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Analyzing Lead Information from SAR Images
Michele M. Van Dyne, Costas Tsatsoulis,IEEE, Member, and Florence Fetterer

Abstract—Leads are relatively linear features in the sea ice
cover, which are composed of open water or new, thin ice.
Because of their composition, leads impact the ocean/air heat
exchange. Automated analysis of leads from sea ice imagery may
provide a means of gathering important information about the
sea ice cover and its climatic influence. This paper describes: 1) a
method for extracting and analyzing leads from ERS-1 synthetic
aperture radar (SAR) images classified by ice type and 2) the
results of using this method on images of the Beaufort Sea. The
methodology consists of identifying potential lead features in the
image and measuring their characteristics both before and after
using a thinning or skeletonization technique on the features.
The measurements obtained using this method include lead area,
average width, number of leads in an area, amount of branching,
and linearity of the lead. These measurements were analyzed with
respect to the time of year and the latitude of the images. Results
indicate that the measurements produced by the methodology are
consistent with lead measurement distributions that others have
found. The results of the study suggest that the methodology is
appropriate to study lead characteristics on a large scale.

Index Terms—Beaufort Sea, image analysis, image processing,
leads, lead statistics, SAR, sea ice.

I. INTRODUCTION

GOW AND Tucker [8] describe leads as cracks in the
sea ice cover of the Arctic that are formed by divergent

motion. This causes the ice to pull apart or shear and allows
the ocean to come into direct contact with the atmosphere.
Along with polynyas, leads are significant sources of heat loss
to the atmosphere and during the winter constitute a major
source of new ice growth and salt fluxes into the upper ocean.
Zonally averaged models predict that an increase of several
percent in the winter lead area would increase polar-surface
air temperature by several degrees Kelvin. One estimate of lead
coverage in the Arctic is that open water constitutes about 1%
of the area in the winter [14] and increases to 10–20% during
the summer [8]. Another estimate of area covered by leads
in the central Arctic is 1–5% coverage in October, while that
area reaches 5–20% in the marginal ice zone during the same
time frame [20].

Leads rapidly freeze during the winter so that they may
be composed of either open water or new, thin ice. Then,
the identification and analysis of leads in synthetic aperture
radar (SAR) images depends upon an adequate classification
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of sea ice types or thicknesses. In general, winter multiyear
ice (thick ice that has survived a summer’s melt) has the
highest backscatter and appears brightest in SAR images. This
is because multiyear ice has been desalinated by the melt
process and has dielectric properties, which permit volume
scattering of radar energy from bubbles in the ice. First-year
ice (ice in its first year that has grown to at least 30-cm thick)
has lower backscatter because it is smoother than multiyear
ice, and surface rather than volume scattering dominates the
radar return. As a rule, new or young ice and smooth open
water have the lowest backscatter near or below the noise
floor of the sensor.

Classification of ice types in SAR images has been ad-
dressed using several methods. One approach uses cluster
analysis and subsequent cluster labeling, which uses lookup
tables for backscatter signatures of different ice types [10],
[12]. This algorithm produced classified SAR ice-type images
through the Alaska SAR Facility (ASF) Geophysical Processor
System (GPS). The technique was validated under winter
Arctic conditions, and it has been demonstrated that the
classification process is very good at separating multiyear
from first-year ice types [3], although the algorithm divides
first-year ice into smooth and rough classes with doubtful
accuracy [5]. A more serious problem is the difficulty the
classification algorithm has distinguishing younger ice types.
As new ice grows in leads, the backscatter of the ice generally
evolves through a sequence, during which its signature can
equal that of multiyear or first-year ice [18]. Also, wind-
roughened water in an open lead can have a signature as bright
as multiyear ice. The new ice or open water in a lead may
then be misclassified as multiyear or first-year ice, depending
on when in the evolution of a lead the image is acquired. For
a more thorough assessment of this classification method, see
Fettereret al. [5].

Several methods for extracting and analyzing leads from
images have been used. Keyet al. [11] used a combina-
tion of numeric and symbolic algorithms to detect and map
leads from LANDSAT data. The numeric process used was
a dynamic-thresholding approach to separate potential leads
from nonleads based on signature, and the symbolic approach
was a rule-based system that then determined whether potential
leads were in fact leads based on size, location, linearity,
and orientation in relation to other objects. Lindsay and
Rothrock [13] used Advanced Very High-Resolution Radiome-
ter (AVHRR) infrared imagery to study leads in the Arctic. A
threshold based on the potential open water that may occupy a
pixel is used to define lead pixels; lead widths and separation
distances are then obtained using a large number of transects
randomly placed on the images. Fily and Rothrock [6] used
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(a) (b)

Fig. 1. Classified images. The ASF/GPS classified image product available from ASF provides a 1536� 1536-pixel geocoded image that has been
classified into the four ice types: multiyear ice, first-year rough, first-year smooth, and new ice/open water represented, respectively, by progressively
darker grayscale tones in the images. (a) Image 9511 was acquired December 4, 1991, at center latitude 73.607, longitude�139.109. (b) Image 8306
was acquired February 7, 1992, at center latitude 73.291, longitude�153.771.

sequential SAR images to measure the opening and closing
of sea ice leads. They base their identification of leads on the
assumption that leads are closed linear features surrounded by
thick ice, and the initial classification is done using a simple
thresholding technique. Because the focus of the research was
the change in lead coverage through opening and closing,
additional measurements of the leads were not made. Banfield
[1] used a mathematical morphology approach to provide a
structural description of lead shape and to measure certain
characteristics of leads in SAR imagery. Lead and nonlead
pixels are determined by choosing an intensity threshold and
classifying pixels above that threshold as ice and those below
as leads. Banfield indicates that including additional criteria for
identifying lead features, such as the linearity of the features,
would improve results. Banfield discusses measurements that
can be made of lead features, based on their skeletal structures,
which serves as a basis for the lead measurements presented
here.

Cunninghamet al. [2] used Banfield’s method [1] to mea-
sure lead-orientation characteristics in the Beaufort Sea from
January to March 1992 and to relate the orientation data to
the principal direction of shear within ice-motion fields. In a
classified (ice-type) image, all pixels classified as nonmultiyear
ice were taken as making up potential lead features, and false
lead features were then filtered out based on size and excessive
curvature. These authors suggest that additional work could
be done based on other lead measurements available, such as
lead lengths and average widths.

The images used for lead identification in this work are the
ASF/GPS classified images produced from ERS-1 SAR data.
In these images, pixels are classified as multiyear ice, first-
year rough ice, first-year smooth ice, and new ice/open water.
The pixel size is 100 m. The classified images are generated

from geocoded or earth-located images. Geocoding places the
100-km SAR image in a fixed geographical reference frame.
A total of 48 classified images of the Beaufort Sea from
October 1991 to March 1992 were used in this study to test
the methodology and generate lead measurements. The images
come from a box bounded by 69S, 78 N, 160 W, and

120 E. Fig. 1 shows two examples of classified images from
the test image set.

When measuring lead characteristics in the Beaufort Sea
area, we should expect, based on the observations of others
[13], [17], [21], that lead size (width or area) should ex-
hibit a roughly exponential or power-law distribution overall.
Furthermore, there should be an approximately 30angle for
intersections between leads. This angle is a result of an angle
of internal friction for sea ice of about 15[4]. Here we will
describe a method for identifying leads in SAR imagery that
is based on Banfield’s method [1] and will test its utility for
obtaining lead statistics automatically by seeing if the above
statements about lead-population characteristics hold true for
our sample of SAR images.

II. M ETHOD

The approach to lead measurements is to refine the initial
ASF/GPS classification based on shape and size clues. The
method used is best described in two sections: 1) the computer
algorithms for automated lead identification and measurement
and 2) the procedure used in analyzing the output measure-
ments on Beaufort Sea imagery.

A. Automated Lead Identification and Measurement

In extracting potential lead features from the ASF/GPS
classified images, images are first thresholded based on ice-
type classification, then each potential lead feature is distin-
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guished from others by assigning it a unique number. Initial
measurements are made at this point, then the leads are thinned
into a “skeletonized” representation, and finally additional
measurements are made of the lead. Each of these processes
is described more fully in the following sections. During all
processes that modify the image, the changes are displayed on
the screen for visual inspection, although the display function
of the program may be turned off by the user, allowing the
code to run more quickly.

1) Thresholding: Thresholding, based on the ice-type clas-
sifications, consists of assigning the color white to all ice types
of interest and black to those ice types that are not of interest
for analysis. The program allows the user to choose which
ice-type classifications are of interest for further analysis.

2) Feature Identification:After thresholding, an algorithm
to label connected components or features is run on the
image to distinguish different features by assigning each a
unique number or “color.” (During display of the images,
each unique number is drawn on the screen as a different
color.) The algorithm uses an eight-neighborhood approach,
in which pixels to the top, bottom, left, right, and diagonal to
the current pixel are all considered connected to that pixel. The
traditional approach to this process [7] is to scan the image
pixel by pixel from left to right and top to bottom. When
an unnumbered pixel is encountered, the order of scanning
the image guarantees that its upper left, upper, upper right,
and left neighbors have all been previously scanned. Then,
to assign a label to the current pixel, the algorithm looks at
the four neighbors it has already encountered and, if they are
all blank, assigns a new number to the current pixel. If some
of the neighbors already encountered have been assigned the
same number and the rest are blank, that number is assigned
to the current pixel. Finally, if some of the previously scanned
neighbors have been assigned different numbers, the current
pixel is assigned one of these numbers and then the numbers
are entered into an equivalence table. This process continues
until the entire image has been scanned and all nonblank pixels
have been assigned a color. A second pass is then made to sort
the equivalent labels and assign a single label to these classes.
These new labels are assigned to the pixels in the image.

This traditional labeling process was modified in the current
study so that only a single scan need be made over the full
image, with numbering passes done only in areas where an
unnumbered feature has been encountered. In the modified
approach, when an unnumbered pixel is encountered, it is
assigned a new number or label, then all of its neighboring
pixels and their neighbors are then also assigned the same
number using a nonrecursive “flood-fill” or region-growing
process and an eight-neighbor scheme. The flood-fill process
looks first at the current pixel’s right, lower left, lower, and
lower right neighbors, and if they are unnumbered (but not
black), they are all assigned the same label as was just assigned
to the current pixel. A backward pass is then done looking
at the left, upper left, upper, and upper right neighbors. The
furthest pixels define a maximum rectangle about the feature,
and the algorithm need never look more than one pixel beyond
this boundary. As a side benefit, the process produces the
coordinates of the bounding rectangle of the feature and the

area, in pixels, of the feature. The flood-fill process continues
on a feature until no more unnumbered connected pixels are
found. The scan of the image is then restarted at the pixel it
initially encountered.

This process produces a measurement (in pixels) of the area,
length, and average width of each of the identified features,
the coordinates of the bounding rectangle about the feature,
and a count of the number of features found in the image.

3) Feature Measurement:Initial measurements are made
of the full feature before additional processing continues. The
perimeter of the feature is determined by finding all the pixels
on the periphery of that feature and is measured in terms of the
number of pixels. The main length of the feature is defined as
the maximum Euclidean distance between two points on the
boundary of the feature. The average width of the feature is
also computed. At this point, features with a small length-
to-width or elongation ratio may be eliminated from further
consideration. The cutoff value for the elongation ratio may
be changed by the user. The program also allows the user to
specify a feature size, such that features with an area under
that size will not be included in further analysis.

4) Thinning: Next, features identified as potential leads
are subjected to a skeletonization process. The result of this
process is a skeleton or stick figure representation of the
feature. This representation facilitates additional measurements
of the feature that may not be obvious when examining the full
feature. For example, the end-to-end length of the potential
lead may be measured from the full feature, but using the
main channel of the skeleton, or the path from end to end,
gives a clearer picture of its deviation from the straight line
length and, thus, a measure of the linearity of the feature.
Additionally, branching off the thinned figure occurs where
there are protrusions on the original figure. Using the thinned
representation, lengths, and angular relationships of branches
to the main channel of the potential lead can be measured
more easily than can be done with the full feature.

Rather than using a mathematical morphology approach
[1] to producing skeletons from leads, a thinning algorithm
is used, since a drawback of the mathematical morphology
approach is that connectivity of the resulting skeleton is
not guaranteed. The thinning algorithm guarantees that the
resultant skeleton will be maximally thin, minimally eroded,
and connectivity of previously connected elements will be
retained. “Maximally thin” skeletons are those that are no more
than 1-pixel thick, and minimal erosion is desirable so that
the endpoints of the feature are not lost during the thinning
process. Finally, preservation of connectivity is desired so that
the measurements made reflect the original features and not
pieces of those features.

The thinning algorithm is performed by making a first pass
through the image and marking pixels for deletion whenever
the deletion of a particular pixel will not disconnect or erode
the endpoints of the eventual skeleton. The marked pixels
are then deleted, and a second pass is made using slightly
different criteria than the first pass in marking pixels for
deletion. The two passes are made iteratively until no more
pixels are marked in either pass for deletion, that is, until the
lead skeletons are of minimal width. This process also uses
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Fig. 2. Thresholded images. Thresholded representations of image 9511 of Fig. 1(a), where the ice types of interest are black and the rest of the image is
white. Including three ice-types overestimates potential lead area. (a) Thresholding on the two youngest ice types (first-year smooth and new ice/open water).
(b) Thresholding on the three youngest ice types (first-year rough, first-year smooth, and new ice/open water).

an eight-neighborhood approach. This algorithm is described
in more detail by Gonzales and Woods [7] and Van Dyne and
Tsatsoulis [19], and the procedure is defined as follows.

Pass 1: Flag a pixel for deletion if:

a) the number of neighbors is between two and six;
b) the number of transitions from zero to one when travers-

ing through neighboring pixels is equal to one;
c) there is at least one zero-valued pixel in the upper, right,

or lower neighbors;
d) there is at least one zero-valued pixel in the right, lower,

or left neighbors.

Delete flagged pixels after the entire image has been ex-
amined.

Pass 2: Flag a pixel for deletion if:

a) the number of neighbors is between two and six;
b) the number of transitions from zero to one when travers-

ing through neighboring pixels is equal to one;
c) there is at least one zero-valued pixel in the upper, right,

or left neighbors;
d) there is at least one zero-valued pixel in the upper, lower,

or left neighbors.

Delete flagged pixels after the entire image has been exam-
ined. Repeat until no more pixels are flagged for deletion.

Condition a) ensures that no interior points or endpoints are
flagged for deletion. Condition b) prevents a pixel from being
removed from a 1-pixel thick line, so that the skeleton cannot
become disconnected. Conditions c) and d) in Pass 1 indicate
that the current pixel is an east, south, or northwest boundary
point and is not a part of the skeleton, while these conditions
in Pass 2 indicate that it is a north, west, or southeast boundary
point and can be deleted. The northeast and southwest corner
points are found from all four c) and d) conditions.

If the original feature contains holes or islands, the thinning
process will produce a skeleton that contains loops. Further-

Fig. 3. Identified lead/thinned lead/thinned lead after processing branches.
This is an example of one feature identified as a potential lead by the program
in image 9511 of Fig. 1(a). The entire lead feature is measured then reduced
to a skeletal representation by thinning. Loops that occur in the skeleton are
eliminated using a graph spanning-tree traversal algorithm. Once loops are
eliminated, additional measurements are taken. (a) Potential lead feature, (b)
thinned feature, and (c) thinned feature after branch processing.

more, any corners in the outline of the feature will result in a
branch off the skeleton. This is desirable if the corner actually
represents a branch, but spurious branches may occur in some
instances. These conditions are taken into consideration when
making measurements from the skeleton.

5) Skeleton Measurements:Many of the measurements
used in this work are those originally described by Banfield
[1]. These include the main diagonal length, the skeletal length,
the total skeletal length, linearity index, branching index, area,
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TABLE I
DESCRIPTIVE STATISTICS. THE FIRST SIX VARIABLES DESCRIBE STATISTICS ACROSSIMAGES, USING THE 48 TEST IMAGES AS DATA POINTS. THE

REMAINING VARIABLES DESCRIBE STATISTICS ACROSSIDENTIFIED LEADS WITH THE 3013 IDENTIFIED LEAD FEATURES AS DATA POINTS

average width, and main diagonal orientation. Additional
measurements made include the number of branches and the
average branching angles on either side of the lead. Aggregate
measures are also calculated across the lead population in each
image, including the overall lead coverage, average lengths,
orientations, and areas.

The main diagonal lengthis defined as the distance from
endpoint to endpoint of the skeleton. Endpoints are identified
on the skeleton as those pixels that have one or two neighbors.
If the pixel has two neighbors, these neighbors must also

be neighbors of each other for the pixel to be considered a
potential endpoint. The two endpoints of the skeleton are those
that result in the largest main diagonal length. In contrast
to the main length measured from the full feature, which
uses a Euclidean distance, the main diagonal length uses
a city-block distance measurement for ease of comparison
with additional length measurements, although the Euclidean
distance could also be calculated. The city-block distance
measurement between the two points,1 and 2, is defined as

, where indicates
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Fig. 4. Lead area. The distribution of lead area across the 48 test images,
reported in square kilometers, shows a roughly exponential distribution. Each
bar in the graph has a width of 0.01 km2 and extreme outliers are not included.

the absolute value and the subscriptsand indicate the and
coordinates of the pixel or the point within the image [7].
Theskeletal lengthis determined by traversing the skeleton

from endpoint to endpoint and following a minimal path, and
it is either equal to or larger than the main diagonal length.
Dividing the main diagonal length by the skeletal length pro-
duces a measurement of thelinearity of the feature. Thetotal
skeletal lengthis the skeletal length plus the length of each
of the branches on the skeleton and is computed by adding
the lengths of the branches to the skeletal length. Dividing
the skeletal length by the total skeletal length produces a
branching indexof the lead. Main diagonalorientation is
measured by determining the angle of the main diagonal
in relation to the -axis of the image and then applying a
correction so that the orientation is relative to true north (e.g.,
leads aligned in a northwest-southeast direction would have
an orientation of 135).

The number of branchesis determined by traversing the
path of the skeletal length and finding protrusions or junctions
on this main channel. Since there may be loops represented in
protrusions off the main channel, the structure of a “branch”
may be more of a cyclic graph at this point. A spanning tree
is created from this graph with the root of the spanning tree at
the junction of the branch with the main channel. Grahamet
al. [9] define a spanning tree of a graph as a subgraph of the
original graph that contains all the vertices and enough of the
original edges that the subgraph is connected, but contains no
cycles. The endpoint of a branch is determined by finding the
farthest leaf from the root of the spanning tree. Traversal of the
branch is then done in the same manner as the skeletal-length
traversal, that is, finding the minimum path from the junction
to the endpoint, which determines thebranch length. From the
branch endpoint and its junction with the skeleton, abranching
angle relative to the main diagonal orientation is calculated.
Average anglesare calculated by looking at all branches that
are above or below the more horizontally oriented leads and
branches that are to the right or left of the more vertical leads.

Within the aggregate or population measures for images, the
overall lead coverageis the ratio of lead pixels to all pixels
within the entire image.Average lengths, orientation, andarea
are all calculated by taking the averages of the individual lead
measurements.

Typically, geophysicists are interested in lead breaking and
intersection angles or lead width as a function of density.
The additional, more esoteric descriptive measurements were
derived for two reasons: first, they might prove useful for
screening real leads from false ones (this proved not to be
the case) and second, we were interested in seeing if such
measures as length, linearity, or branching index showed
regional or temporal organization. For instance, it might be
expected that the leads are longer and less branched at high
latitudes in winter because the pack is consolidated and
relatively homogenous there.

B. Lead Measurement Analysis

The program was first run on 120 ASF/GPS classified
images taken between October 1991 and March 1992, with
20 images selected from each month. Seven of these images
were subsequently removed from consideration because they
included large areas of land that produced incorrect ice-type
classifications. Images were then compared by latitude and
longitude for each month, and those that created areas of
overlap were removed so that statistical analysis would not
include duplicate lead features. (Leads can appear quite static
with the same lead feature identifiable in SAR imagery for a
month or longer. Of course, during this time the ice in the lead
may grow to first-year thickness.) After eliminating images
of duplicate areas, there were 48 remaining images used for
analysis. With the exception of March, which only had three
images, each month had eight to eleven images.

The requirements for initial measurements of the elongation
ratio were varied. Features with a length-to-width ratio of
less than 5 : 1 were removed from consideration because, by
definition, leads are relatively long and narrow. Additionally,
statistics were generated on the linearity index of all the
identified lead features, and the initial mean was 0.94 with
a standard deviation of 0.09. Using these values, lead features
with a linearity index below one standard deviation below the
mean (0.85) were also eliminated from further consideration.

Experimentation was done on the inclusion or exclusion of
proportionately small features in the image. The program was
run on all features and then was run on only those features
that had an area of greater than 100 pixels (approximately
1 km ). Since statistical analysis showed no difference be-
tween the inclusion or exclusion of these smaller features, their
measurements were included in the full analysis of the data.

Descriptive statistics of the variables were then computed
using the SPSS 6.1 software [15], [16]. The overall area
covered by identified lead features versus other ice types
in the image was calculated. The distribution of lead-size
measurements (area, main length, and average width) and lead
orientation were determined to compare with expected results.
Lead coverage, area, length, and width were all analyzed, with
respect to month and to latitude of the image.
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Fig. 5. Average lead width. The distribution of average lead width across the
48 test images also shows a roughly exponential distribution. Average width
is shown in kilometers, and each bar in the graph has a width of 0.0625 km.
Again, extreme outliers are not included.

Fig. 6. Main diagonal length. The distribution of main diagonal length across
the 48 test images also shows a roughly exponential distribution. Average
length is reported in kilometers. Extreme outliers are not included, and each
bar in the graph has a width of 0.1 km.

Average air temperatures were obtained from drifting buoys.
There were eight buoys reporting valid temperatures from the
Beaufort Sea during the time period the images were taken,
although not all of the buoys reported data for all months.
Temperatures ranged from a mean of31.96 for January to
a mean of 6.70 for October. With these low temperatures,
the backscatter of multiyear ice is stable, and the ice-type
algorithm works well for multiyear ice.

III. RESULTS

The average processing time was 47.5 s/image on a 133-
MHz Pentium machine. However, the processing time of a
given image is dependent on the number and complexity

Fig. 7. Standard deviation versus mean lead width. In a true exponential
distribution, the standard deviation should equal the mean of the measure. In
the case of lead width, the slope is slightly greater than one, which indicates
that the tail of the width distribution has more weight than a true exponential
distribution.

Fig. 8. Lead orientation. The distribution of the orientation of leads with
respect to true north shows a bimodal distribution with peaks around 10 and
150� and a separation of about 40�. Each bar in the graph has a width of 10�.

of the lead features in the image, so there was a wide
variation in processing time across images. The performance
was measured with the image-display capability turned on.
Additional processing-time savings can be realized by turning
the display variable off.

The program was run with either three nonmultiyear ice
types (first-year rough ice, first-year smooth ice, and new
ice/open water) or two nonmultiyear ice types (first-year
smooth ice and new ice/open water) as potential leads. Fig. 2
shows the results of both variations in thresholding to obtain
potential lead pixels. The very large area identified as potential
lead features, using the three youngest classification types
[Fig. 2(b)], contains many pixels on the interior of floes that
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(a) (b)

(c)

Fig. 9. Area coverage by month. Coverage is reported as the percentage of the total image area classified by ice type or lead feature versus total image area
aggregated by month. The box plots show a line at the median, while the full box shows quartiles and the lines extend from the boxes to maximum and minimum
values, excluding outliers. Extremes and outliers are indicated by the symbols beyond the range of the boxes and lines. The number of images included in
each month is shown below the plots. (a) Nonmultiyear ice coverage by month, (b) new ice/open water coverage by month, and (c) lead coverage by month.

are clearly not lead pixels. Similar patterns of overestimation
of area were found in all the images. It was determined that
when using all three younger ice classifications, a tendency to
join networks of lead features into single features emerged,
and the use of only the two youngest ice classifications
agreed more with visual inspection of the images. Subsequent
analysis, therefore, uses first-year smooth ice and new ice/open
water to identify potential lead features.

The thinning algorithm was found to produce the desired
properties of maximally thin, minimally eroded, and connected
skeletons, but it did have the side effect of producing branches
where both protrusions and corners occurred in the original
feature as well as producing loops around “islands” in the
feature. The use of the spanning tree of a graph eliminated
loops and defining branches as the longest path from the
junction with the main channel of the skeleton, and an endpoint
eliminated additional branching off of branches. Some spuri-

ous branching off the main channel still remains, however.
Thus, the number of branches counted by the program may be
somewhat higher than what would be obtained by hand analy-
sis. This spurious branching also influences the measurement
of the average branching angles. Fig. 3 shows the results of
performing thinning on one of the leads in the image. Fig. 3(a)
shows a feature the program identified as a lead and Fig. 3(b)
is the skeleton of that lead. The skeletonized lead shows an
area where there was an “island” in the original lead and a
loop was created in the skeletonized version. The spanning-tree
algorithm eliminates these loops, as shown in Fig. 3(c).

When run on the 48 images in the test set, the program
identified 3013 features as meeting the defined elongation
(length-to-width ratio) and linearity criteria of a potential lead.
Table I is a summary of descriptive statistics from all the
lead-feature measurements. All coverage measurements made
are, with respect to the area within the image, classified as
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(a) (b)

(c) (d)

Fig. 10. Lead measurements by month. The number of leads is counted across images within a given month, while the other measurements refer to the
overall lead population. Area is shown in km2 and the length and width are shown in km. While the number of leads found increases in January, February,
and March, their area, width, and length do not appear to vary as much. This is consistent with the trend of increasing lead coverage shown in Fig. 9(c). (a)
Number of leads by month, (b) area of leads by month, (c) average width of leads by month, and (d) main diagonal length of leads by month.

ice (rather than land or blank space around the image). “Not
Multiyear Ice Area” includes all pixels within the image area
that are classified as not multiyear ice, that is, either new
ice/open water, smooth first-year ice, or rough first-year ice.
The “New Ice/Open Water Area” variable includes only pixels
classified as that ice type. The “Lead Coverage” variable is a
measure of area comprising lead features. Lead parameters,
such as the length measures, perimeter, and average width,
are reported in units of kilometers. The elongation index is
the ratio of main length to average width, the branching index
is the ratio of total length to skeletal length, and the linearity
index is the ratio of skeletal length to main skeletal length.
“Orientation” is the angular orientation of lead features, with
respect to the -axis of the image, corrected for its relationship
to true north.

As can be seen from the descriptive statistics, the lead
coverage reported by the analysis methodology, across all 48

images, averages 1%, with a minimum of 0% and a maximum
of 6%. This is consistent with estimates of lead coverage in
the Arctic, as reported in the literature. New ice/open water
coverage was measured at an average of 7%, with a minimum
of 0% and a maximum of 22%. This is somewhat higher
than expected for the winter Beaufort Sea, but analysis of
the classification algorithm [5] has shown that it classifies
many first-year ice areas as new ice. Often these areas can
be distinguished from leads by their relatively large size and
lack of elongation. By using elongation, the algorithm can
eliminate these nonlead features.

Analysis of the distributions of size and orientation mea-
surements are in agreement with the hypothesized distribution.
In particular, it was expected that the distributions of lead
area, average width, and main diagonal length would appear
as exponential distributions, and results meet this expectation
(see Figs. 4–6). In Figs. 4–6, extreme outliers were eliminated
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(a) (b)

(c)

Fig. 11. Branching and linearity by month. There is little change in the number of branches, branching index, or linearity across leads by month, except
for a slight trend toward more branching in March. Note that the number of branches is bounded by a minimum of zero branches, while the linearity and
branching indexes are bounded by a maximum of 1.0. Linearity also has a minimum bound of 0.85 since features that are less linear are not considered
leads. (a) Number of branches by month, (b) branching index by month, and (c) linearity index by month.

from the graphs for clarity in presentation. In Fig. 4, 27 leads
exceeded the area of 39.24 km(the maximum area reported
was 223.06 km), while in Fig. 5, 26 identified lead features
had an average width that exceeded 1.4 km (the maximum
average width reported in the descriptive statistics was 2.79
km). In Fig. 6, five lead features exceeded a length of 49.6
km (maximum length was 89.9 km).

To test for a near-exponential distribution, we plotted the
standard deviation versus the mean lead width for leads in each
image (Fig. 7). Standard deviation should equal mean width
for an exponential distribution. Lindsay and Rothrock [13] do
the same for leads measured using AVHRR. It is not clear why
all the points in Fig. 7 fall below the 1 : 1 relationship line.
However, the points do follow a linear trend and, as Lindsay
and Rothrock find [13, Fig. 9], the slope is slightly greater
than one, which indicates that the tail of the width distribution
has more weight than a true exponential distribution.

The range of widths found by Lindsay and Rothrock [13] is
between about 2 and 8 km. Here, our average width is about
0.32 km (2.79 is the maximum for the entire data set; see
Table I) and minimum is about 0.2 km. Lead width measure-
ments from AVHRR are hampered by the low resolution of the
instrument (1.1 km at nadir). Conversely, the SAR imagery
has a pixel size of 100 m (although true resolution is about
240 m). While small leads are easy for the SAR algorithm to
identify, large leads may not be. This is because wide leads
often have ice at different stages of freezing within them, so
that the algorithm tends not to detect a single, whole lead.
Another reason for little evidence of large leads in this sample
is that there are relatively few wide leads: sampling them with
100-km images is not effective. Based on submarine upward-
looking sonar data, Wadhams [21, Fig. 9] has an average figure
of 100 km for the distance between 2-km wide leads in the
interior pack.
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(a) (b)

(b)

Fig. 12. Area coverage by latitude. Coverage is reported as the percentage of the total image area classified by ice type or lead feature versus total
image area aggregated by latitude. The number of images included in each latitude group is shown below the plots. Nonmultiyear ice decreases at
increasing latitudes, however, the areal coverage of leads remains fairly consistent. (a) Nonmultiyear ice coverage by latitude, (b) new ice/open water
coverage by latitude, and (c) lead coverage by latitude.

Fig. 8 shows the distribution of orientation across all leads
in all images. The angular orientation of the leads is with
respect to true north and can range from 0–180. We did
not look at orientation statistics on an image-by-image basis.
Overall, however, the distribution shows peaks around 10
and around 150. Curiously, this separation of approximately
40 (between 10 and 150) is consistent with Erlingsson’s
[4] citations of observations of leads crossing at 3010 in
the Beaufort Sea, with the fracture-pattern angle attributed to
the internal angle of friction and the principal direction of
stress. This is surprising since the orientation statistics are for
six months, rather than a single point in time. The bimodal
histogram may have two explanations. One is that wind stress
has a preferred direction (from the northwest quadrant in this
part of the Beaufort Sea in winter), so that fractures tend to
form in the same general directions throughout the winter.
Another is that ice retains a record of previous lead patterns

because the signature of leads can remain distinctive for weeks
or even months. Cunninghamet al. [2] discuss this sampling
problem. In general, our results were consistent with those of
Cunninghamet al.,who find mostly north- and south-trending
leads in the Beaufort Sea below a latitude of about 78N.

Note that images were selected for this study based on
availability rather than a sampling strategy for thoroughly
characterizing Beaufort Sea lead characteristics. Therefore, all
the derived statistics must be viewed with caution: these results
are given primarily to demonstrate that the technique will be
useful in a larger study.

Figs. 9–14 are box plots of measurement statistics aggre-
gated over month and latitude range. The box plots have a
line at the median, while the box shows quartiles and the
lines extend from the boxes to maximum and minimum values,
excluding outliers. Extremes and outliers are indicated by the
symbols beyond the range of the box and lines.
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(a) (b)

(c) (d)

Fig. 13. Lead measurements by latitude. Area is shown in km2 and the length and width are shown in km. While the number of leads/image remains
fairly constant, there is a slight downward trend in measurements of size with increasing latitude. (a) Number of leads by latitude, (b) area of leads by
latitude, (c) average width of leads by latitude, and (d) main diagonal length of leads by latitude.

Fig. 9 shows the coverage of image area by nonmultiyear
ice [Fig. 9(a)], by new ice/open water [Fig. 9(b)], and by iden-
tified leads [Fig. 9(c)]. There is slightly more nonmultiyear ice
with time, but this could easily be a result of the selection of
images. The November outlier, showing 72% of nonmultiyear
ice, is fast ice near the coast of Alaska. The percentage of
new ice or open water and of identified leads tracks that of
nonmultiyear ice, but with greater variability. Note that lead
area (coverage) generally does not exceed 5% and is a small
fraction of the nonmultiyear ice area.

Interestingly, there are more identified leads in January
[Fig. 10(a)], as might be expected from the increase in lead
coverage shown in Fig. 9(c), but the average area of the leads
[Fig. 10(b)] remains fairly constant, as do the width and length

[Fig. 10(c) and (d)]. The box plots reveal the skewed nature
of what are exponential-size distributions.

Number of branches, branching index, and linearity show
no organization by month [Fig. 11(a)–(c)]. As with size mea-
surements, these measurements have skewed distributions with
many more straight, lightly branched leads.

Lead measurements grouped by the latitude of the image
show more organization. Nonmultiyear ice [Fig. 12(a) and (b)]
decreases with latitude. (Imagery was acquired in the southern
Beaufort Sea, where fast first-year ice along the Alaska shore
gives way to mixed multiyear and first-year ice to the north
before the mostly multiyear ice of the central pack.) The
areal coverage of leads, however, remains fairly consistent
[Fig. 12(c)].
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(a) (b)

(c)

Fig. 14. Branching and linearity by latitude. The number of branches, branching, and linearity indexes all show trends that suggest straighter leadswith
fewer branches at higher latitudes. (a) Number of branches by latitude, (b) branching index by latitude, and (c) linearity index by latitude.

Fig. 13 shows that while the number of leads/image re-
mained fairly constant, there is a slight downward trend in
measurements of size with increasing latitude.

The number of branches, branching, and linearity indexes
(Fig. 14) all have trends suggestive of straighter leads with
fewer branches at higher latitudes.

IV. CONCLUSIONS

Correct classification of sea ice is an underlying assumption
of lead identification from classified SAR imagery in this
study. Any method that relies on an initial classification of ice
types will be bounded in accuracy by the underlying classifica-
tion system, and as the underlying classification algorithms are
improved, the accuracy of the lead identification and analysis
output will also improve. Some sources of error are inherent
in the image-acquisition and image-processing techniques,
however. Both sampling (reducing an area into a single pixel)

and quantization (requiring discrete numeric levels for each
pixel) introduce error into the image itself, which affects
classification accuracy. When reporting results in terms of
kilometers rather than pixels, as was done in this study, it
is important to remember that these are approximations of the
true distances covered. Additionally, leads extending past the
boundary of the image introduce measurement errors.

In the program itself, the skeletonization or thinning process
used in automating lead measurement may produce some
spurious branching off the main channel because of the shape
of the original feature. One future direction may be to add
knowledge-based techniques to the program to determine
which branches should be included in the measurements and
which should be removed, based on the original feature shape
and knowledge about lead branching in general.

While the focus of this study was to produce an automated
lead-analysis tool, the measurements that it produced point
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to areas where further investigation would be interesting.
Analyzing the data in conjunction with wind vector data
may show some interesting relationships. In fact, retrospective
analysis of wind speed and the potential for misclassifying
wind-roughened water as multiyear ice might be used to
improve the initial classification of the ice itself. Branching
and linearity indexes appear to show trends with latitude and
further investigation into these relationships may be warranted.

In order to eliminate duplication of area covered each
month, more than half of the originally available images were
removed from further analysis in this investigation. Another
direction of future study would be to look at duplicate areas
as a time series and to follow selected leads across time to
analyze the ice dynamics.

In general, results indicate that the measurements pro-
duced by this methodology are consistent with known lead-
measurement distributions. The results of the study suggest
that the methodology may be appropriate to study lead char-
acteristics and dynamics at a large scale. The method of
identifying potential lead features may be refined over time
to reflect growing understanding of the definition of what
constitutes a “lead,” and additional measurements may be
added and verified as additional measurements are identified
as useful. Using this automated method may allow us to
develop a better understanding of the general dynamics of
lead formation, growth, and closing. The program itself may
be useful in testing parameter assumptions about leads, and
the output may suggest new directions of investigation.
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