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Abstract—It is well understood that the pulse amplitude modula-
tion (PAM) representation of continuous phase modulation (CPM)
can lead to reduced-complexity detectors with near optimum per-
formance. It has recently been shown that the PAM representation
also extends to CPM schemes with multiple modulation indexes
(multi- CPM). In this paper, we present a detector for multi-
CPM which is based on the PAM representation. We also give an
exact expression for the pairwise error probability for the entire
class of PAM-based CPM detectors (single- and multi- , optimal,
and reduced-complexity) over the additive white Gaussian noise
(AWGN) channel and show that this bound is tighter than the pre-
viously published bound for approximate PAM-based detectors. In
arriving at this expression, we show that PAM-based detectors for
CPM are a special case of the broad class of mismatched CPM de-
tectors. We also show that the metrics for PAM-based detectors
accumulate distance in a different manner than metrics for other
CPM detectors. These distance properties are especially useful in
applications with greatly reduced trellis sizes. We give thorough
examples of the analysis for different single- and multi- signaling
schemes. We also apply the new bound in comparing the perfor-
mance of PAM-based detectors with other reduced-complexity de-
tectors for CPM.

Index Terms—Continuous phase modulation (CPM), mis-
matched detector, pairwise error probability, pulse amplitude
modulation (PAM), reduced-complexity detector, union bound.

I. INTRODUCTION

CONTINUOUS phase modulation (CPM) is advantageous
for its efficient use of power and bandwidth. It also has

a constant signal envelope, which is essential in applications
using nonlinear amplifiers. However, the optimal maximum-
likelihood sequence detection (MLSD) scheme, which is im-
plemented via the Viterbi algorithm (VA), often suffers from
high complexity in terms of the required number of correlators
(matched filters or MFs) and trellis states. A number of tech-
niques have been proposed to reduce the number of MFs, e.g.,
[1]–[4], and similarly to reduce the number of trellis states, e.g.,
[1], [5]–[7].

Of particular interest here is the PAM representation of CPM,
which was introduced by Laurent in 1986 [8]. In his paper, Lau-
rent showed that any binary single- CPM scheme can be ex-
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actly represented by a superposition of PAM waveforms. He
also showed that the binary single- CPM signal is often well
approximated by a reduced number of PAM pulses or even by
the main pulse alone. Kaleh followed in 1989 [2] by deriving
the MLSD structure for PAM-based CPM detectors. He also
showed that suboptimal PAM-based detectors require an appre-
ciably reduced number of MFs (since they are based on a lim-
ited number of pulses) and that they simultaneously achieve a
reduction in the number of trellis states. Kaleh also provided a
simple performance bound, which is of little use beyond the bi-
nary single- CPM schemes considered in his paper.

The PAM representation of CPM has since been extended to
-ary signaling by Mengali and Morelli [9] and for the special

case of CPM schemes with integer modulation index by Huang
and Li [10]. It has also been confirmed in these cases that re-
duced-complexity PAM-based detectors achieve a simultaneous
reduction in the number of MFs and trellis states with manage-
able performance tradeoffs [10], [11]. These performance as-
sessments have been made using computer simulations. There
is a need for analysis and explanation of the performance of
PAM-based detectors in general, since the computer simula-
tions do not reveal the reasons for the strong performance of
PAM-based detectors.

The PAM representation has also been extended to -ary
multi- CPM very recently in [12]. In this paper, we take this
recent extension of the PAM-based CPM model and apply it to
the problem of detecting -ary multi- CPM signals. We gen-
eralize Kaleh’s results from [2] and arrive at an optimal MLSD
structure for multi- CPM that is based on the PAM representa-
tion. We confirm that the MF and trellis reduction properties of
suboptimal PAM-based detectors also hold for the multi- case.

One important facet of PAM-based detectors for CPM which
is missing from [2], [11] is an adequate performance analysis
of these detectors. We study the problem of performance in
this paper and derive the exact expression for the pairwise error
probability for PAM-based CPM detectors in AWGN. This pair-
wise error probability, though given in multi- terms, is also ap-
plicable to the entire class of PAM-based detectors for CPM in
[2], [11] (both optimal and approximate). In carrying out this
analysis, we show that detectors based on the PAM approxima-
tion can be viewed as mismatched CPM detectors. Schemes of
this type, where the internal signal model of the detector is mis-
matched (different) with respect to the signal produced by the
transmitter, were first analyzed in [1]. The class of mismatched
detectors is quite broad and includes the schemes in e.g., [3],
[4]. As such, the analysis presented here is a special case of
that given in [1]. In order for this viewpoint to yield correct
results, however, proper consideration is given to the precise
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manner in which metrics are computed in PAM-based detec-
tors. We demonstrate that, like other mismatched detectors, the
pairwise error probability is a function of specific pairs of data
sequences, in contrast with the optimal detector where only the
difference between pairs of data sequences is needed. This in
turn means that the error performance for reduced-complexity
PAM detectors is not dominated by a single distance parameter,
i.e., the minimum distance.

We apply the new bound in a performance comparison be-
tween PAM-based detectors and the reduced complexity detec-
tors given in [1] and [6]. In this comparison, we demonstrate
explicitly how metrics within PAM-based detectors accumulate
distance in a different manner than metrics in other CPM detec-
tors. For instance, if two CPM signals are different from each
other for a brief interval, the optimal detector observes the dis-
tance between these signals over this entire event. By contrast,
a detector with a reduced trellis often observes the distance be-
tween these signals over some fraction of this interval (thus for-
feiting some portion of the optimal distance). The reduced com-
plexity scheme in [1] observes the (mismatched) distance during
the center of the interval, splitting the omitted portion evenly
between the beginning and the ending tails. The decision feed-
back scheme in [6] observes the distance from the beginning
of the event to a certain point, discarding whatever remaining
distance there is on the ending tail of the event. On the other
hand, PAM-based detectors observe the (mismatched) distance
from the beginning of the event to a certain point, after which
they continue to observe the distance to a lesser degree up to
the completion of the event. This behavior allows PAM-based
detectors to be used with relatively small performance losses in
spite of aggressively reduced trellis sizes. This study gives a the-
oretical basis to confirm the simulation results which have been
reported for single- schemes in e.g., [2], [11].

In the next section, we review the traditional and PAM-based
signal models for multi- CPM and give the structure of PAM-
based detectors. In Section III, we analyze these detectors and
obtain a new performance bound. In Section IV, we use the
bound to characterize the performance of several single- and
multi- schemes. We also apply the bound in a performance
comparison in Section V and give conclusions in Section VI.

II. MULTI- CPM SIGNAL MODEL

A. Traditional Model

The complex-baseband multi- CPM signal is given by

(1)

(2)

where is the symbol energy, is the symbol duration, is
the set of modulation indexes, are the information
symbols in the -ary alphabet , and

is the phase pulse. In this paper, the underlined subscript
notation in (2) is defined as modulo- , i.e., .

We assume the modulation indexes are rational numbers of the
form [13]

(3)

We determine by expressing all of the modulation indexes as
a fraction and taking as the value of the smallest common
denominator.

The phase pulse is the integral of the frequency pulse
. The frequency pulse is zero outside the time interval

and is scaled such that . In light of these
constraints on and , and considering the -ary digits

, (2) can be written as

(4)

where

(5)

(6)

and is a data-independent phase
tilt [13]. The term is a function of the symbols being
modulated by the phase pulse. The substitution of

is confined to the phase state , which takes on
only distinct values. Therefore, the phase signal in (4) is de-
scribed by a trellis containing states, with branches
at each state. Each branch is defined by the -tuple

(7)

B. PAM Model for Multi- CPM

In [12] it is shown that the right-hand side of (1) can be exactly
written as

(8)

where , , and is the integer that
satisfies the conditions . The signal is the
superposition of pulses scaled by pseudo-symbols .
This is a generalization to the multi- case of the results in [8],
[9] which apply to binary and -ary single- CPM, respec-
tively. The details of the construction of and
are found in [12]. For this paper, it is important to know that the
pulses vary in amplitude and duration, with the longest
pulses also having the largest amplitude. This is shown in Fig. 1
for a quaternary CPM scheme with a raised-cosine frequency
pulse of duration (3RC) and . Each pulse
has a duration of symbol times, where is an integer in
the set . We can group the pulses into sets with
common duration, i.e.,

(9)



1690 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 53, NO. 10, OCTOBER 2005

Fig. 1. Signal pulses g (t) for M = 4, 3RC, with h = f4=16; 5=16g. The
48 pulses for n-even are on top and the 48 for n-odd are on bottom. In each case
there is one pulse of duration 4T , two of duration 3T , nine of duration 2T , and
36 of duration T (too small to view in the figure).

Another important characteristic of the PAM representation
is that not all the pseudo-symbols require the full

-tuple in (7) to describe them. We obtain a reduced trellis
simply by discarding those signal terms that require the most
states. In fact, it can be shown that the number of states required
by the pseudo-symbols in each set is , for
[14]. In order for this rule to be complete, we must also account
for the case where , i.e., the set , which we do by
grouping with , as was also done in [2] and [9]. In terms
of Fig. 1, the first three pulses (those in and ) require a
trellis with only . If the nine length-
pulses in are included then a trellis of states
is required. An additional -fold increase in states is required
if the 36 length- pulses are included. By simply discarding the
smaller pulses and their costly pseudo-symbols, we see that the
PAM representation simultaneously reduces the number of MFs
and the number of trellis states. We stress that the principle be-
hind the trellis reduction is a function of the pseudo-symbols
and not the pulses. It just so happens that the structure is conve-
niently summarized in terms of the pulse duration.

The PAM model we will consider from this point on is

(10)

where is an approximation of the exact CPM signal
in (8). The summation in (10) is over an arbitrary subset

of signal terms , which is a proper subset of ,
and is usually chosen in terms of . The number of ele-
ments in the set is , and the shortest pulse duration is

. The pulses and pseudo-symbols
are related to the original pulses and pseudo-symbols by

some averaging scheme. One such example is the minimum
mean-squared error approximation in [8], [9], [12]. Another
example is averaging the length- pulses in Fig. 1, which are
all very similar, to produce a single pulse [11].

C. PAM-Based Detectors for Multi- CPM

The optimal detector for the equivalent PAM representation
of single- CPM was derived by Kaleh [2]. We now show the
extension needed to accommodate the multi- case. The com-
plex-baseband received signal model is

(11)

where is a complex valued AWGN process with one-sided
power spectral density . Due to the AWGN assumption, the
detector selects as its output the information sequence which
minimizes the Euclidian distance

(12)

Since is constant envelope, minimizing (12) is equivalent
to maximizing the correlation

(13)

which can be computed in a trellis using the recursive metric

(14)

where corresponds to the -tuple associated with the
th branch in the trellis and is the cumulative metric as-

sociated with at index . We refer to (14) as the traditional
detector metric and its performance is well understood [15].

To arrive at the PAM detector metric, we insert (10) into (12)
and with some simple manipulations arrive at the recursion

(15)

where

(16)

is the output of a filter matched to sampled at
and

(17)

is a bias term that is a consequence of the approximation (10)
no longer being constant envelope. The hypothesis along the th
branch, , is associated with a set of branch pseudo-sym-
bols . A slightly different version of the branch pseudo-sym-

bols is used (17). These are modified by decision feed-
back, as explained shortly.

We pause to discuss an important special case of (15) where
the exact PAM representation in (8) is used. In other words, no
approximations are made and , ,
and . Here the detector is based on a constant envelope
signal. Therefore, the bias term is no longer necessary, since
is a constant for all values of . The correlation in (13) is com-
puted exactly, the difference is that the computation is made
using PAM pulses and pseudo-symbols rather than the tradi-
tional data-dependent CPM matched filters in (14). This special
case represents an alternate form of MLSD and has equivalent
performance to that of (14).
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The trellis for the PAM-based detector has states,
where

(18)

We note that this reduced trellis is identical to those obtained
from [1] and [6]1; the former reduces the trellis by basing the
detector on a simpler (mismatched) CPM scheme, while the
latter reduces the trellis with the use of decision feedback. In
the present case, the trellis is reduced as a natural consequence
of the PAM approximation. Each branch in the trellis has an

-tuple
(19)

associated with it, and a corresponding set of pseudo-sym-
bols . Since the interconnections (i.e., branches) in the
multi- trellis vary in a modulo- fashion, we have added
a modulo- index to the branch pseudo-symbols .
Practically speaking, the limits of integration in (16) mean
the sampled MF outputs are computed with a delay of

symbol intervals, since . This delay
is directly related to the different manner in which the PAM
metrics accumulate distance, as we shall see in the next section.

The bias term provides compensation for the signal energy
variations present in the approximation. It presents a minor dif-
ficulty since it remains a function of the original -tuple in
(7). To cope with this, we use decision feedback where each state
in the reduced trellis maintains a record of recent merge decisions

which are used to fill out the original -tuple. This
minor use of decision feedback results in no performance loss (as
we shall see in Section IV), which is consistent with other cases
where decision feedback has been used, e.g., [6]. The record of
recent decisions along the -th branch is denoted by and the
concatenation of in (17) forms an -tuple. The bias
term is not present in the detector configuration in [2], and can
be ignored if (10) is very close to being constant envelope (as was
the case in [2]); however, for more coarse PAM approximations,
such as the multi- scheme discussed in Section IV, the removal
of results in a surprisingly large performance penalty.

The structure of the detector is shown in Fig. 2. The received
signal is fed into the bank of MFs. The sampled filter
outputs are the inputs to the VA, which computes branch
metrics, determines the surviving path at each merging node,
and outputs a decision. The figure also shows an expanded view
of the th filter in the bank. Each filter actually consists of a
set of filters whose sampled outputs are cyclically selected
using a commutator and then delayed by the amount needed to
have an overall filter delay of symbol times.

III. PERFORMANCE ANALYSIS

A. Pairwise Error Probability for PAM-Based Detectors

We seek the quantity , which is the probability of
the detector outputting the sequence given is transmitted.
From (12), this pairwise error probability is

(20)

1We emphasize that the expressions for the branch metrics for each of these
three detectors are each different from one another. The three detectors merely
operate on an identical trellis structure.

Fig. 2. PAM-based detector structure for multi-h CPM with expanded view of
modulo-N matched filter and delay.

where

(21)
While the limits of integration in (20) are infinite, the integrands
are identical to each other (and thus cancel one another) except
for the finite interval when the trellis paths taken by the two data
sequences are different. If the data are different over a span of

symbol times, then the two paths can merge together in the
trellis after

(22)

symbol times. We examine the branch metric in (15) over the
interval where is arbitrary and

. We concentrate on the first term in (15), which is a
function of the received signal and ignore for the mo-
ment. The PAM-based metric is

(23)

where the signal is defined as

(24)

for . This signal is key
to understanding the performance of PAM-based detectors for
CPM. Conceptually speaking, it is obtained by summing the
outputs of a set of filters with impulse response ,

. These filters are idle (i.e., their output is zero) for
. During the symbol times where the two trellis

paths are different, these filters are fed with the pseudo-symbols
that correspond to the trellis path. After the paths merge,

the filters are starved of input and their collective output returns
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to zero for . The cumbersome indexes on the
inner sum in (24) ensure that pseudo-symbols are not clocked
into the pulses for values of outside the range

.
We now include in the analysis. For convenience, we refer

to as and as . We expand the terms
in (20) in the same manner in which (15) was obtained from
(12). By ,this we mean that the expansion includes a mix of

and terms, just as there are two terms found in (15). The
pairwise error probability becomes

(25)

which simplifies to

(26)

where is the energy per bit ( ) and

(27)

(28)

(29)

(30)

We stress that (29) and (30) contain two forms of the approxi-
mate PAM signal. The received signal and noise are correlated
with the modified signal and from (24). The branch bias
terms and are from the traditional form of the PAM ap-
proximation in (10).

Some discussion of (28)–(30) is in order. While these expres-
sions were derived from basic principles, they match the gen-
eral form of the distance measure for mismatched CPM detec-
tors in [1]. Here the transmitter/detector mismatch is due to the
PAM approximation (i.e., discarding the less significant pulses
and averaging the pulses). Other examples of mismatched sig-
nals are found in [1] and [4]. In light of this, the above anal-
ysis is a special case of the results in [1]. However, there are
certain nuances regarding the PAM-based detector which must
be given proper attention in order to obtain the correct result;
namely, the mismatched signal must take the nonobvious form
in (24) in order to to compute the distance measure correctly
instead of its original form in (10). It can be shown that it is
actually the reduced trellis itself (i.e., ), with its short-
ened merger duration in (22), which motivates the need for the
modified signal in (24). It is also (24) which shows the unique
manner by which distance is accumulated in the PAM-based de-
tector. While the competing paths in the trellis are different for
only symbol intervals, the true CPM signals in (1) differ
for symbol intervals (a difference of ). The
limits on the integral in (16) show that, at index , the distance
measure has contributions from the received signal as far in ad-
vance as index . Therefore, while (24) begins to decay after

symbol times, it does not return to zero until symbol

times later. As such, distance not only continues to accumulate
to a lesser degree, but this extra distance is applied retroactively
at the time of the merge. As mentioned earlier, this attribute of
the PAM-based CPM detector is distinct from those in [1] and
[6].

We now make a final comment on (29). Although this is given
as a squared quantity (for conceptual and historical reasons, e.g.,
[1]), there is nothing to prevent this quantity from assuming
a negative value, especially as the PAM approximation (mis-
match) becomes more coarse. In light of this, the final distance
measure is correctly used in unsquared form in the pair-
wise error probability (26) to preserve the sign. The case where

is negative corresponds to the detector outputting errors
for arbitrarily large values of (i.e., an error floor).

B. Probability of Bit Error

Some additional steps are needed to convert the pairwise error
probability into a probability of bit error. It is well known that, as

grows large in the AWGN environment, a pairwise error
probability term (26) corresponding to the minimum-distance
becomes dominant [15]. This results from the nature of (27).
The only question is at what point is large enough for
this approximation to be accurate?2

For the optimal detector, there are many pairs of data se-
quences that have the minimum distance. Therefore,
the pairwise error probability associated with the minimum dis-
tance is independent of specific pairs of and tends to
dominate the union bound for of practical interest. In the
case of the PAM-based detector (and other mismatched detec-
tors), each specific pair has its own distance. Therefore,
the pairwise error probability associated with the minimum dis-
tance is not typically dominant for of practical interest,
since there are many near-minimum-distance terms also present
in the union bound. In the case of the PAM-based detector, the
probability of bit error is given by a sum of near-minimum-dis-
tance terms, as shown below. Examples illustrating this point
are given in Section IV.

Based on the above arguments, the probability of bit error for
the optimal detector is well approximated by

(31)

We define the terms in (31) below. We start with the concept
of a merger, which is a set of pairs with a common
difference such that

(32)

where is the th coordinate of , and and are from the
modulation index in (3). Equation (32) simply states that if
two data sequences deviate from each other and their signals are
to merge together at some later point, it must be that the summa-
tion of the difference in their phase is zero (modulo- ) when

2In this paper, we study the answer to this question in the context of uncoded
CPM. The answer is different when considering the case of coded CPM, e.g.,
[16].
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properly scaled by the modulation indexes. In general, the dif-
ference sequence has nonzero coordinates that span a limited
number of symbol times ( ) and we arbitrarily assign the first
of these coordinates to be . We can easily count the number
of pairs of data sequences with a common difference
of as

(33)

Identifying the difference sequence corresponding to
the minimum-distance is a straightforward task for the optimal
multi- CPM detector [15]. It is essentially to find the sequence

(34)

For multi- CPM, the search in (34) must be repeated times
to allow each modulation index to coincide with . Also, since
CPM is constant envelope, this distance does not vary across the

individual pairs in this merge.
We define in (31) to be the difference in bits between

a pair (i.e., the bit error weight), which is a function
of the mapping from bits to symbols (typically a Gray code),
and is the number of bits transmitted per use of the
channel. The other terms in the denominator of (31) constitute

, which is the probability that a given
-ary length- data sequence is transmitted with a particular

alignment to the modulation indexes (we assume the uniform
distribution).

For the PAM case, the minimum-distance merger itself is
often the same as the optimal detector, although there is
nothing to prevent another merger from becoming dominant
as the PAM approximation (mismatch) becomes more coarse.
Therefore, the search over all mergers in (34) must be performed
explicitly for the PAM distance measure in (28). Another differ-
ence from the optimal case, as was mentioned earlier, is that the
distance in (28) is a function of specific sequence pairs
and is different (in general) for each of the pairs in the
merger. [This variation in distance is a general attribute of all
mismatched CPM detectors; in the PAM case, it is caused by
the missing or averaged pseudo-symbols in (10) that are still
present in the exact signal in (8).] Modifying (31) accordingly
produces

(35)

The scale factor of in (31) is replaced by a summa-
tion over all sequence pairs for which . There will
be a combination of that produces ; how-
ever, since this is only one of (potentially) many terms in the
sum whose distances are relatively close to each other, it gen-
erally does not become dominant until is outside the
range of practical interest. Therefore, PAM-based CPM detec-
tors, generally speaking, are not well characterized by just one
minimum-distance parameter as in (31); instead, the summation
in (35) must be used.

TABLE I
MINIMUM-DISTANCE MERGER PARAMETERS FOR THE EXAMPLES

Fig. 3. Performance of M = 4, 3RC, with h = f4=16; 5=16g. For the PAM
detector, the P curve shows strong agreement with the simulated data points.
In this instance, the performance bound from Kaleh [2] essentially fails.

IV. EXAMPLES

A. Quaternary 3RC With

The first example we consider is the multi- scheme ,
3RC (raised cosine), and . This is the
Advanced Range Telemetry (ARTM) CPM waveform for
aeronautical telemetry defined in IRIG 106–04 [17], [18]. The
MLSD trellis has 256 states in this case, which is a considerable
number. The performance of the optimal detector is given by
(31) using the parameters in the first entry in Table I and is
plotted in Fig. 3.

The exact PAM representation requires the large set of 48 2
pulses shown in Fig. 1. We obtain a much smaller set of three
pulses by taking the following steps: 1) we apply the minimum
mean-squared error approximation in [12] to obtain one aver-
aged set of 12 pulses (this results in an effective value of )
and 2) we further reduce the number of MFs by combining the
two length- pulses to form one averaged pulse and repeat this
for the nine length- pulses. This gives the final filter bank
of three MFs (these steps are explained in detail in [14]). With

, the 64-state trellis has branches defined by

(36)

We must now compute (28) for all of the pairs within
each merger . The search in (34) finds the same minimum-dis-
tance merger for the PAM case as was found for the MLSD
case, namely, the first entry in Table I. Technically speaking,
with , the distance metric in (29) is a function of
the two symbols preceding the merge and the three symbols fol-
lowing the merge; however, the dependence is strongest only on
the symbol immediately preceding and immediately following
the merge. The result is that we must consider all of the
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pairs with , where we have explic-
itly padded a zero coordinate on each end of which may not
be ignored when counting the number of terms in (33) (there are
1152 sequence pairs of this type). The squared distances range
from 1.03 to 1.52 over these sequence pairs, which is a distance
loss of 1.02 dB for certain transmitted sequences. By con-
trast, the bounding technique in [2] essentially fails by upper
bounding the distance loss at 27.24 dB. Fig. 3 shows for the
PAM-based detector where we see that the bound in (35) be-
comes indistinguishable from data points obtained by computer
simulation as grows large.

We also point out that Fig. 3 shows an actual loss of only
0.17 dB for the PAM-based detector at , which is
much less than the 1.02 dB loss of the minimum-distance term
in (35); this underscores the point that the actual minimum dis-
tance for PAM-based detectors (or all mismatched CPM detec-
tors, for that matter) typically does not have enough weight to
approximate well for of practical interest.

B. Quaternary 2RC With

The second scheme we consider is , 2RC with
, where the optimal trellis has 16 states. The merger param-

eters for the MLSD scheme are given in the second entry in
Table I.

We consider the PAM configuration for this scheme given in
[11] with , which has only two pulses and a four-state
trellis with branches defined by

(37)

Since , the dependence of on the symbols pre-
ceding and following the merger is small and can be ignored in
this case. We evaluate (28) for the 18 pairs of interest
and obtain squared distances ranging from 1.16 to 1.51, which
is a maximum distance loss of 0.59 dB (though the loss is much
smaller at ). By contrast, the distance bounding tech-
nique in [2] yields a less useful upper bound of 1.38-dB loss.
Fig. 4 shows for this PAM-based detector, which again shows
strong agreement with computer simulations as grows
large.

C. Binary GMSK With and

The last example we consider is binary Gaussian minimum-
shift keying (GMSK) with and , which was the
central example in [2]. The optimal trellis has 16 states, and the
last entry in Table I gives the merger parameters for the optimal
detector.

The exact PAM representation for this scheme contains eight
pulses with durations of down to . We select approxi-
mate PAM-based detectors with two different configurations.
The first uses the two most significant pulses, and , as
MFs. This makes and produces a four-state trellis with
branches given by

(38)

This configuration was considered at length in [2]. The second
configuration uses only the most significant pulse, , as an

Fig. 4. Performance of 4-ary 2RC with h = 1=4. The four-state PAM detector
has a negligible loss with respect to MLSD. The Kaleh bound [2] is also shown
for reference (dashed line).

Fig. 5. Performance of binary GMSK with L = 4 and BT = 1=4. The
P curves show strong agreement with the simulated data points for the two
PAM-based detectors (four- and two-states). The bound from Kaleh [2] is also
shown for both cases (dashed lines) but it is not tight for the two-state case.

MF. This gives and produces a two-state trellis with
branches defined by

(39)

As with the first example, we must pad a zero coordinate on
each end of the sequences when performing the search in (34).
For the four-state detector, the squared distances range from
1.66 to 1.72. The analysis in [2] upper bounds this distance loss
at 0.24 dB. For the second detector configuration (two states),
the squared distances range from 1.29 to 2.07 and the distance
bound from [2] is less helpful at 3.18-dB loss. The curves
generated by (35) for the two PAM configurations are shown in
Fig. 5 along with data from computer simulations.

V. APPLICATIONS

Given that the reduced-complexity detectors in [1], [6], and
Section II each gather distance in their own unique manner while
using the exact same trellis, an interesting question to ask is:
which method yields the best performance for a given trellis
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TABLE II
PERFORMANCE OF REDUCED-COMPLEXITY DETECTORS FOR M = 4, 3RC,

h = f4=16; 5=16g

complexity? It comes as no surprise that the answer depends
on the CPM scheme and the trellis in question. In this sec-
tion we demonstrate the typical characteristics of each detec-
tion scheme, using the multi- scheme , 3RC,

as a case study. We will show that the PAM-based
detector performs well in cases where the trellis size is aggres-
sively reduced. This is due primarily to the different manner in
which distance accumulates in PAM-based detectors.

In Table II we consider three reduced trellis configurations.
There are three groupings in the table, one for each configura-
tion. The first entry in the table is for the MLSD scheme which
serves as the reference detector for what follows.

The first reduced trellis is the 64-state configuration with
branches defined by (36). This is a relatively minor state reduc-
tion of a factor of 4. The first grouping in Table II shows that
the three reduced complexity detectors perform relatively close
to one another, with the PAM-based detector being slightly the
worst of the three both in terms of minimum distance and loss
at . In all of these detectors, the minimum-distance
merger is the one given for this CPM scheme in Table I.
The detector from [1] is based on a 2RC approximation. Its
minor losses are the result of this transmitter/receiver mis-
match and from the fact that is shortened from seven
to six symbol times. As mentioned before, the one symbol
time worth of distance loss is divided equally between the
beginning and ending tail of the error event. The detector from
[6] uses decision feedback to approximate the symbol
which is found in the original 4-tuple in (7). Its minor loss is
entirely due to the shortening of . In this case, it forfeits
the distance increment that might have come in the seventh
symbol time of the error event, namely, the small increment

. The PAM-based detector is the same as
given in Section IV-A, which uses three pulses to approximate
the original set of 48 2. Its third-place ranking is balanced
by the fact that its filtering requirements are much less than the
other two detectors.

We can pursue more aggressive trellis approximations. The
second reduced trellis we consider has branches defined by

(40)

which is a trellis of 16 states (a state reduction by a factor of
16). To achieve this reduction, the detector from [1] is based

on a 1RC approximation, and the detector from [6] uses deci-
sion feedback to approximate the symbols and that
are found in the original 4-tuple in (7). The PAM-based detector
uses the 3 2 pulses from the minimum mean-squared error ap-
proximation in [12]. The performance of these three detectors
is shown in the second grouping in Table II. Here the decision
feedback approach from [6] and the PAM-based detector per-
form close to one another, while the detector from [1] suffers a
large loss due to the coarseness of the 1RC approximation.

For the third reduced trellis example, we use decision feed-
back to reduce the number of phase states from to

, cf. e.g., [6]. The branches in this 16-state trellis are
defined by

(41)

where the modulo-4 operation in (41) is understood to apply to
the modulo- operation in (6). We use the same three detector
approximations as in the 64-state case, namely the 2RC mis-
match, the decision feedback and the three-pulse PAM
approximation. The benefit of the trellis is an overall re-
duction in states by a factor of 16, which gives the same number
of states as the previous trellis example, although it is an entirely
different trellis. The downside of the approximation is that this
new trellis definition permits mergers according to (32) using

instead of . The most potentially catastrophic of
these is , where symbol times.

The last grouping in Table II shows the performance of the
three detectors using this trellis approximation. In this example
the detector from [6] suffers greatly because the merger is
dominant, where squared distance is only 0.31 after two symbol
times. This is unfortunate, because after the second symbol time
the distance grows rather quickly (and indefinitely) with a linear
slope, since the data sequences represented by produce CPM
signals which remain different forever. On the other hand, the
mismatched detector from [1] benefits greatly from the extra
half symbol time it gets to observe the merger. The squared
distances for this merger range from 1.32 to 1.51, with a some-
what uniform distribution. Therefore, the minimum distance for
this detector in Table II is unchanged from the 64-state example.
However, these near-minimum-distance mergers have a high
probability of transmission and produce a 1.2-dB loss for this
detector at . The PAM-based detector also benefits
from its different observation of the merger. Here the squared
distances range from 1.20 to 5.29, which is a large spread with
most of the terms at the high end. The minimum distance for
the PAM-based detector is also unchanged from the 64-state ex-
ample. Its smaller loss of 0.9 dB at is due to the
larger distance of most of the terms.

Although we have focused on only one CPM scheme in this
study, the results given are typical for these detectors (see also
[1], [2], [6], and [11]). As is decreased, the detector from [1]
suffers the most due to the coarseness of its mismatch with the
transmitter. As is decreased, the decision feedback detector
from [6] suffers the most due to the rogue mergers permitted by
the reduced trellis. In either case, PAM-based detectors sustain
relatively manageable losses.
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VI. CONCLUSION

We have presented the form of the optimal and approximate
detectors for multi- CPM which are based on the recently
extended PAM representation of multi- CPM. We have also
found an exact expression for the pairwise error probability for
all PAM-based CPM detectors. This expression was used to
evaluate the performance of detectors for single- and multi-
CPM, where there was strong agreement with computer simu-
lations and where a previously reported performance bounding
technique was found to be less useful. It was shown that the key
performance characteristic of these detectors is that their met-
rics observe the received signal for longer durations than those
of other reduced-complexity detectors for CPM. This permits
a very aggressive application of trellis reduction techniques,
parameterized by and , with relatively minor performance
losses. This result unifies and confirms those reported by other
authors which were obtained by computer simulations. It was
also shown that detectors with traditional metrics can suffer
great losses when similarly aggressive trellis reductions were
applied.
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