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Texture Analysis of SAR Sea Ice Imagery
Using Gray Level Co-Occurrence Matrices
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Abstract—This paper presents a preliminary study for mapping be defined: the quantization levels of the image and the
sea ice patterns (texture) with 100-m ERS-1 synthetic aperture displacement and orientation values of the measurements.
radar (SAR) imagery. We used gray-level co-occurrence ma- \ye performed a set of experiments in which we systemati-
trices (GLCM) to quantitatively evaluate textural parameters . . .
and representations and to determine which parameter values cally varied these parameters and StUd'e_d how the variations
and representations are best for mapping sea ice texture. We affected GLCM standard texture descriptors for SAR sea
conducted experiments on the quantization levels of the image ice images. From these experiments, we concluded which
and the displacement and orientation values of the GLCM by quantization levels and displacement and orientation values
examining the effects textural descriptors such as entropy have in are best for representing sea ice texture in SAR. We developed

the representation of different sea ice textures. We showed that a . . .
complete gray-level representation of the image is not necessaryand evaluated three different implementations of GLCM, the

for texture mapping, an eight-level quantization representation mean displacement and mean orientation (MDMO) matrix,
is undesirable for textural representation, and the displacement the y?-optimal displacement and mean orientation (ODMO)
factor in texture measurements is more important than orien- matrix, and they2-optimal displacement ang?-optimal ori-
tation. In addition, we developed three GLCM implementations gntation (ODOO) matrix. The implementations were evaluated
and evaluated them by a supervised Bayesian classifier on sea ice h o .

textural contexts. This experiment concludes that the best GLCM as to their ability to sepe}rate between sea ice texture contexts.
implementation in representing sea ice texture is one that utilizes Based on these experiments, we concluded which texture
a range of displacement values such that both microtextures matrix representation is best at separating sea ice texture types
and macrotextures of sea ice can be adequately captured. Thesein SAR imagery.

findings define the quantization, displacement, and orientation e gpjjity to represent sea ice texture contexts well, i.e., in
values that are the best for SAR sea ice texture analysis using - .
GLCM. a way that allows classification and separation of the contexts,
is extremely significant in sea ice analysis, classification, and
description. Statistical texture analysis is important in SAR sea
ice imagery research since it allows better representation and
|. INTRODUCTION segmentation of sea ice regions, compared to analysis based on
. intrinsic gray levels only. It has been shown that the inclusion
N THIS paper, we present a set of experiments on tex; : : o
. .._of texture as a descriptor can improve the classification of
tural parameters and representations and a quantitative

evaluation of these experiments, which shows which texturale ‘Co and the description of sea ice deformations [38], [56],

. @SI] Some work has attempted to identify which textural
parameter values and texture representations are best fo

o . . . measurements provide better descriptors for sea ice [65],
describing sea ice in synthetic aperture radar (SAR) |mage% . . .
t no work has provided a comprehensive experiment of

We selected seven different sea ice textural contexts, i.e., 5 . : ;
extural parameters and representations with an evaluation of

Ice texture types, and_ u_s_ed t_hem as our test s_et. Thes_e_ tex%rg quality of the representation based on quantifiable metrics.
contexts have no definitive, intrinsic geophysical Slgnlflcan(igur work is the first one to evaluate all possible textural rep-

and were so selected because they wesaally separable by resentation parameters and to make specific recommendations

a human, without being too different as to make the separatio . . : .
L - h a1Bout the representation of sea ice texture in SAR imagery.
trivial. We computed the texture matrix representations O

these sample contexts and used a supervised Bayesian clas-
sifier to evaluate how well the texture matrices could describe
and recognize the textural contexts. The definition of GLCM'’s is as follows [35] SUppOSG an
The texture matrix used was the gray-level co-occurrentfdage to be analyzed is rectangular and hés columns
matrix (GLCM). In designing the GLCM for texture repre-and N, rows. Suppose that the gray level appearing at each
sentation, there are three fundamental parameters that nixel is quantized taN, levels. LetL, = {1, 2, .-+, N}

be the columns,L, = {1,2,---N,} be the rows, and
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specified by the matrix of relative frequencié}; with two 6) Autocorrelation:
neighboring pixels separated by distandeoccur on the ..
image, one with gray level and the other with gray level Jo = Z Z t
4. Such matrices of gray-level co-occurrence frequencies are
a function of the angular relationship and distance between7) Dissimilarity:
the neighboring pixels. Formally, for angles quantized t® 45 . ..
intervals, the unnormalized frequencies are defined as shown fr= Z Z [i=dl-p( g
in the equations at the bottom of hte page whgrelenotes
the number of elements in the set. 8) Cluster Shade:
We used ten textural features in our study. The following o L 3 /.
equations define these features. h@t ;) be the(i, j)th entry fo=22 2 (45 = o= ) plis g).
in a normalized GLCM. The mean and standard deviations for

the rows and columns of the matrix are 9) Cluster Prominence:
i g i g i g
=3 (i ) - pl, 5), 10) Maximum Probability:

fio = MZA]X plt, J).

= Z Z(j — 1y)* - p(3, ).

The features are as follows.

= Z Z p(i, §)%

1) Energy:

2) Contrast:
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=2

n=0

3) Correlation:

IE
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%

|L—J|_”}

J) = ity
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4) Homogeneity:

f4_zzl+

5) Entropy:
f5

2pLJ)

_Z Z p(i, 7) log(p(i, 7)).
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Note that energy is also popularly known as angular second
moment [30]. The two cluster parameters were introduced
in [19] to emulate human perceptual behavior. Maximum
probability was discussed in [34]. Energy, contrast, correlation,
homogeneity, entropy, autocorrelation, and dissimilarity were
formulated in [35].

Zucker and Terzopoulos [70] proposed an algorithm for
selecting GLCM for texture classification using )& test.
The notion of the structure capturable by GLCM is related
to the confidence regarding the variahlggiven the variable
y, and vice versa. The null hypothesis of the test that these
two variables are independent is in the form of

Ho: p(i, ) = p(i, o)p(o, ),  i=1,---, N,

wherep(z, o) is the probability corresponding to thigh row
andp(o, j) is the probability corresponding to thiéh column.
From the derivation presented in [70], the authors arrived at a
computationally efficient expression for the test

g

Ny . . Ny ..
wherer; = > 2.7 p(i, j), ¢; = ;% p(i, ), and N =
zfgl Ef:l p(i, 7). The optimal matrix is the matrix that

P(i, 4, 0°) =#{((k, 1), (m, n)) € (Ly X Ly) X (Ly X Lg)|k—m =0, [l —n| =d,I(k, 1) =4, I(m,n) = j}
P(i, §, 45°) =#{((k, 1), (m, n)) € (Ly x L) x (Ly X Ly)|[(k —m=d,l —n=—d) or
(k—m=—-d,l—-n=d),I(k,) =1, I{(m, n) = j}
P(i, j,d,90°) =#{({(k, D), (m, n)) € (Ly X Ly) x (Ly x L){lk —m|=d,l—n=0,I(k, 1) =, I{(m,n) = j}

P(i, §, 135°) =#{((k, 1), (m, n)) € (Ly x L) x (Ly X Ly)|(k —m=d,l—n=4d) or
(k—m=—-d,l—n=-d),I(k,1)=4, I(m,n)=j}
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yields the highest value of%. As a result, we can determine g
the displacement and orientation parameters for a certai
texture class by simply examining the optimal GLCM. The
authors applied thg? test on several Brodatz [9] patterns. It
was observed that for values of displacement and orientatio
that captured texture structure well, the correspondifg
values were high, supporting the validity of the test. As we
have mentioned, we used this test in our experiments.

A. Applications

Haralick et al. [35] illustrated the applications of textural §
features based on GLCM on three different kinds of im- [
age data: photomicrographs of different kinds of sandstone
[60], panchromatic aerial photographs of land-use categorie: g
and earth resources technology satellite (ERTS) multispectr.
imagery containing land-used categories. Krugeral. [45] :
employed GLCM to capture visual texture-context informa-
tion in an interrib space of X-ray imagery. Chien and Fu
[13] computed the average and variance of five augmente
GLCM textural features to identify texture changes of X-ray
pictures to detect venus hypertension in lung field. Datis o o .
a. [21] used generalized GLCM to impose spaial constrainfS. 1. 1202 o nesty mulear e vy eayy g and cefrmator
Shanmugaret al. [61] used segments of digitally correlated
SEASAT-A SAR imagery in their attempt to classify radar i ) i
images based on GLCM textural features. Conrral. [19] used GLCM to design an adaptive speckle-removal filter and
used texture to segment a high-resolution black and whfig €dge detector.
image of an urban area. Gotlieb and Kreyszig [31] derived a
general model for analysis and interpretation of experimental 1.
results in texture analysis when raw and composite texturalWe analyzed over 2000 ERS-1 SAR low-resolution images
features were used. Barber and LeDrew [5] reported univariatethe Bering, the Beaufort, and the Chukchi seas for every
and multivariate analyses in describing the separability of SARonth of the year and compiled seven classes of SAR sea ice
sea ice feature space based on GLCM, tested on a STAReftural contexts based on human visual inspection. Note that
SAR image. Sali and Wolfson [59] used a clustering algoriththese seven types of textural contexts do not fully describe all
based on a generalized Lloyd algorithm and an iterati®AR sea ice imagery, and they certainly do not correspond
region merging process based on the phagocytes heuristispecifically to all ice types. These classes were selected so
classify SPOT satellite images using GLCM-based texturddat we could compare different implementations of GLCM
features. Kushwahet al. [47] used GLCM to classify IRS in terms of their classification power and demonstrate the
LISS-1I sensor data on forest analysis in northeastern Indfaasibility of GLCM-based textural contexts in differentiating
Franklin and Peddle [26] improved classification of SPOSea ice imagery.

HRV imagery for a moderate-relief environment in eastern Class 1—Web:Fig. 1 shows an image taken on
Canada from 51.1 (spectral alone) to 86.7% (spectral dafkarch 27, 1992, at 73.466N and 156.19 E. The image
plus GLCM features). The authors also conducted textucensists of mostly multiyear ice with heavy ridging and
analysis of land systems from Landsat MSS data [25]. Baraligformation. The web-like structure that these ridges or
and Parmiggiani [3] used GLCM to classify SPOT urbadeformations build with each other characterizes this type
areas. Chen and Pavlidis [11] combined a GLCM and a spldf images.

and-merge algorithm to segment images in a multiresolutionClass 2—3-D: Fig. 2 shows an image taken on February
approach. Trivediet al. [66] presented a module that was7, 1993, at 58.54 N and 163.63 W. The image consists of
able to detect fixed orientation objects from a wide varietyrushing floes creating extreme deformations in the marginal
of backgrounds. They used a supervised parametric methoel zone (MIZ). Boundaries of floes have been roughened such
based on &? distribution to guide a forward sequential searcthat they give high backscatter return. These thick enclosing
algorithm in the object detection phase. Kovalev and Petrstructures portray a three-dimensional (3-D) perceptual effect
[44] used multidimensional GLCM to perform classificationthat characterizes this type of image.

of various images of CT brain scans, several types of mi-Class 3—Fractal: Fig. 3 shows an image taken on Septem-
croscope images, and photographs of signatures. Haddon bed8, 1993, at 77.35N and 145.79 W. The image consists
Boyce [32], [33] proposed one interesting application of caf mostly new ice and melt ponds. This phenomenon occurs
occurrence matrices in which the matrices were used to detattthe end of the summer melt season when ice floes have
edges and estimate optic flow field. Beaucheratnal. [6] been broken up, brushed, and rubbled. Boundaries of floes

SAR SEA ICE IMAGERY AND TEXTURAL CONTEXTS
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Fig. 2. Image of crushing floes with extreme deformations at MIZ, categéig. 4. Image of thawing multiyear (small circular structures) and first-year
rized as 3-D. Each sample site is 6464, or 40.96 km. 0 ESA. ice, categorized as pebble-like. Each sample site ix684, or 40.96 krA.
0O ESA.

Fig. 3. Image of mostly new ice and melt ponds, categorized as fractal. Eacn
sample site is 64< 64, or 40.96 k. 0 ESA. Fig. 5. Image of highly undeformed ice features, categorized as smooth.
Each sample site is 6% 64, or 40.96 kri. 0 ESA.

look foamy and wiggly fractal, and it is this property that

characterizes this type of images. Class 5—SmoothFig. 5 shows an image taken on Febru-
Class 4—Pebble-LikeFig. 4 shows an image taken on Julyary 1, 1994 at 72.06 N and 176.39 W. This image shows

12, 1993, at 72.26N and 160.47 W, showing the start of very smooth multiyear and first-year ice with bright refrozen

the summer melt season. Multiyear ice can be seen as litdads cutting across the region. As we can see, dark patches

round features; younger ice as quite homogeneous but gra{pyobably multiyear) and bright sheets (probably young ice)

patches. Pebbles of ice floes are embedded in about-to-naeé extremely homogeneous and uniform. These are considered

younger ice formations. The pebbles characterize this typeasf highly undeformed ice features, characterizing this type of

images. images.
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Fig. 6. Image of regions with substantial size and of two highly contrastirfigd- 7. Image of slightly ridged but mostly undeformed multiyear ice, and

intensities, categorized as high-contrast. Each sample site iz &, or With good three-class separation (MY, FY, and OW/NI), categorized as
40.96 knt. O ESA. packed. Each sample site is 6464, or 40.96 k. 0 ESA.

Class 6—High ContrastFig. 6 shows an image taken on The approach of our experiment is as follows. For quanti-
November 17, 1993, at 72.2'N and 154.75 W. This image zation, we compute a set of quantized images of each sample
shows on the one hand large dark multiyear ice floes and on #ig. Then, a second-order Euclidean distance measure between
other hand, large refrozen young first-year ice and thin pancad@ch successive pair of the quantized images is computed
ice. This combination of phenomena tells us that the floes hbdsed on the second-order statistics of GLCM of the quantized
been mobile to create water lodgings and stationary enough fimages. The visual observation of the measurements serves as
pancake or young ice to form. These regions with substantibk basis for our conclusions regarding the quantization factors.
size and of two highly contrasting intensities characterize tHi®r displacement, once again, we compute a set of quantized
type of images. images of each sample site. Then we compute various second-

Class 7—PackedFig. 7 shows an image taken on Marclorder GLCM statistics of the quantized images using a set of
17, 1992, at 72.85N and 143.83 W. This image shows a displacement values. We visually inspect the curves generated
piece of packed multiyear ice broken by large leads. Thebg plotting the statistics against the displacement values for
are refrozen leads developing in some areas, and open wateh sample site and draw conclusions from the observation.
regions are rare. These multiyear ice conglomerates are slighigally, for orientation, we design three implementations of
ridged but mostly undeformed. This context is frequentlgLCM and by comparing the classification powers of the
observed around high latitude regions or in the middle peria#sign, we are able to draw some conclusions regarding the
of winter since floes are frozen and relatively immobile.  orientation factors for sea ice textural contexts.

IV. QUANTIZATION, DISPLACEMENT, A. Quantization

AND ORIENTATION FACTORS ON GLCM The number of gray levels is an important factor in the
There are several important parameters to consider whesmputation of GLCM. The decision that we have to make
designing a GLCM, as follows: 1) the region size, 2) this how many levels are needed to represent a set of textures
quantization levelsy,, 3) the displacement valug and 4) the successfully. The more levels included in the computation,
orientation valuef. The region size gives the dimensions othe more accurate the extracted textural information, with,
the region of which GLCM is computed. In Haverkarapal. of course, a subsequent increase in computation costs since
[36], the region sizes of 3% 32 and 64x 64 were used to the quantization scheme smoothes an image and thus reduces
perform dynamic local thresholding on SAR sea ice imagenpise-induced effects to some degree. We assume that the
successfully. In order to capture sea ice textural contexts, wormation gain in noise-effect reduction does not compensate
prefer the larger region size and set it to §464 during our the loss of information as a result of quantization. There are
experiments with GLCM. In the following, we will examinethree major quantization schemes: 1) uniform quantization, 2)
the quantization and displacement factors directly and tkBaussian quantization, and 3) equal probability quantization.
orientation factor indirectly in Section V. The uniform quantization scheme is the simplest, in which
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gray levels are quantized into separate bins with uniforthe degree of dissimilarity between two samples varies with
tolerance limits or spaces with no regard to the gray-leville number of quantization levels.

distribution of the image. This technique is not always prefer- The second measure is the neighbored second-order autod-
able. For example, if a range of gray levels occurs moikerentiation

frequently than others, we might desire to finely quantize

M M
] . . . 2
that particular range. The Gaussian quantization technique  pkk — = E E :|Dk. — Dk
. . - ¥ g, N g+, m,
is one such scheme. According to this scheme, the gray- b M el el b DI
level distribution of the original image is assumed to behave i=1---6 and j=1---5.

normally. Each quantization bin has the same area under the

curve and thus different space smaller spaces in the middleTéis value measures the average absolute difference between
the distribution and larger spaces at the tails of the distributidhe normalized first-order differentiation between two neigh-
The equal probability quantization [35] scheme has also bel@ing quantized schemes, taken over all sample pairs of
used such that each bin has a similar probability, and it hB¥ same image. This matrix tells us whether there exists
been shown to retain an accurate representation of the origifiadystematic relationship between two neighboring quantized
picture in terms of textural features based on GLCM [17fchemes.

The Gaussian quantization scheme assumes a Gaussian gra-{}he third measure is the biased second-order autodifferen-
level distribution, which is not always true for SAR sea ic&ation

imagery. Equal probability quantization normalizes different 9 M M

image samples so that a bright feature and a dark feature, given Bf’; =1 Z Z |D§f mon Df 6, m,nl

the same texture, would have the same co-occurrence matrix, m=1 n=1

which is undesirable since the backscatter of sea ice types is i=1---6 and j=1---5.

a key parameter in sea ice analysis. Thus, in our experime_Ht],. | th bsolute diff bet
we have focused on the uniform gquantization scheme. IS value measures the average absolute diterence ,’e ween
the normalized first-order differentiation between2&t-

We extracted sample sites, each 464, from 18 images tizati d the 256 tizati th inal i
with different textural contexts in this experiment. We devisegiantization and the —qua‘n ization (or the original image,
our case) scheme, wherg = 1.-.5, taken over all

a test using six textural features (energy, contrast, correlation, | : £ th ) Thi trix tell hich
entropy, autocorrelation, and homogeneity) and six differeR " P:¢ PaIrs of e same image. This matrix telis us whic
uniform quantization schemes: 8, 16, 32, 64, 128, and 2ggantlzatlon scheme best imitates the result of 256-level

. . : antization scheme.
levels. We set displacement to one and orientations to 0, %The fourth measure is the neighbored second-order cross
90, and 135. Taking the average of the orientations for eacgi 9

image sample yields a § 6 matrix. Each entry of this textural fierentiation

vector is defined a$/ ; ,,, where: = 1---6, j = 1---6, . 9 M XN N .
andm = 1---M. ¢ is the index of the textural featureg, Ny ~MN Z Z 1D3 . myn = Di, j1,mynls
is the index of the quantization schemes (such that scheme m=1 n=1

j has22+i = 4.2/ quantization levels), aneh denotes the i=1---6,j=1---5 and k#l

site label {4 = total number of sample sites). The differen e that v is the total number of sample sites in the image
values of the quantization are evaluated by five measures ba\%ﬂ the labell. This value measures the average absolute
on Euclidean distance along each textural feature betw%ﬁﬂerence between the normalized first-order differentiation

each parr of .sample' sites. Note that .the ObJe‘?“Ve Of_ ttE)%tween two neighboring quantization schemes, taken over all
following Euclidean distance measures is to provide a vis mple pairs of two different images

presentation of the trend between the differences between eacﬁahe fifth measure is the biased second-order cross differ-
successive pair of quantization schemes. These measures WK tion

designed to capture such differences without assuming the .

distribution or any prior knowledge of the samples. Therefore, BH. _ 2 i zj\: D D |

statistical distance measures (that are also computationally ~%J4 — AfnN i gym,n T 6,mnls

more complicated), such as Mahalanobis [51], Kolmogorov
[1], Bhattacharyya [7], Bayesian distance [8], Chernoff [12],

Matsusita [52], and divergence [40], [46], and those utilizethis value measures the average absolute difference between
in pattern recognition [50], [57], have not been used in o@ke normalized first-order differentiation between 2&-

m=1 n=1

i=1--6,j=1---5 and k#L

experiment. guantization and the 256-quantization (or the original image,
The first measure is the normalized first-order differentiatigi our case) scheme, wheje=1-- - 5, taken over all sample
N Viijiwm = Viijin . . pairs of two different images.
i) m,mn = V—’ kis the image label. Fig. 8 shows one graphical example of the normalized first-
2,9, M

order differentiation matrix. Note that this graph shows the
This value measures the normalized difference between tdifferences between two sample sites in terms of six textural
sample sites from the same image in terms of a particul@atures when the sites are quantized with eight levels, 16
textural feature. The collective results for each sample pairlevels, and so on, up to 256 levels (the original). We can see
a 6 x 6 matrix. Observing this matrix gives us an idea howhat for the eight-level quantization scheme, the differentiation
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1st Order Differentiation
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Fig. 8. Example of the first-order differentiation of textural feature measure
ments versus quantization schemes. There is no noticeable trend of how deg
of similarity between two samples varies with the number of quantizatior
levels. Note: quantization scheme 1 denotes eight-level quantization; 2 deno
16-level, and so on. Filled triangle: entropy, filled square: autocorrelation
filled diamond: contrast, filled circle: correlation, square: homogeneity, an
triangle: energy.

0.001 0.001

i X Quantization Quantization Quantization

values are noticeably different from others. Also, we can see

that, for other quantization levels, the differences between

the two sample sites are very similar. This hints that if our @) (®) ©

objective is to distinguish between two sea ice contexts, tﬁ@-ﬁb Egample gf (g) neighbogifd Second-OY(defhautodiﬁerentiatior)h (b)OI

g . - eighbored second-order cross differentiation (within same context), an

number of quantization levels (eXC|Ud'ng EIth) do not matt €) neighbored second-order cross differentiation (with different contexts).

To analyze whether the textures can be used to represent §B@iots are in log scale. Difference between two neighboring feature

ice contexts, we turn to second-order differentiation value®easurements is generally smaller as the number of quantization levels
: ; _Arl ases. Note: gquantization scheme 1 denotes eight-level quantization; 2

F_Ig' 9 shO\_NS some Elj(ampleskl()f our ne_lghbored second Or@ériites 16-level, and so on. Graphs show energy (filled square), contrast

differentiation: (a)Niyj, (b) NiJ where images; and ! are (square), autocorrelation (filed diamond), and homogeneity (diamond).

of the same context, and (d)fjjg' where images: and m

are of different contexts. Note that only four textural featuredoes not, if used in characterizing and recognizing sea ice

are shown so the scale of the texture value can be displayehtexts.

adequately for view. Generally, the distance between featuresSeveral conclusions have been drawn from the experiments,

of two neighboring quantization schemes decreases as masefollows.

quantization levels are involvedt% < N}%_, for all j > 1. 1) There is no noticeable trend to indicate that the degree
This indicates that, if we assume the original image to be  of dissimilarity between two samples varies with the
accurate, information loss to quantization is gradual: more  number of quantization levels. But there are noticeable
when the number of quantization levels is smaller and vice differences’ more random than Systematic_

versa. From another perspective, if we choose a high enougfp) There is a noticeable trend that shows diminishing
number of quantization levels, we will be able to preserve  ifference when comparing results of a pair of larger
enough information found in the image. In addition, we  numbers of quantization levels. This indicates that the
observe that such distance is the smallest for the samples G|LcM-based results are more consistent when using
from the same image and H;e Iarge}gt for two sam’t)’ies from 3 higher number of quantization levels. This disagrees
different textural contextsV;y < Ny < N, |N;S = with the findings of [53]. The probable cause of this
NF| < N}, — N}P|. This indicates that not only GLCM disagreement lies at the number of quantization levels
can recognize different contexts, whether they are from the  analyzed: in [53], the authors usemhly the 16- and
same or different images, but it can do it for a different  32-level quantization schemes and found their textural
number of quantization levels. Fig. 10 shows some examples features to be similar; and we compared quantization

of biased second-order differentiation measuresﬂj%(), (b) levels to the original image.

Bf;lj where imagesk and [ are of the same context, and 3) Degree of dissimilarity is the smallest when the samples
(c) Bi’j’y where imagesk and m are of different contexts, are of the same image, small when the samples are of
respectively. Generally, we can derive similar observations, as two images of the same context, and the largest when
discussed in the neighbored ca’s;i‘-;’} < Bjj’;i_l, forall j > 1, the samples are of two images of different contexts. This
BI*% < BF. < BF7,|BF — B < |BF — BF?|. So, indicates that the GLCM can be utilized to differen-

while the representative power of the GLCM deteriorates with  tiate two different contexts and recognize two similar
increased quantization, the discriminative power of GLCM contexts.
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Normalized Energy v. Quantization

10 10 10
7 77 8levels
T 16 levels
]
1 [ 1 = ©00 32 levels
2 3 4 5 2 3 4 5 g 0.5 1
¥ - 64 levels
o4
- ~ 7 128 levels
0.3
o ot ot — 7 256 levels
’ L ) 0.2 + s ]
E 0.1
O b A e b
- e A ad A2 ~ o @ w0 (o)) N w3 [+] —
0.01 001 0.1 ToroTom 8o e

displacement (d)

Fig. 11. Graph of an example of normalized energy for all displacement
curves across all guantization schemes.
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Normalized Contrast v. Quantization
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Fig. 10. Example of (a) biased second-order autodifferentiation, (b) biased o.s o
second-order cross differentiation (within same context), and (c) biased 8 levels
second-order cross differentiation (with different contexts). All plots are in log ~ ©-7
scale. Second-order differentiation values between other feature measurements. | /1 TT777 186 levels
and those of 256-level quantization is generally smaller as the number of 32 levels
quantization levels increases. Note: quantization scheme 1 denotes eight-levgl 4 5 |
guantization; 2 denotes 16-level, and so on. Graphs show energy (fiIIecg; — - 64 levels
square), contrast (square), autocorrelation (filled diamond), and homogeneity 0.4 -
(diamond). | 128 levels
0.3
7 256 levels
4) As expected, as the number of quantization levels in- %27 T
creases, features imitate those of the original quantiza- o.1
tion more closely. This trend is clearly noticeable forall |, ., ori
sample pairs. -+ ~o oo o 9na -
5) The eight-level quantization scheme is consistently and displacement (d)
nOtlceably different from other schemes. Thus, it Shoqu. 12. Graph of an example of normalized contrast for all displacement
not be used. curves across all quantization schemes.
B. Displacement it was half the region size of each sample. To better compare

The displacement parametér is important in the com- the texture values across different quantization schemes, we
putation of GLCM. Applying a large displacement value tmormalized each series by dividing it by its maximum value.
a fine texture would yield a co-occurrence matrix that doé€sgs. 11-18 show the graphs of normalized texture values
not capture the textural information, and vice versa. Chemrsus quantization schemes. In general, we can see that
et al. [10] usedd = 1, 2, 4, 8, 16, 32, 64 and found that across different quantization schemes, displacement curves
overall classification accuracies witth = 1, 2,4, 8 were preserve nicely. In particular, for contrast and dissimilarity, all
essentially equivalent in differentiating cloud types. Howevedjsplacement curves, after normalization, are almost identical.
for higher displacement values, the authors found that tidis indicates that quantization does not affect the two textural
classification accuracies decreased. They also concluded features. For energy, correlation, homogeneity, entropy, and
the classification result was best when using features frautocorrelation, the behaviors of the curves are similar in terms
matrices ofd = 1, 2. This indicates that single-displacemenbf locations of upward and downward slopes along the curves.
features might not be sufficient to represent textures. AnothiEne differences are in the degree of these slopes, which are
study [22] showed that a displacement value equal to the sp®bably caused by reduced resolutions in the reduction of
of the texture element would tend to improve the classificati@uantization levels. This indicates that, although the loss of
result with texture features. For our experiment, we uséaformation is visible, the inherent structures of relationships
d=1,2,---,32. We used 32 as our upper limit of range aamong pixels for these textural features are still intact and
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Normalized Correlation v. Quantization
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Normalized AutoCorrelation v. Quantization
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Fig. 13. Graph of an example of normalized correlation for all displacemehtg. 15. Graph of an example of normalized entropy for all displacement
curves across all gquantization schemes.

curves across all quantization schemes.

Normalized Homogeneity v. Quantization
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Fig. 14. Graph of an example of normalized homogeneity for all displac&ig. 16. Graph of an example of normalized autocorrelation for all displace-
ment curves across all quantization schemes.

ment curves across all quantization schemes.

can be captured and represented with GLCM. For maximum
probability, peaks and valleys are more prominent as the

resolution of the sample site increases. Note that the definition

of max probability isfip = MAX; ; p(4, 7). Unlike others, it
is not a function of an aggregate pfi, j). Thus, the value

of this parameter is more volatile and susceptible to loss of
information due to quantization. As we can see from Fig. 18,
peaks and valleys have been lost, and when the number o
guantization levels reduces to eight (the thin solid line), the

displacement curves still follow a similar trend.

Several conclusions have been drawn from this experimente)

as follows.

1) Across quantization schemes, each textural curve pre-

serves nicely. This hints that the number of quantization
levels can be arbitrarily chosen as long as a range of

2)

displacement curve becomes the smoothest. In general, all

displacement values are used in computing the GLCM,
and thus, we eliminate the need for 128-level and 256-
level schemes, which are computationally very costly.
In [10], the authors showed that classification of cloud
fields was still successful even with the highly quantized
version of GLCM features. Compared to that finding, our
observation is a more restricted case.

Instead of a multiresolution approach that coordinates
different quantization schemes, it is sufficient to use one
guantization scheme with a range of displacement values
since the dynamics of curves of different number of
guantization levels are similar.

There is no hint on determining priori a general
displacement value for all samples in which each sample
approaches an asymptotic plateau. This indicates that it
is necessary to compute matrices of different displace-
ment values to obtain accurate textural features (even
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Normalized Dissimilaity v. Quantization average off = 0, 45, 90, and 135[35], average of two by
126° apart, average of three by 6@part, and average of four
! ///\*\ by 37 apart [56] average of = 0, 45, 90, and 135[38],
0.9 g average, variance and rangefof= 0, 45, 90, and 135[45],
08 & / - and prespecified orientation for each image [66].
"7 8 levels For SAR sea ice imagery, there are no systematic patterns
07T / ‘ 16 lovels based on orientation. Ice features rotate and position them-
g 08 / % selves in all possible orientations. Therefore, we argue that
2 0 / %R the orientation factor is not important in SAR sea ice research.
- sdlevels - \We usedd = 0, 45, 90, and 135 for they cover efficiently
0.4 : . . . . .
— o 128 levels - all directions of SAR sea ice imagery, as we shall show in
o3 7 ‘ 256 levels | the next section.
0.2 1 -
0.1 V. THREE CO-OCCURRENCEMATRICES
O bt e e FOR SEA ICE TEXTURAL CONTEXT
R T B In this experiment, we designed and compared three differ-

displacement (d)

ent GLCM implementations by subjecting them to training and
Fig. 17. Graph of an example of normalized dissimilarity for all displacq—esting of a database of sea ice sample sites. We evaluated the
ment curves across all quantization schemes. o . e

classification powers of the designs based on a Bayes classifier.
Based on the classification accuracies, we were able to derive
the importance of the orientation factor and an effective way
of utilizing displacement values.

Normalized Max Probability v. Quantization

1 <

N The first design is the MDMO matrix. Feature measures of
927X the matrices of the four orientations of 0, 45, 90, and°18%
0.8 averaged, and further averaged over the displacement range.
0.7 8 levels Note that the average over the displacement range is our choice
Cos ! 16 levels of aggregating feature measures of different displacement
- 32 levels values. Other approaches, such as curve approximation or
E 0.5+ et tovals parametric polynomial modeling, can be used to describe the
2044 displacement curves for a more complete representation. Note
0s 1 T © 128 levels that other higher level treatment of features of different dis-
T 256 levels placement values is also possible, such as principal component
o2 T analysis of the eigenvector of different features.
0.1+ Let the set of all displacement values Re and the set
0 e e of all orientations be®; letA/(d, ) be the co-occurrence
- ¥ N9 0 0o a4 W oo - matrix computed with displacemedtand orientatior?; and
displacement (d) let f;(d, 6) be the featureé computed with displacement

Fig. 18. Graph of an example of normalized maximum probability for aﬁmd orientatiory. Formally

displacement curves across all quantization schemes. 1 1
F}\’IDMO _ = i (d. 0

though it is not necessary to use all such matricés). dea’ 6€o

single displacement value for GLCM to represent sea i?ﬁhere |'e | is the number of members in the set The

textural contexts is not advisable MDMO implementation assumes that every matrix of specific

4) Ayeragmg features OVer a range of d|splacem§nt Valu&l%placement and orientation is partially and cumulatively
might be used to obtain a reliable and economical repr: presentative for the sample

sentation, especially for asymptotic curves. For example, - "4 GLCM is the2-ODMO matrix. 2 values of

each sample h"’?s fqurfeatures, e|ghtd!splacement valu P'four matrices of different orientations are calculated and
and four quantization sche_mes, yielding a total of 12 veraged for each displacementnd the matrix accumulating
values. The averaged version has only 16 values. the mosty? value is the optimal matrix. Let2(M(d, 6)) be
the x* of M(d, 6). Formally
C. Orientation

. . . . . 1
The orientation parametef is relatively less important fOPMO =10 Z fi(d, 9)‘

compared to other factors in co-occurrence matrices. Some 6co

authors used the average and range, some used certain series

of orientations; for exampled = 19, 75, 90, 109, and 165 > xH(M(d, 6)) = max <Z X (M (k, 9)))-
to accommodate man-made urban structures [19], range and 6O = \beo



790

The ODMO implementation assumes that only the matrix
WhOSGX2 value is the highest with a specific displacement CLASSIFICATION ACCURACY AFTER SUPERVISED TRAINING, BASED ON THE

value is truly and sufficiently representative for the sample

with no regard to selective orientation.
The third GLCM is they?-optimal displacement and ODOO
matrix. Formally

F2P0° = fildo, 6,)

XH(M(d,, 6,)) = max (x*(M(d, 9))).

dEA; 0€0O

TABLE |
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TRAINING DATA SETs. MDMO's CLASSIFICATION ACCURACY |S BETTER THAN
» THE OTHER Two FOR ALL CLASSES ExcCeEPT FORCLASS 1. ALL THREE

IMPLEMENTATIONS FAILED TO CLASSIFY CLASS 2. TEN FEATURES WERE USED

Context | MDMO ODMO ODOO

1 88.33% (53/60) 100.00% (60/60) 43.33% (26/60)

2 16.67% (2/12) 16.67% (2/12) 16.67% (2/12)

3 95.83% (46/48) 81.25% (39/48) 83.33% (40/48)

4 94.44% (34/36) 72.22% (26/36) 94.44% (34/36)

5 100.00% (12/12) 75.00% (9/12) 75.00% (9/12)

6 100.00% (60/60) 10.00% (6/60) 11.67% (7/60)
Total 90.79% (207/228) | 62.28% (142/228) |51.75% (118/228)

The ODOO implementation assumes that the matrix whdse
value is the highest with specific displacement and orientation
is truly and sufficiently representative for the sample.

We elected to use the ability of a GLCM to classify between E8uAEs R aCuase L St Nore s Born Gusres Suoe o
different textures as a metric of its efficacy. Classification was CuaracteriSTIC CREATES A PROBLEM FOR OUR BAYESIAN CLASSIFIER
performed using a Bayesian supervised classifier. Using all

TABLE 1l

. - ] _ Energy Contrast| Correlation | Homogeneity Entropy
ten features outlined in Section Il, we have for each sample {ngh 888‘1138 izg?g gggg;g 8{3% %25})
Ay ! “ ! ~ ow . . -867. } .
three vectors of ten entriggMPMO =~ fODMO = gpg fODOO mean 0.00296] _ 50.120] -652.684 0.155 7647
i GMDMO  AODMO sid. dev. 0.00054 8475  118.060 0.012 0.062
groupngCl)rg)to three groups for all samples, 2 G ’ range 0.00309 41.286]  497.168 0.065 0.331
andG@ , respectively. For each group of datg samples range/mean | 1.04586 0,698 0762 0AT8 0.125
of seven textural con_tgxtsi}k for k = 1...7, are used to Ao Dy T Choster | Vs
train the Bayes classifier. For each contéxtwe calculated _ correlation Shade| Prominance| Probability
. L . high 1048.556 772 495.085] _34639.106 0.0144
its discriminant function Tow 740.179 5221 T70.840] _ 8356405 0.0048
mean 907.826 6.051 T49.718| _14398.884 0.0075
std- dev. 63.352 0.461 105.173] 4744914 0.0015
R N -1 Tange 308.377 2.251 665.925| 26282701 0.0096
hi(2) = 5(2 — fix) Z (Z — [ix) +log Z range/mean 0.340 0372 4.448 1.825 13914
k k
TABLE I

wherez is the unknown sample vector of i, the calculated
mean vector foi;;, and)_, is the calculated covariance for
G. The classifier assigns a sampleto & if

RESUBSTITUTION CLASSIFICATION ACCURACY AFTER SUPERVISED
TRAINING, BASED ONLY ON THE DATA SETS. MDMO's
CLASSIFICATION ACURACY WAS IMPROVED WHEN CLUSTER SHADE
AND PROMINENCE WERE EXCLUDED FROM THE FEATURE SET

hi (.f?) > hj(.f?) for all & 75 J Context | MDMO (10 features) | MDMO (8 features)

1 88.33% (53/60) 88.33% (53/60)

Note that, in all of the experiments that follow, we used 2 16.67% (2/12) 100.00% (12/12)

the uniform 64-level quantization scheme. This number of 3 95.83% (46/48) 93.75% (45/48)

quantization levels was chosen since, used over a range of 4 94.44% (34/36) 86.11% (31/36)

displacement values, it preserves textural information well and 3 100.00% (12/12) 100.00% (12/12)

it does not incur as much computational load as other higher o 100.00% (60/60) 100.00% (60/60)
Total 90.79% (207/228) 93.42% (213/228)

level quantization schemes.

respectively. Using higher order moments amplifies the surface
of a cluster. If the cluster was roughly homogeneous, the

In our first experiment, we used ten features, 228 samplessulting feature value would be consistent and occupy a
18 images, and six contexts. The resubstitution classificatioompact range. As we can see from Table Il, both normalized
or training set classification accuracies of the MDMO, ODMQanges are higher for cluster shade and prominence. This hints
and ODOO implementations are tabulated in Table I. Thbhat the quantized images do not possess good cluster-type
numbers represent the accuracy by which a specific GLCM celmaracteristics. We conducted an experiment to compare the
classify a sample into one of six contexts. Consequently, it ickssification results between MDMO with all ten features
metric of representational quality. From the table, we obseraead MDMO with eight features, excluding cluster shade and
that the MDMO implementation has the best classificatigqrominence. The results are shown in Table Ill. Overall, the
results on the training set with overall accuracy above 90%exclusion of cluster shade and prominence improved our

After generating features for all samples, we noticed thalassification accuracy. Class 2 classification accuracy was
the cluster shade and cluster prominence measurements shoproved from 16.67 to 100.00%. As a result, we believe that
higher range and range/mean (normalized range) values tltfam cluster-type features (cluster shade and cluster prominence)
the other measurements (Table II). This is probably due to ttend to extenuate the clustering characteristic of samples and
third and fourth order of moments used in the computatiodpminate classification resulting in large errors.

A. Experimental Evaluation of GLCM’s
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TABLE IV
REsUBSITUTION CLASSIFICATION ACCURACY AFTER SUPERVISED TRAINING,
BASED ONLY ON THE DATA SETS. MDMO's CLASSIFICATION ACURACY
Is BETTER THAN THE OTHER TwoO FOR ALL CLASSES EIGHT
FEATURES WERE USED. SEVEN CONTEXTS WERE REPRESENTED

Context | MDMO ODMO 0ODOO

1 95.00% (57/60) 86.67% (52/60) 93.33% (56/60)

2 100.00% (12/12) 8.33% (1/12) 50.00% (6/12)

3 95.91% (47/48) 85.42% (41/48) 81.25% (39/48)

4 97.22% (35/36) 94.44% (34/36) 97.22% (35/36)

5 100.00% (12/12) 50.00% (6/12) 25.00% (4/12)

6 100.060% (60/60) 98.33% (59/60) 91.67% (55/60)

7 100.00% (12/12) 8.33% (1/12) 0.00% (0/12)

Total 97.92% (235/240) | 80.83% (194/240) | 81.25% (195/240)
TABLE V

CoNFuUsION MATRICES. THE Rows DENOTE THE ACTUAL CLASS OF
THE SAMPLE SITES, AND THE CoLUMNS DENOTE THE CLASS FOUND
BY THE CLASSIFIER. (@) MDMO wiTH TEN FEATURES (b) ODOO
WITH EIGHT FEATURES (C) MDMO wiTH EIGHT FEATURES
(d) MDMO witH EiGHT FEATURES A PERFECT CLASSIFIER WOULD
HavE NONZERO ENTRIES ONLY IN THE DIAGONAL OF THE MATRIX

CI|1 |2 |3 (4|5 |6 |7 Cl1 |2 |3 |4 |5 |6 |7

1 |33 4 3 1 {56

2 2 10 2 |14 |6 2

3 46 | 1 1 3 3916

4 |1 34 1 4 |1 35

5 12 5 4 18

6 60 6 [2 |3 55

7 1111 711 9 2
(@) (b)

C |1 |2 |3 {4 |5 |6 |7 C|1 |2 |3 |4 {5 |6 |7

1 |52 6 2 1 {57 3

2 1 11 2 12

3 |1 4115 1 311 47

4 |1 34 1 4 |1 23

5 6 |6 5 12

6 1 59 6 60

7 |2 7 2 |1 7 12

(© (d)

B. Confusion Tables

We also conducted a test to see how our implementations
of the GLCM'’s respond to different context classes through
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different displacement values and project each textural context
onto a global scrutiny. This approach deals with microtextures
and macrotextures successfully in this experiment. Using the
KHAT [16] statistics (an estimate of KAPPA [15]) to assess
accuracy, MDMO with ten features achieved 0.831, ODOO
with eight features achieved 0.763, ODMO with eight features
achieved 0.757, and MDMO with eight features achieved
0.914. Thus, even with the inclusion of cluster features and
its consequent degradation to the classification, MDMO still
achieves better separability among sea ice contexts than either
ODOO or ODOO.

C. Classification Power

To test the generality of our MDMO Bayes classifier, we
divided the data set into two, each with 120 samples. First,
we used 120 samples to train the classifier and then applied
the classifier to the other 120 samples. The training set classi-
fication accuracy was 99.19%, and the test set classification
accuracy was 94.17%. The overall classification accuracy
was 96.67%. Once again, the KAPPA results are 0.967 and
0.889 for the training set and test set classification accuracies,
respectively.

D. Conclusions

Several conclusions have been drawn from these experi-
ments, as follows.

1) MDMO implementation is better than the ODMO and
ODOO implementation.

2) ODMO and ODOQ's performances are about the same.
This indicates that the orientation factor is not important
in SAR sea ice imagery for textural context research.

3) Cluster shade and cluster prominence are able to high-
light cluster-type textures, but, due to their significantly
large range of values and thus their influence over other
features, the inclusion of these two features is bad for
classification.

4) Clusters for MDMO are generally more selective than

those for ODMO and ODOO as it actually detects the

difference between a low-contrast Web and a high-
contrast Web (as shown in Table | when the classifi-
cation accuracy for Class 1 samples dropped).

the use of confusion tables. We used eight features, 2405) Range of displacement values is more representative

samples, 19 images, and seven contexts. The classification
results of MDMO, ODMO, and ODOO are shown in Tables IV
and V. Again, MDMO outperformed the other two with a
training set classification accuracy of 97.95%. Upon closer

than a single displacement value. This indicates that,
when applying GLCM on SAR sea ice imagery, we

should make use of matrices of different displacement
values. In our experiments, we used the average function

observation, we can see that both Class 5 and 6 possess to combine the features of all displacement values. This

clustering characteristics with Class 5 data having smoother
composition than Class 6, a difference rendered indistinguish-
able without cluster-type features as in our earlier experiment.
Moreover, we can see that both Class 4 and 7 data have
similar compositions if we concentrate on a small region
of size, or use a small displacement value for the matrix.
ODMO and ODOO failed to classify these data because they
did not employ full range of displacement values. On the
other hand, MDMO was able to coordinate all matrices of

indicates that MDMO is able to capture local and global
details of a texture. Local details can be captured since
microtextures are sometimes periodic and preservable
by the choice of different displacement values; global
details can be captured since macrotextures are generally
correlated and coverable by the range of displacement
values. This conclusion concurs with that of [48] in that
both suggest that different displacement (or lag) values
should be used to characterize textures.
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6) Matrices with the highesk? values do not provide regions for identifying structural composition of ice-water
useful data, and they are not sufficiently representatipatterns, instead of surface textures that have been used for
for our samples in the classification process. determining ice types (for example, open water, first year, and

7) Classification based on the MDMO implementation imultiyear) and degrees of deformation of sea ice (for example,
accurate and generalizable as it yield90% training undeformed and deformed first year). Instead of looking at
and test sets classification accuracies. local textures of different ice types, we are looking at a more

global composition of sea ice features as a texture. Hence,

we are analyzing sea ice texture at a higher granularity. We
argue that this approach camomplementthe existing ice-
type textural analysis since 1) local textures of different ice

A. Texture in Sea Ice types are sometimes not consistently distinguishable, 2) noise

Statistical texture analysis is important in SAR sea iceffects are more significant if analyzed locally, as in sea ice
imagery research since it allows better representation agidface texture analysis, 3) knowledge about sea ice types can
Segmentation of sea ice regions, Compared to ana|ysis ba@@dﬂXtraCtEd from their relations (i.e., the Composition of sea
on intrinsic gray levels only. For example, Holmes al. ice types), and 4) global textures are more reliable. We call
[38] classified one SAR image (over the Beaufort Sea) tbis composition of sea ice features textural context Due
new/first-year ice and multiyear ice with an overall accuracy & different geographical locations and seasonal temperatures,
more than 65% using derived textural descriptors on X-bafifferent ice types can coexist in different situations, creating
(HV polarization). Nystuen and Garcia [56] used standard afiéfferent textural contexts. These contexts are reliable prop-
higher order texture statistics generated from co-occurrerfféies for image manipulation since they are more resistant
matrices to classify SAR sea ice data collected during th@ noise-corruption than surface texture. They are also of
marginal ice zone experiment (MIZEX) in April 1987. Thea second-order perception level of sea ice features in the
combination of the two statistics improved ice type classificdmage, deemphasizing local details and concentrating on the
tion to an overall accuracy of 89.5%. Shokr [63] introduce8pPatial, relational make up of a region. They can also be
several second-order textural parameters and evaluated thiéked to sea ice phenomena associated with certain time in
together with existing parameters by examining their usa$fge year and region, providing valuable information toward
and performance in sea ice classification for radar image#pe automation of sea ice image understanding. Indeed, other
Sun et al. [65] used normalized local average and standaf®mains have employed the usage of context to improve
deviation as first-order texture parameters to classify sea @lassification. For example, Grooet al. [29] used contextual
images into open water, young ice, level ice, brash ice, and @rection to improve land cover mapping. Initial classes were
ridges. They concluded that the pixel-based approach, usr@@xamined based on terrestrial and maritime contexts, urban
texture, was more effective than the region-based approactalifl nonurban contexts, and upland and lowland contexts on
representing and characterizing sea ice types. Senigh [64] TM multiband imagery. As a result, the classification accuracy
employed both spectral and textural information to classifiyas improved. Flasse and Ceccato [24] used a contextual
sea ice types from ERS-1 (Earth Resource Satellite-1) sAtgorithm to confirm potential fire regions in AVHRR fire
data. Statistical textures have also been utilized to other $fection analysis. This approach allowed the technique to
ice imagery such as Landsat Thematic Mapper (TM) Antarct® adaptive to the different environments and, thus, different
scenes [14] and NOAA AVHRR images [4]. radiometric imaging of the surrounding regions. In this paper,

In other domains, researchers have also used texturetiig seven textural contexts selected, as described in Section Ill,
provide analytical information about an image, showing thafe¢ by no means representative of all SAR sea ice imagery.
the incorporation of texture into segmentation or classificd® fully utilize textural contexts, further work must be done
tion tasks is crucial. For example, Hsu [39] used first-ordé® study fully a vast amount of SAR sea ice imagery covering
statistical textural features, such as mean, standard deviatidifferent seasons and regions.
skewness, kurtosis, etc., to improve land-use mapping to
85-90%. Jensen [41] combined spectral and textural features to )
improve land-cover classification at the urban fringe. Shih afti Texture Algorithms
Schowengerdt [62] indicated that texture might be extremely There are several statistical texture analysis algorithms
valuable for classifying geologic/geomorphic surfaces, basddsigned to represent and recognize textures; for example,
on their experiments on bedrock, desert pavement, fluviaLCM [35], gray-level run length [27], gray-level differ-
deposits, and vegetation from Landsat images. Also, cloud @amce vector [69], Fourier power spectrum [49], max—min
alysts have utilized textural features to improve classificatiagaxture [55], [62], sum and difference histograms [67], texture
of clouds [23], [28]. Ryherd and Woodcock [58] showed thagpectrum [68], and semivariograms [48], [54] are among
addition of image texture improved the segmentation procas® common approaches in the literature. We have chosen
in most areas where there were textural classes in the imagee GLCM as our texture analysis algorithm to investigate

Previous studies of SAR sea ice imagery have concentratiifferent SAR sea ice images for two basic reasons. First,
on the effect of texture on the quality of the analysis tperceptual psychology studies [42], [43] have shown this
describe sea ice types and deformations. In this paper, method to match a level of human perception. Second, separate
emphasize the statistical textural contexts of SAR sea istudies have shown this method to outperform the others

VI. RELATED WORK
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in texture discrimination. Weszka&t al. [69] studied the level representation is undesirable, and 3) 64-level repre-
performances of the four texture analysis algorithms (tteentation is efficient and sufficient. We also showed that
first aforementioned in this paragraph) on 54 aerial photthe displacement factor is more important than orientation.
graphic terrain samples belonging to nine land use classscond, we compared three different implementations of co-
and extended the experiment to 180 LANDSAT imagerygccurrence matrices. We concluded that matrices with a range
samples belonging to three geological terrain types. Connefsdisplacement values as a collective whole, due to their
and Harlow [18] conducted a comparative study on Markoeapabilities of capturing microtextures and macrotextures, are
generated textures and its translation stationary random fieldere adequately representative of a texture than a single
of order two. Both studies showed that features based gh-optimal matrix. Also, from the training set classification
GLCM yielded better classification results than other methodsccuracy of ODMO and ODOO, single-displacement features
Gong et al. [30] showed that textural features derived fronalone should not be used to describe sea ice textural contexts.
GLCM and the simple statistical transformation method coulthird, we presented a Bayes classifier that yielded 99.19% of
largely improve the classification accuracies, both generatedining set and 94.17% of test set classification accuracies into
superior results to the texture spectrum method, and the enesgyen classes on 240 samples. This indicates that 1) sea ice
feature of GLCM was the best classification feature. Thextural contexts can be successfully represented and used to
experiments were conducted on a SPOT high-resolution visilolassify different types of SAR sea ice imagery and 2) sea ice
(HRV) band 3 image. textural contexts can be successfully represented using GLCM-
Note that some other works showed GLCM to be inferiohased features. Our future work in this research includes
For example, He and Wang [37] demonstrated that, for ampplying sea ice textural contexts to refine classification based
borne SARC-band data on lithological units, features derivedn spectral and surface textural information.
from texture spectrum fared better than the co-occurrenceThe above findings pave the way for SAR sea ice texture
method [68]. An in-depth comparative study of five texturanalysis using GLCM in a concrete and definitive manner; the
algorithms [2] reported that no universally best feature sefhoices of quantization, displacement, or orientation values
among the five different texture algorithms chosen, was fouade no longer arbitrary or experimental. We have also con-
when the data from six frequency bands (of a TM image ofucted a comparative study based on Bayesian classification
a mountainous region) were used. However, if using onlyrasults on three different GLCM designs. This study also
single band for classification, features derived from the Fouriprovides evidence for how a GLCM should be designed to
spectrum were found to be better. Dikshit [22], investigatingdequately capture textures; the evidence is formally supported
a high-resolution (1.25-5.0 m) airborne TM image of a semiby statistical measurements of Bayesian classification results.
natural scene, concluded that features based on the gray-levélrom the viewpoint of higher granularity, in this paper,
difference histogram and the sum and difference histograme have proposed textural contexts of sea ice, rather than
approaches showed more promise than those of GLCM. Thigrface texture of sea ice types. We have also described ex-
study is not readily generalizable to our work since SAR sgerimental studies and compared different implementations of
ice imagery is generated by spaceborne satellites and has lotesture algorithms to prove that such textural contexts can be
resolutions (e.g., for ERS-1 satellite, 100 m for low-resolutiodistinctly characterized. Undoubtedly, this means of successful
images, 12.5 m for full-resolution images). representation motivates and facilitates further utilization of
Finally, note that Cossu [20] described a study that cotextural contexts in sea ice classification.
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