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An Exact Line Search Method for Solving Generalized  Algorithm 1 (Newton's Method for Solving CARE)
Continuous-Time Algebraic Riccati Equations

1. Choose some initial starting gue’s = X .
2. FORj=0,1,2,---
21 K; — RYBTX;E+57C).
2.2 Solve forN; in the Lyapunov equation

Peter Benner and Ralph Byers

Abstract—We present a Newton-like method for solving algebraic

Riccati equations that uses Exact Line Search to improve the sometimes (4 - BK; )TN,;'E + ETNJ(A - BK;)
erratic convergence behavior of Newton’s method. It avoids the problem = —R(X}).

of a disastrously large first step and accelerates convergence when Newton 23 X;i1 — X, +N;.

steps are too small or too long. The additional work to perform the line END FOR

search is small relative to the work needed to calculate the Newton step.
If (E., A, B) is strongly stabilizable(E, A, C') is strongly detectable,
and X, is stabilizing, then Algorithm 1 converges to the desired

. . . N . stabilizing solutionX* [18], [23], [26]. Ultimately, convergence is
We study the generalized continuous-time algebraic Riccati eqlf:ﬁiadratic At each step\(E, A — BE;) C C~, andafter the first
. 9+ J i

|. INTRODUCTION

tion (CARE) step, convergence is monotone. (Algorithm 1 also provides all the
ingredients for a condition estimate of CARE afg is an estimate
0=R(X) of the errorX* — X; [7].)
—CTQC+ A"XE+ E'XA Because of its robustness in the presence of rounding errors, we

prefer to calculate the Newton step explicitly as in Algorithm 1 rather
than to use the mathematically equivalent formulation [9], [18], [23],
(26]

—(B"XE+S"C)Y"R"Y(B"XE+S"C). (1)

Heref‘,E,AX— E Rn)(n’B E RnX7n,R — RT E R’nX"l,Q — ; - T v o - ’ -
Q" € RP*?,C € RP*", and S € R"*™. We will assume that (A_BAJ)TXJ“E_F? ‘TX”I(A;BA]) .

E is nonsingular andR >0, where M >0 (M > 0) denotes =-C (Q-SR™' S )C-FE X;BR™ B X,E
positive (semi-) definite matriced/. In principle, by invertingE,

(1) may be reduced to the cafie— I. This is convenient for study- which determinesX;, directly. The coefficient matrices of the

) behavi f th ical thod ted htwo Lyapunov equations are the same, but the right-hand sides
Ing convergence benhavior of e numerical method presente f& different. Loosely speaking, if the condition number of the

(?r(]ae lsfcut?: ”rlr){ Hm’f\(’fr‘ Wirr]]ef' blﬁitm-i(;]o:dlrtrzorr]iedl(Ler.r} ntiatrilyn coefficients permits us to solve the Lyapunov equation to (gay)
singular), this may ntroduce Instability In numerica’ computationg, .o ¢ significant digits, and(;4, is calculated directly, then its
Therefore, the algorithm derived here avoids invertiig

: . I accuracy is limited td: significant digits. However, in Algorithm 1,
_Often, the desired solu_tloﬁ IS stab|I|2|hg|n theislensle_z that the it is the rounding error corrupted Newton stdp that is limited tok
eigenvalues of the matrix penck — \(A — BR™(B"XE + - . - L
7 . . significant digits. The surX ; + N; has roughlyt more correct digits
S+ C) have negative real parts. We denote this hyE, A — - ; . ; o
BR-'(B'XE + STC)) C €. Assuming (E, A, B) strongly than X ;. The accuracy of Algorithm 1 is ultimately limited only by
. o =2 th r whicl®(X ;) and th ny;+N; ar lcul . Of
stabilizable and(E, 4, C) strongly detectable, such a stabilizin he accuracy to whicli( X;) and the sunk, + N; are calculated. O

ne many methods for solving Riccati equations, Algorithm 1 usually

solution .e.xllsts and is Lirjlque [23]. Throughout this paper, we Casqueezes out the maximum possible accuracy [2], [16], [17].
the stabilizing solutionX ™.

; . . Algorithm 1 is potentially faster (and more accurate) than the

We also use the following notation. TH&obeniusnorm or Eu- . Lo

. . . . . ; widely used Schur vector method [20]. The break-even point is
clideannorm of a matrixM is defined by||M||% = trace(MT M). y [20] P

. . . between six and eight iterations [9] (assuming that a Bartels—Stewart-
For any symmetric matrid?, we have|| M||7. = trace(M?), and for like alqorith . :
. ’ i . , [11 I he L .
any two matrices\/ and N, trace(MN) = trace(NM). Following tke algorithm [3], [11] is used to solve the Lyapunov equation)

. . . . . ; ... Although Algorithm 1 ultimatel dratically, id
[13], we define each floating point arithmetic operation together with oug gorithiim - ufimately converges quadraticaly, rapi
the associated integer indexing afiap convergence occurs only in a neighborhoodYof. Automatic stabi-

o ) . . . lizing procedures like those proposed in [1], [27], and [28] may give
The algebraic Riccati equation (1) is a nonlinear system of qug}ioi?:eps ofXy that lie far fronr: thF:e solutiorg(]*.[So]metim[es ]the f3|1r59t

tions. One of the oldest, best studied numerical methods for SOIVIRI%WIOH stenV. is disastrously | d iterati ded

(1) is Newton's method [9], [14], [18], [23], [26]. ! HYo ously 'arge and many Heratons are neede
to find the region of rapid convergence [16], [17]. If the Lyapunov
equation is ill-conditioned it may be difficult to compute an accurate
Newton step, and the exact-arithmetic convergence theory breaks
down. (This signals an ill-conditioned algebraic Riccati equation [7].)

) ] ) ] Sometimes rounding errors or a pap cause Newton’s method to
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but | No|lr = 0.500=(/2. For 6 = 1075, ||R(Xo)||r = 107* Remark 1: There exists a local minimum of; at some value
and || R(X1)||+ =~ 10". Newton’s method then takes 20 iterations tef ¢; € [0,2], since fj(0) = —2 - trace(R(X;)*) < 0, and
reduce||R(X;)||» back down to 10* where it reaches the region f/(2) = 2 - trace((R(X;) + 4V;)?) > 0. If R(X,) # 0, i.e., if
of quadratic convergence. X; is not a solution of (1), thery}(0) <0 and the Newton step

From the point of view of optimization theory, the Newton stefis a descent direction dfR(X; + tN;)||«. It follows that for the
gives a search direction along whidlR(X;)||r may be (at least minimizing ¢; € [0,2], we have||R(X; + t;N;)|lr < [|R(X)|Fr
approximately) minimized. The disastrous first step is a step in thed ||R(X; + ¢, N;)||» = ||R(X;)||~ if and only if R(X;) = 0.
search direction that is too long. The several subsequent steps th&emark 1 suggests that we modify Algorithm 1 as follows.
make limited progress are too short.

In this_ paper we _show hp_w to minimizﬁzR(X)_llp alor_19 the Algorithm 2 (Exact Line Search)
search direction at little additional cost. This avoids a disastrously
large first step, accelerates convergence when Newton steps are
too small or too long, and restores some robustness to Newton'’s 1

Choose some initial starting gue¥s = X .
method. The idea is to choogg> 0 to minimize || R(X;11)|» = g guess 0

2. FORj; =0,1,2,---

LLB(A;(.],+7€]-A§’]»)||F, i.e.,hto usT afExact !_ine Searcz!ong ghe Ngwton 21 K; — R-YB'X,E+S70).
wegtl_on.lglne jeirzc es alonglcorljj_ugate grﬁ ient |re<|:t|ons V\(/je_re 22 Solve forX; in the Lyapunov equation
used in [10] and [12] to solve (2). Line searches were also used in (A— BE,)TN;E+ ETN;(A - BK,)
the Fletcher—Powell/Davidon’s method proposed in [21]. Section Il _ —R(Y,-) : ’ '
shows that the extra cost of doing an Exact Line Search is little more . o el Rt A
han th f calculating the N @ in Algorithm 1. | 23 V;— E"N;BR "B"N,E.
than the cost of calculating the Newton st&p in Algorithm 1. In 2.4 Find a local minimizet; € [0,2] of
Section Il we prove that the Exact Line Search along the Newton 7,(t) using (4)
S(t .

direction converges quadratically to the stabilizing solution, if the
starting guess, is stabilizing. Numerical examples in Section IV
demonstrate that step-size control often saves enough iterations to be
competitive with the Schur vector method. Some final remarks and
conclusions appear in Section V.

25 Gl — X]' —+ f]'fV]'.
END FOR.

Remark 2: Algorithm 2 finds the solution of scalar Riccati equa-
tions in the first step. Applied to Example 1, one step of the Exact
Line Search reducgbR(X;)||» by as much as 24 steps of Newton's

Il. STEP-SIZE CONTROL BY EXACT LINE SEARCH method.
g In addition to the work in Algorithm 1, at each

The approach is to replace Step 2.3 in Algorithm 1 Ky, = ;/rbra_tlcgl,T \ﬁllgglt?gfwgu(s)t compl:te the t;}:mn;fgt_rlctl m_atnx
X, +1t,;N;, wheret; is a real scalar “step length” in the direction of '’ f_” - ]B f S r?e way 10 compute’; € |C|encyh|sl K
N;. The step length is chosen to minimize or approximately minimizfaeS . O_OV\t'_S' ef;re;zst_artj;r}th € dlte:atlont,h we cgmc%uti aBL—? esky
an objective function which, in our case, [I{®(X; + ¢t;N;)||%. The SC. onzg fon 1%, b_t ; ‘V» fan s‘?re_ eEp;r%% E_T V. 7T
line search is said to bexactif ¢; is an exact (as opposed to sing o, we CaQ obtainV; from V; = (E°N, ),( N;B)
; R which requiresin“m + nm flops. In caseE = I, this reduces to
approximate) minimizer. 2 - ) .
: 3n“m + nm flops. In many applicationsp < n, in which case
From (1), we obtain . . S .
the computation of this matrix is cheap relative to the cost of the
B(X: + N Newton stepN;. Computing the coefficients;,, 3,,~; of f; and
(X5 +N;) o . ‘ finding the minimizing¢; contributes3n inner products and some
= R(X;)+t((A— BK;) N;E+ E" N;(A- BLj)) scalar operations, which is negligible compared to @e*) flops
- t*E'N,BR 'B'N,E. (2) used by matrix multiplications and Lyapunov equation solutions.
Using work estimates from [11] and [13] for solving the Lyapunov
IfV; = ETN],BRABTN]E and.V; is as in Step 2.2 of Algorithm equatllon, we can conclude that for = n, each iteration step of
1. then Algorithm 2 does less than 10% more workAf = T and less than
' 5% more work ifE # I. This comparison becomes more favorable
asm decreases relative to.

Line searches are a well-understood technique in optimization [

R(X;+tN;) = (1 - t)R(X,) — V. ©)
So, findingt; to minimize ||R(X;11)||F is equivalent to minimizing l1l. CONVERGENCE
the quartic polynomial Algorithm 2 casts the nonlinear equation (1) as a nonlinear
least squares problem. The convergence theory for this approach
f;(t) =trace(R(X; + tN;)?) is well known and largely satisfactory (for example, see [8, Sec.
—aj(1=1)? = 28;(1 = ) + ;1 @) 6.5]). However, convergence—even convergence to a solution—is

not sufficient. Often it is the symmetric stabilizing solution that is
required. Other solutions can be transformed back to the stabilizing
solution through a process of eigenvalue ordering [9], but it is
preferable to get the stabilizing solution in the first place. In this
section, we show that under certain assumptions, Algorithm 2 has
guaranteed quadratic convergence from a stabilizing starting guess to
the stabilizing solution.
By assumptionF is nonsingular, so we may rewrite (1) as

where a; = trace(R(X;)?),3; = trace(R(X;)V;), and~; =
trace(V). If +; # 0, then f;(¢) has at most two local minima,
one of which is the global minimum. H; = 0, then f;(¢) attains
its global minimum value (zero) &t = 1. Differentiating f; and
using (3), we obtain

fi(t) = =2 trace((R(X;) + 2tV;)R(X; + tN;))
= =2 trace((R(X;) + 2tV;)((1 = HR(X;) = £*V})). (5) R(X)=R(X)=F+A"X + Xi1-XGX (6)
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where Corollary 4: If X, is stabilizing, and Algorithm 2 is applied to
A=E"(A-BR™'S"C), F=c"(Q-SR's"C (6), then the Lyapunov operatél; in Step 2.2 is nonsingular for all
- 1 s o~ i~p - T < 7, and the sequence of approximate solutidghsis well defined.
B=E"B, G=BR B, X =EXE We will also need the following technical characterization of
It is easy to verify thatX; and R(X;) are the sequences ofcontrollability.
approximate solutions and residuals produced by Algorithm 2 appliedLemma 5: Suppose that € R"*", B € R"*™, R € R™*™, and
to (6) with starting guesX,. Note that becausE is nonsingular, the It is symmetric positive definite. The pair, B) is controllable if
boundedness, convergence (or lack of it), and rate of convergenceéad only if the only matrixy” = v satisfying BR™'B'Y =0
the two sequenced ; and X; are identical and\(E, A — BL;) ¢ and ATY + YA >0isY = 0.
~ifand only if A — GX; is stable. The residual satisfiég)ij) = Proof: We will prove the contrapositive of the statement in
R( 5), andX* satisfiesR(X*) = 0 if and only if X* = EY X*EF Lemma 5: the pait A, B) is uncontrollable if and only if there exists
satlsflesR(Y ) = 0. Note further that the sequence of step size§ = Y/ # 0 such that BR~'B"Y =0 andA"Y + Y 4 > 0.
t; produced by Algorithm 2 is equal in both cases. The coefficient If (4, B) is uncontrollable, then there exists a left eigenveator
matrix i = BR—B" is symmetric positive semidefinite because bpf A that lies in the left null space aB. Let A, be the real part

assumption,R is symmetric positive definite. of the corresponding eigenvalue df If ¥~ = sign(A, yww, then
In Remark 1, it was observed that there exists a local minimizer 5BR~'B'Y = ww'BR™'B"ww' = 0 and A"Y + YA =
| R(X; +tN;)|| in the interval[0, 2]. The following lemma shows 2[A-[Y" = 2[A |w " is positive semidefinite.
that the iterates\; + ¢, N, are stabilizing if the starting guess, For the converse, assume that there exists a symmetric matrix
is stabilizing, andt € [0, 2] We can thus considdf, 2] to be the Y # 0 such that4’Y + Y4 > 0 andYBR™'B"Y = 0. We will
“canonical” search interval. show that( 4, B) is uncontrollable by constructing a left eigenvector
Lemma3:If G > 0 and A — GX; is stable, then for all of A belonging to the left null space d8.
t €1]0,2], A — G(X; + tN;) is also stable. By choosing an appropriate orthonormal basis, we may arrange
Proof: The Newton StepV; is determined by that A,Y, and BR~'B" take the form
(A—GX;)"(X; 4+ N)) + (X, + Nj)(A - GX,) ~ [Gn 0 0 0 0 0
- _F - X,GX,. BR™'B"=10 0 0|, Y=1[0 Y 0

0 0 0 0 0 0
A1n Are Ags
A= [Ax Az Ags
(A-GX,)" (x (X4, )) + (v - o@m)) (A-GX) A A As

— (X" = X)G(X=X,). @ whereCu € R"*" andYs2» € R*** are nonsingular. The assump-
on Y # 0 implies thatk > (). However, it is possible that either
Using a modified version of Lyapunov's theorem [19, p. 447] (711 =0orn —h— k=0, in which case the corresponding rows and

together with_the stability ofd — GX; and G > 0 implies ¢olumns do not appear. In this basik! Y’ + A takes the form
X" — (X, + N;) < 0. Rearranging (7), we obtain

Subtracting this fronR(X*) = 0 and subtractind{;G X"+ X "G X
on both sides yields

N o S 0 ALY 0
A . N 1 * X 7. . 21422
(A= G HIN)E =&+ M) ATY 4 VA= [Vindor ALY+ Voo dus Vioduy
+ (X7 = (X + Nj))(A - G(X; +tN)) 0 A3 Y20 0

= (X" — (X, +tN,))G(X* — (X, +tN;
( (X; +N;)G( (X; +tN)) By hypothesis, this matrix is positive semidefinite, §p 421 = 0

TH2 = HN;GN; = W. (8)  and Y2 4.3 = 0. It follows from the nonsingularity oft3» that
Sincet € [0, 2], the right-hand sidéV” in (8) is positive semidefinite. 421 = 0 and A3 = 0. .
Now supposeA — G(X; + tN;) has an eigenvalue\ with Let wo € C* be a left eigenvector off»>. Definew € C" as
Re(A) > 0 and corresponding eigenvector 0, i.e., w = [wy, ws, w3] wherew; =0 € C* andw; = 0 € R"~"~*. The
PO o vectorw is a left eigenvector oA belonging to the left null space
(A= G(X; +1GN))z = A= © g 9 ging 0
Multiply (8) from the left by :* and from the right by:. Then we As seen in Remark 1, the sequence of residiz4l& ;) produced by
obtain Algorithm 2 is monotonically decreasing and, in particular, bounded.
2. Re(A):1(X* = (X, + Nj))z = =W (10) }hear;sgt lemma shows that boundedness carries over to the iterates
J .

The left-hand side of (10) is nonpositive smﬁ’é (’Z +‘\~' ) <0 Lemma 6: Suppose tha’[};]a‘] = 1,2,3,--- is a sequence of
andRe(A\) > 0. As W is positive semidefinite, the right-hand sidesymmetricn-by-n matrices such thaR(Y ) is bounded If(A, B)

of (10) is nonnegative and it follows that’ Wz = 0. Thus is a controllable pair, then the sequente is bounded.
(X _ (‘Xj + tNJ-‘ )G(X _ (‘Xj + th )z =0 Proof: We will prove the contrapositive: if{; is unbounded,
' ' then (A4, B) is not controllable. Without loss of generality we may

and sinceG: > 0, this_implies G(XT = (X, +1N;))z = 0, 01, a5sume thatim,—. | X;]|» = oo. (If not, we may consider a
equwalentlyl GX*z = = G(X; +1N; )z. From (9) we therefore obtain subsequence for which this assertion holds.) Define= 1X0e
Az = (A-G(X;+1N;))z = (A-GX")z. Hence \ is an eigenvalue 5 Y, = X,/¢;. TheY;'s are bounded, so there is a convergent

of A — GX* which contradicts the stability of — GX™. " subsequence which we may assume without loss of generality is the
The Lyapunov operatocorresponding to the Lyapunov equationgypole sequence. Let — lim, .. Y;. Note that¥ % 0. From
in Step 2.2 of Algorithm 2 is defined txyj( ) =(A-GX;))' Z+  §efinition (6), we have

Z(A-GX;)for Z € R"*" andj = 1,2,---. A corollary of Lemma
3 is that with a stabilizing starting guess, Algorithm 2 cannot fail due i(p —RX)+ATY, +V;A=¢,Y,BR'BYY,. (11)
to a singular Lyapunov operator. &i
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BecauseR(X ;) is bounded, the first term on the left-hand side of (11)et (Z) = (A — GX*)"Z 4+ Z(A — GX™*),Z € R**". Then the

tends to zero ag — oo. The second term approaches the finite limitesidual produced by Algorithm 2 satisfies

ATy Yy A i - i iti isi imi 7/ Y Y, 7 vk v T vk T

AMY -|.—.Y A. Frqm Fh.e right hand side, it is cllear th.a.t this is .a I|r.n|.t R, +t;N)) =R(X" + (X, + N, — X*) + (t; — 1)N;)

of positive semidefinite matrices and hence is positive semidefinite. L - . I

Dividing (11) by ¢; and lettingj — o givesYBR™'B'Y =0. It =Q(X; + N; = X7) + (t; - DQN;)

foI\I/(\)/ws from Lemn:ja 5t that A, Z?g if./AL\Jlnco.r;kt]roII,’;ble(.j " O " (X N = X 4 (- DN

_We are now ready to prove that Algorithm 2 reduces the residua T o

R(X;) [and henceRR(X;)] asymptotically to zero if the computed _ GUX5+ N, )s _) +(t = DN). )

step sizes are bounded away from zero. Taking norms, using (13), and recognizing that— 1| < 1 gives
Theorem 7:1f (A,B) is a control_lable pgir, a_nd the sequence |R(X; +;N)|lr <2t — 1| X* = X;||r||A - GX™||p

of step sizest; computed by Algorithm 2 is uniformly bounded +O(IX, - XU (15)

from below by?., > 0. then the residual norm§R(X;)||r decrease L .

monotonically to zero and cluster points of the sequeAGeare Recall thatt; € [0,2] is chosen to minimizé| R(X; 4 tN;)||r, so

solutions of the algebraic Riccati equation (1). (14) implies

N .Proof: Lemma 6 shows that the sequence of approximate r00fep X, 1 ¢, ,)||» < | R(X; + Ny)llr = O(IX" = X,[7). (16)

X; is bounded. Consequently, the st¢pd; are also bounded. Here

N, = E'N,E, andt, is the step size computed by minimizing!t follows from (15) and (16) thal; — 1| = O([|X™ - X;||») which

f;(t) = |R(X,; + tN;)||%. Thet; € [0,2] also form a bounded implies thatt; = 1 in the neighborhood of the stabilizing solution.
sequence, and since we assuniedt, < t; for all j, the N;'s Hence~* N e .

are bounded, too. Select a subsequelige of the X,’s such that IX7 = Xjpallr <X = (X5 + N)lle + 11 =451V (| ¢

X = limp_ oo Xj,,t =limp_o t;,, and N = limg_.oo Nj, :O(HX* _ j(]”§)

exist. Note that the residual normjis?(X;)||» are monotonically

decreasing, so they approach a limit and hence which proves the quadratic convergence of Algorithm 2.

The following theorem summarizes the convergence theory.

IB(X +i8)|1r = | B . (12 Theorem 10:1f (E~'A, E7'B) is controllable and¥, = X{ is

’ ‘ stabilizing in the sense that E, A— BK,) C C~, then the sequence

Therefore, the coefficients;, , 4,,. and~;, in (4) approach limits ©Of approximate solutionsY; produced by the modified Algorithm
and the minimum value of the polynomidlt) = ||R(X + ¢N)||3. described in Remark 9 converges quadratically to the stabilizing
is the limit of the minimum values of the,’s, i.e., we have SolutionX™, at each step\(E,A — BK;) C C", and the residual
limg oo fj, (t;,) = f(f) < £(0). However, using (12), we obtain NOrms||Z2(X;)||» converge monotonically and quadratically to zero.
f(0) = [RX)|lr = ||RX +iN)||lr = f(f). It follows that The theorem is more general than the one stated in [23] since

£'(0) = 0. But as observed in Remark ¥/(0) = —2||R(X)|)%. it does not requireX, to be positive semidefinite. In contrast
Thus,R(X) = 0. 0 to Newton’s method, the iterateX; are not necessarily positive

In summary, we have the following convergence result for NevieMmidefinite and they do not necessarily converge monotonically (in
ton’s method with Exact Line Search. terms of definiteness). On the other hand, the theorem needs the

Theorem 8: Suppose(/l, g) defines a controllable matrix pair. If strong hypothesis of controllability. Numerical experiments suggest
Algorithm 2 is applied to the algebraic Riccati equation (6) witfthat this can be weakened to stabilizability, but as of this writing we
a stabilizing starting gues&, and the step sizes; are bounded do not have a proof.
away from zero, theik * = lim;_... X, exists and is the stabilizing
solution of (6).

Remark 9: The above convergence result relies on the fact thatNewton’s Method (Algorithm 1) and the Exact Line Search (Algo-
t; > t, for all j and a given constant, >0. We can modify rithm 2) were implemented as MATLAB [22] functions. We did not
Algorithm 2 such that the step size is set to ong;ifirops below a use the hybrid algorithm proposed in Remark 9. All computations
prescribed (small) constant. By (7) it is clear that the so-defined nevere done under MATLAB Version 4.2a [22] on Hewlett Packard
iterate X ;11 = X; + N, satisfiesX™ < X;;1. We can now apply Apollo series 700 computers under |IEEE double precision and
the Newton iteration (Algorithm 1) with the “starting gues¥’;,; machine precision ~ 2.2204 - 10~'°. We compared the algorithms
and use the standard convergence theory for Newton’s method [1@), the examples in the benchmark collection of CARE'’s [6], several
[23], [26] to show that iterates produced by this hybrid algorithmandomly generated examples, and some contrived examples [5].
converge to the stabilizing solution of (1). We observed the following.

In our numerical experiments, very small step sizes occurred onlyq) |n examples where Newton’s method is much more expensive
at the very beginning of the iteration if the starting guess already  than the Schur vector method (Examples 2 and 3), the Exact
yielded a residual norm within the order of the limiting accuracy. In Line Search was competitive and sometimes faster than the
such a case, neither Newton’s method nor the Exact Line Search can gchur vector method [20].
be expected to improve the accuracy of the approximate solution of) \when used as defect correction or iterative refinement method,

(1) any further. ) it sometimes even improves on Newton’s method (see Example
Algorithm 2 inherits its quadratic convergence from Newton's 4).

method [24]. Suppose thaf(j is within the region of quadratic
convergence of Newton’s method. In this case [23]

IV. NUMERICAL EXAMPLES

In most cases, when used as defect correction method, the com-
puted step sizes amg = 1, so the Exact Line Search behaves like

N’,- — X _ X‘j n O(||X* _ X‘J-H%) (13) Newton’s method. This is expected from the discussion of qqadratic
convergence in Section lll. For more detailed numerical studies and
and other examples see [5].

o N N . Exact Line Search, and the Schur vector method as proposed in
|R(X; + N)llr = O(|1 X" = X|17)- (14) [4], [5], and [20], have been implemented on vector and parallel
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Fig. 1. Example 2,6 = 1.
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Fig. 2. Example 2,6 = 1076,

computers using block-oriented algorithms [25]. The results report&tabilizing starting guesse¥, were generated by the method de-
there suggest that on computers with advanced architectures, gbebed in [1], [14], and [27]. Figs. 1 and 2 show the behavior of the
Exact Line Search and even Newton's method compare favoralligorithms fors = 1 and§ = 107°. The initial slow convergence
to the Schur vector method. behavior of Newton’s method grows worse &@s- 0, but the Exact
Example 2 [6, ex. 14], [2, ex. 2]:Here, A depends upon a param-| jne Search neatly avoids the problem. As opposed to Newton's
etero. If 6 — 0, the system approaches one which is unstabilizablgethod, the Exact Line Search needs no more than six to eight
and a conjugate complex pair of closed-loop eigenvalues approacfiggtions and is therefore competitive with or even cheaper than the
the imaginary axis. The system matrices are given by Schur vector method.

Example 3 [6, ex. 15], [20, ex. 4]This example is frequently

:i _15 g 8 . 1 used to test CARE solqtion methqu. Itis a po;ition and velocity
A= 0 0 s 1l B=C" = 1 control model of a string ofV high-speed vehicles. We have
0 0 -1 & 1 n = 2N —1,m = N, andp = N — 1. The nonzero
entries in the transition matrid are aany—1 2n—1 = 1 and for
E=1I Q=R=[]  S=0.

S . ] - - -
i=1,---,N —1,asi—1,2i—1 = a2 21 = —1, andaz; 2:.—1 = 1.
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Fig. 3. Example 4,n = 40.
TABLE |
ExampLE 3
Newton’s method ' Exact Line Search
n it [ IRl [ IR/ 1X]lr | it [ IR [ IRZ)]#/IX][F
9 5 | 1.2-10"13 6.1.10°1%5 5 | 5.6.10"15 2.9.1016
49 7 16.9-1071 1.1-10-15 6 | 2.2.10"1% 3.6-10"1
99 8 | 8.2-10°14 8.1.1016 6 | 3.8.10"14 3.8.1071
199 | 9 [ 1.1-10-13 6.5.10-16 6 | 8.0.1071¢ 4.6-10716
The other system matrices ale = R = C = I,,5 = 0,B = increases the initial residual norm by several orders of magnitude.

diag(1,0,1,0,---,1,0,1), and@ = diag(0, 10,0,10,---,0,10,0). The graph of relative errors closely matches the graph of residuals.
Stabilizing starting guesseX; were generated by the method Using the CARE condition numbek ™ proposed in [7] and [15]
described in [1], [14], and [27]. Table | shows the number of iterationse obtain K+ =~ 1.8 - 10° for n = 40 and K+ ~ 4.2 - 10! for
and the Frobenius norm of the last absolute and relative residual foe= 50. Rounding errors made while formirng” QC are sufficient to
some values of. (X denotes the computed approximation¥d.) change the smaller eigenvalues and corresponding invariant subspaces
Exact Line Search is somewnhat faster than the Schur vector methgdhe solutionX* and the closed-loop systeth— BR~! BT X* by
while Newton’s method slows down as increases. In agreementover 100%. The closed-loop poles are so close to the imaginary axis
with our observations, timings on vector and parallel computers fRat the symmetrized Schur vector solution o= 50 did not appear
[25] indicate that the Exact Line Search requires about two-thirds gf be stabilizing as it should have been; one of the smaller eigenvalues
the time of the Schur vector method. of A— BR 'B* X, computed by MATLAB was of the wrong sign.
Example 4: One of the situations in which defect correction ofrhe Exact Line Search preserves inertia, sosfoe= 50 it did not
iterative refinement [16], [17] has the most to offer is when the Riccathnverge to a stabilizing solution either, while for Newton’s method
equation is ill-conditioned. Rounding errors make it unlikely that anyyo more eigenvalues cross the imaginary axis.
Riccati solver will produce much accuracy, but with its excellent Notice in Fig. 3 that for. = 40, refining the Schur vector solution
structure-preserving rounding error properties, Newton's method isjyced the residual down to machine precision. In both cases, the
likely to squeeze out as much accuracy as possible [2], [16], [1Hyact Line Search required about two-thirds of the computational
This example is contrived to be highly ill-conditioned. Leie R" ¢4t of Newton’s method to reach the limiting accuracy. This shows
denote the vector of ones, and= m = p, then the CARE (1) iS that also for defect correction, the Exact Line Search does in some

given by cases compare favorably to Newton’s method. In both examples, the
E=R=1, A=5=0, B =10°T first Newton step is a disaster.
C=I- 2661" Q:dia‘g<9il,9%79i2,9%vg%,...>, V. CONCLUSIONS
" ’ ’ ’ We have studied an Exact Line Search method based on Newton'’s
The exact stabilizing solution is given by* = 107°C"QC. method for solving (generalized) continuous—time algebraic Riccati

We obtained the starting guess &s = (X + X7)/2 whereX equations. It avoids Newton's method's problem with disastrously
is the “solution” of (1) computed by the Schur vector method darge first steps, and it accelerates convergence when Newton steps
discussed in [2]. Observe in Figs. 3 and 4 that Newton's methade too small or too long. Numerical experiments verify that it
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Fig. 4. Example 4,n
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sometimes significantly reduces the number of iterations. Theoreticgd]
convergence properties are similar to Newton's method. Used as a

defect correction method or for iterative refinement, it has the abili

to obtain high accuracy. The Exact Line Search adds less than 10%
to the cost of a Newton iteration, i.e., the additional work to perform
the line search is small relative to the work needed to calculate tHél
Newton step.

A Fortran 77 implementation of the Exact Line Search method2;
will complement Newton’s method in a forthcoming release of the

Subroutine Library in Control and Systems Theory (SLICOT) [29].
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