation matrices are those in which every diagonal below the main diagonal
consists of correlations homogeneous in magnitude, generally decreasing in magnitude with distance
from the main diagonal. Matrices approximating this form are common in longitudinal studies charac-
terized by autocorrelation.



Models 1A and 1B were each fit to 10,000 randomly generated 6 × 6 matri-
ces, with the resulting RMSR CDFs depicted in Figure 5. The most noteworthy
feature of Figure 5 is the distance between the CDFs, which can be interpreted
as relative differences in FP. Because the two models were fit to the same ran-
dom data using the same number of free parameters, the substantial disparity in
FP between Models 1A and 1B can be attributed to differences in functional
form. The simplex model fails to fit large correlations between distally con-
nected variables, yet fits correlations between adjacent variables very well. The
factor model, on the other hand, can fit many more correlation patterns. Thus,
even when the same q is involved, models differing in functional form can be
quite different in terms of FP.

For researchers interested in evaluating the fit of each competing model against
external benchmarks, it could be of interest to explore the regions of the data space
fit well by each model relative to a fixed criterion of good fit. Hu and Bentler
(1999) recommend that a criterion close to .08 be chosen when only RMSR is
used, so .08 was chosen as a convenient (but arbitrary) benchmark for good fit. Ta-
ble 1 shows the number of random data sets, out of 10,000, fit well and poorly by
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FIGURE 4 A simplex model (Panel A, Model 1A) and a factor model (Panel B, Model 1B).



the two models jointly and in isolation. Even though Model 1B fit 136 data sets
well by the .08 criterion, Model 1A fit 23 data sets well that Model 1B fit poorly.
Similarly, even though Model 1A fit 27 data sets well, Model 1B fit 132 data sets
well that Model 1A fit poorly. Thus, the competing models can fit data from differ-
ent parts of the data space differentially well.

This example shows one way in which two models differing only in func-
tional form can have different FPs. There are other ways in which two models
may differ in structural complexity. For example, alternative models may imply
different numbers of zero correlations. The greater the number of implied zeroes,
the less FP a given model will have because the model likely will be notably
misspecified for that subgroup of correlations (Example 2 contains a clear illus-
tration of this effect). Another situation in which models may differ in structural
complexity occurs with the imposition of certain constraints. For example,
equality constraints represent the requirement that two or more otherwise free
parameters must be equal to each other. It is also possible for two models to dif-
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TABLE 1
Frequencies of Data Sets Fit Well and Poorly

by Models 1A (Simplex) and 1B (Factor)

Model 1B

Model 1A RMSR < .08 RMSR ≥ .08

RMSR < .08 4 23
RMSR ≥ .08 132 9,841

Note. RMSR = root mean squared residual.

FIGURE 5 Cumulative frequency distributions of RMSR for a simplex model and factor
model fit to the same 10,000 random correlation matrices.



fer only in that one has an equality constraint where the other has a fixed-value
constraint. The two models would have the same q but different functional
forms, and thus potentially different FPs.

Example 2: The Relative Importance of Free Parameters
and Functional Form

It could be that the impact of functional form on FP is negligible relative to the in-
fluence of the number of free parameters. If that is true, then adjusting fit for q may
be a sufficient penalty for FP, and further consideration of structural complexity
would supply little additional information. To illustrate that functional form poten-
tially can determine a model’s FP to a greater extent than can q alone, two models
were specified. Model 2A is a simple structural equation model in which the
unique variances of indicators for particular latent variables have been constrained
to equality (see Figure 6). Model 2B is a simple confirmatory factor model with the
factor correlation constrained to zero. Note that Model 2B has more free parame-
ters (q = 12) than Model 2A (q = 9) and thus would ordinarily be expected to have
greater FP. However, the functional form of Model 2B is such that there will be
nine implied zero correlations, which should seriously curtail Model 2B’s ability
to fit data.

In fact, as can be seen from the RMSR CDFs in Figure 7, the model with more
free parameters (2B) fit substantially worse than the model with fewer free param-
eters (2A). Neither model fit particularly well overall by standard criteria, but the
large difference in the proportion of data patterns fit by the two models at any value
for RMSR is telling. The number of free parameters is not always the most impor-
tant factor in determining FP.

Example 3: Model Selection in a Real Example

Keyes, Shmotkin, and Ryff (2002) investigated the relationship between the con-
structs subjective well-being (SWB) and psychological well-being (PWB) by con-
ducting a series of confirmatory factor analyses. Indicators of SWB included an
item representing global life satisfaction and scales assessing positive and negative
affect. PWB was represented by short forms of Ryff’s (1989) six scales of PWB
(Self-Acceptance, Environmental Mastery, Positive Relations With Others, Per-
sonal Growth, Purpose in Life, and Autonomy). Because substantive concerns are
beyond the purview of this investigation, only those details germane to FP and
model selection are presented here.

The authors tested a series of six confirmatory models to ascertain the relation-
ship between SWB and PWB. These included (1) an independence model (omitted
here), (2) a one-factor model, (3) a two-factor model with uncorrelated factors,
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(4, 5) two models with two correlated factors, and (6) a model with two correlated
factors and two extra loadings. These models, with the exception of the independ-
ence model, are depicted in Figure 8. According to the likelihood ratio test, Model
6 was the best-fitting model, followed in order by Model 4, Model 5, Model 2, and
Model 3. On the basis of superior fit indices, the authors chose Model 6 as the best
model, acknowledging that Model 4 also fit well.
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FIGURE 6 Two factor models with different functional forms. The model in Panel A (Model
2A) has 9 free parameters. The model in Panel B (Model 2B) has 12 free parameters.



Using OLS estimation, the five models in Figure 8 were also each fit to 10,000
random Rs to assess their relative FPs. Model 6 was the best-fitting model when fit
to random data, followed by Model 5, Model 4, Model 2, and Model 3 in that order,
although there was virtually no separation between Models 4 and 5. In other
words, the rank of the models in terms of fit to real data closely corresponds to the
order expected simply by knowing the models’ relative FPs. The implication is that
little knowledge about the preference that should be assigned to each of the com-
peting models based on observed data was gained above and beyond the models’
antecedent propensities to fit random data.

Cumulative plots of RMSR for all five models are shown in Figure 9; some fea-
tures bear close examination. First, note the wide separation between Model 3
(uncorrelated factors) and the other models. Model 3 fits much worse than, for ex-
ample, Model 2 even though the two models have the same number of free parame-
ters. The two models differ only in functional form; because the factor correlation
in Model 3 is constrained to zero, Model 3 implies 18 zero correlations, whereas
Model 2 implies none. Specifically, Model 3 permits no correlations between indi-
cators loading on PWB and SWB, so the model will be misspecified for any non-
zero correlations between indicators of the two factors in the population. Second,
Models 4 and 5 also differ only in functional form, yet the two models have virtu-
ally identical FPs (mean RMSRs for Models 4 and 5 were, respectively, .1385 and
.1384). Third, despite the addition of two extra free parameters, Model 6 fit little
better than Models 2, 4, and 5. The primary lesson to be learned here is that,
whereas q certainly influences FP, every free parameter does not contribute equally
to a model’s ability to fit data. The way in which free parameters are combined in a
model (i.e., functional form) can have a large impact.

PARSIMONY IN SEM 243

FIGURE 7 Cumulative frequency distributions of root mean squared residual for the two fac-
tor models in Figure 6.
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FIGURE 8 Five competing, theory-implied factor models compared by Keyes et al. (2002).



Summary

The findings reported here are intended only to illustrate how model selection in
SEM might be influenced by quantifying FP in terms of the rival models’ abilities
to fit random data rather than in terms of the number of parameters. Nowhere do I
claim that the conclusions drawn by Keyes et al. (2002) are incorrect. Models are
typically not evaluated solely on the basis of fit—other factors also determine
judgments of a model’s quality, such as the interpretability of parameter estimates
and the theoretical plausibility of the entire model. However, it should be empha-
sized that the way in which FP is quantified can have an impact on substantive con-
clusions. Fitting competing models to the data space provides additional informa-
tion that can augment traditional fit indices and selection criteria.

DISCUSSION

Models with different functional forms but the same number of free parameters
can, and usually do, have different FPs. However, in fit indices and selection cri-
teria traditionally used in SEM, only q is considered; functional form typically is
not. By way of example, I illustrated some consequences associated with relying
only on traditional methods of considering FP. The traditional conceptualization
of parsimony in SEM is guided by the implicit assumption that parsimony is a
linear decreasing function of q or, conversely, that FP is a linear increasing func-
tion of q. But FP, as defined here and elsewhere, is a complicated function of q,
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FIGURE 9 Cumulative frequency distributions of RMSR for the five competing factor mod-
els compared by Keyes et al. (2002).



functional form, and other factors, although the treatment presented here focused
only on q and functional form. Ideally, consideration of FP should incorporate
these factors in addition to q in order to quantify falsifiability as accurately as
possible. Current methods of model evaluation and selection in SEM do not ade-
quately achieve that goal.

Implications and Recommendations for Practice
and Future Research

Ideally, in the context of model selection, researchers would hope to encounter
models with equal goodness of fit but different FPs or models with equal FPs but
different fit. In the former situation, parsimony would be the obvious deciding fac-
tor (Forster & Sober, 1994; Quine, 1966); in the latter, the better fitting model
would emerge as the winner (Dunn, 2000; Turney, 1990). Unfortunately, we are
rarely presented with so convenient a situation—the models being compared usu-
ally vary along both dimensions. Most SEM fit indices adjust for FP in a way that is
only partially consistent with the actual level of FP. Practical methods are therefore
needed for the direct evaluation of FP in substantive studies. I offer two possibili-
ties for consideration.

Uniform index-of-fit. Botha et al. (1988) developed a method for estimating
the appropriate number of factors (m) in exploratory factor analysis when the sta-
tistical determination of m is inappropriate, such as when the entire population is
available for examination. They defined a distance measure based on the OLS
discrepancy function:

where R is a correlation matrix, Λ is the estimated factor loading matrix, and Ψ is
the matrix of unique factor variances. The distance dp,m(R) reflects the square root
of the sum of squared residual correlations. Botha et al. generated 1,000 random
Rs, fit a series of candidate factor models to every generated matrix, and calculated
dp,m(R) for each R. Then, for a given empirical correlation matrix R*, dp,m(R*) is
obtained, as well as the probability that dp,m(R) is greater than or equal to dp,m(R*):

In other words, a given data set R* is assigned a percentile based on where its fit in-
dex falls in the CDF of fit statistics. This quantity Botha et al. termed the uniform
index-of-fit. The UIF reflects the rank of the observed fit relative to the model’s fit
to all randomly generated data. A small value of ip,m(R*) implies that a given factor
model is inappropriate for the data, because the m-factor model fits a large propor-
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tion of random data sets better than the observed data. Values close to 1.0, however,
indicate that the m-factor solution might be appropriate.

Botha et al. (1988) did not explicitly consider FP, but their procedure is essen-
tially a model selection routine that considers all factors contributing to FP. The
UIF assigns a handicap to each factor model to a degree commensurate with its
ability to fit diverse (random) data patterns, placing all competing models on the
same footing with regard to FP before they are compared in terms of fit.9 The index
ip,m(R*) is defined in terms of least-squares discrepancy, but may be used just
as easily as for purposes of establishing ip,m(R*).

The graphical approach to considering FP described earlier clearly owes much
to Botha et al.’s (1988) UIF, in the sense that Rs representative of the relevant data
space are generated and the models of interest are fit to those random data. In the-
ory, there is nothing about UIF that should prevent it from being generally applica-
ble in SEM. In practice, there are two challenges to its implementation. First, pro-
hibitively large amounts of random data must be generated and fit by the set of rival
models to establish the distribution of dp,m(R) values, which would in turn permit
the researcher to draw fine distinctions between models with very small ip,m(R*)
values. Development of faster and more efficient methods of generating Rs or rea-
sonable methods for restricting the bounds of the data space may solve this chal-
lenge. Second, most applications involve sample data. It would be useful to con-
struct confidence intervals around each observed ip,m(R*) to reflect the uncertainty
in model ranking due to sampling variability. More research concerning the statis-
tical properties of UIF, and its potential usefulness as a model selection criterion in
SEM, is warranted.

Minimum description length. Another promising alternative to traditional fit
indices, MDL, has been developed in recent years in the information theoretic lit-
erature. MDL is a formalization of Kolmogorov complexity (Grünwald, 2000;
Rissanen, 1996), the shortest code length necessary to fully represent a data se-
quence in a given encoding language. Stochastic complexity, which is used in the
practical application of MDL, is analogous to Kolmogorov complexity but uses a
class of models rather than an encoding language as a basis for expressing FP. The
MDL principle reexpresses the generalizabilities of rival models as their relative
abilities to “compress”—or parsimoniously describe—observed data (Myung,
Navarro, & Pitt, 2006). The MDL criterion has been successfully used in many
model selection situations. For example, Myung et al. (2004) use an MDL criterion
to compare five models of category learning. Myung, Balasubramanian, and Pitt
(2000) and Pitt et al. (2002) showed that MDL outperformed other selection crite-
ria in distinguishing between data generated by two psychophysical laws differing
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only in functional form. Pitt et al. and Su, Myung, and Pitt (2005) show how MDL
can be used to investigate the generalizability of cognitive categorization models
and two information integration models. Several other applications of MDL are re-
ported by Hansen and Yu (2001).

OneexpressionforMDLis termedthenormalizedmaximumlikelihood (NML):

where f(·) is the maximum likelihood function. NML frames the FP component of
MDL (i.e., the integral in the denominator of Equation 4) as a normalized sum of
all maximum likelihood best fits (Rissanen, 2001b; the mean can be used instead
of the sum with no loss of generality). Preferable models are characterized by rela-
tively higher values of NML. The key advantage associated with NML over tradi-
tional selection criteria is that NML implicitly considers both parametric complex-
ity and structural complexity components of FP.

The relationship between the NML criterion and the graphical method pre-
sented in this article is worth noting. In numerical computation of NML, best-fit-
ting ML values are (implicitly) plotted against data for all possible data patterns
and numerical integration is used to find the area under the resulting surface. If a
researcher wished to simply rank several models in increasing order of FP, finding
the area is unnecessary; all that is required is the expected (mean) likelihood for
each model. The graphical method developed in this study using CDFs does ex-
actly that, and it can be viewed as an empirical analog to finding the expected best
fit using OLS rather than ML. Using ML, the mean minimum-fit likelihood will be
an estimate of the FP component of NML. It is likely that a rank ordering of models
using NML and another using mean RMSR would be similar or identical in most
modeling situations, although NML may be preferable in that it has a formal
grounding in information theory which the OLS approach lacks.

A more intuitive expression of the MDL principle is the Fisher information ap-
proximation (FIA) expression (Rissanen, 1996):

where |I(θ)| is the determinant of the Fisher information matrix of the parameters
in θ. FIA is an approximation to the negative logarithm of NML (preferable mod-
els are characterized by relatively smaller values of FIA), and thus FIA is expected
to rank models in the same order as NML. Note that the integration in Equation 5 is
taken over the parameter space rather than the data space, as in Equation 4. FIA ex-
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plicitly separates badness of fit (the first term), parametric complexity (the second
term), and structural complexity (the third term).

In the SEM context, it is significantly more difficult to obtain the integral used
in FIA than that used in NML. However, both integrals can be quite difficult to ob-
tain even numerically. In some modeling contexts NML can be computed directly,
with no need for data simulation (e.g., Hansen & Yu, 2001; Myung,
Balasubramanian, & Pitt, 2000; Su et al., 2005). Structural equation models, how-
ever, are typically highly parameterized, making direct analytic computation of
NML very difficult or intractable. Until a good analytic approximation can be
identified, calculation of an MDL index in the SEM context involves fitting a
model to a large number of random data sets, in which case FP is operationalized
as the mean obtained likelihood. Fortunately, a tractable approximation to FIA ex-
ists in the stochastic information complexity (SIC) criterion (Hansen & Yu, 2001;
Markon & Krueger, 2004; Rissanen, 1989):

No integration is necessary to compute SIC, although the researcher does need
access to the information matrix computed internally by most SEM software
applications.

Both the FIA and SIC expressions permit insight into how functional form can in-
fluence FP. As the redundancy (correlation) among parameters increases, |I(θ)| de-
creases. Consequently, models with relatively independent parameters will tend to
be lessparsimonious,whereasmodelspossessingparameterswithoverlappingroles
will tend to possess less FP, all things being equal. The FIA expression additionally
illustrates an interesting relationship between the MDL criterion and Bayesian
model selection. Asymptotically, FIA can be expressed as a rescaled Bayesian infor-
mation criterion (BIC) plus a term whose importance diminishes with increased
sample size, showing that BIC and MDL produce essentially the same ranking of
models at extremely large sample sizes (Myung et al., 2006).

Facilitating the use of NML in SEM software would permit routine comparison
of any number of models, nested or nonnested (Rissanen, 2001a), or evaluation
and comparison of nonlinear models (Myung & Pitt, 2004). In the meantime, re-
searchers can follow the general procedures outlined in this article—fitting models
to large numbers of random correlation matrices and examining CDFs of fit indi-
ces. Alternatively (or in addition), NML can be computed using the mean likeli-
hood obtained after fitting models to large quantities of random data, or approxi-
mated using the SIC expression in Equation 6.

Defining the Data Space

Defining the data space for computation of UIF and NML is not straightforward
(Meehl, 1990). Nevertheless, some general guidelines can be offered. First, the
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data space must be limited to those data patterns that are possible. In the SEM con-
text, the possible data space might consist of all Rs because no theory predicts data
resulting in a nonpositive definite dispersion matrix. Second, the data space can be
further refined or limited to those considered plausible (Roberts & Pashler, 2000),
given knowledge of the population to which the researcher intends to make infer-
ences or to generalize results. If two variables are experimentally manipulated so
that their correlation will always be very close to zero, for example, such a con-
straint can be built into the data generation procedure. In the present context, plau-
sible data consisted of positive-manifold Rs for the sake of illustration, but this
constraint could be further refined or relaxed as more knowledge is gained about
the kinds of data likely to occur in a given milieu.

A second question concerns how one should sample from the data space once
bounds have been established. I agree with other researchers (Dunn, 2000; Myung
et al., 2006; Myung & Pitt, 1998; Rissanen, 1989, 2001b) that the fairest way to
level the playing field for model selection is to sample from the data space uni-
formly, with no recourse to experience. This is equivalent to applying what is
sometimes call the principle of indifference. Another possibility is to favor some
regions of the data space over others, without completely ruling out any one por-
tion. In light of these conflicting views, it is not immediately obvious what should
constitute the appropriate data space in the SEM context, but judgments about rela-
tive FP may depend heavily on this choice. For example, Botha et al. (1988) used
three methods of generating random correlations and noted that UIF values were
sensitive to how the data were generated. Some auxiliary theories about how the
world works will necessarily be involved in these decisions, and these auxiliary
theories can be just as fallible as the theories under study. Future work on this prob-
lem is clearly warranted.

Other Factors Contributing to FP

Any factor influencing the antecedent probability that a model will fit well should
contribute to FP. Besides the number of free parameters and the specific functional
form associated with a model, there are at least four other factors contributing to
FP. These factors, which include restriction of parameter range, the probability dis-
tribution specified in the likelihood function, sample size, and some features of the
research design, are described in more detail by Pitt et al. (2002).10 Here I focused
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primarily on illustrating the roles of q and functional form in determining FP; the
impact of these other factors deserves more attention.

Some may wonder what specific aspects of functional form may contribute to
increased or decreased relative FP. There are a few clues that can be used to infor-
mally gauge a model’s relative FP. The number of free parameters is often the best
clue to relative FP. All else being equal, having more free parameters yields a
model with greater FP.

Second, it is important to note that every structural equation model is a system
of simultaneous equations for observed data. The more equations in which a given
free parameter appears, the more important that parameter is likely to be in permit-
ting the model to fit observed data. If the researcher can construct a model in which
all rival models are parametrically nested and then identify what parameters in that
model are constrained to produce each rival model, some insight may be gained
into the relative FP of each rival model. This idea, incidentally, explains the impor-
tance of implied zeroes; exogenous covariances tend to appear in more equations
than do other parameters. For example, both Models A and B in the introductory
example can be considered parametrically nested in a hypothetical Model C that
contains both parameters β2 and β3. Model A is obtained by constraining β3 to
zero. Model B is obtained by constraining β2 to zero. In our hypothetical Model C,
β3 appears in three simultaneous equations, whereas β2 appears in only two. Model
A may therefore be more parsimonious because a parameter with relatively greater
influence (β3) was constrained to obtain it.

In general, the more ways there are to trace connections between pairs of vari-
ables, the more FP a model is likely to possess. Clearly the number of free parame-
ters contributes to the number of ways in which pairs of variables are linked, but it
is important to consider which parameters are free. Freeing some otherwise fixed
parameters will achieve greater FP than will freeing other parameters, allowing a
model to fit a more diverse array of data patterns than a model with the same num-
ber of free parameters but with a different pattern of constraints. Because the addi-
tional FP granted by freeing a parameter depends on which parameter is freed, FP
is an important factor to consider even in the comparison of nested models. Ulti-
mately, however, it is the data-fitting capacity of each model that determines its FP,
so the most direct (if not the most practical) method of determining relative FP is to
fit the competing models to large amounts of random data.

Can a Model Have Too Much FP?

A natural question to ask at this point is whether a given model can have too much
FP. There are no clear benchmarks for making a judgment like this. Regardless of
its FP, a model’s purpose is to represent theoretical predictions, and theory may be
vague or specific. It is unclear what it would mean for a model to have too much FP
if it accurately reflects a complex theory. Fortunately, we need no such
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benchmarks in the context of model selection. All competing models may legiti-
mately possess high FP or high parsimony; what matters is each model’s
generalizability relative to rival models.

Sampling Variability and FP

An issue alluded to but not dwelt on is that of sampling variability. In addition to
addressing the importance of a model’s ability to constrain possible outcomes,
Roberts and Pashler (2000) also addressed how inattention to sampling variability
may hinder the process of model evaluation. When N is small, adjusted fit indi-
ces—and thus the ranking of models in terms of generalizability—may show con-
siderable variability across repeated sampling. This uncertainty in ranking clearly
poses a problem for model selection. When N is large, however, it is reasonable to
expect rankings to remain relatively stable, permitting greater confidence in model
selection. A possible solution to this problem is to derive confidence intervals for
adjusted fit indices (e.g., UIF or MDL) to reflect uncertainty due to sampling.

Limitations

Although I believe the inferences drawn from the example illustrations to be valid
and generally applicable, there were some features of the strategy that might limit
their generality.

Random dispersion matrices. I generated correlation matrices in which all el-
ements were nonnegative. This restriction is acknowledged to be unrealistic in
some situations and may have consequences in situations where negative correla-
tions are a real possibility. In addition, correlation matrices serve well enough for
illustrative purposes, but in practice many situations will require random
covariance matrices. Covariance matrices retain information about scale; any
models not invariant to changes in scale (e.g., latent growth curve models and
models simultaneously applied to multiple samples) should be fit to covariance
matrices, not correlation matrices (Cudeck, 1989). Future research should be de-
voted to the generation of random covariance matrices so that relative FP may be
accurately quantified for such models.

Focus on OLS estimation. I have emphasized OLS estimation to the exclu-
sion of other common estimation methods. OLS was chosen because it proved to
be more computationally robust than ML in preliminary simulations, is less prone
to breaking down when confronted with near-singular correlation matrices
(Browne, MacCallum, Kim, Andersen, & Glaser, 2002), and may be more appro-
priate than ML in many modeling contexts, given assumptions about the nature of
error imposed by ML (Briggs & MacCallum, 2003). I acknowledge that ML esti-
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mation is used far more often than OLS in practice, but there is no reason to believe
that the pattern of results would be substantially altered by use of different discrep-
ancy functions.

Nonconvergence and improper solutions. For the demonstrations in this arti-
cle, all solutions were retained for the construction of CDF plots, regardless of
whether the minimization procedure fully converged. The frequency of
nonconvergent solutions was quite small or zero for most models (.17% for Model
2B, .10% for Keyes et al.’s, 2002, Model 6, and 0% for all other models), and CDFs
of RMSR looked highly similar regardless of whether nonconvergent solutions
were included. When the minimization procedure failed to converge, estimation
was ceased after a uniformly large number of iterations (2,000) and the value of the
discrepancy function at the final iteration was used to compute RMSR. In practice,
it is likely that there are many models for which the number of nonconvergent solu-
tions becomes excessive. It is recommended that all solutions, convergent or
nonconvergent, should be used because (a) the data could conceivably be obtained
in practice and (b) the obtained discrepancy still has a legitimate interpretation.

As with nonconvergence, models fit to random data can be expected to occa-
sionally result in parameter estimates lying outside logical bounds (e.g., variances
less than zero or covariances implying absolute correlations greater than 1.0).
Some research suggests that inadmissibility may pose a problem for interpretation
of parameter estimates, but makes little difference in terms of model fit
(Boomsma, 1985; Ding, Velicer, & Harlow, 1995; Gerbing & Anderson, 1987). All
solutions in this study contained parameter estimates inside the permissible pa-
rameter space because RAMONA places boundary constraints on all parameters
by default. Different software packages handle nonconvergence and improper so-
lutions differently. Future research could be fruitfully devoted to investigating the
consequences of dealing with nonconvergence and improper solutions in various
ways for the evaluation of FP in SEM.

CONCLUSION

The primary motivation behind this article has been to introduce a more thorough
understanding of FP to research psychologists using SEM. I emphasize that this
work is intended to represent only a first step. It would be overly ambitious to both
introduce the problems presented by FP and attempt to fully resolve all of them,
within one article. I hope this exploration will provide significant steps toward the
development of a new outlook on model evaluation and selection in SEM. One
general strategy is to compute separate indices of FP and fit (unadjusted for FP)
and to consider these two dimensions of generalizability separately. Alternatively,
it may be more beneficial to combine measures of FP with measures of fit, as is
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done in information theoretic criteria such as FIA. Whether FP should be evaluated
separately from goodness of fit or incorporated as an adjustment factor is a ques-
tion for future research to decide.

A secondary purpose of this article was to encourage the adoption of a model
selection approach to conducting SEM. I advocate this approach for two reasons.
First, it is highly unlikely that any model devised by mortal scientists is completely
correct in all of its particulars, so the best we can expect from a model is that it
serve as a useful approximation to the data-generating process (MacCallum,
2003). In practical terms, this idea translates to identifying the model that shows
the best generalizability. Second, evaluation of models in isolation is prone to con-
firmation bias. One way to circumvent this bias is to pit competing explanations
against one another. Model selection, the practice of evaluating theory-implied
models relative to one another rather than to a fixed criterion, is consistent with the
fundamental scientific pursuit of strong inference (Platt, 1964) and is to be
strongly encouraged. This emphasis on model selection as more relevant to the aim
of science than model evaluation is consistent with current thought in the philoso-
phy of science (Lakatos, 1970; Meehl, 1990).

The good fit of a hypothesized model to observed data, although desirable, can
result from the model’s inherent ability to predict data patterns and may have little
to do with its value as a scientific tool. Cherished models may have to be aban-
doned or replaced if their past successes can be ascribed more to FP than to any in-
sight they lend into the process that actually generated the data. Adopting a model
selection perspective and explicitly considering FP can help researchers avoid
these problems.
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APPENDIX
The MCMC Algorithm

The MCMC algorithm begins by choosing a starting matrix which conforms to the
definition of R. For convenience, this starting matrix was defined as a square, sym-
metric matrix with 1s on the diagonal and .5s elsewhere. The only other require-
ment for a successful starting matrix is that it be positive definite or nearly positive
definite. Thus, starting matrices could be chosen to have .9999s, 0s, or empirically
derived correlations in every subdiagonal element with no detrimental conse-
quences. All of these possibilities were tested, all with successful results. At each
iteration, the algorithm takes the current matrix and perturbs its off-diagonal ele-
ments, retaining symmetry. The resulting matrix is checked for conformity to the
definition of R. If it does not conform, the matrix is discarded and another is gener-
ated; the previous matrix (which always conforms) is used again as a starting point.
If the new matrix conforms to retention criteria, it is retained and is chosen as the
starting point for the succeeding iteration, and so on. In the future, if matrices other
than correlation matrices are desired, additional retention criteria related to vari-
able scale will also be necessary.

Formally, the Metropolis-Hastings MCMC algorithm was used (Beichl &
Sullivan, 2000; Gilks et al., 1996). Let the ½p(p – 1) × 1 vector Xt+1 contain the
subdiagonal elements of a matrix (state) at time t + 1. State Xt+1 is derived from the
current state Xt by sampling from a proposal distribution, which in this case is:

where z = ½p(p – 1), u ~ U(0,1), wi ~ N(0,1), i = 1…z, = length of w, and j =
jump size (multiplier less than 1.0). This proposal distribution function in Equa-
tion A1 generates j-scaled points on the uniform hypersphere, but the proposal dis-
tribution can have virtually any form. The shape of the proposal distribution affects
efficiency (the proportion of matrices meeting retention criteria) but leaves the tar-
get distribution unchanged. However, the form of the function, within reasonable
limits, makes little difference in terms of the ultimate result. Jump size (j) is a con-
stant which affects the degree to which Xt+1 differs from Xt. At the extremes, j = 0
would result in the same matrix being produced at every step, and a j that is too
large will yield results practically equivalent to those generated by the UCM
method, with the same lack of speed. The latter choice would constitute an inde-
pendence sampler, the special case of the Metropolis-Hastings algorithm in which
the candidate distribution does not depend on previous Xts.

After a sufficient number of iterations (burn-in), the distribution of retained
matrices approximates the target distribution of correlation matrices. However,
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because there is dependency between each matrix and all matrices preceding it
(more dependency results from smaller jump sizes), it is not always desirable to re-
tain every matrix. Instead, matrices are selected and retained at regular iteration in-
tervals. This thinning number should be large to eliminate any measurable sequen-
tial dependency, but not so large as to compromise efficiency. In the current
application, the thinning number is the same as the burn-in, specifically 50 both
for the 6 × 6 matrices used in Examples 1 and 2 and for the 9 × 9 matrices used in
Example 3. If the number of matrices retained is large, virtually any burn-in and
thinning number will be adequate. As long as the acceptance rate is relatively high,
the thinning number need not be large.

The portion of the multidimensional space through which the MCMC algo-
rithm searches is restricted to the region most likely to yield correlation matrices.
As matrix order increases, the ratio of the number of unacceptable matrices to ac-
ceptable matrices increases exponentially, accounting for the inefficiency of UCM
at orders higher than 7 or so. The MCMC algorithm is still subject to decreasing
speed and efficiency with increasing order, but to a far lesser degree than the
method proposed by Botha et al. (1988). Full details regarding the MCMC data
generation method employed can be found in Preacher (2003).
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