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Analyzing Lead Information from SAR Images

Michele M. Van Dyne, Costas Tsatsouli§EE, Member and Florence Fetterer

Abstract—Leads are relatively linear features in the sea ice of sea ice types or thicknesses. In general, winter multiyear
cover, which are composed of open water or new, thin ice. jce (thick ice that has survived a summer’'s melt) has the
Because of their composition, leads impact the ocean/air heat pghect hackscatter and appears brightest in SAR images. This
exchange. Automated analysis of leads from sea ice imagery may. b i . has b d i d by th |
provide a means of gathering important information about the IS Pecause multiyear ice has been desalinated by the melt
sea ice cover and its climatic influence. This paper describes: 1) aprocess and has dielectric properties, which permit volume
method for extracting and analyzing leads from ERS-1 synthetic scattering of radar energy from bubbles in the ice. First-year
?g’serlttl;rifrag% (t?éRrLé?]?)%ecsmc!?:gleesdo?)t/hg%é);p?oinge? tThhee ice (ice in its first year that has grown to at least 30-cm thick)

u usi [ i u . o .
methodology consists of identifying potential lead features in the has lower backscatter because it is smoother than_multlyear
image and measuring their characteristics both before and after i€, and surface rather than volume scattering dominates the
using a thinning or skeletonization technique on the features. radar return. As a rule, new or young ice and smooth open
The measurements obtained using this method include lead area, water have the lowest backscatter near or below the noise
average width, number of leads in an area, amount of branching, floor of the sensor.

and linearity of the lead. These measurements were analyzed with Classificati fice t in SAR | h b d
respect to the time of year and the latitude of the images. Results assincation or ice types in Images has been ad-

indicate that the measurements produced by the methodology are dressed using several methods. One approach uses cluster
consistent with lead measurement distributions that others have analysis and subsequent cluster labeling, which uses lookup

found. The results of the study suggest that the methodology is taples for backscatter signatures of different ice types [10],
appropriate to study lead characteristics on a large scale. [12]. This algorithm produced classified SAR ice-type images
Index Terms—Beaufort Sea, image analysis, image processing, through the Alaska SAR Facility (ASF) Geophysical Processor

leads, lead statistics, SAR, sea ice. System (GPS). The technique was validated under winter
Arctic conditions, and it has been demonstrated that the
I. INTRODUCTION classification process is very good at separating multiyear

from first-year ice types [3], although the algorithm divides

OW AND Tucker [8] describe leads as cracks in th D .

. ; . irst-year ice into smooth and rough classes with doubtful
sea ice cover of the Arctic that are formed by divergent . : -
. . . accuracy [5]. A more serious problem is the difficulty the
motion. This causes the ice to pull apart or shear and allows™ ...~ . . A .

classification algorithm has distinguishing younger ice types.

the ocean to come into direct contact with the atmosphe%. new ice grows in leads, the backscatter of the ice generall
Along with polynyas, leads are significant sources of heat 1058 9 ' 9 y

to the atmosphere and during the winter constitute a maJ%YOI\/eS through a sequence, during which its signature can

source of new ice growth and salt fluxes into the upper oce _uarll tha(; of tmu_lt|year or 1|‘|rszyear h|ce [18].' Alfo’ ng'. ht
Zonally averaged models predict that an increase of severargnened waterin an open fead can have a signature as bhig
2 multiyear ice. The new ice or open water in a lead may

percent in the winter lead area would increase polar-surfal

air temperature by several degrees Kelvin. One estimate of 488" Ee mlscr:assmeld as mfultl)llea(; or: fl_rst-yea_r ICe, dc_ep((ajndlng
coverage in the Arctic is that open water constitutes about 184 When in the evolution of a lead the image is acquired. For
of the area in the winter [14] and increases to 10-20% duri more thorough assessment of this classification method, see

the summer [8]. Another estimate of area covered by leafgttereret al. [S]. _ _
in the central Arctic is 1-5% coverage in October, while that S€veral methods for extracting and analyzing leads from

area reaches 5-20% in the marginal ice zone during the sdff@9es have been used. Key al. [11] used a combina-
time frame [20]. tion of numeric and symbolic algorithms to detect and map
Leads rapidly freeze during the winter so that they md§ads from LANDSAT data. The numeric process used was
be composed of either open water or new, thin ice. Theh,dynamic-thresholding approach to separate potgntlal leads
the identification and analysis of leads in synthetic apertuf@m nonleads based on signature, and the symbolic approach
leads were in fact leads based on size, location, linearity,
Manuscript received January 12, 1995; revised March 10, 1997. This wadd orientation in relation to other objects. Lindsay and
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Fig. 1. Classified images. The ASF/GPS classified image product available from ASF provides a 1B5386-pixel geocoded image that has been
classified into the four ice types: multiyear ice, first-year rough, first-year smooth, and new ice/open water represented, respectively, bselprogress
darker grayscale tones in the images. (a) Image 9511 was acquired December 4, 1991, at center latitude 73.607,-dB§itL@@ (b) Image 8306

was acquired February 7, 1992, at center latitude 73.291, longitt&3.771.

sequential SAR images to measure the opening and closfrgm geocoded or earth-located images. Geocoding places the
of sea ice leads. They base their identification of leads on th@0-kn? SAR image in a fixed geographical reference frame.
assumption that leads are closed linear features surroundeddbyotal of 48 classified images of the Beaufort Sea from
thick ice, and the initial classification is done using a simpl@ctober 1991 to March 1992 were used in this study to test
thresholding technique. Because the focus of the research Wesmethodology and generate lead measurements. The images
the change in lead coverage through opening and closiggme from a box bounded by 8%, 78 N, —160° W, and
additional measurements of the leads were not made. Banfielti2®® E. Fig. 1 shows two examples of classified images from
[1] used a mathematical morphology approach to providetlze test image set.
structural description of lead shape and to measure certaiYWhen measuring lead characteristics in the Beaufort Sea
characteristics of leads in SAR imagery. Lead and nonleatea, we should expect, based on the observations of others
pixels are determined by choosing an intensity threshold afié], [17], [21], that lead size (width or area) should ex-
classifying pixels above that threshold as ice and those belbit a roughly exponential or power-law distribution overall.
as leads. Banfield indicates that including additional criteria fiurthermore, there should be an approximately &dgle for
identifying lead features, such as the linearity of the featurdgtersections between leads. This angle is a result of an angle
would improve results. Banfield discusses measurements tBhtnternal friction for sea ice of about 144]. Here we will
can be made of lead features, based on their skeletal structuf@scribe a method for identifying leads in SAR imagery that
which serves as a basis for the lead measurements preseiftdtfsed on Banfield’s method [1] and will test its utility for
here. obtaining lead statistics automatically by seeing if the above

Cunninghamet al. [2] used Banfield’s method [1] to mea-Statements about lead-population characteristics hold true for
sure lead-orientation characteristics in the Beaufort Sea frétl sample of SAR images.
January to March 1992 and to relate the orientation data to I
the principal direction of shear within ice-motion fields. In a ) i o
classified (ice-type) image, all pixels classified as nonmultiyear 1 h€ approach to lead measurements is to refine the initial
ice were taken as making up potential lead features, and fafseF/GPS classification based on shape and size clues. The
lead features were then filtered out based on size and exces8jf&nod used is best described in two sections: 1) the computer
curvature. These authors suggest that additional work co@igorithms for automated Ieaq |dent|f|qat|on and measurement
be done based on other lead measurements available, suchgs2) the procedure used in analyzing the output measure-
lead lengths and average widths. ments on Beaufort Sea imagery.

The images used for lead identification in this work are the o
ASFIGPS classified images produced from ERS-1 SAR dafh. Automated Lead Identification and Measurement
In these images, pixels are classified as multiyear ice, first-In extracting potential lead features from the ASF/GPS
year rough ice, first-year smooth ice, and new ice/open watelassified images, images are first thresholded based on ice-
The pixel size is 100 m. The classified images are generatgge classification, then each potential lead feature is distin-

. METHOD
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guished from others by assigning it a unique number. Initiakea, in pixels, of the feature. The flood-fill process continues
measurements are made at this point, then the leads are thirmed feature until no more unnumbered connected pixels are
into a “skeletonized” representation, and finally additiondbund. The scan of the image is then restarted at the pixel it
measurements are made of the lead. Each of these processgally encountered.
is described more fully in the following sections. During all This process produces a measurement (in pixels) of the area,
processes that modify the image, the changes are displayedemyth, and average width of each of the identified features,
the screen for visual inspection, although the display functidhe coordinates of the bounding rectangle about the feature,
of the program may be turned off by the user, allowing thend a count of the number of features found in the image.
code to run more quickly. 3) Feature Measurementtnitial measurements are made
1) Thresholding: Thresholding, based on the ice-type classf the full feature before additional processing continues. The
sifications, consists of assigning the color white to all ice typgerimeter of the feature is determined by finding all the pixels
of interest and black to those ice types that are not of interest the periphery of that feature and is measured in terms of the
for analysis. The program allows the user to choose whicumber of pixels. The main length of the feature is defined as
ice-type classifications are of interest for further analysis. the maximum Euclidean distance between two points on the
2) Feature Identification: After thresholding, an algorithm boundary of the feature. The average width of the feature is
to label connected components or features is run on thlso computed. At this point, features with a small length-
image to distinguish different features by assigning eacht@width or elongation ratio may be eliminated from further
unique number or “color.” (During display of the imagesconsideration. The cutoff value for the elongation ratio may
each unique number is drawn on the screen as a differéet changed by the user. The program also allows the user to
color.) The algorithm uses an eight-neighborhood approadpecify a feature size, such that features with an area under
in which pixels to the top, bottom, left, right, and diagonal tthat size will not be included in further analysis.
the current pixel are all considered connected to that pixel. The4) Thinning: Next, features identified as potential leads
traditional approach to this process [7] is to scan the imagee subjected to a skeletonization process. The result of this
pixel by pixel from left to right and top to bottom. Whenprocess is a skeleton or stick figure representation of the
an unnumbered pixel is encountered, the order of scannifegture. This representation facilitates additional measurements
the image guarantees that its upper left, upper, upper rigbtthe feature that may not be obvious when examining the full
and left neighbors have all been previously scanned. Théeature. For example, the end-to-end length of the potential
to assign a label to the current pixel, the algorithm looks &ad may be measured from the full feature, but using the
the four neighbors it has already encountered and, if they amain channel of the skeleton, or the path from end to end,
all blank, assigns a new number to the current pixel. If songives a clearer picture of its deviation from the straight line
of the neighbors already encountered have been assignedi¢ingth and, thus, a measure of the linearity of the feature.
same number and the rest are blank, that number is assigAeditionally, branching off the thinned figure occurs where
to the current pixel. Finally, if some of the previously scannetthere are protrusions on the original figure. Using the thinned
neighbors have been assigned different numbers, the curnapresentation, lengths, and angular relationships of branches
pixel is assigned one of these numbers and then the numitershe main channel of the potential lead can be measured
are entered into an equivalence table. This process continuese easily than can be done with the full feature.
until the entire image has been scanned and all nonblank pixel&Rather than using a mathematical morphology approach
have been assigned a color. A second pass is then made to[dgrto producing skeletons from leads, a thinning algorithm
the equivalent labels and assign a single label to these clasgesised, since a drawback of the mathematical morphology
These new labels are assigned to the pixels in the image. approach is that connectivity of the resulting skeleton is
This traditional labeling process was modified in the currenbt guaranteed. The thinning algorithm guarantees that the
study so that only a single scan need be made over the fidbultant skeleton will be maximally thin, minimally eroded,
image, with numbering passes done only in areas where aard connectivity of previously connected elements will be
unnumbered feature has been encountered. In the modifiethined. “Maximally thin” skeletons are those that are no more
approach, when an unnumbered pixel is encountered, ittigan 1-pixel thick, and minimal erosion is desirable so that
assigned a new number or label, then all of its neighborinige endpoints of the feature are not lost during the thinning
pixels and their neighbors are then also assigned the sapnecess. Finally, preservation of connectivity is desired so that
number using a nonrecursive “flood-fill” or region-growinghe measurements made reflect the original features and not
process and an eight-neighbor scheme. The flood-fill procgssces of those features.
looks first at the current pixel's right, lower left, lower, and The thinning algorithm is performed by making a first pass
lower right neighbors, and if they are unnumbered (but ndtrough the image and marking pixels for deletion whenever
black), they are all assigned the same label as was just assigmeddeletion of a particular pixel will not disconnect or erode
to the current pixel. A backward pass is then done lookirthe endpoints of the eventual skeleton. The marked pixels
at the left, upper left, upper, and upper right neighbors. Tleee then deleted, and a second pass is made using slightly
furthest pixels define a maximum rectangle about the featudifferent criteria than the first pass in marking pixels for
and the algorithm need never look more than one pixel beyoddletion. The two passes are made iteratively until no more
this boundary. As a side benefit, the process produces thirels are marked in either pass for deletion, that is, until the
coordinates of the bounding rectangle of the feature and tlead skeletons are of minimal width. This process also uses
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Fig. 2. Thresholded images. Thresholded representations of image 9511 of Fig. 1(a), where the ice types of interest are black and the rest o the image i
white. Including three ice-types overestimates potential lead area. (a) Thresholding on the two youngest ice types (first-year smooth an@mevates/op
(b) Thresholding on the three youngest ice types (first-year rough, first-year smooth, and new ice/open water).

an eight-neighborhood approach. This algorithm is described

in more detail by Gonzales and Woods [7] and Van Dyne and

Tsatsoulis [19], and the procedure is defined as follows.
Pass 1: Flag a pixel for deletion if:

a) the number of neighbors is between two and six;

b) the number of transitions from zero to one when travers-
ing through neighboring pixels is equal to one;

c) there is at least one zero-valued pixel in the upper, right,
or lower neighbors;

d) there is at least one zero-valued pixel in the right, lower,
or left neighbors.

Delete flagged pixels after the entire image has been ex-
amined.
Pass 2: Flag a pixel for deletion if:

a) the number of neighbors is between two and six;

b) the number of transitions from zero to one when travers-
ing through neighboring pixels is equal to one;

c) there is at least one zero-valued pixel in the upper, right,

or Ieft. nelghbors, . . Fig. 3. Identified lead/thinned lead/thinned lead after processing branches.
d) there is at least one zero-valued pixel in the upper, [owets is an example of one feature identified as a potential lead by the program

or left neighbors_ in image 9511 of Fig. 1(a). The entire lead feature is measured then reduced

. L. to a skeletal representation by thinning. Loops that occur in the skeleton are
Delete flagged pixels after the entire image has been exadfininated using a graph spanning-tree traversal algorithm. Once loops are

ined. Repeat until no more pixels are flagged for deletion. eliminated, additional measurements are taken. (a) Potential lead feature, (b)
Condition a) ensures that no interior points or endpoints dp@ned feature, and (c) thinned feature after branch processing.

flagged for deletion. Condition b) prevents a pixel from being

removed from a 1-pixel thick line, so that the skeleton cannptore, any corners in the outline of the feature will result in a

become disconnected. Conditions c) and d) in Pass 1 indichtanch off the skeleton. This is desirable if the corner actually

that the current pixel is an east, south, or northwest boundagpresents a branch, but spurious branches may occur in some

point and is not a part of the skeleton, while these conditioisstances. These conditions are taken into consideration when

in Pass 2 indicate that it is a north, west, or southeast boundargking measurements from the skeleton.

point and can be deleted. The northeast and southwest cornds) Skeleton Measurementdlany of the measurements

points are found from all four c) and d) conditions. used in this work are those originally described by Banfield
If the original feature contains holes or islands, the thinnind]. These include the main diagonal length, the skeletal length,

process will produce a skeleton that contains loops. Furthée total skeletal length, linearity index, branching index, area,
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TABLE |
DESCRIPTIVE STATISTICS. THE FIRST SiX VARIABLES DESCRIBE STATISTICS ACROSSIMAGES, USING THE 48 TEST IMAGES AS DATA POINTS. THE
REMAINING VARIABLES DESCRIBE STATISTICS ACROSSIDENTIFIED LEADS WITH THE 3013 DENTIFIED LEAD FEATURES AS DATA POINTS

Variable Mean Std Dev —h;i:ﬁmum l Maximum Units
Non-aultiyear Ice Area 1,928.91 1_1 67.40 268.24 7,129.33 | Square Kilometers
Non-Multiyear Ice Coverage 20% 12% 3% 72% Percentage
New Ice / Open Water Area 642.34 503.42 7.52 2,191.42 | Square Kilometers
New Ice / Open Water 7% 5% 0% 22% Percentage
Coverage

Number of Leads per Image 62.77 47.51 2.00 167.00 Nondimensional
Lead Coverage 1% 2% 0% 6% Percentage
Lead Area 218 7.06 0.07 223.06 | Square Kilometers
Average Width 0.32 0.24 0.07 2.79 Kilometers
Perimeter 6.31 9.10 0.60 148.90 Kilometers
Main Length 4.16 5.04 0.30 89.90 Kilometers
Skeletal Length 437 5.46 0.30 96.30 Kilometers
Total Length 5.32 8.04 | 0.30 153.30 Kilometers
Elongation Index 8.95 5.64 5.00 138.06 Nondimensional
Branching Index 0.91 0.1 0.44 1.00 Nondimensional
Linearity Index 0.97 0.05 0.85 1.00 Nondimensional
Lead Orientation 94.69 61.56 0.00 178.81 Degrees
Average Number of 1.22 233 0.00 36.00 Nondimensional
Branches per Lead

Number of Left/Lower 0.57 1.40 0.00 22.00 Nondimensional
Branches

Number of Right/Upper 0.65 1.46 0.00 17.00 Nondimensional
Branches

Average Left/LLower Branch -10.38 2515 -151.65 0.00 Degrees
Angles

Average Right/Upper 14.05 30.68 0.00 165.07 Degrees
Branch Angles

average width, and main diagonal orientation. Additiondle neighbors of each other for the pixel to be considered a
measurements made include the number of branches andpbtential endpoint. The two endpoints of the skeleton are those
average branching angles on either side of the lead. Aggregduat result in the largest main diagonal length. In contrast
measures are also calculated across the lead population in @acthe main length measured from the full feature, which
image, including the overall lead coverage, average lengthises a Euclidean distance, the main diagonal length uses
orientations, and areas. a city-block distance measurement for ease of comparison
The main diagonal lengths defined as the distance fromwith additional length measurements, although the Euclidean
endpoint to endpoint of the skeleton. Endpoints are identifielistance could also be calculated. The city-block distance
on the skeleton as those pixels that have one or two neighbareasurement between the two points,andp2, is defined as
If the pixel has two neighbors, these neighbors must alée(pl,p2) = |pl, — p2.| + |pl, — p2y|, where| - - - | indicates
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50 Within the aggregate or population measures for images, the
overall lead coveragés the ratio of lead pixels to all pixels
within the entire imageAverage lengthsrientation andarea

are all calculated by taking the averages of the individual lead
measurements.

Typically, geophysicists are interested in lead breaking and
intersection angles or lead width as a function of density.
The additional, more esoteric descriptive measurements were
derived for two reasons: first, they might prove useful for
screening real leads from false ones (this proved not to be
the case) and second, we were interested in seeing if such
measures as length, linearity, or branching index showed
, regional or temporal organization. For instance, it might be
: expected that the leads are longer and less branched at high
latitudes in winter because the pack is consolidated and
relatively homogenous there.

12.97
20.84-
67.74+

Lead Area (square kilometers)

Fig. 4. Lead area. The distribution of lead area across the 48 test imad8s, Lead Measurement Analysis

ported It sauare Klomelcrs, Shos & ouahly exporentl AT, EThe. program was first run on 120 ASF/GPS classified
images taken between October 1991 and March 1992, with
the absolute value and the subscrip@ndy indicate ther and 20 images selected from each month. Seven of these images
y coordinates of the pixel or the point within the image [7]. were subsequently removed from consideration because they
The skeletal lengths determined by traversing the skeletoincluded large areas of land that produced incorrect ice-type
from endpoint to endpoint and following a minimal path, andlassifications. Images were then compared by latitude and
it is either equal to or larger than the main diagonal lengtlongitude for each month, and those that created areas of
Dividing the main diagonal length by the skeletal length praverlap were removed so that statistical analysis would not
duces a measurement of theearity of the feature. Theotal include duplicate lead features. (Leads can appear quite static
skeletal lengthis the skeletal length plus the length of eackvith the same lead feature identifiable in SAR imagery for a
of the branches on the skeleton and is computed by addimgnth or longer. Of course, during this time the ice in the lead
the lengths of the branches to the skeletal length. Dividimgay grow to first-year thickness.) After eliminating images
the skeletal length by the total skeletal length producesoé duplicate areas, there were 48 remaining images used for
branching indexof the lead. Main diagonabrientation is analysis. With the exception of March, which only had three
measured by determining the angle of the main diagorialages, each month had eight to eleven images.
in relation to thez-axis of the image and then applying a The requirements for initial measurements of the elongation
correction so that the orientation is relative to true north (e.gatio were varied. Features with a length-to-width ratio of
leads aligned in a northwest-southeast direction would haless than 5:1 were removed from consideration because, by
an orientation of 13%. definition, leads are relatively long and narrow. Additionally,
The number of branchess determined by traversing thestatistics were generated on the linearity index of all the
path of the skeletal length and finding protrusions or junctiondentified lead features, and the initial mean was 0.94 with
on this main channel. Since there may be loops representedistandard deviation of 0.09. Using these values, lead features
protrusions off the main channel, the structure of a “branchtith a linearity index below one standard deviation below the
may be more of a cyclic graph at this point. A spanning treeean (0.85) were also eliminated from further consideration.
is created from this graph with the root of the spanning tree atExperimentation was done on the inclusion or exclusion of
the junction of the branch with the main channel. Graketm proportionately small features in the image. The program was
al. [9] define a spanning tree of a graph as a subgraph of thun on all features and then was run on only those features
original graph that contains all the vertices and enough of theat had an area of greater than 100 pixels (approximately
original edges that the subgraph is connected, but containsIn&m?). Since statistical analysis showed no difference be-
cycles. The endpoint of a branch is determined by finding tireen the inclusion or exclusion of these smaller features, their
farthest leaf from the root of the spanning tree. Traversal of theeasurements were included in the full analysis of the data.
branch is then done in the same manner as the skeletal-lengtbescriptive statistics of the variables were then computed
traversal, that is, finding the minimum path from the junctionsing the SPSS 6.1 software [15], [16]. The overall area
to the endpoint, which determines theanch length From the covered by identified lead features versus other ice types
branch endpoint and its junction with the skeletobranching in the image was calculated. The distribution of lead-size
anglerelative to the main diagonal orientation is calculateadneasurements (area, main length, and average width) and lead
Average anglesre calculated by looking at all branches thatrientation were determined to compare with expected results.
are above or below the more horizontally oriented leads ahdad coverage, area, length, and width were all analyzed, with
branches that are to the right or left of the more vertical leadespect to month and to latitude of the image.
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Fig. 5. Average lead width. The distribution of average lead width across thi¥)- 7 Standard deviation versus mean lead width. In a true exponential
48 test images also shows a roughly exponential distribution. Average widlistribution, the standard deviation should equal the mean of the measure. In

is shown in kilometers, and each bar in the graph has a width of 0.0625 Kipe case of lead width, the slope is slightly greater than one, which indicates
Again, extreme outliers are not included. that the tail of the width distribution has more weight than a true exponential

distribution.
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the 48 test images also shows a roughly exponential distribution. Avera%gipect to true north shows a bimodal distribution with peaks around 10 and

E;rgitp ;zge;r(;gidhlgskgovnvﬁig;ﬁrif %x;r(in%e outliers are not included, and e and a separation of about4CEach bar in the graph has a width of°10

Average air temperatures were obtained from drifting buoysf the lead features in the image, so there was a wide
There were eight buoys reporting valid temperatures from thiariation in processing time across images. The performance
Beaufort Sea during the time period the images were takems measured with the image-display capability turned on.
although not all of the buoys reported data for all monthgdditional processing-time savings can be realized by turning
Temperatures ranged from a mean-@31.96 for January to the display variable off.

a mean of—6.7C¢ for October. With these low temperatures, The program was run with either three nonmultiyear ice
the backscatter of multiyear ice is stable, and the ice-typges (first-year rough ice, first-year smooth ice, and new

algorithm works well for multiyear ice. icelopen water) or two nonmultiyear ice types (first-year
smooth ice and new ice/open water) as potential leads. Fig. 2
lll. REsuLTS shows the results of both variations in thresholding to obtain

The average processing time was 47.5 sf/image on a 1B®tential lead pixels. The very large area identified as potential
MHz Pentium machine. However, the processing time of laad features, using the three youngest classification types
given image is dependent on the number and complex[fyig. 2(b)], contains many pixels on the interior of floes that
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Fig. 9. Area coverage by month. Coverage is reported as the percentage of the total image area classified by ice type or lead feature versus ¢atal image ar
aggregated by month. The box plots show a line at the median, while the full box shows quartiles and the lines extend from the boxes to maximum and minimum
values, excluding outliers. Extremes and outliers are indicated by the symbols beyond the range of the boxes and lines. The number of images included i
each month is shown below the plots. (a) Nonmultiyear ice coverage by month, (b) new ice/open water coverage by month, and (c) lead coverage by month.

are clearly not lead pixels. Similar patterns of overestimatiaus branching off the main channel still remains, however.
of area were found in all the images. It was determined th@hus, the number of branches counted by the program may be
when using all three younger ice classifications, a tendencysomewhat higher than what would be obtained by hand analy-
join networks of lead features into single features emergesds. This spurious branching also influences the measurement
and the use of only the two youngest ice classificatiomd the average branching angles. Fig. 3 shows the results of
agreed more with visual inspection of the images. Subsequertforming thinning on one of the leads in the image. Fig. 3(a)
analysis, therefore, uses first-year smooth ice and new ice/ogbiows a feature the program identified as a lead and Fig. 3(b)
water to identify potential lead features. is the skeleton of that lead. The skeletonized lead shows an
The thinning algorithm was found to produce the desireatea where there was an “island” in the original lead and a
properties of maximally thin, minimally eroded, and connectddop was created in the skeletonized version. The spanning-tree
skeletons, but it did have the side effect of producing branchalgorithm eliminates these loops, as shown in Fig. 3(c).
where both protrusions and corners occurred in the originalWhen run on the 48 images in the test set, the program
feature as well as producing loops around “islands” in tHdentified 3013 features as meeting the defined elongation
feature. The use of the spanning tree of a graph eliminat@ength-to-width ratio) and linearity criteria of a potential lead.
loops and defining branches as the longest path from thable | is a summary of descriptive statistics from all the
junction with the main channel of the skeleton, and an endpoietid-feature measurements. All coverage measurements made
eliminated additional branching off of branches. Some spugre, with respect to the area within the image, classified as
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Fig. 10. Lead measurements by month. The number of leads is counted across images within a given month, while the other measurements refer to the
overall lead population. Area is shown in knand the length and width are shown in km. While the number of leads found increases in January, February,
and March, their area, width, and length do not appear to vary as much. This is consistent with the trend of increasing lead coverage shown in)Fig. 9(c). (
Number of leads by month, (b) area of leads by month, (c) average width of leads by month, and (d) main diagonal length of leads by month.

ice (rather than land or blank space around the image). “Natages, averages 1%, with a minimum of 0% and a maximum
Multiyear Ice Area” includes all pixels within the image are@f 6%. This is consistent with estimates of lead coverage in
that are classified as not multiyear ice, that is, either newe Arctic, as reported in the literature. New ice/open water
ice/open water, smooth first-year ice, or rough first-year iceoverage was measured at an average of 7%, with a minimum
The “New Ice/Open Water Area” variable includes only pixelsf 0% and a maximum of 22%. This is somewhat higher
classified as that ice type. The “Lead Coverage” variable istltan expected for the winter Beaufort Sea, but analysis of
measure of area comprising lead features. Lead parametths, classification algorithm [5] has shown that it classifies
such as the length measures, perimeter, and average widiany first-year ice areas as new ice. Often these areas can
are reported in units of kilometers. The elongation index I distinguished from leads by their relatively large size and
the ratio of main length to average width, the branching indésck of elongation. By using elongation, the algorithm can
is the ratio of total length to skeletal length, and the linearityliminate these nonlead features.
index is the ratio of skeletal length to main skeletal length. Analysis of the distributions of size and orientation mea-
“Orientation” is the angular orientation of lead features, witurements are in agreement with the hypothesized distribution.
respect to the:--axis of the image, corrected for its relationshipn particular, it was expected that the distributions of lead
to true north. area, average width, and main diagonal length would appear
As can be seen from the descriptive statistics, the lead exponential distributions, and results meet this expectation
coverage reported by the analysis methodology, across all (48e Figs. 4-6). In Figs. 4—6, extreme outliers were eliminated
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Fig. 11. Branching and linearity by month. There is little change in the number of branches, branching index, or linearity across leads by month, excep
for a slight trend toward more branching in March. Note that the number of branches is bounded by a minimum of zero branches, while the linearity and
branching indexes are bounded by a maximum of 1.0. Linearity also has a minimum bound of 0.85 since features that are less linear are not considered

leads. (a) Number of branches by month, (b) branching index by month, and (c) linearity index by month.

from the graphs for clarity in presentation. In Fig. 4, 27 leads The range of widths found by Lindsay and Rothrock [13] is
exceeded the area of 39.24 kifthe maximum area reportedbetween about 2 and 8 km. Here, our average width is about
was 223.06 k), while in Fig. 5, 26 identified lead features0.32 km (2.79 is the maximum for the entire data set; see
had an average width that exceeded 1.4 km (the maximdrmable I) and minimum is about 0.2 km. Lead width measure-
average width reported in the descriptive statistics was 2.i##ents from AVHRR are hampered by the low resolution of the
km). In Fig. 6, five lead features exceeded a length of 4%i8strument (1.1 km at nadir). Conversely, the SAR imagery
km (maximum length was 89.9 km). has a pixel size of 100 m (although true resolution is about

To test for a near-exponential distribution, we plotted the40 m). While small leads are easy for the SAR algorithm to
standard deviation versus the mean lead width for leads in eadbntify, large leads may not be. This is because wide leads
image (Fig. 7). Standard deviation should equal mean widtften have ice at different stages of freezing within them, so
for an exponential distribution. Lindsay and Rothrock [13] dthat the algorithm tends not to detect a single, whole lead.
the same for leads measured using AVHRR. It is not clear wiynother reason for little evidence of large leads in this sample
all the points in Fig. 7 fall below the 1:1 relationship lineis that there are relatively few wide leads: sampling them with
However, the points do follow a linear trend and, as Lindsay00-kn? images is not effective. Based on submarine upward-
and Rothrock find [13, Fig. 9], the slope is slightly greatdooking sonar data, Wadhams [21, Fig. 9] has an average figure
than one, which indicates that the tail of the width distributionf 100 km for the distance between 2-km wide leads in the
has more weight than a true exponential distribution. interior pack.
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coverage by latitude, and (c) lead coverage by latitude.

Fig. 8 shows the distribution of orientation across all leadsecause the signature of leads can remain distinctive for weeks
in all images. The angular orientation of the leads is witbr even months. Cunninghaet al. [2] discuss this sampling
respect to true north and can range from 0180/ did problem. In general, our results were consistent with those of
not look at orientation statistics on an image-by-image basSunninghanet al., who find mostly north- and south-trending
Overall, however, the distribution shows peaks around 1Ceads in the Beaufort Sea below a latitude of about M8
and around 150 Curiously, this separation of approximately Note that images were selected for this study based on
40° (between 10 and 130 is consistent with Erlingsson’s availability rather than a sampling strategy for thoroughly
[4] citations of observations of leads crossing atBQ0° in characterizing Beaufort Sea lead characteristics. Therefore, all
the Beaufort Sea, with the fracture-pattern angle attributed ttte derived statistics must be viewed with caution: these results
the internal angle of friction and the principal direction ofire given primarily to demonstrate that the technique will be
stress. This is surprising since the orientation statistics are faeful in a larger study.
six months, rather than a single point in time. The bimodal Figs. 9-14 are box plots of measurement statistics aggre-
histogram may have two explanations. One is that wind stregated over month and latitude range. The box plots have a
has a preferred direction (from the northwest quadrant in tHise at the median, while the box shows quartiles and the
part of the Beaufort Sea in winter), so that fractures tend lioes extend from the boxes to maximum and minimum values,
form in the same general directions throughout the wintezxcluding outliers. Extremes and outliers are indicated by the
Another is that ice retains a record of previous lead pattersgmbols beyond the range of the box and lines.
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Fig. 13. Lead measurements by latitude. Area is shown id lamd the length and width are shown in km. While the number of leads/image remains
fairly constant, there is a slight downward trend in measurements of size with increasing latitude. (a) Number of leads by latitude, (b) areayof leads b
latitude, (c) average width of leads by latitude, and (d) main diagonal length of leads by latitude.

Fig. 9 shows the coverage of image area by nonmultiyefiig. 10(c) and (d)]. The box plots reveal the skewed nature
ice [Fig. 9(a)], by new ice/open water [Fig. 9(b)], and by idenef what are exponential-size distributions.
tified leads [Fig. 9(c)]. There is slightly more nonmultiyear ice Number of branches, branching index, and linearity show
with time, but this could easily be a result of the selection afo organization by month [Fig. 11(a)—(c)]. As with size mea-
images. The November outlier, showing 72% of nonmultiyeaurements, these measurements have skewed distributions with
ice, is fast ice near the coast of Alaska. The percentage mény more straight, lightly branched leads.
new ice or open water and of identified leads tracks that ofLead measurements grouped by the latitude of the image
nonmultiyear ice, but with greater variability. Note that leaghow more organization. Nonmultiyear ice [Fig. 12(a) and (b)]
area (coverage) generally does not exceed 5% and is a srdalireases with latitude. (Imagery was acquired in the southern
fraction of the nonmultiyear ice area. Beaufort Sea, where fast first-year ice along the Alaska shore

Interestingly, there are more identified leads in Januagyes way to mixed multiyear and first-year ice to the north
[Fig. 10(a)], as might be expected from the increase in led&fore the mostly multiyear ice of the central pack.) The
coverage shown in Fig. 9(c), but the average area of the leadeal coverage of leads, however, remains fairly consistent

[Fig. 10(b)] remains fairly constant, as do the width and lengf{Fig. 12(c)].
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Fig. 14. Branching and linearity by latitude. The number of branches, branching, and linearity indexes all show trends that suggest straigliter leads
fewer branches at higher latitudes. (a) Number of branches by latitude, (b) branching index by latitude, and (c) linearity index by latitude.

Fig. 13 shows that while the number of leads/image rend quantization (requiring discrete numeric levels for each
mained fairly constant, there is a slight downward trend ipixel) introduce error into the image itself, which affects
measurements of size with increasing latitude. classification accuracy. When reporting results in terms of

The number of branches, branching, and linearity indexgBometers rather than pixels, as was done in this study, it
(Fig. 14) all have trends suggestive of straighter leads wifimportant to remember that these are approximations of the

fewer branches at higher latitudes. true distances covered. Additionally, leads extending past the
boundary of the image introduce measurement errors.
V. CONCLUSIONS In the program itself, the skeletonization or thinning process

Correct classification of sea ice is an underlying assumptigii€d in automating lead measurement may produce some
of lead identification from classified SAR imagery in thi$Purious branching off the main channel because of the shape
study. Any method that relies on an initial classification of ic8f the original feature. One future direction may be to add
types will be bounded in accuracy by the underlying classificktowledge-based techniques to the program to determine
tion system, and as the underlying classification algorithms akBich branches should be included in the measurements and
improved, the accuracy of the lead identification and analysiich should be removed, based on the original feature shape
output will also improve. Some sources of error are inherednd knowledge about lead branching in general.
in the image-acquisition and image-processing techniguesWhile the focus of this study was to produce an automated
however. Both sampling (reducing an area into a single pixéfad-analysis tool, the measurements that it produced point
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to areas where further investigation would be interesting9] R. L. Graham, D. E. Knuth, and O. Patashn@oncrete Mathematics,
Analyzing the data in conjunction with wind vector dat 2nd ed.  Reading, MA: Addison-Wesley, 1994.

. . . . 10] B. Holt, R. Kwok, and E. Rignot, “Ice classification algorithm de-
may show some interesting relationships. In fact, retrospectiVe” yejopment and verification for the Alaska SAR facility using aircraft

analysis of wind speed and the potential for misclassifying imagery,” in Proc. Int. Geosci. Remote Sensing Symmpl, V2, 1989,

ind- ; i i pp. 751-754.
wind rothened water as mUItlyear Ice mlght be used [91] J. Key, A. J. Schweiger, and J. A. Maslanik, “Mapping sea ice leads

improve the initial classification of the ice itself. Branching ~ with a coupled numeric/symbolic systemXCSM-ASPRSvol. 4, pp.
and linearity indexes appear to show trends with latitude and 228-237, Mar. 1990.

. . . . . . 1 R. Kwok, E. Rignot, B. Holt, and R. Onstott, “Identification of sea ice
further investigation into these relationships may be warrantdt? types in spacebome synthetic aperture radar dat&seophys. Respl.

In order to eliminate duplication of area covered each 97, no. C2, pp. 2391-2402, Feb. 1992.

month, more than half of the originally available images werié3] R. Wh.'-iﬂdsayla”.d D. Adf Rothrock, “Argti((:;searilce I?ds frloTogdvanced
. o s very high resolution radiometer images,"Geophys. Resvpl. , no.
removed from further analysis in this investigation. Another C3, pp. 4533-4544, Mar. 1995

direction of future study would be to look at duplicate aregs4] G. A. Maykut, “The ice environment,” iln Sea Ice BiotaR. A. Horner,

i i i Ed. Boca Raton, FL: CRC, 1985, pp. 21-82.
as a time series and t(_) follow selected leads across tlme[f% M. J. Norusis,SPSS for Windows Base System User's GUERSS,
analyze the ice dynamics. Inc., Chicago, IL, 1992.

In general, results indicate that the measurements pite] , SPSS for Windows Professional Statist8®SS, Inc., Chicago,
duced by this methodology are consistent with known lea -7g IL, 1992.

L ; K. Steffen, “Fractures in Arctic winter pack ice (North Water, Northern
measurement distributions. The results of the study suggest Baffin Bay),” Ann. Glaciologyvol. 9, pp. 1-4, 1987.

that the methodology may be appropriate to study lead ché&k8] R. Onstott, “SAR and scatterometer signatures of sea ice, in microwave
.. . remote sensing of sea ice,” Beophysical Monograph Seriegol. 68,
acteristics and dynamics at a large scale. The method of " carev "Fq” Washington, DC: AGU, 1992, pp. 73-104.

identifying potential lead features may be refined over tim@9] M. Van Dyne and C. Tsatsoulis, “Extraction and analysis of sea ice leads

to reflect growing understanding of the definition of what L'SmsgéReisTafges%' inProc. Int. Geosci. Remote Sensing Symipl, 2,

constitutes a “_'?ad," and _a_dditiona| measurements may 9@] P. Wadhams, “Sea-Ice Topography of the Arctic Ocean in the Region

added and verified as additional measurements are identified 70> W to 25°E,” Philos. Trans. R. Socvol. 302, pp. 45-85, 1981.

as useful. Using this automated method may allow us ot P- Wadhams, A. A. McLaren, and R. Weintraub, *Ice thickness distribu-
. X tion in Davis Strait in Feb. from submarine sonar profiles,Geophys.

develop a better understanding of the general dynamics of Res.vol. 90, no. C1, pp. 1069-1077, Jan. 1985.

lead formation, growth, and closing. The program itself may

be useful in testing parameter assumptions about leads, and

the output may suggest new directions of investigation.
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